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Abstract

Imaging often plays a critical role in advancing fundamental science. However, as

science continues to push the boundaries of knowledge, imaging systems are reaching

the limits of what can be measured using traditional-direct approaches. By designing

systems that tightly integrate novel sensor and algorithm design, it may be possible

to develop imaging systems that exceed fundamental theoretical limitations to observe

things previously impossible to see. However, these non-traditional imaging systems

generally come with a trade-off; they produce increasingly sparse and/or noisy measure-

ments that require incorporating additional structure to extract anything meaningful.

The focus of this thesis is on using computational methods that exploit structure in our

universe to move past these obstacles and reveal the invisible.

In this thesis, we focus on two imaging problems that explicitly leverage structure

in our universe: reconstructing images and video from a computational telescope the

size of the Earth, and seeing around corners. For the first imaging problem, this thesis

investigates ways to reconstruct images and video from a sparse telescope array dis-

tributed around the globe. Additionally, it presents a number of evaluation techniques

developed to rigorously evaluate imaging methods in order to establish confidence in

reconstructions done with real scientific data. The methods and evaluation techniques

developed in this thesis will hopefully aid in ongoing work to take the first picture of

a black hole. Next, this thesis presents methods developed for using the subtle spatio-

temporal radiance variations that arise on the ground at the base of an edge to construct

a one-dimensional video of a hidden scene. These methods may be especially valuable

in remotely sensing occupants in a room during search and rescue operations, or in

detecting hidden, oncoming vehicles and/or pedestrians for collision avoidance systems.
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only be seen when imaged in the radio (b). [76 . . . . . . . . . . . . . . 45
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2.2 A single-dish telescope uses a parabolic mirror to reflect and coherently

collect light at a focal point. Due to the geometry of a parabola, light

coming from a coherent wave front traveling parallel to the axis of the

dish, will travel an equal distance to the focus from every reflected point

(a). Thus, the electric field will be in phase, and constructively interfer-

ence, at the focus. When the wave front is not traveling parallel to the

dish, these distances will no longer be the same and the electric field will

destructively interfere at the focus (b). . . . . . . . . . . . . . . . . . . 47

2.3 A sample power response profile for a 10 meter dish observing at a 1.3

millimeter wavelength. Note that most of the power is contained within

A/D radians of angular offset. This intrinsic property of parabolic re-

flectors leads to the fundamental relationship for single-dish resolution

in Equation 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Simplified Interferometry Diagram: Light is emitted from a distant

source and arrives at the telescopes as a plane wave in the direction A.

An additional distance of B . A is necessary for the light to travel to the

farther telescope, introducing a time delay between the received signals

that varies depending on the source's location in the sky. The time-

averaged correlation of these signals is a sinusoidal function related to the

location of the source. This insight is generalized to extended emissions

in the van Cittert-Zernike theorem and used to relate the time-averaged

correlation to a Fourier component of the emission image in the direction

S. . .. .... .......... ............. ....... ....... .. . . .... 51

2.5 The effect of taking the time-averaged correlation of two signals that are

separated by a time delay. The signals received by the two telescopes

are shown in red and blue, respectively. By multiplying these signals we

obtain the green curve. And by averaging the values in the green curve

we obtain the time-averaged correlation, shown as the straight black

line. This resulting time averaged correlation is related to the phase

shift between the signals, but it does not provide information about the

absolute time delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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2.6 The time-averaged correlation for a single point source plotted as a func-

tion of its position on the celestial sphere. Notice that as the point

source moves it sweeps out a sinusoidal pattern in the time-averaged cor-

relation. The frequency of this sinusoidal pattern is a function of the

distance between the two telescopes, B, and the observing wavelength, A. 54

2.7 Earth Rotation Synthesis: For every two telescopes in the interfero-

metric array, we obtain a single measurement (visibility) related to the

underlying source image's 2D spatial frequency. This frequency is related

to the baseline between the telescopes in the direction perpendicular to

the observing source. This would be a prohibitively small number of mea-

surements to make an image from. However, as the Earth rotates, the

projected baselines change, and we observe new measurements related to

different regions of the 2D frequency plane. As time increases (specified

by the Greenwich Sidereal Time (GST)), the projected baselines change

and the red dots on the lower frequency coverage plot, indicating the cur-

rent measurements, change position. Assuming the source is static, this

amounts to carving out elliptical paths in the frequency plane that are

all related to the same image. This is visualized as the transparent blue

lines. As light emitted from the source is real-valued we obtain two mea-

surements on opposite sides of the frequency plane - each independent

set of measurements displayed as either the open or closed red circles. 58

2.8 The uv coverage of Sgr A* and M87 for the same telescope array ob-

serving over 24 hours. Telescopes in the 2017 EHT array observing at a

1.3 mm wavelength were used to generate these uv-coordinates. Notice

that although the telescope array has remained unchanged for these two

sources, the uv-coverage changes substantially. This is due to a difference

in their source direction, . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.9 The observed angle of inclination affects a black hole's appearance. Here

we show a prediction of what a non-spinning black hole might look like

at different angles ranging from face-on (0') to edge-on (890). [23] . . . 70

2.10 The spin of a black hole affects its appearance. Here we show a prediction

of what a black hole might look like edge-on (top) and face-on (bottom)
for a variety of different spins. 0.0 spin implies that the black hole is not

spinning, while 1.0 spin implies it is maximally spinning. [23] . . . . . . 70
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3.1 CLEAN Reconstruction Approach: The uv-coverage of an observa-

tion characterizes the PSF of the interferometer. The PSF, referred to

as the dirty beam, is found by taking the inverse Fourier transform of

the uv-coverage. The dirty image, the inverse Fourier transform of the

complex visibility measurements, can be described as the original image

convolved with the dirty beam. To recover an image, CLEAN iteratively

removes sidelobes from the dirty image caused having a non-point like

dirty beam. Afterwards, the final image is blurred by the nominal beam.

This process only is appropriate when there is no atmospheric error in

the visibility measurements. When atmospheric error exists, it is not

possible to recover the underlying image simply by removing sidelobes.

In this case a process called self-calibration is employed. The uv-coverage

used in this example is generated according to the specifications of 3.4.1.

Images shown are 64 x 64 pixels and the intensity of each pixel is specified

in milli-janskys. The total flux of the original source image is 1 jansky. 78

3.2 Image Representation: An example of a continuous 1D image de-

fined in terms of ID triangle pulses. Pulses are shifted and scaled by

a discrete set of values, x. These shifted and scaled pulses are then

summed together to make a single continuous image. In this example

x = [1, 2, 3, 1, 1, 4]. Note how triangle pulses result in a piecewise linear

continuous im age. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 Modeling Error for Different Continuous Image Representa-

tions: Accurately modeling the frequencies of an image is crucial for

fitting VLBI measurements during image reconstruction. Here we show,
that with the same number of parameters, we can much more accurately

model the true frequency distribution. A slice of frequencies for the true

image is shown in red. Overlaid we show the effect of using the tradi-

tional discretized imaging model (green), and our improved model for

rectangle (cyan) and triangle (blue) pulses. The dotted lines denote the

frequency range sampled in the uv-coverage of Fig 3.1. Representing an

image using triangle pulses reduces modeling errors for higher frequencies

during image reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . 84
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3.4 Intrinsic Maximum Resolution: The geometry of a telescope array

imposes an intrinsic maximum resolution on images reconstructed from

its measurements. Recovering spatial frequencies higher than this res-

olution is equivalent to super-resolution. For results presented in this

chapter, the minimum recoverable fringe spacing (corresponding to the

maximum frequency) is 24.72 p-arcseconds. The original 'Source' images

(183.82 A-arcsecond FOV) are used to synthetically generate realistic

VLBI measurements. We show the effect of filtering out spatial frequen-

cies higher than the minimum fringe spacing for these source images in

'M ax R es'. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.5 Training Image Datasets: The multivariate image prior and GMM

patch prior were trained using using three distinct categories of images:

natural (everyday), astronomical, and black hole simulation images. In

this figure we show four random image samples from each dataset. Notice

that each set of images has a very distinct look. A set of 400 natural

images from the Berkeley segmentation dataset were used in the natural

dataset [90]. Fifty (50) images from NASA/JPL-Caltech and NRAO were

used in the astronomical dataset [2]. A set of 9000 computer generated

images of Sgr A* for different inclinations and spins were used in the

black hole dataset [23]. Additional images from this black hole dataset

are shown in Figures 2.9 and 2.10. . . . . . . . . . . . . . . . . . . . . . 97

3.6 Trained Image Model: Four images are sampled from each of the

trained Gaussian image priors. These are shown below each model

name. The top ten eigen-emission images corresponding to each model

are shown directly below the image samples. Each image model captures

very different characteristics from its set of images. For instance, unlike

in the natural image model, the astronomical image model concentrates

most of its energy in the center of the image. . . . . . . . . . . . . . . . 99

3.7 Trained Patch Model: Five patches sampled from the ten most likely

clusters of each GMM patch model (left to right corresponds to more

to less likely). Although similar features exist in all three patch mod-

els, there are also significant differences. Each patch model appears to

capture characteristics specific to its own set of images. . . . . . . . . . 100
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3.8 Comparing Reconstructions from Trained Models: Reconstruc-

tions using image priors (Gauss) and patch priors (CHIRP) trained on

natural, celestial, and synthetic black hole images. The truth and blurred

truth image are shown on the top. Results of Gauss are shown when

constraining the complex visibilities (without atmospheric error), ampli-

tude and bispectrum, as well as just the bispectrum. CHIRP results

are only shown when constraining the bispectrum. Notice that signifi-

cant differences exist between reconstructions when using the different

trained image priors, even when clean complex visibilities are provided.

However, only small differences can be seen in the reconstructed images

using patch priors. Since absolute position is lost during imaging with

the bispectrum, shifts in the reconstructed source location are expected. 101

3.9 Comparing Reconstructions from Trained Models: Refer to the

caption of Figure 3.8. In this example the true source image comes

from the manifold of images that the 'black hole' prior was trained on.

However, despite this the reconstruction using 'Gauss' is very poor. This

has to do with the fact that the multivariate Gaussian model is not

able to adequately capture the manifold of black hole images. As all

of the images used to train the 'black hole' prior are very similar, the

resulting model encourages high frequency structure and negative light

(see Figure 3.6). This model allows us to easily overfit the data, and find

an image that aligns with the noisy data better than the true image. 102

3.10 Method Comparison: Comparison of our algorithm, 'CHIRP' to

three state-of-the-art methods: 'CLEAN', 'SQUEEZE', and 'BSMEM'.

We show the normalized reconstruction of a variety of black hole (a-b),

astronomical (c-f), and natural (g) source images with a total flux den-

sity (sum of pixel intensities) of 1 jansky and a 183.82 p-arcsecond field

of view. Since absolute position is lost when using the bispectrum, shifts

in the reconstructed source location are expected. The 'TARGET' im-

age shows the ground truth emission filtered to the maximum resolution

intrinsic to this telescope array. . . . . . . . . . . . . . . . . . . . . . . 104
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3.11 Quantitative Analysis on Blind Test Set: Box plots of MSE and

SSIM for reconstruction methods on the blind dataset presented in Sec-

tion 5.1.3. In SSIM a score of 1 implies perceptual indistinguishability

between the ground truth and recovered image. Scores are calculated

using the original 'Source' image (Refer to Fig. 3.4). . . . . . . . . . . . 105

3.12 Noise Sensitivity: The effect of varying total flux density (in Janskys),
and thus noise, on each method's recovered reconstructions. Decreasing

flux results in higher noise. Notice how our method is fairly robust to

the noise, while the results from other methods often vary substantially

across the noise levels. The ground truth target images along with the

results for a total flux density of 1 Jansky can been seen in column A

and C of Figure 3.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.13 Real Measurements: A comparison of our reconstructed images to [74]'s

results using CLEAN self-calibration. Note that we are able to recon-

struct less blurry images, and are even able to resolve 2 separate, previ-

ously unresolved, bright emissions in blazar OJ287. Measurements were

taken using the VLBA telescope array. The FOV for each image is 1.5,
1, and 1 milli-arcsecond respectively. . . . . . . . . . . . . . . . . . . . . 107

4.1 Simulated data under a static vs. varying source: Contrasting

of data observed from a static emission region (magenta) to that of a

varying emission region (blue) over the course of 2.5 hours. Although

both sequences start with the same image, the visibility amplitude and

closure phase both begin to deviate from the static image very quickly.

The ideal observation for the static and time-varying source is shown by

the solid red and blue lines, respectively. We also show sample measure-

ments with their respective error bars in the same colors. This data is

simulated using the EHT2017 array from the frames in Video 3 presented

in Section 4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
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4.2 Graphical Representation of our Dynamic Imaging Model: At

each time t we observe a vector of data products yt corresponding to the

instantaneous source image xt. We assume each image xt is related to

its adjacent neighbors in time, xt-1 and xt+1, and is also related to a

multivariate Gaussian distribution specified by mean pt and covariance

A. The persistent global evolution of the source images over time is

specified by A, which is further parameterized by 0. Additional intensity

perturbations in time are captured by the covariance matrix Q. In this

diagram, squares indicate parameters, circles are variables, and shaded

circles indicate the variable is observed. . . . . . . . . . . . . . . . . . . 113
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4.3 Static Imaging Comparison: Results of static imaging using a mul-

tivariate Gaussian prior ( a = 2, 5, 10) compared to state-of-the-art

reconstruction methods using MEM & TV regularizers [26] as well as

patch-based regularizers (CHIRP) (see Chapter 3 and [17]). All images

are shown with a field of view of 160 p-arcseconds. Data is generated

using a static image with the uv-coverage of the EHT2017 array shown

on the left (see Section 4.4). The uv-coverage is colored by time, as in-

dicated by the colorbar in Figure 4.6. Although the previous algorithms

(MEM & TV and CHIRP) both produce better results, the Gaussian

reconstruction is able to correctly get the broad structure of the underly-

ing image. Since we do not impose positivity, negative values are recon-

structed. However, by clipping the resulting image we can see that the

result aligns well with the true static image. The Gaussian prior model

also allows us to easily estimate our reconstructed image uncertainty. We

visualize the diagonal entries of the posterior covariance matrix as the

reshaped standard deviation image. Note that as the smoothness param-

eter a is increased, the per-pixel standard deviation becomes smaller, but

the structure of the standard deviation deviates from what was specified

in the prior (recall A is scaled by pt, which we have specified as a 2D

Gaussian in this work). For large a the uncertainty is shown to be pri-

marily in the diagonal north-west to south-east direction, due to the lack

of spatial frequencies sampled by the telescope array in this direction. To

avoid approximations and best show the recovered posterior covariance

matrices, atmospheric error has not been included in the data used to

recover these images. The flux in Janskys per pixel is normalized across

images for a 30 x 30 image. Note we have flipped the uv-coverage rela-

tive to how it is normally shown to align with regions that have missing

frequency information in the image (in the rest of this thesis we show the

uv-coverage plotted as if we were looking towards the Earth rather than

towards the source). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
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4.4 Gaussian Image Prior: The covariance matrix constructed for a =

2,3,4 along with image samples from the prior jA/,(p, A). The image

samples have a field of view of 160 p-arcseconds. Notice that as a in-

creases, the sampled images appear smoother. In these examples p is

a 2D Gaussian Image with standard deviation of 75 p-arcseconds. and

b = 0.5. Note that as a increases, the prior encourages smoother struc-

ture. ......... .............. ....................... 116

4.5 Ground truth videos: The four ground truth sequences used to demon-

strate results. We show a single frame from each sequence, the mean

frame, and the spatial standard deviation of flux density. Video 1 con-

sists of a 160p-arcsecond image [23] that rotates 180' over the course of

a 12 hour observation (24 hour rotational period). Video 2 is a 120p-

arcsecond view of an edge-on black hole disk with a rotating "hot spot"

predicted by [21] with a rotational period of 2.78 hours. Video 3 and 4

are generated using a GRMHD model of a black hole observed face on

and at a 450 inclination with a 160p-arcsecond field of view [118]. They

assume a spin of 0.9375 with an Innermost Stable Circular Orbit (ISCO)

rotational period of 8.96 minutes. . . . . . . . . . . . . . . . . . . . . . . 122

4.6 Time-varying uv-coverage: The uv-coverage for EHT2017, EHT2017+

and FUTURE arrays when observing SgrA. Baselines are colored by the

time of each observation relative to the start time, indicated by the col-

orbar to the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
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4.7 Static evolution model: Results obtained using data simulated from

each of the 4 video sequences (see Figure 4.5) under different telescope

arrays (see Figure 4.6) and noise conditions. The main portion of the

figure is broken up into 4 quadrants corresponding to Videos 1-4 when

moving from left to right, top to bottom. The true mean image from the

ground truth videos, blurred to 3/4 the nominal resolution of the array,
is shown on the top. We compare results of our proposed method, Star-

Warps, to that of the single imaging methods presented in [87] and [26].

In particular, we compare the mean image obtained using StarWarps

video reconstruction. The error type NO ATM. indicates reconstructing

using visibilities on data with no atmospheric error, while the error type

ATM. indicates using the visibility amplitudes and bispectrum on data

where atmospheric phase errors have been introduced. The quality of

each result, compared to the ground truth mean image, is indicated in

the table of normalized root mean squared errors (Normalized RMSE).

To account for the loss of absolute position in the presence of atmo-

spheric phase error, images were rigidly aligned to the true mean before

com puting the error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.8 Recovering Warp Field: By solving for the parameters of a persis-

tent warp field using the proposed EM algorithm, we are able to recover

a low-dimensional representation of the source dynamics. Results are

shown using the EHT2017+ array with and without atmospheric error

(ATMOSPHERIC and NO ATMOSPHERIC ERROR, respectively). Ar-

rows showing the direction of recovered motion are overlaid on the mean

image for a recovered video. In Video 1 the true underlying motion can

be described by a clockwise rotation. The proposed method is able to

recover Video l's motion from the observed data. Video 2 contains a

'hot spot' rotating counter-clockwise around a static emission. Video

2 cannot be described using a single persistent flow field. Yet, despite

this, the proposed method is still able to recover the general direction of

counter-clockwise motion. . . . . . . . . . . . . . . . . . . . . . . . . . . 127
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4.9 Time-resolved reconstruction of Video 1: Video 1 contains an im-

age rotating clockwise by 1800 over the course of the observation. At

each time, the interferometric telescope array measures values related

to 2D spatial frequencies of the current underlying image, shown in the

row labeled 'Truth'. These are indicated by the dots on the uv-coverage

plots (each independent set of measurements displayed as either black or

red). We present results obtained when using calibrated data with no

atmospheric error, as well as when there is atmospheric phase error still

present and we must use data products invariant to its effects. Below

the true images, we show a subset of images from the baseline 'snapshot

imaging' method and compare it to our StarWarps reconstructed video

obtained when we assume a static warp field or an inferred warp field.

The mean image for each sequence is shown in the leftmost column. In

the case that we simultaneously estimate a warp field, we indicate the

resulting field as arrows on the mean image. . . . . . . . . . . . . . . . 128

4.10 Time-resolved reconstruction of Video 2: Video 2 contains a se-

quence of a hotspot orbiting counter-clockwise around a black hole. We

present time-resolved results obtained using data derived from this se-

quence. Below the true images, we show a subset of images from the

baseline 'snapshot imaging' method and compare it to our StarWarps

reconstructed video obtained assuming a static warp field or an inferred

warp field. The mean image for each sequence is shown in the left-

most column. If we simultaneously estimate a warp field, we indicate

the resulting field as arrows on the mean image. Our method substan-

tially improve results over the snapshot method, especially in the case

of atmospheric error when the absolute position of the source cannot be

recovered. Additionally, despite the fact that this hotspot video does not

match our assumed motion model, using our proposed approach we were

able to estimate a warp field that provides the direction of the source's

true underlying motion. See the caption of Figure 4.9 for more detail. . 129
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4.11 Visualizing Recovered Motion: We visualize the recovered motion

in Video 2 by displaying the change in intensity around a circle in the

image over time. After fitting a circle of constant radius to each video,
the intensities around the circle in each image are unwrapped and placed

in a single column in the unwrapped space x time image. As the hot

spot rotates around the black hole a distinctive line appears in the true

angle x time image. These lines also appear in the StarWarps angle x

time images, but are harder to discern among the other artifacts in the

snapshot imaging result. Results were obtained using the EHT2017+

array with added atmospheric noise, and correspond to results shown in

Figure 4.10. As the absolute position of the source is lost when using

the closure phase or bispectrum, the position of the recovered black hole

moves slightly over the course of the video. This causes the fluctuation

in the intensity of the bright horizontal line in the StarWarps recovered

angle x time images, as we do not shift the position of the fitted circle. 131

5.1 The EHT Imaging Challenge Pipeline: The imaging challenges consist

of four steps: simulation, reconstruction, evaluation, and learning. This

process encourages algorithm development and improves our understand-

ing of imaging methods on EHT quality data. This newly acquired knowl-

edge then helps to shape the next imaging challenge. . . . . . . . . . . 137

5.2 A screen shot of the evaluation website used by judges in the fourth

challenge (dataset 7). Judges were provided with the submission images,

challenge data, and plots that showed how well each image fit the sim-

ulated measurements. Additional plots (such as the uv-coverage, beam

size, etc) were provided upon request. . . . . . . . . . . . . . . . . . . . 142

5.3 Dataset 1: The u-v coverage (left), and amplitude versus u-v distance

(right) for the challenge dataset. . . . . . . . . . . . . . . . . . . . . . . 144

5.4 Dataset 1: Truth (top) and submitted images in two colormaps. . . . . . 145

5.5 Dataset 1: Normalized Cross Correlation and Normalized RMSE for each

submission along with a visualization showing the effect of a restoring

beam of varying sizes on the truth images. . . . . . . . . . . . . . . . . . 145
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5.6 Dataset 2: The u-v coverage (left), and amplitude versus u-v distance

(right) for the challenge dataset. Note that amplitude mis-calibration

errors cause the amplitude to sometimes exceed the emission's total flux
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Introduction

W ATCHING a raindrop fall into a puddle of water, causing a ring of expanding

ripples, may seem mundane. However, behind this commonplace phenomenon

is a complex process governed by fluid dynamics and its interaction with light. By

understanding these connections we realize that the water's temperature is encoded

in subtle speed differences of the expanding ripples and the size of the falling water

droplet [12]. With the proper models and analysis techniques, we may be able to extract

this seemingly invisible signal and turn a regular camera into a visual thermometer,

without ever interacting with the fluid.

As science continues to push the boundaries of knowledge, sensors are reaching the

limits of what can be measured using traditional-direct approaches [11, 58, 59]. Thus

we must think of creative, new strategies to recover information from indirect measure-

ments. The simple raindrop example above illustrates how looking at the world from

a unique, and often non-obvious, perspective can make seemingly impossible problems

tractable. By incorporating domain-specific knowledge, and exploiting structure in

data, we can often find new ways to indirectly recover the desired information.

Imaging often plays a critical role in advancing fundamental science [11, 20, 63].

Through a combination of novel processing and sensing strategies, it is possible to de-

sign imaging systems that exceed fundamental theoretical limitations to see deeper,

farther, and faster than ever before [11]. However, these non-traditional imaging sys-

tems generally come with a trade-off; researchers are left with increasingly sparse and/or

noisy measurements that require incorporating additional structure to extract anything

meaningful. The focus of this thesis is on using computational methods that exploit

structure in our universe to uncover things thought to be invisible.

Many problems we have studied exploit structure in our universe to pull out infor-

mation that may at first seem unobtainable. For example, by analyzing tiny motions

in a seemingly still scene, and relating this motion to vibration theory, we showed
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in [33, 34] how it is possible to infer information about material properties. Moreover,

by finding structure across a population in low-resolution clinical MRI scans, in [31] we

were able to impute missing data. This thesis focuses on two imaging problems we have

studied that explicitly leverage structure in our universe: reconstructing images and

video from a computational telescope the size of the Earth, and seeing around corners.

In Sections 1.0.1 and 1.0.2 we give a brief overview of these indirect imaging problems,

and the contributions we have made to them. For the remainder of the chapter, in

Section 1.1, we outline the common philosophy taken in solving these problems.

U 1.0.1 Imaging with an Earth-Sized Computational Telescope

It is believed that the heart of the Milky Way hosts a four million solar mass black

hole feeding off a spinning disk of hot gas [50]. An image of the shadow cast by the

event horizon of the black hole could help to address a number of important scientific

questions [36]; for instance, does Einstein's theory of general relativity hold in extreme

conditions? Unfortunately, the event horizon of this black hole appears so small in the

sky that imaging it would require a single-dish radio telescope the size of the Earth.

Although a single-dish telescope this large is unrealizable, by connecting disjoint radio

telescopes located around the globe, the "Event Horizon Telescope" (EHT) is creating

an Earth-sized computational telescope [35]. Through the use of a technique referred to

as Very Long Baseline Interferometry (VLBI), it is possible to combine measurements

from across this global array of telescopes to take the very first picture of a black hole's

shadow [124] (see Chapter 2).

Although measurements from the EHT's computational telescope share similarities

with other well-studied problems [20,89,95,123], the EHT faces a number of unique

challenges. To achieve the necessary resolution, the EHT must operate at very short-

wavelengths and use fewer telescopes than normally employed in VLBI setups. This

results in measurements that are incredibly sparse and noisy, causing traditional astro-

nomical imaging methods to often perform poorly [17, 85]. By combining techniques

from both astronomy and computer science, we have been able to develop innovative

ways to robustly reconstruct the underlying images. Although these methods were

specifically developed to tackle the EHT's unique challenges, they are broadly applica-

ble to interferometric radio imaging.

In Chapter 3 this thesis introduces methods developed for single image reconstruc-

tion when using the EHT's sparse and heterogeneous array. Specifically, we discuss

how to handle propagation delays caused by the atmosphere that plague EHT data, as
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well as introduce data-driven priors into VLBI imaging as a way to help tackle uncer-

tainty in bias. These algorithms, like all prior VLBI imaging techniques, require that

over the course of a night's observation the source remains static. Thus, in Chapter 4

this thesis addresses the violation made by our galactic center's quickly changing black

hole [72, 87]. In this chapter we present an algorithm developed to reconstruct a video

of the time-evolution of the targeted source over the course of a night. This allows us

to not only study the structure of the emission in the immediate region around a black

hole, but also its dynamics.

Current literature in astronomical imaging lacks rigor in method evaluation [10, 13,
83]. In Chapter 5 this thesis introduces efforts we have taken to improve the evaluation

process. In particular, we introduce a dataset containing realistic measurements along

with a website testbed. Furthermore, we discuss the EHT Imaging Challenges - an

ongoing contest developed to evaluate imaging methods' ability to handle the challenges

faced in EHT quality data. This thesis presents results from the first four challenges,

and discusses a number of insights made. These newly introduced evaluation approaches

facilitate rigorous comparisons between imaging algorithms, and have already proven

to promote growth in both new and old methods.

0 1.0.2 Imaging Hidden Scenes Behind Corners

The ability to see around obstructions would prove valuable in a wide range of applica-

tions. As just two examples, remotely sensing occupants in a room would be valuable

in search and rescue operations, and the ability to detect hidden, oncoming vehicles

and/or pedestrians would be valuable in collision avoidance systems [16]. Although

often not visible to the naked eye, in many environments, light from obscured portions

of a scene is scattered over many of the observable surfaces.

In Chapter 6 this thesis demonstrates an instance of this phenomenon, whereby

we can interpret the light falling on the ground near a naturally occurring corner as a

"camera" to see the scene beyond it. In particular, we demonstrate methods for using

the subtle spatio-temporal radiance variations that arise on the ground at the base of

edges to construct a one-dimensional video of the hidden scene. Since vertical edges

are ubiquitous, such cameras can be found in many environments. From standard RGB

video recordings of the variations in intensity, we use edge cameras to recover a 1-D

video that reveals the number and trajectories of people moving in an occluded scene.

We further show that adjacent vertical edges, such as those that arise in the case of

an open doorway, yield a stereo camera from which the 2-D location of hidden, moving



objects can be recovered. We demonstrate the technique in a number of indoor and

outdoor environments involving varied surfaces and illumination conditions.

0 1.1 Inverse Problems

The goal of a sensing system is to capture and provide measurements, y, that describe

a desired signal, x. In the case of direct sensing systems, the provided measurements

tell us exactly what we are looking for. For instance, an outdoor scene can be directly

captured using a pinhole camera. Similarly, the temperature of the puddle of water in

the beginning of this chapter could be measured with a mercury thermometer. In both

of these cases, y is roughly equivalent to x. However, many desired signals cannot be

directly observed. For instance, we can not use the pinhole camera to see the organs

inside of a person, and perhaps we cannot stick a thermometer into the water for fear

of contamination. For these tasks, since we cannot measure the signal directly, we

must instead take measurements that merely depend on the unknown, desired signal

(e.g X-ray absorbance through the body, or expanding ripples). In other words, the

measurements are likely to be a complex, possibly non-deterministic, function of x:

y ~ f(x). The objective is then to recover the desired signal, x, from the indirect

measurements, y. This process is referred to as solving the inverse problem [11].

An initial way you may think to approach this inverse problem may be to construct

an inverse function, f -(y), of f(x) that acts on the measurements and results in the

desired signal (see Figure 1.1). Although this is the standard way of solving many

problems [57, 60,96], this approach has significant flaws. First, the measurements, y,
may be related to the desired signal, x, through a very complicated non-linear process.

This often makes it prohibitively difficult to construct an inverse function. Second, in

order for an inverse to even exist f(x) must be one-to-one, meaning it cannot map

different signals to the same measurements. Third, the addition of non-deterministic

noise cannot be incorporated into an inverse and thus cannot be properly accounted

for. Thus, when taking this approach there is often significant ad-hoc post-processing

done in an attempt to correct the recovered signal [121].

Instead, a more successful approach, that is adopted in this thesis, is to construct a

function of the forward system f(x), and then search for the signal (or set of signals)

x that would produce the observed measurements y. This approach alleviates the

need to construct an impossible inverse function, and instead focuses our energy on

understanding and correctly modeling the sensing system. However, note that this
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71

xk r1(y}

Figure 1.1. A traditional approach to solving an inverse problem might look something like what is
illustrated in this diagram. The sensing system produces measurements y in response to the unknown
signal x. To recover the unknown signal an inverse function is constructed, f--(y), which acts on the
observed measurements, y, to produce an estimate of the unknown signal, Ib. Although this approach
seems fairly straightforward, it has a number of flaws and often results in poor reconstructions.

approach does not resolve how to deal with noise or non-unique system functions (eg.

f(Xi) = f(x 2 )). To handle this, we incorporate a prior model to characterize the likely

behavior of the unknown signal. Using these two ingredients, the forward and prior

model, we can define a standard recipe for obtaining the desired unknown signal (see

Figure 1.2 ).

Without loss of generality, for the remainder of this chapter, we focus on describing

how to model and infer images using indirect imaging systems. In this case, x is an

image and y are the observed measurements (or data) from the imaging system. The

forward system is not necessarily invertible, and thus does not necessarily have to return

a unique y for each unique x.

Forward Model

The forward model of an imaging system describes how an image, x is transformed and

distorted into the observed measurements y. This model should fully characterize the

system by including all deterministic (e.g. geometry) and non-deterministic properties

(e.g. noise). The forward model is embodied in the probability, p(ylx), which describes

the distribution of measurements, y, conditioned on x being the true underlying image.

The conditional distribution p(ylx) can be generically defined. However, it is often

the case that systems deal with noise that is due to independent random perturbations.

For instance, thermal noise due to agitation of the electrons in a circuit can be described

in this manner, and affects both imaging systems studied in this thesis: telescope

receivers as well as digital cameras [51]. In these cases, the central limit theorem explains
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x~7Y_
k 7 X

Figure 1.2. In this thesis a Bayesian style inference approach is taken to solve inverse problems.
The sensing system produces measurements y in response to the unknown signal x. To recover the
unknown signal we construct a functionf(x) which models the behavior of the system. We then search
for a signal -: that would produce measurements, f, similar to what we have observed and also fits our
model of likely behavior of the unknown signal, x.

why this type of noise follows a zero-mean Gaussian distribution [49]. Mathematically,

y ~ I(f (x), E), (1.1)

where .Az, (m, E) is the multivariate normal distribution of z with mean m and covariance

E. The function f(x) embodies all of the deterministic properties of the system, and

E describes the covariance of system noise.

Domain-Specific Knowledge Making substantial advances in imaging requires the abil-

ity to bridge the gap between theory and practice. Thus, domain-specific knowledge

is invaluable when defining an imaging system's forward model. Understanding the

minutiae of a specific system, and properly accounting for its differences compared to

generic systems, is often crucial in recovering the best possible image, x.

A Gaussian distribution is often the de facto assumption made about noise on

imaging systems. However, there are many types of noise/error that can affect a system

that cannot be described in this manner [32]. For instance, Poisson/shot noise appears

in digital cameras in low-light situations [88]. This noise cannot be modeled with

a Gaussian distribution, and must be accounted, for in particular situations to avoid

serious reconstruction artifacts. Likewise, propagation delays due to the atmosphere

plague measurements for the Event Horizon Telescope and also cannot be modeled as

Gaussian noise [124]. If this error is not accounted for during imaging, resulting image
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reconstructions are meaningless.

We have put a large emphasis on collaborating closely with experts in VLBI for

developing EHT imaging techniques. These experiences, including fieldwork at an EHT

participating telescope, have made it possible for us to better understand the system

we are working with, and adapt imaging methods to account for its unique properties.

Prior

Using just a forward model, it is possible to search for an image . that maximizes p(ylx).

However, due to noise on y and the large dimensionality of parameters (pixels) in x, the

result of this search will generally find an k that looks nothing like the original image

that generated the observed measurements, y. The resulting i will often contain large

amounts of noise and artifacts. It may even violate fundamental physical constraints,

such as generate an image with negative light.

The reason simply maximizing the conditional probability results in a poor recon-

struction is due to the fact that the inherent likelihood of each image is not being

accounted for. In fact, by only maximizing p(ylx) we are assuming all possible com-

binations of pixels in x are equally likely. However, as our universe contains a lot of

structure, this is clearly a very poor assumption; an image where each pixel is indepen-

dently sampled is incredibly unlikely to produce an image of something we are likely to

observe.

When solving for - we instead should incorporate models that try to characterize

this structure by approximating the distribution p(x) of images in our universe (or the

specific domain in which we are working). Image models can often be described using

many fewer parameters than there are pixels in the image [122]. Proof of this intrinsic

image property is in JPEG compression, which reduces the number of parameters used

to describe an image with almost no perceptual loss [54]. Modeling the true distribution

of possible images makes it possible to incorporate our prior knowledge of what we

expect images to look like into our inverse imaging system.

N 1.1.1 Bayesian Inference

After defining the forward and prior model, the task of combining information and

finding the optimal image, x, given the measurements, y, still remains a challenge.

From Bayes' theorem [14] we can write the probability of x being the true underlying
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image that produced measurements y as:

p*xy) = P(l~~)(1.2)
p(y)

c p(ylx)p(x). (1.3)

Using the forward model we can define a conditional distribution of the measure-

ments, y, given the unknown image, x: p(y x). Similarly, the prior model allows us to

define p(x). Once we have defined each of these terms, finding the optimal image, i,
then simply reduces to maximizing the posterior distribution. Mathematically,

x argmax [p(ylx)p(x)] . (1.4)
X

As log is a monotonic function, maximizing the posterior distribution is equivalent to

minimizing the negative log-likelihood [14]:

i = argmin [- logp(ylx) - log p(x)]. (1.5)
X

Note that Equation 1.5 has the simple form adopted by many regularized inverse prob-

lems:

i = argmin [x(x, y) - OR (x)], (1.6)

where x(x, y) indicates how inconsistent the image, x, is with the observed data, y,
and R(x) expresses how likely we are to have observed the image x. These two terms

often have different preferences for the "best" image, and fight against each other in

selecting . Their relative power in this decision is specified with the hyper-parameter /3.

Equation 1.6 can be interpreted probabilistically when -x(x, y) = logp(ylx), R(x) =

logp(x), and 3 = 1. While many methods do not have a probabilistic interpretation,

their formulation leads to a similar optimization as a probabilistically motivated model.

Gaussian Distributions

For general distributions, Equation 1.5 can be solved using generic methods such as

gradient descent. However, in the case of certain special distributions, we may be able

to obtain a deeper understanding of this optimization. A common approximation is to

define p(ylx) and p(x) in terms of multivariate Gaussian distributions [14]. Mathemat-
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ically,

y ~ N(f~xE (1.7)

x ~ N(p, A). (1.8)

In this case, the distributions of p(ylx) and p(x) are written as:

1 1
P(ylx) -exp -(f-,-1Y Y (1.9)

p)= exp (x - M)'A-'( - t) .(1.10)
Vf27rAj 2

Under these Gaussian models, Equation 1.5 reduces to a simple expression:

x argmin [[(f(x) - y)T (E- ( - y)] + [(X - 1 )T A-'(x - p)]]. (1.11)

For generic f(x) this is still difficult to solve. However, in the case that y is a linear

function of x, a closed-form solution of - can be found [14]. Let, f(x) = Fx. Then,

we can compute the most likely estimate of each x as:

S+ AFT(E +FAFT)- - F). (1.12)

This is often referred to as Wiener filtering [106,132]. Note that in the limit of having

no prior information about the underlying image x, e.g A = limso Al, this MAP

solution reduces to & = FT(FFT)-ly = F-1 y. Thus, in the worse case scenario, this

solution reduces to finding and applying an inverse function. Note this is only possible

if an inverse exists (F is full rank).

Equation 1.12 can be found through multiple different methods. The most natural

way to solve Equation 1.11 is to solve for where the derivative of the negative log-

likelihood equals zero. However, an alternative approach is to evaluate the full posterior

distribution. Since the product of Gaussian densities is Gaussian, for f(x) = Fx,

pXx Iy) = MX(4, C).- (1.13)

The mean (and mode) of this posterior distribution is equivalent to Equation 1.12. How-

ever, this distribution not only tells us the mean (and mode), but also the uncertainty
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in the estimate through the covariance matrix C:

C =A - AFT(E + FAFT)-lFA. (1.14)

Estimating this uncertainty is useful in understanding what regions of the reconstructed

image we trust, and can become especially valuable when propagating information

across disjoint observations. Refer to Appendix A.1 for a derivation of this result.

