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Abstract

By describing a manufacturing system with the help of a vector of numerical decision
variables x, and the system’s performance by a scalar performance index y, the
manufacturing system configuration problem can be defined as the problem of finding x
such that y(x) is maximized. A general performance index y and decision variables x
suitable for the configuration of an actual high-volume machining system from industry
were defined. These decision variables specify the machines types, the assignment of
machining operations to machines, and the buffer capacities and locations of a
manufacturing system coniiguraticn. Although the industrial problem studied involved
only two machine types, the decision variabies were generalized to cover prcblems with an
arbitrary number of machine types. The performance index accounts for the flexibility that
is required of the system to be configured.

Two broad solution approaches to this problem were investigated. In the forward
approach, a forward model f(x) = y(x) is constructed. Then, an enumeration procedure is
used to iterate through the space of solutions x, and the solution with the best value of f(x)
is prescribed. In the inverse approach, an inverse model f1(y) = x is given a goal
performance index value y,,q1, and the configuration fl(ygoal) is prescribed. Regression
and neural network forward models and neural network inverse models were investigated.
These computationally efficient empiricai models were fit to (x,y) data generat=d via
accurate but computationally expensive discrete-event simulation. The topography of the
X—y mapping was evaluated via roughness measures based on finite-difference
approximations of integrated first and second derivatives and compared to that of known
analytical functions.

The performance of manufacturing system configurations prescribed via the empirical
models were compared to that of configurations prescribed via analytical and simulation
forward models. Given sufficient simulation data, forward and inverse network-prescribed
configurations are superior to those prescribed via regression, simulation plus hill-climbing
and analytical models. Beyond a further number of simulation data, simulation plus hill-
climbing-prescribed configurations attain performance comparable to that of network-
prescribed configurations.

Thesis Supervisor: Professor George Chryssolouris

Title: Associate Professor of Mechanical Engineering
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1. Introduction

A manufacturing system can be defined as a combination of humans with machinery and
equipment that are bound by a common material and information flow. The configuration
of a such a system can be viewed as the process of mapping the system’s performance
requirements (specified via numerical performance measures) onto a description of a
physical system (specified via numerical decision variables) which will achieve the required

performance (Figure 1-1). This thesis presents approaches for performing this process.

performance ) mapping (. system
requirements ~ configuration
(specified via (specified via
performance - deglsuon
measures) _variables)

FIGURE 1-1. Configuration of a manufacturing system.

Typically, performance requirements are stated either in the form of an objective (i.e.,
maximize or minimize a performance index which is a function of one or more performance
measures) or in the form of goals (i.e.. restrictions on the allowable values of some
performance measures). Each performance measure quantifies an individual aspect of
manufacturing system performance. Performance measures are either benefit measures (the

higher the better) or cost measures (the lower the beiter).

An example of a manufacturing system of the sort addressed in this thesis is shown below

(Fig. 1-2). The configuration of such a system may specify the following attributes:
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FIGURE 1-2. An example manufacturing system.



1. Which machine types comprise the system.

o

Which machine types perform which operations.

|98}

The capacities and locations of inventory storage buffers.

Examples of performance measures for such a manufacturing system include:

1. Production rate (a benefit measure).

9

Average system inventory level or “work-in-process” (a cost measure).

Maintenance cost (a cost measure).

)

1.1. Problem Formulation

The configuration of a manufacturing system may be characterized by a vector of decision
variables x = {xy, ..., x,}. Tis performance may be characterized by one or more
performance measures z = {z1, ..., z,}. This performance is a function of the
configuration (i.e., z = z(x)). In general, this function may be very difficult to evaluate

analytically, because it depends on the dynamics of a complex manufacturing system.

In this thesis, the manufacturing system configuration problem is formulated as an

optimization problem:
Find x such that y(z(x)) is maximized, (1I-1)
where y(z) is a known algebraic objective function involving the performance mcasures

{z1, ..., z;y}, which are in turn generally unknown functions of the configuration x. This

10



means that the performance index y(x) is generally an unknown function of the

configuration x.

Two general categories of solution approaches may be used to solve the manufacturing
system configuration problem. The forward approach requires a forward model f such that
J(x) = y(x). The model j(x) is called a forward model because it takes as input a
configuration x and outputs an estimate of the configuration’s performance y(x). and this
follows the direction of caus.lity between configuration and performance. Such a model
must be applied in conjunction with an enumevation procedure in order to generate a final

solution. The basic solution approach is summarized in Figure 1-3:

[* =low value

- Propose x -

Evaluate f(x)

Prescribe design
X4

C = D

FIGURE 1-3. Forward approach to manufacturing systcm configuration.
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Once a sufficient number of iterations have been completed. the prescribed solution is xx.

Alternatively, the inverse approach may be used to solve the manufacturing system
configuration problem. This approach requires an inverse model f1 such that £1(y(x)) =
x. The model f1(y) is cailed an inverse mcde! because it takes as input performance and
outputs a corresponding configuration, which is opposite the direction of the configuration-

to-performance causality. The basic solution approach is:

1. Establish Ygoal-

2. Evaluate x+ = f1(ygoq)).

There are advantages and disadvantages to each solution approach. The advantages of the

forward approach are:

* Itis easy to tailor the mechanism for proposing trial configurations x so that
illegal configurations (e.g., too large of a buffer size) are avoided.

* The mapping from decision variables x to the performance index Yy(x) is one-to-
one, which may make the model f(x) relatively easier to construct than the

model £1(x).
The disadvantage of this approach is:
* Itrequires an iterative enumeration process. If the space of configurations x is

large enough, or if the time taken for a single evaluation of f(x) is long enough,

then the solution procedure can be too time-consuming, even with respect to the

12



long time horizon that is normally allowed for a manufacturing system

configuration decision.

The advantage of the inverse approach is:

+ Since no iterations are required, it may be less expensive computationally than
the forward approach. Once a goal performance value is given, then the

solution procedure immediately yields the prescribed design.

The disadvantages of the iuverse approach are:

+ It may be difficult to establish the goal performance index value Ygoal- Its ideal
value is the maximum realizable value of the performance index y(x), but this is
generally not known a priori. In practice, a range of values for Ygoal Need to be
submitted to the inverse model f~1(y), and the best of the resulting range of
prescribed configurations selected.

* The mapping y(x) — X may be one-to-many, which may make the inverse

model f*1(y) more difficult to construct than the forward model f(x).

1.2. The Difficulty of Relating Configuration to Performance

In general the relationship between decision variables and performance measures is
extremely complex, highly non-linear, and very difficult to establish analytically. As an
example, we consider an analytical calculation of the work-in-process (WIP) performance
measure for a transfer line (Gershwin and Schick 1979), a manufacturing system with
serial part flow that is widely used for high-volume production (Figure 1-4). Parts enter

the transfer line at the first machine. Each part is processed by Machine 1, after which it is

13



moved into Buffer 1. The part proceeds downstream, from Machine 1 to Buffer 1 to
Machine 2 and so on. Finally, it is processed by Machine N, and then leaves the system.
When Machine i breaks down, the upstream buffer, Buffer i-1, begins to fill up, and the
downstream buffer, Buffer i, begins to empty. If Buffer i-1 fills up to capacity, then

Machine i-1 becomes blocked; if Buffer i is emptied, then Machine i+1 becomes starved.

Machine Buffer Machine
1 1 N
state
variables &4 nq 27 no nN-1  ON
decision
variables .71 C1 hbro Co Cnt NN

FIGURE 1-4. A schematic of a transfer line.

To calculate WIP analytically, we need to enumerate the possible system states and the
probability of the system being in each state. The state of the transfer line is specified by

the set of numbers:

S={n,ng, ...,n,...,nN; 01, 02, ..., 0, ..., ON} (1-2)

where:

ni = number of parts in Bufferi (0 < n; < Cj, where C;
is the capacity of Buffer i)

1, if Machine i is operational

0, if Machine i is under repair

14



The state probabilities may be obtained by simultaneously solving the state transition

equations, which may be written in the form (Gershwin and Schick 1979):

Prob(S,e+1)\ [Ty o e Topg] [ Prob($,0)
PFOb{Sz(H‘l)} < PrOb{Sz([)}

ProbiSut+D) | | Ty - Ty | | Problsu®)

p = T p

where:
Prob{S;(1)} = probability of the system being in State i at time ¢
M = the number of system states
T = probability of the system being in State i at time 7+/,

given that it is in State j at time ¢
The transition probabilities Tjj are a function of the system’s decision variables, namely the

fi’s (mean failure rate of Machine i), the r;’s (mean repair rate of Machine i), and the C;’s

(storage capacity in number of parts of Buffer i). Equation 1-3 can be written as:

(T-Dp=0 (1-4)

where:

I = the identity matrix

Furthermore, the sum of the probabilities equals one:

vip=1 (1-5)
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where:

Vv = acolumn vector of M ones

The unknown state probabilities p are uniquely determined by Equations 1-4 and 1-5.
Knowing these probabilities, the WIP of the system, assuming a unit cost per part, may be
calculated as the expected value (in the probabilistic sense) of the number of parts in the

system:

N
WIP =3 Prob(S;} [N +n(S) +ny(S) + ... + nn-1(S)] (1-6)
i=1
where:
N = the number of machines in the transfer line
Prob{S;} = the probability of the system being in State i
nj(S;) = the number of parts in Buffer j in State i

Equations 1-4 and 1-5 are extremely difficult to solve for transfer lines of even moderate
size because there are a large number of states, and there is one equation for each state.

Equation 1-2 shows that the number of states is given by

M=2YC +1)(Cy+1)... Cy+1 (1-7)

where:

C; = the capacity of Buffer i

16



For a four-machine line with three buffers each of capacity 10, M = 21,296. For a 20-
machine line with the same buffer capacities, the number of equations to be solved is 6.4 x
1025, Although the special structure of the transition matrix T enables the equations to be
solved more efficiently than in the general case, the resulting problem is still too large for

most transfer lines of realistic size.

Computational effort aside, there are other factors which often make manufacturing
systems configuration analytically intractable. For example, the above analysis applies
only for transfer lines. Other systems with more complicated material flows are even more
difficult to model analytically. The domain of manufacturing systems configuration is

characterized by a lack of sound analytical models.

17



2. Literature Review

There are a number of approaches to the difficult endeavor of designing manufacturing
systems. In the literature, the overall manufacturing system configuration problem has
usually been decomposed into sub-problems of manageable complexity, which are then

treated separately (Fig. 2-1).

manufacturing system configuration
|
|

! ! ! |

resource resource material buffer
requirements  layout flow capacity

FIGURE 2-1. Sub-problems in the configuration of manufacturing systems.

One sub-problem is the resource requirements problem. For this problem, the task is to
determine the appropriate quantity of each type of production resource (for example,
machines or pallets) in a manufacturing system. The objective is usually cost-based, such
as the maximization of investment efficiency, or time-based, such as the maximization of

production rate.

The resource layout problem is the problem of locating a set of resources in a constrained
floor space. The objective is typically to minimize some combination of material handling

cost, travel time, and resource relocation cost.

In material flow problems, the objective is to determine the configuration of a material

handling system such that some combination of flexibility, cost, production rate and

reliability of the manufacturing system is maximized.

18



The buffer capacity problem is concerned with the allocation of work in process or storage
capacity in a manufacturing system. Adequate levels of work in process maximize machine
utilization and production rate, but add to floor space and inventory holding costs. The

goal is to find an optimum trade-off between these conflicting benefits and costs.

Approaches that have been taken in the literature to solve these subproblems are described

in the following sections.

2.1. Resource Requirements Problem

The resource requirements problem can be defined as the determination of the number of
each type of production resource in a manufacturing facility during some planning horizon.
A resource can be anything that is regarded as an individual production unit on the factory
floor, such as a machine, an operator, a machining center with associated material handling

equipment, or an automated guided vehicle (AGV).

The problem is difficult because its solution depends on a number of inter-related factors:

» The facility layour affects the number of resources needed because it determines
which resources are accessible from each point in the manufacturing system. Lack
of accessibility increases the number of resources required.

* The process plans and the required volumes of the parts to be manufactured in the
system must be accounted for, since together they dictate the amount of demand that
will occur for each type of resource.

* The operational policy affects the solution because it determines how efficiently
each resource of a manufacturing system will be loaded over time.

* Constraints such as the equipment acquisition budget, floor space, and number of

19



workers force the decision of how many resources to have of one type to affect, and

be atfected by, the same decision for all the other types of resources.

2.1.1. Analytical Approach to the Resource Requirements Problem

Historically the first to be developed, prescriptive analytical models for the resource
requirements problem are equations that express the required number of resources as a
function of production factors such as the required production rate, the part scrap rate, and
the breakdown frequency and duration of the resources. The resulting number is usually a
fractional number which must be rounded to a neighboring integer value on the basis of
intuitive considerations (Miller and Davis 1977). For example, the following equation has
been proposed for determining the number of resources for a single work center. Here a
work center is defined as a group of a particular type of resource, or of the same manual

processing operations (Shubin and Madeheim 1951):

n = __it’_z (2-1)
" 60-h-sf
nr = number of machines
n = total required production in units per day
st = standard time required to process one unit on a machine
sf = scrap factor (the number of good pieces/number of scrapped pieces)

I

h standard numbers of hours available per day per machine

This is a single-period model which applies only to a single work center, single product,

single operation facility. As with other analytical models, it is very easy to use, but solves

a very limited problem. It neglects the dynamic nature of production requirements over a

20



planning horizon and the probabilistic nature of breakdowns and scrap parts. More im-
portantly, it does not consider any of the interactions with the layout or the scheduling

methods of the facility.

Extensions of the analytical approach have been made to accommodate the single product,
multiple operation case (Apple 1950, Francis and White 1974). Other extensions have
accounted for the uncertainty of the problem parameters in actual manufacturing facilities by
modeling the parameters as random variables. Both single operation (Morris 1958) and

multiple operation (Reed 1961) cases have been addressed in this context.

2.1.2. Mathematical Programming Approach to the Resource Requirements

Problem

A mathematical programming formulation of the resource requirements problem has the
advantage that constraints such as those on budget, floor space, and overtime hours are
explicitly modeled. This allows interactions between the quantities of different resource

types to be captured.

One of the more comprehensive mathematical programming formulations of the resource
requirements problem (Miller and Davis 1978) treats the case in which resources are
machines. The problem is to determine the number of machines to have in each of N work
centers in each of T time periods. The manufacturing system is assumed to be a flow line
which produces multiple products. Each of the N work centers in the flow line contains
only one type of machine, but different work centers contain different machine types. The
production characteristics of a work center (e.g., the production rate per machine and the
scrap factor) vary from one period to the next, as does demand for the finished products.

The objective is to find the least cost number of machines in each work center in each time

21



period. Machines in a work center can either be purchased at the beginning of a time
period, or be left over from the previous time period. It is assumed that the relevant costs
are machine investment cost, overtime operating expenses. undertime opportunity costs,

and machine disposal cost. The present values of these costs are used for all calculations.

For a realistic problem, the formulation of a mathematical program may be very difficult:
much effort is required to develop analytical expressions for the objective function and the
constraints. Often, these expressions must then be linearized in order for the optimal
solution to be found via standard techniques such as the Simplex method for linear
programming. The formulation of a problem does not guarantee its solution. The
formulation may be difficult to solve due to its size (i.e., great number of variables and
constraints), or it might be virtually impossible to collect all of the required data (Kusiak
1987). On the other hand, simpler formulations may not capture the full difficulty of the

problem.

2.1.3. Simulation Approach to the Resource Requirements Problem

In the configuration of relatively simple systems it is possible to employ simulation in a
manner which is more efficient than blind trial and error. This is the case when
determining the resource requirements of a flow line which must achieve a given

production rate.

The production rate of a flow line (a manufacturing system with serial material flow) is
limited by the slowest or bortleneck resource. Resources upstream of the bottieneck may
experience blocking because they are constrained by the rate at which the bottleneck accepts
input, while resources downstream of the bottleneck may experience starvation because

they cannot be fed quickly enough. A bottleneck always exists, because in practice it is not
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possible to perfectly match the output rates of all of the resources in the flow line. The

bottleneck may be alleviated by:

* redistributing the work performed at the bottleneck resource,
* changing the design or the operating settings of the bottleneck resource, or

* adding additional resources at the bottleneck.

Once one of these remedial actions is taken, however, another bottleneck (albeit less severe
than the first) develops elsewhere in the flow line. Note that addition of resources is only
one of the options available for dealing with a bottleneck. In industry, it would be the least

desirable option, because of the capital expense involved.

One procedure for designing a flow line, then, is to start with a minimal initial
configuration (a given number of resources of each type). To be conservative, this
configuration can be one with just one resource of each type. The next step is to determine
the bottleneck via simulation. The production rate of the flow line can then be increased by
taking one of the above remedial actions on the bottleneck. If the required production rate
still has not been reached, then remedial action is taken on the new bottleneck, and so forth

(Fig. 2-2, Uenc er al. 1991).
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I Execuie simulation under the initial |
' configuration of the system

/

Calculate actual efficiency of :
| each machine ’

/

Identify bottleneck

/

Improve conditions at bottleneck:

4

Execute simulation i

A

Has the required production rate no
been reached?

yes

FIGURE 2-2. A procedure for designing a flow line via simulation.

The role of simulation in this procedure is to determine the bottieneck. This it can do by

calculating the actual efficiency E, of each resource, defined as (Ueno et al. 1991):

N

Er=

Ty =S--B, (2-2)

N

Jr = Number of completed products at Resource r, except for those products
which are reworked

T, = Total time at Resource r

Sy = Total starving time at Resource r

24



B, = Total blocking time at Resource r

The resource with the lowest actual efficiency £, is deemed to be the bottleneck resource.

Statistics such as total starving time at Resource r and total blocking time at Resource r are
difficult to track by any method other than simulation, especially when the system is large,

the details of its operation are intricate, and the actual system does not yet exist.

This procedure has been applied in industry for the configuration of a flow line with 25
processes for the production of large diameter steel pipes. The desired production rate in

this case was 7,000 pipes per month (Ueno et al. 1991).

2.1.4. Queueing Theory Approach to the Resource Requirements Problem

In the configuration of manufacturing systems, the role of queueing theory is similar to that
of simulation. For simple manufacturing systems, the results normally provided by
simulation can instead be provided by numerical solution of the algebraic equations which

make up a queueing model.

As with all analytical models, queueing models have a limited range of applicability. Only
certain types of manufacturing systems are easily modeled. In particular, systems in which
the work in process (WIP) remains constant are particularly amenable to queueing analysis.
The constant WIP condition may hold in many Flexible Manufacturing Systems (FMS), in

which parts circulate about the system on a fixed number of pallets.

Queueing theory was applied to the case of an FMS which produces only a single part type,
and which consists of M machine groups of one machine each. The analysis can be

extended without difficulty cover the general case of multiple part types and multiple
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machines at each machine group (Suri and Hildebrant 1984). Expressions were derived for
the average time that a part spends in the FMS, the production rate, mean queue lengths and

machine utilizations.

