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Abstract

Recent commitments to enhance the use of data for learning in medicine provide
the opportunity to apply instruments and abstractions from computational learning
theory to systematize learning in medicine. The hope is to accelerate the rate at
which we incorporate knowledge and improve healthcare quality. In this thesis, we
work to bring further clarity to the ways in which computational learning theory can
be applied to update the collective knowledge about diseases.

Researchers continually study and learn about the complex nature of the human
body. They summarize this knowledge with the best possible set of diseases and
how those diseases relate to each other. We draw on computational learning theory
to understand and broaden this form of collective learning. This mode of collec-
tive learning is regarded as unsupervised learning, as no disease labels are initially
available. In unsupervised learning, variance is typically reduced to find an optimal
function to organize the data. A significant challenge that remains is how to measure
variance in the definition of diseases in a comprehensive way. Variance in the defini-
tion of a disease introduces a systematic error in both basic and clinical research. If
measured, it would also be possible to use computers to efficiently minimize variance,
providing a great opportunity for learning by utilizing medical data.

In this thesis, we demonstrate that it is possible to estimate variance in the disease
taxonomy, effectively estimating an error bar for the current definitions of diseases.
We do so using the history of the disease taxonomy and comparing it with a variety
of external data sets that relate diseases to attributes such as symptoms, drugs and
genes. We demonstrate that variance can be significant over relatively short time
periods.

We further present methods for updating the disease taxonomy by reducing vari-
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ance based on external disease data sets. This makes it possible to automatically
incorporate information contained in disease data sets into the disease taxonomy.
The approach also makes it possible to use expert information encoded in the tax-
onomy to systematically transfer knowledge and update other biomedical data sets
that are often sparse (e.g. - symptoms associated with diseases).

A natural question stemming from these results is how granular does data need
to be to make improvements? For instance, is patient-level data necessary to enable
learning at the macro level of disease? Or are there strategies to extract information
from other kinds of data to alleviate the need for very granular data. We show that
detailed, patient-level data is not necessarily needed to extract detailed biological
data. We do so by comparing disease relationships learned from clinical trial meta-
data to disease relationships learned from a detailed genetic database and show we
can achieve similar results. This result shows that we can use currently available data
and take advantage of computational learning to improve disease learning, which
suggests a new avenue to improving patient outcomes.

By reducing variance within diseases using data available today, we can quickly
update the space of diseases to be more precise. Precise diseases lead to better
learning in other areas of medicine and ultimately improved healthcare quality.

Thesis Supervisor: Dr. Luis Perez-Breva
Title: Research Scientist
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Chapter 1

Introduction

1.1 Motivation

There is an opportunity for faster learning in medicine. It requires three

components and we focus on the one least explored.

Recent commitments to enhance the use of data for learning in medicine provide

the opportunity to apply instruments and abstractions from computational learning

theory to accelerate learning in medicine, thereby improving quality faster.[1, 2]

There are three components related to seizing this opportunity: (1) collecting and

sharing data, (2) learning how to map patients to diseases using predictive analytics,

and (3) updating the collective knowledge of diseases.[3] The first two components

have been addressed in a variety of ways in the literature, while the last component

has received comparatively little attention. In this thesis, we work to bring further

clarity to the ways in which computational learning theory can be applied to update

the collective knowledge of diseases.
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Learning in medicine already happens and revolves around diseases as

discrete representations of continuous health states.

While this opportunity to introduce computational learning abstractions to medicine

is relatively new, the concept of learning itself is not new to medicine. Researchers

continually study and learn about the complex nature of the human body. There

is a continuum of multidimensional health conditions that exist, as pointed out by

Loscalzo, Kohane and Barabasi.[4] Because patients could lie anywhere along a con-

tinuum, diseases are used as discrete states[5] to categorize very similar health condi-

tions, with a focus on conditions that are abnormal or undesired. [6] Learning about

diseases is a central focus in medicine.[2]

There are two connected learning problems in medicine.

One way to view learning in medicine is through the dual learning hypothesis, which

states that there are two intertwined learning problems that are actually distinct in

nature. The first is to generate the "best" set of concepts, such as diseases. The

second is to learn mappings between concepts, such as patient characteristics or

features of diseases. The second learning problem relies on the concepts generated

from the first learning problem, although the first learning problem can be updated

based on new learning from the second problem. This hypothesis is consistent with

existing literature on learning in medicine.[2]
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The first is unsupervised learning to organize human biology features into

diseases. The disease taxonomy is the most generally accepted summary

of this learning.

The first mode of learning is to generate the "best" set of diseases and their rela-

tionships given everything known about human biology. This mode of learning is

regarded as unsupervised learning, as no disease labels are initially available. The

input data consists of human biology features (e.g., biochemical pathways, gene

mutations), and the output includes groupings of features that can be labeled as

diseases. While there is no single way to summarize the collective set of diseases and

relationships, one formally accepted representation is a taxonomy.[7] A taxonomy

defines a set of diseases as well as the hierarchical relationships between diseases.

