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requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

We investigate the computational complexity of quantum computing with identi-
cal noninteracting bosons, such as that in a linear optical system. We explore the
challenges in building devices that implement this model and in certifying their cor-
rectness.

In work done with Scott Aaronson, we introduce BOSONSAMPLING, a computa-
tional model of quantum linear optics [1]. We argue that the statistical distribution
of outcomes cannot be reproduced by any classical device in a reasonable time span.
This gives hands-on evidence of quantum advantage, that there are quantum phe-
nomena are prohibitive to simulate in the classical world. Moreover, this quantum
advantage is already present in limited optical systems, suggesting a lower bar to
building devices that exhibit super-classical computation. We lay out the compu-
tational complexity argument for the classical difficulty of simulating BOSONSAM-
PLING. An efficient classical simulation would have unlikely complexity consequences
for the polynomial hierarchy PH. We look into the difficulties in proving an analo-
gous approximate result, including the conjectures that seem to be needed to push it
through.

We then discuss experimental implementations of BOSONSAMPLING. The scala-
bility of current implementations is limited by various sources of noise that accumulate
as the problem size grows. We prove a result [51 that pertains to the inexactnesses of
components that comprise the linear optical network, giving bounds on the tolerances
that suffice to obtain an output distribution close to the ideal one.

Finally, we look at the challenge of certifying a BOSONSAMPLING device. We
show the impossibility of one technique, to use a submatrix whose permanent is
so large that its corresponding outcome appears very frequently. Joint work with
Aaronson [21 argues that the outputs of a BOSONSAMPLING device can be verified
not to come from a uniform distribution. Results on the statistical bunching of
bosons obtained with Kuperberg [61 are another approach to certification. We further
present a novel certification technique based on classically estimating the distribution
of integer combinations of the boson counts.
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0.1 Extended abstract

We investigate the computational complexity of quantum computing with identi-

cal noninteracting bosons, such as that in a linear optical system. We explore the

challenges in building devices that implement this model and in certifying their cor-

rectness.

In work done with Scott Aaronson, we introduce BOSONSAMPLING, a computa-

tional model of quantum linear optics [1]. A fixed number of identical photons are

produced in different modes, pass through a network of beamsplitters and phase-

shifters, and are measured in number for each output mode. This model is similar

to the Linear Optical Quantum Computing model [271, but has all the measurements

performed at once after the network without any adaptiveness. Each run of the ex-

periment produces different random counts. We argue that the statistical distribution

of outcomes cannot be reproduced by any classical device in a reasonable time span.

This gives hands-on evidence of quantum advantage, that there are quantum phe-

nomena are prohibitive to simulate in the classical world. Moreover, this quantum

advantage is already present in limited optical systems, suggesting a lower bar to

building devices that exhibit super-classical computation. In particular, this system

uses only a limited form of coupling between the photons, and we do not believe it

can perform universal quantum computation.

We lay out the computational complexity argument for the classical difficulty of

simulating BOSONSAMPLING. At its core is a matrix function called the permanent,

which dictates the probability of each outcome. The connection of the permanent to

linear optics has been made before, for example by Scheel [38]. In a celebrated result of

Valiant [531, computing the permanent is #P-complete and so captures the full power

of counting problems like finding the number of satisfying assignments to a Boolean

circuit. Using the technique of approximate counting [46] with the help of an NP

oracle, one could obtain the probability of an outcome of a classical simulation, and

therefore estimate the permanent of a chosen embedded submatrix. This would have

unlikely complexity consequences for the polynomial hierarchy PH. We discuss the
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difficulties in proving an analogous approximate result, including the conjectures that

seem to be needed to push it through: the Permanent of Gaussians Conjecture (PGC),

and the Permanent Anti-Concentration Conjecture (PACC). Though unproven, these

conjectures are supported by numerical and heuristic evidence.

We further discuss why linear optics in particular is fertile for a result of this na-

ture by comparing similar systems that are nevertheless classically simulable. Though

analogues with classical or distinguishable particles are also governed by the matrix

permanent, the permanent is of a matrix of non-negative entries. Unlike with com-

plex amplitudes, there cannot be any cancellations between terms of different sign of

phase, a uniquely quantum phenomenon. Non-negative permanents can be classically

approximated [24]. Fermions are a natural analogue to bosons, with the difference

that their probabilities are governed by the determinant rather than the permanent.

Unlike the #P-complete permanent, the determinant is polynomial-time computable,

and understanding this gulf in difficulty is a central problem in geometric complexity

theory (see for example [28]). Moreover, fermions allow an efficient classical sampling

algorithm [54] based on computing marginal probabilities.

We then discuss experimental implementations of BOSONSAMPLING. The scala-

bility of current implementations is limited by various sources of noise that accumulate

as the problem size grows, including as incorrect input photon counts, inaccuracies in

the network components, partial distinguishability, and photon loss in measurement.

This includes an overview of theoretical bounds that show certain degrees of noise

are prohibitive as in [30] and [36]. We prove a result [5] that pertains to one par-

ticular source of inaccuracy, of inexactnesses in the beamsplitters and phaseshifters

that comprise the linear optical network, causing it to implement the wrong unitary

operation. We prove bounds on their tolerances that suffice to obtain an output

distribution close to the ideal one.

Finally, we look at the challenge of certifying a BOSONSAMPLING device. In

contrast to efficient quantum factoring [43], a problem that is in NP and can be

easily verified by multiplying the factors, the difficulty of computing the permanent

that allows us to prove hardness also prevents us from classically confirming the

15



results. Moreover, BOSONSAMPLING gives outcomes that are probabilistic and not

individually checkable. One potential technique is to certify with a network matrix

that has been chosen with a submatrix smuggled in whose permanent is so large

that its corresponding outcome appears very frequently. We show that this method

is vulnerable to a classical adversary detecting such a special submatrix, by proving

that these submatrices are marked by exceptionally large entries and a particular

structure. We show striking novel connections between unitary matrices with large

permanent, near-isometries of the hypercube, sets of strings with assigned Hamming

distances, and low-rank decompositions into 1-valued matrices.

Joint work with Aaronson [2] argues that the outputs of a BOSONSAMPLING device

can be verified to not derive from a uniform distribution. The output probabilities are

correlated with the matrix row norms, allowing a weak sanity check on empirically

observed photon counts. A statistical test is discussed [50] based on Fourier matri-

ces causing the output states to be concentrated in a small subset. Results on the

statistical bunching of bosons obtained with Kuperberg [61 are another way to check

the outcome to be consistent with bosonic behavior. We further present a novel weak

certification technique based on a classical algorithm to estimate the distribution of

integer combinations of the boson counts.
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Chapter 1

Computation with identical bosons

and BOSONSAMPLING

This chapter is based on work done with Scott Aaronson in The Computational Com-

plexity of Linear Optics [1]

1.1 Overview

1.1.1 Quantum advantage

The Extended Church-Turing Thesis (ECT) states that any computational problem

that can be efficiently solved in the physical world can also be efficiently solved on a

formal model of a computer, that is a probabilistic polynomial-time Turing machine.

If we consider that any physical process can be regarded as the computational problem

of simulating it, this claim applies broadly to simulating physical phenomena on

computers.

However, our understanding of the physical world has expanded to include quantum-

mechanical phenomena such as superposition and entanglement, which are not rep-

resented in our classical notions of computing. This raises the question of whether

these quantum phenomena can be classically simulated in a computational sense, of

taking as input a mathematical description of the system and its initial state, and
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outputting the observed outcomes.

Evidence has accumulated that the ECT is false. A quantum advantage is broadly

conjectured, that quantum systems can be computationally more powerful than any

classical counterpart. Indeed, harnessing the unique properties of quantum mechanics

for computation is central to the research endeavor of quantum computing. We hope

to build a practical universal quantum computer that will allow us to efficiently solve

problems outside our classical reach.

Proving the existence of a quantum advantage is a central problem of quantum

complexity theory, which seeks to categorize the computational hardness of formal

problems, as well as the power of formal models of computation. The open problem

of BPP vs BQP asks whether quantum algorithms can efficiently solve some problem

that classical ones cannot. More strongly, we want to understand what gives quantum

computers their apparent advantage. Where exactly does the line between quantum

and classical computation lie? What uniquely quantum phenomena are needed to

cross this boundary?

In this work, we give evidence for quantum advantage. We state a simple model

of quantum computing with identical bosons and prove it cannot be efficiently simu-

lated classically unless we accept certain unlikely complexity-theoretic consequences.

Moreover, because our model represents a restricted one-step computation with non-

interacting bosons, this suggests that the bar for quantum advantage is lower than

might be expected.

1.1.2 Our model

We define a model of quantum computation with identical, noninteracting bosons.

Physically, it can be implemented as a linear optical network in which a fixed num-

ber of identical photons are produced in different modes, pass through a network of

beamsplitters and phaseshifters, and are measured to obtain a photon count for each

output mode. This is similar to a standard qubit-based circuit with the particles

passing though a series of gates followed by measurements. A key difference is that

the photons are identical, so the correspondence of input and output photons is in

18



superposition even after the measurements are performed.

Our model follows a long history of work in optical interferometry, which investi-

gates interference between waves of light. We compare it to existing similar models.

The Hong-Ou-Mandel dip [231 is an experimentally-observed two-photon interfer-

ence phenomenon that can be seen as a special case of our model. Two identical

photons enter a 50:50 beamsplitter from opposite sides. Individually, each photon

would be equally likely to pass through the beamsplitter as to bounce off it, doing

so in superposition. When both photons hit the beamsplitter at the same time, they

are always observed to exit on the same side.

The Linear Optical Quantum Computing (LOQC) model of Knill, Laflamme,

and Milburn [27] shows how to do universal quantum computation on a linear optical

device aided by adaptive measurements. Our model is based on a similar construction

of a network of photons passing through beamsplitters and phaseshifters and being

measured by photodetectors, but does not use adaptiveness and is not believed to be

universal. Another scheme by Gottesman, Kitaev, and Preskill [211 instead expresses

states in terms of modes of a harmonic oscillator.

Scheel [38] looks at linear-optical networks of identical photons and connects the

superposition of paths that the photons may take to computing a matrix function

called the permanent. We make the same connection, and it is central to our com-

plexity results.

1.1.3 The computational complexity of BOSONSAMPLING

We define the computational problem of BOSONSAMPLING as randomly sampling

from the distribution of a system of identical noninteracting bosons. This is a

sampling problem, in that it requires randomly generating an outcome such that

each possible outcome occurs with the correct probability. BOSONSAMPLING can

be performed efficiently on a quantum computer by directly simulating the individ-

ual bosons. However, we do not know this problem to be universal for quantum

computing, or even for classical computing.

Nevertheless, we give evidence that this problem is outside the reach of efficient
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classical computing. Our exact result states that a classical computer cannot perform

BOSONSAMPLING exactly unless the polynomial hierarchy collapses.

Theorem 1 (Complexity of exact BOSONSAMPLING). No polynomial-time classical

randomized algorithm can perform BOSONSAMPLING, unless P#P = BPPNP and the

polynomial hierarchy collapses.

An approximate version of the result derives consequences of an algorithm to

approximate BOSONSAMPLING by sampling a distribution that's close in variation

distance, but it assumes the hardness of a permanent estimate problem IGPE 1.

Theorem 2 (Complexity of approximate BOSONSAMPLING). For m > nlog2(n)

there does not exist a classical randomized algorithm A that performs approximate

BOSONSAMPLING in time poly(m, n, 1/c) unless the IGPEI problem is solvable in

BPPNP.

The IGPE|1 problem is: given a matrix , ~ gnn a tolerance c, and a maximum

failure chance 6, output |Per (M)1 2 to within en! with probability at least 1 - 6. Do

this in running time polynomial in n, 1/f, and 1/6.

We further show that the hardness of !GPEI can be broken down into two

conjectures that together imply it, and so the hardness of approximate boson sam-

pling. These are the Permanent-of-Gaussians Conjecture and the Permanent Anti-

Concentration Conjecture.

Conjecture 3 (Permanent-of-Gaussians Conjecture (PGC)). The following problem

called GPEX is #P-hard: given a matrix M ~ gnxn, a tolerance E, and a maximum

failure chance 6, output Per (M) to within e Per (II)| with probability at least 1 - 6.

Do this in running time polynomial in n, 1/c, and 1/6.

Conjecture 4 (Permanent Anti-Concentration Conjecture (PACC)). There are con-

stants C, D and 3 > 0 so that for any n and e > 0

Per (M) 12 DPr -< 6 <CnD E
M~GnXn n! I
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1.1.4 Comparison to Shor's algorithm

Shor's algorithm [43] performs factoring in polynomial time on a quantum computer.

We view it as evidence for quantum advantage: either this quantum circuit is solving a

classically hard problem, or factoring is classically feasible. It is generally conjectured

that factoring is not classically feasible, as no efficient algorithm has been found after

many years of trying, and the difficulty of factorizing is crucial to the security of

cryptographic algorithms such as the RSA public-key cryptosystem. Nevertheless,

the problem remains open.

We compare our result to Shor's algorithm as two pieces of evidence for quan-

tum advantage. The style of the results is quite different. For factoring, the main

breakthrough is a clever quantum circuit that performs factoring via period-finding.

The problem of factoring has existed for centuries, and the new insight shows it to

be doable by a quantum algorithm.

BOSONSAMPLING, however, is clearly solvable by a quantum system because it is

the problem of simulating a quantum system. The problem is designed to be exactly

what a certain kind of quantum computer can do. The work in proving quantum

advantage is instead in showing this problem not to be classically solvable.

Unlike factoring, the problem is artificial and specifically designed to demonstrate

this quantum advantage. We don't know of any useful problem or task that can

be solved by a BOSONSAMPLING device. An advantage of our approach is that the

problem can be solved directly by a generic linear-optical system. This suggests that

quantum advantage doesn't have to be obtained by cleverly engineering a quantum

circuit to do a specific task, but can be obtained from general quantum behavior.

Another point of comparison is the assumptions required for the respective results

to demonstrate quantum advantage. For Shor's algorithm, the alternative is that

factoring can be done in polynomial time. This would certainly be surprising, but

would not change the landscape of complexity classes as the collapse of the polynomial

hierarchy would for our exact result. However, our approximate result relies on further

unproven conjectures.
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1.1.5 Quantum advantage with limited resources

BOSONSAMPLING represents a rather restricted quantum system.

First, the network does not create any explicit coupling on the bosons. Physically,

it does not have any photon-photon interactions. Its action on n bosons is charac-

terized completely by its unitary action on a single boson. Given this, it may not be

clear how it can do any interesting computation at all. The key is that just by virtue

of being identical, the photons and their measured counts can become correlated. The

Hong-Ou-Mandel dip [231 is a stark example of this with two photons.

The question of entanglement here is a subtle one. The output state can be

factored as a product of single-particles states with a symmetric product that accounts

for the particles being interchangeable, but not with the standard tensor product, so

it is not separable in the usual sense. The state of a BOSONSAMPLING device before

measurement, if allowed to interact with particles encoding qubits, could be used to

create entanglement between them. However, in terms of just the bosons, only a

limited low-dimensional subspace of states can be generated.

The computation is further limited in its structure as a single unitary operation

followed by measuring every particle to obtain counts. The unitary operation is fixed

in advance and cannot depend on the results of intermediate measurements as allowed

in the LOQC model [27].

That we can get quantum advantage with such a restricted model helps us probe at

the dividing line between classical and quantum computation. The BOSONSAMPLING

problem and its classical analogue differ only in the use of identical bosons as opposed

to classical particles or distinguishable bosons. A key feature missing in the classical

or distinguishable case is quantum superposition of possible paths of particles through

the network, and the cancellations between amplitudes that can result.

In contrast, the lack of explicit coupling between bosons suggests that this is not

an essential feature for quantum advantage. The limited form of entanglement that

arises from the particles being identical already suffices. Similarly, adaptive operations

are not used and so do not appear to be essential.
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Furthermore, the limitedness of the BOSONSAMPLING model makes it easier to

implement experimentally than a general quantum computer. A fixed network is

used for each run, and the particles interact directly with not network and not with

other particles. In fact, the absence of photon-photon interactions outside of particle

accelerators is helpful for avoiding unwanted interactions that leak information. So,

we get the advantage of the excellent coherent properties of photons without the

drawback of them being hard to couple.