0 1.1.2 Bias-Variance Trade-off

One disadvantage of Bayesian imaging is that bias is often introduced in the recovered

image, -. As the prior model is unlikely to perfectly match the true distribution of

images, it will slightly push the solution in a direction it favors, potentially misrep-

resenting the true underlying image. However without a prior model, as discussed in

Section 1.1, results are often artifact and noise heavy. In essence, the recovered image

will vary drastically for each different realization of noise.

This dilemma is often referred to as the bias-variance trade-off [14]. Roughly speak-

ing, variance can be thought of as the amount of noise and artifacts introduced into a

reconstruction, and bias can viewed as systematic changes away from the true under-

lying image. In Chapter 3 we discuss how we try to alleviate one form of bias using

data-driven priors. Additionally, in Chapter 5, by comparing results from many differ-

ent image reconstruction algorithms with different priors, we can begin to identify the

bias introduced by each prior/method.
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Radio Interferometry and the Event

Horizon Telescope

R ADIO astronomy is the study of celestial sources at radio frequencies [124. Imaging
in radio frequencies allows us to see parts of our universe that we are not able to

see naturally. For instance, Figure 2.1a shows an image of the galaxy Centaurus A in

visible wavelengths seen by looking through an optical telescope. In the center is an

image of the same location, but this time in radio wavelengths, imaged using a radio

telescope [76]. By compositing the two images together we can see that the visible

and optical wavelengths tell us very different stories about the galaxy's environment.

Although we can see stars and dust in the optical image, the radio image shows us

something that was once invisible, but very exciting - a jet of radio emission caused by

a supermassive black hole at the center of the galaxy [113].

(a) (b) (c)

Figure 2.1. Images from the nearest radio galaxy, Centaurus A. (a) Optical Image, (b) Radio Image,
(c) Composite Image. Notice that the galactic-sized radio lobes that are being emitted from the
supermassive black hole at the center of the galaxy are invisible to the optical image (a), and can
only be seen when imaged in the radio (b). [76]
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Astronomical radio imaging has played a critical role in many scientific discoveries.

For instance, imaging the cosmic microwave background has helped us to learn about

the big bang and our early universe [104]. Although we have already been able to

learn a lot from these images, astronomers are always looking to push the boundaries

of imaging to further science. Recently, astronomers have been developing methods to

increase the resolving power of radio telescopes in a quest to verify theories of general

relativity [35, 36].

One-hundred years ago, Albert Einstein published his theory of general relativity

(GR) [39]. In the years since then, scientists have found lots of evidence in support

of GR, [3,15,38]. However, one prediction of this theory, black holes, still have not

been directly observed. Although there are predictions for what a black hole might

look like [23, 94, 118], we have yet to actually take a picture of a black hole's event

horizon. The Event Horizon Telescope (EHT) is an international project whose goal is

to take the very first image of the immediate environment around a black hole [36,37].

Realizing this goal would not only substantiate the existence of a black holes, but also

aid in studying general relativity in the strong field regime [22, 68].

Observing structure on the scale of a black hole's event horizon requires imaging

with radio wavelengths (roughly 1.3 mm) at an unprecedented ~ 20 P-arcsecond resolu-

tion [35, 36]. Astronomers believe this would make it possible to resolve Earth's closest

supermassive black hole, Sagittarius A* (Sgr A*), which lies at the heart of our own

Milky Way galaxy [36, 50]. This 20 A-arcsecond resolution is much smaller than has

previously been used to image radio sources [81]. As with cameras, a single-dish tele-

scope is diffraction limited, making it very difficult to achieve this level of resolution.

However, simultaneously collecting data from an array of telescopes, called an interfer-

ometer, allows us to overcome the single-dish diffraction limit through computational

imaging methods [124].

In this chapter we first discuss the limitations of single dish radio telescopes in

Section 2.1. Next, we introduce, interferometry, a computational technique for high-

resolution radio imaging in Section 2.2. These techniques are then extended to the

case of disjoint telescopes distributed across the globe in Section 2.3. Following this we

present a brief introduction of black holes and the current state of the Event Horizon

Telescope in Section 2.4.
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S 2.1 Single Dish Telescope

The angular resolution of a single telescope depends on both the wavelength it operates

at, A, and on the diameter of the main dish (mirror), D [111]. The longer the wave-

length, the worse the resolution, and the larger the diameter, the better the resolution.

Consequently, a long-wavelength radio telescope has worse resolution than an optical-

or infrared-wavelength telescope of the same size. In this section we briefly explain how

this relation can be derived.

0 2.1.1 Power Response

A traditional single-dish radio telescope acts like a giant reflector, or mirror, in order to

gather light from the astronomical target. Light from the target source travels towards

the telescope, appearing as a coherent wave parallel to the axis of the dish. This light is

then reflected off the parabolic dish and is combined at the focal point. As the distance

traveled from the incoming phase front to the focal point of the parabolic dish is the

same for all rays, the reflected electric fields will all be in phase at the focus. The

telescope's receiver response is a result of the coherent sum of the electric field at the

focus [111]. Refer to the diagram in Figure 2.2a.

eWave Front

_; dd 2

d 1 +d 2 =d1 +d 2 = +1 =d 1 +d 2  d 1+d 2 #d1+d 2 A' +1 # d1+d2

(a) Parallel Wave Front (b) Angled Wave Front

Figure 2.2. A single-dish telescope uses a parabolic mirror to reflect and coherently collect light at

a focal point. Due to the geometry of a parabola, light coming from a coherent wave front traveling

parallel to the axis of the dish, will travel an equal distance to the focus from every reflected point (a).

Thus, the electric field will be in phase, and constructively interference, at the focus. When the wave

front is not traveling parallel to the dish, these distances will no longer be the same and the electric

field will destructively interfere at the focus (b).

Alternatively, when the wave front comes in at an angle, the distance traveled from

the wave front to the focal point is different for each ray. This causes the electric fields

from this wave front to no longer be in phase at the focal point, resulting in destructive
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interference [111]. Refer to Figure 2.2b. In particular, when one side of the wave travels

a distance k x A more than the other side, then the sum of the electric field becomes 0.

This occurs at angles approximately k x $ radians for k = 1, 2, 3, . When the phase

differential across the full aperture is approximately 1.5A, 2.5A, 3.5A, ... sidelobes appear

in total received power. Each successive sidelobe is weaker than the last.

The power response of a single-dish telescope is given by

1= 10 (2Ji(27rOD/A) 2 (2.1)
27rOD/A'

where J1 is the Bessel function of the first kind of order one, 0 is the angular offset in

radians, and 10 is the maximum intensity [111]. A sample power response can be seen

in Figure 2.3. This distinctive profile is often referred to as an Airy disk/pattern [111].

Notice that the first null occurs at 1.22$ radians. This figure also shows that most

of the power is contained within the full width at half maximum (FWHM) of 1.02D
radians.

Power Response
10 m dish observing at 1.3 mm

0.9-

0.8-

0.7 -

00.6 --

0.5 -
N FWHM
E 0.4 -

0.3 1.02A/D

0.2_ First Null

0.1 -Side Lobe 1.22A/D

0 1 -
-50 -40 -30 -20 -10 0 10 20 30 40 50

Angular Offset (arcseconds)

Figure 2.3. A sample power response profile for a 10 meter dish observing at a 1.3 millimeter
wavelength. Note that most of the power is contained within A/D radians of angular offset. This
intrinsic property of parabolic reflectors leads to the fundamental relationship for single-dish resolution

in Equation 2.2.
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0 2.1.2 Angular Resolution

In Section 2.1.1 we discussed how most of the telescope's power is contained within

roughly A radians. Therefore, it is not possible to resolve any structure smaller than

this size. This is an intrinsic property of single-dish parabolic telescopes, and leads to

the fundamental relationship

Orad ~ A (2.2)D

where 0 rac is the smallest angle possible to resolve with a D diameter telescope observing

at a A wavelength (in common units) [1111. Through a change of units,

1 m 1 km 180 deg 60 arcmin 60 arcsec 1e6 parcsec ,2 x 105x x xxx~2 1
1e3 mm 1e3 m 7r rad 1 deg 1 arcmin 1 arcsec

we can rewrite this relation as

0 parcsec ~ 2 x 105 X Amm (2.3)
Dkm

* 2.2 Radio Interferometry

Imaging distant celestial sources with high resolving power (i.e. fine angular resolution)

requires single-dish telescopes with prohibitively large diameters due to the inverse

relationship between angular resolution and telescope diameter [124]. For example, it

is predicted that emission surrounding the black hole at the center of the Milky Way

subtends ~~ 2.5 x 10-10 radians, or 50 p-arcseconds [44]. Imaging this emission with

a 20 p-arcsecond resolution at a 1.3 mm wavelength would require a telescope with a

roughly 13,000 km diameter.

Although a single telescope this large is unrealizable, by simultaneously collecting

data from an array of telescopes, called an interferometer, it is possible to overcome

the single-dish diffraction limit and create a virtual telescope as large as the maximum

distance between telescopes in the array [124]. When these telescopes are distributed

globally, this technique is referred to as Very Long Baseline Interferometry (VLBI) (see

Section 2.3) [124].

An interferometer consists of P telescopes simultaneously observing and recording

data-streams of light traveling from a common source: {V(t)} P 1. By analyzing these

data-streams, it is possible to obtain a sparse set of constraints on the spatial frequencies

of the underlying source's emission image. These constraints can then be used to recover
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the underlying source emission image (see Chapter 3). In Section 2.2 we summarize

the set of constraints obtained using interferometry, and in Section 2.2.1 we provide

intuition behind these results.

The van Cittert-Zernike Theorem and Visibility Measurements

Formally, the van Cittert-Zernike theorem states that the time-averaged correlation of

the measured signals from two telescopes, F(u, v), is related to the ideal source image

I(a, 6) through a Fourier transform:

F(u, v) = R, + iR, j f I(a, 6) exp [-i27r(ua + v6)] dadS, (2.4)

where (a, 3) is the angular sky coordinate in radians, and (u, v) is the dimensionless

baseline vector between two telescopes, measured in wavelengths and orthogonal to the

line of sight' [124]. Notice that Eq. 2.4 is just the Fourier transform of the source

emission image, I(a, 3). Thus, each pair of telescopes provides a single complex Fourier

component of I at position (u, v) on the 2D spatial frequency plane. These measure-

ments are referred to as visibilities. Since the spatial frequency, (u, v), is proportional

to the baseline distance between telescopes, moving telescopes farther apart increases

the resolving power of the interferometer, allowing it to distinguish finer details.

U 2.2.1 Intuition Under a Simple 1D Interferometer

We briefly describe a simplified view of interferometry in order to explain the relation

described by the van Cittert-Zernike theorem. The goal of this section is to provide

intuition; for additional details we recommend [124].

We consider a simple one-dimensional radio interferometer living in a two-dimensional

world: two identical dishes separated by a vector distance B pointed at the same tar-

get source on the sky (e.g. a star, black hole, galaxy), in the unit-vector direction A.

Refer to Figure 2.4. Each telescope collects and records time-varying signals with fre-

quency v = j (angular frequency w = 27rv). For ease of notation, we assume idealized

electronics at each telescope with an isotropic antenna (e.g. uniform power response).

Astronomical emissions are generated by natural process. With the exception of

rare cases (e.g. pulsars and masers), a telescope's received signal (with bandwidth Av)

is caused by the combination of short pulses of random occurrence, and has the form

'The change in elevation between telescopes can be neglected due to corrections made in pre-

processing. Additionally, for a small field of view wide-field effects are negligible.
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Time Delay:
B -

Tg = C

V2 = A cos(w(t - Tg))

B

ki

Multiplication

A2

2 [cos(wrg) + cos(2wt - wrg)]

Time Average

Re A COS(WTg)A2

Figure 2.4. Simplified Interferometry Diagram: Light is emitted from a distant source and
arrives at the telescopes as a plane wave in the direction s. An additional distance of B - 9 is necessary
for the light to travel to the farther telescope, introducing a time delay between the received signals
that varies depending on the source's location in the sky. The time-averaged correlation of these signals
is a sinusoidal function related to the location of the source. This insight is generalized to extended
emissions in the van Cittert-Zernike theorem and used to relate the time-averaged correlation to a
Fourier component of the emission image in the direction 9.

of stationary Gaussian random noise [124]. However, for the purpose of simplification,
we consider the unrealistic scenario of having a monochromatic source (i.e. a sinusoidal

signal) that exhibits no propagation distortions due to the atmosphere.

Response of a Point Source

To begin, imagine that the target emission, in the direction s, is simply a point source.

In Section 2.2.1 we will extend the intuition gained from this simple scenario to the

case of an extended emission on the sky.

Light travels from the far off source to the telescopes. However, because one tele-

V1 = A cos(wt)
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scope is slightly closer to the source than the other, there will be a time delay in the

signals. As the source is very far away (i.e. the wave front is a plane wave), we can

approximate the difference in the distance traveled to the telescopes as

B9 = , (2.5)
c

where c is the speed of light. In other words, each received signal is a time shifted

version of the other telescope's signal. From this geometric time delay, Tg, the phase

difference between the received signals can be calculated as

wTg = 27r . (2.6)

In particular, since we have assumed that we are observing a monochromatic source,
the received signals at time t for telescopes 1 and 2 would be

V1 (t) = A cos [wt] (2.7)

V2 (t) = A cos [w(t -Tg)] = Acos [wt -]. (2.8)

The time delay, Tg, provides information about the precise location of a point source.

Although we are unable to recover the precise value of Tg, by taking the time-averaged

correlation of V and V2 , (V1(t)V2 (t)), we are able to obtain a value that provides

some information about the source's location. In particular, by using the trigonometric

identity, cos(u) cos(v) = 1 [cos(u - v) + cos(u + v)] when multiplying the time-varying

signals Vi(t) and V2 (t), we find that

A2

V1 (t)V2 (t) =2 [cos(wT9 ) + cos(2wt - Wrg)] . (2.9)

Note that V(t)V2 (t) is the sum of 2 terms: one that is unchanging and depends

on g, and one that is rapidly varying with time. By averaging over time the rapidly

varying component is removed and we obtain an expression that is purely a function of

observing frequency, w, and the geometric time delay Tg:

A 2

R (V1 (t) V2 (t)) 2 cos(Wrg). (2.10)

This processes is referred to as correlation. Figure 2.5 shows an example of performing

these operations on signals that have different phase offsets.
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Received Signals Received Signals

Time-Averaged Correlation Time-Averaged Correlation

-1 _-.1

Time Time

(a) Phase delay of 7r/4 (b) Phase delay of 7r/2

Figure 2.5. The effect of taking the time-averaged correlation of two signals that are separated by
a time delay. The signals received by the two telescopes are shown in red and blue, respectively. By
multiplying these signals we obtain the green curve. And by averaging the values in the green curve
we obtain the time-averaged correlation, shown as the straight black line. This resulting time averaged

correlation is related to the phase shift between the signals, but it does not provide information about

the absolute time delay.

By plugging in the expanded expression for -r we see that Rc reduces to a function

of the baseline distance between two telescopes and the location of the source on the

sky:

Rc = I cos 27r BA) I cos 27r - cos(a) = I cos (27ru cos(a)), (2.11)

where a is the angle between the baseline B and 9, I = A 2 /2, and u Bis simply

the number of wavelengths between the two telescopes. Note Rc is not a function of

the time of the observation (provided the source is not variable and the baseline B is

unchanging), the absolute location of the telescopes (provided the emission is in the

far-field), or the actual phase of the incoming signal.

By plotting R, as a function of 0 = ! - a, we visualize how R, changes with the

location of the source. Figure 2.6 plots this for u = B/A = 10 and u = 50. Near 0 = 0

degrees the resolution is approximately -1= L. Therefore, we further approximate Rc

as

Rc ~ I cos(27rua). (2.12)

Although, projection effects near the horizon cause this approximation to no longer

hold for small u, it generally is negligible for the u typically used in interferometry.
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Note for instance, that two telescopes located 10 meters apart and observing at a 1 mm

wavelength would correspond with a u of 10000.

Geestial S here(. 0

Sky Response for B/A = 5

7r0

C
0

0
U
-0
CU

CU

E

Sky Response for B/A = 15

7r 0

Figure 2.6. The time-averaged correlation for a single point source plotted as a function of its position
on the celestial sphere. Notice that as the point source moves it sweeps out a sinusoidal pattern in
the time-averaged correlation. The frequency of this sinusoidal pattern is a function of the distance
between the two telescopes, B, and the observing wavelength, A.

Response of an Extended Emission

The derivations shown in Section 2.2.1 all assumed that light was traveling from a

point source relative to the resolution of the interferometer -. However, in the case of

a spatially incoherent emission parameterized by the angle a, the resulting signals at

the two telescopes become

Vi(t) f= -7r/2 A(a) cos[wt + 0(a)]da

/wr/2V2(t) = 1-2A (a) cos [w(t + -rg (ce)) + 0 (a) ]da,

(2.13)

(2.14)

(2.15)

0_

0

0

E

7r 7r

----- ......

11[_1
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where Tg(a) = coa). Note that each telescope cannot recover the spatial distribution

of A, as it is measuring a combined voltage. However, as in Section 2.2.1, combining

information from both telescopes allows us learn more about the emission's structure.

In taking the time-averaged correlation, (V1 (t)V2(t)), we must average across all cross

terms containing ai and a2:

(V1(t)V2 (t)) j j (A(ai) cos[wt + 0(ai)]A(a2 ) cos[W(t + Tg (a2)) + 0(a2)1) daida2

A(ai)A(a2 ) cos[wTg(a2) - 0(ai) + (a2 )]daida2. (2.16)

Since the emission is spatially incoherent, the values of 0(ai) and 0(a 2 ) are uniformly

random and uncorrelated when a, # a2. Therefore, this expression reduces to

Rc = (V1 (t)V2 (t)) = A cos[rg (a)] j I(a) cos[27rua]. (2.17)

In other words, the time-averaged correlation of an extended emission is simply the

projection of the emission's spatial power I(a) on a cosine, provided the emission is

spatially incoherent. This cosine function is referred to as the fringe pattern, and its

frequency, u, is determined by the baseline between the telescopes and the observing

frequency through the relation u = B

The ID van Cittert-Zernike Theorem

As explained in the beginning of Section 2.2, The van Cittert-Zernike theorem states

that, by taking the time-averaged correlation, we can obtain a value, F, that is related

to the ideal source image, I, through a Fourier transform. Mathematically, for a ID

interferometer,

F(u) 1I(a) exp[-i2wua]da (2.18)

= 1(a) cos(2ua)da - i j 1(a) sin(2wua)da (2.19)

Re - iRs. (2.20)

In Section 2.2.1 we showed how the first of these two terms, RC, can be obtained

through a time-averaged correlation. However, using only R, would not make it pos-

sible to differentiate between the images I and I(a)+I(-0). To correct for this, and2
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determine the imaginary portion of F, another correlation is performed where a 90

degree phase shift is included in one of the signals - in effect, turning the cosine

into a sine. Similar to Section 2.2.1, using the trigonometric identity, sin(u) cos(v)

' [sin(u - v) + sin(u + v)] we obtain R,:

Rs aV1 (t) V2 (t + A )2sin[wry (a)] = 1(a) sin[27ru cos(a)]. (2.21)

N 2.2.2 Polarization

As explained above, correlating the received signals from a pair of telescopes provides

information about the 2D spatial frequencies of the source image. However, typically

the received signal at each telescope is broken up into two linear polarizations before it

is recorded: left and right polarization. Depending on the signals used in the correla-

tion, quantities related to either the total intensity or polarization of the light can be

obtained. As the polarization direction often traces magnetic field lines in astronomical

sources, reconstructing images of polarization allows us to characterize magnetic fields

surrounding the source [52].

By correlating the common polarization direction from two telescopes (e.g. left-left

or right-right) we obtain information about spatial frequencies in the total intensity

image, often referred to as Stokes I. Alternatively, by correlating the opposite polar-

ization direction (e.g left-right or right-left) we obtain information about the angle of

polarization (Stokes Q and U parameters) [26, 70].

Since the image of linear polarization is a two-dimensional vector field, it can be

represented as a complex image

P(a, 6) = Q(a, 6) + jU(a, 6), (2.22)

where the real and imaginary parts of P are obtained by using the sum and the dif-

ference of the cross polarization terms, respectively. The primary difference between

reconstructing polarization and total intensity is that the polarization Q and U im-

ages are not restricted to be positive [26]. Furthermore, the correlations from left and

right cross terms are often much weaker than when correlating the same polarization

direction for total intensity visibilities [70].
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0 2.2.3 Earth Rotation Synthesis

Interferometric measurements place a sparse set of constraints on the spatial frequencies

of the underlying source image. In particular, as we showed in the previous section,

each pair of telescopes provides information about a single 2D spatial frequency. This

frequency is related to the 2D baseline vector connecting the two telescope sites from the

direction of the target source. Thus, at a single time, for an array with P telescopes,

at most P x (P - 1)/2 spatial frequencies are measured (as some telescopes may be

below the horizon) [124]. This would result in only 15 measurements for an array

of 6 telescopes. However, as the Earth rotates at 7.27 x 10-5 radians per second,

the projected vector connecting each pair of telescopes, (u, v) = B - ., changes. This

results in sampling additional spatial frequencies along elliptical paths in the frequency

domain [112, 124]. Refer to Figure 2.7. Combining the different measurements taken as

the Earth rotates is referred to as Earth Rotation Synthesis. Earth rotation synthesis is

essential for building up enough measurements to constrain image reconstruction. If a

source is static, the interferometric measurements taken over time as the Earth rotates

all correspond to the same underlying image.

0 2.3 Very Long Baseline Interferometry (VLBI)

When telescopes in an interferometric array are distributed globally, radio interferom-

etry is referred to as Very Long Baseline Interferometry (VLBI). Although in theory

VLBI is identical to radio interferometry, in practice they are very different [124]. In

this special case of interferometry, the telescopes cannot be physically connected due to

the large distances. Thus, data is recorded at each telescope site along with a precise

time stamp, often generated by a hydrogen maser clock. This light, frozen in recordings,

is then shipped to a common location so that the visibilities can be extracted through

correlation.

Correlating VLBI data to produce a set of visibilities is much trickier than in tra-

ditional short-baseline radio interferometry. For example, the relative motion of each

telescope site with respect to the source is different, resulting in a distinct Doppler

shift for each received signal, {1V(t)}i. This causes the measured phase to drift as

a function of frequency, and must be accounted for in correlation [124]. Additionally,

although the hydrogen maser clock is very accurate on short time scales, over the course

of a night's observation it may drift by a few tenths of a microsecond. Furthermore,

as explained in Section 2.3.1, differences in the quickly-evolving atmosphere above each
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Figure 2.7. Earth Rotation Synthesis: For every two telescopes in the interferometric array, we
obtain a single measurement (visibility) related to the underlying source image's 2D spatial frequency.
This frequency is related to the baseline between the telescopes in the direction perpendicular to the
observing source. This would be a prohibitively small number of measurements to make an image from.
However, as the Earth rotates, the projected baselines change, and we observe new measurements
related to different regions of the 2D frequency plane. As time increases (specified by the Greenwich
Sidereal Time (GST)), the projected baselines change and the red dots on the lower frequency coverage
plot, indicating the current measurements, change position. Assuming the source is static, this amounts
to carving out elliptical paths in the frequency plane that are all related to the same image. This is
visualized as the transparent blue lines. As light emitted from the source is real-valued we obtain
two measurements on opposite sides of the frequency plane - each independent set of measurements
displayed as either the open or closed red circles.

telescope cause propagation errors with a coherence time of only a few seconds. For

these reasons, correlation must be done independently on small segments of {V,(t) }Pi=
(typically 1 second segments for a 1.3 mm observation wavelength) before combining

data to increase the signal-to-noise-ratio (SNR).

0 2.3.1 Instrument Noise & Calibration Errors

There are three sources of error on VLBI measurements that pose the most significant

challenges from an imaging point of view: thermal noise, propagation error, and sys-

tematic errors due to amplitude miscalibration. The noise model assumed in this thesis

for radio interferometry is given by Cornwell and Wilkinson [29] as:

(2.23)
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For the true visibility ]Fil obtained using telescopes j and k, with amplitude error, aj,
phase error, Oj, and thermal noise, Ejk. In the following sections we describe each of

these sources of error in detail.

Thermal Noise

Thermal agitation of the electrons in a circuit results in a small, yet detectable, current

to flow, even when no voltage is applied. This introduces what is called thermal, or

Johnson, noise into the measurements taken, and appears as isotropic Gaussian noise on

each complex visibility, F [124]. Although the presence of this noise cannot be avoided,

to help reduce its impact, receivers at each telescope are cryogenically cooled.

The standard deviation of thermal noise on a visibility is fixed based on bandwidth,

Av, integration time, T, and each telescope's System Equivalent Flux Density (SEFD)

for telescopes k and j.
SEFDk x SEFD (2.24)

%k~T1 2xAVXT

The factor q results from losses due to quantization efficiency and is equivalent to 1/0.88

for 2-bit (4-level) quantization of the signal [124]. As the real and imaginary part of the

visibility are correlated separately, the thermal noise should be zero-mean and isotropic.

In other words, W[Ejk], QV[ejk] - V(0, ?T.k). Chapter 9 of [121] presents a derivation of

Equation 2.24.

As noted above, the contribution of thermal noise from each telescope is expressed

in by its SEFD. The SEFD specifies the flux density of a point source (in Jy) that

would cause a doubling of the system's noise power [124]. Note that a lower SEFD

value indicates higher sensitivity.

Atmospheric Propagation Error

All derivations in Section 2.2 assumed that light travels from the source to a telescope

through a vacuum. However, in reality, differing atmospheres above each telescope site

cause there to be large deviations in the relative propagation time [124]. In particular,
for short radio wavelengths, fluctuations dominated by turbulence in the atmosphere's

water vapor cause erratic changes in the path length light must travel to each tele-

scope [92]. This path length affects an ideal visibility from telescopes k and j, Fk,j, by

introducing an additional, rapidly varying, station-based phase term. Mathematically,

measured - exp [id (t) - #5(t))] ideal ,k~j k,,j
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where Ok (t) and Oj (t) are time-varying phase delays introduced in the path to telescopes

k and j, respectively. Equation 2.25 can be easily inferred by introducing these phase

delays into Vi(t) and V2 (t) in Equation 2.8 and noting that (V1(t)V2 (t)) then is equal

to 42 cos(wTg + 02 - 01) rather than 4 cos(wTg).

For short radio wavelengths these phase offsets are stable for just seconds. In [92]

the authors estimate the maximum coherent baseline, d, 2 as 140 x (0.001 x A) 6/ 5 meters,

when observing at a wavelength of A meters. Under this approximation, the coherence

time can be calculated for a frozen atmosphere with a constant wind speed, Vwind,

as dc/vwind [92]. Table 2.1 shows a representative set of coherence times for different

wavelengths when the wind speed is 10 meters per second under this model.

Wavelength Coherence Time
10 cm 58 min

1.3 mm 19.2 sec
0.87 mm 11.8 sec
500 nm 4.4 ms

Table 2.1. An approximated coherence time for different wavelengths under a frozen atmosphere with
a wind speed of 10 m/s.

Systematic Miscalibration Gain Error

Inaccurate estimation of each telescope's gain, as well as opacity fluctuations in the

atmosphere, often cause there to be large miscalibrations in the reported visibility

amplitudes. This is often due to the fact that calibration is much more difficult in VLBI

than in traditional radio interferometry. Non-uniformity in the telescope dish/receivers,

a lack of good point-like calibrators, varying atmospheres above each telescope site, and

the fact that there are typically less telescopes in the array, all make the calibration

process more difficult [124]. For this reason, there are often large systematic errors on

the estimated visibilities amplitudes.

0 2.3.2 Data Products

From the data-stream measurements taken at each telescope, {1V,(t)} i 1 , a number of

different data products can be computed. This data is a function of the emission image's

flux (brightness) distribution, and thus can be used to constrain image reconstruction.

2 where the root mean square (RMS) phase fluctuations reach 1 radian
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Depending on the imaging technique and the quality of the measurements, different data

products may be used. In this section we review a number of common data products

used in VLBI imaging, and throughout this thesis.

Complex Visibility

As explained in Section 2.2, each visibility, F(u, v), is related to the ideal emission

image through a Fourier transform. In particular, F(u, v) extracts a complex 2D Fourier

component of (u, v) cycles per radian from an image I with units of flux density [124].

As each visibility is calculated from a pair of telescopes, for an P telescope array we

can obtain up to Px(P-1) visibility measurements at a single instant in time. Note2

that as the emission we observe is real-valued, we obtain two values on opposite sides

of the frequency plane for each visibility measured: F(u, v) and F(-u, -v). For radio

wavelengths, the noise appearing on perfectly calibrated visibilities is isotropic and

caused by thermal effects (refer to Section 2.3.1).

Visibility Amplitude

Although atmospheric inhomogeneity causes substantial phase errors in a complex vis-

ibility, with careful calibration, the amplitude of the visibility can be mostly preserved.

Constraining the amplitude of the visibilities in the case of atmospheric error can be

very helpful in image reconstruction, especially when reconstructing an image with a

large field of view. The visibility amplitude of visibility F(u, v) is defined by:

F(u, v)l = R [F(u, v)] 2 + a [F(u, v)]2. (2.26)

As thermal noise is circularly Gaussian in the real-imaginary plane, a perfectly gain-

calibrated visibility amplitude adopts the same standard deviation of noise as described

in Section 2.3.1.

Bispectrum & Closure Phase

In Section 2.3.1 we explained how inhomogeneities in the atmosphere cause significant

path length changes. These delays have a significant effect on the phase of measure-

ments, and renders the phase unusable for image reconstructions at wavelengths less

than 3 mm [92]. Although absolute phase measurements cannot be used, a clever ob-

servation allows us to still recover some information from the phases. The atmosphere

affects an ideal visibility (spatial frequency measurement) by introducing an additional
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phase term: F;" e4o--Oj)Fidal, where Oi and Oj are the phase delays introduced in

the path to telescopes i and j respectively. By multiplying the visibilities from three

different telescopes, we obtain an expression that is invariant to the atmosphere, as the

unknown phase offsets cancel, see Eq. 2.29 [40].

]pne]pme7s iieas = - j0~~da i0-k da (k0)pda (2.27)

= i(Oi~~-Oj~+Oj-Ok Ok-0bi) pieal pldal ]pideal(28

=ride ideal ide al (2.29)

We refer to this triple product of visibilities in a closed loop as the bispectrum and the

phase of the bispectrum as closure phase. The bispectrum is invariant to atmospheric

noise; however, in exchange, it reduces the number of constraints that can be used in

image reconstruction. Although the number of triple pairs in an P telescope array is

(P), the number of independent closure phases is only .--2- For small telescope3 2

arrays, such as the EHT, this effect is large. For instance, in an eight telescope array,
using closure phases rather than visibilities results in 25% fewer independent constraints

on phase of the image [40]. Additionally, when using the bispectrum or closure phase

we lose information related to the absolute location of the source.

Closure phases are often harder to interpret than complex visibilities. However, one

very useful rule of thumb is that a closure phase of 0 or 180 degrees occurs if the source's

emission image is symmetric [45]. To gain intuition behind this property, consider the

Fourier transform of a double point-source separated by a distance (ao, 60):

7 - + - +6( a+ -,6 + -++ cos [,r(uao +v60)]. (2.30)
2 2 2 2

Since the Fourier transform of a double point source is real, any visibility extracted

from it will have a phase of 0 or 180 degrees (assuming no noise). As all symmetric

images can be constructed from a sum of centered double point sources, any visibility

from a symmetric image will also have a phase of 0 or 180 degrees. Therefore, the sum

of three of these phases in a closure phase will always be 0 or 180 degrees, and anything

other than this implies departure from symmetry.

Closure Amplitude

Similar to a closure phase, a closure amplitude is a data product computed from visibil-

ities that is invariant to station-dependent amplitude errors [124]. Closure amplitudes
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can be computed using the visibilities found between a group of four telescopes:

+aspas (1 +ai)(1 + aj)Ffj 1
a(1 + ak)(1 + am)F ' idealfideal

_______ _____________________W___ i~j k,rn (2.31)
Frnaspcieas (1 + ai)(1 + ak)F d(a1(1 + aj)(1 + am)Fi'l' fdalpiac-

Although closure amplitudes are independent of all station-dependent amplitude errors

they do not eliminate baseline-dependent errors that may be introduced in correla-

tion [18].

0 2.4 The Event Horizon Telescope (EHT)

* 2.4.1 Testing General Relativity

In 1916 Albert Einstein published his famous theory of general relativity (GR) [39].

This theory described gravity as a curvature of a four-dimensional spacetime (3 space

dimensions and 1 time dimension). In particular, it explains how massive objects, such

as planets, stars, and black holes, deform spacetime and how this affects the path of

other objects and light around them.

In the years since GR was first proposed, scientists have found a fair amount evidence

in support of the theory. However, most of these experiments only probe the small

spacetime curvature caused by smaller astrophysical objects, such as the Sun or the

Earth3 [15, 38]. This begs the question of whether this theory still holds in the extreme

conditions around much more massive objects, such as a black hole, where the spacetime

curvature is predicted to be extremely strong. Just as Newtonian physics was sufficient

for relatively light objects, perhaps GR, only holds around the objects that we have

been capable of measuring thus far.

The Event Horizon Telescope (EHT) is an international project whose goal is to

take the first image of the immediate environment around a black hole [35]. Realizing

this goal would not only substantiate the existence of a black holes' event horizon, but

also aid in studying GR, in the strong field regime. Einstein's equations predict the size

and shape of this ring (see Section 2.4.4). Thus, taking a picture would help to verify

if GR holds in the extreme conditions around a black hole, where it is most likely to

break down.

In order to take the first image of a black hole, astronomers predict we require a

telescope with a resolution of roughly 20 p.-arcseconds for a wavelength of 1.3 millimeters

(230 GHz). To achieve this with a traditional single-dish telescope would require an

3 with the notable exception of LIGO [3]
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Earth-sized dish. However, by using VLBI techniques, the EHT is building a virtual

telescope capable of imaging at this extreme resolution [35].

0 2.4.2 Targeted Black Holes

There are two primary black hole targets for the EHT [35]. These black holes are

supermassive, meaning they reside at the center of galaxies and are millions to billions

of solar masses in size [108]. Although these targets are not necessarily the closest of

all known black holes to Earth4 , due to their massive size, their predicted event horizon

appears the largest to us on the sky. As explained below, it is predicted that these

black holes would appear as a small ring of light on the sky, roughly 20-50 [-arcseconds

in size. This is about the same size to us on Earth as an orange on the surface of the

Moon.

Sagittarius A* (Sgr A*)

Near the border of the constellations Sagittarius and Scorpius is a bright compact

astronomical source, with a total flux of roughly 2 Jy5 [35]. This source, referred to as

Sagittarius A* (Sgr A*), is predicted to be a supermassive black hole 26,000 light years

from Earth at the heart of our own Milky Way galaxy [50].

Peering past galactic dust with infrared telescopes, astronomers have mapped the

paths of a cluster of stars at the center of the Milk Way Galaxy for over 16 years. By

tracking the motions of these stars over time, astronomers have concluded that the only

thing small and dense enough to cause this motion is a supermassive black hole four

million times the mass of the sun [50]. As explained in Section 2.4.4, this would result

in a supermassive black hole with an event horizon of GM/c2 = 1.2 x 1010 meters in

size. By using the fact that a light year is 9.461 x 1015 meters in length, we can calculate

the size of the event horizon on the sky as:

ta1 ( 1.2 x 1010tan-- 0 ( .4 x 101 5) = 4.9957 x 10-11 radians ~ 10.3gp-arcseconds. (2.32)26000 x 9.461 x 1015

As explained in Section 2.4.4 this would correspond to a ring of light of size 53.6 p-

arcseconds, detectable by the EHT's 20 p-arcsecond resolution interferometer.
4 stellar mass black holes, which are only a few solar masses in size, are scattered throughout our

galaxy [64]
5 right ascension (a): 17:45:40.041, declination (6): -29:00:28.118
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Messier 87 (M87)

At the head of Virgo resides the giant elliptical galaxy M87 - 54 million light years

away6. Radio telescopes pointing towards the center of M87 have revealed a jet of

emission caused by a supermassive black hole at the heart of the galaxy. If we could

zoom in even further to the tip of this jet, astronomers predict that we would eventually

see the event horizon of this supermassive black hole, glowing with a total flux of roughly

1 Jy [86]. Although the black hole in the center of M87 is much farther away from us,

it is much larger than the black hole in the center of our own galaxy. Models predict

that this black hole has a mass between 3 to 6 billion solar masses [47, 130], resulting in

a event horizon of GM/c2 = 8.9 x 1012 to 1.8 x 1013 meters in size. By using the same

calculation as in Equation 2.32, we predict that this black hole would appear as a ring

of light with diameter of 22.3 to 44.7 p-arcseconds on the sky. Although M87's black

hole is smaller and dimmer than Sgr A*, due to its massive size, it evolves on much

longer timescales (see Section 2.4.4).

N 2.4.3 Observing Conditions & Equipment

In this section we briefly describe the equipment and operational conditions for the

EHT.