Queueing theory, like simulation, may be applied in a trial and error fashion for the design
of manufacturing systems. The queueing model of a given system will only provide a
subset of the performance measures provided by the simulation model. However, it will

generally provide results within a shorter span of time (Suri and Hildebrant 1984).

2.2. Resource Layout Problem

The resource layout problem is concerned with the placement of resources on the factory
floor so that some set of production requirements are met. The problem has been

formulated in various ways:

1. The template shuffling formulation
2. The quadratic assignment problem (QAP) formulation

3. The relationship (REL) chart formulation
In the following sections, these formulations will be briefly discussed.
2.2.1. Template Shuffling Approach to the Resource Layout Problem
The template shuffling formulation is a manual method where a number of templates
geometric replicas of machines, material handling units, etc.) are arranged by trial and
error on the prespecified floor area of the facility. It is the most widely used of all the

resource layout formulations in industry (Filley 1983).
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This formulation is not amenable to automatic solution because it is not well structured and
layouts must be ranked by visual inspection. However, it is supported by practically all of
the commercially available facilities planning software packages. These packages provide
features that make the shuffling of templates more convenient than the actual manual
manipulation of physical templates. Editing features enable templates to be copied, moved,

deleted, and resized easily on screen (Fig. 2-3).

templates
i

—

/
floor space

FIGURE 2-3. The template shuffling formulation of the resource layout problem.

Features such as layers are typically supported, and the designer can focus on a subset of

templates by making the others invisible.

2.2.2. Quadratic Assignment Problem Approach to the Resource Layout

Problem

The Quadratic Assignment Problem (QAP) formulation of the resource layout problem is to

assign n resources to n spaces of equal area in order to optimize an objective. The most
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common objectives include the total material handling distance, the total cost for material
handling, and the cost for relocating existing resources. Material handling costs are usually
assumed to be proportional to the product of the distance and the rate of material flow

between each pair of resources.
The GAP formulation has several limitations:

* Realistically sized problems are difficult to solve optimally.

* Irdividual constraints, such as requiring that particular machines be located no
further than a certain distance from each other, are not incorporated into the current
problem formulation.

* Itcan lead to irregularly shaped resource areas in the final layout. This comes from
having to break up resource areas into smaller areas so that all areas can be of equal
size.

* Itallows no explicit way to incorporate factors other than resource relocation cost
and material movement cost into the model.

* It assumes a simple linear relationship between the cost of material movement

between any pair of resources and the distance between those resources.

The mathematical programming formulatior: of the QAP is given by:

Minimize )\ > > > cpux (2-3a)
i j ok 1

Subject to:
S x;=1, fori=1,...,n (2-3b)
J
Zx,-j=1, forj=1,...,n (2-3¢)
i
x; e {0, 1} (2-3d)
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The variable x;; represents a (0-1) variable equal to 1 if and only if fucility i is assigned to
location & and cjji is the cost of assigning facilities i and j to locations & and I respectively.
The constraints (2-3b) express the fact that each resource i must be assigned to exactly one
location and the constraints (2-3c) express that fact that each location j must have one

facility assigned to it. This is an integer program.

Many solution approaches to this program and its variations have been proposed (Lawler
1963, Gavett and Plyter 1966, Graves and Whinston 1970, Kaufmann and Broeckx 1978,
Bazaraa and Sherali 1980). However, the problem is non-pclynomial-hard (NP-hard)
(Sahni and Gonzalez 1976), meaning that the time taken by any algorithm to find the
optimum solution must increase exponentially as the problem size (i.e., the number of
resources) increases linearly. Consequently, optimal solutions for problems involving
more than 15 or so resources (Liggett 1981) cannot be obtained within the realm of

practical computational effort.

Because of this computational difficulty, many different heuristics have been devised for
finding sub-optimal but “good” solutions to the QAP. These are either construction
procedures, which place resources on the factory floor one after another untl all resources
have been placed, or improvement procedures, which start from an initial complete solution

and then attempt to improve the solution by interchanging resources (Evans et al. 1987).
2.2.3. Relationship Chart Approach to the Resource Layout Problem

The relaticnship (REL) chart formulation of the resource layout problem is a more
qualitative formulation which overcomes the stringent data requirements of the QAP

formulation. A REL chart gives the desirability of having each pair of resources adjacent to
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each other. This desirability is usually expressed in a letter code (Fig. 2-4):

>

Absolutely essential that two departments be located adjacently
Essential that two departments be located adjacently

I Important that two departmenis be located adjacently

O Marginally beneficial that two departments be located adjacently

U  Unimportant that two departments be located adjacently

X The two departments should not be adjacent

Resource | Area (m2) A - Absolqtely Necessary
E - Especially Important
1 800 | - Important
2 1200 I O - Ordinary
3 1600 A | U - Unimportant
I R .

4 500 | | X - Undesirable
5 800 |
6 1100 S |
7 500 :
8 1000

FIGURE 2-4. A REL chart for eight resources containing adjacency ratings.

These codes are transformed into numerical ratings when scoring a layout. For example,
the ratings used by the Automated Layout Design Program (ALDEP) (Seehof and Evans
1967) are: A =43, E=42,1=41,0=40,U =0, X =-45. A layout’s score is simply the
sum of the ratings for each pair of adjacent resources in the layout. The objective is to find

the layout with the highest score.

Existing solution methods for the REL formulation are heuristics; they find only “good”
solutions, not optimal solutions. The methods are mostly construction procedures which

add one resource at a time to the facility until the layout is complete (Seehof and Evans
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1967, Lee and Moore 1967). The quality of the layout is determined by the quality of the

heuristic.

The REL chart formulation is based on the premise that maximizing adjacency ratings is
good for the overall layout. However, the correlation between adjacency ratings and more
global measures of performance, such as production rate or equipment acquisition cost,

may be very weak.

2.2.4. Rule-Based Approach to the Resource Layout Problem

The application of rule-based systems to the resource layout problem has been limited.
Because of the daunting combinatorial nature of the problem, it is impossible to establish

generally applicable rules for its solution. Simplifications must be made.

One approach is to divide resource layouts into a few generic classes. Four classes of
layouts that have been proposed are: linear single-row, circular single-row, linear double-
row, and multi-row. In this approach, these layouts are to be mated with one of two
classes of material handling systems: automated guided vehicles (AGVs) or robots (Fig. 2-
5). Furthermore, only certain combinations of layout and material handling are considered:
linear single-row/AGYV, circular single-row/robot, linear double-row/AGV, and multi-

row/AGV (Heragu and Kusiak 1988).

With the problem thus simplified, a rule-based system can be applied in two ways. First,
based on floor space restrictions, the system can select one of the four layout/material
handling combinations. The existing system always recommends the combinations in the
order circular single-row/robot, linear single-row/AGV, linear double-row/AGV, and

multi-row/AGV, passing to the next combination in the order only when the current
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combination cannot fit within the specified factory floor space.

Once this step is complete, additional rules in the rule base are used to select one of a
number of analytical models (similar to Equation 2-3, the Quadratic Assignment Problem
model), plus a solution algorithm for the model. The selection of a model is based on the
selected layout structure, and the numbers and sizes of the resources. The function of the
selected analytical model is to locate the individual resources within the selected layout

structure such that material handling cost is minimized.

It is important to note that the rule-based system itself does not generate any new design
knowledge; it cannot prescribe designs that the author of its rules does not know how to
design. Specifically, it can only “design” one of the four layouts in Figure 2-5. The role
of the rule-based system is to apply the intuition of a human expert, as set forth in a set of
rules, to prescribe the basic structure of the resource layout; then, again following the
expert’s judgement, prescribe an analytical model for optimizing the selected layout

structure.
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FIGURE 2-5. Classes of resource layouts.

2.3. Material Flow Problem

Material flow decision variables which must be cpecified in the configuration of a material
handling system can be divided into two broad categories: those which specify the zype of
the material handling system, and those which specify the configuration of a given type of

material handling system.

Configuration decision variables depend on the type of material handling system. For a
material handling system based on conveyors, these variables may be the layout of the

conveyors on the factory floor and their operating directions and speeds.

A different set of decision variables apply to material handling systems based on automated
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guided vehicles (AGVs). AGVs are unmanned vehicles used to transport loads from one
location in the factory to another. They are operated with or without wire guidance and are
controlled by a computer. AGVs are often used in flexible manufacturing systems. The
configuration decision variables that must be considered in the design and operation of an

AGV-based material handling system are (Wilhelm and Evans 1987):

» The travel aisle layout

* The number and the locations of the pickup and delivery stations

+ The pattern of material flow within the travel aisles (unidirectional, bidirectional or
combinations)

* The number of vehicles required

» The routes used by vehicles during specific operations

 The dispatching logic used during operation

» The storage capacities of pickup and delivery stations

Mathematical programming has been applied to determining the pattern of material flow in
an AGV-based material handling system (Gaskins and Tanchoco 1987). The objective of
the proposed approach is to find the flow path which will minimize the total loaded travel of
AGVs. The required inputs are: a layout of the departments of a manufacturing system, the
aisles where AGV travel may occur, the locations of pickup (P) and delivery (D) stations
for each department, and the material flow intensities between departments. The output of
the program is a solution which indicates which aisles should be used for AGV travel, and
what the direction of travel should be on each of these aisles. It is assumed that travel in a

single direction only is permitted ir each aisle.

The mathematical programming formulation is based on an abstraction of the input

information in the form of a graph. The graph consists of nodes, which represent



pickup/delivery (P/D) stations and intersections and corners of aisles, and arcs connecting
the nodes, which represent possible directions of travel along the aisles. Each aisle is
therefore associated with two arcs, one for each possible direction of travel. Each node is
identified by a number. An arc from Node i to Node j is identified by au integer variable
xjj. 1f xjj equals 1, then the final material flow pattern will include AGV travel from the
locaton represented by Node i to the location represented by Node j; if x;j equals 0, then no

material flow from location i to location j will be present in the final solution.

This abstraction can be demonstrated with the aid of a simple example (Gaskins and
Tanchoco 1987) with two-departments (Fig. 2-6). The department and aisle layout is
shown in Figure 2-6(a). The numbers represent distances between adjacent nodes (which
are P/D stations, intersections, or corners). P is a pickup station, and D is a delivery
station. The material flow intensity between these two stations (from Department 1 to
Department 2) is 100. This layout is then converted into the graph of Figure 2-6(b).

Deletion of arcs from this graph resuits in the final material flow pattern (Fig. 2-6(c)).

The objective is to minimize the loaded travel distance of the AGVs. In order to ensure a
legal solution, a number of constraints must be observed. Travel must be unidirectional,
which means that only one of the two arcs which connect each pair of nodes can be in the
final solution. Furthermore, it must be possible to reach every node; there must be at least
one incoming arc for each node. A node which violates this constraint is called a source
node. It must also be possible to leave every node. A node which violates this constraint

is called a sink node. Source and sink constraints apply at each node.
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FIGURE 2-6. Steps in determining the material flow pattern in AGV-based systems.

The objective function in conjunction with the unidirectional constraints and the source and
sink constraints together constitute the mathematical programming formulation of the

example problem. The formulation is a nonlinear integer program.

Since its introduction, the above approach has been expanded to incorporate the function of
optimally locating the P/D stations. The expanded approach (Usher ez al. 1988) consists of
two phases. Phase 1 is the original approach. In Phase 2, the locations of the P/D stations
are altered by a heuristic to reduce the estimated total distance traveled by the AGVs. Since
this relocation potentially spoils the optimality of the flow directions derived in Phase 1,
both phases must be executed iteratively until Phase 2 no longer alters the optimality of

Phase 1. In a further expansion of the approach, unloaded AGV travel has been
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incorporated into the objective function as well (Rabeneck er al. 1989).
2.4. Buffer Capacity Problem

A buffer is a storage space in a manufacturing system for pieces between processing
stages. Buffers serve to decouple the processing stages of a manufacturing system. By
providing buffer space for inventory between mnachines, starvation and blockage are
reduced, resulting in increased production rate. This comes at the expense of increased

inventory, however.

Buffer allocation is a difficult problem because in general it is not possible to derive an
analytical relationship between performance requirements and the proper buffer locations
and sizes. Another aspect of the problem is that existing factory floor layouts often impose

constraints upon the locations and capacities of buffers that can be implemented.

Dynamic programming has been used (Jafari and Shanthikumar 1989) to address the
allocation of a fixed buffer capacity of Z pieces over the N-1 possible buffer locations in an

N-machine automatic transfer line (Fig. 2-7).

caparity capacity
Ky Ko

raw )
maternal — M M — M _ M finished
infinite 1 2 e i " product
supply

FIGURE 2-7. Transfer line system studied for the dynamic programming application.

Each individual buffer capacity K, must not exceed a given local capacity constraint C,.
The objective is to maximize the production rate f(Ky.1), where Ky.1 is the vector of N-1
individual buffer capacities. If the total capacity, Z, exceeds the sum of the local capacities,

Ci1+Cp+ ... + CN-1, the trivial solution is to make each K, = C,. This case is excluded
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from further consideration.

The above problem is cast in the form of the following dynamic programming problem:

Maximize: f(Ky.,)

Subject to:

N-1 4
S Ky=Z 2-4)

n=1

0<K,<C,

In the dynamic programming approach, the multi-variable optimization problem involving
the N-1 individual buffer capacities K1, ..., Ky.1 is broken down into N-1 single-variable
optimization problems involving the separate K'’s. These are solved in N-1 consecutive
stages. The decisions at each stage n, 1 < n < N-1, require the the calculation of the
production rate of the portion of the transfer line consisting of M1-B—...—B,;~M;1.
Furthermore, the production rate calculated at the nth stage must be expressible in terms of
parameters calculated at the n-1th stage. This recursive quality is a requirement of dynamic
programming objective functions. Production rate can be recursively calculated via an
approach in which the system is decomposed into N-1 two-stage transfer lines (M, By,
M3), (RMy, By, M3), ..., (RMp.2, By.1, My), where RM,; is an equivalent single machine
replacing (RM;.1, B;, M;4+1). The production rate of each two-stage transfer line is
analytically calculated, under the simplifying assumption of no second-stage blocking. The
necessary recursion is achieved by defining the breakdown characteristics of RM; in terms
of the breakdown characteristics of RM;.1, the capacity of the buffer B;, and the breakdown

characteristics of Mj41.
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The main requirement of this formulation is the recursive quality of the objective function.
The production rate objective can be made to satisfy this condition, but generalization of the
approach to other types of performance measures is difficult. For example, as inspection
of Equation 2-4 will verify, the cost related to providing buffers is determined solely by the
total storage space allocated and not by actual inventory levels in the storage space. In
addition, the decomposition approach to production rate calculation can be implemented

only for systems with serial material flow.

2.5. Multivariate Optimization Problem Formulations

A number of manufacturing system configuration approaches in the literature view the
problem as a multivariate optimization problem in which a configuration is represented by a
vector of decision variables x = {xy, ..., x,}. This thesis investigates methods applicable

to such a problem formulation.

One approach seeks to supplement the descriptive capabilities of simulation with
prescriptive techniques capable of generating new manufacturing system configurations.
The prescriptive technique is usually a type of search algorithm. The approach begins with
an initial vector of decision variables, which represents the current configuration. The
performance index of the current configuration is evaluated via simulation. Next, the
search algorithm is used to modify the current configuration. If the performance of the
modified configuration is better then the current configuration, then the modified
configuration becomes the current configuration. In either case, the search algorithm is

used to modify the current configuration again, and the process is repeated (Fig. 2-8).
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Start with arbitrary vector
x of decision variables.

Y

Using simulation, evaluate
the performancey of the
decision variables x.

Using prescriptive tool,
determine

X=X best+AX

Is y better than the best
performance to date ypagt?

Lety pest = yw

Let x best =

I
x

FIGURE 2-8. Use of (descriptive) simulation with (prescriptive) search for finding a configuration.

This approach has been applied to the problem of assigning buffer capacities for an
automatic assembly system (AAS) consisting of N machines and N+1 buffers (Bulgak and
Sanders 1988). Material flow in the category of systems considered consists of a main
assembly loop and a repair loop for the repair of imperfectly-assembled parts (Fig. 2-9). A
fixed number P of pallets carry parts about the system. The pallets ride on transfer chains

OT Conveyors.
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FIGURE 2-9. The automatic assembly system for the simulation with search application.

The major factors which affect the performance of an AAS are: the cycle times of the
machines, the rate of occurence of parts jams for each machine, the distribution of jam
clearing times, the pallet transfer times, the sampling policy for the inspection of the
finished assemblies, and the buffer sizes between machines. In this application, only the

buffer factor is addressed; the other factors are assumed to be given.

The objective is find buffer capacities K1, ..., Ky+1 which maximize the production rate of
the AAS. This problem is approached via simulation in conjunction with simulated
annealing (?ig. 2-10). Simulated annealing is a search procedure (Kirkpatrick ez al. 1983)
based on an analogy between the process of annealing in solids, as described by the models
of statistical mechanics, and the process of combinatorial optimization. Ir general terms,
when a solid is annealed, (that is, heated and then gradually cooled), the positions of a vast
number of molecules are gradually evolved into a configuration of very low internal strain
energy in the solid. If we make the analogy between the molecular positions and internal

strain energy of a solid and the state variables and objective function of a combinatorial
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optimization problem, then the statistical mechanical models which describe solid annealing
can provide a “recipe” for the minimization of an objective function of many state variables.
In the combinatorial optimization prcblem, as in the solid, annealing performance is
dictated by the time history of a temperature parameter T; this is the so-~2lled “cooling

schedule.”

Randomly generate a vector

——>
of buffer capacities, K.

Lotk k.

Using simulation, com%ut?
the production rate f(K

Flandornly generate K, close
to KDest

Yes, V No,
better. Using simulation, not better.

— determine if {(K) is better than
f(k best,

Generate uniform random variate
best Yes. between 0 and 1. Does this number

— LetK K. % exceed acceptance probability (a
' defined function of temperature T?)

temperature T.

b

. Has maximum number of

iterations been reached? No.

Update (reduce) ‘

Yes.
DONE.

FIGURE 2-10. Use of simulated annealing for determining buffer capacities.

Since simulation is used to deal with the complexity of the relationship between the
performance index (production rate) and the decision variables, this approach requires few
restrictive assumptions about the nature of the performance measures and decision variables
of the system to be configured. While only buffer capacities are optimized in this particular
application, complicated logic such as inspection policy is incorporated into the simulation
model and hence the solutions achieved are applicable for the assumed inspection policy.

One possible limitation of the simulated annealing/simulation approach is that the required
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number of numerical simulations may be high (in the thousands). The computational
burden of the procedure may therefore be prohibitive. Other attempts to combine
simulation with search (e.g., of the hill-climbing type, Caramanis 1985) suffer from the

same limitation.