Some have pointed out that taxonomies have many imperfections, which may affect

medical practice and outcomes.[8] Changing or updating the disease taxonomy is

generally a laborious process that relies on expert consensus, and at best is a yearly

endeavor. [9]

The second learning problem is supervised learning to map human biology

features to diseases.

The second mode of learning, learning mappings to diseases, is considered supervised

learning because the data contains disease labels. The input is human biology fea-

tures and the labeled output data is diseases. For example, scientists learn mappings

from biological models to diseases. [10] Researchers learn mappings from patient fea-

tures to diseases based on new knowledge, methods or equipment.[11, 12] Clinicians

learn to map patients more consistently to optimal diseases through education and

experience.[13]
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Computational learning has taught us how to approach these learning

problems by minimizing empirical risk, loss or error.

Computer scientists have studied extensively how to use computers for supervised

and unsupervised learning problems, which we refer to here as computational learn-

ing. Computational learning is based on minimizing an objective function, which

Vapnik refers to as empirical risk minimization. [14] In the case of supervised learn-

ing, risk is quantified by a loss function to evaluate the difference between the output

of the mapping and the labeled output data. The goal is to find a mapping that gen-

eralizes to any similar data set. Algorithms are then developed to find a minimum

for the risk or loss function that performs similarly for different subsets of the data.

In the case of unsupervised learning, the objective function is typically a measure of

variance within or between groupings.

Measuring and reducing error has been a priority recently for supervised

learning problems.

With the ability to quantify the objective function, subsequent improvements can

be made. A landmark report in 2000 was the first to measure the amount of error

in healthcare delivery.[15] A follow-on report singled out diagnostic errors, or where

incorrect mappings from patients to diseases had occurred and were quantified.[12]

Measuring these errors was the first step toward improved learning. In cases where

data is readily available, such as ICU data[16, 17], machine learning has been used

to develop models to predict diseases or future disease states.[18] These examples

demonstrate the first type of learning described above. Computers are particularly

useful because they can learn by efficiently minimizing risk and process large data

sets; hence, there is a great opportunity for learning by utilizing medical data.
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There are few examples of measuring or reducing error of the disease

taxonomy.

To the best of our knowledge, there have only been a few examples of attempts to

quantify or minimize the loss for the second type of learning. An absolute error

cannot be calculated because no true labels are known; we can only make best ap-

proximations as diseases. However, we can measure uncertainty though variance.

The most straightforward way to conduct this measurement would be to compare

comprehensive longitudinal data on patients with detailed historical diagnostic crite-

ria. Because the majority of this data cannot be accessed or does not exist, another

approach is needed. One example of similar work was to reduce variance of informa-

tion content in the Gene Ontology using several heuristics. [19] The heuristic and data

used were specific to that taxonomy and would not apply to many other taxonomies.

If measuring and reducing loss was possible, we could improve patient

outcomes faster.

If it was possible to quantify empirical risk of the disease taxonomy, it would also be

possible to use computers to minimize this risk and learn better disease taxonomies.

This would enable us to establish error bounds on supervised learning problems of

diseases and better understand the impact of learning results such as clinical trials.

It would also allow us to update the disease taxonomy more quickly, and in turn

accelerate the pace of learning in medicine. A better set of diseases will enable

improved diagnoses, and ultimately more effective treatments and better outcomes

for patients. [12]
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Reducing variance in disease would also achieve precision medicine.

Another way to characterize reducing variance is to increase precision. In particular,

there has been a recent push for "precision medicine" to improve the quality of

healthcare.[20, 21, 22] We define precision medicine in the context of this thesis as a

reduced variance within diseases and reduced variance mapping patients to diseases.

As will be explained later in this thesis, using data and computational learning may

also bring us closer to precision medicine than the current trajectory.

What is going to happen in this thesis.

In this thesis, we demonstrate that it is possible to estimate variance in the disease

taxonomy, effectively measuring an error bar on the current definitions of diseases.

We further present one method for updating the disease taxonomy by reducing vari-

ance based on external disease data sets. A natural question stemming from these

results is what data is needed to make improvements. We show that detailed, patient-

level data is not necessarily needed to extract detailed biological data. Rather, we

can use currently available data with different representations to extract latent infor-

mation for comparing diseases. These results show that we can use currently avail-

able data and take advantage of computational learning to improve disease learning,

thereby accelerating the improvement of patient outcomes.

In the next section, we provide a roadmap of the thesis, describing each chapter

briefly. We then close the introduction with a summary of the contributions of the

thesis.
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1.2 Thesis Roadmap

In chapter 2, we provide a background of the literature on learning in medicine,

disease definitions and a summary of computational learning. The following chapters

(3-5) contain the setup, experiments and results which are described below. We then

discuss the results in chapter 6 and provide conclusions in chapter 7.

In chapter 3, we start by quantifying how variance exists for a set of diseases.