Observing Wavelength

As explained in Section 2.2, one way to improve the EHT's resolution is by decreasing

the observing wavelength. However, the light emitted from near the black hole's event

horizon is primarily in the mm/sub-mm regime [48,136]. Additionally, different wave-

lengths are affected differently by medium between the telescopes on Earth and the

black holes they are observing. For instance, although visible wavelengths are shorter

than radio wavelengths, they are not able to see into our galactic center, as their size

causes them to interact with interstellar dust. However, just as humans cannot see

through walls but radio waves are easily able to move through them, there exists larger

wavelengths that can see through this galactic dust to the heart of our galaxy. In fact,

there is only a small window of wavelengths around 0.87 to 1.3 mm that are able to

pierce through to the core of the black hole and are not mostly absorbed by the atmo-

sphere or heavily scattered by ionized interstellar medium [35]. Thus far the EHT has

only observed at 1.3 mm (230 GHz). However, in the future the EHT plans to operate

6 right ascension (a): 12:30:49.423, declination (6): 12:23:28.044
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at the shorter 0.87 mm wavelength (344 GHz) [42].

Telescopes and uv-Coverage

The EHT consists of an array of telescopes capable of observing in the millimeter to

sub-millimeter wavelengths. In Table 2.2 we provide information about the array of

the telescopes used in the EHT (in the present, past and near future). We provide the

coordinates of each site along with its estimated system equivalent flux density (refer

to Section 2.3.1). In the April 2017 campaign eight sites participated in the EHT array

from six distinct locations: Hawaii, Arizona, Mexico, Chile, Spain, and the South Pole.

Location

California

Hawaii
Hawaii

Arizona
Mexico
Chile
Chile
Spain

South Pole

France
Greenland

Arizona
Massachusetts

X
-2397431.300

-5464588.447
-5464584.676
-1828796.200
-768715.632
2225061.873
2225039.530
5088967.900

792.600

4524000.430
1500692.0

-1995678.840
1492420.4965

Y
-4482018.900

-2492884.038
-2493001.170
-5054406.800
-5988507.072
-5440061.953
-5441197.629
-301681.600

-802.600

468042.140
-1191735.0

-5037317.697
-4457272.10037

Z
3843524.500

2150756.452
2150653.982
3427865.200
2063354.852
-2481682.084
-2479303.360
3825015.800
-6359569.200

4460309.760
6066409.0

3357328.025
4296891.72893

Table 2.2. EHT Station Parameters: The estimated SEFD (in Jy) and absolute X, Y, Z
coordinates (in meters) relative to the center of the Earth associated with each station. * indicates a
retired telescope. ** indicates a telescope that may be integrated into the EHT in the future.

As explained in Section 2.2, at a given time, each pair of telescopes produces a

Fourier component of the source's emission image. The frequency of this measurement

is related to the observing wavelength and the telescopes' baseline, in the direction

perpendicular to the target source. By plotting out the location of these components

as the Earth spins, we can visualize which frequency components are sampled by the

EHT array for Sgr A* and M87 (refer to Figure 2.8). These plots are referred to

as uv-coverage. The quality of the reconstructed images is highly dependent on the

distribution of the uv-coverage.

Station
CARMA*

SMA
JCMT
SMT
LMT

ALMA
APEX

PV
SPT

PDB**
GLT**
KP**

HAY**

SEFD
3500

4000
4700
11000
1400
100

3600
1400
9000

5200
4744
2500
2500
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Figure 2.8. The uv coverage of Sgr A* and M87 for the same telescope array observing over 24
hours. Telescopes in the 2017 EHT array observing at a 1.3 mm wavelength were used to generate
these uv-coordinates. Notice that although the telescope array has remained unchanged for these two
sources, the uv-coverage changes substantially. This is due to a difference in their source direction, s.

Receiver and Backend Pipeline

Each telescope uses a heterodyne receiver to capture and record the light from the black

hole onto hard drives. Light traveling from the black hole at 230 GHz (corresponding

to 1.3 mm wavelength) is separated into its left and right polarization components

before being mixed down to a manageable intermediate frequency (IF). The IF signal

is then separated into two 2-GHz bands roughly corresponding to 228-226 GHz (lower

side band) and 228-230 GHz (upper side band). Each polarization band's signal is then

digitized using 2-bit quantization and recorded onto hard drives at a rate of 4096 MHz

(in order to sample each 2-GHz band at the Nyquist rate). These recordings are then

time stamped using an atomic hydrogen maser clock present at each telescope site. For

a single polarization and band, one can calculate that the signal is being recorded onto

hard drives at 1 gigabyte per second:

4096 x 106 samples 2 bits 1 gigabyte _ gigabyte
x ____x =-1 . (2.33)

1 second I sample 8 x 109 bits second

* 2.4.4 Black Holes

A black hole is a region of spacetime that is so dense that its escape velocity exceeds the

speed of light [114]. In this section we briefly review black holes to give an understanding

of what the Event Horizon Telescope expects to see, and what properties effect a black
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hole visually.

The Schwarzschild Radius and No Hair Theorem

Black holes are thought to be formed by the collapse of stars greater than 2-3 solar

masses (M®), when a stars internal pressure can no longer resist gravitational pres-

sure [25]. By equating kinetic energy to gravitational potential energy, one can calculate

the radius necessary to compress a specified mass in order to create a black hole [114].

Mathematically,

Vescape _ GM(2.34

2 R '

for mass of M contained within a radius R, and Newton's gravitational constant G -

6.6740810-"m kg-s 2 . Solving for the radius where the escape velocity, Vcscape, is

equivalent to the speed of light, c = 299, 792, 458 m/s, results in the Schwarzschild

radius, RS, of the black hole, also known as its event horizon:

2GM
Rs = c(2.35)

In 1965 the Kerr-Newman metric was derived and showed that black holes are

completely defined by just 3 parameters: their mass, spin and charge [98]. In other

words, all other information about the matter that formed the black hole disappears

behind the event horizon, and does not affect what an external observer sees. This

theorem, coined the no-hair theorem (hair being a metaphor for details), fully describes

how a black hole affects the nearby spacetime. In [8] it was shown that the apparent

size and shape of the black hole depends mostly on the black hole mass, and to a much

smaller degree, on its spin (the electric charge can be neglected for astrophysical black

holes).

Accretion Disk, Inclination, and Doppler Beaming

Surrounding the. black hole is a disk of spinning ionized gas (plasma) called an accretion

disk [35]. This accretion disk is caused by gas that has accumulated close to the the

black hole, but has yet to fall in. Contrary to popular belief, it is actually quite difficult

for matter to fall into a black hole. If the gas is far enough away, gravity alone would

not pull it in, and it would continue to orbit the black hole indefinitely, similar to

planets around the Sun. However, friction resulting from particles in the disk rubbing
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up against each other leads to the gas to heating up. This causes the particles to lose

energy and eventually fall into the black hole as well as brightly glow.

If we were to look at a black hole we would not be able to see the black hole itself,
but instead a ring of light caused by the gravitational lensing of the bright accretion

dish surrounding it. In other words, the black hole casts a "shadow" on a backdrop

of bright material. The black hole's appearance changes depending on the viewing

angle relative to the axis of the accretion disk. One reason for this is the fact that the

immense gravitational field around the black hole causes light rays to bend differently

depending on the viewing orientation [23]. However, even more striking, is the effect of

a process called Doppler beaming (or alternatively, relativistic beaming). This process

can cause the gas in the accretion disk to appear brighter or darker than it's intrinsic

luminosity, Sintrinsic because it is moving close to the speed of light [128]7. If we were

to view the accretion disk face-on, then the gas is not moving towards or away from us

and we simply observe its intrinsic luminosity. However, if we view the accretion disk

edge-on then some of the gas is moving towards us and some moves away from us. This

causes a change in the observed luminosity of the gas, and results in an asymmetric

emission image. In particular, if the emission source is moving away from Earth with a

velocity v (if it is moving towards this value is negative), then for a resolved source

2-as

Sobservcd Sintrinsic V (2.36)
1 + V/c

for spectral index a, where the spectral index is the slope on a diagram of log S vs.

log v [78, 128]. In the frequency range the Event Horizon Telescope is targeting a ~ 0.

Thus, as the disk is moving towards us it appears much brighter than if it was static,
and if it is moving away from us it is much fainter. Figure 2.9 shows what we predict a

black hole may look like from different observation angles. Similarly, Figure 2.10 shows

what we would predict an edge-on and face-on black hole would look like for varying

spins.

Gravitational Lensing of the Last Photon Orbit

General relativity predicts that photons emitted by the gas spinning around a black hole

travel along curved trajectories, forming a ring of light. Schwarzschild calculated the
7 Here, we ignore the effect of redshift in Sintrinsic, that is due to the stretching of space-time as you

get closer to the black hole's event horizion.
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(a) 00 (b) 150 (c) 300 (d) 450 (e) 600 (f) 750 (g) 890

Figure 2.9. The observed angle of inclination affects a black hole's appearance. Here we show a

prediction of what a non-spinning black hole might look like at different angles ranging from face-on
(00) to edge-on (890). [23]

(a) 0.0 (b) 0.2 (c) 0.4 (d) 0.6 (e) 0.8 (f) 1.0

Figure 2.10. The spin of a black hole affects its appearance. Here we show a prediction of what a

black hole might look like edge-on (top) and face-on (bottom) for a variety of different spins. 0.0 spin

implies that the black hole is not spinning, while 1.0 spin implies it is maximally spinning. [23]

photon sphere at which photons are forced to travel in orbits for a non-rotating black

hole as SR. However, due to lensing effects, to an observer on Earth, the apparent size

of this sphere would be larger [36]. In fact, a sphere of radius R from a non-rotating

black hole would appear at the size:

3v" R R < M s
Ra = (2.37)

R3/ 1- R > (3 Rs.

This indicates that the minimum apparent diameter of any light surrounding the

black hole is 5.2Rs [36]. Thus, for a black hole with an event horizon of 10 P-arcseconds,

its event horizon and photon ring would appear as a larger ring of 52 p-arcseconds to

us on Earth.
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Time-Variability

Although most large astronomical sources are static over the time scale of a night's ob-

servation, black holes' can have detectable structural changes on much shorter timescales [72,

87]. There are three primary physical phenomenon that cause this variability: a black

hole's orbital velocity, magnetorotational instability, and interstellar scattering (when

looking towards the Milky Way's galactic center). In Table 2.3 we provide a chart of

the approximate timescales of each of these sources of variability for the EHT's targeted

black holes, Sgr A* and M87.

Sgr A* M87: M87:
Source of Variability 4 x 106 Mn 3 x 10 9 MO 6 x 109 M.

ISCO Orbital Period : 0% Spin 30.3 minutes 15.8 days 31.6 days
ISCO Orbital Period : 100% Spin 4.1 minutes 2.1 days 4.3 days

Magnetorotational Instability minutes ~ days ~ days
Refractive Scattering ~1 day N/A N/A

Table 2.3. The level of variability induced by different physical phenomenon for Sgr A* and M87.
The much larger mass of M87 makes it vary much more slowly than Sgr A*. [110]

Orbital Velocity For a rotating black hole with dimensionless spin value apin E [0, 11,

the period of an orbit at radius r is given by

P2wsbig) -- 2 ) + as2in / +. (2.38)
(GM pn c3

For a non-rotating black hole (apin = 0), this equation simply reduces to Prbit(r)

2 V/r 3 /GM [72]. Note that for larger orbital radii, the orbital period increases.

The innermost stable circle orbit (ISCO) defines the smallest distance from a black

hole where a particle with mass can orbit without falling in. The radius of this orbit

depends on the spin of the black hole. For a non-rotating black hole (apin = 0) this

radius is 6GM/c2 = 3RS, and by substituting this radius into Equation 2.38 the orbital

period of the ISCO is calculated as 2v63-GM/c 3 .

When a black hole is spinning (with maximum spin asPi. = 1 corresponding to the

speed of light) the radius of the ISCO decreases. The black hole drags material along

with it, a phenomenon referred to as frame dragging [114]. This causes stable orbits to

come closer to the horizon. At a maximal spin of a pi= 1 the ISCO radius is equivalent

to the Schwarzschild radius and Porbit reduces to 4wGM/c3
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Magnetorotational Instability (MRI) Magnetic fields within the accretion disk cause

turbulence in a differentially rotating ionized gas (plasma) [7]. This comes about when

magnetic fields try to tightly bind neighboring particles. However, as explained in

the previous paragraph on orbital velocity, gas at different distances from the center

of the black, r, hole will try to rotate around it at different speeds according to W oc
1/(r1 .5 +aepin) [72]. In the case of a weak magnetic field, these two forces will fight against

each other, resulting in the outer particles gaining angular momentum and moving

further away from the black hole as nearer particles lose momentum and eventually fall

in. This process causes the gas to destabilize and become turbulent.

Interstellar Scattering Ionized interstellar medium (ISM) in the line of sight between

Earth and the galactic center causes scattering of the light coming from the black

hole [69]. In particular, inhomogeneities in the interstellar medium cause refractive ef-

fects that impact the phase of light along the incident plane wave. This is very similar

to viewing an image moving slowly behind frosted glass. The ISM is often modeled

as a thin phase screen that moves slowly across the image over time. This process in-

duces two types of scattering: diffractive and refractive scattering. Diffractive scattering

causes a blurring effect that grows with the square of the observing wavelength. Refrac-

tive scattering causes image distortions and introduces substructure into the observed

image [691.

0 2.4.5 Preliminary Results

Although the EHT has yet to produce an image of a black hole, there are many signif-

icant results from observations made of Sgr A* using the instrument thus far.

First Detection of Structure In [36] Doeleman et al. reported to have detected structure

in Sgr A* on similar scales as its lensed event horizon. As only three telescopes were used

to make this observation, a picture could not be reconstructed. However, by analyzing

the visibility amplitudes, it was determined that the emission had a angular diameter

of roughly 37 parcseconds. This smaller size relative to the predicted diameter (53

[tarcseconds) may be due to observing the black hole edge-on relative to the accretion

disk's axis. This would cause one side of the ring to appear much brighter than the

other due to Doppler beaming, resulting in a smaller estimated angular diameter (refer

to Section 2.4.4).

Detecting Asymmetry Asymmetry in the emission image was further predicted by Fish

et al. in [45]. As discussed in Section 2.3.2, symmetric images should always produce
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closure phases with an angle of 0 or 180 degrees. Departures from this imply asymmetry.

By analyzing closure phases from Sgr A* over 4 different years of observations, [45]

concluded that there exists closure phases that show significant departure from 0 or

180 degrees. Not only does this imply structure exists in Sgr A* at the EHT's angular

resolution, but also that this structure exhibits asymmetry. This could be explained by

viewing the black hole edge-on, as proposed in [36].

Observing Variability In both [43] and [70] variability was detected in Sgr A*. In [43],

Fish et al. analyzed 3 days of observation of Sgr A* and noticed that on the third

observation night the total flux increased by roughly 17%. This new brighter flux

remained stable for the rest of the observing night. Additionally, the measured intrinsic

size of the source did not appear to change after the increase in total intensity. In [70]

Johnson et al. reported having resolved partially ordered magnetic field structure and

variability in the polarization direction near the event horizon of Sgr A*. In particular,

by analyzing the variations in the polarization data products, and comparing them to

the variation expected simply due to the Earths rotation, it was determined that Sgr

A* must exhibit intrinsic variability in its magnetic fields.
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3

Single Image VLBI Reconstruction

of Static Sources

H IGH resolution celestial imaging is essential for progress in astronomy and physics.
For example, achieving the Event Horizon Telescopes (EHT) goal of imaging the

plasma surrounding a black hole's event horizon at high resolution could help answer

many important questions; most notably, it may substantiate the existence of black

holes [22] as well as verify and test the effects of general relativity [68]. However, imaging

distant astronomical emissions, such as the black hole Sgr A*, with high resolving

power would require a single-dish telescope with a prohibitively large diameter due

to the inverse relationship between angular resolution and telescope diameter. Very

long baseline interferometry (VLBI) alleviates the need for building an impossibly large

single-dish telescope by simultaneously observing a common source from an array of

telescopes distributed around the Earth. This technique makes it possible to emulate

samples from a single-dish telescope with a diameter equal to the maximum distance

between telescopes in the array, at the expense of having to handle missing data [124].

VLBI measurements place a sparse set of constraints on the spatial frequencies of

the underlying source image (see Section 2.3.2 in Chapter 2) [124]. The task of recon-

structing an image from these sparse constraints is highly ill-posed and relies heavily

on assumptions made about the underlying image. Billions of dollars are spent on

astronomical imaging systems to acquire the best measurements, yet traditional re-

construction techniques still suffer from unsophisticated priors and a lack of inverse

modeling [109], resulting in sub-optimal images. Although traditional techniques have

been reasonably successful in imaging large celestial sources with coarse angular reso-

lution, they are quickly approaching their limits [85,121].

The angular resolution necessary to see structure on the scale of a black hole's

event horizon is believed to be at least an order of magnitude smaller than has been
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previously used to image radio sources [81]. Unfortunately, the difficulty of image recon-

struction drastically increases as the angular resolution of a VLBI array improves. To

improve angular resolution (i.e., increase resolving power), one must either increase the

maximum distance between two telescopes or decrease the observing wavelength [124].

Due to the fixed size of Earth, increasing the maximum telescope baseline results in a

smaller set of possible telescope sites to choose from. Therefore, algorithms must be

designed to perform well with increasingly fewer measurements [85]. Extending VLBI

to millimeter and sub-millimeter wavelengths to increase resolution requires overcoming

many challenges, all of which make image reconstruction more difficult. For instance, at

these short wavelengths, rapidly varying inhomogeneities in the atmosphere introduce

additional measurement errors [92,121].

Reconstructing an image using VLBI measurements is an ill-posed problem, and

as such there are an infinite number of possible images that explain the data [85].

The challenge is to find an explanation that respects our prior assumptions about the

"visual" universe while still satisfying the observed data. As measurements from the

EHT become available, robust algorithms able to reconstruct images in the EHT's fine

angular resolution regime will be necessary. In this chapter we present a new imaging

method, CHIRP, developed specifically to handle the challenges faced in the EHT's

data. We have found that these newly proposed methods can handle a wide range of

different situations with minimal parameter tuning, and handle noise much better than

other state-of-the-art imaging methods.

0 3.1 Previous Interferometric Imaging Approaches

VLBI image reconstruction has similarities with other spectral image reconstruction

problems, such as Synthetic Aperture Radar (SAR), Magnetic Resonance Imaging

(MRI), and Computed Tomography (CT) [20, 89, 95,123]. However, although mea-

surements from VLBI share similarities with these other well-studied problems, VLBI

image reconstruction faces a number of unique challenges. For instance, SAR, MRI, and

CT are generally not plagued by large corruption of the signal's phase, as is the case

due to atmospheric differences in mm/sub-mm VLBI1 . Accounting for these differences

is crucial in obtaining accurate astronomical images. Thus, imaging methods unique

to VLBI must be developed. In this section we summarize a few significant algorithms

from the astronomical interferometry imaging literature.

'In SAR the Fourier samples are all coherently related and the absolute phase can generally be
recovered, even under atmospheric changes [65, 93]
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0 3.1.1 CLEAN

CLEAN is the de-facto standard method used for VLBI image reconstruction [60,85].

This imaging method works under the assumption that the underlying source image

can be described by using a discrete number of point sources. Below we discuss the

procedure CLEAN uses to recover images [60,121], some drawbacks of the method, and

a general discussion. CLEAN is generally a very manual process, where at each iteration

a knowledgeable user decides where to focus the method's attention [121]. However, in

this thesis we do not discuss any tricks or techniques employed by CLEAN users, and

focus solely on the core idea of the original method.

Procedure

CLEAN starts with an initial residual image, called the dirty image. The dirty image is

computed by simply taking the inverse Fourier transform of the visibilities sampled by

the interferometer. In other words, where a visibility is not sampled, the dirty image

assumes a frequency value of zero. See Figure 3.1 for an example of a dirty image for

the source image and uv-coverage shown.

From this initialization, CLEAN iteratively looks for the brightest point in the

residual image and "deconvolves" around that location by removing side lobes that

occur due to sparse sampling in the (u, v) frequency plane. In particular, at each

iteration CLEAN selects the location of highest flux in the residual image and places

a point source in a "final" image. It then subtracts the scaled point spread function

(PSF) of the interferometer from the identified location in the residual image. The

PSF, referred to as the dirty beam, is found by taking the inverse Fourier transform of

the uv-coverage.
After many iterations, the residual image appears to just be noise. CLEAN then

blurs the "final" image with a restoring beam to merge the point sources. The size of

this anisotropic restoring beam is often determined by fitting a Gaussian to the dirty

beam (in this case, the size is called the nominal beam width). Figure 3.1 shows the

anisotropic nominal beam found by fitting a Gaussian to the dirty beam.

Self-Calibration

For mm/sub-mm wavelength VLBI, reconstruction is complicated by corruption of the

visibility phases. CLEAN is not inherently capable of handling this problem since it

uses complex visibilities. However, self-calibration methods have been developed to
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Figure 3.1. CLEAN Reconstruction Approach: The uv-coverage of an observation characterizes
the PSF of the interferometer. The PSF, referred to as the dirty beam, is found by taking the inverse
Fourier transform of the uv-coverage. The dirty image, the inverse Fourier transform of the complex
visibility measurements, can be described as the original image convolved with the dirty beam. To
recover an image, CLEAN iteratively removes sidelobes from the dirty image caused having a non-
point like dirty beam. Afterwards, the final image is blurred by the nominal beam. This process only
is appropriate when there is no atmospheric error in the visibility measurements. When atmospheric
error exists, it is not possible to recover the underlying image simply by removing sidelobes. In this
case a process called self-calibration is employed. The uv-coverage used in this example is generated
according to the specifications of 3.4.1. Images shown are 64 x 64 pixels and the intensity of each pixel
is specified in milli-janskys. The total flux of the original source image is 1 jansky.

greedily recover visibility phases during imaging [103]. These self-calibration methods

work by iterating back and forth between CLEAN-ing the image and solving for closure

constraints. See Section 2.3.2 in Chapter 2 for details on phase closure. Self-calibration

requires manual input from a knowledgeable user and often fails when the SNR. is too

low or the source has a complex structure [121].

Discussion

CLEAN's approach to solving the inverse imaging problem is best described by the first

approach discussed in Section 1.1 of the introduction (see Figure 1.1). CLEAN applies



an inverse function (inverse Fourier transform), and then "cleans" up the result with

post-processing. Although CLEAN implicitly contains a prior, by assuming the image is

made up of point sources, this prior is not explicit and the trade-off between fitting the

data and prior cannot be easily manipulated. In general the method is quite heuristic,
which makes it very hard to adapt to situations when the data is not well-behaved,

such as in millimeter-VLBI.

Although CLEAN is over 35 years old, theoretical understanding of the algorithm

is limited. Success using CLEAN generally requires the use of many tricks and man-

ual parameter tuning - especially in the case of self-calibration. Additionally, since it

assumes a distribution of bright point sources, it struggles with reconstructing images

containing extended emissions [121].

U 3.1.2 Bayesian-Style Methods

Since CLEAN is not inherently capable of handing the atmosphere's corruption of the

visibility phases in mm/sub-mm wavelengths, it frequently has trouble imaging with

sparse, short-wavelength interferometric arrays like the EHT. However, more recently

proposed Bayesian-style methods have made it possible to handle sparse and hetero-

geneous arrays in the mm/sub-mm regime, and can often even achieve some level of

super-resolution in the images2 .

In order to reconstruct an image from the observed VLBI data, y, these methods

first approximate the continuous image I(a, 6) as a square M x M array of values, x,
that represents the emission image's flux over a specified field of view (FOV). Using

this representation, the imaging methods aim to solve

argmin [x(x, y) - OR(x)] (3.1)

where x(x, y) indicates how inconsistent the image, x, is with the observed data, y,
and R(x) expresses how likely we are to have observed the image x [97]. As explained

in Section 1.1.1 , these two terms often have different preferences for the "best" image,
and fight against each other in selecting ;. Their relative power in this decision is

specified with the hyper-parameter 3.

Multiple algorithms have taken this Bayesian-style approach to VLBI imaging.
2 Super-resolution can be achieved by imposing priors that favor higher-frequency detail in the re-

construction than is captured by the interferometer. This is common when incorporating priors that
favor sparsity, such as maximum entropy (MEM) priors [26]. However, MEM priors come at the cost
of often reconstructing images that are sparser than the true image.
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These algorithms often define a similar data inconsistency measure, x(x, y) (refer to

Sections 2.3.2 and 3.2.2), but vary in what characterizes a "good" image, R(x). Max-

imum entropy and total variation priors have been used to construct lz(x). These

methods have been demonstrated in imaging optical interferometry data, and more

recently in radio interferometry data taken with sparse telescope arrays [85].

Optical Interferometry

Interferometry at visible wavelengths faces the same phase-corruption challenges as

mm/sub-mm VLBI. Although historically the optical and radio interferometry com-

munities have been separate, fundamentally the resulting measurements and imaging

process are very similar [92]. We have selected two optical interferometry reconstruc-

tion algorithms representative of the field to discuss and compare to in this work [85].
Both algorithms take the regularized maximum likelihood approach presented above,
and can use the bispectrum, rather than visibilities, for reconstruction [9, 24].

BSMEM (BiSpectrum Maximum Entropy Method) takes a Bayesian approach to im-

age reconstruction [24]. Gradient descent optimization [120] using a maximum entropy

prior is used to find an optimal reconstruction of the image. Under a flat image prior

BSMEM is often able to achieve impressive super-resolution results on simple celestial

images. However, in Section 3.4 we demonstrate how it sometimes can over-resolve a

source and introduce spurious detail.

SQUEEZE takes a Markov chain Monte Carlo (MCMC) approach to sample images

from a posterior distribution [9]. To obtain a sample image, SQUEEZE moves a set

of point sources around the field of view (FOV). The final image is then calculated

as the average of a number of sample images. Contrary to gradient descent methods,
SQUEEZE is not limited in its choice of regularizers or constraints [85]. However, this

freedom comes at the cost of a large number of parameter choices that may be hard for

an unknowledgeable user to select and tune.

E 3.2 Defining the Forward Model & Conditional Distribution

Before discussing how to reconstruct images from VLBI data in Section 3.3, it is first

important to explain how to evaluate the consistency of a proposed image, I, with the

measured VLBI data, y. To do this we present a recipe for constructing the forward

model for a VLBI imaging system that relates a specified image to the data it would

be expected to produce. As explained in Section 1.1 of the introduction, using this
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forward model one can then determine the conditional distribution of the data given

an unknown image, to be used later in inference.

0 3.2.1 Deterministic Forward Model

Let y be a K-dimensional real vector of, possibly heterogeneous, data products. In order

to evaluate how consistent a proposed image, I, is with the measured VLBI data, y, we

first define a function f(I) to return a K-dimensional vector of ideal data products if

I were the true underlying image. The deterministic forward model, f(I), is composed

of a set of sub-functions, g(I), that each simulate an ideally observed data product:

]Tf (I) =91(I) 92(l) ... 9K (1) 1 (3.2)

Each g9(I) produces a real-value corresponding to element k of the real-valued

vector y. For example, gk(I) may return the imaginary portion of I's spatial frequency,

corresponding to a visibility obtained between a pair of telescopes. In the following

subsections (3.2.1, 3.2.1, 3.2.1 and 3.2.1) we discuss how to approximate each sub-

function gk(I) in VLBI data.

Continuous Image Representation

The image that we wish to recover, I(a, 6), is defined over the continuous space of angu-

lar coordinates a and 6. Many imaging algorithms assume a discretized image of point

sources during reconstruction [121]. This discretization either forces the reconstruction

method to estimate a higher number of parameters than necessary, or introduces errors

during the reconstruction process. Instead, we parameterize a continuous image using

a discrete number of terms. This parameterization not only allows us to model our

source emission with a continuous image, but it also reduces modeling errors during

image reconstruction.

For a scene defined in the range a C [-k, 9] and 6 E [-C, 9], we parameterize

our space into M x M scaled pulse functions, h(a, 6), centered around

a = ida + Aa Fa for i 0, ... , M - 1, (3.3)
2 2

A6 F6
6 = jA6 + for j 0 ,..., M - 1, (3.4)2 2

for dA= and A6 =,1. Using Eq. 3.3 and 3.4 we then describe a continuous image
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Figure 3.2. Image Representation: An example of a continuous ID image defined in terms of 1D
triangle pulses. Pulses are shifted and scaled by a discrete set of values, x. These shifted and scaled
pulses are then summed together to make a single continuous image. In this example x = [1, 2, 3, 1, 1, 4].
Note how triangle pulses result in a piecewise linear continuous image.

as a discrete sum of shifted pulse functions scaled by x[i, j]. We refer to this image as

I(x) for the M2 vectorized coefficients x. Mathematically,

M M ~ A~+Aa Fa b F6
I(x) = x[i j]h (a - /Ai+ , 2 - Asj + 2 . (3.5)

i=0 j=0

The chosen pulse places an implicit prior on the reconstruction. For instance, a sinc

pulse with frequency and spacing A can reconstruct any signal with a bandwidth less

than ! [100]. In this work we choose to use a triangle pulse with width ( 2 At, 2Am),

since this is equivalent to linearly interpolating between pulse centers and also simplifies

non-negativity constraints. Figure 3.2 shows how a discrete number of evenly spaced,

overlapping triangle pulses can be used to linearly interpolate between the specified

centers.
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Extracting a Visibility

Since each measured complex visibility is approximated as the Fourier transform of

I(a, 6), the parameterization introduced in Section 3.2.1 above is especially convenient.

Due to the shift theorem [100], substituting this image representation into the van

Cittert-Zernike theorem (Equation 2.4) results in a closed-form solution to the visibil-

ities in terms of H(u, v), the Fourier transform of h(a, 5). This process can be seen

below:

F(u, v) j e-i 2,(uo+v 6)i(x)dad6 (3.6)

-N 6 -1o

E x[i, je i27r + + H(u, v) (3.7)
i=0 j=0

= f(U, V)TX = (R[f (U, V)] T + iGqf(U, V)]T) X. (3.8)

Note that performing a continuous integration has been reduced to a linear matrix

operation with a 1 x M 2 complex row-vector f(u, v)T, similar to a Discrete Time Fourier

Transform (DTFT).

If we choose to constrain our image reconstruction using visibilities, each g(I) in

f (I) is defined as a linear function. In particular, as we have defined y to be composed

soley of real-valued elements, if Y2k = R [F(uk, vk)] and Y2k+1 = a [F(uk, Vk)1, then

92k(I) and 92k+1(I) can be approximated as

92k(I(x)) =Rf(uk,vk )] T x (3.9)

92k+l(I(X)) =QV[f(uk,V k)]TXz. (3.10)

In Figure 3.3 we show that this continuous image representation allows us to ap-

proximate the true frequency components more accurately than a discretized set of

point sources, especially for high frequencies. Any pulse with a continuous closed-form

Fourier transform can be used in this representation. This includes rectangle, triangle,

sinc, and Gaussian pulses, as well as even a pulse related to cubic spline interpolation.

Diffractive Interstellar Scattering So far we have assumed that the visibility measure-

ments simply provide a noisy measurement of the frequency component of the true

image. However, in the case of observing Sgr A*, the frequency component we receive

corresponds to an image that has been corrupted by interstellar scattering. As ex-

plained in Section 2.4.4, interstellar scattering consists of two components: diffractive
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Figure 3.3. Modeling Error for Different Continuous Image Representations: Accurately
modeling the frequencies of an image is crucial for fitting VLBI measurements during image reconstruc-
tion. Here we show, that with the same number of parameters, we can much more accurately model
the true frequency distribution. A slice of frequencies for the true image is shown in red. Overlaid we
show the effect of using the traditional discretized imaging model (green), and our improved model for
rectangle (cyan) and triangle (blue) pulses. The dotted lines denote the frequency range sampled in the
uv-coverage of Fig 3. 1. Representing an image using triangle pulses reduces modeling errors for higher
frequencies during image reconstruction.

and refractive scattering. Refractive scattering introduces substructure into the image

that changes over time, similar to looking at an image under turbulent water. Diffrac-

tive scattering causes a blurring of the image, essentially convolving the true image with

a Gaussian kernel [44,69] Since refractive scattering changes over time, it is primarily

described through its statistics and is not easily incorporated into the forward model.

However, diffractive scattering can easily be incorporated in the forward model. See

Appendix A.2 and our paper on scattering mitigation for more information on how to

model and mitigate its effect [44].

Extracting Additional Data Products

Depending on the quality and type of data, we may wish to constrain the image recon-

struction using different sets of data products. Although ideal visibility measurements

obtained through VLBI correspond to 2D spatial frequencies, in the presence of corrupt-
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ing atmospheric noise uniformly random phase errors are introduced into each complex

measurement (see Section 2.3.1). In order to handle this additional phase error, without

having to explicitly model the errors as latent variables, y may instead be populated

with data products that are invariant to atmospheric inhomogeneity, such as the bis-

pectrum, closure phase, visibility amplitude or closure amplitude data products.

A discussion of the data products used in image reconstruction can be seen in

Section 2.3.2 of Chapter 2. All of these data products are a function of the visibilities.

Therefore, each k associated with y[k] can be written in terms of the forward model for

visibilities defined above. For example, each bispectrum measurement obtained from a

closed loop of three telescopes, connected by three baselines corresponding to (u1, vi),

(U2, v2), and (-ui - U2 , -vi, v 2 ), has the forward model:

B(x, U1, vi, u2 , v 2 ) = f(ui, vi)Tx x f(u2 , v 2 )TX x f(-ui - u2, -vi - v2 )Tx. (3.11)

Therefore, if y[2k] and y[2k+ 1] are the real and imaginary components of a bispectrum

measurement then, g is defined with the following polynomial equations:3 .

92k ((x)) =KR [B(x, u1 , v 1 , U2 , v2)] (3.12)

92k+ 1(i (x)) = Q [B (x, u 1, Vi1, U2, V2)] .(3.13)

U 3.2.2 Conditional Distribution

The deterministic forward model f(I) tells us what data we would expect to see in y

under ideal circumstances when no noise is present in the system. However, a significant

amount of noise is present on each data product (see Section 5.2.2). Additionally,

as VLBI arrays are inhomogeneous, the level of noise on each measurement varies

drastically. Therefore, we must incorporate how much we trust each data product

when defining how inconsistent the image, 1(x) is with the observed data, y. To do

this we define a function, x(x, y), related to the conditional distribution p(yjX). In

particular,

1 K (y~k -gk(x))2
x(x,y) =1 -[k] 2 (3.14)

k=1

1
-(y - f(x)) T R-1 (y - f(x)), (3.15)
2

3 Note that if interstellar scattering is included in each visibility this is incorporated into each f
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for R = diag[c[1] 2, .., a[K] 2] composed of the variance of noise on each y[k]. Notice

that in the case p(ylx) = KV (f(x), R), X(x, y) is equivalent to - logp(ylx) + C, for

constant C.

Gaussian Noise Approximation for the Bispectrum

Although p(yIx) is Gaussian when y is composed fully of complex visibilities or visibility

amplitudes (see Section 2.3.1), it is not Gaussian when y is composed of bispectra or

closure phases, as each visibility is used to compute multiple terms. This means that

x(x, y) is not truly the negative log-likelihood. However, in practice, we assume that

each term of y is independent and can be described with a Gaussian noise model.

In Appendix A.3 we discuss how we approximate the noise on each bispectrum. In

particular, we approximate the variance of noise on each bispectrum FT;asF7masF as as

2~jFrma~mes 2 + t3-?k J;Tm7-m 2 - I- F .ma 2 (3.16)

where or indicates the standard deviation of thermal noise on each visibility FT7a'. By

comparing our approximation to distributions obtained through sampling we have seen

that it accurately models the true noise for SNR values greater than 1. As we expect

values of SNR greater than 1 for imaging, a Gaussian noise model is a reasonable

approximation for the bispectrum.

N 3.3 Static Imaging using Data-Driven Priors

VLBI measurements are extremely sparse and noisy, particularly for the Event Hori-

zon Telescope (EHT). Thus, since there are an infinite number of possible images that

explain the data the reconstruction is ill-posed [85]. The challenge is to find an ex-

planation that respects our prior assumptions about the "visual" universe while still

satisfying the observed data.

In Section 3.2 we described how we define the consistency between a proposed

image i(x) and the observed data, y. To address the problem's ill-posedness, we must

further narrow the space of possible solutions by defining a model that characterizes

the appearance of a "good" image. However, it is not obvious what characterizes a

"good" image, particularly in the case of the EHT. Since we have never seen a black

hole before it is unclear what a likely black hole image should look like, and what we

should assume about the structure of black holes. We could build an image prior using

computer graphic renderings of black holes that assume General Relativity (GR) holds
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(such as are shown in Figures 2.9 and 2.10). However, doing this might cause some

serious problems. For instance, what would happen if GR does not hold near a black

hole? We would still want to reconstruct an accurate picture of the underlying image,

but if we bake GR too much into our algorithms we may introduce significant bias in

our reconstructions and just end up reconstructing what we expect to see.

An alternative to hand-designing regularizers is to design data-driven priors. This

provides the flexibility to easily encode different image assumptions about our "visual"

universe into the imaging process by simply training the image prior on different kinds

of images. By imposing the features of different kinds of images, and seeing how the

type of image we assume affects our reconstructions, we can begin to understand how

much our imaging assumptions are biasing our final reconstructions. If all reconstructed

images look roughly the same under different data-driven priors, then we can become

more confident that the image assumptions we make are not significantly biasing our

final picture of the black hole.

In Section 3.3.1 we describe an image reconstruction method developed under a

trained multivariate Gaussian image prior. Although this simple image prior has not

been previously explored in VLBI imaging, the intended goal of this section is primar-

ily to gain intuition for the problem, not to introduce a novel imaging method. In

Section 3.3.2 we extend these ideas to a new imaging method, called CHIRP, which

uses a learned patch-based prior to reconstruct images under multiple "visual" universe

assumptions.

0 3.3.1 Gauss: Data-Driven Multivariate Gaussian Image Priors

In this section we describe an image reconstruction method developed under a trained

multivariate Gaussian image prior. This simple formulation makes the problem simple

to analyze and provides a clean interpretation of the results. In the results section we

refer to this method as 'Gauss'.