Other efforts have been made to systematically explore the space of decision variables via
simulation. Perturbation analysis (Ho ez al. 1984) provides, through simple numerical
calculations performed during the running of a single simulation, measures of the
sensitivity of the performance index to each decision variable. This allows attention to be

focused on just the most important decision variables.

2.6. Evaluation of Existing Approaches

Most approaches to manufacturing system configuration are limited by the difficulty of
modeling relationships between decision variables and relevant measures of performance.

This is reflected by the following prevalent shortcomings:

» Only one type of decision variable (e.g., buffer sizes) may be prescribed. This neglects
interactions between different configuration sub-problems (for example, the effect of
buffer storages on the machine requirements of a system).

*  Only manufacturing systems with simple structure (e.g., serial material flow systems)
may be considered. Moedels for one system structure, say, serial material flow of a
single part type, cannot be generalized to systems of different structures (for example,
parallel material flow of muitiple part types).

+ In the construction of performance indices, relevance may be sacrificed for the sake of
ease of evaluation. Examples include the sum of adjacency ratings objective used in the

REL chart formulation and many of the math programming objective functions which
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incorporate parameters which are impossible to collect in real manufacturing facilities
(e.g., the profi: of assigning a particular type of machine to a particular work center).
Performance indices should be functions of meaningful performance measures such as

production rate, amount of work-in-process, and tardiness.

Only the solution methods for the multivariate optimization problem formulation manage to
avoid the above shortcomings by relying on numerical simulation to provide the decision
variables to performance index mapping. This thesis presents methods which address the
following shortcomings in the the reported applications of multivariate optimization

solution methods to manufacturing system configuration problems:

+ Existing applications have not explicitly addressed problems involving decision
variables of multiple types (e.g., resource quantities and buffer capacities).

e A key shortcoming of existing multivariate optimization methods for manufacturing
system configuration is that performance index evaluation, coming via numerical
simulation, is computationally expensive. This is because computationally expensive
Monte Carlo simulations are required to model stochastic elements of manufacturing
system behavior such as breakdowns. As a result, relatively few configurations can be

explored via simulation.
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3. Proposed Methods

To motivate the proposed methods, we note that the relationships between performance
measures and decision variables in manufacturing systems are complex and difficult to
model by analytical means. Rather than pursuing this avenue, the proposed methods seek
to establish the relationship between performance measures and decision variables
empirically, by means of examples. Currently, the only general tool for creating such
examples is discrete-event simulation, a computationally expensive process. The methods
to be investigated in this thesis, although requiring examples generated via simulation,
attempt to reduce the number of simulations required to arrive at good manufacturing
system configurations by supplementing simulation models with other models such as

regression and neural network models.

In all, five methods for solving the manufacturing system configuration problem (Eq. 1-1)
are investigated in this thesis. Four are based on the forward approach and one is based on
the inverse approach (an approach which has not been applied to manufacturing system

configuration to date). These methods are (Fig. 3-1):

Forward Approach

1. Analytical forward model in conjunction with exhaustive enumeration.

2. Monte Carlo, discrete-event simulation forward model in conjunction with
gradient ascent enumeration.

3. Empirical linear regression forward model fit to simulation data in conjunction
with exhaustive enumeration.

4. Empirical neural network forward model fit to simulation data in conjunction

with exhaustive enumeration.
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Inverse Approach

5. Neural network inverse model.

¥x)

manufacturing system N manufacturing system
performance configuration

methods of finding
configurations x with good y{(x)

}
+ )
forward model inverse model
f(x) = y(x) F1() = x
empirical
forward model
fit to simulation
data
+
enumeration
] v ¥ empirical
analytical discrete-event linear neural neural
forward simulation regression network (19tW0fk
model forward model forward forward inverse
+ + model model model fit to
enumeration enumeration + + simulation

enumeration enumeration data

FIGURE 3-1. Manufucturing system configuration methods investigated in this thesis.

The first two methods are existing methods from the literature, and are included as
references by which to assess the performance of the methods that employ empirical
forward and inverse models fit to simulation data. In the next section, the key tools that
underly some of these five methods will be discussed. Then, the five methods will be

described.
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3.1. Tools

The major tools used in the proposed methods are discrete-event simulation, regression and

neural networks.

3.1.1. Discrete-Event Simulation

The discrete-event simulation software tool employed in this thesis for simulating the
operation of a manufacturing system implements a Monte Carlo simulation. Conceptually,
the inputs of such a computer simulator are decision variables which specify the
configuration (e.g., machine processing and failure rates, machine layout), the workload
(e.g., arrivals of raw materials over time, part routings), and the operational policy (e.g.,
“first come, first served”) of a manufacturing system. The simulator assembles these data
into a model of the manufacturing system which includes the rules on how the components
of the system interact with each other. Given the initial state of the manufacturing system
(e.g., the number and types of parts initially in inventory at various points in the system),
the simulator follows the operation of the model over time, tracking events such as parts
movement, machine breakdowns and machine setups. At the conclusion of the simulation,
the output provided by the simulator is a set of statistical performance measures (e.g., the
average number of parts in the system over time) by which the manufacturing system may

be evaluated (Fig. 3-2).

Decision Variables Performance Measures

System Config
Workload
Operational Policy

Production Rate
Average WIP
etc.

Simulator

FIGURE 3-2. Function of a discrete-event simulator.
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Simulation is an analysis tool because it determines only the performance of a given
manufacturing system configuration. When used for the configuration of manufacturing
systems, simulation must be combined with an external element which is capable of
prescribing or synthesizing new configurations. Often, the external element is a person
who creates a number of intuitively feasible alternative configurations, and then evaluates
them with a simulator. On the basis of the simulation outputs, either the best alternative
configuration is chosen, or new and possibly improved alternative configurations are

proposed.

Mechanics of Simulation

Most simulation software programs model a manufacturing system as it evolves over time
by a representation in which the variables that track the system’s state (the state variables)
change instantaneously at separate points in time (Law and Kelton 1991). These points in
time are the ones at which an event occurs, where an event is defined as an instantaneous
occurrence that may change the state of the system. Thus a model of this type is called a

discrete-eveni simulation model.

Because of the dynamic nature of discrete-event simulation models, the current value of
simulated time must be tracked as the simulation proceeds, and a mechanism to advance
simulated time from one value to another is needed. The variable in a simulation model that
gives the current value of simulated time is called the simulation clock. As fo. the
simulation time advance mechanism, the most widely used approach is called the event-

driven approach.

With the event-driven approach, the simulation clock is initialized to zero and the times of

occurrence of future events are determined. The simulation clock is then advanced to the
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time of occurrence of the most imminent (first) of these future events, at which point the
state of the system is updated to account for the fact that an event has occurred, and
knowledge of the times of occurrence of future events is also updated. Then the simulation
clock is advanced to the time of the (new) most imminent event, the state of the system is
updated, and future event times are determined, etc. This process of advancing the
simulation clock from one event time to another is continued until eventually some
prespecified stopping condition is satisfied. Since all state changes occur only at event
times for a discrete event simulation model, periods of inactivity are skipped over by
jumping the clock from event time to event time. Successive jumps of the simulation clock

are generally unequal in size.

All discrete event-driven simulation models share the following components (Law and

Kelton 1991):

« System state: The collection of state variables necessary to describe the system at a
particular time.

o System clock: A variable giving the current value of simulated time.

» Eventlist: A list containing the next time when each type of event will occur.

» Statistical counters: Variables used for storing statistical information about system
performance.

» Initialization routine: A subprogram to initialize the simulation model at time zero.

» Timing routine: A subprogram that determines the next event from the event list and
then advances the simulation clock to the time when that event is to occur.

e Event routine: A subprogram that updates the system state when a particular type of
event occurs (there is one event routine for each event type).

e Library routines: A set of subprograms used to generate samples from probability

distributions that were determined as part of the simulation model.

49



* Report generator: A subprogram that computes estimates (from the statistical counters)
of the desired measures of performance and produces a report when the
simulation ends.

* Main program: A subprogram that invokes the timing routine to determine the next
event and then transfers control to the corresponding event routine to update the
system state appropriately. The main program may also check for termination and

invoke the report generator when the simulation is over.

The logical relationships (flow of control) amnong these components is as follows. The
simulation begins at time 0 with the main program invoking the initialization routine, where
the simulation clock is set to zero, the system state and the statistical counters are initialized,
and the event list is initialized. After control has been returned to the main program, it
invokes the timing routine to determine which type of event is most imminent. If an event
of type i is the next to occur, the simulation clock is advanced to the time that event type i
will next ‘occur and control is returned to the main program. Then the main program
invokes event routine i, where typically three types of activities occur: (1) the system state
is updated to account for the fact that an event of type i has occurred; (2) information about
system performance is gathered by updating the statistical counters; and (3) the times of
occurrence of future events are generated and this information is added to the event list.
Often it is necessary to generate random observations from probability distributions in
order to determine these future event times; such a generated observation is called a random
variate. After all processing has been completed, either in event routine i or in the main
program, a check is typically made to determine (relative to some stopping condition) if the
simulation should now be terminated. If it is time to terminate the simulation, the report
generator is invoked from the main program to compute estimates (from the statistical
counters) of the desired mesures of performance and to produce a report. If it is not time

for termination, control is passed back to the main program and the main program—timing
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routine—main program—event routine—termination check cycle is repeated (Law and Kelton

1991) until the stopping condition is eventually satisfied (Fig. 3-3).

Initialization routine

S

@ Main program
»

Timing routine

1. Setsimulation clock = 0

2. Initialize system state and
statistical counters

3. Initialize event list

0. Invoke the Initialization routine

1. Invoke the timing routine Repeatedly
2. invoke event routine i

1. Determine the next event type,
say i
2. Advance the simulation clock

©)

Event routinei

1. Update system state

2. Update staustical counters

3. Generate future events and add to
event list

Library routines

Is No

-

Generate random
vanates
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FIGURE 3-3. Flow of control in an event-driven, discrete-event simulation program.

3.1.2. Linear Regression

In a linear regression model, the output f(x) is a linear function of empirically determined
coefficients (Hogg and Ledolter 1987). The first linear regression model investigated in

this thesis is a linear function of the decision variables x = {x1, x2, ..., X }.

f(x)=ao+ .2’_1:1 ax; (3-1)
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The coefficients a; are set to values which best fit the regression model to a set of input-
output data {(x[1], y[11), x(2], y(2]), ..., (x[s], yOs]y, ..., (x[S], y[S])}. Specifically,

coefficients g; are set to minimize the squared error (Draper and Smith 1981):

%é(y“‘ —f &) (3-2)
where:
S = number of sample data points (in this thesis, generated via simulation)
yls] = performance index value for the st configuration x[5], as given by
simulation
fixB)) = performance index value predicted by the regression model

The actual values g; are obtained via least-squares solution of the equation

1 2,1 [y
1 x@ e X ay | [y

ylS]

Q ...
3

1 x5 ... x5
’ (3-3)
X a =y
which yielcs the result
a = (XTX)-1XTy (3-4)
A second linear regression model investigated in this thesis is
n n i
f(x)=ag+ .21 aix; + 'Zz .Zl a;xx; (3-5)
L= t=2)=
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which differs from the model in Equation 3-1 via the addition of terms involving the
product of pairs of different decision variables. However, the model is still linear in the
coefficients g; and gjj. Again, the coefficients are obtained via Equation 3-4, with the

appropriate redefinition of the matrix X.

3.1.3. Neural Networks

A neural network is a collection of densely interconnected, simple computational elements
called nodes. Each node takes one or more numerical inputs an¢ produces a single
numerical output. This output may be propagated via network connections to other nodes,
each connection multiplying it by some weight value, and the results become input values
to those nodes. Certain nodes, the input nodes, receive external numerical inputs. The
outputs of certain nodes, the output nodes, are externally monitored and form the numerical
outputs of the neural network. The input-output transformation effected at each node can
be adjusted by means of a node-specific threshold parameter. Adjusting the weights and
thresholds of a neural network affects the numbers output by the neural network for a given

set of input numbers. A neural network is a type of non-linear regression function.

Neural networks can be used to generalize the mapping from an input space U and to an
output space V on the basis of examples. The procedure for doing so consists of two
phases: a training phase and a use phase. In the training phase, the mappings from S
different points in U to the corresponding points in V {{ulll v(1]), (2l v(2]), . |
(ulsl,vlshy, ..., (ulS],vISN)} are provided to the neural network. (Here uls] and v(s! are
vectors {u1(s), uglsl, ..., up0s1) and {v0s], vols], ..., v, (5]} respectively). A training
algorithm is then used to adapt the parameters (weights and thresholds) of the neural

network so that the neural network will output something close to v{sI when given an input
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of ulsl for all 1 s <S. At this point, the network has formed estimate of the mapping
from U to V. In the use phase, the trained network is given an entirely new input ulS+11,

and is then expected to generalize the appropriate output vIS+11 (Fig. 3-4).

1. Training Phase

ulll 1] vill
u2l || via Neural Trained
: i | ===-+# Network ----+- | Neural
usT | [ vEs) Training Network
ulSl{| vis)
2. Use Phase
Trained
[usr] ----| Neural f----aver]
Network

FIGURE 3-4. The use of a neural network for generalization.

Two of the methods presented in this thesis employ neural networks to generalize the
relationship between performance measures and decision variables based on simulation
examples. Neural networks have been used for generalization in previous research
(Rumelhart et al. 1986, Dutta and Shekhar 1988), with the type of network called a multi-
layer perceptron being the most popular. This is the type of neural network used in this

thesis.

Such a network consist of individual processing elements or nodes that are arranged in
layers: an input layer (layer 0), an output layer (layer L), and perhaps a number of
itermediate or hidden layers (Fig. 3-5). A network maps inputs u to outputs v in the
following way. The output of the ith node in the input layer (layer 0) is clamped to the

value of the i component of the network input:
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ourl® =y, (3-6)

u
U
e o o
un
input layer  layer 1 layer L-1  output layer

(Np nodes) (Np nodes) (Ny_jnodes) (Np nodes)

FIGURE 3-5. A multilayer perceptron neural network.

Beyond the input layer, a node j in layer m (m > 0) receives inputs in;l™] from all nodes i in

the previous layer, which it then aggregates into the net input

netj[-m] = 2 wﬁin,[-m] - Wj 3-7
i

where the wj;’s are the parameters or weights of the network model. If a node is in a
hidden layer, this net input is then passed through a non-linear sigmoidal function to yield

the node’s output, ouzjlml:

1
o t}[m] - O—{netj['m]) =1 +exp(—net['m]) .
]

This output is then propagated forward to the next layer of the network. That s,

outl™ = in}*!) (3-9)

If the node j is in the output layer (layer L), then the node’s output is taken to be the jth

component of the network output v, and is simply a copy of its net input:
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2 (3-10)

= outtH = 5ol
v~—0utj[ = net;

J
A network’s weights wj; are adjusted on the basis of a number of training pairs
{(ulllv«(1]), @Lv+(2]), ..., (uls)vals)), ..., (ulS],v«[S1)), in a process called supervised
training. The most widely used training algorithm is the backprogagation algorithm
(Rumelhart er al. 1986), which is based on gradient descent. We use a version of
backpropagation in which the training pairs are presented one at a time, in a cyclical
fashion. At each presentation of a training pair (ulsl.v«[s]), the vector uls! is input to the
network, yielding the ovtput vector v{sl. Each weight wj; in the network is then adjusted
according to the formula

£l

AWji[H'l] =-n—+ O’AWJ[[Z] (3-11)
aWj,'

where Awj;[t+1] is the prescribed weight adjustment, Awjj[1] is the previous weight

adjustment, 77 and o are constants, and ELS] is the squared error

EW = —;— (vgf] = v[s])T (VLS] - vm) (3-12)

In Equation 3-11, the first term: changes the weight in the direction of steepest descent of
the error surface. The second term is a momentum term that discourages large fluctuations

in the weight values. The intent is to minimize the same total squared error (Eq. 3-2)

minimized by the regression models:

S
=Y EY (3-13)
s=1
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Once trained, the network may be used as a model of the mapping v = g(u).

3.2. Analytical Forward Model Plus Enumeration Method

The construction of accurate analytical forward models is difficult for most manufacturing
system configuration problems. The analytical model used in this thesis is a relatively
crude model intended only as a benchmark against which the performance of other methods

may be evaluated.

The specific outputs of the analytical model are estimates of the production rate and average
work-in-process (WIP) of a manufacturing system configuration. These values are then
substituted into the defining equations for the performance index (to be described in

Chapter 4) in order to obtain a performance index value.

At this point, it is necessary to note that the configuration problems addressed in this thesis
involve manufacturing systems that process parts in multiple stages. A part to be
manufactured travels sequentially through a system in stages, each stage i = 1,2, ..., N

being characterized by the following attributes:

tp(@) = processing time of stage i

(i) = the number of identical machines dedicated to stage i. This is set to the
minimum number that will enable achievement of the demanded
production rate.

MTBF(i) = mean time between failure of the machine type at stage 1

MTTR(i) = mean time to repair of the machine type at stage i
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The analytical model’s estimate of the production rate of the system is:

_ min [nai)  MTBF(i)
e [lln,N] {r,,(i) MTBF(i)+MTTR(i)} (3-14)

Average WIP is estimated by assuming that at all times, all buffers are filled to capacity and

each machine is processing a part.

N
WIP =nub + 2, n,(i) (3-15)

1=1

WIP = average work-in-process

np = number of buffers in the system

b = buffer capacity (in number of parts) of each buffer in the system
(i) = number of machines in processing stage i

N = number of processing stages

The evaluation time of the analytical model (the time taken to produce its output, given an
input configuration) is very quick. Therefore, for the problem addressed in this thesis, the
enumeration method used with the analytical model is exhaustive enumeration of all feasible

manufacturing system configurations.

3.3. Discrete-Event Simulation Forward Model Plus Enumeration Method
A second solution method used as a benchmark in this thesis is the use of discrete-event
simulation, as described in Section 3.1.1, coupled with the gradient ascent or hill-climbing

enumeration method. The exhaustive enumeration method used in conjunction with the

analytical model is not an option in this case because of the computational expense of
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evaluation via simulation. The more directed and efficient hill-climbing enumeration

method is therefore used.

Starting from a randomly generated initial configuration x[01 = (x1(01, x5[01 | [0y,

subsequent configurations to be evaluated via simulation are generatcd via the rule

x[k+l] = x[k} + pVy(x[k]) (3_16)

= stepsize

i~}
1

Vy(xlkl) = gradient of the performance index, evaluated at x(]

(dy/oxilxy --- Qy/&rnlx[k])T

The components of the gradient are estimated as:

v |yl A, o x M)y (X DK
— = (3-17)
ox; <& Ax;

where the performance index values are evaluated via simulation.

If a local maximum is reached before an allowed maximum of £ = K iterations are
completed, then a new initial configuration is randomly chosen and the hill-climbing
process is started anew from there.