Linear optics is an active experimental field and BOSONSAMPLING gives the

promise of demonstrating quantum advantage sooner than building a universal quan-

tum computer. This is aiming for the lower hurdle of doing some quantum computa-

tion we believe to be classically infeasible, rather than building a universal computer

than can do every possible quantum computation. Progress towards building and

certifying BOSONSAMPLING devices is discussed in detail in chapter 2 and chapter 3.

1.1.6 Open problems

This work leaves many open problems for potential future work for both theory and

engineering.

" Resolve the Permanent of Gaussians Conjecture (PGC), and the Permanent

Anti-Concentration Conjecture (PACC)

" Find a decision problem that is equivalent to BOSONSAMPLING

" Use BOSONSAMPLING to solve a useful problem

" Prove or disprove the existence of intermediate complexity classes between clas-

sical computing and BOSONSAMPLING

* Show how to certify the correctness of a BOSONSAMPLING device in way that

would convince a skeptic

" Build a scalable linear optical device

" Implement fault-tolerance and error correction in linear optical system
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1.2 Identical boson model

We formalize the quantum behavior of identical, noninteracting bosons. The devel-

opment will be analogous to the definition of qubits and multi-qubit states taught

in many introductory textbooks of quantum computing, such as Nielsen and Chuang

[34]. We will define notions of modes, states, transformations, and measurements for

the particles.

1.2.1 Single-boson systems

We start with a simple single-boson system, whose definition will be familiar to those

who have studied circuit-based quantum computing. It is a particle whose state

belongs to an m-dimensional vectorspace, i.e. a qudit. With only one particle, the

notion of identicalness of course does not figure.

Definition 5. A single-boson quantum system is defined as follows:

" State: The quantum state of a boson is a vector v in C'. Let x1, X2,.-. , Xm

be the standard basis states for this vectorspace. A state v is a superposition of

these basis states as a linear combination v = v1 x1 + v2x 2 + - - + VMXm.

* Normalization: A state must by normalized as a unit vector, having IIv|| 2

Iv1 2 + |v212 +. - + Ivm| 2  1.

" Transformation: A state can be acted by a unitary map from Cm to Cm, i.e.

a m x m unitary matrix. The matrix U transforms the state vector v to Uv.

" Measurement: Measuring the state in the standard basis results in a random

mode chosen from j 1, 2,..., m each with probability Ivj| 2 .

Note that the measurement probabilities add to 1 because the state v has a norm

of 1, and that transformations preserve this norm because they are unitary. After a

measurement results in mode j, the state "collapses" to the basis state xj where it

can be further operated on, though we will not need to do so in this work.
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1.2.2 States of identical bosons

Now we consider how individual bosons combine into a joint system of identical

bosons.

In a standard qubit-based model, this would be via the tensor product: if vi and

v2 are single-particle states, their joint two-particle state is a tensor product vi o v2 .

Note that this operation does not commute: v 1 9 v 2 7 v 2 0 v1. This represents that

it matters which of the two particles is in which state.

This is not the case for identical particles. Because they cannot be distinguished

even in principle, their joint state must act the same if the particles were to be

swapped. Hence, the combining operation must commute.1 In multilinear algebra, the

symmetric product, often written 0, is a commuting analogue to the tensor product.

We will define this operation in an equivalent but more familiar way in terms of

multiplying polynomials, where variables naturally commute as XjXk = XkXj

If one boson is in a basis state x, and another in basis state x 2 , their joint state

is the product x1 x 2 . This is the same as X2 X1 . These xj's are formal variables and do

not represent numerical quantities, as in a generating function. For physicists, these

are creation operators at.

A general multi-boson basis state is a monomial X11 x12 
.. X-_ where s ,m

are natural numbers representing the number of bosons in each mode. The degree of

the monomial S1 + s2 + - + sm is the total number of bosons n.

Notation 6. We will use the following notation throughout to write operations on

vectors without listing their components:

" Write S for the vector of boson counts (S1, s2 ... , Sm) and x for the vector of

formal variables (x1 , x 2, .... , x).

" Write xs as shorthand for the monomial xx 2 
2-x

* Write p(x ) for a multivariate polynomial p (x1 , X2, ) ,

'An alternative is for them to anti-commute, which is the case for fermions. The negation of the
amplitude after a swap leaves the probability unchanged.
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* Finally, write S! for the product of factorials S1!S2! ... Sm! (we will use this

soon).

We will use n for the number of bosons and m as the number of modes throughout.2

Each monomial corresponds to an unordered selection of n elements from among m

choices, allowing repeats. The number of such choices is defined by the multichoose

operation

M = (m)= (m+ n -1

This value M is the dimension of the vectorspace of n-boson states Cm.

We define an inner product on monomials.

Definition 7. The inner product of two basis states corresponding to counts S

(S1, S2, ... ,Sm) and T =(tl, t2, ... , tm) equals

S T){S! if S=T

0, otherwise,

recalling that S! is shorthand for S1!S2!... S -m.

Note that though these basis states are orthogonal, they are not always of norm

1. The norm-squared of S! is greater than 1 when any count has sj > 1, or in other

words when two bosons occupy the same mode. The reason is combinatorial, that

K S I XT) represents the number of ways to match equal variables in S and T. When

a variable appears sj = tj times, there are sj! ways to perform this matching. In

other words, the redundant ways of listing two bosons in the same mode contribute

multiple times.

A physical n-boson state with determined boson counts S therefore must equal

xs/ SS! so that its norm is 1. For instance, a state of two bosons both in mode 1 is

not X2 but x /v 2. Nevertheless, it turns out simpler simpler to work with monomials

in the unnormalized basis and to remember to include the multiplier when taking

inner products.

2A general state may be a superposition of different number of bosons, such as for a coherent
state, but we will only work with states where the number of bosons is fixed.
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A general state may be written a polynomial of degree n. This is known as a Fock

state. We express is as a linear combination of monomials representing a superposition

over basis states with respective coefficients cs:

p =Z(csxs
S

This sum is implicitly taken over all Al= (()) partitions S of m non-negative

integers whose sum is n. The inner product of two Fock states linearly extends that

on monomials. Because it is a Hermitian inner product, the complex coefficients of

the first state are conjugated.

Definition 8. The inner product of two Fock states

P = Y cSXS
S

and

q = Edsxs
S

is gven by

(p Iq) = S!-c -sds.

The Fock norm is therefore

>s! IcsI.

We measure a Fock state by performing a boson-counting measurement on each

mode to obtain a vector of counts, which projects the state into the monomial basis.

The probability of measuring a given count is determined by the inner product with

a normalized basis state xT/ T!.

Definition 9. Measuring a Fock state p = ES csxs results in a random count vector
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T with respective probabilities

Pr [T] = p =1 T!T = T!IcT| 2 .

1.2.3 Transformations on multiple identical bosons

We previously defined how a unitary transformation U acts on a single-boson state v

by matrix-vector multiplication Uv. We now extend this to multiboson states.

The matrix U transforms a single-boson basis state xj into a linear combina-

tion IG_ 1 UjkXk. We can think of it as the matrix U acting on the vector of for-

mal variables x = (X 1 , X2, .. . , Xm) to produce a vector Ux of linear combinations of

these formal variables. Its action on multiple bosons is then to perform this variable

substitution on every variable in the expression. In other words, it transforms the

polynomial p(x) into p(Ux).

Definition 10. Write U[p] for the action of a matrix U on a Fock state p. Then, the

action of U on a basis state xs is given by the product of linear terms

U [x] = (Uxi)" ... (Uxm)sm

= (U1Xi + U1 2X 2 + - + UimXm)l -.. (U1 + Um2X2 + + Ummm)sm

(1.1)

This extends linearly to its action on a polynomial, which may also be expressed as

U[p(X)] = A(UX).

The product of linear terms may be expanded as a sum of monomials. In this

way, the action U on a single-particle space Cm defines an action3 on the n-particle

space CM. Note that this is a homomorphism, in that acting by U then by V is the

same as acting via the product VU:

V [U [P]] = (VU) [P].
3 In representation theory, this is a representation of the unitary group given by its n1h symmetric

power.
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The noninteractingness of the bosons is reflected in the fact that the unitary

map acts on each formal variable independently. Moreover, because the bosons are

indistinguishable, the same map must be applied to each one. If the bosons started

in a monomial basis state, a transformation can only take them to a product of linear

terms, the analogue of a "separable state", which can be defined via m 2 parameters.

Moreover, these linear terms remain orthogonal as vectors. This is only a small subset

of the space CM of n-boson states. In this way, the homomorphism defines a limited

way to act on CM via a low-dimensional subgroup.

1.2.4 Multiboson systems

We summarize our formalization of systems of identical bosons.

" State: A quantum state of n bosons is a vector v in CM, where A (("n))
rn-). Its basis elements are monomials xS, where xs as shorthand for the

monomial X
1

1X
2 ... x- . The sj are natural numbers whose sum is n; they

represent the count of bosons in each mode. A state is a linear combination

P = Zs cSzX with complex coefficients cs.

" Normalization: A state p must be normalized by having (pIp) = S S! CS 2

1, where S! = si! ... sm!.

" Transformation: A state p can be acted by an m x m unitary map on the

single-particle space Cm . The resulting state U[p] may be obtained by act-

ing on the formal variables, that is, replacing each variable xj with the linear

combination Z"l Ujkiz.

" Measurement: Measuring the state p = ES CSXs results in a random boson

count vector S with respective probabilities

Pr [S] = Ics2 S!.
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Figure 1-1: A graphical schematic of the Hong-Ou-Mandel dip. Image from Nature
Photonics

1.2.5 Example: Hong-Ou-Mandel dip

Now would be a good time to see an example of a calculation with Fock states.

The Hong-Ou-Mandel dip [23] is an experimentally-observed two-photon interfer-

ence phenomenon. Two identical photons enter a 50:50 beamsplitter from opposite

sides. Individually, each photon would be equally likely to pass through the beam-

splitter as to bounce off it, doing so in superposition. When the two identical photons

hit the beamsplitter at the same time, they are always observed to exit on the same

side. See the diagrams in fig. 1-1. Even without explicit coupling between the pho-

tons, their outcomes managed to become perfectly correlated.

This is a system with n = 2 photons and m = 2 modes. The initial state is

p = x1 x2 , with one photon coming from each side. The 50:50 beamsplitter is a 2 x 2

Hadamard matrix

1 i ii
M=.=L i

Acting on an individual photon, this beamsplitter maps x, to (x1 +x 2 ), which if

measured gives a 1/2 chance of the photon appearing in each mode. These potential

outcomes correspond to counts of (1, 0) and (0, 1). The same is true for the other

photon, which maps to L(x - x2). Now, the action of the beamsplitter on both
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photons is

U [XiX 2] = U [{XI U [x 2]

1 1
= -(I + x 2 ) (X 1 - x 2) (1.2)

12

Note how in the product, the -XiX 2 and +X 2X 1 terms canceled, leading to no term

XiX 2 for the output (1, 1) of one photon in each mode. This gives zero probability

for the output bosons going different ways. The commutativity of the product was

needed for this cancellation to happen.

Measuring afterward gives one of the normalized basis states x/ V2 and X2/ 2.

The probability of getting x2/V for a count vector of (2,0) is GX2 X 2 / 2H) 2

1/2 - 2. 22 =1/2. We similarly get probability 1/2 for (0, 2). These add to 1 as

expected.

1.2.6 Analogues with other particles

How does the formalization for systems of multiple bosons summarized in section 1.2.4

change when other kinds of particle take the place of bosons? Boson and fermions

are the two classes of elementary particles. Bosons are particles like photons that

have integer spin and generally carry forces, whereas fermions are particles that have

half-integer spin and include electrons, protons, and neutrons.

The model for fermions is similar except the commutation property Xjzk - XkXj

is replaced by anti-commutation XjXk = -XkX . This type of product is known as

the alternating product or wedge product or exterior product, often written A. Note

that the negative sign appears only in the amplitude. When squaring to get the

probability, it disappears. But, the sign matters for relative terms. For example,

re-doing the Hong-Ou-Mandel dip in section 1.2.5 with fermions, the terms -x 1 x 2

and +X 2 x1 are not opposite but rather equal, and so they combine constructively for

a nonzero probability of the particles splitting ways. In fact, the probability is 1;

the particles cannot end in the same mode because the anti-commutation law gives

31



Xc = -, which must equal 0. This is the Pauli exclusion principle, that two or

more identical fermions cannot occupy the same quantum state.

When the particles are classical, such as macroscopic objects, we can developed a

similar formalism using probabilities instead of amplitudes. States are now classical

mixtures of basis states xs. Their coefficients represent probabilities, not amplitudes,

and measuring uses these coefficients directly without squaring. As probabilities, the

coefficients are real numbers between 0 and 1 that add to 1. Transformations still act

as linear variable replacements, but are now stochastic matrices so as to preserve the

norm.

In the classical case, nothing changes if the particles are distinguishable, but we

simply ignore their differences by only considering the number in each mode after we

measure. If we work with distinguishable bosons or fermions, the outcomes are just

as if they were classical particles. The amplitudes directly translate to probabilities

via their norm-squares, and we may work with these probabilities directly as there is

never any superposition that would add two amplitudes. If identical particles enter

and exit the system at different times, then it is determined which output particle

corresponds to which input, making the particles distinguishable. This also occurs

to varying degrees at each optical component if the wavepackets of the photons are

shifted in time and so do not overlap perfectly. In [57], Xu develops an intermediate

model for partially distinguishable bosons.

1.2.7 Adjoint property

It is not immediately obvious why a transformation U[p] with U unitary is itself

a unitary map on C". That it is unitary implies that the transformation takes

orthogonal states to orthogonal states, and that it preserves that states have a norm

of 1. This must be true for the total probability of all possible measurements to

sum to 1, and so is implicitly required by the physical interpretation. We prove the

following more general property:

Proposition 11. For any n-boson states p and q and matrix M, the following Fock
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inner products are equal:

(p IM[q) =KMt I q),

where M t is the conjugate-transpose of M.

This is analogous to the familiar property of the inner product that (v I Mw)

(Mtv I w). The conservation of norm and orthogonality follows from this because

(U[p] U[q]) = (U t U[p] I q) = (p I q),

using that UtU is the identity for U unitary.

We prove proposition 11 by taking a detour to an alternate definition of the Fock

inner product as an expectation over Gaussian distributions. This expression treats

the formal variables as taking on complex-number values.

Proposition 12. Let g be the complex Gaussian distribution .A(O, 1)c. The Fock

inner product of p and q is given by

(p q) = Exg- [p(x)q(x)]

Proof. Because expectations and inner products are both linear, it suffices to prove

the result when p and q are monomials p = xS and q = xT. The product p(x)q(x) is

then

p(x)q(x) = Tsx' =J x'j

j=1

We first show that this has expectation zero when S , T, matching the inner prod-

uct. Since the coordinates of g' are probabilistically independent, the expectation

decomposes into factors as

Ex~grn [(q(x) = JEx~g [xj .
j=1

Consider one of these terms Ex-g [yaxb]. We can take out a multiplier of Tax"L to

33



rewrite this as

Ex-g |z|2a Xb-a

When a 7 b, the distribution of xb-a is radially symmetric, i.e. uniform over phases,

so the expectation is 0. Therefore, unless S = T and all the respective counts match,

the expectation is 0.

It remains to check that the expectation matches the inner product when S = T.

We use that

Exj~g [1XI 2 a = a!]

which may be obtained from the moment generating function of the x2 distribution

of x| 2. So, the product of the expectations is H7"1 sy! =!, matching the inner

product.

We're now ready to prove the adjoint property (proposition 11).