Model

Representing I as its M2 vectorized coefficients, x, we define our observation model as:

y ~ Ny(f(x), R) (3.17)
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where /V(m, E) is the multivariate Gaussian distribution of z with mean m and co-

variance E. In this model, both the data likelihood, p(yjx), and the underlying image

prior, p(x), are multivariate normal distributions.

Training a Multivariate Gaussian Image Prior

We wish to learn the prior distribution from different sets of images. To do this, we

collect a dataset of N images, parameterized by column-vectors {zn}N_. From this

image set, the parameters of the multivariate Gaussian image prior can be found simply

by taking the sample mean and covariance:

N

)7 Zn (3.19)
n=1

A E(zn - P)(z 2 - A)T. (3.20)

n=1

Optimization

Our goal is to find the most likely image, x, under our model that describes the data

products we have observed, y. The posterior probability is written in terms the data

likelihood, p(ylx), and the image prior, p(x):

p(xIy) C p(yIx)p(x) (3.21)

= Ay (f(x), R)K( (p, A). (3.22)

As explained in Section 1.1.1, a maximum a posteriori (MAP) solution is then found

by minimizing the negative log-posterior:

x argmin - log p(xIy) (3.23)
x

argmin [(f(X) _ y) T R-1(f (x) _ y) + (X _ 1 i)T A-(x - It) (3.24)

Note that this expression can be written in the common form

i =argmin [x(x, y) - 3R(x)], (3.25)
a,

for R(x) = (x - yj) T A-1(x - .) and # =
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Linear Measurements As explained in Section 3.2.1, f(x) is linear when y is composed

solely of calibrated complex visibilities with no atmospheric error. In this case, f(x) =

Fx, and a closed-form solution of J can be found using the methods described in

Section 1.1.1. In particular,

p(xIy) = Ax(., C), (3.26)

for

(FTR-1 F + A- 1 )-1 (FTR-ly + A- 1
1 ) (3.27)

=1 -+ AFT(R + FAFT)- 1 (y - Fya), (3.28)

C =A - AFT(R + FAFT) -FA. (3.29)

In the limit of having no prior information about the underlying image x, e.g A =

limAs, 0 Al, this MAP solution reduces to + = F-'y. In other words, in the absence of

prior image assumptions, the noise on each measurement, R, is no longer relevant and

the reconstructed image is simply obtained by inverting x Fy. When y are sparse

visibilities, although F-1 is undefined, since FF*T = 1, F-ly is very similar to

reconstructing the dirty image.

Non-linear Measurements When f(x) is a non-linear function of x, as is the case when

the data products in y are invariant to atmospheric noise, a closed-form solution does

not exist. One way to try to solve for + is through gradient descent. However, this

method is slow. Alternatively, to solve for the optimal x we linearize f(x) to obtain

an approximate solution, &. Using a first order Taylor series expansion around &, we

approximate the data likelihood as

p(yIx) = Ay (f(x), R) ~ /y (f (.) + F(x - 2), R), (3.30)

for f . Using this approximation, the optimal i isdx 1_

& - A + AT(R + _AFPT) 1(y + F - f(i) - FPt). (3.31)

A detailed derivation of F for different data products is shown in Appendix A.4.

To further improve the solution, we solve Equation 3.31 iteratively by updating + and
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setting - = until convergence. Note that in the case that f(x) is linear, F F and

Equation 3.31 reduces to Equation 3.28.

0 3.3.2 CHIRP: Data-Driven GMM Patch Priors

Learning good image priors is a difficult task. Ideally we would like to learn the joint

distribution of all pixels in an image. However, this is very challenging due to the ex-

ploding dimensionality and variability of images. Simple models, such as the Gaussian

model presented in Section 3.3.1, can be trained. However, as we show in Section 3.4.2,
these simple models are often not able to accurately characterize the manifold that the

training images live on. This results in a poor image prior that incorrectly biases recon-

structions. More complex models that more accurately characterize the distribution of
4images are prohibitively difficult to train or use in optimization

Instead, a more manageable and successful, approach is to focus on modeling patches

of the image, rather than the full image [138]. Although there may be a large number

of possible configurations of the pixels in a patch, previous work has shown that many

images contain patches that share very similar features [139]; for instance, there may

be many patches that are of a constant intensity or contain a directional edge. In other

words, the image patches can be well explained using a small set of building blocks.

By reducing the dimensionality of the image data down to patches, we can use simpler

models to accurately describe their distributions.

In this section we present a patch-based regularizer for VLBI imaging that models

patches of an image using a Gaussian mixture model (GMM). We refer to our proposed

method as CHIRP for Continuous High-resolution Image Reconstruction using Patch

priors.

Model

As in Section 3.3.1, we approximate our observations model as

y ~ Xy (f (x), R), (3.32)

for the M 2 vectorized coefficients, x, of 1(x). However, unlike in Section 3.3.1, we

define each overlapping M~ x M patch z of image x as being a sample from a Gaussian
4 However, new neural network image generation models such as a variational auto encoders (VAEs)

and generative adversarial networks (GANs) are beginning to show promise [66, 84]
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mixture model (GMM) with C clusters. Mathematically,

C
Zn= PX ~E7rcAp (Ic, Ac), (3.33)

c=1

where matrix Pn extracts the n-th overlapping patch, Zn, from x = x[i,j], and 7r, is

the mixture component weight of the c-th cluster, such that E c 7r= 1. From this

relation we can write the probability of each patch z as

p(z) = c e (z - 7)A (- - ) . (3.34)
=1-/27-rAcl (2

Training a GMM Patch Prior

To train a Gaussian mixture model (GMM) patch prior we simply perform traditional

EM optimization on a set of extracted patches [14]. In particular, given N patches

{znIN_1, we iterate between the Expectation Step (E-step) of finding the expected

likelihood of a patch belonging to each cluster,

- ~=iircNAfZ(pc, Ac) (3.35)
k=1 7rkJz, (14a, Ak)'

and the Maximization Step (M-step) of finding the model parameters that maximize

the expected value of the log likelihood function:

Zn 1 Gc(zn)Zn A,=- n c(zn)(Zn - Lc)(Zn - pc)T
Ec= N N c= N E Gc c(n).

n=1 (zn) En=j (zn) n=
(3.36)

In this work we have set each {Ipc}S to 0 to force the GMM to learn symmetry

in the relative intensities of patches in the images. Additionally, we use a patch size of

8 x 8 (M = 8).

Optimization

We seek a maximum a posteriori (MAP) estimate of the parameters of the underlying

emission image, x, given the sparse observations, y and model parameters pc, Ac, and

7rc. However, since we have defined the likelihood of an image patch, and not the likeli-

hood of the image itself, we can no longer write a posterior distribution. Nevertheless,
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we still are able to write an optimizing cost function in the form

x argmin [x(x, y) - /R(x)], (3.37)

where

N

R(x) log [p(Pnx)] (3.38)
n=1

Equation 3.37 appears similar to the familiar form using a Bayesian posterior probabil-

ity; however, R(x) is not the -log-likelihood of the full image, but instead we define it

as the expected log likelihood of a patch in the image [138].5

To optimize Equation 3.37 we use "Half Quadratic Splitting" [138]. This method

introduces a set of auxiliary patches {z"}nI 1, one for each overlapping patch Pnx in

the image, and a weighting parameter y. We then solve this problem using an iterative

framework:

(1) Solve for {z"}N_ 1 given i: In order to complete this step we set {z }n=1 to the

most likely patch under the prior, given the corrupted measurements Pax [138]. As

this is hard to solve, we follow [138] and break this problem up into two manageable

steps, that together approximate a MAP solution. Specifically, we first solve for the

most likely cluster, p", by evaluating the log-likelihood of each cluster:

1 1(p__ t -(n+-t,argmax [log 7rc - log |2rAc| - P -- - tic)] . (3.39)
. 2 2

Once we have selected the most-likely cluster we solve for the most likely patch under

that cluster. We introduce a weighting parameter -y1 , that indicates the variance of

noise in the current estimate of ;. Under the posterior distribution

p(znlPn&; pan, A& ) oc .zn (P., -y- 1 1)Kn (pan, A3-) (3.40)

we estimate the best patch using Wiener filtering (as explained in Section 1.1.1):

Z n = tp6, + A - (- ~11 + Aa.) -'(Pn& - p).(3.41)

5Additionally, as discussed in 3.2.2, X(x, y) is not the log-likelihood of the data when y is composed
of bispectrum or closure phase data products.
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(2) Solve for - given {z}N 1 : Once we have solved for {z}nN 1 , we then re-define

the regularizer term JZ(x) as

1N

RN(x) =- [(Pz - z X)T(Pax - zn) - logp(zn)], (3.42)
n=1

and solve the optimization problem defined in Equation 3.37. If we were able to work

with visibilities our problem would be quadratic in x, and we could solve then for x in

closed-form:

SFT R1F + - FR--y + N P[ n. (3.43)
(FTR'F+/7n=1 n=1

However, in the case of using a non-linear f(x) we can either solve for k using gradient

descent or though linearizion. In particular, just as was shown in Section 3.3.1, we

linearize the data likelihood (see Equation 3.30) to obtain an approximate solution in

closed-form:

,3N PT~3_ N n

(P= # -1 N + (PnTPn #R- 1(y + 2f M+ N (Pnz" .
n=1 n=1

(3.44)

Refer to Appendix A.4 for derivations of P f in the case of different datadx

products.

(3) Iterate: Note that as -y -+ oo patches Pnx are restricted to be equal to their

auxiliary patch z'. Thus as we increase 'y the optimization under regularizers shown in

Equations 3.38 and 3.42 converge. As suggested in [138], we iterate between steps (1)
and (2) for increasing -y values of 1, 4, 8, 16, 32, 64, 128, 256, and 512.

Multi-scale Framework In the case that the forward model f(x) is non-linear, convex-

ifying the cost function using a Taylor series expansion is only approximate. Thus, we

slowly build up i(x) using a multi-scale framework that helps us to avoid local minima

in the final solution. We initialize the image - with small random noise centered around

the mean flux density (average image intensity). Using this initialization, we iterate

between solving for a new image x and increasing the image's size using the discretized

formulation of the image presented in Section 3.2.1. This framework allows us to find
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the best low-resolution solution before optimizing the higher frequency detail in the im-

age. In this chapter, we initialize CHIRP reconstructions using a set of 20 x 20 pulses

and slowly increase to 64 x 64 pulses over 10 scales. The same sized patch regularizer

is used for each scale.

0 3.4 Results and Discussion

Measurements from the EHT have yet to become available. Therefore, we demonstrate

the success of our algorithm, CHIRP, on a sample of synthetic examples and real VLBI

measurements collected by the VLBA-BU-BLAZAR, Program [74].

* 3.4.1 Synthetic Measurements

For image results presented in this chapter synthetic data was generated using realistic

parameters for the EHT array pointed towards the black hole in M87. The ALMA,
SMT, LMT, SMA, PV, PDB, SPT, GLT, and CARMA telescopes were used to generate

1.3 millimeter data over 12 hours of observation6 . Refer to Table 2.2 for information

about the location and sensitivity of these telescopes. Corresponding (u, v) frequency

coverage is shown in Figure 3.1.

Visibilities were generated using the MIT Array Performance Simulator (MAPS)

software [86]. Visibilities from MAPS are not generated in exactly the same manner as

our forward model presented in Section 3.2. For instance, to generate a more realistic

measurement, MAPS integrates over a wedge in the frequency domain defined by the

observation-bandwidth and specified time-integration.

Thermal and atmospheric error is introduced into each of the visibility measurements

(except when specified). As explained in Section 2.3.1, the standard deviation of thermal

noise introduced in each measured visibility is characterized by standard deviation

1 SEFDk xSEFD-
(- = I1(3.45)

0.88 2xAVX 3.4

for bandwidth Av = 4096 MHz, integration time 7 = 12 seconds, and each telescope's

System Equivalent Flux Density (SEFD).

The geometry of an array imposes an intrinsic maximum resolution on the image

you can reconstruct from its measurements. The minimum recoverable fringe spacing

(corresponding to the maximum frequency) for this configuration is 24.72 p-arcseconds.
6 While CHIRP was being initially developed CARMA was still operational.
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Figure 3.4 shows the effect of filtering out spatial frequencies higher than the minimum

fringe spacing on images with a field of view of 184 p-arcseconds. This is done by

convolving the true source image with the nominal beam shown in Figure 3.1. These

images set expectations on what is possible to reliably reconstruct from the VLBI data.

0 c

U I

C)0

Figure 3.4. Intrinsic Maximum Resolution: The geometry of a telescope array imposes an intrin-
sic maximum resolution on images reconstructed from its measurements. Recovering spatial frequencies
higher than this resolution is equivalent to super-resolution. For results presented in this chapter, the
minimum recoverable fringe spacing (corresponding to the maximum frequency) is 24.72 p-arcseconds.
The original 'Source' images (183.82 [t-arcsecond FOV) are used to synthetically generate realistic VLBI
measurements. We show the effect of filtering out spatial frequencies higher than the minimum fringe
spacing for these source images in 'Max Res'.

N 3.4.2 Bias Introduced Under Trained Image & Patch Priors

Flexibility of the data-driven prior framework allows us to easily incorporate a variety

of different "visual" assumptions in our reconstructed image. For instance, in the case

of the EHT, simulations of a black hole at different inclinations and spins can be used

to train a model that can be subsequently used for reconstruction. We strive to develop

a data-driven prior/regularizer that performs similarly across different trained models.

This would indicate that the image assumptions being incorporated into the model are

not overly image-type specific, and thus would not substantially bias reconstruction

results in favor of a particular image structure. By training each model presented in

Section 3.3 on different types of images, we can begin to understand how much bias

each model imposes in the reconstruction process.
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Training

A set of natural, astronomical, and black hole simulation images were collected and

used to train the multivariate Gaussian image and GMM patch models. Refer to Fig-

ure 3.5. Training followed the procedures outlined in 3.3.1 and 3.3.2. When training the

multivariate Gaussian image prior, images in each dataset were first resized to 64 x 64

pixels and assumed to have a field of view of 184 p-arcseconds. Additionally, each of the

natural and astronomical image datasets were augmented by rotating the images 90',

1800, and 270'. For training the GMM patch prior, 8 x 8 pixel patches were randomly

selected and extracted from each set of images. The number of clusters in each GMM

patch model was selected empirically based on the size and variability of each dataset.

Two-hundred clusters were used in the natural patch model, while thirty-two clusters

were used in the astronomical and black hole patch models.

Note that the number of free parameters in the Gaussian image model is roughly

M 2 + M4 /2. For M = 64 this is nearly 8.4 million free parameters, and far exceeds the

amount of data that was used to train each model. Nonetheless, as we believe the true

dimensionality of this data is much less than the number of free parameters, we are still

able to gain insight into the characteristics of each trained model, and how each biases

reconstruction results.

Visualizing the Models

To gain additional understanding into the structure that each set of images imposes

through its prior, we display samples taken from each image and patch prior. Further-

more, we can visualize the principal components of each Gaussian model by computing

the eigenvectors of A or A,. These eigen-emission images express the importance of

different structures in each prior.

Image Model In Figure 3.6 we show four images obtained by drawing samples from

the distribution M(p, A) for each image model. Additionally, below these samples

we visualize the first 10 eigen-emission images for each model. Note how the model

corresponding to each set of images is quite different. This can be seen by looking

at both the image samples and the eigen-emission images. For instance, the natural

image model produces bright flux regions that are uniformly distributed throughout the

image. However, the astronomical image samples have larger flux confined primarily

to the center of the image, resulting in eigen-emission images that have concentrated

energy in the image center. This is due to the fact that most of the astronomical
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Figure 3.5. Training Image Datasets: The multivariate image prior and GMM patch prior were

trained using using three distinct categories of images: natural (everyday), astronomical, and black hole

simulation images. In this figure we show four random image samples from each dataset. Notice that

each set of images has a very distinct look. A set of 400 natural images from the Berkeley segmentation

dataset were used in the natural dataset [90]. Fifty (50) images from NASA/JPL-Caltech and NRAO

were used in the astronomical dataset [2]. A set of 9000 computer generated images of Sgr A* for

different inclinations and spins were used in the black hole dataset [23]. Additional images from this

black hole dataset are shown in Figures 2.9 and 2.10.

images in the training set contain a bright center structure surrounded by the darkness

of space. The black hole simulation model looks significantly different from the other

two models. Since this model was trained using a very constrained set of images, the

model focused on being able to capture small deviations in the location of the black

hole shadow's sharp edge.

Patch Model In Figure 3.7 we show five patches sampled from the ten most likely

clusters of each GMM patch model: { (pc, Ac)} 1i. Note that as we have set 1Ac to

zero in each patch model, the captured structure is fully defined by Ac, and inverting

the intensity of a sampled patch is equally likely under the model. Similar features exist

in all patch models. For instance, smooth directional edges appear in all three sets of

sampled patches. Although these models share similarities, each also captures features

special to its set of images. For instance, the model trained on astronomical images



produces patches that contain dots, potentially indicating its attempt to capture the

stars that appear in many of the astronomical images. Additionally, the black hole

model generates many patches that contain curved edges that resemble the rim of light

caused by the black hole's event horizon.

Comparing Model Bias

Figures 3.8 and 3.9 compare results obtained using the Gaussian image model and GMM

patch model in Gauss and CHIRP, respectively. CHIRP results were obtained by con-

straining only the bispectrum data products (BIS) and using a multi-scale optimization

approach as discussed in 3.3.2. Alternatively, we show results of Gauss when using

complex visibilities (VIS), visibility amplitude and the bispectrum (AMP & BISP),

and only the bispectrum (BISP). All datasets had the same thermal error included, but

Gauss reconstructions done with complex visibilities did not contain atmospheric phase

errors.

Image Model As image reconstruction is complicated by non-linear optimization in

the case of atmospheric phase errors, the Gauss images reconstructed with complex

visibilities best communicate the effect each trained prior has on the reconstructed

image. Notice that, even in this much simpler situation, the images produced under

each prior model differ substantially. The truth image in Figure 3.8 contains a picture

of Jupiter that consumes the full field of view. Although this can be categorized as an

astronomical image, the natural image prior produces the closest reconstruction to the

true source image. This partly occurs because the natural image prior does not have

a preference to only reconstruct flux in the center of the image, as is the case in the

astronomical image prior. On the other hand, notice how in Figure 3.9 the astronomical

image prior is able to pull out features of the true source image better than the natural

image prior since most of the flux is concentrated in the center of the image. As

expected, the black hole prior performs very poorly in Figure 3.8 since the brightness

distribution in the source image is very different from the black hole images it saw in

training. However, perhaps surprisingly, the black hole model also performs very poorly

in Figure 3.9 despite the truth image being a sample from the same simulation model.

This is due to the fact that the multivariate Gaussian model is not able to accurately

model the manifold of black hole images, resulting in overfitting with negative flux

during optimization. By analyzing these results it is clear that training a full image

model on a specific set of images could substantially bias reconstructions.
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Figure 3.6. Trained Image Model: Four images are sampled from each of the trained Gaussian im-

age priors. These are shown below each model name. The top ten eigen-emission images corresponding

to each model are shown directly below the image samples. Each image model captures very different

characteristics from its set of images. For instance, unlike in the natural image model, the astronomical

image model concentrates most of its energy in the center of the image.
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Figure 3.8. Comparing Reconstructions from Trained Models: Reconstructions using image
priors (Gauss) and patch priors (CHIRP) trained on natural, celestial, and synthetic black hole images.
The truth and blurred truth image are shown on the top. Results of Gauss are shown when constraining
the complex visibilities (without atmospheric error), amplitude and bispectrum, as well as just the
bispectrum. CHIRP results are only shown when constraining the bispectrum. Notice that significant
differences exist between reconstructions when using the different trained image priors, even when clean
complex visibilities are provided. However, only small differences can be seen in the reconstructed
images using patch priors. Since absolute position is lost during imaging with the bispectrum, shifts in

the reconstructed source location are expected.
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Figure 3.9. Comparing Reconstructions from Trained Models: Refer to the caption of Fig-
ure 3.8. In this example the true source image comes from the manifold of images that the 'black hole'

prior was trained on. However, despite this the reconstruction using 'Gauss' is very poor. This has to

do with the fact that the multivariate Gaussian model is not able to adequately capture the manifold of

black hole images. As all of the images used to train the 'black hole' prior are very similar, the resulting

model encourages high frequency structure and negative light (see Figure 3.6). This model allows us to

easily overfit the data, and find an image that aligns with the noisy data better than the true image.
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Sec. 3.4. Results and Discussion

Patch Model Unlike in the image model, only small variations can be observed among

the resulting CHIRP reconstructions done using differently trained patch models. Al-

though each patch model captured different features of the images (see Figure 3.7),
CHIRP's reconstruction process is not overly restrictive and is able to select the patches

in each model that best describe the observed data. This does not imply that the patch

model does not bias image reconstruction at all. In fact, as discussed in Section 5.2.5

of Chapter 5, CHIRP's patch model does bias the appearance of reconstructed images.

However, we believe that this experiment implies that the image assumptions that are

incorporated into each model do not substantially bias the results; these patch regu-

larizers guide optimization, but do not impose strong assumptions about the overall

structure of the underlying image.

0 3.4.3 Method Comparison

We compare our proposed method, CHIRP, to other state-of-the-art methods on both

synthetic and real VLBI data.

Synthetic Data

We compare results of CHIRP (using a natural patch model) with the three state-of-

the-art algorithms described in Section 3.1: CLEAN, SQUEEZE, and BSMEM. Images

were obtained by asking authors of the competing algorithms or knowledgeable users

for a suggested set of reconstruction parameters.

As with our algorithm, SQUEEZE [9] and BSMEM [24] use the bispectrum as

input. CLEAN cannot automatically handle large phase errors, so CLEAN results were

obtained using calibrated (eg. no atmospheric phase error) visibilities in CASA [67]. In

reality, these ideal calibrated visibilities would not be available, and the phase would

need to be recovered through highly user-dependent self-calibration methods. However,
in the interest of a fair comparison, we show the results of CLEAN in a "best-case"

scenario.

Figure 3.10 shows a sample of results comparing our reconstructions to those of

the current state-of-the-art methods. Our algorithm is able to handle a wide variety

of sources, ranging from very simple celestial to complex natural images, without any

additional parameter tuning. CLEAN produces consistently blurrier results. Both

SQUEEZE and BSMEM tend towards sparser images. This strategy works well for

super-resolution. However, it comes at the cost of often making extended sources overly

sparse and introducing spurious detail. Although algorithms such as BSMEM and
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Figure 3.10. Method Comparison: Comparison of our algorithm, 'CHIRP' to three state-of-
the-art methods: 'CLEAN', 'SQUEEZE', and 'BSMEM'. We show the normalized reconstruction of a
variety of black hole (a-b), astronomical (c-f), and natural (g) source images with a total flux density
(sum of pixel intensities) of 1 jansky and a 183.82 p-arcsecond field of view. Since absolute position is
lost when using the bispectrum, shifts in the reconstructed source location are expected. The 'TARGET'
image shows the ground truth emission filtered to the maximum resolution intrinsic to this telescope
array.

SQUEEZE may perform better on these images with specific hand-tuned parameters,
these tests demonstrate that the performance of CHIRP requires less user expertise and

provides images that may be less sensitive to user bias.

Figure 3.11 shows a quantitative comparison of our method to SQUEEZE and

BSMEM for the blind test set presented in Section 5.1.3 of Chapter 5. Since CLEAN

cannot automatically handle large phase errors, we were unable to fairly compare its

results on this test set. Since the absolute position of the emission is lost when using

the bispectrum, we first align the reconstruction to the ground truth image using cross-

correlation. We then evaluate the mean squared error (MSE) and structural similarity

index (SSIM) on the normalized, aligned images. Although we consider MSE and SSIM
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Figure 3.11. Quantitative Analysis on Blind Test Set: Box plots of MSE and SSIM for re-
construction methods on the blind dataset presented in Section 5.1.3. In SSIM a score of 1 implies
perceptual indistinguishability between the ground truth and recovered image. Scores are calculated
using the original 'Source' image (Refer to Fig. 3.4).

a good first step towards quantitative analysis, we believe a better metric of evaluation

is subject for future research.

The thermal noise introduced into each visibility measurement is fixed based upon

telescope and measurement choices, and is not dependent on the brightness of the

emission source. Consequently, an emission with a lower total flux will result in a lower

SNR signal. Previous measurements predict that the total flux densities of the black

holes M87 and SgA* will be in the range 0.5 to 3.0 janskys [36,37]. Figure 3.12 shows

the effect of varying total flux density, and thus noise, on each method's recovered

reconstructions. Notice how our method is fairly robust to the noise, while the results

from other methods often vary substantially across noise levels.

Real Measurements

We demonstrate the performance of our algorithm on the reconstruction of three dif-

ferent sources using real VLBI data from [74] in Figure 3.13. Although we do not have

ground truth images corresponding to these measurements, we compare our reconstruc-

tions to those generated by the BU group, reconstructed using an interactive calibration

procedure described in [74]. Alternatively, we are able to use bispectrum measurements

to automatically produce image reconstructions with minimal user input. Notice that

we are able to recover sharper images, and even resolve two potentially distinct sources

that were previously unresolved in blazar OJ287.
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Figure 3.12. Noise Sensitivity: The effect of varying total flux density (in Janskys), and thus
noise, on each method's recovered reconstructions. Decreasing flux results in higher noise. Notice how
our method is fairly robust to the noise, while the results from other methods often vary substantially
across the noise levels. The ground truth target images along with the results for a total flux density
of 1 Jansky can been seen in column A and C of Figure 3.10.
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Figure 3.13. Real Measurements: A comparison of our reconstructed images to [74]'s results using
CLEAN self-calibration. Note that we are able to reconstruct less blurry images, and are even able to
resolve 2 separate, previously unresolved, bright emissions in blazar OJ287. Measurements were taken
using the VLBA telescope array. The FOV for each image is 1.5, 1, and 1 milli-arcsecond respectively.

0 3.5 Conclusion

Astronomical imaging will benefit from the cross-fertilization of ideas with the com-

puter vision community. In this chapter, we have presented an algorithm, CHIRP, for

reconstructing an image using a very sparse number of VLBI frequency constraints

using data-driven patch priors. This method was developed specifically to handle the

challenges faced in the EHT. We have demonstrated improved performance compared

to current state-of-the-art methods on both EHT-quality synthetic and real data.

Since CHIRP was initially developed, there have been significant developments in

imaging for the EHT. In particular, we incorporated and extended the forward model

developed for CHIRP in developing polarimetric imaging methods that use a maximum

entropy (MEM) prior [26]. These methods make it possible to study the magnetic

field structure around astronomical sources. Additionally, in [6] we explored sparse

imaging priors as well as cross-validation techniques to set hyper-parameters during

reconstruction. Other recently developed imaging techniques for the EHT can be seen

in [5,42, 69]. When we initially developed CHIRP only the bispectrum was used to

constrain reconstruction (as is shown in the results in this chapter). However, after

additional analysis it was determined that supplementing this constraint with visibility
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amplitudes substantially improves performance (see Chapter 5).



4

Video VLBI Reconstruction of
Time-Varying Sources

T HUS far, very long baseline interferometry (VLBI) has been primarily used to

image sources that are static on the time scale of a night's observation. In this

chapter we extend the technique's applicability to imaging time-varying sources by

reconstructing a video of the source's emission region.

VLBI measurements place a sparse set of constraints on the spatial frequencies of

the underlying source image. In particular, each pair of telescopes provides information

about a single 2D spatial frequency. This frequency is related to the baseline vector

connecting the two telescope sites from the direction of the target source [124]. Thus, at

a single time, for an array with P telescopes, at most P x (P - 1)/2 spatial frequencies

are measured. For example, an array of 6 telescopes would yield only 15 measurements.

However, as the Earth rotates, the baseline vector connecting each pair of telescopes

changes. This results in sampling additional spatial frequencies along elliptical paths

in the frequency plane [124]. Refer to Figure 2.7. Combining the different measure-

ments taken as the Earth rotates is referred to as Earth Rotation Synthesis. Earth

rotation synthesis is essential for building up enough measurements to constrain image

reconstruction.

The task of reconstructing an image from these sparse constraints is highly ill-posed

and relies heavily on assumptions made about the underlying image [61,85,121]. If a

source is static, the VLBI measurements - taken over time as the Earth rotates - all

correspond to the same underlying image. Under a static source assumption, recently

developed VLBI image reconstruction techniques have been demonstrated on small

telescope arrays [5, 6, 17, 26, 42]. However, for an evolving source, measurements are no

longer sampled from the same image, and these reconstruction algorithms quickly break

down.
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Although most astronomical sources are static over the time scale of a night's ob-

servation, some notable sources have detectable structural changes on much shorter

timescales. For instance, the Galactic Center supermassive black hole, Sagittarius A*

(SgrA*), has an estimated mass of only four-million solar masses [50]. This implies

that SgrA* is quickly evolving, with an innermost stable circular orbit of just 4 to

30 minutes, depending on the spin of the black hole [72]. Refer to Section 2.4.4 for

more detail. Previous observations have shown that SgrA* varies dramatically over a

night's observation on the scale of its predicted event horizon, in both total-intensity

and polarization [43, 70].

As Earth's closest supermassive black hole, SgrA* is a prime target for the Event

Horizon Telescope (EHT) [35]. Unfortunately, the amount of variation predicted for

SgrA* suggests that conventional VLBI imaging techniques will be inappropriate for

observations taken by the EHT [72]. Thus, in this work we present a new imaging

algorithm for time-varying sources that models the VLBI observations as being from

a Gaussian Markov Model. Our dynamic imaging algorithm allows for an evolving

emission region by simultaneously reconstructing both images and motion trajectories

- essentially reconstructing a video rather than a static image.

In this chapter we present our dynamic imaging model for VLBI data and derive an

Expectation-Maximization (EM) inference algorithm, StarWarps, that simultaneously

reconstructs a movie of the source while also learning the underlying dynamics. In

Section 4.1 we discuss how time-variable data differs from static data and also discuss

alternate approaches to imaging. Section 4.2 introduces our dynamic imaging model,
and in Section 4.3 we discuss how to infer the structure and dynamics of the underlying

source using this model. Section 4.4 presents results of our method.

0 4.1 Alternate Approaches

Earth rotation synthesis inherently assumes that the source being imaged is static over

the course of an observation [121]. Generally, this makes it possible to collect multiple

measurements that inform us about the same underlying image. However, in the case

of an evolving source, as is predicted to be the case for Sgr A*, this assumption is

violated - measurements taken at different times throughout the observation correspond

to different underlying source images. Thus, VLBI data taken from an evolving source

is significantly different from that of a static source [87]. For example, Figure 4.1 shows

a simulated visibility amplitude and closure phase expected for a source evolving over
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Visibility Amplitude Closure Phase
ALMA-SPT Baseline ALMA-SPT-PV Triangle

-10

0.5- Time (Hours) 2 2.s 0 0.s Time (Hours) 2 2.5

Figure 4.1. Simulated data under a static vs. varying source: Contrasting of data observed
from a static emission region (magenta) to that of a varying emission region (blue) over the course of
2.5 hours. Although both sequences start with the same image, the visibility amplitude and closure
phase both begin to deviate from the static image very quickly. The ideal observation for the static
and time-varying source is shown by the solid red and blue lines, respectively. We also show sample
measurements with their respective error bars in the same colors. This data is simulated using the
EHT2O17 array from the frames in Video 3 presented in Section 4.4.

time, and compares it to the closure phases expected if the same source was static.

As the data can no longer be explained by a single image with similar structure, most

static imaging methods are unable to produce accurate results.

In recent work the authors attempt to recover a single average image by first smooth-

ing the visibility or bispectrum data taken within a characteristic time-frame [87]. How-

ever, as this method was designed to be applied to multi-epoch data, it is often unable

to recover an improved reconstruction for a single day's observation when there is sig-
nificant source variability (see Section 4.4). Additionally, it is not able to recover the

dynamics of the underlying source.

In [71] we simultaneously developed an alternative method for time-variability imag-

ing that also solves for a video of the underlying emission region. In that work, we de-

velop a more flexible model with fewer constraints on the imaging assumptions made.

However, this modeling choice leads to a much more difficult optimization problem

that is prone to local minima, and often requires adhoc methods to achieve satisfactory
convergence. The difficulty in optimizing these models can often lead to a solution

inconsistent with the true structure of the source images in the case of especially sparse

or noisy data. Thus, the strengths and weaknesses of this alternative method are com-

plementary to those of the approach we develop here.
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0 4.2 Dynamic Imaging Model

At each time t =1, ... , N we measure a vector of data products yt, that are observed from

an evolving source image, xt. Our goal is to reconstruct the N instantaneous images

X {x1, ... , XN} using the set of sparse observations Y = {yi, ... , YN}. We define a

dynamic imaging model for this observed data as potentials (O) of an undirected tree

graph (see Figure 4.2):

Pyt Ix = Alyt(ft (xt), Rt), (4.1)

(Pxt = Arx1 (fpt, At), (4.2)

Wxtlxtm = N1ox(Axt_1, Q), (4.3)

for At - diag[pt]T A'diag[pt].

Similar to the static imaging model, each set of observed data yt taken at time

t is related to the underlying instantaneous source image, xt, through the functional

relationship, ft(xt), and xt is encouraged to be a sample from a multivariate Gaussian

distribution. However, new to this dynamic imaging model is the addition of (4.3) that

describes how images evolve over time. If we assume that there is no evolution between

neighboring images in time (A = 1, Q = 0), this dynamic model reduces to that of

static imaging. Using the Hammersley-Clifford Theorem [55], the joint distribution of

this dynamic model can be written as a product of its potential functions:

N N N

p(X, YJA) oc l (pyylx fl (p, 11 (Peg _1. (4.4)
t=1 t=1 t=2

* 4.2.1 Multivariate Gaussian Image Prior

As explained in Chapter 3, a prior distribution on x constrains the the space of pos-

sible solutions during inference, and can be defined in a variety of ways. For instance,

maximum entropy, sparsity, and patch priors have been all used previously for VLBI

imaging [6,17, 26,97]. In this work we instead choose to define the underlying image,

x, as being a sample from the distribution Mxf(It, A). This choice leads to image recon-

structions with reduced sharpness compared to richer priors, but its simplicity allows

for a cleaner understanding of our solutions. This proves especially valuable in propa-

gating uncertainties during dynamic imaging (refer to Section 4.3). In Section 3.3.1 we

trained a prior of this form using a dataset of images. Although this is possible to do
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A, 0

Pi A2 A3 AN

Figure 4.2. Graphical Representation of our Dynamic Imaging Model: At each time t we
observe a vector of data products yt corresponding to the instantaneous source image xt. We assume
each image xt is related to its adjacent neighbors in time, xti-1 and xt+i, and is also related to a mul-
tivariate Gaussian distribution specified by mean pt and covariance A. The persistent global evolution
of the source images over time is specified by A, which is further parameterized by 0. Additional inten-
sity perturbations in time are captured by the covariance matrix Q. In this diagram, squares indicate
parameters, circles are variables, and shaded circles indicate the variable is observed.

here as well, in order to try to avoid the significant bias introduced by these trained

models (see Section 3.4.2), we instead hand design the parameters of the prior model

according to generic properties that have been widely-used to characterize images.

Image regularizers that enforce spatial smoothness can often be described with a

multivariate Gaussian image prior. For instance, the common squared total variation

regularizer can be expressed by writing the image covariance, A, in terms of the 2M4 x

M 4 gradient matrix, G:

A oc [GT G]'. (4.5)

More generally, studies have shown that the average power spectrum of an image often

falls with the inverse of spatial frequency in the form 1/(u 2 + v2 )a/ 2 , for 2D spatial

frequency (u, v) and smoothness parameter a [127]. As the amplitude of a spatial

frequency is linearly related to the image itself, this statistical property can also be
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enforced by specifying the covariance in a prior distribution. Specifically,

A' =W*Tdiag 2 +2)/2W (4.6)

for DTFT matrix W of size M2 x M 2 for an M x M pixel image. Each row of W

corresponds to a (u, v) coordinate in the 2D grid of u and v frequencies, S x S, for

S m - M/2 m [0 M - 1], (4.7)
FOVI

where FOV is the image's field of view in radians. To specify the variance of each pixel,

and help encourage positivity, we modify the amplitude of the covariance by left and

right multiplying by b -diag[11]:

A = b2diag[PI] T A'diag[p]. (4.8)

A b value of 1/3 implies that 99% of flux values sampled from ANl(p, A) will be positive.

Figure 4.4 shows the covariance matrix constructed for a = 2, 3, 4 along with images

sampled from the prior .A/(jp, A). Notice that as a increases, the sampled images are

smoother. Thus, a provides the ability to tune the desired smoothness of the inferred

images. We compare results of this reconstruction method to other state-of-the-art

methods for a static source in Figure 4.3.

0 4.2.2 Evolution Model

Each image xt is related to the previous image xt_1 through a linear relationship:

xt ~ Axt_1. Matrix A (size M 2 x M 2) defines the evolution of the source's emission

region between time steps. For instance, A = 1 indicates that, on average, the source

image does not change, and A = 21 doubles the image's brightness at each time step.

Since the evolution matrix A is not time dependent, the underlying source image evolves

similarly over the entire observation.