We do this by tracking the taxonomy of diseases over approximately 50 years. Our

estimate is based on the assumption that the taxonomy changes in a relatively con-

sistent manner over time. At the same time, we examine the history of the taxonomy

and key changes that have taken place.

In chapter 4, we develop methods for connecting the disease space, as defined by

the disease taxonomy, with other types of disease spaces based on different disease

attributes such as genes, symptoms and drug interventions.

In chapter 5, we present a new disease representation we created for learning

tasks. The representation utilizes the expert knowledge contained in clinical drug

trials. Along with a distance metric, this representation creates a new space for

diseases.

The appendices include two analogies for understanding variance in learning prob-

lems as well as supplemental material for chapters 3-5.

1.3 Contributions

The three main contributions in this thesis include:

1. We estimate quantitatively the variance in the accepted disease taxonomy.

The taxonomy is used to define diseases, and up to this point measuring the
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uncertainty or variance that the taxonomy introduces has remained a challenge.

Our estimate enables researchers to put an error bar on learning results and

use computational tools to learn an improved disease taxonomy.

2. We reduce the loss between the disease taxonomy and external disease data

sets. This allows for a more precise update of the set of diseases based on

available data, as well as for the discovery of new disease-feature associations.

3. We develop a new representation of diseases using clinical trial meta-data that

contains latent information, similar to that found in a drug-gene networks.

This result demonstrates that a surprising amount of learning is possible with

superficial data sets. It further implies that diseases can be updated more

precisely without having to obtain detailed patient-level data.
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Chapter 2

Background

This thesis covers several fields including healthcare, machine learning and innova-

tion. We use computational learning as a framework to unite these fields. Often

terminology is ambiguous in these fields, so we provide specific definitions in Sec-

tion A.1 in the Appendix for reference. For background on computational learning

relevant to this work, see Section and for background on discrete versus continuous

spaces, see Section , both found in the Appendix.

For any statistical learning to take place, multiple samples are needed from a

consistent process. We assume that biology is consistent such that if a biological sys-

tem is fully characterized and its environment controlled, an experiment will always

produce the same result. In medicine, a patient's fully characterized state is their

true condition, but is only partially observable and is unique. In order to have mul-

tiple data points for learning, we use the concept of disease to describe the overlap

of true conditions of a population. Disease, as we use it in this thesis, is therefore

a discrete approximation the true underlying state of many patients that we cannot

fully observe.
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2.1 Learning in Medicine

Learning in medicine involves updating knowledge to improve understanding of dis-

ease, treatment options available, and ultimately the health outcomes of patients.[12]

Recently, an emphasis has been placed on using data more broadly to accelerate the

pace of learning in medicine. [1] In 2012, the Institute of Medicine published an exten-

sive report on their goals for a rapid and continuously learning health system.[2, 23]

Though this has been a goal for decades,[24] learning in medicine has traditionally

been very expensive, time consuming and often only batch processed.[2] The avail-

ability of data and computational tools offer the opportunity to realize the goal of

accelerating the pace of learning in medicine.

The goal of healthcare is to help patients prevent or recover from sickness.[25, 26,

27]. Learning should translate to improving patient outcomes, and faster learning

would lead to better outcomes sooner. To this end, learning occurs in many ways

in medicine, from formal medical education and experiential training to published

research. We distinguish between learning that is on an individual level compared

to learning on aggregate. Individual learning involves individual clinicians updat-

ing their knowledge through continuing education. This process is primarily about

disseminating new knowledge. Aggregate learning is the sum of all the medical

knowledge gained. Aggregate knowledge is updated and then disseminated, whereby

individual clinicians learn. In this thesis, we focus on aggregate learning.

To realize the goal of accelerated aggregate learning in medicine, three compo-

nents are necessary: (1) collecting and sharing data, (2) mapping patients or features

to diseases (3) updating the collective or aggregate knowledge of disease. We describe

each of these these components in the following sections.
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2.1.1 Collecting and Sharing Data

The health system generates vast quantities of data, though historically it has been

inaccessible computationally by privacy concern, paper or propriety.[28] Medicine is

now at the point where the valve is about to be released on this data. Government

agencies have committed to make more data publicly available, such as the European

Medicines Agency (EMA) making available clinical trial data [29] or the United

States making a host of data sets public through healthdata.gov.[30] Industry is also

releasing more, such as GlaxoSmithKline (GSK) and others making their clinical

trial data public.[31] Increasingly, there is a trend to make data public or collect

data in consortiums for broader use.[32, 33, 34, 35]

In many cases, data was collected for one learning task, as in the case of clin-

ical trials, or none at all, as in the case of data collected in the course of medical

practice.[36] There is great potential for new learning from this data.