Proof. We want to show that

(p I M[q]) = KMt[p] q)

We first show that this holds when M is a unitary matrix U . Rewriting the claim

(p|IU [q] ) = (Ut p Iq

as a Gaussian expectation as per proposition 12, we get

E1 ,gm [p(x)q(Ux)] = Egm [p(Ut)q(x) . (1.3)

We've used here that U acts by variable substitution U[p(x)] p(Ux). Since the

vector Gaussian distribution gm is unitarily invariant, we may perform a unitary

change of variables y = Ux, and equvialently x = Uly, which transforms the left side

of the equality into the right side.
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Next we show that the claim holds for any diagonal matrix D: (p I D[q]) =

(Dt[p] q). As before, it suffices by linearity to confirm this when p and q are mono-

mials. Note that D [xSj multiplies each variable in the monomial by a constant,

resulting in the scalar multiple cis where c =d . . d'. So, both sides are 0

unless p = q. When p = q, we have

(p|ID[p]) =(p Icp) =c (p Ip) ,

which turns out to equal

(Dt[p] | p) =- Icpp) =c (p Ip) .

Having shown the claim for unitary and diagonal matrices, we now extend it to

an arbitrary matrix M. We express M as a product of unitary and diagonal matrices

via its singular value decomposition M = UtDV. This lets us disassemble M and

pass it from the right side of the I to the left side layer by layer, after which it is

reassassembled as Mt.

(p IM[q]) = Kp I (U t DV) [q])

= (U[p] |(DV) [q])

=Dt U[p] I V[q]) (1.4)

=VtDtU[p]I q)

=Mt [p]I q)

1.2.8 Connection to the permanent

We now reformulate identical boson systems in terms of matrix permanents rather

than Fock polymomials, in order to facilitate arguments about their computational

complexity. The matrix permanent is a function on a square matrix.
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Definition 13. The permanent of an n x n matrix is

Per(M) = > Mj"(j)
O-ES, j=1

where S, is the set of all permutations of {1, 2,... , n}.

The n! summands correspond to the n! values to choose n entries entries of the

matrix so that every row and column has exactly one entry chosen, and each sum-

mand is the product of these entries. The expression is very similar to that of the

determinant, but it does not have coefficients of 1 depending on the sign of the

permutation.

Definition 14. The determinant of an n x n matrix is

Det (M1) =sign(01-) Mij,
O-ESn i=j

where S., is the set of all permutations of {1,2,... , n}, and signo- equals +1 for

even permutations (i.e. those composed of an even number of swaps) and -1 for odd

permutations.

To understand the connection between permanents and Fock state probabilities,

we start by looking at the case where m n and the initial state has one boson in

each mode.

Proposition 15. Let m = n and let R (1, 1,--- , 1) be the initial state of one

boson in each mode, giving x R = X1 X 2 ... Xn. Then, after applying the operation M

to obtain M[x'], the probability of getting a measurement result that is once again R

is

Pr[R - R] (XR M [xR]) 2 =Per(M)12

Proof. The transformed state M[XR] is a product of linear terms

M[XR] = J(Mj,1X + Mj,2x2 + ... + AMj,rtXr) .
j=1

36



We can expand this into a sum of monomial terms, each one obtained by choosing

for each index j the -(j)th summand Mj,,(j)x,(j). So, the product expands into

S 1 mJ7JNI(j)xj,
q j=1

where - ranges among all functions from {1, 2,.. ., n} to itself.

The inner product XR I M [XR]) extracts the coefficient of the monomial XR

XiX2 ... X,. This monomial is formed exactly when the x,(j) form a permutation

of X 1 , X 2 , - -. , Xn, which is exactly when o- is a permutation. This gives exactly the

expression for the permanent

E flMj(j) = Per(M).
OESn j=1

The probability of the outcome is the norm-squared of the amplitude, or jPer(M) 2 .

LI

Let's think more about how the permanent came about in the expression for

the probability. Each permutation is a matching of the input bosons to the output

bosons. Because the bosons are identical, one cannot tell which boson in the initial

state corresponds to which boson in the final state, and all n! permutations are

potentially possible. The amplitude corresponding to a given path is the product

of the corresponding transition amplitudes from each photon's input mode to its

output mode. Since the particles do not interact, these transitions are independent

events, and we obtain the amplitude for the joint event by multiplying the respective

amplitudes to obtain ]H 1 Mj,,(j). The total amplitude is then the sum of amplitudes

of all matchings that lead to a given outcome, which gives the permanent.

We will now generalize this expression to an initial state with counts T and the

probability of a measurement obtaining counts S. If these counts are collision-free,

i.e. are all 0 or 1, it's not hard to see that the result will be like proposition 15 but

limited to occupied rows for inputs and columns for outputs. Entries in columns for
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modes not containing an initial boson do not figure in the probability, and likewise

for rows that do not correspond to a measured boson. We may omit these rows and

columns by taking a submatrix. We will need to generalize submatrices to account

for more than one boson in a mode of the input or output.

Definition 16. Let M be an m x m matrix and let S, T be count vectors that each

sum to n. The generalized submatrix MS,T is an n x n matrix obtained by taking Si

copies of each row S and T copies of each column T.

For example, let

M=

and S = (2, 0, 2), T = (3, 1, 0). Here,

matrix

1 2 3

4 5 6

7 8 9

m = 3 and n 4. Then, MsT is the 4 x 4

1

1

7

1

1

7

7 7

We may obtain a generalized submatrix

the original matrix.

1 2

1 2

7 8

7 8

by applying a linear transformation to

Proposition 17. The n x n generalized submatrix A1S,T of an n x n matrix M is

given by

MsT = Is'M-IT,

where IT is defined for a count vector T as an m x n matrix whose columns are unit

vectors with x3 appearing tj times.4

Proof. Observe that for a row vector vt, the right-product 0tIT creates a column

vector with t3 copies of each entry vj. So, MIT acts the same way duplicating columns

4 This only defines IT up to a permutation of its columns, which will suffice for our needs. If we
wished to be concrete, we could say the columns are sorted by increasing j.
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to the number required for the generalized submatrix. It then does likewise on the

rows of MIT with counts given by S to create MS,T.

Now we'll generalize proposition 15 using generalized submatrices.

Proposition 18. If we begin with initial boson counts T, transform by the matrix M,

and measure, the probability of obtaining counts S is

1
Pr [T -+ ] S!T ! |Per (MsT) 2

Proof. By proposition 17, we can express Per (Ms,T) = Per (I4MIT). Then, by

proposition 15,

Per (IkJVIT) = (It 4IT) [xR] ,

where xR = x 1x 2 ... Xn. We can apply the adjoint property of proposition 11 to move

the It to the other side:

Per (Ms,T) = (Is [XR] MIT [XR]).

Now observe that IT [xR] creates ti copies of x1 in the product, t 2 copies of x 2 and so

on, to create xT. So, IT [xR] - xT and Is [xR] = xS. This turns the expression into

Per (Ms,T) = Kxs | A [XT] .

Recall once more how to compute Pr [T -÷ S]. The initial normalized state is

x / T!, which is transformed to M[xT]/v T!. The probability of measuring S is the

norm-squared of the dot product of this with the normalized state x/V T!, which

gives

Pr [T S] |(xs | M [XTj ) 2

Using the equality Per (Ms,T) (xs I M [xT]) from before, this gives

1
Pr [T - S] S!T! Per (Ms,T)1 2
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as claimed.

1.2.9 Physically implementing identical bosonic systems

We'll talk briefly here about the physical implementation of systems of noninteracting

identical bosons. See chapter 2 for more on experimental implementations.

Using photons as bosons, such a system can be modeled by a linear-optical network

with Fock initial states and photon-counting measurements. The network consists of

two types of components, phaseshifters and beamsplitters, which are optical gates that

act locally on 1 or 2 modes. It is easiest to think of their action as a unitary matrix

a single photon, which we've shown to determine the unitary action on n identical

photons.

A phaseshifter acts on a single mode and applies a phase e'O, leaving the remaining

modes unaffected. A beamsplitter acts on two modes, transforming their amplitudes

as and aT by a real rotation matrix for some angle 0:

a' cos0 - sine (as
s. (1.5)

\ 'l sin0 cos aT/

Reck et al. [37] prove beamsplitters and phaseshifters to be a universal get set in

that any m x m unitary operation U can be efficiently implemented as a product of

them.

Lemma 19. Any m x m unitary matrix U can be decomposed into a product of O(m2 )

operations each of which is either a beamsplitter or a phaseshifter, i. e. a matrix that is

everywhere the identity except for either a single unit phase or a 2 x 2 real orthogonal

block matrix on the diagonal. This decomposition can be found in polynomial time.
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1.3 Exact BOSONSAMPLING

1.3.1 Definition of BOSONSAMPLING

We define the computational problem of BOSONSAMPLING based on our model of

systems of noninteracting identical bosons. We start by defining the system in terms

of a one-step unitary operation followed by a measurement.

Definition 20. A BOSONSAMPLING system is a quantum system implementing the

following procedure:

1. The initial state consists of n bosons, one in each of the first n modes of m total

modes.

2. An m x n column-unitary matrix M is applied.

3. The final state is measured to produce a boson count for each of the m output

modes.

For concreteness, we have chosen an initial state x T XiX 2 ... Xz with the first

n modes occupied by one boson and the remaining m - n empty. That is, T =

(1, 1, ... ,1, 1, 0, .. . , 0, 0) with n ones. As a result, the generalized submatrix uses

only the first n columns of the transformation matrix, and the rest are immaterial.

We call this m x n matrix the network matrix. As a subset of the columns of a unitary

matrix, this matrix M is column-unitary, meaning that MtM is the identity.

By proposition 18 with T as described, the probability that the BOSONSAMPLING

system outputs S is given by

Pr [S] = Per (Ms) 12
S!

Here, Ms is a generalized submatrix with rows given by S; the selection of columns

was already handled by limiting M to the first n columns.

We define the BOSONSAMPLING distribution as the distribution of outputs of a

BOSONSAMPLING device for a given network matrix Al.
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Definition 21. For an m x n column-unitary matrix M, the BOSONSAMPLING dis-

tribution DM is a distribution over length-rn count vectors S of natural numbers that

add to n, with

Pr [S] = -Per (Ms) 12
S !

Note that though the BOSONSAMPLING distribution is designed to emulate the

output distribution of a specific physical system, its definition above is purely math-

ematical and makes no reference to particles or quantum mechanics. In this way, it

can be stated as a black-box computational problem solely in terms of its input and

(randomized) output. An algorithm solves this problem by having the correct proba-

bilistic input-output behavior without necessarily simulating the internal behavior of

a BOSONSAMPLING system.

Definition 22. The BOSONSAMPLING problem is: given an m x n column-unitary

matrix M, output a random sample of the distribution Dm.

Let us emphasize here that this is a sampling problem, which means it is solved

by a random algorithm whose output probabilities match those of the desired distri-

bution. It is not the problem of computing the permanent of a matrix. Nor is it a

decision problem to determine whether or not the input meets some condition, as is

typical in complexity theory.

1.3.2 Complexity of exact BOSONSAMPLING

First, note that BOSONSAMPLING can be efficiently performed by a quantum com-

puter. Indeed, it is stated as the behavior of a quantum system of identical bosons,

which can be simulated on a standard quantum computer. We define SampBQP as a

sampling analogue to BQP (Bounded-Error Quantum Polynomial Time) in which the

final measurement produces a sample from a distribution. We require its distribution

to be within e of the desired distribution in variation distance, with 01/ given as an

additional input.

Proposition 23. The problem of BOSONSAMPLING is in SampBQP, the sampling

version of BQP.
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This is implied by simulation of bosonic systems on a qubit-based computer as

developed by Feynman [18] and by Abrams and Lloyd [4]. Each boson count is

encoded in lg n qubits. Each 2-mode linear-optical element from the decomposition

in [37] is translated to an operation on the corresponding qubits.

Our first main result is the inability of classical computers to efficiently simulate

BOSONSAMPLING exactly unless PH collapses. Note that this result does not say

anything directly about the computational consequences of a black-box that does

BOSONSAMPLING, but rather the consequences of an efficient classical algorithm for

it whose random bits we get to control.

Theorem 24 (Complexity of exact BOSONSAMPLING). No polynomial-time classical

randomized algorithm can perform BOSONSAMPLING, unless P#P = BPPNP and the

polynomial hierarchy collapses to the third level.

We gather a few ingredients to use in the proof.

1.3.3 Proof ingredient: Complexity of the permanent

First, we note a celebrated result on the complexity of the permanent.

Theorem 25 (Valiant [53]). The problem of computing the permanent of an n x n

matrix with entries in {0, 1} is #P-complete.

The class #P is complete for counting problems, such as counting how many vari-

able assignments satisfy a Boolean circuit. It is strongly conjectured that such a

problem cannot be solved in polynomial time. For one, this would imply that P

equals NP. Directly computing the permanent requires summing over n! permuta-

tions, an exponential amount. Ryser's formula (stated in the proof of theorem 57) is

the best-known classical algorithm for the permanent, using 0 (n2n) time with the

optimization of processing the summands in Gray code order. This improves over n!,

but is still of course exponential.

We will need a variant that says that estimating a real permanent-squared is

#P-hard.
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Theorem 26 (Theorem 28 in [11). The following problem is #P-hard: Given a real

n x n matrix M and a multiplicative factor c with 1 < c < poly(n), compute |Per(M) 12

to within a multiplicative factor of c.

We will leverage the close connection between identical bosons outcomes and the

complexity of computing the permanent. Keep in mind the BOSONSAMPLING does

not allow us to compute permanents directly, which would imply that BQP = P#P,

but to sample a distribution described by them. So, we will need a less direct way

to derive consequences from a classical simulation. We begin with a way to embed

a matrix whose permanent we wish to compute as a submatrix of a unitary network

matrix.

Lemma 27. Let X C C"'. Then for all m > 2n and E < 1|/ |XII, there exists an

m x m unitary matrix U that contains EX as a submatrix. Furthermore, U can be

computed in polynomial time given X.

Proof. Let Y = EX. Then it suffices to show how to construct a 2n x n matrix

W whose columns are orthonormal vectors, and that contains Y as its top n x n

submatrix. For such a W can easily be completed to an m x n matrix whose columns

are orthonormal (by filling the bottom m - 2n rows with zeroes), which can in turn

be completed to an m x m unitary matrix in 0 (m3 ) time.

Since |HYJ| < E |IXH| < 1, we have YtY -- I in the semidefinite ordering. Hence

I-YtY is positive semidefinite. So J-YtY has a Cholesky decomposition I-YtY =

ZtZ, for some Z EC ". Let us set W - . Then WtW = YtY + ZtZ = I, so

the columns of W are orthonormal as desired. I

1.3.4 Proof ingredient: Approximate counting

To show the difficulty of sampling problem, we will need to take a classical circuit that

solve the sampling problem and harness it to solve the function problem of estimating

the permanent. We use a result of Stockmeyer [461, which introduces the technique of

universal hashing to take a classical randomized circuit and estimate its acceptance

probability with the help of an NP oracle.
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Theorem 28 (Stockmeyer [461). Let f be a Boolean function from {0, 1}" to {0, 1}

and let p be its probability of accepting:

p = Pr [f(x = 11.
XE{0,1}"

For any parameter c > 1 + 1/ poly(n), there is a BPPNPf machine to approximate p

to within a multiplicative factor of g.

So, the machine has access to an NP oracle which itself has oracle access to the

function f that it can use deterministically. The NP oracle takes advantage of being

able to set the random bits of f. This would not be possible if the circuit f were

simply a randomized black box. Nor would it be possible to use a quantum circuit,

which does not have "random bits" to set - its randomness is produced on the fly, not

read from a pre-computed random tape. In this way, the result derives consequences

of the existence of a classical circuit but not a quantum circuit to compute the same

thing.

Also note that the probability p of acceptance may be exponentially small. In this

situation, one could not simply test the function with many random seeds to estimate

the acceptance probability, as chance are that none of the trials would accept. The

non-determinism of the NP oracle is used to help find these "needles in the haystack".

1.3.5 Proof of exact hardness

Now we're ready to prove the exact result, which we restate for convenience.