We assume that the evolution of the emission region over time is primarily described

by small perturbations on top of a persistent 2D projected flow of material that preserves

total flux. We treat each source image like a 2D array of light pulses originating at

locations (a, 6). These pulses can shift around, causing motion in the image. As the

position of a pulse can be related to its phase in the frequency domain, under small

motions we write A in terms of the image's full DTFT matrix W, and a column-vector
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Figure 4.3. Static Imaging Comparison: Results of static imaging using a multivariate Gaussian
prior ( a = 2, 5, 10) compared to state-of-the-art reconstruction methods using MEM & TV regular-
izers [26] as well as patch-based regularizers (CHIRP) (see Chapter 3 and [17]). All images are shown
with a field of view of 160 p-arcseconds. Data is generated using a static image with the uv-coverage
of the EHT2017 array shown on the left (see Section 4.4). The uv-coverage is colored by time, as
indicated by the colorbar in Figure 4.6. Although the previous algorithms (MEM & TV and CHIRP)
both produce better results, the Gaussian reconstruction is able to correctly get the broad structure of
the underlying image. Since we do not impose positivity, negative values are reconstructed. However,
by clipping the resulting image we can see that the result aligns well with the true static image. The
Gaussian prior model also allows us to easily estimate our reconstructed image uncertainty. We visualize
the diagonal entries of the posterior covariance matrix as the reshaped standard deviation image. Note
that as the smoothness parameter a is increased, the per-pixel standard deviation becomes smaller, but
the structure of the standard deviation deviates from what was specified in the prior (recall A is scaled
by p, which we have specified as a 2D Gaussian in this work). For large a the uncertainty is shown to
be primarily in the diagonal north-west to south-east direction, due to the lack of spatial frequencies
sampled by the telescope array in this direction. To avoid approximations and best show the recovered
posterior covariance matrices, atmospheric error has not been included in the data used to recover these
images. The flux in Janskys per pixel is normalized across images for a 30 x 30 image. Note we have
flipped the uv-coverage relative to how it is normally shown to align with regions that have missing
frequency information in the image (in the rest of this thesis we show the uv-coverage plotted as if we
were looking towards the Earth rather than towards the source).

of pixel shifts: s = (s, s,).

A = R [W*TW exp [-i2,r(usT + vsT)]]. (4.9)

The above parameterization of evolution matrix A in terms of s allows for indepen-

5

0
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A SAMPLES

Figure 4.4. Gaussian Image Prior: The covariance matrix constructed for a =2, 3,4 along with
image samples from the prior NX(p, A). The image samples have a field of view of 160 p-arcseconds.
Notice that as a increases, the sampled images appear smoother. In these examples p is a 21) Gaussian
Image with standard deviation of 75 p--arcseconds. and b = 0.5. Note that as a increases, the prior
encourages smoother structure.

dent, arbitrary shifts of each pulse of light, resulting in 2M2 shift parameters. However,

as neighboring material generally moves together, the pixel shifts should have a much

lower intrinsic dimensionality. To address this, and simultaneously reduce the number

of free parameters, we instead describe motion A using a low-dimensional subspace,

parameterized by 0. The length of 0, D, is much smaller than the number of uncon-

strained shift parameters, 2M2. We define a motion basis M4 = MaI M61 of size

2M2 x D + 1, and restrict the motion at every time step to be a linear function of this

motion:

C1+]= C~j+ Sa]= .A ] 1 (4.10)
6t+1 6t ss, M 6, 0
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This parameterization allows us to describe a wide variety of motion (or warp) fields.

For instance, affine transformation can be parametrized with a six-dimensional 0 that

captures rotation, shear, translation, and scaling. More general warp fields can also be

described by using a truncated Discrete Cosine Transform (DCT) basis as M.

0 4.3 Inference & Learning

We solve for the best set of N images X constrained by the N vectors of sparse obser-

vations Y. In general, we assume that ft(.), Rt, ILt, At, Q are known/specified model

parameters. However, A, which defines how the source evolves, is not necessarily known

ahead of time. If there is reason to believe that only small perturbations exist in the

source image over time, then a reasonable assumption is to set A = 1. However, in the

case of large persistent motion this may fail to give informative results.

We begin in Section 4.3.1 by discussing how to solve for X when A is known. In

this case, the model contains no unspecified parameters and the goal is to simply solve

for the latent images. In Section 4.3.2, we forgo this assumption and no longer assume

that A is known. In this case, we jointly solve for A and X by first learning A's

parameters 0 using an Expectation-Maximization (EM) algorithm before solving for

the latent images, X. We refer to our proposed method as StarWarps.

* 4.3.1 Known Evolution

Given all of the model parameters and observed data, our goal is to estimate the optimal

set of latent images, X. In static imaging we set up an optimization problem that

allowed us to easily solve for the most likely latent image, x, given the observed data,

y. However, in the proposed dynamic model, solving for a MAP estimate - the set of all

images that maximizes Equation 4.4 - is much more difficult, as a closed-form solution

does not exist. Instead of the MAP estimate, we compute the most likely instantaneous

image at each time, t, given all of the observed data Y. In particular, we estimate the

marginal distribution of each xt, p(xtIY), by integrating out the other latent images in

time, and set -it equal to the mean (and mode) of each distribution.

Since we have defined our dynamic model in terms of Gaussian distributions, we

can efficiently solve for p(Xt Iy1, ..., YN) by marginalizing out the latent images

{X1, ... , Xt- 1 , Xt+1, ... , XN} using the Elimination Algorithm [80]. Specifically, we derive

a function proportional to the marginal distributions. This function is evaluated using

a two-pass algorithm, which consists of a forward pass and a backward pass. Each pass,
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outlined in Algorithms 1 and 3, propagates information using recursive updates that

compute distributions proportional to p(xt, yi, ... , yt-i) and p(yt, --- , YN xt) for each xt

in the forward and backward pass, respectively. Refer to Appendix B. 1 for a derivation

of this propagation algorithm. By combining these terms we obtain

p(xt|Y) = 'VX'( t, Ct) (4.11)

oc Ax, (z't _1, Pcet I) JV, (Z ,t P )

which, as shown in Appendix B.1.3, has mean -it and covariance Ct:

&t = Pt(Pat-1 + P8t)-'za 1 + _

Ct=P+_1(P~t_1+ P 0d P', (4.12)

where z', Pi are the estimates of the mean and covariance of xt using observations

at time steps 1 through 7. Similarly, z , P3 are the estimates of the mean and

covariance of xt using observations T through N.

For generality, we have listed the forward and backward algorithms in terms of non-

linear measurement functions, ft(xt) with derivative F. In this case, similar to our

static model inference in Section 3.3.1, we linearize the solution around Jiit to get an

approximate estimate. To improve the solution of the forward and backward terms,

each step in the forward pass can be iteratively re-solved, updating i-t at each iteration.

The values of -it are then fixed for the backwards pass. Recall that when ft(x) is linear

in x then ft(x) = Ftx = Ftx, and the - will converge to the optimal solution in a

single update.

The above inference algorithm is similar to the forward-backward algorithm used

for Gaussian Hidden Markov Models [80]. In fact, removing the :ax term for t > 1

in Equation 4.4 yields the familiar form of a Gaussian Hidden Markov Model. In this

case, inference reduces to the traditional Kalman filtering and smoothing (extended

Kalman filtering in the case of non-linear ft(x)). Although this simpler formulation

can sometimes produce acceptable results, in our typical scenario of especially sparse

or noisy data keeping the additional potential terms helps to further constrain the

problem, and results in better reconstructions.
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Predict:

ztgt_1 = AzO't-it1

Pat_, = Q + AP _ It-AT

z*_1 =At(At + Pt_1)-zt + Pt 1 (At + Pat1)-pt

t*_1= At(At + P-i_- ) P_

Update:

YA = (yt + 2t - f( t) - Pz'*_ 1 )
Ztt=Z~_ + Pt~ 1 Ff(Rt + PtPt~ -l tT)YyA

Pat = za* 1 - P T*-1 - ya

Pg t P* 1t P tT (Rt + t P c*t_ -1N Pt) t tf*_1

Initialization:

Z110 p PfO" = A,

Algorithm 1. Forward Updates t = 1 --+ 2 -+ ... -+ N

M 4.3.2 Unknown Evolution

If the evolution matrix A is unknown, we are unable to solve for X in the way outlined

in Section 4.3.1. In theory, although it is possible to compute a gradient of Equation 4.4
with respect to each X and A and perform gradient ascent, this would be very com-
putationally intensive and prone to local maxima. This becomes even more pronouced

when solving for the evolution parameters 0 (see Section 4.2.2) rather than A itself.

Instead we choose to jointly solve for latent images X and parameters A (parame-

terized by 0) using the Expectation-Maximization (EM) algorithm. The EM algorithm

defines an iterative process that solves for the evolution parameters 0 that maximize the
complete likelihood in Equation 4.4 when all of the underlying images, X, are unknown

(latent). Each iteration of EM improves the log-likelihood of the data under the defined

objective function and is especially useful when the likelihood is from an exponential

family, as is the case in our proposed model. In particular the EM algorithm consists

of the following two iterative steps:
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Predict:

z litg = pt + AtAT( Q + l + AAtA )-~z1  - AtLt)

P* = At - AtAT( + P~itg + AAtAT)-AAt

Update:

yA = (yt + Frit - f(it) - Ftzt+1 )

zt z + P FfT(Rt + FtP+F* Z>)ya

Pi =j+ PS - Pt~T(Rt + tP1'*1Pt) Pt *j+

Initialization:

z N =lN IPN*N+ = AN

Algorithm 2. Backward Updates: t = N -+ N - 1 - ... -+ 1

" Expectation step (E step): Calculate the expected value of the log likelihood

function, with respect to the conditional distribution of X given Y under the

current estimate of the 0 parameters, 60:

Q(010(')) = Exiy,oW [logp(X, Y10)] (4.13)

" Maximization step (M step): Find the parameter that maximizes this quantity:

0(i+1) = argmaxQ(010(')) (4.14)
0

We solve for the optimal 0 using gradient ascent. As A is a function of 0, we must

compute the derivative of Q(010(i)) using the chain rule. We compute this derivative

with respect to each element j in 0:

d Q( _0 dQ(0()) dA[p, q] (4.15)
dO[j] p q dA[p,q] dO[j]

Using the low-dimensional subspace evolution model proposed in Section 4.2.2, the
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derivative d'O4 can be computed as

d AdAj = i27r9[j]A (uMA[:,j + ] + vM 6 [:, j + 1 ]T) (4.16)
dO[j]

By expanding and taking the derivative of the log-likelihood from Equation 4.4 with

respect to A, we obtain the expression

d 1N
Q(01010) = -- 2Q-'AEXiy,st> zi 1x_1 (4.17)

t=2

-Q-IExIy,(i) [XtXT_ 1] - Q-]Exiyoi) [Xt1X{]

By inspecting this expression we can see that the sufficient statistics we require

to maximize the log-likelihood are the expected value of xtxT and xt_ixT under the

distribution p(XIY; 0)). From the marginal distributions (Equations 4.11 and 4.12)

derived in Section 4.3.1, we obtain

ExIyo(i) [txt= ztzT + Pt. (4.18)

The sufficient statistic EXIYO(i) [Xt_iXT] is a bit trickier to obtain, but can also be

calculated using the same forward-backward terms, as shown in Appendix B.2. Math-

ematically,

Exly,o(i) [Xt_1 T[] = Zt-z[ + T- , (4.19)

where

p(Xt, Xt_11Y) = M.,_ 1( 1xt + 2, 3) (4.20)

0C 'V, z- 1 tII t- 1, Pa-11 t-1)Mxt,(Axt_ 1, Q)Mxt (z'3t, P/)

To learn the parameters 0, we iterate between computing sufficient statistics of X
given the current estimate of parameters, 00), and solving for new parameters that

maximize the updated log-likelihood, 0(i+1), under those statistics. Once the algorithm

converges, we use the resulting 0 to compute A and infer the best set of instantaneous

images, X using the two-pass method described in Section 4.3.1.
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E 4.4 Results

* 4.4.1 Data Generation

We demonstrate our algorithm on synthetic data generated from four different sequences

of time-varying sources. These sequences include two realistic GRMHD models of a

black hole at different orientations [118], a realistic sequence of a "hot spot" rotating

around a black hole [21], and a toy sequence evolving with pure rotation. The field of

view of each sequence ranges from 120 to 160 p-arcseconds. A still frame from each

sequence is shown in Figure 4.5. To help give a sense of the variation in each sequence,
the figure also displays the mean and standard deviation of flux density. We refer to

these sequences by their video number, indicated in the figure.

VIDEO 1 VIDEO 2 VIDEO 3 VIDEO 4

Pure Rotation Rotating Hotspot Face-on Disk Edge-on Disk

=1

15

I

Figure 4.5. Ground truth videos: The four ground truth sequences used to demonstrate results.
We show a single frame from each sequence, the mean frame, and the spatial standard deviation of flux
density. Video 1 consists of a 160y-arcsecond image [23] that rotates 1800 over the course of a 12 hour
observation (24 hour rotational period). Video 2 is a 120p-arcsecond view of an edge-on black hole
disk with a rotating "hot spot" predicted by [21] with a rotational period of 2.78 hours. Video 3 and
4 are generated using a GRMHD model of a black hole observed face on and at a 450 inclination with
a 160p-arcsecond field of view [118]. They assume a spin of 0.9375 with an Innermost Stable Circular
Orbit (ISCO) rotational period of 8.96 minutes.

In order to demonstrate the quality of results under various observing conditions,

VLBI observations of SgrA* at 1.3 mm (230 GHz) are simulated assuming three different
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telescope arrays. The first array, EHT2017, consists of the 8 telescopes at 6 distinct

locations that were used to collect measurements for the Event Horizon Telescope in

the spring of 2017. The second array, EHT2017+, augments the EHT2017 array with 3

additional telescopes that are soon to be added or being explored as potential additions

to the EHT: Plateau de Bure (PDB), Haystack (HAY), and Kitt Peak (KP) Observatory.

Details on telescopes used in the EHT2017 and EHT2017+ array are shown in Table 2.2.

The third array, FUTURE, consists of 9 additional telescopes. The uv-coverage of these

arrays, along with a colorbar indicating the time of each measurement, is shown in

Figures 4.6.

Visibility measurements are generated using the python eht-imaging' library [26].

Realistic thermal noise, resulting from a bandwidth (Av) of 4 GHz and a 100 second in-

tegration time (tint), is introduced on each visibility. The standard deviation of thermal

noise is given by

1 SEFD1 x SEFD 2
0.8-2<= (4.21)0.88 2 x Av x tint'

for System Equivalent Flux Density (SEFD) of the two telescopes corresponding to

each visibility 2 [121]. Atmospheric phase error is also introduced into measurements

using the eht-imaging library. In Videos 2-4 a set of measurements is sampled every 5

minutes over a roughly 14 hour duration, resulting in 173 time steps. In Video 1 only

30 time steps are measured over a 12 hour duration.

10 EHT2017 Array 10 EHT2017+ Array , FUTURE Array -7 GST.........14 Hrs

5 5 I5 3.5 GST ... 10.5 Hrs

a 0 0 0 GST ........... 7 Hrs

0- 3$5Htr'
-5 - -5 20.5 GST...3.5 Hrs

-10 -10 - 10 17 GST ...... 0Hrs-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10
East-West Frequency (a) in GA East-West f requ ey (u) in GA East-West Frcquency (u) in GA

Figure 4.6. Time-varying uv-coverage: The uv-coverage for EHT2017, EHT2017+ and FUTURE
arrays when observing SgrA. Baselines are colored by the time of each observation relative to the start
time, indicated by the colorbar to the right.

lhttps: //github.com/achael/eht-imaging
2 The factor of 1/0.88 is due to information loss due to recording 2-bit quantized data-streams at

each telescope [124].
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0 4.4.2 Static Evolution Model (No Warp)

We first demonstrate results of our method under a static evolution model. In this

case, we fix parameters 0 such that A = 11. This assumes that there is no global

motion under a persistent warp field, but only perturbations around a fairly static

scene. Despite this incorrect assumption (especially in Videos 1 and 2), this simple

model results in reconstructions that surpass the state-of-the-art methods, and recovers

distinctive structures that appear in the underlying source images.

Figure 4.7 shows example reconstructions, and corresponding measured error (NRMSE),

for combinations of the 4 source videos observed under the 3 telescope arrays. The main

portion of this figure is broken up into 4 quadrants, each containing results for one video.

From left to right, up to down, each quadrant corresponds to Video 1-4 respectively.

The ground truth mean image for each video is shown in the upper table. These images

correspond to those shown in Figure 4.5, but are smoothed to 3/4 the nominal resolution

of the interferometer to help illustrate the level of resolution we aim to recover.

Horizontally We present results obtained using data with varying degrees of difficulty.

As the number of telescopes in the array increases, so does the spatial frequency cov-

erage. Therefore, reconstructing an accurate video with the FUTURE array is a much

easier task than with the EHT2017 array. Additionally, using complex visibilities that

are not subject to atmospheric errors is much easier than having to recover images

from phase corrupted measurements. In the case where there are atmospheric phase er-

rors (ATM.), we constrain the reconstruction problem using a combination of visibility

amplitude and bispectrum data products. This results in a non-convex problem (that

we approximate with series of linearizations) that is much more difficult to solve than

when using complex visibilities when there is no atmospheric phase error (NO ATM.).

We demonstrate results on the EHT2017 array for both cases, and the EHT2017+ and

FUTURE arrays in the case of atmospheric error.

Vertically Within each quadrant we illustrate the results of our method, StarWarps, by

displaying the average frame reconstructed. We compare our method to two state-of-

the-art Bayesian-style methods. [26] solves for a single image by imposing a combination

of MEM and TV priors. This method performs well in the case of a static source (see

Figure 4.3), however, in the case of an evolving source it often results in artifact-heavy

reconstructions that are difficult to interpret. In [87] the authors attempt to mitigate
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Figure 4.7. Static evolution model: Results obtained using data simulated from each of the 4
video sequences (see Figure 4.5) under different telescope arrays (see Figure 4.6) and noise conditions.
The main portion of the figure is broken up into 4 quadrants corresponding to Videos 1-4 when moving
from left to right, top to bottom. The true mean image from the ground truth videos, blurred to
3/4 the nominal resolution of the array, is shown on the top. We compare results of our proposed
method, StarWarps, to that of the single imaging methods presented in [87] and [26]. In particular, we
compare the mean image obtained using StarWarps video reconstruction. The error type NO ATM.
indicates reconstructing using visibilities on data with no atmospheric error, while the error type ATM.
indicates using the visibility amplitudes and bispectrum on data where atmospheric phase errors have
been introduced. The quality of each result, compared to the ground truth mean image, is indicated
in the table of normalized root mean squared errors (Normalized RMSE). To account for the loss of
absolute position in the presence of atmospheric phase error, images were rigidly aligned to the true
mean before computing the error.
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this problem by first smoothing the time-varying data products before imaging. This

approach was originally designed to work on mutli-epoch data; we find it is unable to

accurately recover the source structure from a single day (epoch) observation. Results

of [87] are reconstructed by an author of the method.

0 4.4.3 Unknown Evolution Model (Learn Warp)

In Section 4.4.2 we showed that a static model can often substantially improve results

over the state-of-the-art methods, even when there is significant global motion. How-

ever, when a source's emission region evolves in a similar way over time, we are able

to further improve results by simultaneously estimating a persistent warp field along

with the video frames. We demonstrate the StarWarps EM approach proposed in Sec-

tion 4.3.2, on Videos 1 and 2. In results presented, we have assumed an affine motion

basis with no translation (0 consists of 4 parameters), and have allowed the method to

converge over 30 EM iterations.

Figure 4.8 shows the recovered warp field recovered by our EM algorithm. Results

were obtained from data with and without atmospheric error. In Video 1 the true

underlying motion of the emission region can be perfectly captured by the affine model

we assume. This allows us to freely recover a very similar warp field. However, in

the "hot spot" video (Video 2), although this is no longer the case, we still recover an

accurate estimate indicating the direction of motion.

Figures 4.9 and 4.10 compare results obtained when we assume no global motion

(A = 1) to those when we allow the method to search for a persistent warp field.

Results are shown in two settings: when data is generated using the EHT2017+ array

assuming no atmospheric phase error, as well as when phase errors are introduced into

the measurements. At each time, only a small number of measurements are observed

(indicated by the corresponding uv-coverage). However, by propagating information

across the video we are able to reconstruct good quality images at each time step. In

the case of large global motion, most of the reconstructed motion is suppressed when

we assume A = 1. However, by solving for the low dimensional parameters of the warp

field, 9, we can learn about the underlying dynamics and sometimes produce higher

quality videos. Figure 4.11 helps to further visualize the recovered motion in the "hot

spot" video by showing how the intensities of a region evolve over time.

Results of our method are compared to that of a simple baseline method that we refer

to as 'snapshot imaging'. In snapshot imaging each frame of the video is independently

reconstructed using only the small number of measurements taken at that time step.

126



Sec. 4.4. Results 127

NO ATMOSPHERIC ERROR ATMOSPHERIC ERROR

Figure 4.8. Recovering Warp Field: By solving for the parameters of a persistent warp field

using the proposed EM algorithm, we are able to recover a low-dimensional representation of the

source dynamics. Results are shown using the EHT2017+ array with and without atmospheric error

(ATMOSPHERIC and NO ATMOSPHERIC ERROR, respectively). Arrows showing the direction of

recovered motion are overlaid on the mean image for a recovered video. In Video 1 the true underlying

motion can be described by a clockwise rotation. The proposed method is able to recover Video l's
motion from the observed data. Video 2 contains a 'hot spot' rotating counter-clockwise around a

static emission. Video 2 cannot be described using a single persistent flow field. Yet, despite this, the

proposed method is still able to recover the general direction of counter-clockwise motion.

In particular, we use the MEM & TV method shown in Figure 4.3 to reconstruct

each snapshot [26]. In the case of using complex visibilities, both our method and

snapshot imaging produces meaningful results. Although distinctive features of the

true underlying image are recovered by both methods, the quality of our StarWarps

0
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Figure 4.9. Time-resolved reconstruction of Video 1: Video 1 contains an image rotating
clockwise by 180' over the course of the observation. At each time, the interferometric telescope array
measures values related to 2D spatial frequencies of the current underlying image, shown in the row
labeled 'Truth'. These are indicated by the dots on the uv-coverage plots (each independent set of
measurements displayed as either black or red). We present results obtained when using calibrated
data with no atmospheric error, as well as when there is atmospheric phase error still present and we
must use data products invariant to its effects. Below the true images, we show a subset of images from
the baseline 'snapshot imaging' method and compare it to our StarWarps reconstructed video obtained
when we assume a static warp field or an inferred warp field. The mean image for each sequence is
shown in the leftmost column. In the case that we simultaneously estimate a warp field, we indicate
the resulting field as arrows on the mean image.
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Figure 4.10. Time-resolved reconstruction of Video 2: Video 2 contains a sequence of a hotspot

orbiting counter-clockwise around a black hole. We present time-resolved results obtained using data

derived from this sequence. Below the true images, we show a subset of images from the baseline

'snapshot imaging' method and compare it to our StarWarps reconstructed video obtained assuming a

static warp field or an inferred warp field. The mean image for each sequence is shown in the leftmost

column. If we simultaneously estimate a warp field, we indicate the resulting field as arrows on the

mean image. Our method substantially improve results over the snapshot method, especially in the

case of atmospheric error when the absolute position of the source cannot be recovered. Additionally,

despite the fact that this hotspot video does not match our assumed motion model, using our proposed

approach we were able to estimate a warp field that provides the direction of the source's true underlying

motion. See the caption of Figure 4.9 for more detail.



4. VIDEO VLBI RECONSTRUCTION OF TIME-VARYING SOURCES

reconstructions is higher. Furthermore, in the case of data containing atmospheric

phase errors our method shows substantial improvement over snapshot imaging. As the

closure phase and bispectrum are invariant to the absolute position of the source, each

snapshot reconstruction produces an image that is shifted by a different amount. This

makes it challenging to align the snapshot frames to pull out meaningful structure in

the reconstructed video when there is sparse uv-coverage. For this reason our method

substantially outperforms snapshot imaging.

E 4.5 Conclusion

Traditional interferometric imaging methods are designed under the assumption that

the target source is static over the course of an observation [124]. However, as we con-

tinue to push instruments to recover finer angular resolution, this assumption may no

longer be valid. For instance, the innermost orbital periods around the Milky Way's

supermassive black hole, Sgr A*, are just minutes [72]. In these cases, we have demon-

strated that traditional imaging methods often break down.

In this work, we propose a way to model VLBI measurements that allows us to

recover both the appearance and dynamics of a rapidly evolving source. Our proposed

approach, StarWarps, reconstructs a video rather than a static image. By propagat-

ing information across time, it produces significant improvements over conventional

approaches to create static images or a series of snapshot images in time.

StarWarps uses a multivariate Gaussian imaging regularizer for interferometric imag-

ing, which enables a straightforward optimization method that propagates information

through time. In [71], we simultaneously develop alternative methods for reconstructing

video from interferometric data. These methods allow for greater flexibility to incorpo-

rate a variety of imaging assumptions. However, they are prone to local minima, and

thus come at the expense of much more difficulty in converging to the true underlying

structure. These approaches have significantly different strengths and may ultimately

lead to hybrid approaches for video reconstruction that produce higher quality results,

even with noisy and sparse data.

Our technique will hopefully soon allow for video reconstruction of sources that

change on timescales of minutes, allowing a real-time view of the most energetic and

explosive events in the universe.
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Figure 4.11. Visualizing Recovered Motion: We visualize the recovered motion in Video 2 by

displaying the change in intensity around a circle in the image over time. After fitting a circle of

constant radius to each video, the intensities around the circle in each image are unwrapped and placed

in a single column in the unwrapped space x time image. As the hot spot rotates around the black

hole a distinctive line appears in the true angle x time image. These lines also appear in the StarWarps

angle x time images, but are harder to discern among the other artifacts in the snapshot imaging result.

Results were obtained using the EHT2017+ array with added atmospheric noise, and correspond to

results shown in Figure 4.10. As the absolute position of the source is lost when using the closure phase

or bispectrum, the position of the recovered black hole moves slightly over the course of the video. This

causes the fluctuation in the intensity of the bright horizontal line in the StarWarps recovered angle x

time images, as we do not shift the position of the fitted circle.
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5

Reconstruction Quality Evaluation
& the EHT Imaging Challenges

T H ERE are many ways to design a VLBI imaging algorithm, and each choice made

affects the final reconstruction [17]. For instance, the image prior or regularizer

imposed can significantly impact the final appearance of a reconstruction. However,

there are many additional choices that can also have an equal impact: the data con-

straints used, the noise model assumed, the optimization technique employed, and even,

as we saw in Chapter 4, the time-evolution assumptions you make about the underlying

image.

Within the computer vision and machine learning communities, datasets have be-

come an integral part of research. The introduction of large-scale datasets in fields such

as object detection have been the chief reason for the field's significant progress over

the last decade [126]. Not only do these datasets provide a large amount of training

data, but they also facilitate comparisons between different methods.

Current interferometry testing datasets are small and have noise properties unsuit-

able for radio wavelengths [10, 13, 83]. In response, in Section 5.1, we introduce a large,

realistic VLBI dataset website to the community (vibiimaging. csail.mit . edu). This

website allows researchers to easily access a large VLBI dataset, and compare their al-

gorithms to other leading methods.

Furthermore, in preparation for data from the EHT we have developed ongoing

challenges to test imaging algorithms. These challenges, referred to as the EHT Imaging

Challenges, aim to realistically simulate the full imaging and evaluation pipeline before

having to image and analyze real EHT data. By running our developed imaging methods

through this pipeline, we have been able to better understand each of the algorithms'

strengths and weaknesses, and even develop stronger methods. We discuss the EHT

Imaging Challenges and the results of the first four challenges in Section 5.2.
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* 5.1 VLBI Reconstruction Dataset

We introduce a dataset and website (vibiimaging. csail.mit . edu) for evaluating the

performance of VLBI image reconstruction algorithms. By supplying a large set of easy-

to-understand training and testing data, we hope to make the problem more accessible

to those less familiar with the VLBI field. The website provides a:

" Standardized data set of real and synthetic data for training and blind testing of

VLBI imaging algorithms

" Automatic quantitative evaluation of algorithm performance on realistic synthetic

test data

" Qualitative comparison of algorithm performance

* Online form to easily simulate realistic data using user-specified image and tele-

scope parameters

* 5.1.1 Synthetic Measurements

We provide a standardized format [102] dataset of over 5000 synthetic VLBI measure-

ments corresponding to a variety of array configuration, source images, and noise levels.

Measurements are simulated using the MIT Array Performance Simulator (MAPS) soft-

ware package (see Section 3.4.1) [85].

We generate data using a collection of black hole [23], astronomical [1, 2], and natural

images. We have deliberately included a diversity of images in the imaging database,

since imaging algorithms for black holes must be sufficiently non-committal that they

can identify departures from canonical expectations. Natural images test robustness to

complex scenes with varied image statistics.

Generate Your Own Data

Another useful feature of this website is the ability to generate your own synthetic

VLBI data easily from an image. This feature makes it easy to test algorithms under

arbitrary configurations, and can be very valuable when a researcher is working on

imaging with a telescope array not used in the training data described in Section 5.1.1.

An online form allows anyone to generate realistic data with a preselected or uploaded

image. This form requires the user to specify the location of the source, the telescope

array, the time of the observation, data processing information, and the types of noise
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introduced into the measurements. Generated data using these properties is then made

readily available for download.

0 5.1.2 Real Measurements

We provide 33 sets of measurements from the VLBA-BU-BLAZAR Program [73] in the

same standardized format [102]. This program has been collecting data on a number of

blazars every month since 2007. Measurements are taken using the Very Long Baseline

Array (VLBA) at 43 GHz. Although both the angular resolution and wavelength of

these measurements are very different from those taken by the EHT (which collects at

~ 230 GHz) [44], they provide a means to test algorithms on measured, experimental

data.

0 5.1.3 Automatic Evaluation System

As part of the dataset website we also provide an automatic evaluation system that

facilitates unbiased comparisons between algorithms, which are otherwise difficult to

make and are lacking in the literature. In particular, we introduce a blind test set of

challenging synthetic data. Measurements with realistic errors are generated using a

variety of target sources and telescope parameters and provided in the UVFITS and

OIFITS format [102]. Researchers are encouraged to run their algorithms on this data

and submit results to the website for evaluation.

Traditional point-by-point error metrics, such as MSE and PSNR, are sometimes un-

informative in the context of highly degraded VLBI reconstructions. Therefore, we sup-

plement the MSE metric with the perceptually motivated structural similarity (SSIM)

index [131]. Since the absolute position of the emission is lost when using the bispec-

trum, we first align the reconstruction to the ground truth image using cross-correlation.

We then evaluate the MSE and SSIM on the normalized, aligned images. Although we

consider MSE and SSIM a good first step towards quantitative analysis, we believe a

better metric of evaluation is subject for future research.

0 5.2 Event Horizon Telescope Imaging Challenges

EHT observations are both extremely sparse and difficult to calibrate, thus traditional

radio-interferometric imaging methods often perform poorly. Consequently, in prepa-

ration for spring 2017 observations with the EHT, there has been a significant effort

to develop iruaging methods that are capable of robustly reconstructing images under
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these challenging conditions. Although there has been considerable progress made in

VLBI imaging during the last couple of years, there are still a number of questions that

remain largely unanswered.

e What are the pros and cons of different imaging methods? We know each

algorithm has its own biases and is good at reconstructing different structures, but

sometimes its hard to figure out exactly what those biases are when each method

is evaluated on different datasets.

o What makes a successful imaging algorithm? Is it the prior that is the

most important component of an algorithm, or the way that data constrains the

reconstruction process? Answering these questions will help us improve our current

imaging methods.

o What should we expect with real EHT data? Even if the authors of imaging

algorithms try very hard to perform fair comparisons, there is always sort of bias

when they evaluate their own algorithms on data that they personally generated.

If we mitigate these biases do algorithms still perform at the same level, and

what conclusions can we draw if we dont get identical resulting images from each

algorithm?

To help answer these questions, and to establish confidence in our forthcoming

reconstructions from EHT data, it is imperative that we rigorously evaluate the methods

under a common set of realistic circumstances. The Event Horizon Telescope Imaging

Challenges provide a way to do this while also preemptively testing out the EHT's

imaging pipeline. These challenges not only provide an opportunity for us to better

understand each of the imaging algorithms' strengths and weaknesses, but also provide

guidance in developing stronger methods.

In this section we summarize results from the first four Event Horizon Telescope

Imaging Challenges. These challenges consisted of blind imaging of different synthetic

data sets corresponding to realistic measurements from the EHT. Challenge participants

were provided with details of telescope and noise properties, but the true emission

images/videos used to generate the data remained undisclosed. These challenges have

involved a diverse set of researchers with expertise in a variety of specialties. In addition

to those who work on imaging algorithms, researchers who generate images, understand

how to model realistic noise in the data, and can provide expertise when it comes to an

interpretation of the resulting images were all essential to the success of these challenges.
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In Section 5.2.1 we discuss the general pipeline of the imaging challenges. In Sec-

tion 5.2.2 we discuss data generation and what types of noise/error was included in

the synthetic measurements. In Section 5.2.3 we describe the forms of quantitative

and qualitative analysis done for each challenge. In Section 5.2.4 we give details of

each imaging challenge, display the submissions, and provide analysis of the results. In

Section 5.2.5 we provide concluding remarks, including a discussion on lessons we have

learned thus far from these challenges.

U 5.2.1 Challenge Pipeline

The challenge pipeline consists of a set of circular steps (See Figure 5.1):

*ndly
Reconstruct

I mages
Simulate

Cgta

EHT IMAGING
CH ALLENGES

Improve Interpret
Understanding
& Algorithms

Figure 5.1. The EHT Imaging Challenge Pipeline: The imaging challenges consist of four steps: sim-
ulation, reconstruction, evaluation, and learning. This process encourages algorithm development and
improves our understanding of imaging methods on EHT quality data. This newly acquired knowledge
then helps to shape the next imaging challenge.

1. Simulate Data: A team of researchers simulate realistic datasets corresponding

to measurements made by the EHT. These datasets are publicly distributed on

http : //vlbiimaging . cs ail .mit . edu/imagingchallenge without information about

the truth image or video used to generate data.
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2. Blindly Reconstruct Images: Teams or individuals independently reconstruct

images from the publicly available data, and submit their reconstructions to the

website.

3. Evaluate & Interpret: The submitted images are sent to a "panel of experts"

who try to predict what the underlying emission is caused by, and qualitatively

evaluates the images without knowledge of the ground truth image/video. Sub-

mitted images are also quantitatively compared to the true image/video using

standard fidelity metrics.

4. Improve Understanding & Algorithms: The performance of imaging methods

and the evaluation process are assessed. This assessment helps us to improve the

imaging algorithms and pinpoint issues with the current imaging pipeline.

0 5.2.2 Synthetic Data Generation

To produce each dataset, visibilities were synthetically generated that corresponded to

realistic EHT observations of known brightness distributions on the sky (truth images)

at a wavelength of 1.3 mm. Generating synthetic data consists of three steps: selecting

the true image or video, generating visibilities corresponding to telescopes in the EHT

array, and adding realistic noise to the visibilities.

Data was provided in a variety of formats (e.g., UVFITS, OIFITS, and text files).

Information about the location of each emission region, the telescopes used, and the

types of noise added were always provided to the participants. Information about the

total flux of the source was provided in the case of static emissions, and the total field

of view was only provided for a few of the datasets.

Selecting the True Image or Video

The first step in generating a synthetic VLBI dataset is choosing the underlying source

image that will be observed. We want to make sure the imaging algorithms can reliably

reconstruct an image of the black hole, even if it does not match our expectations. For

this reason, many different kinds of images have been used in the challenges thus far. In

addition to a varied set of black hole simulation images, we also have used real images

of other astronomical sources (e.g. blazars), and a non-astronomical terrestrial image.

Both static and time-varying sources were tested in the imaging challenges. In

the first four challenges, there were eight datasets containing static sources and two
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datasets of time-varying sources. Specifics of each truth image or video is discussed in

the subsequent sections of this chapter.

Generating EHT Visibilities

To generate realistic visibilities, each truth image's Fourier transform was computed

along projected baselines corresponding to telescopes in the EHT. Specifically, a subset

of the telescopes located in Hawaii, Arizona, Mexico, Chile, France, Spain, and the

South Pole were used. The coordinates and SEFD that were assumed for each telescope

are specified in Table 2.2 in Chapter 2.

In the case of a static emission, the same image was used to compute each set of

measurements for the full observation. In the case of a time-varying emission, a single

frame of a video was used to obtain the set of measurements corresponding to a single

time during the observation.

Adding Noise to the Visibilities

Three different types of noise were added to the ideal complex visibilities: thermal, at-

mospheric (randomized station phases), and systematic (gain calibration errors). Fur-

thermore, as time-varying emissions break common assumptions used in VLBI imaging,

we also categorize time-variability as a form of "noise". By providing challenges with

different kinds of noise, we are able to study how robust different methods are to varying

levels and types of noise.

Thermal Noise: Isotropic Gaussian noise was added to the simulated complex visibil-

ities, F, to mimic the effect of thermal noise. Following the characterization of thermal

noise presented in Equation 2.24 of Chapter 2, the standard deviation of the Gaussian

noise for a visibility was fixed based on bandwidth (Av), integration time (r), and

each telescope's System Equivalent Flux Density(SEFD). A factor of r 1/0.88 was

included due to the effect of 2-bit quantization [124].

Atmospheric Noise: As discussed in Section 2.3.1 of Chapter 2, variable amounts

of water vapor in the atmosphere above each telescope site cause there to be large

fluctuations in the propagation delay of light at 1.3 mm. The atmosphere affects an

ideal visibility, F, by introducing an additional, rapidly varying, station-based phase

term:

easured = exp [i (O(t) - k (t))] r ' (5.1)(5.1)
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where #k and Oj are the phase delays introduced in the path to telescopes k and j
respectively. To simulate atmospheric errors, a phase shift was introduced in each

complex visibility [124]. This phase shift incorporated random phases drawn uniformly

from [0, 27r) for each corresponding site at each time step, t.

Systematic Gain Miscalibration Error: Systematic (site-based) gain errors are intro-

duced as error in the SEFD used for calibration. Gain calibration errors are modeled

at each site as a time-dependent gain G(t) and a time-dependent opacity p(t). Given

the source elevation at time t, 0(t), a time-dependent SEFD is computed using the

relationship

SEFD(t) = SEFDideal exp [p(t)] / sin [0(t)] (5.2)
G(t)

This new time-dependent SEFD measure is used in place of the measured SEFD when

computing thermal noise (Refer to Equation 2.24) on each visibility [26]. The gain

calibration and opacity are both modeled as Gaussian random processes with 1-sigma

values equal to:

* 10% constant SEFD variation for each site, plus 10% additional scan-by-scan vari-

ation

* 10% variation in the true opacity

When systematic gain errors are introduced into a dataset, the visibility amplitudes

often exceed the emission's total flux density (see Figures 5.6, 5.18, and 5.24).