2.1.2 Mapping Patients or Features to Diseases

Biological research is often the first step in learning. This can be performed in vitro or

in animal models. Disease cell lines are created to model a disease. [37] New features

which have been discovered are tentatively associated with the disease. They cannot

conclusively be associated with the disease because they are not in a complete human

system. Animal models allow for learning in a complete system, but not a human

one. [38]

Clinical trials allow researchers to test a hypothesis in which some feature(s)

are associated with a disease. Human subjects are sampled, and if the result is

consistent across many people, it is concluded that there is an association between

the feature and the disease. This could be a biological concept for research purposes
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or a diagnostic tool or therapeutic intervention for medical practice. Clinical trials

are powerful because they involve real human subjects as opposed to models in

animals or in vitro. However, they are limiting because they are require significant

time and resources to make a single binary conclusion.[39]

The confidence of a trial result depends on the type of trial. In the past sev-

eral decades, there has been an increased emphasis placed on using evidence from

learning in medicine to inform medical practice.[40] A hierarchy of evidence has

been constructed, which indicates the type of learning that is trusted relative to

another.[41] For example, an observational trial is trusted over personal experience,

and a randomized controlled trial (RCT) is trusted over an observational trial.

The learning process described in this section allows researchers to map biological

features to diseases. This learning helps improve diagnostic criteria for diseases so

patients can be mapped more precisely to diseases. The learning process also allows

researchers to map treatments to diseases. This learning helps improve treatment

options for diseases. Using data to enhance these efforts has been proposed and

has shown promise. This type of learning is observational in nature, which is not

preferred evidence, but is much less resource-intensive than forms of evidence higher

in the hierarchy. Researchers have pointed out that much of medicine practiced is

not based on evidence.[42, 43] This shows the need for the vast amount of learning

that RCT's will not allow.[44]

Inherent in these learning problems is the assumption that the diseases are cor-

rect. In the next section. we discuss the problem of updating the knowledge about

diseases so it is more correct.
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2.1.3 Updating Collective Knowledge of Disease

Due to the large amount of knowledge accrued in past sets of diseases, the collective

knowledge of diseases is not generated de novo, but is instead updated. There is

no official or systematic way to do this; knowledge gets updated as new research or

practice results are examined and shared within the research community. This may

happen through conferences or journal publications. Official changes may happen

when a group of experts agrees on a change to an official standard or guideline. For

example, hypertension treatment guidelines for people over the age of 60 changes

from 140 to 150 mmHg as per the American Heart Association (AHA) and the

American College of Cardiology (ACC). [45]

Disease in this space is subject to a variety of limitations and biases. [10] For

example, diseases are often defined by some knowledge base, such as anatomical

location, symptoms observed, treatments, causative agents, biomolecular etiology,

heredity and so forth. [46]

In addition to guideline changes, another currently prominent area of research

to update knowledge about disease is the search for subpopulations of disease. [47]

The premise behind these efforts is that diseases are accurate, but heterogeneous in

nature. By finding sub-populations, it may be possible to find more heterogeneous

subsets that possibly have differing etiologies. A classic example of this would be

Diabetes being sub-categorized as type I and type II.

This type of learning has received less attention than the previous type. One

reason may be that it is more subjective in nature what makes a "good" disease

can be a subjective assessment. To the best of our knowledge, nobody has undertaken

to evaluate and update the collective knowledge of diseases using data.

47



2.2 Diseases

Underscoring the learning modes described above is the concept of disease. We

describe in more depth here what the concept of disease entails.

Though widely used, the concept of disease has varying definitions, such as the

opposite of health, conditions not biologically normal for humans or states of the

body that carry a negative value judgement. [6, 48] The precise definition of sickness

is debated, but typically is described as an internal state characterized by an impair-

ment or deviation from a normal or more desired state. [48, 6] Diseases provide a way

to describe the same or similar sickness in more than one patient, often through a

consensus of healthcare professionals. [49 There is some ambiguity in the use of the

term disease, so we clarify our use of terminology here. A health condition refers

to the biological processes actually happening in a patient. There are billions of

biological processes taking place in humans and there is no inherent or ground truth

in the grouping of such processes. We refer to a disease, on the other hand, as a

classification referring to a man-made grouping of symptoms, mechanisms or patients

that hopefully reflects underlying biological processes. Diseases are used in medical

practice as a means of identifying and describing a condition, and then prescribing

a corresponding treatment.

The definitions of a diseases use rules that identify them, typically based on

patient symptoms or biological mechanisms. For example, hypertension is blood

pressure above a certain threshold. Such a designation allows clinicians to compress

all of the information about a patient into one or more classifications. The rules for

classifying operate on patient data, such as symptoms, signs and lab tests. Rule-

based categorization is used in many situations because it is easy to apply and

communicate, but is also known to have limits in computational learning. [50]
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2.3 Dual Learning Hypothesis in Medicine

A hypothesis consistent with the learning in medicine described above is the dual

learning hypothesis. The dual learning hypothesis states that categories or labels are

learned in an unsupervised fashion, while the association of data points to specific

labels is learned in a supervised fashion. Labels are necessary for the second type of

learning, but each type of learning can have an effect on the other.