Theorem 29 (Complexity of exact BOSONSAMPLING). No polynomial-time classical

randomized algorithm can perform BOSONSAMPLING, unless P#P = BPPNP and the

polynomial hierarchy collapses to the third level.

Proof. Recalling the #P-hard problem from theorem 26, let M be an n x n real matrix

and c a multiplicative factor within which we wish to estimate IPer(M)12 . Use the

embedding of lemma 27 to find a 2n x n column-unitary matrix U whose upper half

is eM.
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Suppose to the contrary that A is a classical randomized algorithm that performs

BOSONSAMPLING, and consider running it on U to sample the distribution Du. We

consider this algorithm to accept if it produces an output corresponding to M, that

is a count of one boson in each of the first n of the 2n modes. The probability of this

is given by

p = IPer (EM) 2 =2, IPer (M) 12 .

Now, apply the approximate counting result theorem 28 to this classical circuit to

estimate the acceptance probability p. In BPPNPA, which equals BPPNP, we estimate

the acceptance probability to within a multiplicative factor of c > 1 + 1/ poly(n).

Dividing by the c2n, we obtain IPer (M) 12 to within a multiplicative factor that easily

falls within the required accuracy of theorem 26 to be #P-hard.

So, we've shown that

P#P C BPPNP.

Toda's Theorem [52] bounds the polynomial hierarchy PH C P#P, so this would imply

PH = BPPNP. The Sipser-Lautemann theorem [44] tells us that BPP C F 2 n 112, SO

this is a collapse to the third level.

1.3.6 Complexity comparison to other particles

Why bosons for BOSONSAMPLING? We show that analogous the problem with

fermions or classical particles in place of bosons, as discussed in section 1.2.6, has

an efficient classical simulation. So, the hardness result of theorem 24 no longer holds

for these particles.

FERMIONSAMPLING can be defined the same way BOSONSAMPLING, except with

the determinant taking the role of the permanent. However, the determinant can be

computed in polynomial time, for example by Gaussian elimination, much unlike the

#P-hardness of the permanent. So, probabilities of FERMIONSAMPLING outcomes

are easy to compute. Understanding the gulf in difficulty between the permanent and

determinant is a central problem in geometric complexity theory (see for example
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[281).

Moreover, quantum circuits of identical fermions can be sampled in polynomial

time. A class of quantum circuits called matchgate circuits can be simulated using

the determinant [54], and these circuits were later shown equivalent to systems of

identical noninteracting fermions [48, 261. However, if the fermions are allowed to

start in entangled state, then BOSONSAMPLING can be simulating fermions [41].

An alternative approach to simulating FERMIONSAMPLING is to randomly choose

the outcome one mode at a time, each time conditioning the distribution for the

current mode on the already-decided counts of previous modes. The expression for

these conditional marginal probabilities can itself be expressed determinant, making

use of linear-algebraic properties of the determinant that do not have an analogue

for the permanent. Although BOSONSAMPLING does allow the marginal for a fixed

number of modes to be efficiently sampled [22], there is no known efficient way to

condition on previous results.

An analogue of BOSONSAMPLING with classical particles also allows for a classical

simulation. In fact, this simulation is trivial! Just do the procedure exactly as

described - put the particles in their initial modes, move each one randomly as per

the stochastic transition matrix, and count how many end in each mode. This can

also be done with distinguishable particles by treating them as classical. The unitary

network matrix acts as a classical stochastic transition matrix each of whose entries

is the norm-square of the corresponding amplitude.

Let's reflect on what gives identical bosons the quantum advantage over classical

particles. The key difference is how the overall probability is obtained from the multi-

tude of paths by which the output particles could be matched with the input particles.

For classical particles, the probabilities of the respective paths are added, and because

these are non-negative real numbers, each additional possibility can only increase the

overall probability. In contrast, the paths are in quantum superpositions for identical

particles, causing their amplitudes to add. These amplitudes are complex numbers,

so different paths may cancel to produce a zero or near-zero overall probability. In

this situation, small changes to the summands can cause a large relative change in
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the final result. Cancellations like this are at the heart of many quantum algorithms,

and we see that the complexity of BOSONSAMPLING relies on them.

Moreover, each probability for the classsical analogue is the permanent of a ma-

trix of nonnegative real numbers, which can be estimated classically in probabilistic

polynomial time by an algorithm of Jerrum, Sinclair, and Vigoda [241.

1.4 Approximate BOSONSAMPLING

1.4.1 Approximate versus exact

The exact complexity result theorem 24 is weaker than would be ideal. When it talks

about a classical algorithm performing BOSONSAMPLING, it requires that it do so

exactly5 , giving an output distribution that precisely equals Dm. This is perhaps an

unfair requirement because any actual physical BOSONSAMPLING device must itself

have some amount of error, which will cause its output distribution to deviate slightly

from the required one. As we would like our result to say something about quantum

advantage as seen in real-world devices, it would be best for our result to reflect that.

To make the result robust to error, we only require the output distribution of the

device A to be close in variation distance 1 1 to the true BOSONSAMPLING distri-

bution. That, is that the total absolute difference of probabilities over all outcomes

is small:

||A - Dmull =Pr [S] - Pr [S] < E
S A 'DM

The value e is an accuracy parameter that is provided as an input to the algorithm.

We say the running time is efficient if its is polynomial in 1/6, m, and n.

Definition 30. The approximate BOSONSAMPLING problem is: given an m x n

column-unitary transition matrix M and an error tolerance e, sample from a distri-

bution D'1 that is within e in variation distance to the BOSONSAMPLING distribution

5 0r rather, as far as allowed by the limits of machines' ability to represent real numbers, using
a polynomial number of bits for exponential accuracy.
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DM:

We can imagine the classical approximate BOSONSAMPLING algorithm to be de-

signed by an adversary to be useless as possible to us while still satisfying the error

bound. This could mean shifting each outcome's probability by a tiny relative amount,

or changing a small fraction of outcomes to have very different probabilities, or both.

Note that because the total number of outcomes (("m)) is exponentially large, it is

allowed to drastically change an exponentially large number of outcomes that still

comprise an exponentially small fraction of them.

The proof in the exact result is not enough on its own to prove the impossibility

of approximate BOSONSAMPLING. It relies on embedding a single submatrix whose

permanent we want to compute and using approximate counting to estimate its prob-

ability of being chosen. But, the device could make it output probability on this one

outcome be extremely wrong while still keeping the total error exponentially small. It

could even just never output it, giving probability 0. This lets the classical simulation

satisfy the approximate contract while preventing us from using it to compute the

permanent.

1.4.2 Submatrix hiding and Gaussian matrices

This selective sabotage can be defended against by hiding which submatrix we care

about. Instead of just embedding it as the top n x n submatrix of a m x n matrix, we

can make it a random subset of n rows by shuffling all the rows after embedding. The

adversary is only given the network M and is not told which submatrix we started

with. That way, we hope they don't know which of the exponentially many possible

outcomes to sabotage, and they cannot sabotage most of them without exceeding the

total error allowance.

The adversary does know the desired outcome has at most one boson per mode,

but we will make the information moot by embedding into a matrix of size m > n 2 ,

rather than m = 2n. This is a sparse regime where there are many more modes than
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bosons. Here, the fraction of collision-free outcomes ()/ ((p")) is nearly 1, as shown

in [6.

However, the adversary still may be able to figure out what was our original matrix

and what was padding by looking for patterns in the entries. They could succeed if,

for example, the norms of entries in our embedded matrix are bigger or smaller on

average than those in the padding. Or, perhaps we were interested in the permanent

of a matrix with a particular structure, making it easy to detect rows from this matrix.

We can camouflage our embedded matrix perfectly by taking it from the dis-

tribution of n x n submatrices of m x n Haar-random column-unitary matrices, or

equivalently of m x m Haar-random unitary matrices.

Lemma 31. Let S,, be the distribution of m x m Haar-random unitary matrices

truncated to their top n x n submatrix. Say we choose a matrix X from S,,n and

complete to an m x n column-unitary matrix U as described in lemma 27 with the

padding chosen uniformly at random, then randomly permute its rows. Then, an

adversary given only the resulting matrix U cannot find the location of the submatrix

X with probability significant better than chance p > 2/ (('" )) for m > n2 .

This can be extended to be robust to error: if the submatrix is chosen from a

distribution that's E-close to Sm,.n in variation distance, then the adversary cannot

find X with probability 2(1 + e)/ ((")).
It behooves us to understand what this distribution of submatrices of unitaries

is. It is a standard fact from random matrix theory that an entry of a Haar-random

m x m unitary matrix is distributed nearly as a complex Gaussian with variance

1/m. In the sparse limit n < m, where the submatrix is such a small fraction of

the unitary matrix that the unitarity constraints apply very weakly, the entries are

nearly independent and so tend towards i.i.d. Gaussians.

Lemma 32 (Haar-unitary limiting). Let g"*n be the distribution of n x n matrices of

i.i.d. complex Gaussians A(O, 1)c. Let MSm,n be the distribution of n x n truncations

of m x m Haar-random unitary matrices, scaled up by m to make each entry have
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variance 1. Then, for m > log 2

IMSmn - gnxn = o().

So, i.i.d. Gaussian matrices suffice as submatrices to be hidden. Likely m >

log2 () could be improved to m > n2
.1 with stronger analysis. We call this the

Gaussian Estimation Problem (GPE). Because we will consider different variants of

the GPE, we call this one IGPE 1 for using additive error and norm-squared perma-

nent.

1.4.3 Gaussian permanent estimation and approximate result

The restriction of hiding means we can use an BOSONSAMPLING device only to esti-

mate permanents of random Gaussian matrices.

Definition 33. The IGPE 12 problem is: given a matrix M ~ gnxn, a tolerance e,

and a maximum failure chance 6, output |Per (M)1 2 to within en! with probability at

least 1 - 6. Do this in running time polynomial in n, 1/c, and 1/6.

We will show that if this is a hard task, then approximate BOSONSAMPLING

cannot be done classically. The proof is similar to that of the exact result theorem 24

with accounting for error.

Theorem 34 (Complexity of approximate BOSONSAMPLING). For m > log 2 (n),

there does not exist a classical randomized algorithm A that performs approximate

BOSONSAMPLING in time poly(m, n, 1/E) with probability at least 1 - 6, unless the

IGPEI problem is solvable in BPPNP.

Proof. We sketch the proof here. Let M ~ gn n be a random Gaussian matrix whose

permanent we wish to approximate to within e. Scale it down by m and complete

it to a m x m column-unitary matrix U with m > n log2 (i). By lemma 31, this

matrix cannot be distinguished from a random submatrix significantly better than

chance.
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Supposed to the contrary there is a classical randomized algorithm A that does ap-

proximate BOSONSAMPLING in randomized polynomial time. We will use it to solve

the IGPEI problem. Given U as input, the algorithm A samples from a distribution

D' that's e-close in variation distance to the true BOSONSAMPLING distribution Du.

Say that A is close to correct on an outcome if it chooses it with probability within

E ofits true probability p in DU. Then, A must be close to correct on for at

least 1 - J of the (("m)) outcomes, or the total error would exceed the allowance of E.

By the Haar-unitary limit and the approximate version of lemma 31, the algorithm

cannot locate the submatrix M of U with probability significantly better than chance,

so with high probability M is one of matrices that A is close to correct on. That

means that if we could obtain its probability of giving M, we could obtain IPer (M)1 2

to within cn! with probability at least 1 - 6, satisfying the IGPEI1 problem.

Following the exact result, we can use approximate counting to estimate with the

help of an NP oracle the probability that A outputs M. This would therefore solve

IGPE I in BPPNP.

1.4.4 Conjectures

We have shown that approximate BOSONSAMPLING is classically hard as long as

IGPEi1 is hard, that is, not in BPPNP. We would like to prove that approximate

BOSONSAMPLING is hard unconditionally, or only relying on the non-collapse of PH

as for the exact case. But, the hardness of IGPE 1 remains open and we lack an

alternative proof that does not rely on it.

We proceed by breaking down the hardness of IGPEI1 into two somewhat more

natural conjectures that together imply it, the Permanent-of-Gaussians Conjecture

(PGC) and the Permanent Anti-Concentration Conjecture (PACC). Though these

are also unproven, we give tentative evidence that they hold true.

For the PGC, we will define GPEx as a variant of IGPEI. The GPEx differs

from IGPE 1 in asking for Per (M) instead of its norm-squared, and in requiring a

multiplicative estimate. That is, a estimate that is within c Per (M)| rather than
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en!. This makes it harder to estimate small permanents. In the extreme case that

Per (M) = 0, a solution to the GPEX must also give exactly 0, whereas a IGPE12

solution still has additive leeway.

Definition 35. The GPEX problem is: given a matrix M g ;nn , a tolerance e, and

a maximum failure chance 6, output Per (M) to within Per (M)| with probability

at least 1 - 6. Do this in running time polynomial in n, 1/E, and 1/6.

We then conjecture GPEX to be hard.

Conjecture 36 (Permanent-of-Gaussians Conjecture (PGC)). The GPEx problem

is #P-hard.6

Note that we're conjecturing #P-hardness like the permanent, which is stronger

than required. It would suffice for it to be outside of BPPNP as we conjecture IGPE 1

to be.

We could imagine a state of the world where the permanent is almost always nearly

0 for a random Gaussian matrix. In this case, IGPE 1 is trivial - ignore the matrix

and just estimate 0. But, the multiplicative estimate of GPEx for the PGC is still

hard to obtain because the relative error allowance is small. Since we want GPEX

and IGPEj1 to be equivalent, we introduce another conjecture to convert between

them.

The Permanent Anti-Concentration Conjecture states that the distribution of the

permanent is not heavily concentrated around 0. Since JPer (M) 2 has an expectation

of n! for Gaussian M - g axn , we use IPer (M) 2 /n! to rescale the distribution to mean

1. We require the probability that Pr [JPer (M) 2 /n! < 6] to be at most 1/ poly.

Conjecture 37 (Permanent Anti-Concentration Conjecture (PACC)). There are

constants C, D and 43> 0 so that for any n and c > 0

1 Per (M) 12DPr P ) < E < CnD E
M gnXn n!

6 Since GPEx is a randomized function problem, it would be more exact to say that if 0 solves
GPEx, then P#P c BPP 0 .
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We can define GPE like IGPElI but without the norm-squared. We show that

the PACC implies that GPEx and GPE are interchangeable.

Lemma 38. Assuming the PA CC, GPE X and GPE are polynomial-time equivalent.

The direction GPE <p GPEx does not require the PACC and can be proven

unconditionally. See Lemmas 46 and 47 of [1] for proofs of this and the further

equivalence between GPE and IGPEI. As a result, these conjectures together

imply the approximate result.

Proposition 39. If the Permanent-of-Gaussians Conjecture (PGC) and the Per-

manent Anti-Concentration Conjecture (PACC) are both true, then there does not

exist a classical randomized algorithm A that performs approximate BOSONSAM-

PLING in time poly(m, n, 1/E) with probability at least 1 - 6, assuming parameters

m > nlog2 (n)

1.4.5 Evidence for the PGC

The PGC conjectures that computing the permanent is #P hard if given two al-

lowances: only needing to approximate the permanent, and only having to be proba-

bly right, that is with probability 1 - 6. We observe that the permanent is known to

remain #P hard with either one of the two allowances. However, this combination of

"approximately" and "probably" remains open.

Approximately computing the permanent of any matrices is #P-hard, as per the-

orem 26.

Exactly computing the permanent of most matrix is #P-hard. This was first

shown by Lipton via the self-reducibility of the permanent over finite fields 131]. The

idea is to use polynomial interpolation to compute a given permanent using the values

of randomly-chosen permanents.

Suppose that we have a oracle to compute the permanent of n x n matrices over

a finite field Fp that is correct with probability at least a = 1 - 1/(3n + 3). Say we

want to find a particular permanent Per(M). We choose a random matrix N and fix

a line of matrices Per(M + tN) for t c Fp. Observe that f(t) = Per(M + tN) is a
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degree-n polynomial in t, and that we can query it via the permanent oracle. So, if

we evaluate f(t) at n + 1 distinct values of t, we can determine f(0) = Per(M) by

polynomial interpolation. If N and the values of t are chosen at random, then each

oracle query has at most a 1/(3n +3) chance of being wrong, so we may union-bound

the probability of any mistake at 1/3. By repeating this protocol, we can amplify to

make the failure probability exponentially small.