0 5.2.3 Analysis and Evaluation

We evaluate the accuracy of each of the reconstructions using a variety of methods.

First, we perform a traditional quantitative analysis using point-by-point fidelity met-

rics. Second, we provide feedback on the reconstructions from a panel of experts who

were asked to evaluate the reconstructed images without knowledge of the truth images.

Quantitative Analysis

We evaluate the performance of each submitted reconstruction using traditional point-

by-point fidelity metrics: normalized root-mean-square-error (normalized RMSE) and

normalized cross-correlation.
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Blur Levels To analyze the agreement of submitted reconstructions with the truth im-

age at a variety of resolutions, each of the images was blurred with a series of anisotropic

restoring beams. The nominal beam size was computed for each challenge by fitting a

Gaussian to the dirty beam [26]. Once the nominal beam size was determined, each of

the truth and submitted reconstruction images were convolved with a series of beams

that were a fraction of the nominal beam size. Specifically, each image was convolved

with a beam of k/10 times the nominal beam size for k C {0, ... , 15}. We refer to

the convolved truth and reconstruction images as c-truth andc-reconstruction images,

respectively.

Figures 5.5, 5.8, 5.11, 5.14, 5.17, 5.20, 5.23, 5.26, 5.29, and 5.34 show a sample of

c-truth images for each of the ten datasets. Note that the beam size in pixels depends

not only on the telescope array, but also the image's field of view.

Registration To evaluate the performance of a c-reconstruction using point-by-point

error metrics, the c-reconstruction must be properly aligned with the c-truth image.

However, methods that rely on closure quantities (e.g. bispectrum, closure phases)

are often invariant to absolute position. Therefore, these reconstructions are generally

translated from the true position.

To correct for this translation before evaluating the reconstruction error, each c-

reconstruction was registered to its corresponding c-truth image. This is done by max-

imizing the cross-correlation between the normalized images. Alignments were done on

images padded to have twice the FOV with a pixel spacing specified by the truth image.

Fidelity Metrics We evaluate the normalized root-mean-squared-error (RMSE) and nor-

malized cross-correlation for each independently registered c-reconstruction. These met-

rics are defined below for an N pixel c-reconstruction, re, and its corresponding c-truth,

gc, image.

Normalized RMSEC = " (5.3)
j, Irc[n] 2

I (rc[n] - rc) x (gc[n] - ge)Normalized Cross-Correlationc = (5.4)
N n -rc-gc

The terms d and o indicate the mean and standard deviation of values in x respectively.
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Qualitative Analysis

An independent panel of two to three experts were also asked to review the recon-

structions - without knowledge of the truth images - and provide feedback. The goal

of this exercise was to get a quick sense of how we might actually be able to use the

reconstructed images to infer the structure of the underlying source, and to assess the

reliability of these conclusions.
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Figure 5.2. A screen shot of the evaluation website used by judges in the fourth challenge (dataset
7). Judges were provided with the submission images, challenge data, and plots that showed how well
each image fit the simulated measurements. Additional plots (such as the uv-coverage, beam size, etc)
were provided upon request.

Each expert judge was provided with a website containing the submissions for each

dataset, along with plots showing how well the submitted image aligned with the mea-

sured amplitude and closure phases. Refer to Figure 5.2 for a sample screen shot. These

plots made it easier for the panel to compare the reconstructed images and to analyze

how well each image fit the provided data in amplitude and closure phase. Judges were
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welcome to ask for additional materials to help them in the judging process, but were

not given any information about the underlying truth image.

Nine different judges participated on the panels: Sheperd Doeleman, Vincent Fish,

Laurent Loinard, Mark Reid, Motoki Kino, Fabien Baron, Jim Moran, Charles Gam-

mie, and Heino Falcke. In each dataset section we provide a few comments from each

associated judge.

U 5.2.4 Challenge Datasets & Results

The imaging challenges thus far have consisted of 4 different challenges containing 10

different datasets. In Table 5.1 we summarize the conditions of each dataset, and in

the following sections we discuss each dataset in further detail along with results.

Challenge
- Dataset Location Telescopes

Flux FOV
(Jy) (pas) Noise Property

1 - 1 Sgr A* SMA, JCMT, SMT, LMT, 2 340 Thermal
ALMA, APEX, PV, PDB, SPT

1 - 2 M87 SMA, JCMT, SMT, LMT, 2 140 Thermal, Atmospheric,
ALMA, APEX, PV, PDB, SPT Systematic

1 - 3 Sgr A* SMA, SMT, LMT, ALMA, SPT 2 500 Thermal, Atmospheric

2 - 4 3C279 SMA, JCMT, SMT, LMT, 3 - Thermal, Atmospheric
ALMA, APEX, PV, PDB, SPT

2 - 5 M87 SMA, JCMT, SMT, LMT, 2 - Thermal, Atmospheric
ALMA, APEX, PV, PDB, SPT

2 - 6 Sgr A* SMA, JCMT, SMT, LMT, 2 - Thermal, Atmospheric
ALMA, APEX, PV, PDB, SPT Systematic

3 - 7 Sgr A* SMA, SMT, LMT, ALMA, 2 200 Thermal, Atmospheric
PV, PDB, SPT

4 - 8 Sgr A* SMA, SMT, LMT, ALMA, 2 - Thermal, Atmospheric
PV, PDB, SPT Systematic

4 - 9 Sgr A* SMA, JCMT, SMT, LMT, - - Thermal, Atmospheric
ALMA, APEX, PV, SPT Time-Variability

4 - 10 Sgr A* SMA, JCMT, SMT, LMT,
ALMA, APEX, PV, SPT

Thermal, Atmospheric
Time-Variability

Table 5.1. Challenge Conditions: These specified conditions used to generate challenge datasets.
All information in this table was provided to challenge participants. Specifics of each telescope can be
seen in Table 2.2 of Chapter 2.
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Challenge 1 - Dataset 1

Image: The image used to generate measurements for this dataset was a ray-traced

result from a GRMHD simulation contributed by Chi-Kwan Chan [27]. The system

exhibits a faint jet and prominent black hole shadow. The total image field of view is

340 p-arcseconds and the total flux density is 2 Jy.

Data: This dataset was generated using the telescopes in Hawaii (SMA & JCMT), Ari-

zona (SMT), Mexico (LMT), Chile (ALMA & APEX), France (PDB), Spain (PV), and

the South Pole (SPT). The telescopes were assumed to be pointed towards Sgr A*and

only thermal noise was included in the visibility measurements. Thus, there were no

phase corruptions due to the atmosphere. The uv-coverage and visibility amplitude

plotted as a function of frequency (uv-distance) are shown in Figure 5.3. In this dataset

both the field of view and the total flux of the source were provided to the participants.
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Figure 5.3. Dataset 1: The u-v coverage (left), and amplitude versus u-v distance (right) for the
challenge dataset.

Submissions: Six submissions were received for this challenge's dataset. The submitted

images can be seen in Figure 5.4 for the two colormaps along with the truth image. The

method names and closest appropriate references for each submission are listed below:

" Akiyama & Tazaki using Sparse Modeling with Complex Visibilities (A&T: Visi-

bility SM) [62]

" Chael using MEMHorizon with Closure Amplitudes and Closure Phases (C: Clo-

sure Only MEMHor) [26]

" Chael using MEMHorizon with Amplitudes and Closure Phases (C: Amp+Cl-Ph

MEMHor) [26]
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" Chael using MEMHorizon with the Bispectrum (C: Bisp MEMHor) [26]

" Bouman using CHIRP with Complex Visibilities (Bo: Visibility CHIRP)

" Deane using PyMORESANE (D:PyMORESANE) [30]

Evaluation A quantitative analysis comparing submissions to the truth image using

normalized cross-correlation and normalized RMSE can be seen in Figure 5.5. Although

all submitted images were very consistent with the data, under these measures C:

Amp+Cl-Ph MEMHor and C: Bisp MEMHor performed the best.

Qualitative analysis was done by a panel of three judges. All judges expressed results

were very consistent, and believed there was strong evidence that the underlying image

was a black hole shadow. All panelists selected C: Amp+Cl-Ph MEMHor as a top

reconstruction choice. We provide selected quotes from each panelist below:

This clearly looks like a black hole shadow with a crescent shape

due to Doppler boosting on one side. It appears that the rota-

tion/orbital axis is roughly NS with left side approaching. The

diameter of the shadow would be about 50uas, but it's hard to read

off the figures - I imagine that fitting to the image would give a

pretty robust estimate. -Sheperd Doeleman

The reconstructions are mostly consistent with each other. If we

reconstructed this set of images, we'd be pretty confident publishing

one or more of these images. -Vincent Fish

If there is a black hole, the diameter of the shadow would be about

50 uas. -Laurent Loinard
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Challenge 1 - Dataset 2

Image: The image used to generate measurements was a ray-traced result from a

GRMHD simulation contributed by Roman Gold [53]. This image shows a faint black

hole shadow feature but with a more prominent circular feature from emission along

the jet funnel wall. The total image field of view was 140 p-arcseconds and the image's

total flux density was rescaled to 2 Jy.

Data: This dataset was generated using the telescopes in Hawaii (SMA & JCMT),

Arizona (SMT), Mexico (LMT), Chile (ALMA & APEX), France (PDB), Spain (PV),

and the South Pole (SPT). The telescopes were assumed to be pointed towards M87.

Thermal noise, atmospheric phase error, and gain mis-calibration error were all included

in the visibility measurements. The uv-coverage and the visibility amplitude plotted as

a function of frequency (uv-distance) are shown in Figure 5.6. In this dataset both the

field of view and the total flux of the source were provided to the participants.
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Figure 5.6. Dataset 2: The u-v coverage (left), and amplitude versus u-v distance (right) for the
challenge dataset. Note that amplitude mis-calibration errors cause the amplitude to sometimes exceed
the emission's total flux of 2 Jy.

Submissions: Six submissions were received for this challenge's dataset. The submitted

images can be seen in Figure 5.7 for the two colormaps along with the truth image. The

method names and closest appropriate references for each submission are listed below:

" Akiyama & Tazaki using Sparse Modeling with Visibility Amplitudes and Closure

Phases (A&T: Amp+Cl-Ph SM) [6,62]

" Chael using MEMHorizon with Closure Amplitudes and Closure Phases (C: Clo-

sure Only MEMHor) [26]
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* Chael using MEMHorizon with Amplitudes and Closure Phases (C: Amp+Cl-Ph

MEMHor) [26]

" Chael using MEMHorizon with the Bispectrum (C: Bisp MEMHor) [26]

" Bouman using CHIRP with the Bispectrum (Bo: Bisp CHIRP 1 & 2)

Evaluation: A quantitative analysis comparing submissions to the truth image using

normalized cross-correlation and normalized RMSE can be seen in Figure 5.8. Under

both metrics C:Amp+Cl-Ph MEMHor fit the true image the best.

Qualitative analysis was done by a panel of three judges. Although the panelists

identified a ring structure in many of the reconstructions, there was concern about the

consistency of the results. All three panelists chose C: Amp+Cl-Ph MEMHor as a top

reconstruction. We provide selected quotes from each panelist below.

appears to be a 'ring' of some sort, but smaller ( 20uas diameter)

-Sheperd Doeleman

This dataset may be badly miscalibrated. The reconstructions are

inconsistent with each other. If we reconstructed this set of images

from the same set of data, I would vote against publishing any of

them. -Vincent Fish

If there is a black hole, the diameter of the shadow would be about

30 uas. -Laurent Loinard
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Challenge 1 - Dataset 3

Image: This dataset's image was created by adopting a reconstructed image of 3C273

from 7 mm VLBI by the BU Blazar group [73]. The particular epoch chosen was 4 July,

2012. This image shows a prominent one-sided jet extended from a bright core, as is

characteristic in many longer-wavelength VLBI images. The original image had a field

of view of approximately 5 mas, so the image was rescaled by a factor of 1/10 to give

a resulting field of view of approximately 500 pas. The image was also rotated from its

original orientation. The total flux density of the image was rescaled to 2 Jy.

Data: This dataset was generated using a smaller telescope array with only sites in

Hawaii (SMA), Arizona (SMT), Mexico (LMT), Chile (ALMA), and the South Pole

(SPT). Note that JCMT and APEX were not included in the array, so there were no

short baselines to help with calibration. The telescopes were assumed to be pointed

towards Sgr A*and and both thermal noise and atmospheric phase error was included

in the visibility measurements. The uv-coverage and the visibility amplitude plotted as

a function of frequency (uv-distance) are shown in Figure 5.9. In this dataset both the

field of view and the total flux of the source were provided to the participants.

1.0 lelO
_2.0%

0.5 --
1.5

0.0(
1.0

0
0
U
>-0.5.......E <0.5 w .

-0510.0 10 .

-1.0 -0.5 0.0 0.5 1.0 0.2 0.4 0.6 0.8 1.0
u-Coordinate (A) le10 uv-Distance (A) le10

Figure 5.9. Dataset 3: The u-v coverage (left), and amplitude versus u-v distance (right) for the

challenge dataset.

Submissions: Six submissions were received for this challenge's dataset. The submitted

images can be seen in Figure 5.10 for the two colormaps along with the truth image.

The method names and closest appropriate references for each submission are listed

below:
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" Akiyama & Tazaki using Sparse Modeling with Visibility Amplitudes and Closure

Phases (A&T: Amp+Cl-Ph SM) [62]

" Chael using MEMHorizon with Closure Amplitudes and Closure Phases (C: Clo-

sure Only MEMHor) [26]

" Chael using MEMHorizon with Amplitudes and Closure Phases (C: Amp+Cl-Ph

MEMHor) [26]

" Chael using MEMHorizon with the Bispectrum (C: Bisp MEMHor) [26]

" Bouman using CHIRP with the Bispectrum (Bo: Bisp CHIRP 1 and Bo:Bisp

CHIRP 2)

Evaluation: A quantitative analysis comparing submissions to the truth image using

normalized cross-correlation and normalized RMSE can be seen in Figure 5.11. Under

both metrics C:Amp+Cl-Ph MEMHor fit true image the best by a large margin.

Qualitative analysis was done by a panel of three judges. Although the panelists

all felt the results were inconsistent, they correctly identified the underlying image as

being a jet. All three panelists chose C: Amp+Cl-Ph MEMHor as a top reconstruction.

We provide selected quotes from each panelist below.

Hard to tell what this might be. Some discrete points or a filamen-

tary structure - jet?. The big dip in amplitude on the short baseline

means there is some extended structure on 1G-lambda scales (200

uas). I guess I'd say this is a core-jet with the jet going off to the

NE (upper left). -Sheperd Doeleman

At least three of the reconstructions converge on something like a

one-sided jet with a bright core. -Vincent Fish

I dont see strong evidence for a shadow. Its interesting that there

is a wide variety of reconstructed images. From non-detection to a

dominant compact central object, with perhaps a jet, to a complex

funny looking structure... -Laurent Loinard
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Challenge 2 - Dataset 4

Image: This dataset's image was created by adopting a reconstructed image of 3C279

from 7 mm VLBI by the BU Blazar group [73]. This image features a prominent jet

structure. The particular epoch chosen was the 18th of March, 2016. The original

image had a field of view of approximately 3 milli-arcseconds, but was rescaled to a

field of view of approximately 500 jt-arcseconds. The image was also rotated from its

original orientation. The total flux density of the image was rescaled to 3 Jy.

Data: This dataset was generated using the telescopes in Hawaii (SMA & JCMT),

Arizona (SMT), Mexico (LMT), Chile (ALMA & APEX), France (PDB), Spain (PV),

and the South Pole (SPT). The telescopes were assumed to be pointed towards 3C279

and both thermal noise and atmospheric phase error were included in the visibility

measurements. The uv-coverage and the visibility amplitude plotted as a function of

frequency (uv-distance) are shown in Figure 5.12. In this challenge the total flux of

the source was provided to the participants, but the field of view was left undisclosed.

Participants submitted an image of up to 500 p-arcseconds in size.

1e9 3.5
6

:? -3.01
4

2.5

.-. 2.0
0 <
0- .,1.5

0 -2 U CL 1.0
-4< > 0.5

-:1.0 -0.5 0.0 0.5 1.0 0 1 2 3 4 5 6 7 8
u-Coordinate (A) le10 uv-Distance (A) 1e9

Figure 5.12. Dataset 4: The u-v coverage (left), and amplitude versus u-v distance (right) for the

challenge dataset.

Submissions: Five submissions were received for this challenge's dataset. The sub-

mitted images can be seen in Figure 5.13 for the two colormaps along with the truth

image. The method names and closest appropriate references for each submission are

listed below:
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" Akiyama & Tazaki using Sparse Modeling with Visibility Amplitudes and Closure

Phases (A&T: Amp+Cl-Ph SM) [6,62]

" Akiyama & Tazaki using Sparse Modeling with Self-Calibrated Visibilities (A&T:

Self-Cal SM) [6,62]

" Chael using MEMHorizon with Visibility Amplitudes and Closure Phases (C:

Amp+Cl-Ph MEMHor) [26]

" Bouman using CHIRP with the Visibility Amplitudes and Closure Phases (Bo:

Amp+Cl-Ph CHIRP)

" Bouman using CHIRP with the Bispectrum (Bo: Bisp CHIRP)

Evaluation: A quantitative analysis comparing submissions to the truth image using

normalized cross-correlation and normalized RMSE can be seen in Figure 5.14. Under

these metrics, both A&T: Amp+Cl-Ph SM and Bo: Amp+Cl-Ph fit the true image

fairly well, although A&T: Amp+Cl-Ph SM performed slightly better, especially when

the metrics focused on the broader structure's fit.

Qualitative analysis was done by a panel of three judges. All three panelists chose

Bo:Amp+Cl-Ph CHIRP as a top reconstruction. We provide selected quotes from each

panelist below.

If this is a core-jet structure, [assuming Bo: Amp+Cl-Ph CHIRP

is correct] there is a hint of a counter jet... [and assuming A&T:

Amp+Cl-Ph SM is correct] there is no hint of a counter jet. - Mark

Reid

My guess at the underlying true image: A core-jet going to North

with a bend to NE in the middle. -Motoki Kino

I would say all images appear flaw[ed] in one way or another and

would be dismayed if we ever got something like this out of the

EHT. -Fabien Baron
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Challenge 2 - Dataset 5

Image: The image used to generate measurements for this dataset was a 1.3 mm ray-

traced result from a GRMHD simulation of M87 contributed by Monika Mogcibrodzka [94].

This jet model was generated assuming a black hole of 3.5 billion solar masses, a lower

estimate on the size of M87's black hole. The image is viewed at 30 degrees from the

pole, and exhibits a faint jet and prominent black hole shadow. The full image's field

of view is 160 p-arcseconds and the total flux density is scaled to 2 Jy.

Data: This dataset was generated using the telescopes in Hawaii (SMA & JCMT),

Arizona (SMT), Mexico (LMT), Chile (ALMA & APEX), France (PDB), Spain (PV),

and the South Pole (SPT). The telescopes were assumed to be pointed towards M87

and both thermal noise and atmospheric phase error were included in the visibility mea-

surements. The uv-coverage and visibility amplitude plotted as a function of frequency

(uv-distance) are shown in Figure 5.15. In this dataset the total flux of the source was

provided to the participants, but the field of view was left undisclosed. Participants

submitted an image of up to 500 p-arcseconds in size.
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Figure 5.15. Dataset 5: The u-v coverage (left), and amplitude versus u-v distance (right) for the
challenge dataset.

Submissions: Five submissions were received for this challenge's dataset. The submit-

ted images can be seen in Figure 5.16 for the two colormaps along with the truth image.

The method names and appropriate references for each submission are listed below:



M)

0
U
a)

(U

Q)

75)

60.0
Relative RA (I-arcseconds)

~0
U

U

600 I0.

u.u -
Relative RA (p-arcseconds)

A&T: A&T: C: Amp+CI-Ph Bo: Amp+ Bo: BIsp
Amp+CI-Ph SM Self-Cal SM MEMHor CI-Ph CHIRP CHIRP

Figure 5.16. Dataset 5: Truth (top) and submitted images in two colormaps.

1

0.9 I Decreasing Error
- 0.95

0.9 fi

0.85 /

0

0 0.75
I Decreasing Error

0.7
Fractional Beam Width

0.8,

LL 0.7
0.6

Q)0. 5

0.4

0.1
0

Fractional Beam Width

---- A&T: Amp+CI-Ph SM
---- A&T: Self-Cal SM
-C: Amp+CI-Ph
-Bo: Amp+CI-Ph CHIRP
-Bo: Bisp CHIRP

0.0 0.3 0.6 0.9 1.2 1.5
Figure 5.17. Dataset 5: Normalized Cross Correlation and Normalized RMSE for each submission
along with a visualization showing the effect of a restoring beam of varying sizes on the truth images.

U.u 1.0

5



5. RECONSTRUCTION QUALITY EVALUATION & THE EHT IMAGING CHALLENGES

" Tazaki & Akiyama Sparse Modeling using Visibility Amplitudes and Closure Phases

(A&T: Amp+Cl-Ph SM) [6,62]

" Tazaki & Akiyama Sparse Modeling using Self-Calibration (A&T: Self-Cal SM) [6,
62]

" Chael using Visibility Amplitudes and Closure Phases (C: Amp+Cl-Ph MEMHor) [26]

" Bouman CHIRP using the Visibility Amplitudes and Closure Phases (Bo: Amp+Cl-

Ph CHIRP)

" Bouman CHIRP using the Bispectrum (Bo: Bisp CHIRP)

Evaluation: A quantitative analysis comparing submissions to the truth image using

normalized cross-correlation and normalized RMSE can be seen in Figure 5.17. Under

these error metrics all submissions performed well, partly due to the fact that the struc-

ture was quite small compared to the beam size. C:Amp+Cl-Ph MEMHor performed

the best at super resolving structure of the source. However, after convolving with a

beam size of at least 0.2 the nominal beam Bo:Amp+Cl-Ph CHIRP performed slightly

better than the rest of the submissions.

Qualitative analysis was done by a panel of three judges. The judges all felt like

there was a ring structure, but did not agree on which reconstruction was the best. We

provide selected quotes from each panelist below.

This appears to be a ring-source with enhanced brightness on the

left side. - Mark Reid

My guess at the underlying true image: This is a torus structure. I

can say that a hole at the center can be a BH-shadow in astrophys-

ical point of view. -Motoki Kino

The best-looking images are the ones without bleeding and with a

deeper shadow "well"... -Fabien Baron
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Challenge 2 - Dataset 6

Image: The image used to generate measurements for this dataset was a 1.3 mm

ray-traced result from a GRMHD simulation of Sgr A* contributed by Hotaka Sh-

iokawa [118]. The image of this SANE model is viewed at 45 degrees from the pole, and

exhibits a faint ring. The full image's field of view is 160 [t-arcseconds and the total

flux density is scaled to 2 Jy.

Data: This dataset was generated using the telescopes in Hawaii (SMA & JCMT),

Arizona (SMT), Mexico (LMT), Chile (ALMA & APEX), France (PDB), Spain (PV),

and the South Pole (SPT). The telescopes were assumed to be pointed towards Sgr A*.

Thermal noise, atmospheric phase error, and systematic amplitude calibration errors

were all included in the visibility measurements. The uv-coverage and visibility ampli-

tude plotted as a function of frequency (uv-distance) are shown in Figure 5.18. In this

dataset the total flux of the source was provided to the participants, but the field of

view was left undisclosed. Participants submitted an image of up to 500 p-arcseconds

in size.
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Figure 5.18. Dataset 6: The u-v coverage (left), and amplitude versus u-v distance (right) for the

challenge dataset. Note that the amplitude miscalibration errors causes the amplitude to sometimes

exceed the emission's total flux of 2 Jy.

Submissions: Ten submissions were received for this challenge's dataset. The submitted

images can be seen in Figure 5.19 for the two colormaps along with the truth image.

Interestingly, multiple images were submitted by different participants using the same

methods, but with different image structures. The method names and appropriate

references for each submission are listed below:
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" Akiyama & Tazaki using Sparse Modeling with Visibility Amplitudes and Closure

Phases (A&T: Amp+Cl-Ph SM 1 & 2) [62]

" Tazaki & Akiyama using Sparse Modeling with Visibility Amplitudes and Closure

Phase after Amplitude Calibration (A&T: Amp-Cal& Amp+Cl-Pha SM 1 & 2) [62]

" Tazaki & Akiyama using Sparse Modeling with Self-Calibration (A&T: Self-Cal

SM 1 & 2) [62]

" Chael using MEMHorizon with Visibility Amplitudes and Closure Phases (C:

Amp+Cl-Ph MEMHor) [26]

" Bouman using CHIRP with Visibility Amplitudes and Closure Phases (Bo: Amp+Cl-

Ph CHIRP 1 & 2)

" Bouman using CHIRP with the Bispectrum (Bo: Bisp CHIRP)
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Figure 5.20. Dataset 6: Normalized Cross Correlation and Normalized RMSE for each submission
along with a visualization showing the effect of a restoring beam of varying sizes on the truth images.

Evaluation: A quantitative analysis comparing submissions to the truth image using

normalized cross-correlation and normalized RMSE can be seen in Figure 5.20. Multiple

participants found different structures that fit the data fairly well. However, only one of

these structures was correct, resulting in a bimodal distribution of error. Under these

error metrics, A&T: Amp+Cl-Ph SM 2 performed the best.
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Qualitative analysis was done by a panel of three judges. The judges were unsure

by looking at the data provided which of the two submitted structures was correct,

although some guesses were made. We provide selected quotes from each panelist

below:

This appears to be another ring-source with enhanced brightness

on the one side (which side looks uncertain). The images with the

brightening toward the lower left seem to have a bit simpler overall

structure (the others have "extra" emission near the bright edge).

So, by Occam's razor one probably should choose the brightening

on the lower left. However, if this is a BH accretion disk, many

simulations could have "extra" emission near the Doppler boosted

edge. So ?? - Mark Reid

My guess at the underlying true image: This clearly looks like a

black hole shadow with familiar decrescient and increscient emis-

sions. -Motoki Kino

Overall a decent batch of reconstruction, but what is worrying is

that the exact intensity distribution over the disk/shadow is very

algorithm-dependent. -Fabien Baron
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Challenge 3 - Dataset 7

Image: In this dataset a non-astronomical image of a snowman on a black background

was used. This image has both large scale (e.g snowballs) and fine scale (e.g. arms)

structure. The choice of using a non-astronomical image was made to test the robustness

of imaging algorithms to unusual underlying images. The total image field of view is

200 ptas and the total flux density is 2 Jy.

Data: This dataset was generated using the telescopes in Hawaii (SMA), Arizona

(SMT), Mexico (LMT), Chile (ALMA), France (PDB), Spain (PV), and the South Pole

(SPT). JCMT and APEX were not included in the array, so there were no short base-

lines to aid in calibration. Telescopes were assumed to be pointed towards Sgr A*and

both thermal noise and atmospheric phase error were included in the visibilities. The

uv-coverage for this dataset, along with the visibility amplitude plotted as a function

of frequency (uv-distance) is shown in Figure 5.21. In this challenge the total flux of

the source was provided to the participants along with the field of view.

le1O 3.0
1.0

-2.5o .. -- 2. 0

- 0.0 1.5 .

-0.5 E. 0.5

-1.0 ~pk
-1.0 -0.5 0.0 0.5 1.0 0.0 0.2 0.4 0.6 0.8 1.0

u-Coordinate (A) le1O uv-Distance (A) le1O

Figure 5.21. Dataset 7: The u-v coverage (left), and amplitude versus u-v distance (right) for the
challenge dataset.

Submissions: Twelve submissions were received for this dataset. The submitted images

can be seen in Figure 5.22 for the two colormaps. The method names and appropriate

references associated with each of the submissions are listed below:

" Akiyama & Tazaki using Sparse Modeling with Visibility Amplitudes and Closure

Phases (A&T: Amp+Cl-Ph SM) [6,62]

" Akiyama & Tazaki using Sparse Modeling with Self-Calibration (A&T: Self-Cal

SM) [6, 62]
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Jorstad using CLEAN (Jor: CLEAN) [74]

Johnson using MEMHor with Visibility Amplitudes and Closure Phases (Joh:

Amp+Cl-Ph MEMHor) [26]

Kim & Lu & Krichbaum using CLEAN (K&L: CLEAN) [115]

Kim & Lu & Krichbaum using BSMEM (K&L: BSMEM) [24]

Marscher using CLEAN (M: CLEAN) [74]

Roelefs using BSMEM (R: BSMEM) [24]

Roelefs using MEM (R: MEM and R: MEM Blurred) [26]

Baron using SQUEEZE (Ba: SQUEEZE 1 & 2) [9]
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Figure 5.23. Dataset 7: Normalized Cross Correlation and Normalized RMSE for each submission
along with a visualization showing the effect of a restoring beam of varying sizes on the truth images.

Evaluation A quantitative analysis comparing submissions to the truth image using

normalized cross-correlation and normalized RMSE can be seen in Figure 5.23. Al-

though most results were very consistent with the true underlying image, A&T: Amp+Cl-

Ph SM and A&T: Self-Cal SM performed the best by a slight margin under these error

metrics.

Qualitative analysis was done by a panel of two judges. Both judges settled on the

two BSMEM (R,: BSMEM and K&L: BSMEM) algorithms being among their favorites.

S

S

S

S

S

0

0.95

0.9

0
-a 0.85

aD
.N

E0.
0.

Z

0.751
0 0.5

Fractional Bea



166 5. RECONSTRUCTION QUALITY EVALUATION & THE EHT IMAGING CHALLENGES

We provide selected quotes from each panelist below:

These images are consistent with one another, though significant

variations exist. Guess at the image: Limb-brightened Frosty the

Snowman with his arms open for a hug. Vincent Fish

If I were a coauthor on a paper I would feel comfortable endorsing

[SparseModeling: Self-Calbrated Visibilities, SparseModeling: Am-

plutide + Closure Phase, Roelofs: BSMEM], but none of the others

(except possibly [Kim: BSMEM]) -Jim Moran
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Challenge 4 - Dataset 8

Image: The image used to generate measurements was a black hole image generated

by Hung Yi Pu [107] with an additional feature extending towards the top-left added

by Mareki Homa. The faint additional feature was added to see how well algorithms

could reconstruct a weak feature. The total image field of view was 130 pt-arcseconds

and the image's total flux density was rescaled to 2 Jy.

Data: This dataset was generated using the telescopes in Hawaii (SMA), Arizona

(SMT), Mexico (LMT), Chile (ALMA), France (PDB), Spain (PV), and the South

Pole (SPT). JCMT and APEX were not included in the array, so there were no short

baselines to aid in calibration. The telescopes were assumed to be pointed towards

Sgr A*. Thermal noise, atmospheric phase error, and systematic amplitude calibration

errors were all included in the visibility measurements. The uv-coverage and visibility

amplitude plotted as a function of frequency (uv-distance) are shown in Figure 5.24. In

this dataset the total flux of the source was provided to the participants, but the field of

view was left undisclosed. Participants submitted an image of up to 500 p-arcseconds

in size.
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Figure 5.24. Dataset 8: The u-v coverage (left), and amplitude versus u-v distance (right) for the
challenge dataset. Note that amplitude mis-calibration errors cause the amplitude to sometimes exceed
the emission's total flux of 2 Jy.

Submissions: Twelve submissions were received for this dataset. The submitted images

can be seen in Figure 5.25 for the two colormaps. The method names and appropriate

references associated with each of the submissions are listed below:
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Figure 5.26. Dataset 8: Normalized Cross Correlation and Normalized RMSE for each submission
along with a visualization showing the effect of a restoring beam of varying sizes on the truth images.

" Akiyama & Tazaki using Sparse Modeling with Visibility Amplitudes and Closure

Phases (A&T: SM 1 & 2 & 3) [6, 62]

" Chael using MEMHorizon with Visibility Amplitudes and Closure Phases (C:

Amp+Cl-Ph MEMHor) [26]

" Kim & Lu & Krichbaum using CLEAN (K&L: CLEAN 1 & 2) [115]

" Kim & Lu & Krichbaum using BSMEM (K&L: BSMEM 1 & 2) [24]

" Roelofs using BSMEM (R: BSMEM) [24]

" Bouman CHIRP using the Visibility Amplitudes and Closure Phases (Bo: Amp+Cl-

Ph CHIRP)

" Bouman StarWarps Average using the Visibility Amplitudes and Bispectrum (Bo:

StarWarps Avg)

" Bouman StarWarps Frame using the Visibility Amplitudes and Bispectrum (Bo:

StarWarps Frame)

* Norris using SQUEEZE (Ba: SQUEEZE 1 & 2) [9]

Evaluation A quantitative analysis comparing submissions to the truth image using

normalized cross-correlation and normalized RMSE can be seen in Figure 5.26. Under

these metrics, N: SQUEEZE and A&T: SM performed the best, with N:SQUEEZE
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performing slightly better for matching the structure larger 0.2 of a fractional beam

width.

Qualitative analysis was done by a panel of three judges. All judges believed the

results were fairly consistent, and that the underlying structure was of a black hole

shadow. We provide selected quotes from each panelist below:

Overall, the structure across most of the images seems to be a

black hole silhouette with a possible band running across the middle

(disk?). The shadow feature looks to be about 35-40uas in diameter.

-Sheperd Doeleman

... convey a similar qualitative impression of the source (which does

look like a black hole) and (with some yet to be determined method)

would likely lead to similar measurements for the size of the shadow

of about 40 p-arcseonds. - Charles Gammie

From the collection of images it looks pretty convincingly like

a black hole, at least to...us who know how a typical simulated

GRMHD image looks like. -Heino Falcke
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Challenge 4 - Dataset 9

Image: For this dataset a movie, rather than an image, was used to generate visibility

measurements. The movie, contributed by Lia Medeiros, was generated by ray-tracing

a GRMHD simulation (GRay and HARM) [27, 91]. The black hole model used was

SANE (Standard and Normal Evolution) with a spin of a=0.9 and the spin axis oriented

horizontally. The image was rescaled such that the size of the black hole shadow is 90%

of the expected shadow size for Sgr A*. The movie exhibits considerable variability,

including a very large flare that significantly affects the shape of the image. The black

hole shadow is fairly visible but the jet is very faint. The emission region of the video

is no bigger than 300 p-arcseconds, and the total flux of the source varies from 1-11 Jy.

Data: This dataset was generated using the telescopes in Hawaii (SMA & JCMT),

Arizona (SMT), Mexico (LMT), Chile (ALMA & APEX), Spain (PV), and the South

Pole (SPT). The uv-coverage was generated using a VEX schedule used in the EHT's

2017 observations for Sgr A*. Thermal noise and atmospheric phase error were included

in the time-varying measurements. The uv-coverage and visibility amplitude plotted

as a function of frequency (uv-distance) are shown in Figure 5.27. In this dataset both

the varying total flux of the source and field of view were left undisclosed. Participants

submitted an image of up to 500 p-arcseconds in size. However, by inspecting the

visibility amplitudes on short baselines it could be easily determined that the source

was time-varying with a total flux density ranging from 1 to 11 Jy. Sampled video

frames from the movie can be seen in Figure 5.30.
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Figure 5.27. Dataset 9: The u-v coverage (left),
challenge dataset.

and amplitude versus u-v distance (right) for the

171



Ua)

250.0 0.0 -
Relative RA (1.-arcseconds)

0

U

250.0 0.0 -250.0
Relative RA (M-arcseconds)

R: Normalized Bo: StarWarps Bo.: StarWarpsR: BSMEM BMMA&T: SMAvFrm
BSMEM Avg Frame

Figure 5.28. Dataset 9: Average truth image (top) and submitted images in two colormaps.
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Figure 5.29. Dataset 9: Normalized Cross Correlation and Normalized RMSE for each submission
along with a visualization showing the effect of a restoring beam of varying sizes on the truth images.



Figure 5.30. Dataset 9: Frames over time from the truth video. Note that there are significant
structural changes in the source image over time.

Submissions: Five submissions were received for this dataset. Although the underlying

source emission region was time-varying, participants were asked to only submit a single

image. The submitted images can be seen in Figure 5.28 for the two colormaps. The

method names and appropriate references associated with each of the submissions are

listed below:

* Akiyama & Tazaki using Sparse Modeling with Visibility Amplitudes and Closure

Phases (A&T: SM ) [6, 62]

* Roelofs using BSMEM (R: BSMEM and R,: Normalized BSMEM) [24]

" Bouman StarWarps Average using the Visibility Amplitudes and Bispectrum (Bo:

StarWarps Avg)

" Bouman StarWarps Frame using the Visibility Amplitudes and Bispectrum (Bo:

StarWarps Frame)

Evaluation: A quantitative analysis comparing submissions to the average truth image

using normalized cross-correlation and normalized R.MSE can be seen in Figure 5.29. All

submitted reconstructions match the true underlying image poorly. A&T: SM matches

the best under Normalized Cross Correlation and Bo: StarWarps Frame matches best

under Normalized RMSE. This disconnect implies that it is unclear which matches the

true image best, and they are both quite different from the true underlying image.

Qualitative analysis was done by a panel of three judges. All judges were unable

to make conclusions about the structure of the underlying movie from the submissions.

It was also noted that it is unlikely that a single image could represent the underlying

structure, as time-variations were especially large in this dataset. We provide selected

quotes from each panelist below:
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If these data were collected by the EHT, Id say the following: a) The

intrinsic nature of the flux variations could be easily determined by

also looking at AGN calibrators. b) Assuming intrinsic structure

variations, one would need to attempt dynamical modeling. c) The

closure amplitudes should be inspected. -Sheperd Doeleman

Disappointing set of images, would be difficult to publish any of

these unless one were highly favored statistically over the others. -

Charles Gammie

None of the algorithms seem to provide a decent fit anywhere... Id

be forced to publish a map by threatening penalty of death -Heino

Falcke
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Challenge 4 - Dataset 10

Image: For this dataset a movie, rather than an image, was used to generate visibility

measurements. The movie, contributed by Lia Medeiros, was generated by ray-tracing

a GRMHD simulation (GRay and HARM) [27, 91]. The black hole model used was

SANE (Standard and Normal Evolution) with a spin of a=0.7 and the spin axis oriented

vertically. This system exhibits considerable variability, but without significant flares.