We describe each part of the dual learning hypothesis in the following sections.

2.3.1 Learning Diseases

Learning what is a disease is an unsupervised learning problem. There are no inherent

labels for conditions and no absolute truths for what distinguishes one condition

from another. Diseases are proposed based on sets of similar characteristics. There

is an underlying joint distribution of all characteristics, but that distribution has a

very large number of dimensions. It is not possible to comprehensively describe the

distribution because of the high dimensionality, so clustering is used. With clustering,

there are not necessarily inherent ways to divide up the distribution. It is therefore

up to experts to describe what characteristics should be used, how many diseases

should be identified and how to divide up parts of the condition spectrum into discrete

diseases. This could be done based on anatomical location, organ systems involved,

genetic or environmental causes and many more criteria.

It is not typical that disease are learned de novo, but rather updated with new

knowledge. Updating could be the result of new characteristics or a new grouping of

characteristics. Examples of new characteristics that are currently changing our un-

derstanding of diseases and how to group them include features of the microbiome[51]

or mitochondrial defects. [52] Some characteristics are only know being appreciated in

49



long-standing diseases, such as how metabolism affects cancer. [53] Still, while there

are well-known dimensions such as diet and psychosocial variables which have long

been associated with diseases, direct connections have been harder to draw.[54]

The set of diseases can have a dramatic impact on medical practice and learn-

ing. For example, billions of dollars have been spent searching for a treatment for

Alzheimer disease (AD) with very little to show for it.[55] It may not be that the

correct drug has not yet been found nor that some existing drug has not yet been

tested on AD, but that AD is the wrong clustering of patients to use to search for

treatments. In some cases, a drug in development has not been successful for the

intended disease, but useful for a yet undefined condition. For example, erectile dys-

function was not a 'disease' before Viagra,[56] which also led to attempts to define

more diseases such as Low-T [57] and female sexual dysfunction (FSD).[6]

The true continuous disease state space is relatively constant, changing on an evo-

lutionary time scale. However, the approximated disease state space is constantly

changing as biomedical research updates our understanding of disease. Furthermore,

disease definitions change over time. Cancers have been defined by anatomical lo-

cation (breast, brain, pancreatic) and then further refined to reflect tissue of origin

(carcinoma, sarcoma, lymphoma). Recent work suggests that genetic similarity is

important, often across different tissue types.[58] Definitions therefore change over

time to incorporate new information. Osteoarthritis(OA) is another example; in

2007, the FDA requested clarification on the definition of OA, whether subcategories

of OA could be combined and what the relation was to other specific diseases.[59]

Yet another example is Myocardial Infarction.[60] Lastly, an example is Parkinsons

disease.[61]

We provide two examples of diseases whose definition and relation to other dis-

eases have changed over time. We can assume that the biology did not change, but
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rather our understanding changed to better approximate biology.

51

Example Case: Diabetes

Diabetes is believed to have been diagnosed anciently as frequent urination or sweet
smelling urine. "Diabetes" means to pass through and "mellitus" means sweet like
honey. It has been noted for a long time (1st recorded in 500 AD) that there was
a difference between Diabetes in kids and Diabetes in overweight adults. In the late
1700s, diabetes mellitus was named to distinguish it from Diabetes Insipidus based
on the sweet smell. In 1889, researchers found that a dog with its pancreas removed
produced sugary urine. In 1901, someone first described Diabetes Mellitus as caused
by the destruction of islets of Langerhans. People tried to make pancreatic extracts,
and in 1922, insulin was successfully isolated and given to a diabetic patient. Insulin-
dependent Diabetes is now known as type 1 Diabetes because it responds to insulin
treatment. It is now believed that most cases are the result of an autoimmune reaction
leading to the loss of beta cells. Some genes have been identified as risk factors, but
environmental factors are also thought to be triggers.

The example shows how a disease first looked like a syndrome with symptoms
of frequent urination, and became differentiated based on another symptom, sweet
urine. This was further differentiated based on age and physical characteristics. After
millennia of having seen symptoms, a crude mechanistic understanding developed,
namely that the pancreas was linked to Diabetes. This became refined to show that
beta cells were specifically the problem. There was then a race for a solution, and
once found, the disease definition shifted to one that was based on the therapy that
worked, insulin. Over time, the understanding of mechanisms has been refined, while
the population has remained the same.



Example Case: Cystic Fibrosis

Cystic Fibrosis was possibly described in the 18th and 19th century as kids with salty
sweat who died. The first pathological sign that was noticed was the fibrosing and
cysts found in the pancreas. In the 1930s, researchers drew a connection between cystic
fibrosis of the pancreas and lung function and intestinal disease (about 80% of deaths
in CF are due to cardiorespiratory complications). At that point, it was hypothesized
to be a recessive disease. It was not until 1988 that the first gene mutation was
discovered. There is one gene (CFTR) that is affected, but more than 1,500 different
mutations can have varying effects. Kalydeco (Ivacaftor) was a drug approved in 2012
to treat those with the G551D gene mutation, one that only represents about 4% of the
population. In 2014, an NDA was filed for a Lumacaftor/Ivacaftor which is effective
for patients with the F508del mutation for which approximately 60% of patients have.