Better techniques for polynomial interpolation improve this result to require smaller

success probabilities a to a = 3/4 + 1/ poly in [19], a = 1/2 + 1/ poly in [201, and

a = 1/ poly in [12]. These results can also be applied to IPer (M)I as in GPEx rather

than Per (M) using that JPer (M + tN)12 is a polynomial in t of degree 2n. The

first of these results can be adapted for complex matrix entries from the Gaussian

distribution g rather than a finite field Fp.

However, all these interpolation methods fail when combined with approximating

the permanent, as shown in a no-go Section 9.2 of [1]. Small errors at the points

being queried can combine to a large error at the target point due to the inherent

instability of polynomial interpolation. So, proving the PGC will require a funda-

mentally different technique from any of those used to show random self-reducibility

of the permanent.

1.4.6 Evidence for the PACC

The Permanent Anti-Concentration Conjecture is about the distribution of perma-

nents of random matrices. Unlike the PGC, it is not a question about algorithmic

complexity, but one of pure mathematics, specifically random matrix theory. For

reference:

Conjecture 40 (Permanent Anti-Concentration Conjecture (PACC)). There are

constants C, D and > 0 so that for any n and e > 0

|Per (M) 12 D CPr -< C <CnD C
A/~gnxn n!I
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The PACC seeks to rule out a state of affairs where the permanent of a ran-

dom Gaussian matrix is strongly concentrated around 0, trivializing the problem of

estimating it additively. We give evidence that this is not the case.

The first piece of evidence is numerical. In fig. 1-2 at the end of this chapter, we

plot the distributions of P, = JPer (X)1 2 /n!, the norm-squared permanent rescaled to

mean 1. We also plot the analogue for the determinant D, = IDet (X) 2 /n!. These

plots give an estimate of the distribution for n = 6. The numerical evidence up to

n = 10 is strongly consistent with the PACC. A regression fits around 0 suggests the

conjecture is true for exponent f in c taking on any value 0 < 0 < 1, and perhaps

even 3 = 1 itself.

The data also strongly suggests that the permanent and determinant converge to

the same distribution. The analogue of the PACC is in fact known to be true for the

determinant with exponent D = 0( + 2)/8. This follows from an exact characteri-

zation of the determinant distribution D, given by [14]. They show that JDet(X) 2

is distributed as a product T1T2 ... T, where each Tk = X2 is a chi-squared variable

with 2k degrees of freedom, that is the sum of the norm-squares of k independent

complex Gaussians !.

Another heuristic piece of evidence is to consider the minor expansion of a per-

manent as a sum of n! terms Per(X) = E- ] 1 Xy(j). If the summands were

probabilistically independent, then we could apply the Central Limit Theorem to

show that the permanent approximates a Gaussian distribution with variance n!.

This would certainly satisfy the PACC. However, some of the summands are cor-

related by having an overlap of terms. Intuitively, it seems that these correlations

should be still weak enough for the bell curve behavior to still apply.

A more refined approach using non-overlapping minors was used by Tao and Vu

[47] to show an anti-concentration result for permanent that is unfortunately weaker

than what is required for the PACC. Though this result is for Bernoulli matrices, the

authors says their methods should apply for Gaussian matrices as well.
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Theorem 41 (Tao-Vu [471).

nEn
P Per (M) 2Pr [

M~BnXn n! n0.1

where B is the 1-Bernoulli distribution B = {+1, -1}.
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Figure 1-2: Probability density functions of the random variables Pn = Per (X) 12 /n!
and Dn = IDet (X)1 2 /n! where X ~ gn" is a complex Gaussian random matrix, in
the case n = 6. Note that E [P] = E [Dn] = 1. As n increases, the bends on the
left become steeper. We do not know exactly how the pdfs behave near the origin.
This density plot estimate for each of the distributions is produced by generating
106 samples and sorting them into 40 equal buckets of 250,000 points each. So, the
first bucket contains the lowest 2 .5th percentile of samples, the next bucket the next
2 .5th through 5th percentile, and so on. The density is then estimated for each bucket
as the fraction of points it contains (0.025) divided by its width, and plotted as a
point at the bucket's center. In effect, the plot is a histogram, except rather than
using equal intervals on the density axis, the buckets are chosen to contain equal
numbers of sample points. As a result, near 0 where the distribution is concentrated,
the buckets are narrower and more density estimate points are plotted, allowing the
limit behavior for the PACC to be seen more clearly. Thanks to John Watrous for
correcting an error in an earlier version of this figure.
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Chapter 2

Experimental progress

Parts of this chapter are based on work by the author that appeared as The computa-

tional complexity of linear optics [1] in Physical Review A (2015).

2.1 Experimental background

2.1.1 Motivation for experiments

The complexity results of BOSONSAMPLING in chapter 1 have prompted multiple

linear optical laboratories to build devices that implement the model. Because the

BOSONSAMPLING problem is naturally stated in terms of the behavior of a quantum

system, it lends well to translating to a physical device. A number of identical photons

are generated in distinct input modes (usually spatial), passed through a network

of beamsplitters and phaseshifters, and then measured with a photodetector in each

mode. The correspondence is very direct and there is little simulation overhead. Each

photon in the problem statement corresponds to an actual photon in the experiment,

each output of the sampling problem corresponds to a single run of photons through

the device, and so forth. (Of course future devices might use a less direct simulation.)

We now consider the motivation for doing such experiments. Perhaps the word

"lexperiment" gives the wrong impression of testing a hypothesis that could be con-

firmed or disconfirmed by the result of some procedure. That is not the main goal
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here. We expect a specific experimental outcome, though it is reassuring when we

obtain what we expect.

The statistical distribution of outcomes for the BOSONSAMPLING problem is de-

rived directly from the well-understood quantum-mechanical laws that govern the

behavior of identical bosons. It is mathematically expressed in terms of permanents

of certain submatrices. Even though we argue that this problem is computationally

hard, this is a reflection of our limited computational power rather than confusion

over the laws that govern the outcomes. The mathematical status of the results from

chapter 1 is not being tested.

One might say that what is being tested is the connection of our model to the

reality it is meant to represent. This is true, to an extent. Obtaining experimental

results consistent with computed probabilities is a useful check that we haven't made

an error, either in deriving formulas or in our understanding of the system. For some,

the conceptual implications of quantum mechanics seem so ridiculous that direct

observable proof is needed that the world really does work like that. Working with

actual devices keeps us grounded. A worthy goal is to get a hands-on demonstration

of quantum advantage in contradiction to the Extended Church-Turing thesis. It's

one thing to know that there exists a quantum device that can solve a problem beyond

the capabilities of existing classical computers, and another thing to have one that

does so.

Perhaps what is being tested are our engineering capabilities to build these de-

vices. If an experimental test produces results inconsistent that deviate from the pre-

dictions of quantum mechanics, we probably don't conclude that we misunderstood

the physics, but that the device is incorrect or suffers from technical limitations, and

that we should strive to overcome these with a better device.

2.1.2 Role of linear optics

The challenge towards building scalable BOSONSAMPLING devices is much like the

overall quest towards building a quantum computer, but on a more limited scope.

Whereas a general qubit-based quantum computer is designed to be universal, i.e. to
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perform an arbitrary quantum computation, we set a lower hurdle of merely doing

some task that exceeds classical capabilities. The BOSONSAMPLING problem is de-

signed to serve as this task, being exactly what a certain quantum device can do. It

is not designed to solve a useful problem or do even universal classical computation,

much less universal quantum computation.

Moreover, BOSONSAMPLING represents a highly restricted quantum system. It

uses noninteracting identical bosons that start with known counts in each mode,

passes them through a single-step non-adaptive network with no multi-photon cou-

pling interactions, and measures them in the photon number basis. These limitations

make it easier to build a device by narrowing the scope of what it may do. All the

quantum effects come from superpositions of identical particles and the interferences

of different paths this allows, rather than from explicit coupling as in multiqubit gates.

The lack of photon-photon interactions (outside of particle accelerators) is a benefit

for a system where noninteraction is part of the design. In contrast, coupling be-

tween particles is the point in many implementations of quantum computation where

particles represent bits.

2.1.3 Earlier linear optical experiments

Our model follows a long history of work in optical interferometry, which investigates

interference between waves of light.

The Hong-Ou-Mandel dip [231 is an experimentally-observed two-photon interfer-

ence phenomenon. Two identical photons enter a 50:50 beamsplitter from opposite

sides. Individually, each photon would be equally likely to pass through the beam-

splitter as to bounce off it, doing so in superposition. With both photons hitting

the beamsplitter at the same time, they are always observed to exit on the same

side. See the diagrams in fig. 1-1 and the calculation in section 1.2.5. Even without

explicit coupling between the photons, their outcomes managed to become perfectly

correlated. We can view this as a single two-mode BOSONSAMPLING network, with
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a 2 x 2 Hadamard network matrix

M= =
v2 1 -1

With initial state (1, 1), the outcome corresponding to final state S = (1, 1) has

probability IPer(M)1 2 = 0, so the outcome of photons going opposite ways is never

observed. The paired-photon outcomes S = (2, 0) and S = (0, 2) each occur with

probability 1/2.

The Linear Optical Quantum Computing (LOQC) model from Knill, Laflamme

and Milburn [27] shows how to do universal quantum computation on a linear optical

device aided by adaptive measurements. BOSONSAMPLING is based on a similar

construction of a network of photons passing through beamsplitters and phaseshifters

and being measured by photodetectors, but does not use adaptiveness and is not

believed to be universal. Another scheme by Gottesman, Kitaev, and Preskill [21]

instead expresses states in terms of modes of a harmonic oscillator. These schemes give

the promise that extending the capabilities of devices built to do BOSONSAMPLING

can lead to building a universal quantum computer.

2.1.4 Experimental tests of BOSONSAMPLING

Four independent groups based in Vienna [511, Brisbane [11], Rome [151, and Ox-

ford [45] demonstrated experiments in quick succession in 2012 that implement the

BOSONSAMPLING setup for small numbers of photons and modes, and checked the

results to be close to what was statistically expected. These were later followed by

groups in Bristol [131 and Shanghai [56]. These experiments were done with n = 3 to

n = 6 photons with a number of modes ranging between m = 5 to m = 9. These are

summarized in table 2.1. The entries marked * use entangled pairs of photons pro-

duced by spontaneous parametric down-conversion (SPDC), whose coupling affects

the statistical outcomes.
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Table 2.1: Experimental groups performing BOSONSAMPLING experiments with pho-
ton and mode counts

Group Location I # Photons # Modes

Tillmann et al [51] Vienna 3 5
Broome et al [11] Brisbane 3 6
Crespi et al [15] Rome 3 9

Walmsley et al [45] Oxford 4* 6
Laing et al [13] Bristol 6* 6

Lu et al [561 Shanghai 5 9

2.1.5 Scalability

The implementations of BOSONSAMPLING so far have used a modest number of

photons and modes. The computational problem instances that they instantiate can

easily be solved classically, and this has been done to verify their results. They serve

as proofs of concept for what we hope to be scalable methods to build devices on

large numbers of photons and modes.

One may ask what parameters would be large enough to give a convincing demon-

stration of quantum supremacy. In theory, the computational problem is an asymp-

totic one and its difficulty relies on solving arbitrarily large instances. In practice,

for the given time we may consider n = 50 photons and m = n2 = 2500 modes to

be just within our classical capabilities to verify. See chapter 3 for discussion on the

difficulty of certifying BOSONSAMPLING results and schemes to give weak statistical

certification. Still, ideally one would demonstrate with a device that can be scaled

up without any hard limits.

2.1.6 Experimental noise

The question of scaling naturally leads to the issue of noise. Real experiments have

imperfections that cause them to deviate slightly from the ideal model, and we would

like to understand what level of error is tolerable in that it creates only a small

deviation in the output distribution.

There are four main sources of noise:
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1. Incorrect or correlated initial states

2. Imperfect coding of the unitary U by the linear optical network

3. Partial distinguishability of photons (caused by non-simultaneous arrival), such

as mode mismatch within the circuits

4. Photon loss (whether in the network or due to failure to measure)

In section 2.2 and for most of the chapter, we will consider (2), the effect of imperfect

coding of the unitary. In current experiments, although individual components are

accurate, there is difficulty in either aligning a large number of components or in fabri-

cating precise integrated optics. As a result, inaccurate unitaries remain a significant

source of output error in some experiments. The 5-mode and 7-mode experiments

in [171 achieved respective fidelities of 0.975 and 0.950, a minority but significant

contribution to the variation distance in the output distribution.

2.1.7 Bounds on noise

Many results have proven upper and lower bounds on the amount of noise in various

forms that a BOSONSAMPLING experiment can withstand in terms of the number of

photons n, either in terms of accuracy of the output distribution or in preserving the

conjectured computational hardness of BOSONSAMPLING.

Leverrier and Patr6n [30] demonstrate that to obtain a nearly-correct output

distribution, each linear optical element must have fidelity 1 - 0 (1/n 2) under certain

assumptions.

The work of Kalai and Kindler [25] argues that a noise level of additive w (1/n)

Gaussian error applied to the overall unitary matrix leads to large deviations in

the output distribution, and moreover than this error renders the system classically

simulable.

Shchesnovich [401 gives sufficient conditions for an experimental realization of

BOSONSAMPLING to demonstrate a conflict with the Extended Church-Turing Thesis.
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He also proves that for a small distinguishability error, a state fidelity of 0 ( ) is

necessary and sufficient to obtain constant distance in the distribution.

Rohde and Ralph [35] give evidence that linear optical systems remain out of reach

of classical simulation even in the presence of photon loss and mode mismatch.

Tichy [491 bounds the variation distance in outcomes between partial-distinguishable

and perfectly identical photons.

2.2 Robustness to error in the network matrix

We look at the effect caused by imperfections in the linear optical network that cause

a deviation in the unitary matrix that it encodes. We assume that the actual network

still applies a unitary matrix U (in particular, it takes pure states to pure states), but

one that is slightly different from the desired matrix U. We will give an upper bound

for the error in the output distribution in terms of the error in U. In particular, we

will show that for n photons, an operator distance of o (1/n) suffices to give o (1) error

in the output distribution.

Our main result is a bound on the error in the BOSONSAMPLING distribution Du

caused by inaccuracy in the single-particle unitary U that encodes the action of the

beamsplitters and phaseshifters.

Theorem 42. For unitary matrices U and U, the L1 distance between the corre-

sponding n-photon BOSONSAMPLING distributions Du and Do is bounded as

|IDj -'DulI <-; n - U
op

Note that there is no dependence on the number of modes m. As a result, the

accuracy of the unitaries only needs to depend on the number of photons n, with

o (1) error sufficing.

Corollary 43. To obtain vanishingly small error ||DC - Dull = o (1), it suffices for

the unitary representing the entire transformation to have U-U o (i).
oLP =
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This can be achieved by having each beamsplitter and phaseshifter in the network

be sufficiently accurate. Since such a network can be made with a depth of 0 (n log m)

components (Theorem 45 of [11), it suffices to divide the tolerable error by that

amount.

Corollary 44. In order to have ||Du - Dull = o (1), it suffices for every component

in the network to have an accuracy of A-A o ( ).

2.3 Comparison to previous results

2.3.1 Relation to previous work

The result is comparable to the standard result for qubit-based circuits of Bernstein

and Vazirani [8]. To better parallel our main result, we restate this result here as-

suming identical gates and in terms of particles. We also generalize qubits to m-mode

qudits, which does not affect the bound.