3.4. Linear Regression Forward Model Plus Enumeration Method

The first of the empirical modeling methods investigated in this thesis uses a linear

regression model (of the form in Equation 3-1 or Equation 3-5) as the forward model. Data
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for fitting the regression model, in the form of configuration-performance index pairs
{(x(1), y1]y, (x[2], p(2Dy, ..., (xUs], ylsy, ..., (xIS], y[S])}, are generated via discrete-event
simulation. The computational efficiency of the linear regression forward model enables

the exhaustive enumeration method to be used.

3.5. Neural Network Forward Model Plus Enumeration Method

The second of the empirical modeling methods investigated in this thesis uses a neural
network model (Section 3.1.3) as the forward model. In every other respect, it is identical

to the linear regression forward model plus enumeration method (Section 3.4).

3.6. Neural Network Inverse Model Method

The inverse approach configuration method investigated in this thesis uses a neural network

(Section 3.1.3) as an inverse model f°! such that x = f-1(y). Given a desired performance

index value ygoq, the configuration that will achieve that performance is estimated by x =

f_l(Ygoal)-

In general, there are a number of approaches for constructing the required inverse mociel.
The first is to use a forward model f(x) = y(x) to construct a lookup table containing an
entry for each feasible design x; and its predicted performance f(x;). This table could then
be searched for an entry in which f(x;) = ygoqi, With the resulting prescribed configuration
being x;. This approach has one principal difficulty. Certain performnance measures
comprising y(x), such as the production rate and the average work-in-process, are difficult
to express analytically as a function of the decision variables x. This is due principally to
the uncertain breakdown behavior of the machines in a system and the difficulty of

predicting the effect of finite buffer capacities (Gershwin et al. 1986). Discrete-event
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simulation offers an alternative way of evaluating the performance of a manufacturing
system. Simulation models, being discrete-event models, can incorporate logical
statements which govern a manufacturing system’s operation (e.g., the actions that take
place when a buffer becomes full, scheduling rules) Via random sampling, they also
account for stochastic events. However, their construction is a lengthy process and their
execution is computationally expensive, particularly if they are complex enough to reflect
reality to a high degree of accuracy. Therefore, the use of simulation as a forward model

f(x) for this purpose is often infeasible because of excessive computational burden.

Another approach for constructing an inverse model f1(y) is to generate via simulation a
number of input-output training pairs of the form {(y(x[1)), x{11), (y(x[2]), x[2]), ...,
(y(xIshy, xs1y, ..., (p(x[S1), x[S1)}. Each simulation run generates one training pair. A
neural network model ! is fit to to the training data, with the performance index values
y(x) as the network inputs u and the configurations x as the network output targets v. The
model f! is used by supplying it with a desired performance goal Ygoal> and recording the
prescribed configuration x* = f-l(ygoal). This approach, which we shall call the direct
inverse approach, may break down if the inverse function to be modeled is one-to-many,
that is, if multiple configurations x have the same or very similar performance index values
y(x). Consider such a situation, as exempiified by the two training pairs {(y, x(1), (y*,
x[2])}. Since the neural network cannot produce different outputs for the same input, it
must “choose” to output either x[1] or x[2], given y+. However, direct inverse supervised

training would, in this case, seek to minimize the total squared error

Ly= % [(xm - x)T(xm - x) + (xm - x)T(xm - x)] (3-18)
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where X is the network output given y as input. This is minimized by the averagz
configuration x = (x[11 + x[2])/2. Unfortunately, the performance index value y((x(1] +

x[21)/2) will not in general be equal to the desired value yx.

In order to overcome the difficulty posed to direct inverse supervised training by one-to-
many inverse mappings, an approach called distal supervised learning may be applied
(Jordan 1992). In this approach, a neural network is first trained as a forward model f(x)
of the mapping y(x) via a number of training pairs {(x(1], v(11), (x[2], y(2]), ..., (x[s], yLs]),
..y (x[51, yIS])} generated via simulation. This network is then appended to a second

network whose function it is to perform the inverse mapping y(x) — x (Fig. 3-6).

L

" s Inverse Network xk Forward Network | ylk]
y ———wh-L

f f

FIGURE 3-6. Distal supervised learning (Jordan 1992).

The weights of this second network are adjusted by minimizing the squared error

EW _ % (Y- y[k])T (v~ ) (3-19)

where y+[X] is a particular desired manufacturing system performance index value. This
value is passed through the inverse network, resulting in a decision variable vector x[¥.
This vector is then input to the forward network, which outputs a performance index value

ylkl. The weights of the inverse network are then adjusted according to Equation 3-11,



after replacing the subscript s with the subscript k. In this case, the derivative JE)/ow;;

can be evaluated using the chain rule as:

T
aE[k] _ a(x[k]) ay[k] (yLk] __y[k])
oWji owji  ox

(3-20)
The two derivatives can be calculated from the known algebraic structures of the inverse
and forward networks, respectively. The important characteristic of this approach is that
the weight adjustments to the inverse network are not based on explicitly specified target
output vectors x+[k]. Rather, they are based on derivatives dyl*l/ox[k] which are functions
of the “distal” output of the forward network (as opposed to the more “proximal” output of
the inverse network itself). This has the effect of selecting a particular one-to-one mapping

out of the one-to-many inverse mappings at any point y[X],

One problem which may remain with the distal supervised learning is that the inverse
network, once trained, may output in response to a desired performance index value y+[4] a
configuration x[k] = [x1 k] x,[k] ... x,[81]T in which one or more of the decision variables
are “out of bounds.” For example, the allowable range for a buffer capacity decision
variable may be [0, 100]; any value outside this range is out of bounds. Thus, even if the
“out of bounds” configuration x(*], when input to the forward neural network, results in an
output ylkl which is close in value to the desired value y«[k, the configuration cannot be
meaningfully interpreted. In this scenario the distal supervised learning meihod will have
found a valid inverse mapping of the forward model, but not of the physical system
represented by the forward model. What is needed is a way of constraining the inverse
network outputs to acceptable ranges. This can be accomplished by modifying the squared
error to be minimized to include terms that are non-zero when the components of the

inverse network output x are out of bounds (Jordan 1992):
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E=-;:( *—y)T(y*—y) +% (x*’—x)TH+ (x*--x) +% (x'——x)T H™ (x™ —x) (3-21)

yx = desired performance index value

X = configuration [x] x3 ... x,]7 output by the inverse network given y as
input

y = output of the forward network given x as input

x* = vector [x1+ x2* ... x,+]7 of upper bounds on the decision variables [x] x7
cox)T

x— = vector [x;~ x2~ ... x,~]T of lower bounds on the decision variables [x] x2
coxp)T

H+ = diagonal matrix given by
f L, if x; 2 xf
v .O, otherwise
H- = diagonal matrix given by

_ [uifxi<x

“ \\O, otherwise

In this equation, the superscript [k] from previous equations has been omitted for clarity.
We will refer to the distal supervised learning method with the modified square error (Eq.
3-21) as distal supervised learning with constraints. This is the inverse modeling method

used in this thesis.



4. An Evaluation Framework for Manufacturing Systems

In this thesis, an evaluation framework encompasses the definition of manufacturing
system decision variables x and the definition of a performance index y(x) (Chryssolouris
et al. 1990). The evaluation framework proposed in this paper differs from existing
frameworks (Kaplan 1983, Suresh and Meredith 1985, Wabalickis 1988, Swamidass and
Waller 1990, Son 1991) primarily in the combination of specifically defined decision
variables x and the consideration of costs that occur over the anticipated life of the system,
particularly those due to part design changes. The latter are considered by quantifying the
flexibility requirements typically imposed upon modern manufacturing systems and the

ability of a system to accommodate these requirements.

In order to make the discussion less abstract, we will use the example of configuring a
manufacturing system for multi-stage, high-volume machining. The manufacturing system
to be configured must take as input raw castings and output machined parts (Fig. 4-1) at a
given production rate. There is a single part type. Geometric features such as holes and
slots are produced in the parts via machining operations such as milling, drilling, tapping,
and boring. If a given feature requires more than one type of operarion, then precedence
constraints may apply (e.g., milling first, drilling second, tapping or boring third). The
operations may be divided into operation groups such that the operations in each opezaticn

group can be performed simultaneously on the same part.
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[ raw casting J

geometric features implemented via
_metal-cutting operations
(1 operation = 1 application of 1 cutting tool)

hole thread flat surface hole
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drilling tapping milling boring
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tapping
—

milling —— driliing \
boring

[ finished part J

FIGURE 4-1. Required processing.

There are two generic machine classes for such a manufacturing system. A batch operation
machine (BOM, Fig. 4-2a) has a tool head with multiple, simultaneously operating tools.
These tools perform all the operations within an operation group simultaneously. Such a
machine is dedicated to a specific operation group of a specific part design because the
position of the tools relative to the tool head (and hence to the part) is fixed. If the design
of the part changes (e.g., if a hole is relncated), then the machine must be replaced or

substantially modified (e.g., via replacement of the tool head). A sequential operation
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machine (SOM, Fig. 4-2b) has a single spindle which drives a single cutting tool. It
performs individual operations sequentially. The tool is changed automatically between
operations, if required, with unused tools being stored in a tool magazine. The movement
of the tool spindle is programmable. This class of machine is more flexible because it does
not have to be replaced when the part design changes; it only needs to be reprogrammed
and possibly stocked with new cutting tools. Each class of machine in a manufacturing
system (e.g., SOM) may be represented by multiple zypes (e.g., SOM], SOM2), which are
distinguished on the basis of their acquisition costs, operation costs, cost of

accommodating part design changes, processing times, and so forth.

tool head base tool magazine

\

=

$#£070/610100¢

top view top view

C)] (b)

FIGURE 4-2. Schematics of the two generic machine classes: (a) batch operation machine, (b) sequential
operation machine.

Batch operation machines (BOMs) are arranged serially in a transfer line (Fig. 4-3a). Parts
pass from one end of the line to the other in a synchronous fashion, stopping at each
position along the line for machining. The length of the line is determined by the part
complexity, which determines the number of operation groups. There is one BOM per

operation group. The production rate of BOM systems is limited by the processing time of
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the slowest machine in the line. This proessing time cannot exceed 1/PR, where PR is the
required production rate. Sequential operation machines (SOMs) are arranged in parallel
(Fig. 4-3b). Within a system, each SOM type processes the same operation groups. The
number of each SOM type is dictated by the required production rate PR, and by the
sequence in which the operations assigned to each machine type is performed. The
optimum operation sequence will minimize the processing time of a SOM (and hence the
number of them required) by minimizing the sum of spindle repositioning and tool change

times. Hybrid systems are also possible (Fig. 4-3c).

10 10 10
—>{BOM, [-*- BOMJ@ Bowl@somz ©pBOM, [-*->BOM, —>

(a) Batch Operation Machine (BOM) System

Key
SOM[—* ®  potential buffer location
30 buffer capacity
SOM, SOM,}— QO buffer
—
60 part flow
> SOM, 2 SOM, > BOM, batch operation machine,
type i
SOM: sequential operation machine
M j seq P ,
SO SoM typej
SOMp
(b) Sequential Operation Machine (SOM) System
SOM;
SOMy) 30 30
— , > SOM:[—{&)—»{ BOM, |-e->{ BOM,f—>
—
SOM2
| SoM,

(c) Hybrid System

FIGURE 4-3. Generic manufacturing system types.
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4.1. Decision Variables

Given performance requirements, the task of manufacturing system configuration requires
the description of a suitable physical system by specifying a body of information (Suh
1990). This body of information can be represented either symbolically, in the form of a
drawing, or numerically, in the form of values of a collection of decision variables.
Symbolic representations are advantageous because each symbol can represent a large
collection of information and because they are easily interpreted by humans. Numeric
(decision variable-based) representations are advantageous because they can be easily
stored and manipulated by computers. In this paper we will restrict our attention to
numeric decision variables because they are easier to manipulate automatically and hence

easier to incorporate into a procedure which automates the configuration process.

Consider the general case in which there are M machine tvpes, where each machine type
belongs to either the BOM class or the SOM class. Say that the part requires NV operations,
which are divided into G groups. We can define numeric manufacturing system decision

variables as follows.

x; The number of operation groups processed by machine type i (i € [1, M-1], x; € [0,
G]). Only M-1 variables are necessary because the number of operation groups
processed by machine type M is determined by default from the expression G—

(x1+x2+. .. +xM-1).

sj The jth machine type that is encountered by a part as it travels through the
manufacturing system (j € [1, M-1], s; € [0, M]). As a part travels through the
system, the first machine type it encounters is s1, the next type it encounters is s, and

so on. If there are only £ different machine types in the system, then sg+1, Sk+2, -
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sm-1 are all set to 0. Within a system, machine type s processes the first xg;
operation groups. Machine type s then processes the next xg operation groups, and
so on (Fig. 4-4). Only M-1 variables are necessary because only one block or section
of each machine type is permitted in each manufacturing system configuration. For
example, in Figure 4-4. once machine type 3 is assigned to the block of operation
groups 1-4, it can no longer be assigned to any of the operation groups 5-8. Thus,
knowing the machine types that appear in the first M-1 sections of the system (via s1,
..., SM-1), plus whether these sections account for all G operation groups (via xi, ...,
xM-1), the presence or absence of an Mth mz;chine tvpe and the operation groups that it
processes can be deduced. Later on, in Chapter 9, we will examine a way of
generalizing the decision variables to overcome this restriction and thereby permit a

greater richness of manufacturing system configuration solutions.

Operation Sequence ——#

Op. Op. Op. Op. Op. Op. Op. Op.
Group Group Group Group4 Group 5 Group Group 7 Group
I L T L il : 17 . il l RA ‘ il L al L 1
SREEEERREREREEREEERREEEEEERERRE
~ P [ fa (o (00 o e hes b b o e e e SRR ISR R IR RE (S
T l T J T
First 4 operation Next 3 operation Last operation
groups processed by groups processed by  group processed by
machine type s 1= machine type sp=  machine type s3=
machine type 3 machine type 1 machine type 2
X 3= 4 xX1= 3 Xo= 1

Number of operations N= 32
Number of operation groups G = §
Number of machine type M =3

FIGURE 4 4. An illustration of the x; and s; decision variables for a hypothetical manufacturing system for
a given operation sequence.

b The capacity of the buffers within the system (b € [0, bmax]). It is assumed that

buffers within a system have equal capacities. Since the function of a buffer is to
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decouple a manufacturing system, the maximum buffer capacity bmax may be
reasonably set to be the number of parts that would be accumulated in the buffer in the
event of a breakdown immediately downstream, or the number of parts that would be
drained from the buffer in the event of a breakdown immediately upstream, multiplied

by some safety factor.

f  The frequency with which buffers occur within the system. This is defined to be the
number of buffers within the system divided by the number of potential buffer
locarions within the system. Within a system, buffers may be located between any

two adjacent machines in the part flow.

For this general case, there are 2(M—1)+2 = 2M decision variables. This set of decision
variables has the advantage of being relatively compact. The number of variables grows
only linearly with the number of machine types M, one of the smaller parameters of the
manufacturing system configuration problem; it does not, for instance, depend on the

number of operations N, which is substantially larger than M.

A manufacturing system is specified by the vector of decision variables x = [x1, x2, ...,
XM-1; S1, $25 ---» SM-1; b; f1, and by the operation sequence of the SOMs. The latter
determines the processing time and hence the number of each SOM type in the system. The
space of decision variables can be represented as a tree in which a path from the start node

to an end node represents a particular manufacturing system configuration (Fig. 4-5).
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From this tree (Fig. 4-5) it is apparent that the sequence of the operations performed by
sequential operation machines is the most significant factor affecting the size of the solution
space. In this thesis, the operation sequence is assuined to be given, an output of the
process planning function. This considerably reduces the size of the solution space and
thereby motivates the application of empirical forward and inverse models for solving the

manufacturing system configuration problem.

As an example of the application of these decision variables, consider a specific case, the
hybrid system (Fig. 4-3c), in which there are M = 4 available machine types: 1) SOMy, 2)
SOM>, 3) BOM3 and 4) BOMy. Let there also be & = 50 operation groups. Machine type
SOM3 processes the first 10 operation groups, machine type SOM7 processes the next 25,
and machine type BOM4 processes the remaining 15. Machine type BOM3 does not appear
in the system, and therefore does not process any operation groups. There are 2M = 2¢4 =
8 decision variables. The first three are x; = 25, xp = 10, x3 = 0, which are are the number
of operation groups processed by machine types 1, 2 and 3 respectively. The next three
decision variables are s1 = 2, s2 = 1, 53 = 4, which indicates the sequence of the machine
types encountered by a part as it travels throngh the system. The seventh decision variable
is the capacity of the buffers, which is # = 30. Finally, there are 2 buffers and 3 buffer
locations, so the eighth decision variable, buffer frequency f, iz 2/3. T+ i cap, the decision
variable vector representing the system in Figure 4-3c under the stated conditions is (x1 =

25,x=10,x3=0;51=2,52=1,53=4; b =30; f = 0.667).

The decision variable f establishes the number of buffers n in a system to be the integer
closest to the product fnp;, where np; is the number of buffer locations. However, there are
no decision variables which explicitly specify buffer locations, and therefore these must be

set according to a consistent convention. The following convention is used. Buffers are

73



placed every 8y = <npi/np>= spaces, where <*>~ denotes the greatest integer less than or
equal to «. In the hybrid system (Fig. 3c), 6, = <3/2>~ = 1. The buffers are placed so that
the number of buffer locations np;_ before the first buffer is equal to (or one less than) the

number of buffer spaces np;4+ after the last buffer space.

4.2. Performance Index

Once the decision variables x are defined, an evaluation framework requires the definition
of a performance index y(x). The performance index used in this thesis accounts for the
inputs to a manufacturing system in terms of the costs incurred over the life of the system —
particularly those related to part design change. Thus the evaluation framework considers
the flexibility of a manufacturing system. The performance index also accounts for the
output that is achieved by a manufacturing system, in terms of the number of parts that it

produces. This index y(x) is called efficiency, and has the general form output/inpuz.

number of good parts produced during system life cycle
total life cycle cost

efficiency =y = (4-1)

The units of this index are [parts/$]. If a figure for the revenue per part is available, then e
can be converted to a unitless efficiency. The denominator, the total life cycle cost,
consists of acquisition costs, operation costs and system modification costs due to part
design change. These costs are incurred over the life T of the system, which consists of #;
periods of duration ¢ (T = n;). The costs, described in detail below, are broken down by

period and are incurred at the beginning of each period.

System Acquisition Cost

This cost is incurred not only when the system 1s first implemented, but also when
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increased demand requires an expansion of system capacity.