The example shows a disease may have first been recognized by a symptom (salty
sweat) but did not represent a unique way of identifying the disease. It really was
defined by gross pathology of the pancreas. It was then linked to other pathophysio-
logical problems which have been the cause of death. It has only been in the last 20-30
years that the genetic basis for the disease was found and then partitioned by type of
mutation. Some therapies have subsequently been developed for specific mutations.

In the next section, we expand on the disease taxonomy, which is an accepted

way of representing the aggregate knowledge about diseases.

Taxonomy

Taxonomies have been used for millennia to codify knowledge in many different

disciplines. [62] A taxonomy delineates two things: (1) it defines what a class is in

some space of knowledge, and (2) how those classes are related to each other in a

structured hierarchy.[63] A taxonomy is an efficient way of compressing information

and knowledge into a condensed format that is particularly useful for classification

and communication. Taxonomies are useful for knowledge management, organizing

information and sharing information, as in the case of teaching.[64]

Taxonomies are used in medicine in a variety of ways. [65] For example, the Inter-

national Classification of Disease (ICD) is formally used for communicating about
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reimbursement and researching diseases. [66] The Medical Subject Headings (MeSH)

is used for indexing medical literature and clinical trials. [67] The Systematic Nomen-

clature of Medicine (SNOMED) is a newer taxonomy increasingly used for communi-

cation among clinicians. [68] The Disease Ontology is a very recent taxonomy whose

goal is to unify disease knowledge into one for biomedical research.[69, 70, 71] Be-

yond the formal delineated taxonomies, there are implicit taxonomies behind the

structure of medical education, medical specialties, hospital departments, funding

organizations such as the National Institutes of Health and so forth.

Medical taxonomies are also used for research and statistics by providing a con-

trolled vocabulary and a set of hierarchical relationships. [65] Specifically in medicine,

the taxonomy of diseases is useful in the context of medical training and licensing, [72]

medical billing, [73] structuring research efforts, [74] and predicting outcomes. [75] For

example, ICD codes are often used retrospectively to identify patient cohorts or as

training data. [76] Research increasingly looks to automated techniques for learn-

ing, such as knowledge discovery in networks analysis or machine learning. Auto-

mated learning about concepts often relies on taxonomies to identify concepts and

their classes as well as their relationships. This can be seen in work searching and

comparing the corpus of medical literature, clinical trials or comparing disease-gene

relationships. [77]

Though useful, taxonomies have their imperfections. In 1977, Engel wrote in

Science "Thus taxonomy progresses from symptoms, to clusters of symptoms, to

syndromes, and finally to diseases with specific pathogenesis and pathology. This

sequence accurately describes the successful application of the scientific method to

the elucidation and the classification into discrete entities of disease in its generic

sense." [74] He argues there is much merit to this approach, but that "distortions" are

also introduced. More recently, an IOM report in 2011 detailed how current medical

53



understanding often does not fit well into the standard taxonomies used today, as

well as the need for a new taxonomy, which should lead to faster and more precise

learning and ultimately better health outcomes.[9]

One way to see how limiting a taxonomy might be is to look to the past. The first

version of what is now known as the International Classification of Diseases included

diseases such as "Want of breast milk," "Softening of brain," "Insanity," "Old age"

and "Diarrhoea." These diseases, as classified more than 100 years ago, would not be

considered diseases or causes of death today (the original ICD was created to track

causes of death). It is easy now to see that these were likely not the best diseases,

but this can be much harder to see in the current taxonomy.

Though many have pointed out there are limitations to a taxonomy structure

and to our current disease taxonomy, the challenge remains to quantify how much

error, uncertainty or variance there is in the disease taxonomy.

2.3.2 Mapping to Disease

Learning to map concepts or specific data points to diseases is a supervised learn-

ing problem. This learning problem assumes that diseases are fixed and the task is

understanding what existing or new concepts are associated with a disease. Disease

labels are provided by expert opinion or specific diagnostic criteria. Mappings are

typically between biological features and diseases or between interventions and dis-

eases. The two mappings often occur in that order, but that is not always the case.

It is sometimes the case that searching for a treatment provides new insights about

biological features. Both types of mappings are useful in medical practice because

patients are mapped diseases based on features and then mapped to a treatment.

The total process is referred to as "diagnosis" in the IOM report on Diagnosis in
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2015.[12]

The process of diagnosis, as described in the IOM report, starts with a patient

experience something they identify as a health problem and engaging with the health

care system. Clinicians then gather patient information, integrate and interpret the

information and come with a diagnosis. The diagnosis is to a "pre-existing set of cat-

egories agreed upon by the medical profession to designate a specific condition." [78]

This can be summarized as healthcare professionals iteratively gathering patient in-

formation and mapping that to one or more disease categories. The information can

be gathered through a clinical interview, clinical history, physical exam, diagnostic

testing and more. The patient information may include clinician notes, images, test

numbers and so forth.