Theorem 45. (Bernstein-Vazirani, adapted) Suppose one applies a noisy unitary

matrix U to each of n distinguishable particles (qudits), then measures each particle

to sample an n-tuple of measurement outcomes from {1, 2, ... , m} Then, the distance

in the outcome distribution D& from that with error-free matrix U is bounded as

IIDo -Du|l < n - U

Previous work on BOSONSAMPLING noise sensitivity has given necessary bounds

for the required accuracy of the linear optical network. In other words, it's shown

that above certain thresholds of noise, one gets large inaccuracies in the distribution

of outcomes. Thus, it proves a certain level of noise to be prohibitive for BOSON-

SAMPLING. This work, in contrast, shows a certain level of accuracy to be sufficient.

The work of Leverrier and Patr6n [30] demonstrates that each linear optical ele-

ment must have fidelity 1 - 0 (1/n2 ) by considering a composite experiment in which

the network is applied followed by its inverse, with independent noise in each part.
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As shown in section 2.4.5, this corresponds to a required single-operator distance of

o (1/n2 ), which has a factor of log m gap from our sufficient bound of o (1/ (n2 log m))

per operator being sufficient. Applying methods in Section 2.4.4 to their result, we

obtain an overall distance of U - U = 0 (log m/n), again a factor of log m off of

our result.

Kalai and Kindler [251 argue that a noise level of additive o (1/n) Gaussian error

applied to the overall unitary matrix leads to large deviations in the output distri-

bution. Specifically, above such a threshold, one finds vanishingly little correlation

between the original and noise permanent of a submatrix, and thus between outcomes

of a BOSONSAMPLING experiment. Translating to our error model of unitary noise

as in section 2.4.5, a typical such error corresponds to operator distance w (1/ 6n),

significantly above the 0 (1/n) distance that we show.

In both cases, once we convert the error measures to a consistent scale, we find the

sufficient bound for noise shown in this work is consistent with the necessary bound

shown in the previous. Moreover, a gap remains for potential improvement.

Our resulting scaling is similar to that obtained in [42], where for a small dis-

tinguishability error, a state fidelity of 0 ( ) is necessary and sufficient to obtain

constant distance in the distribution.

2.4 Proof of result

2.4.1 Outline of proof

We give an outline of the proof here, and prove each part in the upcoming sections.

Let To be the initial n-boson state, and let o be the homomorphism from a unitary

acting on one boson to that acting on n identical bosons. Applying unitaries U and

U respectively to the initial state To produce:

T (U) TO
1'PT)T
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Measuring 4 and 4' respectively in the standard basis gives outcome distributions

Du and DC

The main step is Theorem 46, which states that the distance between the n-boson

unitaries is at most a factor of n times that between the 1-boson unitaries

||W (U) - (p (U) n 0- U

We then conclude with a standard argument (Lemma 50) that the distance between

the output distributions is at most the operator distance between the matrices that

produced them

||DCJ - Dull, < ) (U) L

2.4.2 Effect of the homomorphism

We first show that close unitaries U and U induce nearby n-boson unitaries W (U)

and W (U). Thus, if two operations act similarly on single bosons, then they also act

similarly on n identical bosons. The blowup is simply a factor of n, the number of

bosons.

Theorem 46. Let W be the homomorphism that takes an m x m unitary matrix U

acting on a single boson and produces a N x N unitary matrix acting on n identical

bosons with N ((r)). Then,

U)-p (U) <n U-U

In order to prove this, it will be useful to have two lemmas. Lemma 47 expresses

the operator distance between two unitary matrices A and B in terms of the eigen-

values of AB- 1 . Lemma 48 relates the eigenvalues of o (M) to those of M.

Lemma 47. If A and B are unitary, their operator distance can be expressed in terms
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of the eigenvalues { Ai} of AB as

I1A - B11., = max IAi - 11.

Proof. Since AB- 1 is unitary, it diagonalizes via unitaries as AB- 1 = Vdiag(Ai)V*.

Using the operator norm's invariance to left-multiplication or right-multiplication by

a unitary, we have

|IA - B|0,P = ||AB - I||,

= IV (diag (A%) -I)V*11 0 p

= j|diag(Ai -1)

= maxIA -11.

Lemma 48. If M has eigenvalues (A,..., A,), then the eigenvalues of O (M) are

A - - As- for each ordered partition S of n into m parts with sizes S1,... s

Proof. Let vi be the eigenvector corresponding to Ai. We will construct eigenvectors

of o (M) in terms of the vi and note that they have the desired eigenvalues.

For each eigenvector vi, let vi (x) be the formal polynomial (vi) 1 x 1 +-- + (vi), x,.

For each S, let ps be the degree-n polynomial

ps () = vi () .... v," (X)

If we consider o (M) as it acts on the Fock basis, we see that each ps (x) is an

eigenvector with eigenvalue A - A'-:
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O (M) (Ps (W)) (Mvi)"s ( ... (M-mAsm W

(Ai v)sl (x) - (MAmV)sm (x)

A"1 ... As- (ps (x))

Since we have one eigenvalues for each S, the number of which equals the dimension

((m)) of p (M), this is the full set of eigenvalues. l

Now, we're ready to prove Theorem 46, which we restate here.

Theorem 49. Let o be the homomorphism that takes a m x m unitary matrix U

acting on a single boson and produces a N x N unitary matrix acting on n identical

bosons with N ((")). Then,

p (U) - <p (U) n U

Proof. Let (A,,..., Am) be the eigenvalues of UU'. From Lemma 48, the eigenval-

ues of p (U) O (U)1, which equals W (UU-) because W is a homomorphism, are

A - - As for each ordered partition S of n into m parts, which we write as As for

brevity.

We now bound the distance of As from 1 in terms of the distances of the Ai from

1. As eigenvalues of a unitary matrix, the Ai are complex phases with norm 1, we can

inductively apply

|ab-1 lab-a+a-11

to get

AS - 11 < sAi - 1| < nmaxAi - 11 (2.1)
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From Lemma 47, we have

max lA-1= U- U
SOp

and

max AS-1| = QJ)-so(U) OR,
S (() (U p

so equation 2.1 gives the desired result

|w U) p(U) < n -UL

2.4.3 Bounding distance between the output distributions

In Section 2.4.2, we showed that U being close to U implies that the corresponding

n-boson transition matrices p (U) and o (u) are close. We now argue that applying

close transition matrices to the same input produces close measurement distributions.

Let To be the initial n-boson state. For BOSONSAMPLING, this is a Fock basis

state l1), but this is not necessary for this result. Applying unitaries U and U to To

produce states that we call

T (U) To
4!f

The distributions Du and DC are produced by measuring T and T respectively in

the standard basis.

We show that the distance between the distributions is bounded by the operator

distance between the respective operators that produced them.

Lemma 50. ||DC - Dull < k (U) - P (U)
op

Proof. We first bound the Euclidian distance of the resulting states from the definition
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of the operator norm

-
C (U) L

(2.2)

Now, we show that variation distance between Du and D is bounded by this distance

The variation distance IIDu - Dul1i corresponding to the distributions obtained

from a standard basis measurement is bounded by the trace distance, the maximum

such variation over all projective measurements.

IIDuj-Dull, P4'4't

We use the expression for trace distance between pure states and bound this expression

in terms of PP - x.

ID - Dull,

= 1-K4)

K 1-(ReKI))

= 41-41'-

FLI

Combining this with Equation 2.2 gives the bound

|Du -Dulli< (U)- (U)op
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which, along with Theorem 46

p U -p(U) ' < n U U

gives the main result.

2.4.4 Error tolerance of components of the linear optical net-

work

We now investigate the maximum error on components of the linear optical network

that still guarantees that the output distribution is vanishingly close to the ideal one.

This requires bounding the error of the unitary produced by a linear optical network

in terms of that of its components.

Proposition 51. If each component A of a linear optical network is within operator

distance e of the ideal component A

A-A < e
op

then the produced unitary U acting on the first n modes has accuracy

U-U =0(nelogm)
op

and the measured output has

||DC - Dull, = 0 (n2C log m).

Proof. We wish to bound the operator distance error of the network in terms of that

of its components. We use two familiar facts about operator distance:

e For components are applied in parallel, the overall operator distance error is at

most that of each component, So, if each component has some maximum error,

so does each layer in the network.
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* For components applied in series, the total operator distance error is at most

the sum of the operator distance error of the components.

A linear optical network for n fixed input modes and m output modes can be imple-

mented using 0 (mn) beamsplitters and phaseshifters in a network of depth 0 (n log m)

(Theorem 45 of [1]). So, if each optimal element is within operator norm e of the ideal,

we are guaranteed the following accuracy for a linear optical network:

U - U = 0 (n log m) A- A = 0 (ne log m)
op op

Applying the main theorem then gives an overall error of E

IDCj - Dull, = 0 (n2 e log m) .

Corollary 52. In order to have HDu - Dull= o (1), it suffices for every component

in the network to have an accuracy of A-A = o m.

2.4.5 Comparison between noise models

Previous work on BOSONSAMPLING noise [25, 30] used different measures of error

than we did. In order to put these results on the same scale as ours, we will calculate

the amount of operator distance error that corresponds to the errors they prove

prohibitive. Note that because these results are optimized for their specific model

of error, the converted results are not necessarily the strongest possible.

The work of Leverrier and Patr6n 130] demonstrates that each linear optical ele-

ment must have fidelity 1 - 0 (1/n2 ). This corresponds to operator distance 0 (1/n 2 )

for each element. From the observation in Section 2.4.4 that the operator distance

of the whole network is at most its depth times that of each component, and the re-

sult that 0 (n log m) depth suffices (Theorem 45 of [11), this corresponds to necessary

error 0 (log m/n).

The work of Kalai and Kindler [251 argues that a noise level of additive e = W (1/n)

Gaussian error is prohibitive for Boson Sampling. We show that this corresponds to
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operator distance

|U - U O= L(r/i)
op

so that we may put it on the same scale as out result.

Consider an c-noise of a matrix X. In order to match with operator distance, we

consider X to be the entire m x m unitary matrix, rather than an n x n submatrix, since

we expect the error to affect entries in the whole matrix just as it does the submatrix.

Since each entry of a unitary matrix has a norm of 1/ im in RMS average, the error

should be E/fY.

So, an c-noise of a unitary matrix U is given by

U = I'1- eU + 1-G/ m,

where G is a matrix of i.i.d. complex Gaussians. To first order in E, the difference

U - U is given by

U = -U/2 + fG/Vi+ O(E2 )

Since U and G/,\,iY have entries of the same RMS-norm, for small 6, the term with

coefficient c dominates the remaining terms:

U - U = v/G/vi+ O(E)

Then, the prohibitive amount of noise E = w(1/n) corresponds to

U- U = w(1/ m)G/ i

Finally, with the result from [29] that a random m x m Gaussian matrix has operator

norm 0 (fm) with high probability, JIG/ mIJ, = 0 (1), and so the corresponding

operator distance is

U -U =w(1/ )op
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2.5 Interpretation of results

Note that we do not obtain that a constant error suffices. In fact, constant error

does not suffice, as shown in [25, 30], suggesting that fault-tolerance is necessary

to perform scalable quantum computing. This is not surprising - we expect that

more photons require higher accuracy for the unitary because each photon interaction

with the unitary introduces error. Similarly, as the network requires more and more

components, each component must have better accuracy to maintain the same overall

accuracy.

We conjecture that the requirement we obtain that U- U = o ( ) is the best

possible. It parallels the Bernstein-Vazirani result for qubit-based circuits [8]. Because

each photon passes through the network and experiences its imperfections, it is natural

to conjecture that the acceptable error in the network falls inversely with the number

of photons. Likewise, since each photon passes through a depth-O (n log m) network,

one might has guessed that the acceptable error of each component is 0 o gm time

that of the full network, as corresponding to the sufficient bound in 52.

2.5.1 Future work

This result addresses only one type of noise: errors in the beamsplitters and phase-

shifters that cause them to implement a slightly erroneous unitary matrix. We would

like to extend these results to other sources of noise. The more plausible potential ex-

tensions of this approach are those dealing with continuous errors rather than discrete

ones like photon losses. One such source is the partial distinguishability of the pho-

tons as they pass through the network, a phenomenon that has been mathematically

modeled by Tichy [491 and Xu [571.

The gaps between the sufficient bound proven here and the necessary bounds

proven in [25, 30] mean that an improvement must be possible to at least one of the

sides. Moreover, all the results are fine-tuned for models of noise, so it would be ideal

to bound the error under each of the noise models.
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Chapter 3

Certification of BOSONSAMPLING

3.1 Overview of certification

To give experimental evidence against the Extended Church-Turing Thesis, we would

like to demonstrate a BOSONSAMPLING device on a scale beyond which a classical

computer could simulate its behavior. For such a demonstration to be effective,

we must be confident that it is in fact solving the stated computational problem.

Moreover, we may wish to convince an observer who does not examine the internals of

the device, but treats it as a black box. We call this certification of BOSONSAMPLING.

Of course, our understanding of quantum mechanics already prescribes the distri-

bution of outcomes a BOSONSAMPLING device produces. If one were confident that

each component of the optical network implements exactly the quantum transforma-

tion its it designed to do, there would be no need to certify the correctness of the

outcome. Nevertheless, there are multiple reasons to ask for certification.

First, laboratory components are not perfect implementations of their mathemat-

ical idealization. As a result, the physical device performs a noisy version of the

computational problem, which may render the computation classically doable. See

chapter 2 for an in-depth discussion of the effects of noise. Even if each individual

component is relatively accurate, the errors accumulate on each photon for each com-

ponent it interacts with. The required number of photons and components grows

with the size of the instance, and we want to use an instance large enough to be
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beyond current capabilities, and to scale beyond that. Verifying small versions of the

device does not guarantee that a scaled-up version works correctly. Though we may

mathematically bound the total error as in chapter 2, these results assume specific

models of noise that do not fully describe actual behavior. Or, there may be further

sources of inaccuracy that we have not considered. So, the gold standard for verifying

correctness is to check the performance of an actual device.

Next, one might doubt the rules of quantum mechanics that govern the device. A

skeptic may question the correctness of the permanent formulas for bosons, or even

the notions of superposition and quantum indeterminacy. Or, perhaps the skeptic

is convinced of the behavior on a small scale where results can be checked directly,

but believes it will break down on a larger scale of, say, 100 photons. Indeed, part

of the goal of demonstrating quantum advantage is to show empirically that the

quantum world differs from the classical world in a fundamental way, by harnessing

quantum phenomena to do computations that cannot efficiently be done classically.

Doing so without assuming quantum workings of the device therefore gives direct

evidence our for our understanding of quantum mechanics. That it grants additional

computational power strongly suggests that it is not simple a recasting of classical

principles. A black-box verification that does not rely on physical assumptions is the

strongest way to demonstrate quantum advantage.

Finally, one may seek to avoid being tricked by someone maliciously trying to

pass off a classical device as doing BOSONSAMPLING. Theoretical computer science

has a long tradition of asking for protocols to be robust against an adversary who

does everything in their power to mislead you. This is an extension of the general

worst-case approach to complexity theory that strives to prove results that are strong

as possible. By being skeptical of all claims as to the device's working, the verifier

comes to rely on only what they can observe during the certification protocol.

3.1.1 Difficulty of certification

BOSONSAMPLING is hard to certify for the very reason it is a hard computational

problem: the intractability of the permanent. Any outcome of a 100-photon exper-
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iment is the permanent of a 100 by 100 matrix, which is beyond our current ability

to compute classically. Indeed, that's the very point of the device! To demonstrate

quantum advantage, the it must solve a problem whose answer we can't find classi-

cally.

Moreover, running a BOSONSAMPLING device doesn't actually tell us the perma-

nent of any matrix. It is solving a sampling problem of producing random photon

counts as per a certain distribution. The number of possible photons counts is expo-

nential in the number of photons, so we are unlikely to see any output repeat within a

feasible number of trials. Empirically estimating the probability of any one outcome

turns out hopeless.

Contrast this with the situation for Shor's algorithm [431. If a quantum computer

outputs the factorization of a number, it is easy to multiply the claimed factors

and check the result. Factoring lies within the class NP of problems verifiable in

polynomial time. The permanent, however, is complete for #P, which is believed

not to lie within NP or even within the polynomial hierarchy. It is not known how

one who computes the permanent can write a proof of its value that can be verified

without doing a comparably large computation.