M
Cdp)= Y, cnll) nmdi, P) (4-2)
i=1
Cap) = acquisition cost for period p
M = number of machine types
cm(d) = acquisition cost of one unit of machine type i

nma(i, p) = number of machine type i acquired in period p

Operation costs are assumed to consist of labor, inventory and maintenance costs:

Labor Cost
PR(p)
C ctn
p)= ) Py PA(p) (4-3)
Ci(p) = labor cost for period p
Cl = labor cost rate
t = duration of each period
ni(p) = average number of workers at any given time during period p
PR(p) = demanded production rate for period p
PA(p) = actual production rate for period p

The product c;znj(p) represents the nominal labor cost. The ratio PR(p)/PA(p) is an
adjustment factor which accounts for: 1) overtime costs if the demanded production rate
exceeds the system’s achieved production rate without overtime; 2) labor cost savings from

having to operate the system less than full time if the system’s achieved production rate is
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greater than the demanded production rate.

Inventory Cost

Cip) = c; WIP(p) (4-4)
Ci(p) = inventory cost for period p
i = inventory carrying cost per part per period

WIP(p) = average work in process for period p

Maintenance Cost
M
CnD) = 2, Plls P) [, + €0 100] (4-5)
i=1
Cm() = total maintenance cost in period p

M

number of machine types

nm(i, 1) = number of machines of type i in period p

cp(i) = preventive maintenance cost of machine type ¢ per period
()
20

repair cost rate for machine type i

]

mean down time of machine type i per period

System Modification Cost Due To Part Design Change

The final cost considered in the evaluation of efficiency is the system modification cost due

to part design change. This cost is an important and new contribution of the efficiency

definition because it accounts for the flexibility of the system.
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P nh)
{ cd) (4-6)

Cdp.n)=dp.na) T |1~ TT (-2 8)

j=1 k=1

Cc(p, na) = part design change cost for period p if the number of periods per part
design change is nx

o6(p, np) = 1ifa partdesign change occurs in period p, 0 otherwise

nm(p) = total number of machines in the system in period p, irrespective of type

nfj) = number of features worked on by the j machine in the system

P:(j,k) = probability that the kth feature worked on by the /! machine will be
modified in a design change

ce() = cost of modifying/replacing the jth machine to accommodate a part design

change

The term in the square brackets is an expression for the probability that at least one of the
features worked on by the jth machine in the system will be modified whenever the part
design changes. Referring to this probability as Pp,4(j), we see that it is a function of the
probabilities P.(j, k) of individual features k requiring change when the part design changes
and also of the number of features nf(j) processed by the machine. The greater these
quantities are, the greater the value of P,0q(j). Multiplying P;04(j) by the cost of
modifying/replacing the jh machine, c.(j), yields an expected modification/replacement cost
for the jth machine. These expected modification/replacement costs are then summed over
all machines j in the system. Finally, the binary variable &(p, na) ensures that part design
change costs are incurred only in periods in which design changes actually occur. For
example, if part design changes occur every nj = 2 periods, they are assumed to occur at
the beginning of periods 3, 5, 7, .... (There is no part design change at the beginning of

period 1, because that is when the initial design is first produced.) Therefore, 6(3, 2) =
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0(5,2)=6(7,2) = ... = 1, while all other &p, 2) =0. In general:

1,if p=ny i+ 1, i apositive integer
cip ’ n“) '\ 0, otherwise (4-7)

Recognizing that the above acquisition, operation and system modification costs are
incurred over the life cycle T of the system in question and taking into account the time

value of money, the above costs may be combined into a single total life cycle cost.

& Cop) +Cp) + C{p) + Cplp) + Cdp, n
C”[(n,j): z (1+r)p-1 ‘{ A)

p=1

(4-8)

Cr(ng) = present value of total life cycle cost

nA = number of periods per part design change

n; = number of periods in the life cycle of the system
Cap) = total machine acquisition cost for period p

Cip) = total labor cost for period p

Ci(p) = total inventory cost per period p

Cin(@) = total maintenance cost in period p

C¢(p,na) = partdesign change cost for period p

r = interest rate per period

The total life cycle cost is written as C7(n4) because it depends on the interval nat between
part design changes that is imposed upon the system by external market demands.
(Specifically, the part design change cost component of C.(p, ny) is affected.) Since np
cannot be predicted with certainty, the approach taken in calculating efficiency is to
associate probabilities P4(n4) with different values of n4, and to evaluate efficiency as the

expected value:
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y=3, 51{—,,;) P4y (4-9)

y = efficiency

na = number of periods between part design changes

ng = number of periods in the system’s life cycle

PA = production rate

PA « T = number of parts produced in life cycle of duration T’

Ct(nya) = total life cycle cost, given that the number of periods between part design
changes is np

P A(np) = probability that the number of periods between part design changes will be

na

The probabilities P4(n4) are important because they define the flexibility requirements
imposed upon the system by external market forces. Coupled with the system modification
costs due to part design change (Eq. 4-6), which measure a system’s ability to
accommodate design changes, they ensure that the efficiency index (Eq. 4-9) accounts for
both the system’s ability to react to change and the extent to which this ability is required by
the market in which the system operates. The intent is to give credit to flexible capabilities
only if they are indeed required (Chryssolouris and Lee 1992). Equation 4-9 is the final
definition of the performance index y(x) for the multi-stage, high-volume machining

problem.
As an example of the behavior of the evaluation framework, particularly with respect to

externally imposed flexibility requirements, we evaluate the efficiency (Eq. 4-9) of three

different manufacturing systems for three different flexibility requirement scenarios. The
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manufacturing systems to be evaluated are as follows (Fig. 4-6):

System A. Totally Dedicated System.
» Each of 27 operation groups processed by batch operation machines
(BOMs), each hardware-dedicated to the operations that it performs.
System B. Hybrid System.
» First 17 operation groups processed by dedicated BOMs, the next 10
by flexible (programmable) sequential operation machines (SOMs).
System C. Totally Flexible System.
» All 27 operation groups processed by flexible SOMs.

System A. Dedicated System

—=1 BOM}oi»{ BOM{eS= =« -« -3 BOM[oS= BOM (—9>

1 2 26 27
System B. Flexible System 13 identical SOMs
SOM
—’E.» e =P BoJl.P BOM|‘»—>
1 16 17
SOM
18-27

Systemn C. Flexible System

32 identical SOMs

FM SOM [P

= SOM =

1 som>

- soM

1-27

FIGURE 4-6. The manufacturing system configurations to be evaluated.
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For the purpose of the example, we construct three scenarios, listed below in order of

increasing flexibility requirement.

Scenario 1. Low Flexibility Requirement.
» Design change every 5 years.
e 55% of features are altered in each design change.
» Constant demand (120 parts/hour).
Scenario 2. Medium Flexibility Requirement.
¢ Design change every 3 years.
e 75% of features are altered in each design change.
» Constant demand (120 parts/hour).
Scenario 3. High Flexibility Requirement.
« Design change every year.
*  90% of features are altered in each design change.

* Constant demand (120 parts/hour).

The efficiencies of the three systems for the three scenarios are shown below (Fig. 4-7).
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B A: Dedicated
B: Hybrid
C: Flexible

N,
R

AN
O Ao

Efficiency
o
N
1
N

NN
N

0.0

Scenario

Figure 4-7. Efficiencies of dedicated, hybrid and flexible-hardware systems for increasing flexibility
requirement.

When the flexibility requirement is low, the dedicated system is the best choice. When the
flexibility requirement is high, the flexible system is the best choice. When the flexibility
requirement is in between, the best choice may be a hybrid system. This example shows
how the evaluation framework may be a useful tool for system selection given an

assessment of the degree of flexibility required.
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5. A Problem From Industry

The example problem addressed in this thesis contains M = 2 machine types. The first
machine type is a dedicated transfer line station (TLS) of the batch operation (BOM) type.
The second machine is a more flexible CNC machining center (CNC) of the sequential
operation (SOM) type. The part to be processed is an automobile transmission case that
contains 59 geometric features (e.g., holes, slots) requiring N = 126 operations for
implementation (Fig. 5-1). The number of operations is approximately twice the number of
geometric features because a feature may require more than one operation. For example, a
feature such as a hole might require a drilling operation followed by a reaming operation.
The operations have been grouped into G = 27 operation groups by process planners. The
required production rate is 120 parts per hour (one part every 30 seconds), making the

annual demand approximately 500,000 parts per year.

In accordance with the general evaluation framework defined eariier, the following 2M =4

decision variables may be used to define alternative manufacturing system designs.

x  The number of operation groups implemented via CNC (0 < x <27). The number of

operation groups implemented via TLS is 27—x.

Systems with many TLSs (low x) are likely to be preferred if the design of the part to be
machined changes very infrequently, due to the lower acquisition cost of the TLS. On the
other hand, if the part design changes frequently, then the lower change cost of the CNCs
(consisting only of reprogramming and retooling costs) will tend to make systems with

many CNCs (low x) preferable.
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s Machine type sequence (s € {0, 1}). s = 0 means that CNCs process the first x
operation groups, and TLSs process the remaining 27—x. s = 1 means that TLSs

process the first 27—x operation groups, and CNCs process the remaining x.

b  The capacity of inventory storage buffers in the system (0 <5 < 100).

If b is too small, each machine breakdown will result in excessive blockage of upstream
machines (since they will have no place to output their parts to) and excessive starvation of
downstream machines (since they will have no place to receive their parts from). This
reduces the system’s production rate. If b is too large, then the inventory carrying costs of

the system may to too high.
f  Buffer frequency. O<f<D.
The processing sequence of the operations implemented via CNC is assumed to be given.

This greatly reduces the size of the solution space for the example problem (Fig. 5-2). As

shown, the solution space contains 28 x 2 x 101 x 16 = 90,496 solutions.
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FIGURE 5-2. Solution space of the example problem.

In order to implement the evaluation framework values such as machine processing times,

acquisition costs and labor rates are required. Table 5-1 shows the assumed processing

times of the two machine types for each of the operation groups.
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Operation Group Proc Time

# Description TLS CNC
1 | Mill Diam F Face & ID Pad 25 7
2 |Rough Mill Surface P 22 13
3 |Finish Mill Surface P 25 0
4 |Drill 2 Holes 24 33
5 |Drill 7 Holes 25 61
6 {Drill 10 Holes 25 68
7 {Drill 4 Holes 23 32
8 |Drill 6 Holes 24 42
9 |Rough Bore 4 Holes 25 58
10 |Finish Bore 7 Holes 25 82
11 |Finish Bore 4 Holes 25 46
12 {Mill Parking Pawl Slot 22 7
13 | Drill 2 Holes 23 24
14 | Drill 1 Hole 25 20

Ream 1 Hole
15 | Drill 1 Hole 22 13
16 |Spot Face 1 Hole 22 7
17 |Burnish 1 Hole 24 13
18 | Drill 1 Hole 24 9
15 {Tap 1 Hole 25 7
20 |Spot Face 4 Holes 23 27

Drill 2 Holes
21 |Spot Face 4 Holes 25 63

End Milt 5 Holes

Rearn 3 Holes
22 | Drilt 17 Holes 25 71
23 |Bore 1 Hole 25 7
24 |Bore 3 Holes 25 36
25 | Tap 17 Holes 25 71
26 | Tap 6 Holes 24 30
27 | Tap 6 Holes 24 27

TABLE 5-1. Machine processing times for the example problem.
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Other parameters and their assumed values are summarized in Table 5-2.

Name Description Value
M Number of machine types 2
MTBF Mean time between failures of TLS 10.0 [hours]
MTBF» Mean time between failures of CNC 6.0 [hours]

[ MTTR; Mean time to repair of TLS 0.167 [hours
MTTR» Mean time to repair of CNC 0.500 [hours
ny Number of periods 1n system life cycle 12
t Duraton of each period 1 [yr] =4,136

[working hours]
cm(l) Acquisition cost, TLS $220,000

[ ,.(2) Acquisition cost, CNC $400,000
cl Labor cost rate $30/[hour]
nip) Average number of workers during period p Number of

buffers in the
system
PR(p) Demanded production rate for period p 120) [parts/hour]
Ci Inventory carrying cost per part per period $5,000
cp(l) Preventive maintenance cost of 1 TLS per period 31,600
cp(2) Preventive maintenance cost of 1 CNC per pertod $3,500
cpli) Repair cost rate for machine type i $50/[hour]
Pc(, k) Probability that the &t feature worked on by the jih
machine will be modified in a design change 0.90
ce(1) Cost of modifying/replacing 1 TLS to accommodate a
part design change $220,000
cc(2) Cost of modifying/replacing 1 CNC to accommaodate a
part design change $12,000
r Interest rate per period 0.10
PA(5) Probability that the number of periods between part 1.0
design changes will be 5
PA(t #)5) Probability that the number of periods between part 0.0
design changes will be something other than 5

TABLE 5-2. Assumed parameter values for the example problem.
It is assumed that the extent of each design change is large: 90% of the geometric features

in the part are altered with each design change. However, the design changes are relatively

infrequent: once every 5 years.

The inventory cost per part per period, where a period equals one year, is set a high value

of $5,000 in accordance with the following rationale. The reduction of inventory levels is
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an industrial priority. High inventory level in a manufacturing system results in many costs
beyond the opportunity cost of the material capital on the manufacturing floor (Hall ez al.

1991):

« Inventory management costs include costs for the labor required to offload and
reload a manufacturing system, as well as costs for tracking the processing state
of floating inventory, so that it may be reloaded on to the manufacturing system
at the appropriate point.

« Quality costs result from machining errors caused by parts being misaligned
when reloaded on to a manufacturing system.

+ Floor space costs.
Therefore, the inventory cost was set at a value which would make it significant in the

evaluation of efficiency. At its chosen value, inventory cost represents up to about 10% of

the total expected life cycle cost in the efficiency definition (Eq. 4-1).
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6. The Nature of the Problem

In this section we perform a more in-depth analysis of the particular manufacturing system
configuration problem that we seek to solve. We seek to determine the nature of the

decision variables to performance index (x — y) mapping that both the forward and inverse

formulations require.
6.1. Measures of Mapping Roughness

The *“nature” of the decision variables to performance index mapping refers to the
“bumpiness” of the efficiency function y(x). One way of assessing this bumpin:ss is via a
measure based on the values of the function’s first derivative over the input space. A
second way is via a measure based on the values of the function’s second derivative over
the input space. For the case of one decision variable, these roughness measures can be

formulated as:

R = [ el ax (6-1)

Ry= f ) ax (6-2)

These roughness measures were suggested by Scott (1992) for use in the estimation of

density functions of random variables.

The efficiency is a function of the four decision variables that represent each cenfiguration
X, and is a hypersurface in 5-D space. Therefore multivariate versions of the roughness
measures Ry and Ry are required. If we let the decision variables be xj, x2, ..., x,, then

the muitivariate version of Ry may be written as.
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Ry = f (V5)(¥5{x) ax (6-3)

where:
X =[x x2 ... xp]T
dx = dx1dxy...dxp

Vy(x) = gradient of y = [dy/dx] dy/oxy ... dyloxn]T

For the problem at hand, n =4, withx] =x,x2 =s,x3=b and x4 = f.

The multivariate version of R uses the Hessian matrix of second derivatives:

& o
. axon X0,
y 3y
ax2ax1 ax% ax2axn
H=
(6-4)
oy Ay %
A,y XA a’
It is given by the expression
Ry = j (Z > hildx
i=1j=1
(6-5)
= f trace HTH) dx
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where:

hij = element in the ith row, jih column of the Hessian matrix H
dax = dx1dxp...dx,
trace(A) = sum of the elements of matrix A on the main diagonal

6.2. Behavior of Mapping Roughness

The behavior of the above mapping roughness measures may be best illustrated by
applying them to known functions which can be easily visualized. For this purpose, the

function

y=a sin 2nbxy) sin 2nbx2), (0<x1<1,0<x2 < 1) (6-6)

will be used because it can be easily visualized as a surface in 3-D space, and consists of a
regular array of bumps, whose amplitudes are given by the parameter a and whose
frequencies are given by the parameter b. Roughness measures for various values of a and
b are shown below (Fig. 6-1). The domain of these functions is given by (0 €x1 £1,0<

x7 < 1).
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FIGURE 6-1. Roughness measures for functions of vary



Analytical evaluation of the roughness measure R for the given function (Eq. 6-6), over

the domain (0 <x; £ 1,0 < xp < 1), yields:

Ry = f (Vyx)(V5{x)) dx

HT( y\ (o)
= —_— + | —
. a"l) (axz)

— (27mb cos(27bx;) sin (27d’x2))2
+(2mb sin(27sz1) cos (anxz))z

dxldXZ

oe
ot

B
—_—

i

]d’ﬁdxz

g (6D
)
" sinl4mb
=27°a%" 1-——(ﬁT)
167°b

Analytical evaluation of the roughness measure R for the given function (Eq. 6-6), over

the domain (0 <x1 £ 1,0 < x2 < 1), yields:
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o

(<4 ab? sin (27y) sin (2703))” |
+ (47;2ab2 cos (27zb)rl cos Zzszz))z
(47- ab? cos (27sz1 cos Zﬂb)cz))
(—47; ab? sin (271bx1 sm 7sz2 )

sin® (4@)) (6-8)

2

[ ]

oJ o
00

=1677a%* |1 +
[ 167r2b2

Contour plots of Ry and R, are shown below (Fig. 6-2). R; is an increasing function of
the amplitude a and the frequency b. For b2 » 1/1672, the sine term of R; becomes
insignificant (Eq. 6-7), and the increase in R1 per unit increase in the amplitude a is the
same as the increase in R per unit increase in the frequency b. R2 is also an increasing
function of @ and b. For b2 » 1/1672, the sine term of Ry becomes insignificant (Eq. 6-8),
and the increase in Ry per unit increase in the amplitude a is much smaller than the increase
in Ry per unit increase in the amplitude b. Therefore b is the dominant factor in
determining the value of Ry. The greater the height of the bumps and the closer together
the bumps are, the greater the measures Ry and R2 become. R is more sensitive to bump

frequency than Rj.
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FIGURE 6-2. Contou- plots of the roughness measures Rq and R>.
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The above roughness measure calculations assume two decision variables. However, the
manufacturing system design problem discussed in Chapter 5 has four decision variables.
Therefore, the behavior of the roughness measures with respect to the number of decision
variables n is relevant. If we generalize the reference function (Eq. 6-6) to n decision

variables,

Yn=a Y, sin(2mbx;), 0<x;<1) (6-9)
i=1

and apply the definitions of R; (kq. 6-3) and Ry (Eq. 6-5), the following roughness

measure expressioris may be derived:

=27242p2 mb_)) )
Rily1) = 2722 (1+ o (6-10)
Fa2
Ry(vz) = 27m%a2b? 1—%@?—)) (6-11)
1g7r2b2
in(4nb) sin? (4nb)  sin3 (47h)
R =3_222(1_5m( _ -
1(y3) STa b P lgnzbz + 6‘1117r3b3 (6-12)
in(4nb) = sin° (4nb) sin® (47b)
R )’4)=7r2a2b2(1—sm( + e (6-13)
i 2mb 3243%b°  2567°b*
sin (47b)
R = 8742 4( _ﬁ”_(___)
2n) = 8rta?bt {1 -2 (6-14)
)
Ro(ys) = 167%a2b* 1+M)
1672b2 (6-15)
sin(4nb)  sin? (4mb) sin3 (47b)
R2()i3)= 187%a2b* (1 - + — )
127b 487%h2  64m3h3 (6-16)
Rolya) = 167a2% |1 sin(4zb) _sin® (4nh) | sin (47rb)>
} 4mb 64n3p3  2567%p* (6-17)

R1 and R are plotred versus n for various values of a and b in Figures 6-3 and 6-4

respecively.
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FIGURE 6-3. Roughness measure R} versus number of decision variables 7 for the reference function.
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FIGURE 6-4. Roughness measure R versus number of decision variables n for the reference function.
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Roughness measure R is relatively sensitive to n, the number of decision variables, and
decreases with increasing n. In particular, R1(y4) is about 1/2 the value of R1(y2).