The entire diagnostic process includes gathering information about a patient,

determining the disease or diseases the patient has, recommending a treatment based

on the disease and following up on the outcome. [12] The goal is an accurate diagnosis,

meaning it is precise and complete, where precision means the disease classification

corresponds to the patient's true condition. Errors in the process are unsafe or less

effective, resulting in adverse events, death and billions of dollars wasted.[12] The

diagnosis process is improved when these errors are reduced, such as when accurate

information is acquired and shared.[15] The quality of their care is measured by

safety and effectiveness of treatments to improve sickness.[79]

In the following two sections, we go into further details about the two general

types of mapping and provides several examples.
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Mapping Biological Features to Disease

For the learning problem of mapping biological features to disease, the input is human

biology features and the labeled output is diseases or disease states. This represents

much of biomedical research. Biological features could be genes, biochemical path-

ways, image characteristics or other diagnostic criteria. We typically assume that

biology is consistent because evolution happens on such a long time scale. Much of

basic biology research occurs in this way. In vitro or animal models are used to ap-

proximate a human disease. Characteristics of that model are studied by examining

multiple samples. Samples may be modulated for further understanding.

Another area where features are mapped to disease states is related to clinical

data. More specifically, this areas focuses on information collected in the normal

course of care, but which can be insightful for learning. Clinicians use clinical ex-

periences for learning, so it may be reasonable to use data that may summarize

clinical experience for learning. Learning problems from clinical data are often set

up to predict diseases or disease states, such as septic shock or death in the ICU.[80]

Recent examples in machine learning have begun to realize the promise of making

predictions comparable to doctors. [81]

Mapping Treatments to Disease

One of the most recognizable forms of learning is clinical trials to determine if a treat-

ment is safe or effective. Effectiveness is a binary mapping to learn if the treatment

will improve a specific disease pre-defined.[82] Safety is a set of binary mappings to

learn if the treatment will lead to set of diseases. Ideally, a drug will improve the pre-

defined disease and not lead to other diseases. There are other examples where a drug

for one indication worked well for completely different indications, such as Thalido-
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mide for leprosy and Isoniazid for tuberculosis. These discoveries were serendipitous,

and many people have tried systematically finding such connections using a variety

of computational tools and data.[83, 84, 85, 86, 87, 88, 89, 90, 91]

In the text boxes below, we give two examples of drug learning problems that

had many steps with wide-ranging consequences. The first drug is Avandia where

continued learning after approval reversed earlier findings. The second drug is Tec-

fidera where learning about one the drugs relationship with one disease led to new

indications later on.
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Example Case: Avandia

Avandia (rosiglitazone) was first approved in 1999 to control glucose levels for the
management of type 2 Diabetes. Uncontrolled Diabetes can lead to heart disease and
damage to blood vessels, nerves, kidneys and eyes. It quickly became a blockbuster
drug with sales peaking in 2006 at $2.5 billion. In 2007, a meta-analysis associated
rosiglitazone with increased risk of Myocardial infarction.[92] A congressional hear-
ing was convened to investigate shortly after.[93] That same year, the FDA placed
a black-box warning on the label of Avandia after an advisory committee of experts
voted 22 to 3 that the overall benefit-risk profile of Avandia supported its continued
marketing in the US.[94] In 2010, a new meeting of the advisory committee was di-
vided between removing the drug from market or allowing continued albeit restricted
marketing.[95] The FDA allowed continued marketing under a restricted access pro-
gram that effectively reduced the patient population on rosiglitazone by 80%.[96, 97]
GlaxoSmithKline, the manufacturing company, followed suit and decided to stop ad-
vertising Avandia. Rosen [98, 99] documents the evolution and lessons learned from
the 2007 to the 2010 advisory committees. Though no new conclusive statistical ev-
idence of the increased risk of myocardial infarction was gathered from 2007 until
2010, difficulties to draw associations from observational studies, disagreements with
how adverse events were adjudicated in past clinical studies, and testimonials weighed
in the evolution of the vote of the committee. In 2013, another advisory committee
reviewed the independent analysis of the Rosiglitazone Evaluated for Cardiovascular
Outcomes and Regulsation of Glycemia (RECORD) study conducted by GSK.[100]
The conclusion of that study did not match Nissen's conclusion and the committee
decided to remove certain restrictions on the drug.[101]

It is interesting to note that the association between rosiglitazone and cardiac
events had been documented numerous times before Nissen's controversial meta-
analysis.[102] comments on the limited clinical potential of thiazolidinediones (TZDs)
because of the increased risk of cardiac events.[103] reports cases of heart failure asso-
ciated with rosiglitazone. Yet [104] notes that TZDs have been documented to reduce
the circulating markers of cardiovascular risk, and GlaxoSmithKline conducted incon-
clusive studies on rosiglitazone and cardiac failure as early as 2001. This disparity of
opinions has spawned numerous publications to sort through the challenge of prescrib-
ing rosiglitazone.[105, 106]