The black hole shadow is fairly prominent but the jet is very faint. The emission region

of the video is no bigger than 334 pj-arcseconds, and the total flux of the source varies

from 1.5-3.5 Jy. Sampled video frames from the movie can be seen in Figure 5.33.

Data: This dataset was generated using the telescopes in Hawaii (SMA & JCMT),

Arizona (SMT), Mexico (LMT), Chile (ALMA & APEX), Spain (PV), and the South

Pole (SPT). The uv-coverage was generated using a VEX schedule used in the EHT's

2017 observations for Sgr A*. Thermal noise and atmospheric phase error were included

in the time-varying measurements. The uv-coverage and visibility amplitude plotted

as a function of frequency (uv-distance) are shown in Figure 5.31. In this dataset both

the varying total flux of the source and field of view were left undisclosed. Participants

submitted an image of up to 500 jt-arcseconds in size. However, by inspecting the

visibility amplitudes on short baselines it could be easily determined that the source

was time-varying with a total flux density ranging from 1.5 to 3.5 Jy.

1.0 lelO 4.0

3.5

0.5
m 2.5
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0 ~1.5

-0.5 - 1.0

-1.- 0.5
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Figure 5.31. Dataset 10: The u-v coverage (left), and amplitude versus u-v distance (right) for the
challenge dataset.
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' I'I
Figure 5.33. Dataset 10: Frames over time from the truth video. Note that there is substantial
time-variability, but it the variation is significantly less than in Dataset 9 (see Figure 5.30).
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Figure 5.34. Dataset 10: Normalized Cross Correlation and Normalized RMSE for each submission
along with a visualization showing the effect of a restoring beam of varying sizes on the truth images.

Submissions: Seven submissions were received for this dataset. Although the underly-

ing source emission region was time-varying, participants were asked to only submit a

single image. The submitted images can be seen in Figure 5.32 for the two colormaps.

The method names and appropriate references associated with each of the submissions

are listed below:

" Tazaki & Akiyama Sparse Modeling using Visibility Amplitudes and Closure Phases

(A&T: SM 1 & 2) [62]

" Roelofs using BSMEM (R: BSMEM and R: Normalized BSMEM) [24]
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* Chael MEMHorizon using Visibility Amplitudes and Closure Phases (C:Amp+Cl-

Ph MEMHor) [26]

* Bouman StarWarps Average using the Visibility Amplitudes and Bispectrum (Bo:

StarWarps Avg)

" Bouman StarWarps Frame using the Visibility Amplitudes and Bispectrum (Bo:

StarWarps Frame)

Evaluation: A quantitative analysis comparing submissions to the truth image using

normalized cross-correlation and normalized RMSE can be seen in Figure 5.34. Under

these metrics, Bo: StarWarps Frame performed the best.

Qualitative analysis was done by a panel of three judges. Judges were not confident

in their analysis due to the significant variability in results. However, it was noted that

a 40 p-arcsecond structure appears in most reconstructions. We provide selected quotes

from each panelist below:

[R: BSMEM, R: Normalized BSMEM, C: Amp+Cl-Ph MEMHor,
Bo: StarWarps Avg, Bo: StarWarps Frame ] all appear to have

two regions of emission oriented E-W about 40 uas apart (possibly

jets?). -Sheperd Doeleman

there are two conflicting models: .... a black hole with a 40muas

shadow [or] an edge-brightened jet. - Charles Gammie

[ Bo: StarWarps] looks a bit suspicious (over-interpreting) but can

not be ruled out. -Heino Falcke



0 5.2.5 Discussion

The first four imaging challenges have been a successful examination of ongoing efforts

to develop new imaging techniques that can cope with the unique challenges presented in

EHT data. Through these challenges we have not only been able to rigorously evaluate

the performance of different methods, but also identify a number of questions that we

believe require more attention and discussion before drawing conclusions from images

reconstructed with real EHT data.

Encouraging Algorithm Development

The imaging challenges have spurred significant progress in methods being developed

for EHT specific data. This progress can be clearly seen by reviewing a single team's

submission over time. For instance, Figure 5.35 shows the submissions done using Sparse

Modeling by Akiyama & Tazaki over the four challenges. The top row shows the truth

image, and the bottom row a result submitted by the team. In the first challenge,

although results were somewhat consistent with the truth image, they contained a lot

of spurious artifacts. However, after learning about their method's weaknesses through

the challenges, the team was able to refine their method and produce some of the best

submissions by the third and fourth challenges.

ch. 1

a..N;flflfl..................
I
I

Ch.2

Eu.:
Ch.3:: Ch.4:

U,........ .........
Figure 5.35. Images submitted to the first four imaging challenges by Akiyama & Tazaki using
Sparse Modeling. The truth image is shown on the top and the submitted image right below. Note the
substantial improvement of their method in recovering the correct structure of a static source.

Breaking Algorithms: By generating challenge datasets that are sparser, noisier, or just

outside of the algorithm's comfort zone, participants are often introduced to flaws in

their method. Exposing weaknesses of imaging methods in this way has lead to the

most substantial algorithm development.
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One example of this can be seen with the large field of view required for imaging in

dataset 3 of the first challenge. Previously, imaging algorithms for the EHT were solely

tested on examples with small fields of view. Thus, most algorithms did not perform

well on data with extended structure (see Figure 5.10). However, in the time between

the first and second challenges, participants improved their methods based on these

findings, resulting in much better performance on the large field of view example in

dataset 4 (see Figure 5.13).

To encourage progress, we continue to introduce increasingly realistic datasets. In

the fourth, and most recent, challenge we introduced time-variability into datasets 9

and 10 - generating visibilities from a movie rather than a still image. This change

violated most imaging method's fundamental assumptions, and resulted in poor results

(see Figures 5.28 and 5.32). Even methods designed to work with time-varying data

(e.g. StarWarps) had trouble, and did not recover an accurate image for the 9th dataset

(this dataset contained much more variability than is normally tested for StarWaprs).

We hope that the introduction of increasingly realistic datasets, such as these, will

continue to progress development of imaging methods.

Improving Data Constraints: The progress of some methods (e.g. Bo: CHIRP and C:

MEMHor) can also be attributed to comparisons done through the imaging challenge.

For instance, results of the first challenge highlighted the importance of a method's

choice of constraining data products. An example of this is in Chael's three submis-

sions (C: Closure Only MEMHor, C: Amp+Cl-Ph MEMHor, and C: Bisp MEMHor).

These reconstructions were obtained using the same optimization strategy and image

priors, but the data products that were constrained in imaging were changed, leading

to drastically different results (see Figures 5.7 and 5.10). In particular, Chael's submis-

sions for the first challenge that constrained both the visibility amplitudes and closure

phases consistently performed well across all datasets.

Figure 5.36 shows results of dataset 3 obtained by constraining the visibility ampli-

tude and closure phases versus just the bispectrum. The clear success of the amplitude

and closure phase imaging suggested that additional study into algorithms that utilize

the visibility amplitudes (instead of the bispectrum) may be fruitful. In subsequent

challenges, Bo: CHIRP and C: MEMHor improved their submissions by submitting

results that were obtained by constraining visibility amplitudes. The clear advantage

of this choice can be seen by comparing Bo: Amp+Cl-Ph CHIRP and Bo: Bisp CHIRP

in challenge 2's datasets (see Figures 5.13 and 5.16). Adding these additional visibility

constraints has proved to be especially helpful in large field of view imaging.
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Truth Image Amplitude & Y
Closure Phases

Bispectrum

Figure 5.36. For extended emissions that require a large field of view during imaging, the imaging
challenges helped to identify that it was very important to constrain the visibility amplitudes. As
the bispectrum is the product of three terms, there can be a lot of uncertainty in reconstructing each
visibility's amplitude when imaging purely with the bispectrum. This can result in poor reconstructions,
especially when the field of view is not well constrained.

Identifying Biases

One of the initial motivations for setting up the imaging challenges was to help in

understanding the biases of different algorithms. After analyzing the results of the first

four challenges some conclusions can be made.

As expected, Bayesian-style methods outperform traditional CLEAN approaches

on EHT data (see Figures 5.22 and 5.25). These Bayesian-style methods also gener-

ally achieve some level of super-resolution, although at different degrees. For instance,

MEMHorizon results in the most super-resolved recovered images. MEMHorizon's re-

covered images can be helpful in identifying structures smaller than the nominal beam

width (see Figure 5.7), and thus are often favored by judges. However the resulting

images by MEMHorizon are generally sparser than the true underlying image. CHIRP

on the other hand usually produces blurrier results than MEMHorizon. Empirically,

CHIRP results generally become consistent with the truth image at around 1/2 the

nominal beam width.

Dataset 7 of challenge 3 used a picture of a snowman as the true underlying image.

This dataset was designed to test methods' ability to recover the correct structure in

the case of an unusual or surprising underlying truth image. For the most part the

imaging algorithms produced an image that accurately reflects the basic structure of

the snowman (see Figure 5.23). Results like these give us confidence that we are not

overly biasing our methods to produce images of a black hole shadow.
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Identifying Degeneracies

As image reconstruction from VLBI data is an ill-posed problem, there are an infinite

number of possible solutions that perfectly explain the data. Nevertheless, it is gen-

erally the case that most imaging methods converge to a very similar looking image.

However, the level of degeneracy in EHT data is still an open question: are there mul-

tiple reasonable image structures that fit the data equally well, and if so, when does

this happen?

Dataset 6 is a surprising example of when a serious degeneracy exists in EHT quality

data. In this dataset, two sets of structures were identified as being consistent with the

data provided. Figure 5.37 shows these two structures along with plots comparing the

true and measured amplitude and closure phases. These resulting images appeared to

be flips of one another, but surprisingly, both fit the measured data equally well. From

the provided data, both the imaging participants and expert judges were unable to

decide which structure was most likely to be correct.

Upon inspection, it was concluded that one possible reason for this degeneracy is

due to the presence of noisy closure phases close to zero. The visibilities of a flipped

image will simply be conjugated with respect to the original image. Thus, if an image

has small closure phases originally, the flipped image will also have a small closure

phase. Consequently, a large amount of error on a small closure phase could result in

uncertainty in the direction of the image's structure.

Two Possible Sml lsr hs iTruth Image Tw anasi Amplitude Fit Samplecsue sPhase Fit

uv-dstace )5MT (hEX-r)

CLI

uv-distance (A) GMT (hour)

Figure 5.37. A case of degeneracy in EHT data. Two possible explanations fit the simulated EHT
data equally well. In most cases the closure phases appeared nearly identical, and only small differences
existed (that fit well within the error expected on measurements). We believe this degeneracy exists
due to small closure phases with large error.

182



This example brings to our attention a flaw with current imaging algorithms: most

algorithms just produce a single final image. However, the collected EHT data may

have serious degeneracies, and it is important that our algorithms have a way of finding

them. Currently, finding different solutions requires the user to adjust parameters and

manually search the space of possible images. Instead, we should be developing imaging

methods that alert us to the level of degeneracy in the data by finding all reasonable

images that fit the data well.

Identifying Masquerading Structures

For the second dataset, most algorithms reproduced the primary image features. How-

ever, the prominent ring feature in this image was not caused by a black hole shadow,
but instead a jet funnel wall emission. See Figure 5.38. This caused the expert judges

to incorrectly believe there existed a black hole shadow with a smaller diameter of

30 p-arcseconds.

Truth Image Reconstruction

Figure 5.38. The black hole's lensed photon ring is highlighted by the yellow ring. However, a funnel
wall causes a more prominent ring feature that shows up in the reconstruction, highlighted in red. This
example emphasizes the importance of further study into features that may masquerade as a black hole
photon ring.

This result is especially interesting, considering the results presented in [36]. In [36]
a smaller primary emission region of 37 p-arcseconds lead the authors to believe that

it is most likely that we are observing Sgr A* edge-on, with a Doppler boosted edge

contributing to a smaller bright region than would be produced by a face-on black hole.

However, perhaps the primary emission region is not due to the black hole's photon

ring, but instead should be attributed to another source of emission.
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Dataset 2 emphasizes the importance of further study into features that may mas-

querade as a black hole shadow. It is important for us to understand what situations

could cause similar features to appear, and in those cases, determine if there ways to

distinguish them from a black hole's photon ring.

Beginning a Conversation About Confidence

All algorithms make different imaging assumptions, and thus produce different images,
even in the best cases. However, despite these differences, there is often some consensus

as to the primary structure in the image. In fact, comparing independently recon-

structed images resulting from different methods can often help in identifying which

structures are most likely to be real and which are spurious artifacts.

Figure 5.39. Five submissions reconstructed using the same data but using different imaging algo-
rithms.

Are the images shown in Figure 5.39, originating from dataset 5, consistent with

one another? Which structures are real and which are probably just artifacts? One

observation made through the judging panels is that different people have different

standards on how similar images must look to believe an interpretation of them. Thus,
it is imperative that a conversation is started now on what constitutes consistency

between images. Perhaps, quantitative measures should also be developed to help

determine the consistency between a set of images. Addressing these questions early

will help avoid discord when deciding if a reconstructed image from EHT data should

be released.
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6

Turning Corners into Cameras

T H E ability to see around obstructions would prove valuable in a wide range of

applications. As just two examples, remotely sensing occupants in a room would

be valuable in search and rescue operations, and the ability to detect hidden, oncoming

vehicles and/or pedestrians would be valuable in collision avoidance systems [16]. Al-

though often not visible to the naked eye, in many environments, light from obscured

portions of a scene is scattered over many of the observable surfaces. This reflected

light can be used to recover information about the hidden scene (see Fig. 6.1). In this

chapter, we exploit the vertical edge at the corner of a wall to construct a "camera"

that sees beyond the wall. Since vertical wall edges are ubiquitous, such cameras can

be found in many environments.

The radiance emanating from the ground in front of a corner, e.g., at the base of

a building, is influenced by many factors: the albedo, shape, and BRDF of its surface,

as well as the light coming from the full hemisphere above it. Assuming the ground

has a significant diffuse component, a majority of the reflected light comes from the

surroundings that are easily seen from the observer's position next to the occluding

wall (the visible region is shaded in yellow in Fig. 6.1a). However, emitted and reflected

light from behind the corner, hidden from the observer, also has a small effect on the

ground's radiance in the form of a subtle gradient of light encircling the corner; this is

not a shadow, but is instead what is referred to as a penumbra.

The faint penumbra on the ground is caused by the reflection of an increasing amount

of light from the hidden scene. To illustrate this, imagine standing with your shoulder

up against the building's wall (refer to the leftmost picture of Fig. 6. 1b). At this position

you are unable to see any of the scene behind the corner. However, as you slowly move

away from the wall, walking along the magenta circle shown in Fig. 6.1a, you see an

increasing amount of the scene. Eventually, the hidden scene comes fully into view.

Similarly, different points on the ground reflect light integrated from differently-sized
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(b) the hidden scene as you move in a circle around the wall's edge

(c) Original Frame (d) Color Magnified (e) Reconstructed 1D Video of Hidden Scene

(a) ___________________
timne

Figure 6.1. We construct a 1-D video of an obscured scene using RGB video taken with a consumer
camera. The stylized diagram in (a) shows a typical scenario: two people-one wearing red and the
other blue-are hidden from the camera's view by a wall. Only the region shaded in yellow is visible to
the camera. To an observer walking around the occluding edge (along the magenta arrow), light from
different parts of the hidden scene becomes visible at different angles (see sequence (b)). Ultimately,
this scene information is captured in the intensity and color of light reflected from the corresponding
patch of ground near the corner. Although these subtle irradiance variations are invisible to the naked
eye (c), they can be extracted and interpreted from a camera position from which the entire obscured
scene is hidden from view. Image (d) visualizes these subtle variations in the highlighted corner region.
We use temporal frames of these radiance variations on the ground to construct a 1-D video of motion
evolution in the hidden scene. Specifically, (e) shows the trajectories over time that specify the angular
position of hidden red and blue subjects illuminated by a diffuse light.

fractions of the hidden scene.

Now imagine someone has entered the hidden portion of the scene. This person

would introduce a small change to the light coming from an angular slice of the room.

From behind the corner this change would often not be perceptible to the naked eye.

However, it would result in a subtle change to the penumbra; see Fig. 6.1c and (d).

We use these subtle changes, recorded from standard video cameras, to construct a 1-D

version of how the hidden scene beyond the corner evolves with time; see Fig. 6.le.

Section 6.1 summarizes related work that puts the present contribution in context.

Section 6.2 shows how, using our proposed methods, it is possible to identify the number

and location of people in a hidden scene. Section 6.3 develops how parallax created by a

pair of adjacent edges, such as in a doorway, can be used to triangulate the 2D position

of moving people over time. Experimental results are shown for a number of indoor and

outdoor environments with varied flooring, including carpet, tile, hardwood, concrete,
and brick.
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0 6.1 Related Work

In this section we describe previous non-line-of-sight (NLoS) methods. Previous meth-

ods used to see past or through occluders have ranged from using WiFi signals [4] to

exploiting random specular surfaces [41,137. In this summary, we emphasize a few

active and passive approaches that have previously been used to see past occluders and

image hidden scenes.

Recovery under Active Illumination: Past approaches to see around corners have largely

involved using time-of-flight (ToF) cameras [56, 82,117,135]. These methods involve

using a laser to illuminate a point that is visible to both the observable and hidden

scene, and measuring how long it takes for the light to return [119,135]. By measuring

the light's time of flight, one can infer the distance to objects in the hidden scene, and by

measuring the light's intensity, one can often learn about the reflectance and curvature

of the objects [116]. Past work has used ToF methods to infer the location [75], size

and motion [46, 101], and shape [129] of objects in the hidden scene. These methods

have also been used to count hidden people [134].

ToF cameras work well in estimating the depths of hidden objects, however, they

have some limitations. First, they require specialized and comparatively expensive de-

tectors with fine temporal resolution. Second, they are limited in how much light they

can introduce in the scene to support imaging. Third, they are vulnerable to interfer-

ence from ambient outdoor illumination. By contrast, our proposed real-time passive

technique operates in unpredictable indoor and outdoor environments with inexpensive

consumer cameras, without additional illumination.

In [79] a laser is used to indirectly illuminate an object behind an occluder. Using a

standard camera the authors are then able to identify the position of the hidden object.

Similar to our proposed work, [79] uses a standard camera; however, their proposed

system has a number of limitations. Namely, they require controlled conditions where

the geometry of the unknown moving object is rigid, and its shape and material are

either known or can be closely modeled by a single oriented surface element. In contrast,

our method requires minimal prior information, is completely passive, and has been

shown to work in many natural settings.

Passive Recovery: Other work has previously considered the possibility of using struc-

tures naturally present in the real world as cameras. Naturally occurring pinholes

(such as windows) or pinspecks have been previously used for non-line-of-sight imag-

ing [28,125]. In addition, specular reflections off of human eyes have been used to image
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hidden scenes [99]. Although these accidental cameras can be used to reconstruct 2-

D images, they require a more specialized accidental camera scenario than the simple

edges we propose to use in this work.

The technique presented in [133] also detects and visualizes small, often impercepti-

ble, color changes in video. However, in this work, rather than just visualize these tiny

color changes, we interpret them in order to reconstruct a video of a hidden scene.

U 6.2 Edge Cameras

An edge camera system consists of four components: the visible and hidden scenes,

the occluding edge, and the ground, which reflects light from both scenes. We refer

to the (ground) plane perpendicular to the occluding edge as the observation plane.

By analyzing subtle variations in the penumbra at the base of an edge, we are able to

deduce a hidden subject's pattern of motion.

The reflected light from a surface at point p, with normal h, is a function of the

incoming light L' as well as the surface's albedo a and BRDF /3. Specifically,

L'(p, fo) = a(p) JL'(p, bii) 0(fOi, io, h) h(, f) di, (6.1)

where fi and io denote the incoming and outgoing unit vectors of light at position

p = (r, 0), respectively, and -&(i, h) = i - h. We parameterize p in polar coordinates,
with the origin centered at the occluding edge and 0 = 0 corresponding to the angle

parallel to the wall coming from the corner (refer to Fig. 6.2). For simplicity, we assume

the observation plane is Lambertian, and that the visible and hidden scene are modeled

as light emitted from a large celestial sphere, parameterized by right ascension a and

declination 6. Under these assumptions, we simplify (6.1):

2
7r 7r/ 2

L'(r,O) = a(r) Li (a, 6) da d6, (6.2)0 fa=0 6=0

where Li = L'>. Furthermore, since the occluding edge blocks light from [7r + 0, 27r] at

the radial line 0,

L'a(r, 6 ) = a(r, 0) L + Lh(+) do , (6.3)
10=0.

for Lv = 0 f5'= Li (a, 6) doz d6 and Lh() f6'=0 Li (7 + 0, 6) d6. By inspecting (6.3) we
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(a) Constructing Transfer Matrix (b) Sample Estimation Gain Image

Figure 6.2. In (a), the transfer matrix, A, is shown for a toy situation in which observations lie

along circles around the edge. In this case, A would simply be a repeated lower triangular matrix.

(b) contains an example estimation gain image, which describes the matrix operation performed on

observations y(t) to estimate x(t). As predicted, the image indicates that we are essentially performing

an angular derivative in recovering a frame of the 1-D video.

can see that the intensity of light on the penumbra is explained by a constant term,

Lo, which is the contribution due to light visible to the observer (shaded in yellow in

Fig. 6.1a), and a varying angle dependent term which integrates the light in the hidden

scene, Lh. For instance, a radial line at 0 = 0 only integrates the light from the scene

visible to the observer, while the radial line 0 = r/2 reflects the integral of light over

the entire visible and hidden scenes.

Then, if we assume that Aa(r, 0) _ 01, the derivative of the observed penumbra

recovers the 1-D angular projection of the hidden scene:

0L'(r, 0) -a(r, 0) Lh(0).
dO

(6.4)

But what happens if someone walks into the hidden scene at time t, changing LO (0)

'In practice, we subtract a background frame to substantially remove per-pixel albedo variations.

Refer to Section 6.2.1

189
Sec. 6.2. Edge Cameras



to L'(0)? In this case, the spatial derivative of the temporal difference encodes the

angular change in lighting:

d [L'(r,O) - L'(r,O)] ~ a(r,O) [Lt(0) - L(O)] (6.5)

In other words, the angular derivative of the penumbra's difference from the reference

frame is a signal that indicates the angular change in the hidden scene over time. In

practice, we obtain good results assuming a(r,0) = 1 and using the cameras' native

encoded intensity values while subtracting the temporal mean as a background frame

(see Section 6.2.1).

0 6.2.1 Method

Using a video recording of the observation plane, we generate a 1-D video indicating

the changes in a hidden scene over time. These 1-D angular projections of the hidden

scene, viewed over many time-steps, reveal the trajectory of a moving object behind

the occluding edge.

Likelihood: At each time t, we relate the observed M-pixels on the projection plane,

y(t), to the 1-D angular projection of the hidden scene, Lt) (0). We formulate a discrete

approximation to our edge camera system by describing the continuous image L() (0)

using N terms, x(t). The observations y(t) then relate to the unknown parameters x(t)

and L(jt by a linear matrix operation:

y(t) = Lt) + Ax(t) + w(t), w(t) ~ PN(O, A21),

where the M x N matrix A is defined by the geometry of the system. More explicitly,

each row m of A integrates the portion of the hidden scene visible from observation

m, ym). In the simplified case of observations that lie on a circle around the occluding

edge, A would simply be a constant lower-triangular matrix; see Fig. 6.2a.

Let A be the column augmented matrix [1 A]. We can then express the likelihood

of an observation given x(t) and LV as:

p(y(t) x(t) Lt)) _A (A [Lt) x(t)T] ,211) . (6.6)

Prior: The signal we are trying to extract is very small relative to the total light

intensity on the observation plane. Therefore, to improve the quality of results, we
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enforce spatial smoothness of x(t). We use a simple L2 smoothness regularization over

adjacent parameters in x(O. This corresponds, for a gradient matrix G, to using the

prior

N-1 -'t -n_1 1
p(x() )C exp 22 1x(t)[n] _ x(t)[n _ i]

n=1 - 1 
N

J exp - I x() [n]12 (6.7)
n=1 2

=(A0, c(GTG)-1 + o,). (6.8)

Inference: We seek a maximum a posteriori (MAP) estimate of the hidden image

coefficients, x(t), given M observations, y(t), measured by the camera. By combining

the defined Gaussian likelihood and prior distributions, we obtain a Gaussian posterior

distribution of x(t) and Lt,

p(x(t) Lt) l(t)) Ar [ t) i,(t)T ]T E(t)

,-1
-2kT, 0 0E(0 A-2ir + K G T G 1

[L(t) k(t)T]T (t) -2jTy(t) (6.9)

where the maximum a posteriori estimate is given by k(O.

To better understand the operation that is being performed to obtain the 1-D re-

construction, we visualize each row of the matrix E(A 2 AT. We refer to each reshaped

row of this matrix as the estimation gain image. An example estimation gain image is

shown in Fig. 6.2b. As expected, the matrix operation is computing an angular deriva-

tive over the observation plane. Note that although earlier we assumed 4a(r, 0) ~ 0,

in reality the albedo simply needs to be orthogonal to the zero-mean pie-wedges in each

estimation gain image. We expect violations from this assumption to be small.

Implementation Details

Rectification: All of our analysis thus far has assumed we are observing the floor parallel

to the occluding edge. However, in most situations, the camera will be observing the
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1 Person 2 People

time
9

Figure 6.3. One-dimensional reconstructed videos of indoor, hidden scenes. Results are shown as

space-time images for sequences where one or two people were walking behind the corner. In these

reconstructions, the angular position of a person, as well as the number of people, can be clearly

identified. Bright vertical line artifacts are caused by additional shadows appearing on the penumbra.

We believe horizontal line artifacts result from sampling on a square grid.

Setup

Hidden Scene

Video Frame 1 P erson 2 People

>0

Do o

time

Figure 6.4. 1-D reconstructed videos of a common outdoor, hidden scene under various weather

conditions. Results are shown as space-time images. The last row shows results from sequences taken

while it was beginning to rain. Although artifacts appear due to the appearing raindrops, motion

trajectories can be identified in all reconstructions.

projection plane at an angle. In order to make the construction of the matrix A easier,

we begin by rectifying our images using a homography. In these results, we assume

the ground is perpendicular to the occluding edge, and estimate the homography using

either a calibration grid or regular patterns, such as tiles, that naturally appear on the

ground. Alternatively, a known camera calibration could be used.

Background Subtraction: Since we are interested in identifying temporal differences

in a hidden scene due to a moving subject, we must remove the effect of the scene's

background illumination. Although this could be accomplished by first subtracting a

background frame, Lo, taken without the subject, we avoid requiring the availability

of such a frame. Instead, we assume the subject's motion is roughly uniform over the

video, and use the video's mean image in lieu of a true background frame. We found

Hidden Scene
WNL
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ft 1t ft iime

(b) Noise (c) Walking from 2 to 16 feet at a 45' Angle (d)t Walking Randomly

Figure 6.5. The result of using different cameras on the reconstruction of the same sequence in an

indoor setting. Three different 8-bit cameras (an iPhone 5s, a Sony Alpha 7s, and an uncompressed

RGB Point Grey) simultaneously recorded the carpeted floor. Each camera introduced a different level

of sensor noise. The estimated standard deviation of per-pixel sensor noise, A, is shown in (b). We

compare the quality of two sequences in (c) and (d). In (c), we have reconstructed a video from a

sequence of a single person walking directly away from the corner from 2 to 16 feet at a 45 degree angle

from the occluded wall. This experiment helps to illustrate how signal strength varies with distance

from the corner. In (d), we have done a reconstruction of a single person walking in a random pattern.

In (c) the hidden person does not change in angular position. Thus, for these results, we subtract an

average background frame computed from a different portion of the video sequence.

that in sequences containing people moving naturally, background subtraction using

the average video frame worked well.

Temporal Smoothness: In addition to spatial smoothness we could also impose tempo-

ral smoothness on our MAP estimate. *(t. This helps to further regularize our result,

at the cost of some temporal blurring. However, to emphasize the coherence among re-

sults, we do not impose this additional constraint. Each 1-D image, xot, that we show

is independently computed. Results obtained with temporal smoothness constraints are

shown in Appendix C.

Parameter Selection: The noise parameter A2 is set for each video as the median vari-

ance of estimated sensor noise. The regularization parameters u-1 and o- are empirically

set to 0.1 for all results.

*6.2.2 Experiments and Results

Our algorithm reconstructs a 1-D video of a hidden scene from behind an occluding

edge, allowing users to track the motions of obscured, moving objects. In all results

shown, the subject was not visible to an observer at the camera.

We present results as space-time images. These images contain curves that indicate

the angular trajectories of moving people. All results, unless specified otherwise, were

generated from standard, compressed video taken with a SLR camera.
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Environments

We show several applications of our algorithm in various indoor and outdoor environ-

ments. For each environment, we show the reconstructions obtained when one or two

people were moving in the hidden scene.

Indoor: In Fig. 6.le we show a result obtained from a video recorded in a mostly

dark room. A large diffuse light illuminated two hidden subjects wearing red and

blue clothing. As the subjects walked around the room, their clothing reflected light,

allowing us to reconstruct a 1-D video of colored trajectories. As correctly reflected

in our reconstructed video, the subject in blue occludes the subject in red three times

before the subject in red becomes the occluder.

Fig. 6.3 shows additional examples of 1-D videos recovered from indoor edge cam-

eras. In these sequences, the environment was well-lit. The subjects occluded the

bright ambient light, resulting in the reconstruction's dark trajectory. Note that in all

the reconstructions, it is possible to count the number of people in the hidden scene,

and to recover important information such as their angular position and speed, and the

characteristics of their motion.

Outdoor: In Fig. 6.4 we show the results of a number of videos taken at a com-

mon outdoor location, but in different weather conditions. The top sequences were

recorded during a sunny day, while the bottom two sequences were recorded while it

was cloudy. Additionally, in the bottom sequence, raindrops appeared on the ground

during recording, while in the middle sequence the ground was fully saturated with

water. Although the raindrops cause artifacts in the reconstructed space-time images,

you can still discern the trajectory of people hidden behind the wall.

Video Quality:

In all experiments shown thus far we have used standard, compressed video captured

using a consumer camera. However, video compression can create large, correlated

noise that may affect our signal. We have explored the effect video quality has on

results. To do this, we filmed a common scene using 3 different cameras: an iPhone 5s,

a Sony Alpha 7s, and a uncompressed RGB Point Grey. Fig. 6.5 shows the results of

this experiment assuming different levels of i.i.d. noise. Each resulting 1-D image was

reconstructed from a single frame. The cell phone camera's compressed videos resulted

in the noisiest reconstructions, but even those results still capture key features of the

subject's path.
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Velocity Estimation

The derivative of a person's trajectory over time, 0 (t), indicates their angular velocity.

Fig. 6.6 shows an example of the estimated angular velocity obtained from a single edge

camera when the hidden subject was walking roughly in a circle. Note that the person's

angular size and speed are both larger when the person is closer to the corner. Such

cues can help approximate the subject's 2-D position over time.

time
0.3

0.2

0.1

-0.1

-0.2

F\i/N\,
V-Al

0 5 10 15
Seconds

20

Figure 6.6. A subject's reconstructed angular velocity relative to
In this sequence, a person was walking in circles far from the corner.

25 30

the corner as a function of time.

0 6.3 Stereo Edge Cameras

Although the width of a track recovered in the method of the previous section can give

some indication of a hidden person's relative range, more accurate methods are possible

by exploiting adjacent walls. For example, when a hidden scene is behind a doorway,
the pair of vertical doorway wall edges yield a pair of corner cameras. By treating the

observation plane at the base of each edge as a camera, we can obtain stereo 1-D images

that we can then use to triangulate the absolute position of a subject over time.

* 6.3.1 Method

A single edge camera allows us to reconstruct a 90' angular image of an occluded scene.

We now consider a system composed of four edge cameras, such as an open doorway, as

0

0

C
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Hidden Scene

2 3
14

Left Wall Right Wall

3
(D

OL OR

Figure 6.7. The four edges of a doorway contain penumbras that can be used to reconstruct a 1800
view of a hidden scene. The top diagram indicates the penumbras and the corresponding region they
describe. Parallax occurs in the reconstructions from the left and right wall. This can be seen in the
bottom reconstruction of two people hidden behind a doorway. Numbers/colors indicate the penumbras
used for each 90' space-time image.

illustrated in Fig. 6.7. Each side of the doorway contains two adjacent edge cameras,
whose reconstructions together create a 180' view of the hidden scene.

The two sides of the doorway provide two views of the same hidden scene, but from

different positions. This causes an offset in the projected angular position of the same

person (see Fig. 6.8). Our aim is to use this angular parallax to triangulate the location

of a hidden person over time. Assume we are observing the base of a doorway, with

walls of width w separated by a distance B. A hidden person will introduce an intensity

change on the left and right wall penumbras at angles of 0t and (t), respectively. From

this correspondence, we can triangulate their 2-D location.

196 6. TURNING CORNERS INTO CAMERAS



Px

0..OR

Figure 6.8. A hidden person will introduce an intensity change on the left and right wall penumbras
at angles of 0) and 0 , respectively. Once these angles have been identified, we can recover the hidden
person's two-dimensional location using Eq. 6.11.

PM = (6.10)
z cot OM+ ot6

PM = PMt cot O (6.11)

W cot (OR) Px < 0
0 0 < Px < B (6.12)

w cot(OL) Px > B

where (Px, Pz) are the x- and z-coordinate of the person. We define the top corner of

the left doorway, corner 1 in Fig. 6.7, as (Px, P,) = (0, 0).

Assuming the wall is sufficiently thin compared to the depth of moving objects in

the hidden scene, the qt term can be ignored. In this case, the relative position of

the person can be reconstructed without any knowledge of the absolute geometry of

the doorway (e.g. B or w). In all results shown in this paper, we have made this

assumption.

Identifying Trajectories: While automatic contour tracing methods exist [77], for sim-

plicity, in our stereo results, we identify the trajectories of objects in the hidden scene

manually by tracing a path on the reconstructed space-time images.
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0 6.3.2 Experiments and Results

We demonstrate the ability of our method to localize the two-dimensional position of

a hidden object using four edge cameras, such as in a doorway. We present a series

of experiments in both controlled and uncontrolled settings. Full sequences, indicating

the ground truth motions, and additional results can be found in Appendix C.

Controlled Environment: To demonstrate the ability to infer depth from stereo edge

cameras we constructed a controlled experiment. A monitor displaying a slowly moving

green line was placed behind two walls, separated by a baseline of 20 cm, at a distance

of roughly 23, 40, 60, and 84 cm. Fig. 6.10b shows sample space-time reconstructions of

each 1800 edge camera. The depth of the green line was then estimated from manually

identified trajectories obtained from these space-time images. Empirically estimated

error ellipses are shown in red for a subset of the depth estimates.

Natural Environment: Fig. 6.9 shows the results of estimating 2-D positions from

doorways in natural environments. The hidden scene consists of a single person walking

in a circular pattern behind the doorway. Although our reconstructions capture the

cyclic nature of the subject's movements, they are sensitive to error in the estimated

trajectories. Refer to Section 6.3.3. Ellipses indicating empirically estimated error have

been drawn around a subset of the points.

* 6.3.3 Error Analysis

There are multiple sources of error that can introduce biases into location estimates.

Namely, inaccuracy in localizing the projected trajectories, and mis-calibration of the

scene cause error in the estimates. We discuss the effects of some of these errors below.

Further derivations and analysis can be seen in Appendix C.

Trajectory Localization: Because P, scales inversely with cot(OL) + cot(OR), small errors

in the estimated projected angles of the person in the left and right may cause large

errors in the estimated position of the hidden person, particularly at larger depths.

Assuming Gaussian uncertainty in the left and right angular trajectories, U9L and OR'
the uncertainty in the estimated position of the hidden person will not be Gaussian.

However, the standard deviation of empirical distributions through sampling, as seen

in Figs. 6.9 and 6.10, can be informative. Additionally, by using standard error prop-

agation of independent variables, we can compute a first order approximation of the

uncertainty. For instance, the uncertainty in the z position, orp, is
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Hidden Scene A Hidden Scene B
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Figure 6.9. The results of our stereo experiments in a natural setting. Each sequence consists
of a single person walking in a roughly circular pattern behind a doorway. The 2-D inferred locations
over time are shown as a line from blue to red. Error bars indicating one standard deviation of error
have been drawn around a subset of the points. Our inferred depths capture the hidden subject's cyclic
motion, but are currently subject to large error. A subset of B's inferred 2-D locations have been cut
out of this figure.
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I oft \A/11 Rioht WA21

Monitor

20cm

(a) Controlled Setup (b) Sample Stereo Reconstructions
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Figure 6.10. Controlled experiments were performed to demonstrate the ability to infer depth

from stereo edge cameras. A monitor displaying a moving green line was placed behind an artificial

doorway (a) at four locations corresponding to 23, 40, 60, and 84 cm, respectively. (b) shows sample

reconstructions done of the edge cameras for the left and right wall when the monitor was placed at

23 and 84 cm. Using tracks obtained from these reconstructions, the 2-D position of the green line in

each sequence was estimated over time (c). The inferred position is plotted with empirically computed

error ellipses (indicating one standard deviation of noise).
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Figure 6.11. The empirical means plus or minus one standard deviation of the estimated Pz as a

function of its x-coordinate, assuming true P, of 20, 40, 60, and 80. Here, the two corner location errors

at each of the boundaries of the doorway are independent and subject to oh = 0. = 0.04.