Roughness measure R» is not very sensitive to the value of n, with R2(y4) about equal to

R2(y2).

This means that although we will use 2-D surfaces in 3-D space (Fig. 6-1) to visualize the
roughness of the decision variables to performance index mapping (a 4-D hypersurface in
5-D space), we should keep in mind that the 4-D hypersurface with the same R and Rp
values as a given 2-D surface will in fact have more local extrema (greater frequency b) but

less extreme extrema (smaller amplitude a) than the 2-D surface.

6.3. Evaluation of Mapping Roughness for the Problem from Industry

In order to assess the nature of the decision variables to efficiency mapping required to
solve the manufacturing system design problem, roughness measures R] and R, can be
assessed for this mapping. Since the functional form of this mapping is not known, the

required derivatives will have to be estimated based on finite difference methods.

Two hundred and fifty manufacturing system configurations were simulated, and their
corresponding efficiencies evaluated. The decision variable values of the systems
simulated are shown below (Tbl. 6-1). These were normalized to fit into the range [0, 1]
by dividing the x values by 27, the s values by 1, the b values by 100 and f values by 1
(Tbl. 6-2).
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INPUT OUTPUT
Cfgs. X s b f v
X1 =3 b1=0 fi=0
x2=28 s1=10 by =25 =025
2 x3=13 sp=1 b3 =150 f3=05
x4 =18 bs =75 fa=0.75
x5=24 b5=100 |fs=1

TABLE 6-1. Decision variable values of the simulated systems.

INPUT OUTPUT
A_ N X _ N 3 A f. — A
X=X S =Xx) = X3 =X y
Cfgs.
%1 =0.11 A b1 =0.00 [fi=0.00
550 £ =0.30 $1=0.0015, =0.25, | /5 =0.25
< £3=048 [$2=1.00]43=050 |{f=0.50
X4 = 0.67 by =075 |fa=075
£5=10.89 bs=1.00 |f5=1.00

TABLE 6-2. Normalized decision variable values of the simulated systems.

Finite difference approximations such as the following were used in order to evaluate the

derivatives in the roughness measure Rj:

dy _ Hiergrt = Mijut

dx1

(6-18)

= ——=yx | i
ijkl le’H _xlli

where the subscripts 4, /, , / denote evaluation for x = xj at level i, s = xp at level j, b = x3
at level k and f = x4 at level [ (Tbl. 6-2). Derivatives with respect to s, b and f were

similarly estimated. R; was therefore evaluated as:

(0 | P + Oy | gkl + ey | il + e | 0]

x (dx1]:) (%)) (dxale) (03411)}

(6-19)

100



where:

ax; = @1li+z - 211)

Finite difference approximations such as the following were used in order to evaluate the

second derivatives in the roughness measure Rn:

dy

axzx 1

ij+1,kl— Y [kl
- Yx |‘i+ Ax; ! ykl _ )’xlle ik (6-20)
ijkl x2|j+1 - -‘2|j

Other second derivatives were similarly estimated. R was therefore evaluated as:

)Y

l1j=1k

5 2 5

1 i {[2 z (s ) } (@) (@) () ()

1 J (6-21)

Application of Equations 6-19 and 6-21 to the decision variables to efficiency mapping data

(Tbl. 6-2) yielded the following results:

=0.14 (6-22)
Ry =4.17 (6-23)

These values are similar to those for the reference function (Eq. 6-6) with an amplitude a of
0.2 and a frequency b of 0.6. This is one way of quantifying the nature of the decision
variables to efficiency mapping. This mapping is about as rough as the function in the top
row, second column from the left of Figure 6-1. It is fairly smooth. However, we must
keep in mind, in accordance with the preceding discussion about the effect of the number of
dimensions on the values of the roughness measures, that the mapping has more local
extrema than wouid be implied by the picture in Figure 6-1. This will be significant later

when results of the simulation plus hill-climbing method are discussed.

101



6.4. Relationship of Mapping Roughness to Forward Modei Selection

The motivation for using neural networks to approximate the decision variables to
efficiency mapping, as opposed to more standard empirical models such as linear
regression models, is that they may better approximate mappings with roughness levels of
the values seen for the decision variables to performance index mapping (Egs. 6-22, 6-23)
of the given industrial configuration problem. This can again be verified using the

reference function (Eq. 6-6).

Three models types were compared: two linear regression models and a 2-25-15-1 neural

network. The two regression models were:

fx) = ag + a1x1 + arxs (6-24)

fx) = ag + arxy + agxz + azxixy + asx? + asxy? (6-25)

The three models were fit to the reference function (Eq. 6-6) sampled at the 121 points {x;
=0.0, 0.1, ..., 1.0; x = 0.0, 0.1, ..., 1.0}. The models were then given 100 test inputs
{x1 =0.05,0.15, ..., 0.95; x2 = 0.05, 0.15, ..., 0.95} and compared on the basis of the

absolute error

AET1] =1 y(xU) — f(xU) | (6-26)

where:
y(xl) = true value of the reference function for test input x/]
fxldy = output of model for test input x[1]
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The mean and standard deviation of this absolute error, over the 100 test inputs, are shown
below for a refevence function of amplitude @ = 0.25 and frequency b ranging from 0.25 to

1 (Fig. 6-5).

a (Amplitude) = 0.25

B Regri
Regr 2
Neural Net

Absolute Error

0.25 0.5 1
b (Frequency)

FIGURE 6-5. Mean absolute error for three einpirical models fit io versions of the reference function with
amplitude a = 0.25 and different frequencies b.

As the frequency (and hence roughness) of the reference function increases, the ratio of the
neural network absolute error to that of the regression models shrinks. Furthermore, we
have previously determined that the “roughness™ of the given manufacturing system
configuration problem is approximately equivalent to that of a reference function with a =
0.2, b = 0.6, a situation which is reflected in the second group of columns in Figure 6-5.
This portion of the graph shows that the error of the neural network is much smaller than
that of the regression models for a mapping of the same roughness as that of the given

manufacturing system configuration problem from industry.
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The results of this chapter quantify the nature of the mapping for which we seek to
construct forward models. These results motivate the consideration of neural networks by
showing that they perform well versus other empirical models in generalizing mappings of

the nature of the given industrial problem.
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7. Application of the Forward Approach

This chapter presents results of the application of an analytical model, simulation plus hill-
climbing, linear regression models and neural network models in the forward approach to
the manufacturing system configuration problem. The aiternative model methods are

summarized below.

7.1. Alternative Forward Model Methods

Model ANALYTICAL. Analvtical Approximation

As described in Section 3.2, model ANALYTICAL provides crude estimates of a
manufacturing system configuration’s production rate and average WIP. The production
rate i1s assumed to be the production rate of the slowest stage in the system. The average
WIP is calculated under the assumption that the system is always filled to capacity with
parts: all buffers are full all the time, and there is a part at each machine all the time. The
above analytical approximations are input into the evaluation framework defined in Chapter
4 to obtain the estimated efficiency value. This model is used in conjunction with

exhaustive enumeration of the space of configurations.

SIM+HC. Simulation Plus Hill-Climbing

This is the method described in Section 3.3.
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Model REGRI. Linear Regression

The first linear regression model investigated in this thesis is a linear function of the

decision variables x, s, b and f.

f(x)=f{x s b,/)=ag+ax+a,s + asb + asf (7-1)

Model REGR2. Linear Regression

Model REGR2 contains some second-order decision variable terms, but is still a linear

function of the coefficients and hence is still a linear regression model.

f(x)=ag + ayx + axs + asb + asf + asxs + agxb + asxf + agsh + agsf + aygbf  (7-2)

Model NET4-10-1. Neural Network

Model NET4-10-1 is a 3-layer neural network with 4 nodes in the input layer, 10 nodes in

the hidden layer, and 1 node in the output layer.

7.2. Relative Accuracy of the Forward Models

In this section, the ability of the forward models of the previous section to approximate the
decisien variables to performance index mapping of the given manufacturing system

configuration problem is described. Approximation ability is quantified via an accuracy

measure called fraction error (Ej).
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()1

ym (7-3)

x(4] a testing configuration different than any of the configurations simulated

1]

to fit the forward model f(x)

yla “true” value of the performance index for configuration x[4, as evaluated

1}

via simulation

fixldy = value of the performance index for configuration x4, as estimated via the
forward model f(x)
T = total number of testing configurations

The smaller Efis, the better the accuracy performance of the forward model.

7.2.1. Effect of Number of Simulation-Generated Training Samples

The choice of an analytical or empirical forward model for manufacturing system
configuration may well depend on the number of training samples that can be made
available for fitting an empirical model. In order to investigate this hypothesis, discrete-
event simulation software was used to generate 9 sets of training samples, each set with a
different number of samples. First the efficiencies of 250 configurations, namely all
possible combinations of the 5 x values, 2 s values, 5 b values and 5 f values shown in
Line 9 of Table 7-1, were evaluated via discrete-event simulation. The resulting 250 sets of
efficiency values were then input to the evaluation framework defined in Chapter 4,
resulting in 250 efficiency (y) values. Parameters such as machine acquisition cost,
inventory carrying cost, etc., were set in accordance with Table 5-2. The set of 250 y

values, combined with the set of 250 configuration vectors x, formed the set of 250
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training samples. Training sets of 16, 36, 54, 72, 96. 128, 160 and 200 training samples

were then formed by taking subsets of the 250 training samples (Tbl. 7-1).

Training # INPUT OUTPUT
Set # Samples X s b f v
1 16 3, 13,24 0, 1 0, 100 0, 1
2 36 3,13, 24 0, 1 0, 100 0. 0.5, 1
3 54 3,13, 24 0, 1 0,50,100| 0,0.5,1
3, 13, 18,
4 72 24 0,1 0, 50, 100 0, 0.5, 1
3, 13, 18, 0, 0.25, 0.5,
5 96 24 0, 1 0, 50, 100 1
3, 13, 18, 0, 25, 50, | 0, 0.25, 0.5,
6 128 24 0, 1 100 1
3,8, 13, 0, 25, 50, | 0, 0.25, 0.5,
7 160 18, 24 0, 1 100 1
3,8, 13, 0, 25, 50, 10, 0.25, 0.5,
8 200 18, 24 0, 1 100 0.75, 1
3,8, 13, 0, 25, 50, | 0, 0.25, 0.5,
9 250 18, 24 0,1 75, 160 0.75, 1

TABLE 7-1. Training sample sets for training sample quantity experiments.

T =32 testing samples were similarly generated (Tbl. 7-2).

Testing # INPUT OUTPUT
Set # Samples x s b f y
6, 11,
1 32 16, 21 0, 1 13, 88 0.13, 0.88

TABLE 7-2. Testing sample sets for training sample quantity experiments.

For each of the 9 training sets (16, 25, 54, 72, 96, 128, 160, 200 and 250 sampies
respectively), empirical models REGR1, REGR2 and NET4-10-1 were fit to the data. The
decision variable values were normalized into the range [0, 1]. The neural networks were
trained for 7,000 iterations via backpropagation (Rumelhart ez al. 1986, Section 3.1.3),

with a gain o of 0.05 and a momentum 7 of 0.80. The fraction error (Eq. 7-3) of the
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forward models for different numbers of training samples was calculated and compared to

that of model ANALYTICAL (Fig. 7-1).

0.15 _
& a ANALYTICAL
J N‘Q
o010 REGR1
4
i
S REGR2
S  0.05] NET4-10-1
LL -
OOO T T Y T T T T T T T
0 50 100 150 200 250

# Training Samples

FIGURE 7-1. Fraction error of forward models for different numbers of training samples.

The empirical models outperform model ANALYT for all values of the number of training
samples, with the exception of REGR1 at number of training samples < 36. As expected,
the accuracy of the empirical forward models, and hence their approximation capability
with respect to the anaiytical model, improves with the number of training samples.
Models that contain nonlinearities in the decision variables, REGR2 and NET4-10-1, are
more accurate than the strictly linear REGR1 model. This clearly indicates the nonlinearity
of the decision variables to efficiency mapping. Furthermore, NET4-10-1 is more accurate
than REGR2, as would be expected from the mapping accuracy test performed on the
sinusoidal surface with R and Ry roughness values comparable to that of the configuration

to efficiency mapping (Section 6.4).
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7.2.2. Effect of Mapping Roughness

One area in which an analytical forward model f{x) such as model ANALYTICAL needs to
make simplifying assumptions is in the calculation of the average WIP (e.g., Eq. 3-15).
Such assumptions result in some model error f(x) — y(x), which increases as ihe inventory
cost per part per year ¢; increases. Therefore, as ¢; increases, the assumptions in an

analytical model become less viable, and its accuracy relative to empirical models fitted to

simulation data should decrease.

In order to investigate this hypothesis, the 250 simulations of the previous section were
used to generate 5 training sets, each containing 250 samples. The efficiency values of the
S training sets were evaluated by setting the inventory carrying cost per part per year to $1,
$10, $100, $1,000 and $10,000 respectively. Otherwise, the efficiency parameters were

set in accordance with Table 5-2. The training sets are summarized in Table 7-3.

Training # INPUT OUTPUT
Set # Ci Samples X s b f y
1 S1
2 $10 3, 0, 0.00
g, 0, 25, 0.25,
3 $100 250 13, 1 50, 0.50,
18, 75, 0.75,
4 $1,000 24 100 1.00
5 $10,000

Five sets of corresponding testing data (Tbl. 7-4) were similarly generated from the 32

TABLE 7-3. Training sample sets for WIP cost experiments,

simulations used to generate the testing data of Table 7-2.

110




Testing # INPUT OUTPUT
Set # Ci Samples X S b f y
1 $1
2 $10 6,
11, 0, 13, 0.13,
3 $100 32 16, 1 88 0.88
21
4 $1,000
5 $10,000

TABLE 74. Testing sample sets for WIP cost experiments.

Empirical models REGR1, REGR2 and NET4-10-1 were fit to the data in each of the 5
training sets. The decision variable values were normalized into the range [0, 1]. The
neural network model was trained for 7,000 iterations via backpropagation (Rumelhart ez
al. 1986, Section 3.1.3), with a gain a of 0.05 and a momentum 717 of 0.80. The fraction
error (Eq. 7-3) of the empirical forward models for different values of the inventory
carrying cost per part per year c¢;, for the testing samples in Table 7-4, were calculated and

compared to that of model ANALYTICAL (Fig. 7-2).

0.18 7
0.16 - ANALYTICAL
0.14 - REGR1

S 0121

W 0,10 -

: -

£ 0.8 REGR2

o

© -

2 0064 NET4-10-1
0.04
0.02 1
000 T T T T T T T T T T T I T T T YT

1 10 100 1000 10000

Inventory Cost Per Part Per Year

FIGURE 7-2. Fraction error of forward models for different values of inventory cost pes part per year.
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As expected, the accuracy of the analytical model relative to that of the empirical models
degrades as c; increases and makes the analytical model’s assumptions less viable. In
general, the most accurate mode!l is NET4-10-1, followed by REGR2, REGRI, then
ANALYTICAL. However, accuracy differences between the models are not significant
until ¢; increases beyond $100. For solving the problem from industry (Chapter 5), c; is
set to $5,000. At this value, model NET4-10-1 is a significantly more accurate
approximation of the configuration x to efficiency y mapping than the other forward

models investigated in this chapter.

We note that the roughness values Ry and R, of the x — y mapping, evaluated via the
finite difference approximations of Section 6.3, increase sharply as c; values increase above
$1,000 (Fig. 7-3). Thus the advantage in approximation accuracy held by the neural
network over the other forward models increases as mapping roughness increases. This

confirms a result that was observed with the product-of-sines reference function (Fig. 6-5).

0.20

0.18 1

0.16 >

0.14

0.12

0.10

0.08 ] =

0.06

0.04 ] .

0.02_. L 0.5

1 10 100 1000 10000
Inventory Cost Per Part Per Year

Ry

FIGURE 7-3. Roughness values of the configuration to efficiency mapping as a function of the inventory
cost per part per year.
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7.2.3. Effect of Simulation Accuracy

The sensitivity of the approximation capability of the forward models to simulation
accuracy was also investigated. The efficiencies of 250 configurations (Line 9, Tbl. 7-1)
were evaluated via simulation. The parameters used to calculate efficiency were those of
Table 5-2. The calculated efficiencies were then corrupted by Gaussian noise with zero
mean and standard deviation o = 0.05, 0.10 and 0.15 respectively. Five corrupted training
sets for each level of noise were generated. Models REGR1, REGR2, and NET4-10-1
were fit to each of the training sets, and then their accuracies in predicting the efficiencies of
the testing configurations of Table 7-2 were evaluated via the fraction error (Eq. 7-3). The
neural networks were trained for 7,000 iterations via backpropagation (Rumelhart er al.

1986, Section 3.1.3), with a gain & of 0.05 and a momentum 77 of 0.80. For each forward

model, the fraction errors for each noise ievel were averaged (Fig. 7-4).

Fraction Error

0.25
NET4-10-1
0.20

0.15 / ANALYTICAL

REGR1

0.1C

REGR2
0.05

0.00 3

0.00 0.05 0.10 0.15
Std. Dev. of Noise with which

Training Simulations were Corrupted

Ly v ~-T

FIGURE 7-4. Fraction error of forward models for different simulation accuracies.
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The rank of the models, in order of increasing sensitivity to simulation accuracy (as
reflected by the slope of the lines in Figure 7-4), is: ANALYTICAL, REGR1, REGR2,
then NET4-10-1. Model ANALYTICAL, of course, does not depend at all cn simulation
accuracy, while model NET4-10-1 is most sensitive to simulation accuracy. This behavior
is predicted by the results of the statistical analysis presented of the next section, which
describes the prediction confidence interval of an empirical model that is fit to simulation

data with a given amount of inaccuracy or noise.

7.2.4. Confidence Intervals for Neural Network Predictions

The purpose of this section is to derive an estimate of a neural network’s accuracy as a
forward model based on the accuracy of the simulation models that it is trained with. Such
an estimate may be used, in conjunction with similar estimates for alternative empirical
models, to predict the range of training simulation accuracies over which neural network
forward models are better approximations of the configuration to efficiency mapping than

alternative empirical models.