Yet, some hope remains for a certification protocol via interactivity. There are

examples of proving correctness of a solution for a problem outside of P or even NP

via protocols where the prover and verifier communicate a series of messages to each

other. The seminal result that IP = PSPACE [391 shows how to perform an interactive

proof of any problem solvable in polynomial space. This can be extended to quantum

interactive proofs [55] in many powerful ways. Blind quantum computing [10] allows

a user to have arbitrary computation done by a quantum server that they can verify

correct almost classically.

3.1.2 Weak certification

As of this writing, we are not aware of any protocols that certify BOSONSAMPLING in

the adversarial sense. So, we switch our focus to tests that a true BOSONSAMPLING

device will pass but a noisy or incorrect one is unlikely to, giving circumstantial
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evidence of correctness. We call this weak certification.

One approach to weak certification is statistical verification. We find a summary

statistic of the BOSONSAMPLING distribution that is a function of the output counts

for a trial, and may depend on the network matrix.

Then, we take a polynomial number of output samples from our BOSONSAMPLING

device with that network matrix, and compute the statistic for each to get an empirical

estimate of its distribution. If it's close to the theoretically computed statistic, we

accept the device, and otherwise reject it.

An example of a verifiable statistic is the marginal distribution for a given output

mode, that is the probability vector of measuring k photons for each k from 0 to

the number of photons n. This may be estimated in polynomial time [22]. Fixing

a network matrix and running poly(n) trials of the device gives us estimates of the

probability of each output count in that mode. An honest device will estimate each

probability to within 1/ poly(n) with all but exponentially small probability, by the

Chernoff Bound. More strongly, any k-mode marginal can be computed in time n O(k)

for n photons [22], which is polynomial for fixed k. Each of the possible (m) subsets

of output modes of size k can be verified to be consistent.

Does this check guarantee the device is performing BOSONSAMPLING? No. The

distribution of output counts could just have the right k-mode marginals. A classical

adversary can efficiently make-to-order a joint distribution to achieve any consistent

set of polynomially-many marginals [9]. So, the adversary could forge a classical

device to produce a distribution specifically to pass this verification scheme.

3.2 Smuggling permanents

Smuggling permanents is an attempt at a hard decision problem that can be solved

using a BOSONSAMPLING device, and so can be used for certification. However, we

show that such a scheme cannot work.

The idea is to generate rigged network matrices where one output is overwhelm-

ingly likely. Anyone who runs the device can easily check that this is the case. But,
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we want it to be classically hard to figure out which outcome is the likely one, or a

forger could make a classical device that does the same. We may also formalize this as

a search problem to identity the rigged outcome or a decision problem of determining

if one exists.

To avoid the rigged outcome being obvious, we need it to have a large permanent

(in absolute value) even though its entries look typical, as in the Hiding Lemma

(Lemma 42) of [1]. We instead need the largeness of the permanent to via constructive

interference among the superposition of paths that contribute to its permanent, in a

way that perhaps cannot be detected without being able to compute the permanent

itself.

We show that such hiding is not possible.

3.2.1 Row norm bound

We first show that in the sparse regime m ~ n2+g, any network matrix with an

outcome with a 1/ poly chance of occurring can be distinguished from a Haar-random

matrix. In order for a submatrix to have such a large permanent, it must have rows

larger than would appear by chance. We will later again discuss the correlation

between row norms and outcome probabilities in section 3.4.

Theorem 53. For any polynomial p, there is an algorithm which distinguishes, with

exponentially small error probability, whether a matrix is

1. A Haar-random column-unitary m x n matrix

2. An mxrn matrix that contains a nxn submatrix with large permanent 1/ poly (n)

if m > n2

Proof. We prove this as follows. A typical row of the matrix has norm-squared n/m,

and we will show it is exponentially unlikely that any row exceeds it by a factor of

2. In contrast, we show that any submatrix with a large permanent must have a row

with norm-squared much larger than the average. Simply by checking for a row with

norm-squared at least 2n/m, we can distinguish the two cases.
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We use the following bound of the permanent of a matrix in terms of the product

of the norms of its rows, called the Hadamard Inequality for Permanents. stated and

proven in [16].

Proposition 54. The permanent of an n x n matrix is bounded by

Per (M)I I Mi

Corollary 55. Any n x n matrix M with permanent of norm oa must have a row of

norm at least

M al/"n ea1 /n

where we obtain the approximation by Stirling's formula.

We now show that a random row Mi of a m x n column-unitary matrix is unlikely

to have such a large norm. Note that the expected norm-squared of such a row is

Exp [JIMy 21] = nExp [jM I2] = n/rn.

As long as no row exceeds the average norm-squared by more than a factor of c, we

have

Per (M)j 5 n 2 <M

nn/2 (

n!Cn/ 2 -n/2

n \ n/2

where we use Stirling's approximation for the last line. The final expression is expo-

nentially small for m > - n2

It remains to show that the a row of a column-unitary matrix is unlikely to exceed

its average norm squared by a large factor. We will do so for the constant factor

c = 2, though a smaller factor would suffice.
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We follow Section 5.1 of [1] in observing that the entries of the rows of a sub-unitary

matrix for m - n2 tend towards independent complex Gaussians, as the correlations

induced by unit norm are weak for such small subsets. The norm-squared is then a

sum of 2n complex Gaussians, and is therefore is the chi-squared distribution x2 with

2n degrees of freedom. The Chernoff bound then implies the following concentration

result.

Proposition 56. The probability that xn exceeds its mean 2n by a factor of d is

bounded by

Pr [x > 2nd] (del-d)n
x 2n

For d = 2, the probability is at most (2/e)n. So, for m ~ n2 , by union bound, the

probability that any row exceeds this bound is exponentially small. So, the row-norm

of a rigged row is exponentially unlikely to be reached by chance.

3.2.2 Unitary matrices with large permanents

In the previous section 3.2.1 we showed that a large-permanent matrix cannot be

smuggled into a BOSONSAMPLING matrix in the sparse case m ~ n2 . We now

argue that smuggling is not possible when m = n, i.e. there is one photon per mode.

We show that if one starts with one photon in every mode, there cannot be an

overwhelmingly high probability of ending with one photon per mode unless the

matrix looks like the identity matrix or a trivial variation of it. We hope to extend

these results in the future to other outcomes and cases where m > n.

The probability of maintaining the one-photon-per-mode state is the norm-squared

permanent of the unitary matrix. We consider the constraints put on the unitary

matrix by having a large permanent.

Unitary permanent exactly 1

Recall that |Per AlI < ||Ml|2 for an n x n matrix (see [71 for a proof), so IPer U| 1 for

U unitary. Indeed, this is confirmed by the physical interpretation that this outcome
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cannot have probability greater than 1. We begin by noting that equality only holds

for matrices equivalent to the identity by a combination of permutation and phases.

Such matrices correspond to optical networks that simply shuffle the photons around

without any superposition of paths.

Theorem 57. If U is a unitary matrix with |Per (U)= 1, then U equals the identity,

up to permuting its rows and multiplying each entry by a phase.

Proof. By Ryser's formula for computing the permanent, we may express Per (U) as

the sum
1 (-

Per (U) = bi fi (Ub))
bE{ -1,+ 1}n

First, we will show that to achieve the condition, jPer (U)I 1, each summand must

achieve it maximum possible norm of 1.

The summand corresponding to b has norm H I(Ub)ij

Because U is unitary, it preserves norm, so

J(Ub)4| 2 = ||Ub|| 2 = ||b|| 2

By the AM-GM inequality,

fj(|(Ub)il2) < 11 Ub)i 12 1

so 1H (Ub)gi < 1.

Therefore, to achieve the maximum possible value of IPer (U) = 1, we must have

IHR (Ub)i| = 1 for each b E {-1, +1} .

In particular, this means the AM-GM inequality is tight, which occurs when the

terms are equal, so I(Ub)j|= 1 for each i and b. We write out

(Ub)i= Uij b

and note that the absolute value of this sum must lie on the unit circle whether each
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term is negated or not. A routine verification confirms that the only possibilities are

of the form U, = (1, 0, ... , 0) and Uj = (1, i,... , 0) up to permutation of the entries

and overall phase. But the second of these can only appear in a unitary matrix as

I Zi
part of a block whose permanent is zero, thus making Per (U) = 0. So, U

must only consist of rows with one nonzero entry each, and therefore must have the

form described. D

Unitary permanent nearly 1

We now prove a stronger approximate version that applies to unitary matrices with

|Per(U)j > V1 - 1/e + c for some constant c. Such matrices must have special

identity-like structure in having a large-norm entry in every row.

Theorem 58. If U is a unitary matrix with |Perm (U)1 2  1 - e, then every column

j of U has a large entry Ujj satisfying |U6 2 > 1 - eE.

Proof Let pu be the polynomial in formal variables 5 = (xi, ... , zr) given by

Pu(S) = U [XiX 2 ... Xn] = U.[X1] U [X 2] ... U [Xn]

We may express pu in the Fock basis as

Pu (X) =# Perm (Us) Ys
S

Let a Perm (U), where Ial = v/1 - e. Then, a is the coefficient of the monomial

X1 . .. X, in pu. Call this monomial Yso. We can then split pu into this monomial and

the remainder

pu() =aS0 + (5)

with jq (Y)II 1 and IJ= Vfi so that |lpu (i)II =aI2 +2 3 2

Now, consider the effect of setting one of the formal variables (x..... , Xr) to 0.

Our idea is as follows: When any variable is made 0, the term aSSo vanishes, leaving
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Pu (7) with a term of small Fock norm E, which we show can only happen for U

functionally close to the identity.

For ease of notation, say x1 is the variable to

Note that q (7) is obtained from q (7) simply by

taining xi, so IIq (i)|| I IIq (7)II = 1. So, from

be zeroed. Let ' = (0, X2 ... , X).

removing all monomial terms con-

Pu (7') = eq (') ,

we obtain

I|Pu (')112 = 312 II (X )112 2 = E (3.1)

Now, let's look at |IPU (y')11 2 . We note that Y'= (I - lei l)Ke 7, so pu (7') = pu, (7)

with U' = U (I - lei) (eij). Therefore,

IIPu (')| 2  IIPU'(7)112

= Perm (U' (U')*)

= Perm (U (I - lei) (ell) U*)

= Perm (I - U le) (eil U*)

= Perm (I - |v) (vl),

where in the last line we've written Iv) for Ulei), the first column of U.

So, from equation 3.1 and 3.2, we have

Perm (I - Iv) (v) < E

Now, we apply the analogue of Hadamard's Theorem for permanents, proved in [32]

that if M is a Hermitian positive semi-definite matrix, then

Perm (M) ;> Mii.

Since I - Iv) (vf is clearly Hermitian positive semi-definite, the theorem applies to
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show

Perm (I - v) (v) 1 (1 - ViI2)

and so we have

We now show that for c to be small, some |vil must nearly be 1. Let

We now compute the minimum possible value of HR (1 - vji 2) subject to this

constraint and the constraint that E IoiI
2 = 1 from v being a column of unitary

matrix.

If two of these terms 1 -Vi 12 equal neither the minimum value of 6 nor the maxi-

mum value of 1, we could achieve a smaller product by increasing one and decreasing

the other an equal amount. So, to minimize the product, we must make all but one

value extremal.

Suppose we have k values with mVi1 2  1 - 6, one non-extremal value with Ivj 2

a E [0, 1 - 6], and the rest have Ivi 2 = 0. This gives a product of

k(1i2) = (1 - a) o

We observe that E Z Vi12 = 1 implies k (I - 6) < 1, so 6 > I - , and moreover that

a E [0,1 - 6] implies 1- a > 6.

(1 - Vi 12) = (1 - a) 6k

> 
k

> Jel

So, we've found that for a given 6 = min (1 - Ivi!2 , ... , 1 - Ivn12 ), the lowest product

Hi (1 - |vi1 2) we can achieve is still at least 6e 1 .Therefore, to satisfy Hi (1 - Ivi 2) <
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E, we must have 6 < e, so there is some entry vi of v with IVi 2  1 - eE. Recall that

v was the first column of U, and we could repeat this proof for any column to it has

such a large entry, which is the result desired. l

Corollary 59. If U is a Hadamard matrix, meaning that it is unitary and its entries

all have norm 1/V, then IPerm(U)1 2 < _ (I _ 1)

3.2.3 Unitary permanent 1/ poly

Stronger results about the permanents of unitary matrices are proven by Aaronson

and Nguyen [31 and later improved by Berkowitz and Devlin [71 and by Nguyen [33].

Roughly, they say if that M is a matrix has 1IM1 2 < 1 and Per(M) > n-C for some

constant C, then the matrix must be close to equivalent to the identity matrix in that

a significant fraction of the rows of M contain entries that have norm nearly 1. Such

matrices can clearly be distinguished from random matrices.

A connection is drawn from orthogonal matrices with high permanent to near-

isometries of the hypercube. That is, Euclidian rotations of the hypercube that map

a significant fraction of its vertices to other vertices. Clearly any series of right-angle

rotations and reflections suffices to do so by preserving the cube's shape, but these

correspond to getting a permanent of 1 trivially from a permutation matrix. It is

shown that any near-isometry must be close to such a trivial operation.

The translation of the question of unitary permanents to one about rotations of

the hypercube is a surprising shift from an algebraic problem to a geometric one.

We push these equivalences yet further by recasting it as a combinatorial problem

regarding graphs of Hamming distances, and of low-rank decompositions into 1-

valued matrices. Perhaps these equivalences will allow alternate methods of attack on

the problem of submatrices with large permanents. Conversely, it may allow bounds

on the permanent to translate to results in other areas. The rest of this section is

devoted to developing these equivalences.
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Hamming graphs

We start by defining and proving some basic properties about Hamming graphs, which

we will then connect to near-isometries of the hypercube.

Definition 60. For an ordered collection S of binary strings s1, ... , sk of the same

length n, let the Hamming graph Gs give the pairwise Hamming distances between

strings

Gs (i, j) = dH (si, sj)

We would like to consider collections S and T with equal Hamming graphs.

Definition 61. Call two collections S and T Hamming clones if they have equal

Hamming graphs Gs = GT.

Note that Hamming clones necessarily have equal numbers of strings. We will also

assume they have equal string lengths n.

Of course any S is trivially a Hamming clone to itself. We will be interested in

Hamming clones that are not obviously equal, so we define a set of operations that

obviously preserve Hamming graph.

Definition 62. Two Hamming clones are trivially equal if they can be obtained by

the following operations:

1. Permuting the bits in each string by a fixed permutation of the indices

2. Complementing the bits in every string corresponding to a fixed subset of the

indices

We will show that this notion of trivial equality has a natural geometric interpre-

tation.

Equivalence of Hamming clones and cube isometries

Now we develop the connection between Hamming graphs and near-isometries of

the hypercube. At the heart of this is the one-to-one correspondence between the

Hamming distance dH and Euclidian distance dE for points in the hypercube.
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While we ordinarily think of binary strings over the alphabet {0, 1}, here we will

think of them as points in the hypercube C, {-1, +}. The trivial equivalences

of strings are then symmetries of the cube, i.e. rotations and reflections that map the

hypercube into itself.

Proposition 63. Two Hamming clones S and T are trivially equal if they can be

mapped to each other (as ordered collection) by an automorphism of the hypercube.

Proof. The trivial operations for collections of strings are exactly the generators for

isometries of the hypercube: Permuting bits correspond to permutations of the coor-

dinates, and complementing bits to reflections over an axis. l

Proposition 64. S and T are Hamming clones if and only there is an orthogonal

matrix M mapping one to the other, i.e. Msi = t, for each i.

Proof. First, note that the Hamming distance and Euclidian distance are related by

dE = 2V dH. This is a one-to-one map, so equal Hamming graphs correspond exactly

to equal pairwise Euclidian distances.

The reverse direction is easy. Since M is orthogonal, it preserves Euclidian dis-

tances, and thus Hamming distances.