Corner Identification: Misidentifying the corner of each occluding edge will cause sys-

tematic error to the estimated 2-D position. To determine how erroneously identifying

Baseline
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a corner affects our results, we consider the following situation: a doorway of baseline

B = 20 obscuring a bright object at angular position 0 in an otherwise dark scene.

Assuming the offset from the true corner location is drawn from an independent

Gaussian distribution, we can calculate the error between the estimated and true an-

gular position, and then subsequently use these offsets to calculate the error in depth.

Fig. 6.11 shows the error as a function of depth for a stereo camera setup in which the

corner offset has been drawn from a Gaussian distribution with variance 0.04.

M 6.4 Conclusion

In this chapter we have shown how to turn corners into cameras, exploiting a common,

but overlooked, visual signal. The vertical edge of a corner's wall selectively blocks light

to let the ground nearby display an angular integral of light from around the corner. The

resulting penumbras from people and objects are invisible to the eye - typical contrasts

are 0.1% above background - but are easy to measure using consumer-grade cameras.

We produce 1-D videos of activity around the corner, measured indoors, outdoors, in

both sunlight and shade, from brick, tile, wood, and asphalt floors. The resulting 1-

D videos reveal the number of people moving around the corner, their angular sizes

and speeds, and a temporal summary of activity. Open doorways, with two vertical

edges, offer stereo views inside a room, viewable even away from the doorway. Since

nearly every corner now offers a 1-D view around the corner, this opens potential

applications for automotive pedestrian safety, search and rescue, and public safety.

This ever-present, but previously unnoticed, 0.1% signal may invite other novel camera

measurement methods.
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Appendix A

Static VLBI Imaging Derivations

* A.1 Bayesian Inference under Gaussian Distributions

Let,

(A.1)

(A.2)

y ~ x(Fx, E)

x ~ M(p, A).

Then,

p(xly) Oc p(ylx)p(x)

= AF (Fx, E)AV (p, A)

Using Lemma D.O.4

= Kx(F-'y, (FTE-lF)-)r(p, A)

Using Lemma D.O.2

= A(, C)

(A.3)

(A.4)

(A.5)

(A.6)

= p+ AFT(E + FAFT)- 1(y - Fl)

C = A - AFT(E + FAFT)-lFA.

for

(A.7)

(A.8)
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0 A.2 Interstellar Scattering

In) [19] the interstellar scattering kernel is estimated to be a Gaussian with a covariance

of

2.00614 x 10-21 3.21018 x 10-22
Zscattering [3.21018 x 10-22 5.64104 x 10-221 radians. (A.9)

As the Fourier transform of a Gaussian kernel,

1 E -12 x 1[aJi- (A. 10)scattering scattering [A.1J

is also Gaussian, we can modify the forward model of a visibility by multiplying each

f(u, v) by the scalar,

AC(u, v) =iEscatteringK1/2 2[u v]Escattering U . (A.11)

In particular, if y is composed of visibilities obtained by observing Sgr A*, then if

Y2k - 3 [F(uk, Vk)] and Y2k+1 Q [F(uk, Vk)],

92k(I(x)) =ICuk, Vk)R [f(Uk, vk)ITX (A.12)

92k+1 (I(X)) =IC(Uk, Vk) a[f (Uk, Vk )]TX. (A. 13)

If we do not include the interstellar scatting kernel into our forward model, then we

could try deconvolve its effects out in the end. However, this would require the result of

the first stage of image reconstruction to produce a blurry image. This image would not

necessarily score well under our proposed metric for a "good" looking image. Therefore,

sequentially performing these operations often results in artifacts that do not appear

if you incorporate the kernel into the forward model. Refer to our paper on scattering

mitigation to see further analysis of this trade-off [44].
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0 A.3 Approximate Gaussian Noise on the Bispectrum

In this section we present how we approximate the noise on each bispectrum term in y

when systematic gain error is negligible.

As discussed in Section 5.2.2, a measured visibility, F, is corrupted by thermal and

atmospheric phase error in the form

Fjk = rjk exp [i(#j - 0k)] + Ejk, (A.14)

for uniformly distributed phase errors, Oj and Ok, and Gaussian distributed thermal

noise, Ejk on an ideal visibility Fjk [29]. Although the phase error due to atmospheric

inhomogeneity cancels when using the bispectrum, residual error exists due to thermal

noise [124]. Since the bispectrum is the product of three visibilities, its noise distribution

is not Gaussian; nonetheless, it can be approximated using a Gaussian which charac-

terizes its first-order noise terms. We determine how to approximate the bispectrum's

noise by first expanding the noise terms in the triple product:

F12F23r31 = $2exp [i(01 - 02)] - 612) ( 23 exp [i(02 - 03)] + 623) (f 31 exp [0Q( 3 - 01)] + 631)

= i2f23f31 + 12231 exp [i(02 - 41)] + 62 3 71 2 f 31 exp [(( 3 - 02)] ...

+ 631723112 exp [i(01 -- 3)] + 61 2 62 3 31 exp [i(43 - 01 .

+ 623631112 exp [i(4 1 -- 2)] + 612631123 exp [i(02 -- 03)] + 612623631 (A.15)

As expected, the resulting expression contains a term, t12f23131, which no longer

is affected by the introduced phase errors. The first order noise terms,

6121231731 exp [i(02 - 1)] + 62317121731 exp [i(5 3 - #2)] + 63117231712 exp [i(01 - 03)]

(A.16)

contribute Gaussian noise to the bispectrum. However, they are each scaled by a value

related to the ideal visibilities. Although we are unable to measure these ideal values,

we approximate them by using the corresponding measured visibilities. As we expect

noise on the bispectrum to be isotropic, we approximate noise on the real and imaginary

component of F12F23F31 as Gaussian with variance
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0 2'FF 2 + 23 1rl 2r 2+ 31 T12 F23 |2 . (A.17)

By comparing our approximation to distributions obtained through sampling we

have seen that it accurately models the true noise for SNR, values greater than 1. As we

expect values of SNR greater than 1 for imaging, a Gaussian noise model is a reasonable

approximation for the bispectrum.

To further account for the independence the data in y, we scale the k-th term of

x(x, y) in Equation 3.15 by ak _ (Pk21)(Pk2) = for Pk telescopes observing at the
2('~k) P

time corresponding to the bispectrum or closure phase value contained in y[k].

E A.4 Data Product Derivatives

In this section AR and A' indicate the real and imaginary portions of a complex-valued

matrix A, respectively.

0 A.4.1 Bispectrum

Ai1 2XAi 2 3 XAi 1 X= (A 2 +iAI )X(Af' +iAI )X(RAk +iA4 )X

=(A X + iA1 XX)(AX iAI X)(Al 3 X + iA 1 , X)

=AR XA R XA R X-AR XA' XA' X - A, XA XA' X - A, XAI XA R X +...
Z1,2 i2 ,3 11 3 1 , 2 i2,3 11,3 11,2 i2 ,3 11,3 711,2 i2,3 1,3

i (A RXA RXAI X + AX XAA XA X + A, XA R XA X - A, XA' XA' Xl
\1,2 i2,3 ,3 X + ZA,2 2A 2 ,3  z1,3 Z1,2 1i2, 113 ,2 223 1,3 X

= (X) + ijf(X) (A.18)

We must find the derivative of f with respect to X

AR XA2 XA3X - Al XA' XA' X- A' XAR XAI'X - A, XA' XAk X)
dX dX 711,2 i23 1, 1 2 123 11,3 %1,2 '12,3 '11,3 i1,2 '12,3 11,'3 /

d R R ARX d(ARXAXI d (' X'X)_d (A A XR
A XA XAX) - (AXAI'XAI X)- -(A, XA ? XAuX - -(A, XAI XA. X)dX (A, 2X Ai2 ,3  + A, A dX (A,2 X 

2 3  21,3 dX 1 2 A2 3  z13 X dX 11,2 Z 2,3  113 X.
AR AR? XAR X + AR? A R XAf' X + AR? AR? XAR? X...

11,2 Z2,3 %1,3 712,3 11, 2 Zj3 11,3 22,3 Z1,2

~(AR",A, XA' X + A1 AR' 2 ~ X +A,, A' XAR X
'1, 1 i2,3 i1,3 712,311l, T113 11,3 12,3 11,2X ..

-(A AIA XA X + RX + A' AR XAI X)...
- 1,2 12,3 AA1,3 A2,3 A lX2 +13 Al 3 A2,3 1,2

(A,,2 A,,3 XAl 3X + Af, A, 1 XA 3 X +A 3 A', XAI 1 2 X) (A.19)il2 i23i23,32 Z13 i 1, 3i23
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Similarly, the derivative of [ with respect to X is

d = X X + A A
_ = XAR XA 3 X + AR XAI X+A A + A, XA. XAR X-A XA XA

dX 21, ZI2 21, Z,2 7223 ,1, 3 21,2 Z23 ,3il21, 232,3 22,3

R RR+A 2 AR XA' X + AR2 3 AR 2XA 2 1 X + A 1 AR XAR X...22,31,3 '1, Z11 l3 2,3 211,2

+Ail A, XAi 3 X + Af, Alu XAk, X + A A', XAl 2 X...

-A AR XAR X + AR A, XAR X + A A 3A 3XA1 X ...

- (A 1 ,2 A, 3 XA2 1 3 X +A 2 2 3 A 2 XA 1 3 X +AI 3 A, 3 XA, 1,2 X (A.20)

0 A.4.2 Visibility Amplitudes

d d RTARX) IT(
d (ARX)2 +(AX)

2 
= ARXARX + AIXAIX - (A (A + A(AX)) (A.21)dX dX (ARX)2+(AIX)

2
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Appendix B

StarWarps Derivations

Given a set of observations and model parameters 0, we would like to estimate the

marginal distribution for each of the N latent images. For ease of notation, we define:

Ya:b =Ya, --- , b}

Ya:b\t = Ya, .-. , I t-1, Yt+1, ---, Yb}

(B.1)

(B.2)

According to Equation 4.4, likelihood of the the full joint model is written as:

N

P(x1,---, IXN 1, --- , YN) OC I xt( P,1
t=1

N N

A) fJ yf (Ftxt, Rt) fl xt (Axt1, Q)
t=1 t=2

(B.3)

* B.1 Solving for the E[xt] and E[xtx[] Sufficient Statistics

We can compute p(Xt yi, ... , YN) by marginalizing out the other latent images:

P(XtlY1:N) oC

N

oJ
X1:N\

N N

fJA x,(p, A) H Ay/ (Ftxt, Rt) H Axt(Axt-
t t=1 t=1 t=2

1, Q) dxl:N\t

(B.4)

(B.5)

Using the Elimination Algorithm we can solve for this probability efficiently.

209
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(B.6)

(B.7)
P(Xt IY1:N) OC P(Xtm, Y1:N) m

oc 0t(xt)mnt_1_+t(xt)mt+1__t(xt)

We define the unary and joint potential functions as follows:

Ot (xt) = p(yt~xt)p(xt)

= Afyt (Ftxt, Rt)t(/pt, A)

Using Lemma D.O.4

= Axt (F-1 yt, (FT Rt F ) -. )A ( p, A)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

t-1,~t-1, xt) = xP(tXt_1)

= A1t (Axt-1, Q)

Using these potential functions, the resulting sum-product messages are:

I 1k (Xi)'QI,2(X1, X 2 )dxix1

(B.13)

2 < t < N (B.14)

(B.15)

mN-+N-1(x2)

mnt_,_-1(xt-1) =

(B.16)

1 < t < N - 1 (B.17)

J 0N(XN)'FN-1,N(XN-1, XN)dXNXN

Jxt t(xt) Tt- 1,t (xt- 1, xt)mrt+ 1-+t (xt) dxt

= Art,(zt_ , PtU11) = t 1,t (t-1, xt)NA t(z , P )dxt

mis.2(x2) =

mnt-t+1(xt+1) =

210 APPENDIX B. STARWARPS DERIVATIONS

a Pa
Jvxt+1 (40+11t' Ptc1+11t) Ptt+i (xt, xt+l)jvxt (Zt1t, t1t)dxt

xt

(B. 18)
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0 B.1.1 Forward Messages

Mt+t+1 (xt+1) = Pt,t+1i(xt, xt+1)ot (xt)mt _1 -,t(xt) dxt (B. 19)

N l (Axt, Q)Kr, (Fi-yt, (Ff RtFt)-')Kr, (p, A)mt-_1,t(xt)dxt (B.20)

= xN (Axt, Q)ANx, (Fi-lyt, (FTRi-'Ft)-')Ax, (p, A)A/x, (z't_1, P't_1)dxt (B.21)

Using Lemma D.O.1: K ,(z*_ 1 , Pg* 1) x K j(p, A)t ,(z5t, Pt- 1 )

where z , P'* = A

oc f Nx+ (Ax,, Q)Ax, (Fjl yt, (FTRe-'Ft)-')Alx, (zc"*_ , P e*_1)dxt (B.22)

Using Lemma D.O.2: Kz, (z't, P') oc Kox (Fjlyt, (FfRt -Ft)') , (z*_ 1, Pc*_

oc K (A -'xt+1, (A TQ-A)-1 )Nx, (za, P a)dx (B.23)

= A-1x+, (z, (ATQA)-1 + P) j K, (.,.)dxt (B.24)

=A1 t~ (z, (ATQ-lA)-l + Pt) (B.25)

Using Lemma D.O.6

= , (Azc', Q + APatAT) (B.26)

= JNt+ (ztC1+1 g, PtO1+1) (B.27)
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E B.1.2 Backward Messages

mt_, _1(xt_1-) = l9t_1,t(xt_1, xt)opt(xt)mnt+, t(xt)dxt (B. 28)

= , ( Ax-_ ,Q)Arx,(Fj-lyt, (FtTR- 'Ft)- )Nx,(p, A)mnt+,-t(xt_1)dxt (B.29)

= x, (Axt_1, Q)Alx, (Fi-lyt, (FtT R- Ft)- )Ax, (p, A)Ax, (zl, PltQ )dxt (B.30)

Using Lemma D.O.3: Kx, (z 1 1 P* j) oc Nx,(p, A)Ax,(z , P )

where z N*N+1 N A

oc f x (Axt_1, Q)Nx, (F -lyt, (FtTRe- F)-')Ax, (z"*, ,PN~t)dxt (B.31)

Using Lemma D.O.2: rx, (z[, pt) oc x,(Fj 1 yt, (FTR- 1Ft-)g x,(z$ 1 1 P )
oc I Nx (Axt _ 1, Q)rx, (z,3 , PS~x (B32

= N (zo , tt)Mx, (., .)dxt (B.33)

= Cexp [ (Axt_1 - z,3)T(Q + Pt)' (Axt_ 1 - zt) j x, (., .)dxt (B.34)

= Cexp [ (xt, - A-1z)T AT(Q + Pt)-'A(xt+1 - A-lzt) (B.35)

= 1 N,(A- zt, (AT(Q + Pt)-1A)-1) (B.36)

= rx, (z2 PO~g (B.37)

* B.1.3 Putting it Together

P(xt |Y1:N) OC P(Xt , Y1:N) (B.38)

oc m1t>÷t(xt)mt+1*t(xt)Ot(xt) (B.39)

= met1_t (xt)mt+1-it (xt)/,y (Ftxt, Rt)ANx, (p, A) (B.40)

= mtiat(xt )mt+1-+t(xt)Axt (Fj1-yt, (FT Rt 'F)- 1)Vxt (/p, A) (B.41)

= me_1lst(xt ) (rxt( F-l yt, ( FTRt-1F )-l)jNt(1 , A)mt+1-qt(xt )] (B.42)
0C Jvxt (z' ,a P0_) ([ P )) (B.43)

0C Jvxt(z, P) (B.44)



Sec. B.2. Solving for the E[xt.ixTl Sufficient Statistic 213

where using Lemma D.O.1

Zt j tj Zt~It + Ptt-1 tt-1 + Ptd - Z

Pt = + )-+P

Note that for t = 1 p(xtIy1:N) t P) Note that E[xt] = z.

E[xtxT] can be also solved using these terms:

EltIY1:N,O(i) Ixxt 1N1:N:N xtxt p(xl:Nly1:N)dxl:N

=xtxt P(x1:N y1:N)dx1:N\tdxt
It x 1:N\t

XtXtTP(XtY1:N)dxt
Xt

= xtxtfrxt(zt,Pt)dxt
Xt

= ztT + Pt

U B.2 Solving for the E[xt_ 1 xT] Sufficient Statistic

(B.45)

(B.46)

The statistic

(B.47)

(B.48)

(B.49)

(B.50)

(B.51)

(B.52)P(xt,xt_1 Y1:N) OC
f1:N\t,t

N N N

Nx:N\t,t fl xt ( , A) fl Xyt (Ftxt, R't) H
-1 t=1 t=1 t=2

(B.53)

Using the Elimination Algorithm we can solve for this probability efficiently.

213Sec. B.2. Solving for the E~xt_1XT] Sufficient Statistic

P(xl:N yl:N) dx1:N\t,t-1
1

jNx ( Axt _1, Q) dx1:N\t,t-1
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P(xt, Xt-1 IY1:N) c P(Xt, Xt-1, Y1:N) (B.54)

ocmnt-2-t-14t-1(xt-1),Pt-1,t(xt_1, xt)#t(xt)(xt_1)mt+1s-t(xt) (B. 55)

=mnt-2-t-1vx,_ ( F-1 yt _1, ( Ft_1 Rt-_\F1-1)-l)jNxt_ ( p, A)Arxt( Axt _1, Q)

A/ xt (FQ-yt, (F Rt-Ft)-')Ao,(p, A)(xt_,)t+-t(xt) (B.56)

=AII_1 (zf_ 1~t_1, P-11,i)Nrx(Axt_1, (Q)AT(Q Pz t) (B.57)

= _((Q t- Pf-1zt-1) P_1(z-,Axt QQ) (B.68)

=Nxt-1(zta_1|t_1,Pt-1 t-1)A2,_x(-l(zt , At Q+P -1A - (B.650)

Afo, (Q (Q + P -z+ P (Q + P )- 1 Ati, Q(Q + P -I (B.62)

=Kt~x_1(m-1 t-1p

Kx ( (Q + P)- z + PQ(Q + P ) Axt-1, Q(Q + P3 )~P) (B.62)
Neg eg13, (z - (A+ -ztl, ( +P )- P -) (B. 60)

.Ivt( (+zt - Q(Q + P)-1 z ), ((M T (Q(Q + P)-'P'-t)-1)

(B.64)

=KtNxt_ 1(mti- + CtiMT(Q(Q + ) + MCt-MT)

(Xt - Q(Q (Q + Pt) - Mm_11), (B.65)

Ct_1 - Ct-iMT(Q(Q + P1)-)P + MCtMT)-lMCt_) (B.66)

=N _(Dxt + G, F) (B.67)

M =P - (Q + P )-1A (B.68)

mt_ =zf1 |t_ 1 + Pf_ 1 t_ 1 AT(Q + + AP_1 AT)(z - Azi- 1 ) (B.69)

Ct- =_ -- Pilt_1 A(Q + + AP1 1 _1)AT)-lAP 1 t1  (B.70)

D =CtiMT(Q(Q + P) Pt + MCt_1MT)-l (B.71)

G =mt-1 + D(-Q(Q + Pt)- zt - Mmti) (B.72)

F Ct-i - DMCt1 (B.73)

214
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Using the following relations we can then compute Elxt-1xT]:

E[y(Ax + B)T] - E[yxTAT + yBT] = E[yxT]AT + E[y]BT

F + E[xt-_]E[Dxt + G]T

E[xt- 1xT

E[xt_1xt]

E[xt-1xtT

E[xt_ 1 xT]

E[xt_1xT]d

0 B.3 Likelihood

=E[xt-I(Dxt + G)T] = E~xt-_xT]DT + E[xt_1]GT (B.75)

=(F + E[xt_1]E[Dxt + G]T - E[xt_1]GT ) (B.76)

=(F + E[xt-1]E[Dxt + G]T - E[xt-1]GT)DT-1 (B.77)

=(F + E[xt-1]E[xt]T DT + E[xt_ 1 ]GT - Ext-1]GT)DT--

(B.78)

=(F + E[xti]E[Xt]ITDT)DT-1 (B.79)

=FDT-1 + E[xt_1]E[xt]T (B.80)

P(Y1:N) j:NP(X1:N, Y1:N) dx:N

N N N

fNAx,( p, A) N)yt Ftxt ,Rt))Nxt( Axt-1,Q)
x 1:N t=1 t=1 t=2

dx1:N

Note that this can be solved with message passing. This is very similar to

lations done for the forward message passing. The only difference is that it

tracks of scaling coefficients.

(B.74)

(B.81)

(B.82)

the calcu-

also keeps

215Sec. B.3. Likelihood
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mnt-4+1(xt+1) = 9t,t+1(xt, xt+1)>t (xt)mt _1_,t(xt)dxt (B.83)

Nx, + (Axt , Q)Arx, Fj- 1 yt , ( Ft Rt 1 Ft) - ')Ax, (p, A)mt- 1 -t(xt )dxt ( B.84 )

f x, ,(Axt, Q)Kx, (F-1 yt, (Ft R- F)-1)K, (pu, A)ftNK, (z'_ 1, PS_1)dxt (B.85)

Using Lemma D.0.1 and Matrix Cookbook [105]:

K, (zt1, A + Pa_1)Kx,(z*_ 1, pt*) =x,(p, A)o,( , P(_1)

where zi* = , P* = A

= Et (zcj _-,,A + Pc'_ 1 ) JA (Axe, Q)KZ, (Fj-1 yt, (Ff R- 1Ft)-1)Nx, (z_ 1 , P 1 )dxt

(B.86)

Using Matrix Cookbook [105], Lemma D.0.2, and Lemma D.0.6:

Ax, (F-'yt, (FtTR- 1Ft) - ')Ax,(zc*_ ,P *_1

KF,-y, (zt-1 , (Ff RT-Ft)-l + P 1 ) ,(, PS)

K y, (Fz"*_1 , Rt + FtP0*_1 FT )KW, (z, P )

=tA',,(zt _1, A + PS_ 1 )Ky, (Fzc_1 , Re + FtPS_1F
T ) jx, (A 1 xt+1, (A TQ-A)-)K, (, Pt )dxt

(B.87)

t( A + P_ 1 )y, (Fza_1 , Rt + FtPa_1 FT)K, (zf+11 , 2+11 ) (B.88)

t+1Arxt+j(zc'+1t Pc'+1t) (B.89)

Algorithm 3. Computing Likelihood: t = 1 -* 2 -- ... -+ N

ft+, = ftKV(z't_1, A + Pot- 1)K5 , (Ftzo*_1 , Rt + FtPy*_iFtT) (B.90)

Initialization:

fo = 1 , N(zio, A + Pc10 ) = 1 (B.91)
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e B.4 Non-linear Observation Model

Now, let's say that our observation model is no longer linear, but instead is a non-linear

function of x.

yt ~ /(F (xt), R) (B.92)

Using a first order Taylor Series Expansion Approximation, we can approximate .y (F(x), R)

as

A/ (F(x), R) oc exp (y - F(x)) R-'(y - F(x)) (B.93)

exp 2 (y - (F(j) + F'(i)(x - t))) R (y - (F(t) + F'(t)(x - t)))

exp 2 (y - F(J) - F'(.)x + F'(z)T) Rl'(y - F(J) - F'(z)x +

= exp 21(- x (F'(f)x - (-F(:) + F'()+ y))) R(- x (F'(z)x - (-F(.) + F'(z)t + y)))

= exp 2 (F'(i)x - (-F(. ) + F'( + y))T R-(F'(z)x - (-F(.) + F'(z) + y))]

exp 2 (x - (J)(-F(x) + F'( + y)) F'(i) R F'(.)(x - F(x)(-F(x) + F(X)X + y))]

c x (F'(J) -(y + F'(J)i - F(f)), (F'(V)T R-F'())l) (B.94)

Updates are very similar to in the linear model. We simply need to replace

Ft Ft'(_- t (B.95)

Yt - Yt + FQ(zt)ht - Ft(-t ) (B.96)

where -t is the current estimate of xt

* B.4.1 Gamma Regularization

Often we would like to pull out regions of flux that are orders of magnitude smaller

than the peak value in the image. For instance, we may be more interested in the

distribution of flux in the log image than in the linear scale intensity image. To deal

with this in this framework, we can perform a change of variables and regularize a
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non-linear-scale image using a Gaussian distribution. Let, z be the linear scale image

and x be a non-linear-scale image. Gamma correction is often used to approximate a

logarithmic function, so we use it here for that purpose:

X =z(l/) (B.97)

x = Xly (B.98)

Now,

f(x) Fz = Fx7 (B.99)

d
F -+ f(x) = F Diag(ydF- 1 ) (B.100)

dx

yt - yt + F Diag(yi-1).% - Fi2 (B.101)

A y 2.0 empirically works well in practice.

0 B.5 Estimating the Evolution Parameters

Calculate the expected value of log IItP(yt xt; 0) with respect to the distribution of x

Q(01(') = E, 1:NI:Yl:NO( ) [log P(X1:N, Y1:N; 0)] (B.102)

=E:N Ni) [ t e)t t - Ae(i)xt-1)] + 9(X1:N, Y:N)

= E 1:N1Y1:N 0(i) )2 1: [(x - A ) A g)t- +9 1:, 1:

=ExNTylN TQ1 Ae(:)xt- - X TA T)QXt + X T i)Q1 Ae()xtNl + (X1:N

E 1> [Ex NIyN xTQ-lXt] -ExlN~~( [XTQ-1A0(i)xt-l] -Ex xI T~i [X~A T()QlXt]

+Exl:N IY1:N,6~) xt-lA Ag) t 1] + E, xN Y:N(i) [9(X1:N, Y1:N)]] (B.103)

Where g(Xl:N, Y1:N) is a term that incorporates the prior for X as well as the terms to

normalize each of the distributions. Next, we must find the A that maximizes Q(010(')).

Using the Matrix Cookbook (70) and (88) [105]
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Sec. B.5. Estimating the Evolution Parameters

dAO(M Q(IO(i)) E 2 Xl:NIYl:N-O()1 + E1 .1:N-YlNOW t- )T

N

[Q -' , t 1 + Mti) -,] (QI) MtJ - (B. 104)
t=2

N T]' N Mt -

O(i[) 2Mtt- + Mt_1,t - BztI Mt(B. 105)
It=2 .t=2

Now Let's say that A is a function of 0 and we would like to solve for the best 9. To

do this we use the Chain rule. From the Matrix Cookbook [105] we know

dA , ,q dB' (B.106)
p q

d Q10j=E d Q(919(Y) dAp~q
Q(OIt) ~ dApq (B. 107)

a p q p

E~ 2 (2Meti+MtMt) - Q-1B tIi dAO1 (B. 108)
p : q Nt Jp-1 Mtt- + ptit -AZ qAOi
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Appendix C

Corner Camera Derivations

* C.1 Corner Location Errors

One important source of error in the edge camera idea is the corner location error.

When studying a movie of the observation plane, it's important to know where the

corner of the wall is in order to make an accurate reconstruction. Corner location

errors occur when the corner of the wall is erroneously chosen to be the wrong place.

They introduce systematic error into the scene's reconstruction.

* C.1.1 Edge Camera

Exactly how bad are corner location errors? To answer this question, we consider the

situation shown in Fig. C.1. Imagine a dark scene with a single bright object. We

want to find the angular position of the bright object in the scene. We can do this by

measuring 0: the angle of the shadow it casts against the wall. When we find the angle

at which the observation plane goes from light to dark, we will know what 0 is.

This story is simple in the case when there is no corner location error. But what

about the case where there is such an error?

Fig. C.2 shows this scenario. We can "sweep" the angle q across the observation

plane, and at the point where 0 is midway between dark and light, we can presume that

that will be the most likely inferred angular position of the object from the reconstructed

space-time image. When there is no corner location error, we will naturally get 0 = q,

but when there is a corner location error, 0 will not equal 9, but will depend on 0 and

other parameters.

Fig. C.3 plots intensity against the sweeping angle q, both with and without a

corner location error. Note that in the case where there is a corner location error, the

maximum intensity value no longer takes on a maximum value of 1, but a value below

1. In the analysis that follows, we will call that value lmax, and we will use lmax/2 as

221
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Figure C.1. This figure shows the setup for the toy problem of interest. The scene consists of a single
bright object, whose angular position 0 we want to learn.

the "transition point" between light and dark. In other words, we will choose the 5

that gives an intensity of lmax/2 as our estimate for 0.

Fig. C.4 is a detailed illustration of the situation, showing the names for the variables

that we'll use in our analysis. As the figure shows, we are presuming a corner location

error of (dr, dy) and a observation plane radius of r. We want to find what our estimate

0, 0, will be as a function of 0 and in terms of d2, dy, and r.

Using Fig. C.4 as a reference, we can make the following observations:

#8= tan- d

imax = r - dy tan() + dx

f| - 1 max
2

-n 1 d d d sin( 0 - ) )
a =sin-

222 APPENDIX C. CORNER CAMERA DERIVATIONS



XT;

Figure C.2. This figure shows the impact of a corner location error. In the error-free case, we would

sweep # across the observation plane (shown in green) hinging around the corner (the solid black line).

But if made a corner location error, we would instead try to sweep # across the observation plane

erroneously (shown in blue) hinging around the false corner (shown with a dotted line).
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Figure C.3. This plot shows how the observed intensity values vary with #, in the case of correct
corner location (in blue) and a corner location error ((dx, dy) = (0.1, 0.2), in red). Note that in the case
of a corner location error, the maximum value of the intensity does not reach 1. Note also that dx and
dy are as a fraction of the radius of the observation plane, r, which here is taken to be 1.

dy

dy 

r

a 

I

Figure C.4. This plot is intended as a reference for the meanings of each of the variables used in the
calculations of 0 as a function of 0.
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Figure C.5. This plot shows the empirical mean (in blue) plus or minus one standard deviation (in
red) of the error as a function of 0. Here, o,,= 10-4 and o-, = 10-3.

This is how 4 is expressed in terms of the parameters of the problem (9, dx, dy, r).
What sort of error does this introduce? In order to study this question, we assumed

that d. and dy were normally distributed with means of 0 and small (relative to r2 )
variances o and a . We generated many sample (9, 0) pairs for each 9 between 0

and 7r/2. We then measured the empirical means and variances of these pairs. Fig C.5

shows a few of our results.

Here were a few of our empirical findings:

1. The mean error was always 0 for all values of 9, o,,, and cr.

2. When o- = ay, the standard deviation of the error o,, was 2ux for all values of 9.

3. When u. # uy, the standard deviation of the error o, varied between 2o, (for

9 = 0) and 2ay (for 9 = ir/2).

U C.1.2 Stereo Camera

Another situation in which it makes sense to study corner location errors is the case

where there is a doorway just before the hidden scene, in which case we can use stereo

vision to locate a moving object in two dimensions. We would like to know: what effect

do corner location errors have on depth estimates, which are generally quite sensitive to

noise? To be more precise, suppose that we call the axis along which the doorway lies

the "x-axis," and suppose we call the perpendicular axis (of depth into the room) the
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100

80

' 60

0
O_40

20
Baseline

0
-40 -20 0 20 40 60

X Position

Figure C.6. The empirical means plus or minus one standard deviation of the estimated P as a
function of its x-coordinate, assuming true P, of 20, 40, 60, and 80. Here, the two corner location
errors at each of the boundaries of the doorway are independent and subject to OL = = 0.04. We
sample from a set of 1000 corner errors to approximate the mean and standard deviations empirically.

"z-axis." Then, how much noise in the z dimension will a corner location error cause?

To give an approximate sense of how much error results in the recovered z position,

we show the mean +/- one standard deviation in the z dimension as a function of the

true x-position of the object in Fig. C.6

Note that the empirical means are centered at the true depths of the objects. This

does not mean that any single corner location error won't cause the depth of the recon-

struction to be off systematically; it only means that on average, corner location errors

that are normally distributed around the corners in question will push the reconstructed

depths away as much as they pull them closer.

To see this systematic bias on its own, we can also study how a single corner error

introduces systematic error in our reconstructions-after all, for a single experiment, we

are likely to make a single corner error, and the resulting error in the depth calculations

will extend across many x-coordinates as the subject of the experiment walks back and

forth in the hidden scene. Figs. C.7 and C.8 show the systematic bias for two distinct

specific corner location errors.
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Figure C.7. The
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Figure C.8. The reconstructed depths of objects at depths 1, 2, 3, and 4, given a corner error of
Ay1 = -0.02, Ay2 = 0.02. Note that because of the different corner errors for each corner, there is the
possibility of asymmetric behavior on either side of the doorway.
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N C.2 Temporal Smoothing

In addition to spatial smoothness we can also reduce noise temporally by imposing

smoothness on our MAP estimate. x(t), or averaging adjacent frames in time. This

helps to reduce noise, at the cost of some temporal blurring. However, to emphasis the

coherence among results, we did not previously impose this additional constraint. Each

1-D image, x, that we showed in the main paper was independently computed. In Fig-

ure C.9 we show some results obtained with temporal smoothing. We either computed

the 1-D video on averaged video frames, or applied Kalman Filtering/Smoothing to

temporally smooth the result. Note that the Kalman Filtering/Smoothing causes the

noise to blur out into vertical lines. Frame averaging results appear noiser only because

there are less ID reconstructed frames being shown.

Hidden Scene Video Frame

a)
E

No Averaging - Each 10 Frames Averaged
Frame Processed Before Processing

Independently
Figure C.9. The result of imposing temporal s
help in reducing noise.

N C.2.1 Kalman Filtering/Smoothing

20 Frames Averaged Kalman
Before Processing Filtering/Smoothing

noothness or averaging adjacent frames in time to

We model our scene as a linear dynamic system.

Setup

AI
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Sec. C.2. Temporal Smoothing 229

Xt = Fxt-i + Wk (C. 1)

yt = Axt + nt (C.2)

Wk ~ K(O, R) (C.3)

nt ~ I(O, Al) (C.4)

The matrix F can be set as the identity matrix so changes over time are penal-

ized. The marginals p(xtjy1, ... , y,) of this HMM can then be solved using the forward

backward algorithm - or equivalently Kalman Filtering and Smoothing.
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Appendix D

General Lemmas

E D.O.1 Lemma 1

(D.1)whr(z fo e Matri t) = Cokb (o , A)(8.1. (z8t)_, P(t3.) o[ w (mt, Ct)

where from the Matrix Cookbook (8.1.8) and (3.2.5) [105] we know that

Ct = (A- 1 + P-1 -1

= A(A + Ptji)~1PtIt-1

mt = (A- 1 + P-I I 1 (A-p + P-, 1 ze_)

= A(A + Pt-t--)-lzt_1 + PtIt-i (A + Ptjt_1)-1p

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)

Ax(A'y, (ATE- 1A)-)N((p, Q) oc Afx(m, C) (D.7)

where from the Matrix Cookbook (8.1.8) [105] and the Woodbury matrix identity we

know that
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Ct = (ATE-'A + Q 1)- 1  (D.8)

= Q - QAT(E + AQAT)-lAQ (D.9)

mt = Ct(AT E-AA-ly + Q-p) (D.10)

= (Q - QAT(E + AQAT)-AQ)(ATE-ly + Q-1y) (D.11)

= QATE-ly + QQ-1p - QAT(E + AQAT)-lAQATE-ly - QAT(E + AQAT)l AQQ p)

(D.12)

= p + QATE-ly - QAT(E + AQAT)-lAQATE-ly - QAT(E + AQAT)-lAp)

(D.13)

= p + QAT(E + AQAT)l((E + AQAT)E-ly - AQATE-ly - Ap) (D.14)

= p + QAT(E + AQAT)- 1 (y - Ap) (D.15)

0 D.O.3 Lemma 3

AK, (z * P+1, +) = ,(ztit+1, Ptt+1 )AA(p, A) (D.16)

= IVxt(A-lzt+1lt+1, (AT(Q + Pt+1it+1 )-A- 1)-'.&x(p, A) (D.17)

o Mx (mt, Ct) (D.18)

Use Lemma D.O.2 where E = Q + Pt+1jt+1 and y = zt+lt+l

* D.O.4 Lemma 4

Ay/(Fx + B, R) = C exp (y - Fx - B)TR-1(y - Fx - B) (D.19)

= Cexp (F(F-1(y - B) - x))T R-lF(F-(y - B) - x) (D.20)

= Cexp 2 1(F-1(y - B) - x)TFT R-1F(F-1(y - B) - x)j (D.21)

= Az(F- (y - B), (FT R-lF)-1 ) (D.22)

" D.O.5 Lemma 5

Using Lemma D.O.2 we can solve for
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N (F'(.)~-(y + F'( )i - F(2)), (F'(2)T R--F'(-))A1 )AI(i, Q) x i(m, C) (D.23)

Using Lemma D.O.2 where [t =

Ct Q - QF'(:)T( + F'(2)QF'(.)T)-lF'(:)Q (D.24)

m=t + QF'(.- )Tj( + F'(i)QF'(.)T)-I(y + F'(i) - F(s) - F'(4)) (D.25)

= i + QF'()T (YZ + F'(4)QF'()T)-I(y - F(-)) (D.26)

0 D.0.6 Lemma 6

.AA-1(xt+_B)(Z, (ATQ-lA)- 1 + P)

= Cexp (A- 1(xt+1 - B) - z)T ((ATQ-lA)- 1 + P)--(A-l(xt+- B) - z) (D.27)

= Cexp 1 (Xt+i - B - Az)TA-1T((ATQl'A)- 1 + P)--A-l(xt+- B - Az) (D.28)

= Nx,, (Az + B, (A-1T((ATQlA)- 1 + P)- 1 A- 1 )-1 ) (D.29)

= Kx,+ (Az + B, A((ATQ-lA)-l + P)AT) (D.30)

= Ax, (Az + B, A(ATQ-lA)-l AT + APAT) (D.31)

=VxtK (Az + B, AA-lQA-1T AT + APAT) (D.32)

= x,+1 (Az + B, Q + APAT) (D.33)
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