7.2.4.1. Derivation of Confidence Intervals

The standard multilayer perceptron neural network is a nonlinear function f(x; 0) of its

inputs X = [x1 x2 ... X,]T and its parameters 6 = [6; 6 ... 6,]T.

We want to derive a confidence interval for y, the true value of the performance index for a

given configuration X. Assume that

y=f(x; 0") + g (7-4)
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f(x:8%) = neural network output for input x and *“best”’ parameter values 6*

£ difference between true performance index value and the neural network
output, arising from limitations in the functional form f. Assumed to be

N(0, 012).

For the manufacturing system configuration problem, the neural network must be trained

with a set of samples generated via simulation:

Observed Performance Index

Configurations Values
x!1] Yobst1]
X[2] y0b§[2]
s ol
Assume that
Yobsl =yl +e (i=1,2,...,5) (7-5)
Yobs' = simulation estimate of performance index for the ith training sample
ylil = true value of performance index for the ith training sample
& = difference between simulation and true values arising from simulation

inaccuracy. Assumed to be N(0, 632).

Then, addition of Equations 7-4 and 7-5 yields

Yobsll = f(xU]; 0%) + &1 + £ = fixli; 8% +e  (i=1,2,...,5) (7-6)
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£ = Difference between simulation and network output arising from both

limitations in the functional form of f and simulation inaccuracy, ~ N(0,

012 + 022) = N(0, 02).

Training the network via backpropagation yields a least squares estimate 8 of 8%, for which

the following linearization result is asymptotically true (Section 7.2.4.3):

B ~ N, (6%, G2(F.TF.) 1) (7-7)
o2 = 012+ 02
PBJ{X[H;G*) afxe") . a;(x[”;e*)-
6, 2, ; 26,
o) ) i)
6, o6, 26,
F. = ) )
aftxe) afxhe’)  afxhe’)
00 00 00

We now proceed with the derivation of the confidence interval for y. Taylor expansion

yields:
fix; 8) = fix; 0%) + £.76 — 6% (7-8)

where
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£T = af(x;e*) af(x;e*) af(x;e*) (7-9)
891 692 aep

Hence
A - A " A "
y —f(x; 8) =y -~ f(x; 6*) + £.T(6 —0%) = £ - £.T(6 — 6%) (7-10)
From the statistical independence of £1 and é,

Ely —f(x; 9)] El&1] +fTE[9 0* 1= (7-11)
var[y — fix; 9)] = var[e]] + Var[f.T(e -6%)] (7-12)
~ 012 + o2f.T(F.TF.)-1f

= 12+ (012 + )f. T(F.TF.)-1f.

If detailed simulation models are used, simulation error and hence 072 = 0. In this case, an

unbiased estimate of 072 is

2o | lyobg— i")' l (7-13)

S = number of training samples

D = number of parameters in the model f(x; 6)
Yobs = [y 3 ... v

£(6) = [F(x1} 8) £(x218) ... F(x5% )

Hence, asymptotically,
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y-fx:0) (1-14)

T
(s% + (s% + o—g) f.T(F.TF.)'lf.)2

and an approximate 100(1 — )% confidence interval for y is given by
L -
foe) e igfst + st + o) £ TR 8 = f0) £ 4 (7-15)

We seek A/R << 1, where R is the range of efficiency values encountered during network

training.
7.2.4.2. Neural Network Implementation
In order to assess the above confidence interval for a neural network, we require

evaluations of derivatives @f/aej, where f is the neural network output and 6; is a network

weight. Consider the network below (Fig. 7-5).
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Nomenclature

layer m-1

Neural Network

layer O layer 1 layer 2

FIGURE 7-5. Sample neural network.

To calculate, for example, the derivative gffow31(1], the steps are:

o F [oned? anedd)  onerl oner)
why ) onet?! _anet[21] awll! * onert! awglllJ
|, e ool anetgg]
a’m - 203 oned! wly
=f[1 f][ & [1](1—0:[;1])x]

119

(7-16)



7.2.4.3. Distribution of the Weight Vector of a Trained Neural Network

In deriving the prediction confidence interval of a neural network (Section 7.2.4.1), the

distribution of the weights 8 of a trained neural network was required (Eq. 7-7). This

section derives this distribution, based on an analogous result for a linear model and a

linearization of the nonlinear neural network model f(x; é).

Consider a linear function of a vector of decision variables x = (x, x2, ..., x,). Let:

= XB* + €, € ~ N5(0, oIs). (7-17)

‘<

y = §x 1 vector of S observed outputs

X = § X p matrix of S inputs (decision variable vectors); of rank p (S > p).
In this instance, p = n+1.

B* = p x 1 vector of parameters

€ = S x 1 vector of normal random variables with mean 0 and variance 2

The least squares estimate of B* is ﬁ, defined to be the vector 3 that minimizes
2
s(B)=1ly - xg|[" (7-18)

has the property (Seber 1977)

~

B~N,(p", o2 (xTX)) (7-19)

The analogous nonlinear case begins with the following assumption:
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y=167)+ & e~ Ng(0, 02Is). (7-20)

A least-squares estimate of %, 8 (produced via backpropagation, for example), minimizes

the squared error

slo)=Ily - (el = ly—fo”) - £.lo - o[ (7-21)
or,
s(p)=|lz - F.p|[* (7-22)
B =0-0*
z = y (0%
Since
B* =6*-0* =0, (7-23)
we can restate Equation 7-20 as:
z=F[* +¢, e ~Ns(0, 6°Is). (7-24)

By analogy of Equations 7-24 and 7-22 with Equations 7-17 and 7-18 respectively, we see

that

B~ N, (B, o2 (F.TF.JY), (7-25)

121



or,

0~n,(07, o2 (FTE.)Y), (7-26)

which is the desired expression for the distribution of the weights of a trained neural

network.
7.2.4.4. Sensitivity of the Confidence Intervai to Simulation Accuracy

We seek to assess the range of training simulation accuracies over which neural network
models are preferable to alternative empirical models such as linear regression. The relative
size of prediction confidence intervals over a range of simulation accuracies may be used as
a gauge of when neural networks are preferable to alternative models: the smaller the

confidence interval, the more preferable the model.

The efficiencies of 250 configurations (Line 9, Tbl. 7-1) were evaluated via simulation.
The parameters used to calculate efficiency were those of Table 5-2. The calculated
efficiencies were then corrupted by Gaussian noise with zero mean and standard deviation s
= (.05, 0.10 and 0.15 respectively. One corrupted training set was generated for each
level of noise. Models REGR1, REGR2, and NET4-10-1 were fit to each of the training
sets, and then their 90% prediction confidence intervals for the efficiencies of the 32 testing
configurations of Table 7-2 were calculated via Equation 7-15. The neural networks were
trained for 7,000 iterations via backpronagation (Rumelhart ez al. 1986, Section 3.1.3),

with a gain o of 0.05 and a momentum 77 of 0.80.

Figure 7-6 shows, for each level of simulation accuracy along the horizontal axis, the mean

width of the 90% prediction confidence intervals over the 32 test configurations (Tbl. 7-2)

122



for each of the forward models. The error bars show one standard deviation of the

confidence interval width, again evaluated over the 32 test configurations.
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FIGURE 7-6. Width of 90% prediction confidence intervals of forward models for different simulation
accuracies.

Consistent with the model approximation accuracy resulis of Section 7.2.3 (Fig. 7-4),
model NET4-10-1 is preferable (has narrower confidence interval widths) than model
REGR1 when the training simulations are accurate, but the preference becomes reversed as
the simulation accuracy degrades. Although model REGR2 performs well relative to model
REGR1 with respect to approximation accuracy (Fig. 7-4), its confidence interval widths
are much worse (larger). There are two reasons for this. First, model REGR?2 has more
parameters than model REGR1, which increases the z-distribution value that the size of the
confidence interval is proportional to. Second, the linearization assumptions of the
confidence interval derivation are less accurate for model REGR2 (on account of its

nonlinear decision variable terms, Eq. 3-2) than for model REGR1. Since the confidence
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interval analysis predicts well the approximation accuracy performance of NET4-10-1 with
respect to REGR1, the implication is that model NET4-10-1, for all its complex structure

and large number of parameters, is more “linear’” than model REGR2.

7.3. Achieved Efficiency of Configurations Prescribed by the Forward
Models

Ultimately, the most relevant measure of the performance of a forward model f(x) for
manufacturing system configuration is the performance index (efficiency) value achieved
by the configuration x« that is prescribed via its use. The higher this achieved efficiency,
the better the model. In this section, the forward modeling methods described in Chapter 3

(Sections 3.2-3.5) are compared on this basis.

7.3.1. Effect of Number of Simulation-Generated Training Samples

One important questions is, for a given amount of input data in the form of samples of the
configuraticn to efficiency mapping (generated via simulation), which forward model
method will prescribe the configuration with the best efficiency? The forward model
methods based on empirical models (REGR1 plus exhaustive enumeration, REGR2 plus
exhaustive enumeration, NET4-10-1 plus exhaustive enumeration) were applied for
different numbers of simulation training samples ranging from 16 to 250 (Tbl. 7-1). For
comparison, simulation plus hill-climbing (SIM+HC) was applied cver the same range of
simulations, and model ANALYTICAL plus exhaustive enumeration was also used to
prescribe a configuration (Fig. 7-7). Efficiency values were evaluated in accordance with

the parameter values of Table 5-2.
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FIGURE 7-7. Achieved efficiency of different forward model methods versus the number of configuration-to-
efficiency sample mappings provided via simulation.

Model ANALYTICAL prescribes the worst configurations. At lower amounts of training
samples, the performance of configurations prescribed via NET4-10-1, SIM+HC, REGR1
and REGR?2 are roughly the same. As the number of samples increases further, beyond
about 100, the performance of configurations prescribed via NET4-10-1 is better than that
achieved via other methods. Finally, as the number of samples increases even further,

beyond about 225, the performance of SIM+HC catches up with that of NET4-10-1.

Even though the configuration to efficiency mapping was shown to be relatively smooth
(Chapter 6), SIM+HC does not achieve the best efficiency with the least amount of
computational effort (in the form of simulation modeling) because it often becomes stuck in
local maxima. It was noted in Section 6.2 that the configuration to efficiency mapping,

being a 4-D hypersurface in 5-D space, would have more local extiema than a 2-D surface
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with the same roughness values (Fig. 6-1). This is borne out by the performance of the

SIM+HC method.

An important observation is that there is a window of computational effort (in the form of
simulation modeling) within which model NET4-10-1 prescribes better configurations than

the other forward model methods.

7.3.2. Effect of Mapping Roughness

In Section 7.2.2, it was found that the efficiency prediction error of model NET4-10-1
becomes smaller relative to that of models ANALYTICAL, REGR1 and REGR2 as the
inventory cost per part per year c; increases, which corresponds to an increase in the
roughness of the configuration to efficiency mapping. The same models (training samples
summarized in Table 7-4) were used to prescribe configurations, and the resulting achieved
efficiencies were recorded. Since efficiency values for different parameterizations (in this
case, different values of c;) are not directly comparable, the achieved efficiency values for
each value of ¢; were normalized by dividing by the achieved efficiency of model

ANALYTICAL for that ¢; value (Fig. 7-8).
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FIGURE 7-8. Achieved efficiency (normalized with respect to that of model ANALYTICAL) of different
forward model methods versus the inventory cost.

The achieved efficiency of the empirical models relative to model ANALYTICAL decreases
as c; increases. Although the accuracy (Eq. 7-3) of model ANALYTICAL relative to that
of the other forward models is worst at the highest c¢; value of $10,000 (Fig. 7-2), the
achieved efficiency of the all the forward models is actually the same at this point. In fact,
they all prescribe the same configuration: a totally flexible system consisting of one section
of 32 identical CNC machines arranged in parallel, with no buffers (shown in the top
portion of Figure 7-10). This configuration makes sense because it is the only one that
combines the advantages of minimum WIP, which is very important at this high value of
ci, along with the ability to achieve the demanded production rate. The minimum WIP is
achieved by the absence of buffers, while the required production rate is maintained
because the starvation and blockage effects that reduce production rate cannot occur in such

a parallel material flow configuration.
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Model NET4-10-1 prescribes the best configurations across a wide range of inventory cost

ci, although its performance advantage is most pronounced in the region $100 < ¢; <

$10,000.

7.3.3. Effect of Simulation Accuracy

In Section 7.2.3, models REGR1, REGR2 and NET4-10-1 were fit to sets of 250 trairing

samples (Line 9, Tbl. 7-1) corrupted by Gaussian, zero-mean noise. For each level of the

noise standard deviation ¢ (0.05, 0.10, 0.15), five training sample sets were generated and

used to fit each of the above model types. Five instances of each model type were thus

created at each noise level. The mean achieved efficiency of the five model instances were

then evaluated (Fig. 7-9).
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Figure 7-9. Achieved efficiency versus simulation accuracy.
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As expected from the prediction accuracy experiments of Section 7.2.3 (Fig. 7-4), the
achieved efficiency of model NET4-10-1 falls below that of the other empirical models as

training simulation accuracy degrades.

7.4. How Prescribed Configurations Vary with the Required Flexibility

Model NET4-10-1 was irained with two sets of 250 training samples (Line 9, Tbl. 7-1).
For the first training set, efficiency was evaluated assuming a large part design change
frequency of once every two years. For the second training set, efficiency was evaluated
assuming a low part design change frequency of once every five years. Other parameters
values were set in accordance with Table 5-2. The trained models were then used in
conjunction with exhaustive enumeration through the solution space to prescribe

configurations (Fig. 7-10).

32 identical CNCs

Product design change:

CNC once every 2 years

CNC

CNC

CNC

1-27 Product design change:

once every 5 years

[ [ErExReERELEHeEeEREeE

——! CNC

1-3

FIGURE 7-10. Configurations prescribed by a neural network for scenarios involving frequent and
infrequent product design changes.
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Given the likelihood of frequent product design changes, the neural network prescribes a
configuration consisting solely of very flexible CNC machines. Given infrequent product
design changes, the neural network prescribes a configuration dominated by dedicated
transfer line stations that have lower acquisition cost. Thus the behavior of the neural

network forward model is reasonable.
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8. Application of the Inverse Approach

The direct inverse, distal supervised learning and distal supervised learning with constraints
methods were applied to the high-volume machining system configuration problem defined

in Chapter 5.

8.1. Direct Inverse Method

To evaluate the direct inverse method, 128 simulations were run to generate 128 training
pairs in which efficiency values y were the inputs and decision variable values x, s, b, f

were the outputs {Tbl. 8-1).

# INPUT OUTPUT
Samples y X s b f
3, 10, 0, 0, 50, 10.25,0.50,
128 17, 24 1 100, 150 | 0.75, 1.00

TABLE 8-1. Training pairs for the direct inverse method.

Before being used for neural network training, all decision variable values were normalized
to fall within the range (0, 1]. The efficiency values y fell in the range [0.0569, 0.2923].
A neural network with one node in the input layer, 4 nodes in the output layer and 2 hidden
layers with 10 nodes each (a 1-10-10-4 neural network) was trained with these data.
Training consisted of 50,000 iterations through the training data. The configurations x[k]
prescribed by the trained network for a range of desired performance index values y«[k] are

shown in Table §8-2.
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INPUT INVERSE NETWORK OUTPUT xg
k \,‘*[k] X s b f
I 0.20 0.910 0.860 0.248 N.417
2 0.22 0.909 0.803 0.187 0.400
3 0.24 0.894 0.732 0.132 0.392
K 0.26 0.836 0.622 0.101 0.395
5 0.28 0.593 0.374 0.218 0.421
6 0.30 20.554 -0.467 1.191 0.520
7 0.32 -4.365 -2.938 4.791 0.805
8 0.34 -8.736 -5.967 8.786 1.165
9 0.36 -10.520 -7.544 9.892 1.420
10 0.38 -11.295 -8.632 9.785 1.653
11 0.40 “11.877 9.626 9.446 1.886

TABLE 8-2. Configurations output by a neural network trained via the direct inverse method.

Since the process of generating training simulation data has already discovered a system
with a performance index value of 0.2923, the range of y=k] values of interest is yx[¥] >
0.2923. Looking at Table 8-2, most of the decision variable outputs produced for y[]
inputs in this range (0.30, 0.32, etc.) are out of the interpretable range of [0, 1]. In
addition, the root mean squared error across all n (= 4) network outputs and all S (= 128)

training pairs at the end of training, as defined by

1

S
1 2
RMSE=|5 3. (x ¥ - xP)(x 1 _ x¥) (8-1)

where x+[k] is a n-component vector specifying the desired network outputs for the kth
training pair and x[] is the actual network output for the kth training pair input, is a
relatively large 0.3376 with respect to the desired output values, which are in the range [0,
1]. This is evidence of the inability of the direct inverse method to drive the squared error
or equivalently the RMSE (Eq. 8-1) close to zero when one-to-many mappings are

explicitly specified in the training data.

132



8.2. Distal Supervised Learning Method

In order to evaluate the distal supervised learning methed, 72 simulations were run to
generate 72 training pairs in which decision variable values x, s, b, f were the inputs and

efficiency values y were the outputs (Tbl. 8-3).

# INPUT OUTPUT
Samples X s b f y
3, 10, 0, 0, 0.25,
72 17, 24 1 100, 150 | 0.75, 1.00

TABLE 8-3. Training pairs for the forward network in the distal supervised learning method.

Before being used for neural network training, all decision variable values were normalized
to fall within the range [0, 1]. The efficiency values y fell in the range [0.0569, 0.2923].
A neural network with 4 nodes in the input layer, 1 node in the output layer and 2 hidden
layers with 10 nodes each (a 4-10-10-1 neural network) was trained with these data.
Training consisted of 1,021 cycles through the training data, resulting in a final RMSE (Eq.
8-1,n=1,5 =72) of 0.02. This trained forward network was then used in the training of
a 1-16-4 inverse network via the distal supervised learning method. Eleven performance
index values y«[k] were provided to the inverse network during the training process,
ranging from 0.20 to 0.40 in increments of 0.02. The configurations x[! prescribed by the
trained inverse network for a range of desired performance index values y+(¥] are shown in

Table 8-4.
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INPUT INVERSE NETWORK OUTPUT xl4l FORWARD NET
k v lk] X s b f OUTPUT 4]
1 0.20 4.783 -4.507 -1.191 1.709 0.20
2 0.22 4.748 -4.512 -1.075 1.714 0.22
3 0.24 4.712 -4.517 -().959 1.719 0.24
4 0.26 4.677 -4.521 -().844 1.724 0.26
5 0.28 4.642 -4.526 -0.729 1.729 0.29
6 (.30 4.606 -4.531 -0.615 1.733 0.30
7 0.32 4.572 -4.535 -0.502 1.738 0.32
8 0.34 4.537 -4.540 -0.389 1.743 0.34
9 0.36 4.502 -4.545 -0.277 1.748 0.36
10 0.38 4.468 -4.549 -0.166 1.752 0.38
11 0.40 4.434 -4.553 -0.056 1.757 0.39

TABLE 8-4. Configurations output by a neural network trained via the distal supervised learning method.