For the forward direction, a standard result in rigidity theory states that the

pairwise Euclidian distances between points specify the set of points globally rigidly,

which means up to affine orthonormal transformations t, = Msi + c. To show further

that such a transformation maps 0 to 0 and is therefore simply orthogonal, extend

the sets S and T to contains the negation of every vector in them. Then, their

respective pairwise Hamming distances remain equal, as the Hamming distances for

complements are fixed as dH (a, -b) = n - dH (a, b) and dH (-a, -b) dH (a, b). Since

the sum of the average of each set of vectors is 0, it follows the translation constant

c must be 0 as well.

So, non-trivial Hamming clones correspond to ordered subsets of the hypercube

that are related by an orthogonal transformation that is not an automorphism of the

hypercube. Such a subset that contains a large fraction of the 2' strings therefore
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corresponds to an orthogonal map that maps a large fraction of hypercube points C"

to hypercube points.

Equivalence of Hamming clones and low-rank decompositions

We now push the equivalence further to an interpretation of Hamming clones in terms

of low-rank decompositions. We can equate a collection S with a matrix whose rows

are the strings in order. Such a matrix is K x n, where n is the length of each string.

Proposition 65. Two collections S and T have equal Hamming graphs Gs = GT if

and only the corresponding matrices satisfy SS' = TT.

Proof. The (i, j) entry if SS' is the dot product of strings Si and Sj. Since each string

has fixed norm In as a vector in {-1, +,}, the inner product Si - Sj is specified by

the Euclidian distance DE (si, sj). The corresponding distances are equal for S and

T, so all entries of SS' equal those of TT. E

Now, we can consider the expression SS' be a sum of rank-one terms corresponding

to the columns cs of S.

SSt VVt

VCs

Note that SSt is a K x K matrix of which a rank-n decomposition is given. In the

typical case that we consider where the number of strings K is much greater than the

length n, this is a low-rank decomposition. Furthermore, because the cs only contain

entries in 1, the same is true for the rank-one summands.

The rank-n decomposition is trivially unaffected by the transformations on a set

of strings that trivially don't affect their Hamming graph, which are equivalently the

automorphisms of the hypercube Cn. This is evidence that it naturally captures the

notion of a Hamming graph.

" Permuting the string indices corresponds to reordering the columns cs, which

clearly doesn't affect their summation.

* Complementing any index flips the column v -÷ -v, which doesn't affect its

summand vv.
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We thus call two rank-n decompositions nontrivially distinct if they contain different

multisets of rank-one matrices. So, Hamming clones that are not related correspond

to distinct rank-one decompositions.

Proposition 66. Any pair of Hamming clones S and T with K strings each corre-

sponds to two nontrivially distinct rank-n decompositions of a K x K matrix into n

rank-one matrices with entries in 1.

So, the problem of finding large-size Hamming clones that are not trivially equiv-

alent is turned into one of finding non-unique low-rank 1-valued decompositions

where the rank n is much smaller the matrix size K.

3.3 Collision statistics

This section is based on work with Greg Kuperberg in The bosonic birthday paradox

[6]

We look at probabilities of collisions for Haar-random network matrices. We show

that they are efficiently computable, and so may be used for statistical verification.

A collision is an instance of 2 or more photons being output in the same mode.

For classical particles being uniformly independently distributed across m modes, one

needs n - 2m ln 2 particles until there's a better-than-even chance of at least one

collision. This is popularly known as the birthday paradox, that a room with 23

people has two that share a birthday more likely than not.

For identical bosons, the analogous boundary is n ~ m ln 2, a factor of v"2

less. This would correspond to needing 16 people until two share a birthday more

likely than not. Identical bosons tend to "clump", i.e. appear in the same state

more than classically expected. In contrast, identical fermions never experience a

collision. The analogue of uniformly distributing bosons across modes is to apply

Haar-random uniform network matrix in a BOSONSAMPLING setup. This produces

the same maximally-mixed photonic state regardless of the initial state of the bosons.

The probabilities for such a state are governed by Bose-Einstein statistics. They
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assign an equal probability to each possible output partition, without any correction

for multiplicity as in the classical case. For example, two bosons in two different

specified modes are equally likely to two in a single specified mode, not twice as likely

as classically.

More strongly, we may consider k-fold collisions of k bosons in one mode. We

express the asymptotic distribution of k-fold collisions, finding it to be a Poisson

distribution.

Theorem 67. Suppose that there are n photons with m allowed single-particle modes,

suppose that they are in the uniform state punif produced by applying a Haar-random

unitary matrix, and suppose that n ~ cm(k-1)/k as n -+ o, for some integer k > 2 and

some constant c > 0. Then the number of k-fold birthdays converges in distribution

to a Poisson random variable with mean ck, while the number of (k + 1)-fold-or-more

birthdays converges to 0.

Verifying these statistics for random network matrices confirms that it exhibits the

expected identical-boson behavior, letting us distinguish it from one where the par-

ticles are classical or distinguishable. Though it does not check for behavior specific

to BOSONSAMPLING, it does check that the particles exhibit fundamentally bosonic

statistical properties.

3.4 Row norm statistics

This section is based on work with Scott Aaronson in BosonSampling Is Far From

Uniform [21 .

Row norm verification is based on a simple idea: a larger-norm entry of the network

matrix is likelier to cause a photon to be detected in its corresponding output mode.

So, rows of the m x n network matrix with higher norm tend to output more photons

on average. Indeed, scaling any row of a matrix scales its permanent in proportion, so

multiplying a row by a constant c increases the probability of a photon in that mode

by |c1 2, if we ignore the possibility of multiple photons and the violation of unitarity.

We define the output statistic R* as follows.
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Figure 3-1: Probability density functions for the row-norm estimator R*(S), when
S is drawn either the uniform distribution U or a Haar-random BOSONSAMPLING
distribution DM, in the limits n -+ oo and m/n -+ oo. Observe that R* is typically
larger on Dm than on U. In particular, there's a larger probability of the event E
that R* > 1

Definition 68. Let M be the m x n network matrix truncated to the first n columns,

as these are the entries relevant to transitions from the initial state. Let R, = |IMi I
be the squared 2-norm of row i of M. Finally, define R* to be the product of the row

R, corresponding to each photon measured in the output, scaled down by n n so as to

have mean 1. Letting S be the vector of output counts with si photons detected in

mode i, this is

R*(S)= 1f R .
nni=1

We compare the distribution of R*(S) on the BOSONSAMPLING output distri-

bution DM and a uniform distribution over outcomes U. Their respective density

functions are plotted in fig. 3-1. These density curves are visibly different, and we

will use this to distinguish Dm from U. Observe that Dm produces larger R* on

average, corresponding to the observation that larger-norm rows are more likely than

chance to omit a photon. For the Haar-uniform distribution U, R* is a product of

independent chi-squared that can be shown to converge to a log-normal distribution.

Now, let E(S) be the event that R*(S) > 1. Our main result is that the prob-

ability of E differs significantly on Dm versus U. This lets us distinguish a true
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BOSONSAMPLING device from a very simple forgery that produces every outcome

with equal likelihood.

For both DM and U, we ignore all outcomes that contain any collision. We make

collisions unlikely by requiring many more modes than photons: m > n5 -1/6.

Theorem 69. With probability 1 - O(S) over Haar-uniform M,

Pr [E(S)] - Pr [E(S)] > -
S-DM Su - 9

where DM is BOSONSAMPLING distribution on M and U is uniform over outcomes,

both post-selected on no collisions and with m > n5 -1 /j.

Estimating the empirical probability of E on polynomially-many runs of the device

lets us distinguish BOSONSAMPLING from uniform output with high probability.

3.5 Fourier matrix suppression

We discuss here the idea of certification via Fourier matrix suppression as implemented

in [501. Using a network matrix with a specific highly-symmetric structure, the Fourier

matrix, any observed outcome satisfies a certain rule. Any potential outcomes that

violate this rule are suppressed; they occur with probability 0. This lets us reject

any purported BOSONSAMPLING device that ever produces a rule-violating outcome.

This rejection is certain rather than merely statistical. However, this certification

method has the drawback of applying only to a special structured network matrix,

leaving open whether the BOSONSAMPLING device works correctly in general.

The Fourier matrix F is an m x m unitary matrix whose entries are given by

1
Fk wik

with w = e' the mth root of unity. The BOSONSAMPLING distribution DF is unusual

in that only a small ~ 1/m fraction of potential output vectors S have a nonzero

probability of occurring. The non-suppressed outcomes satisfy a modular-sum law:
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,m-1

Jsj = 0 (mod m)
j=0

In other words, if each output photon is weighted by the index of its output mode,

counting from 0, the total weight must be a multiple of m.

Theorem 70 ([49]). For the Fourier matrix F, if outcome S has nonzero probability

Pr[S] > 0,
DF

then S satisfies
rn-i

jsj = 0 (mod m).
j=0

This result is proved in greater generality in [491, but we give a new proof for

this specific claim. We find this proof to be nicer and to make more explicit how the

symmetries of the Fourier matrix cause the suppression.

Proof. Let S be an output count vector. Its probability of being output equals

IPer (Fs)1 2, where FS is a submatrix of F with sj copies of each row j. We'll show

that this permanent must equal 0 unless S satisfies the suppression law.

We use two symmetries of the permanent

1. The permanent is invariant under any permutation of the columns.

2. Scaling any one row by a constant c scales the permanent by c.

By the first symmetry, if we move the first column of FS to the end to produce

Fj, we still have Per(Fs) Per(Fj). Let's observe the effect of this rotation on

a row of Fs that was row j in F. This row (1, wi, w 2
j... (rn-)j) is rotated to

(wi, w2. (n-)j, 1), which has the effect of multiplying it entrywise by Wi. Accu-

mulating all these scalings applied to the rows of Fs to make FS, we have

m-1

Per(Fj) = 1 wj'j Per (Fs)
j=0
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Since we also have Per (Fs) = Per (Fs), unless the outcome is suppressed with

Per (Fs) = 0, we must have J]'-1 wj'j = 1. Since wk = 1 only for k 0 (mod m),

this implies that G -' js3  0 (mod m) as claimed.

3.6 Linear statistics

We introduce a new statistic to be used for verification. It is obtained by assigning an

integer weight to each mode and summing the weights of all photons in the output.

Definition 71. The linear statistic with integer weights w - (w 1 ,. . . , wn) of a

BOSONSAMPLING outcome S = (si,... , sm) is the integer combination w - S =

Note that the single-mode marginal of mode j is the linear statistic with weights

given by the basis vector ej. We will demonstrate a polynomial-time algorithm to

compute the distribution of a linear statistic to arbitrarily high accuracy.

Theorem 72. There exists a classical algorithm to approximate the distribution of

w - S for S ~ Dv for integer vectors w to within variation distance e with high

probability. Its running time polynomial in n, max wyj, 6-.

This algorithm is closely tied to computing the moment generating function of the

BOSONSAMPLING distribution, which we now discuss.

3.6.1 Moment generating functions

Recall that the moment generating function (MGF) fx(t) for a random variable X

equals the expectation E [etx]. This generalizes to vector-valued distributions like

that of the output count vector S = (Si, S2 ... , s,) as

fs(w1, w 2 , - - -, Win) = E [ewI eW2S2 ... ewmSm] = [ewIsl+w2 2++wmS
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If we take w as the vector of weights (w1 , W2 , . - - , Wn), we can write this more com-

pactly via a dot product

fs(w) = E [ew's

We now express the MGF of the BOSONSAMPLING distribution Dm.

Proposition 73. The MGF of the BOSONSAMPLING distribution DM is given by

ES-Dm [ew-S] = Per (UteWU) ,

where W = diag(w) is the diagonal matrix of weights wj.

Proof. We start by expressing the permanent Per(UtewU) in terms of Fock polyno-

mials. We use a rewording of Corollary 22 of [11 for m x n matrices.

Proposition 74. Let A and B be m x n matrices and x[n] be the monomial x 1x 2  xn

of the initial state of one photon in each of the first n modes. Then,

Per (AtB) = (A [x[n]] , B [Xlnj])

Applying this proposition with A = U, B = ewU lets us express the desired

permanent as a Fock inner product

Per (UteWU) = (U [x[n]] , (eWU) [x["1]).

Now, expand the output state in the Fock basis

U [x[n]] = csxs

with an amplitude cs of each outcome S.

The RHS of the inner product is this state with the transformation ew applied

afterward. Since ew is a diagonal matrix with entries ewi, it scales each formal variable
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xi into e'jxj. Applying to xs and grouping together the scaling factors, we get

eW s - ( Ss s W-s s

\j=1/

It follows that

(eW U) [X[]] = csewSXS.
S

Then, taking the inner product in the Fock basis,

Per (UteWU) = (U [x[n]] , (eWU) [X[ ]I) = ICS| 2 e WS
S

Recalling that Ics 2 is the probability of outcome S, this is exactly the desired expec-

tation ESDAI [eWS.

Now we recall Gurvits' additive permanent approximation algorithm.

Theorem 75 (Gurvits [221). There exists a classical algorithm to approximate the

permanent of an n x n matrix M to within additive error e |M |" in spectral norm

with high probability with running time polynomial in n and e.

We apply this result to computing the MGF of the permanent for imaginary-

valued weight vectors w. In such a situation UtewU has all its spectral values of the

form e27i'w and so spectral has norm 1. Therefore, Gurvits' approximation algorithm

let us compute Per (UtewU) to within e. Note however that without restriction on

w, the MGF Per (UtewU) is an arbitrary permanent and so #P-hard to compute.

Corollary 76. There exists a classical algorithm to approximate the MGF of the

BOSONSAMPLING distribution E [ew'S of a matrix Al at imaginary-valued w to within

e additive error with high probability in running time polynomial in n and 6'.
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3.6.2 Linear statistics algorithm

Note the MGF of the BOSONSAMPLING distribution E [ew-S] is simply the single-

variable MGF of the distribution of the linear statistic w- S. We will use our algorithm

for the MGF in corollary 76 to solve for the probability distribution of w -S. Although

corollary 76 applies to imaginary-valued weight vector and linear-statistic weights are

integer-valued, this is easy fixed by multiplying the integer-valued weights by a fixed

imaginary constant. So, learning the distribution of 27ri w - S lets us easily recover

that of w - S.

Now we're ready to prove our result.

Theorem 77. There exists a classical algorithm to approximate the distribution of

w - S for S - Dm for integer vectors w to within variation distance e with high

probability. Its running time is polynomial in n, max wjI, E1.

Proof. For any integer N > 0, we may use corollary 76 to approximate the Fourier

transform of the distribution of the linear statistic S - w:

ES-DU [exp (27ri W .
E IDr (~ N *

We can expand the expectation as a weighted linear combination

N-1 
2r

N Pr[w- S=j (mod N)]cxp
j=0

In order to avoid the distribution wrapping back on itself due to the (mod N), we

take large enough N = 2n max wi I + 1 so that 1w - sj < N/2.

N

Pr [w - S = j] exp(
j=-N

So, the expectations are a linear combination of the desired probabilities Pr [w -S j]

with coefficients given by a Fourier matrix. Moreover, we can vary the "frequency"

w to Wk to obtain a set of linear relations, one for each k E {0, 1, .. , n - 1}:
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ES~DU [exp (2Njw-S Prw.S jlcxp( Nkj
-\j=-N

Write Xk for the expectation on the right-hand side and pj for the desired proba-

bilities Pr [w - S j]. We have that the Xk and pj are related by the Fourier matrix

F with
( 27ri)

Fjk = exp .k X
/N N

and so one may solve for the desired probabilities in terms of the efficiently computable

expectations p = N- 1/ 2 Ftx Approximating the expectations Xk as per corollary 76

thus lets us compute the desired distribution p.

It remains now to do an error analysis. Corollary 76 gives a high probability that

each approximated expectation Xk is within c of its true value Xk, and so |jz - xzj 1 <

NE.

Then, the approximated probabilities have

||p - p1 1  / N ||P - p|| 2

=|F - FxI| 2

= xr - X11 2  (3.3)

< ||zr - X|1

< Nc

By taking E = c'/N = E'/ (2n max IwjI + 1), we obtain p - pL E ' while maintaining

a running time polynomial in c', n, and maxIwi
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