As with the direct inverse method, the decision variable values output by the inverse neural
network fall outside the interpretable range of [0, 1]. The last column of Table 8-4 shows
the outputs from the forward network, given the inverse network-prescribed designs as
input. The forward network outputs almost exactly match the desired performance index
values input to the inverse network. This shows that the distal supervised learning method
is forming a true inverse of the forward neural network model, albeit an inverse whose

outputs do not have a defined physical meaning.

8.3. Distal Supervised Learning with Constraints

In order to overcome this last difficulty, the distal supervised learning with constraints
method was applied. The procedure was identical to that of distal supervised learning, with
the exception of the squared error to be minimized during training of the inverse network.
The squared error used was of the form given in Eq. 3-21, with the upper and lower
bounds of the decision variables set to 0 and 1 respectively. The configurations x[]
prescribed by the trained inverse network for a range of desired performance index values

y=[k] are shown in Table 8-5.
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INPUT INVERSE NETWORK OUTPUT xI! FORWARD NET
k yx (k] X s b f OUTPUT yl4]
1 0.20 0.435 1.000 ().444 (0.453 0.20
2 (.22 (0.384 1.000 (.393 0.402 0.22
3 (.24 ).333 1.000 ().343 0.353 0.23
4 0.26 0.284 1.000 0.294 ().304 (.25
5 (.28 (0.235 1.000 0.246 0.257 0.26
6 0.30 0.188 1.000 0.199 0.210 0.27
7 6.32 0.142 1.000 0.153 0.165 .29
8 0.34 0.097 1.001 0.109 0.120 0.30
9 0.36 0.053 1.001 0.065 0.076 0.31
10 0.38 0.010 1.001 0.022 0.034 0.32
11 0.40 -0.032 1.002 -0.020 -0.008 0.32

TABLE 8-5. Configurations output by a neural network trained via the distal supervised lcarning with
constraints method.

In this case, the decision variable values prescribed by the inverse network do fall within
the physically interpretable range of [0, 1]. The forward model does not produce output
performance index values as high as the desired performance index values. If the forward
model is a sufficiently accurate description of the actual design to performance index
relationship, this indicates that the maximum physically achievable performance index value

has been exceeded by the requested values.

8.4. Achieved Efficiency of Configurations Prescribed by an Inverse

Neural Network

The NET4-10-1 models that were trained with various numbers of configuration to
efficiency samples (16, 36, 54, 72, 96, 128, 160, 200 and 250) in Section 7.2.1 were used
as forward models in nine applications of the distal supervised learning with constraints
method (one application for each forward model trained with a given number of training
samples). In each case, the inverse network used had a 1-5-5-4 structure. The desired

efficiency values y«(k] that were used to train each invcise network werc chtained by
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incrementing the best efficiency value in the training data of the corresponding forward
network by 5%, 10% and 15% respectively. For each inverse network. the three desired
efficiency values resulted in the same prescribed configuration. The prescribed
configuration varied across the different inverse networks. however. The achieved
efficiency of the configurations prescribed by the trained inverse networks were then
compared to that of some of the forward models applied in Section 7.3.1. The results are
shown in Figure 8-1, which is identical to Figure 7-7 except for the addition of the inverse
network results and the omission of the regression results (the latter simply to reduce

clutter).
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FIGURE 8-1. Achieved efficiency of the inverse modeling method compared to forward modeling methods.

The performance of the inverse network model closely matches that of the forward network
model. The inverse netwoerk, like the forward netwo.k, has window of computational
effort (incurred in the form of training simulations) within which its prescribed

configurations outperform the more traditional forward model methods based on model
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ANALYTICAL and simulation plus hill-climbing. As observed before, once the number of
simulation data points reaches a certain point, about 225 for the given industrial problem,

simulation plus hill-climbing is able to catch up with the network-based methods.

8.5. How Prescribed Configurations Vary with the Required Flexibility

Now that it has been established that the neural network trained via the distal supervised
learning with constraints method is the best of the three inverse methods discussed for
pzdicting a configuration x for a desired performance, an evaluation of how the network’s
predictions change with respect to the assumptions regarding the flexibility requirements
imposed on the manufacturing system is possible. Because the efficiency index
incorporates costs that occur over the life of the manufacturing system, including those due
to part design changes, it is of particular importance that the effect of part design change

frequency on the inverse network output be examined.

Model NET4-10-1 was trained with two sets of 250 training samples (Line 9, Tbl. 7-1).
For the first training set, efficiency was evaluated assuming a large product design change
frequency of once every two years. For the second training set, efficiency was evaluated
assuming a low product design change frequency of once every five years. Other
parameters values were set in accordance with Table 5-2. The trained models were then
used to train 1-5-5-4 inverse networks via the distal supervised learning with constraints
method. The trained inverse networks were then used to prescribe configurations (Fig. 8-

2).
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FIGURE 8-2. Configurations prescribed by an inverse neural network for scenarios involving frequent and
infrequent product design changes.

Given the likelihood of frequent product design changes, the inverse network prescribes a
configuration consisting solely of flexible CNC machines. Given infrequent product
design changes, the neural network prescribes a configuration dominated by dedicated
transfer line stations that have lower acquisition cost. This behavior is reasonable and is

consistent with that of the forward neural network model-based method.
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9. Larger Configuration Problems

For the given industrial problem, both forward and inverse neural network -based methods
can prescribe better configurations for a given ~mount of computational effort than forward
methods based on a crude analytical model, on empirical linear regression models, and on
simulation plus hill-climbing. However, the given problem is limited in size, with about
90,000 total solutions. In this chapter, the forward and inverse model methods discussed
in this thesis will be applied to a larger problem to see if the relative performance of the

methods remain the same.

9.1. Generalization of Decision Variables

The given configuration problem from industry can be made “larger” several ways. One
way is to increase the number of machine types from the current two. A second way is to
lift the restriction of a configuration to at most two sections of machines — one section of
dedicated transfer line stations or batch operation machines arranged in series and one
section of flexible CNC machining stations or sequential operation machines arranged in
parallel. The second way requires a generalization of the existing decision variables.
Given M machine types, the existing decision variables, of which x1, x2, ..., xp-1 and s1,
§2, ..., SM-1 describe the assignment of operation groups to machine types (Section 4.1,
Fig. 9-1), are capable only of indicating how many operation groups are assigned to each
machine type, but not of indicating the distribution of these operation groups amongst
multiple sections of a given machine type. For example, if a configuration consists of a
section of CNCs, followed by a section of TLSs, followed by a section of CNCs, the
existing decision variables would not be capable of describing how the operations groups

allocated to CNCs are distributed between the two CNC sections.
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FIGURE 9-1. The existing decision variables can only represent configurations in which there is at most
one section of each machine type.

This restriction can be lifted as follows. Let the number of machine sections in the system

be an arbitary constant K. Then define decision variables as follows:

x; The number of operation groups processed by whatever machine type is in machine

section i (i € [1, K-1], x; € [0, G]). Only K-1 variables are necessary because the
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number of operation groups processed by the machine type in section K is determined

by default from the expression G—(x1+x2+...+xg.1).

sj  The machine type in section j (j € [1, K],sje [0, M]). As a part travels through the
system, the first machine type it encounters is 51, the next type it encounters is s, and
so on. If there are only r different sections in the system, then sy41, Sr42, ... Sk are all

set to 0.

The above redefinition of the x; and s; decision variables permits configurations with
multiple sections of a single machine type to be represented (Fig. 9-2). The remaining

decision variables remain unchanged.

b The capacity of the buffers within the system (b € [0, bpax]). This quantity is

assumed to be uniform throughout the system.

f  The frequency with which buffers occur within the system. This is defined to be the
number of buffers within the system divided by the number of potential buffer
locations within the system. Within a system, buffers may be located between any

two adjacent machines in the part flow.
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FIGURE 9-2. Generalized decisicon variables.

The generalized decision variables permit consideration of a richer set of configurations, at
a price of more decision variables: 2K+1 variables versus the original 2M, where K is the
arbitrarily defined maximum number of machine sections, and M is the number of machine

types. Increasing K increases the richness of the configuration space.
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9.2. A Richer Solution Space for the Industrial Problem

The industrial problem of Chapter 5 was solved using the generalized decision variables.
As before, the number of machine types M = 2, and the number of operation groups G =
27. However, the maximum number of machine sections K was increased from 2, the
effective assumption given the previous set of decision variables, to a new value of 5. This
increased the number of decision variables from 4 to 11, and the number of potential

solution configurations by almost 4 orders of magnitude, from 9.0 x 104 to 4.2 x 108,

Two hundred sixteen training samples were generated via simulation. Blocks of 54
configurations containing 2, 3, 4 and 5 machine sections respectively were simulated (Tbl.
9-1). Efficiency values for the training samples were calculated using the parameter values

in Table 5-2.
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#
Samples

INPUT x!s]

OUTPUT

(x1 x2 X3 x4)

(s1 52 53 54 55)

b

f

y[S}

27

(3 24 0 0)
(14 13 0 0)
(24 3 0 0)

12000

10, 50, 90

0.0, 05, 1.0

27

(32400
(1314 0 0)
(24 300

21000

10, 50, 90

0.0, 0.5, 1.0

27

22410
(7137 0)
(12 3 12 0)

12100

10, 50, 90

0.0, 0.5, 1.0

27

(12 3 12 0)
(7 14 6 0)
(2 24 1 0)

21200

10, 50, 90

0.0, 0.5, 1.0

27

2121 12)
(7776)
(12 2 12 1)

12120

10, 50, 90

0.0, 0.5, 1.0

27

(12 2 12 1)
7767)
(2 12 1 12)

21210

10, 50, 90

0.0, 05, 1.0

27

(1121 12)
5756
8281

12121

10, 50, 90

0.0, 0.5, 1.0

27

@®281)
5747
(1 12 1 12)

21212

10, 50, 90

6.0, 0.5, 1.0

TABLE 9-1. Training samples drawn from the rich configuration space.

Eight 11-30-1 neural networks (NET11-30-1) were trained using the first 27, 54, 81, 108,

135, 162, 189 and 216 training samples from Table 9-1 respectively. That is, the first two

networks were trained using configurations containing 2 machine sections, the next two

networks were trained using configurations containing up to 3 machine sections, the next

two networks were trained using configurations containing up to 4 machine sections, and

finally, the last two networks were trained using configurations containing up to 5 machine

sections. The neural networks were trained for 7,000 iterations via backpropagation

(Rumelhart ez al. 1986, Section 3.1.3), with a gain o of 0.05 and a momentum 77 of 0.80.
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The peiformance of NET11-30-1 was compared to that of NET4-10-1 (Section 7.3.1),
which was trained via the original decision variables. The basis of comparison was the
achieved efficiency of configurations prescribed by the two network models, for a given

amount of simulation-generated training data (Fig. 9-3).

NET11-30-1
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=
(5]
o
@ ]
S 03
= 3 NET4-10-1
w (trained via original configuration set)
o
-1} 0.2
>
2
S 0.1
<
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FIGURE 9-3. Achieved efficiency of the neural network-based forward model method for two different levels
of training configuration richness.

Although the rich configuration sct yields better prescribed configurations at lower numbers
of training samples, it is important to note that the best achieved efficiency of NET11-30-1
is attained at 54 samples. At this point, the training data do not yet contain any
configurations with more than 2 machine sections. The incorporation of a richer set of
configurations into the training data thus did not help the performance of the neural
network-based forward model method. This provides some justification for the

formulation of the industrial problem of Chapter 5 as a 2-machine section problem.
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9.3. Comparison of Configuration Approaches for a Larger Problem

The analytical forward model plus enumeration method (Section 3.2), the simulation plus
hill-climbing method (Section 3.3), the linear regression forward model plus enumeration
method (Section 3.4), the neural network forward model plus enumeration method (Section
3.5) and the neural network inverse model method (Section 3.6) were applied to a
configuration problem consisting of K = 6 sections, G = 28 operation groups, and M = 2
machine types. This problem is distinct from the previously addressed industrial problem.

It requires 2K+1 = 13 decision variables and boasts a solution space of 4.6 x 109

configurations.

The linear regression model used was of the form given in Equation 3-1, which is linear
with respect to the decison variables. A 13-16-1 neural network forward model and a 1-

30-30-13 neural network inverse model were used.
The relative performance of the forward model methods from above for this large

configuration problem, with a solution space approximately 5 orders of magnitude larger

than the original industrial problem, is shown in Figure 9-4.
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FIGURE 9-4. Achieved efficiency of different forward model configuration methods for a large configuration
problem with 4.6 x 109 solutions.

As with the smaller, original configuration problem (Chapter 5), there is a window of
computational effort (above approximately 40 training simulations) in which the network-
based method prescribes better configurations than the other forward model methods.

Scaling up the configuration problem did not change this result from the smaller problem.

The performance of the neural network inverse model method relative to some of the above

forward methods is shown in Figure 9-5.
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FIGURE 9-5. Performance of inverse method versus forward methods for a large configuration problem with
4.6 x 109 solutions.

For the large configuration problem, the performance of the inverse method falls off
somewhat from tha. of the forward network method. Generally, it lies between that of the

forward network method and that of simulation plus hill-climbing.

The advantage of the inverse method over the forward methods in a configuration problem
of this size is computational effort. Exhaustive enumeration of the configuration space,
even using a quickly-executed empirical model (such as a forward neural network) to
evaluate each configuration, becomes very computationally expensive. On the other hand,
an inverse network can be trained to successfully implement only a single efficiency to
configuration mapping, where the single efficiency is the desired efficiency. It does not
have to be trained to successfully map the entire range of efficiency values onto
corresponding configurations. This can make inverse network training computationally

efficient relative to the enumeration required for forward model methods.
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10. Conclusions

The contributions of this research center around the following four areas.

Decision Variables

The use of empirical models for manufacturing system configuration requires the
representation of alternative configurations in terms of quantitative decision variables.
Since all of the empirical models investigated require a fixed number of inputs and outputs,
the number of decision variables for representing all configurations must be a constant. A
representation with these properties for the problem of designing multi-stage machining

systems has been developed.

Although the industrial problem addressed involves only two machine types, the decision

variables are general enough to handle a problem with an arbitrary number of machine

types.

A turther generalization permits configurations with an arbitrary number K of machine
sections to be represented. Selection of X determines the richness of the set of
configurations that can be drawn upon to solve the configuration problem. Large K means
that configurations in which every few operations are performed by a different machine
type are representable; small K means a coarser partitioning of the machining operations
amongst the eligible machine types. Representational capability via large K is achieved at
the expense of increasing the domain size of the configuration to performance index
mapping; this is the mapping that must be approximated by a suitable forward model if the
configuration problem is to be solved. A related experimental result is that for the given

industrial problem, the consideration of configurations containing up to 5 machine sections
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does not provide a significant benefit over considering just configurations with up to 2

machine sections.

Performance Index

The proposed performance index quantitatively assesses manufacturing flexibility. The
guiding principle behind the quantification of flexibility is that manufacturing flexibility is a
function of both the ability to adapt to change and the likelihood or demand for that change.

Decision Variables to Performance Index Mapping

For the given industrial problem, the roughness of the decision variables to performance
index mapping was quantified via measures employing integrated first and second
derivatives of the performance index. The mapping is relatively smooth. This motivates
the use of empirical models to approximate the mapping and subsequently to prescribe
manufacturing system configurations. If the mapping were too rough, an excessive
number of computationally expensive mapping samples would be needed in order to

employ empirical modeling methods.

Solution Methods

This research explored the use of computationally efficient empirical models fit via accurate
but computationally expensive simulation models for manufacturing system configuration.
Of the emnpirical models tested, neural network forward and inverse models generally
prescribed better configurations than linear regression models. However, neural network
models are more sensitive to training simulation accuracy than the linear regression models.

For both the smaller original configuration problem, with 105 solutions, and a larger
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problem with 109 solutions, there proved to be a windew of computational effort (in the
form of evaluation of configurations via simulation) within which neural network models
prescribed better configurations with less computational effort than simulation plus hill-
climbing. The neural network models also prescribed better configurations than a crude

analytical model.

The above observations indicate that neural network models, as configuration tools, are
best applied when evaluation of the performance index is both computationally expensive

via simulation and difficult analytically.

The inverse model method for manufacturing system configuration requires a model that
takes as input a desired performance index value ygoa and outputs a suitable manufacturing
system configuration x+. This is difficult to address directly via empirical modeling tools
because of the one—to—mmy:amc of the mapping. The distal supervised learning with
constraints method for training neural network models, however, is able to address this
difficulty by selectively implementing one of the one-to-many mappings in accordance with

given constraints on the mapping outputs.

The inverse neural network model method performed comparably to the forward neural
network model method for the small configuration problem, and between the forward
network method and simulation plus hill-climbing for the large configuration problem. It
may be preferred to the forward network method in a situation in which enumeration of

configurations, required by the forward network method, is computationally expensive.
Limitations
A number of issues related to this research remain open.
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The proposed decision variables make use of so-called categorical variables to denote
machine type (e.g., 1 represents CNC machining center, 2 represents transfer line station).
In a configuration problem with more than two machine types, which machine types should
be adjacent in value? The machines might be ordered by their degree of flexibility. The
choice of machine order on the categorical variable scale may also affect the performance of

the different configuration methods.

In this research, the valuation of inventory was set on the basis of the perceived importance
of inventory reduction in industry. However, a model for arriving at this cost was not
provided. The results of Section 7.3.2 suggest that the advantage of neural networks as
configuration tools over more standard regression models will exist, but to a smaller

degree, if inventory cost is significantly less than the value assumed in this research.

Results of the original, small configuration problem suggest that given enough simulation
data, the performance of simulation plus hill-climbing eventually catches up to that of
network-based methods. The computational effort window within which network-based
methods perform better than simulation plus hill-climbing was observed in both the small
and large configuration problems. However, whether this window exists for other
configuration problems and how wide one could expect it to be in general has not been

determined.

Finally, Figure 4-5 shows that the operation sequence of sequential operation machines
(SOMs) such as CNC machining centers affects the performance of a given manufacturing
system configuration. If operations are performed in a bad sequence, tool change times
and tool spindle translation times will be excessive, resulting in a high processing time for

each SOM and consequently the need for more SOMs to meet the demanded production
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rate. For this research, the operation sequence was assumed to be given. However, better
configurations could be prescribed by optimizing the operation sequence for each
configuration, and then using the resulting optimal SOM processing times in the simulation
of the configuration. Solution of the operation sequence problem would integrate
seamlessly into the neural network-based methods for the configuration problem, because it

would merely change the numerical values of their training data.
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