From this example, we see that new learning can affect millions of people. We also
see that data was reanalyzed in a very different way.
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Example Case: Tecfidera

Dimenthyl fumarate (DMF) is an oral drug for treating relapsing multiple sclero-
sis. Biogen Idec began marketing DMF after successful phase 3 trials published in
2012.[107, 108] The story of DMF started in 1959 when a German chemist found that
fumaric acid esters (FAE), one of which is DMF, helped treat his own psoriasis.[109]
It was not widely used as a therapy though, but rather as a mold-inhibitor for bread,
leather and furniture in Europe.[110, 111] It wasn't until the 1990s that trials were
conducted in Germany that concluded FAE was efficacious in treating psoriasis.[112]
In 1995 it was shown that Dimethylfumarate and Monoethylfumarate, branded un-
der the name Fumaderm, were effective as an oral treatment for psoriasis and was
approved in Germany.[113, 114] Biogen Idec partnered with the maker of Fumaderm,
Fumapharm, because they were interested in finding a multiple sclerosis (MS) drug
and knew MS and psoriasis has some similarities. In 2003 they acquired the world-
wide license to Fumaderm and in 2006 acquired Fumapharm. In the second quarter of
2014, DMF, branded "Tecfidera," had sales of $700 million. There are several proposed
mechanisms of action why DMF helps MS, but it is still not well-understood.[115]

From this example, we see that learning about a drug in the context of one disease
can affect learning about that drug and other diseases. This makes learning much
more efficient that a simple grid search.

2.4 Disease Representation

For computational learning, data must be structured in a way for a machine to com-

pare different data points. Much of the data recorded in medicine is done for humans

such as clinicians or patients to understand and make comparisons. Text data is an

example that is very useful humans, but text must be modified for computers to

use.[116] Computers can compare numbers, and to make any comparison greater

than one dimension, a vector of numbers is used. Each number in the vector is called

a feature, and choosing what the vector is composed of is known as feature selection.

A single data point could be represented with many different vectors, and the design

of the vector is the task of the user. The features used to represent data points is

sometimes called a representation. At the end of the day, if one uses machine learn-
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ing to learn about diseases, a disease needs to be represented by a vector of numbers.

A representation affects what is learned, and therefore features can be engineered to

suit a learning problem.

Much of the data we would like to analyze about humans is not available for a

variety of reasons. One reason is that experiments are not performed on humans

like they are on other models, so the types of experiments and sampling is less than

desired. If humans exist with the condition, data might not be collected on them.

Additionally, if the data exists, it may not be available for researchers to use. For

these reasons, learning from data collected on humans can be much more challenging

than typical biological studies. It appears to be a common first approach to try a

representation that is similar to what humans would use. For example, a disease

might be described by its diagnosis criteria or pathological pathways. These may

be useful ways to represent disease, but to limit representations to those humans'

understand would be over-constraining.

Though the data that many would desire for learning is not available, the same

information may be available in existing data sources, albeit as latent information.

Many problems in computational learning require uncovering latent information.

More representations that can uncover latent information about disease will further

our understanding with data that is currently available and help us prepare for the

more detailed patient-level data that will become increasingly available in the coming

years.

2.5 Precision Medicine

Precision medicine is a recent term used to describe an approach to healthcare re-

search and delivery.[20, 22] It has garnered the attention of the National Institutes
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of Health (NIH), the White House and popular journals.[22] Definitions of what

precision medicine entails vary; for example, "prevention and treatment strategies

that take individual variability into account,"[9] "treatments targeted to the needs

of individual patients on the basis of genetic, biomarker, phenotypic, or psychoso-

cial characteristics that distinguish a given patient from other patients with similar

clinical presentations," [21] "coupling established clinical-pathological indexes with

state-of-the-art molecular profiling to create diagnostic, prognostic, and therapeu-

tic strategies precisely tailored to each patient's requirements" [20] and "precisely

tailoring therapies to subcategories of disease, often defined by genomics." [117]

Common components associated with precision medicine are genomics, proteomics,

metabolomics, epigenetics, cellular assays, biomarkers, mobile health, population-

based research, big biomedical data, data sharing, data mining and decision-support

tools.[118, 22, 21, 20] Still, a precise definition of precision medicine can be illusive.

Precision in science is typically how close measurements are to each other; there-

fore, high precision implies a lack of variance. As a side note, precision is often

confused with accuracy, the latter of which is how close something is to the truth or

a standard. An important part of precision medicine is mapping patients precisely

to diseases and treatments. This means that the same patient would be mapped to

the same disease and receive the same treatment. The aforementioned components

can be very useful for helping to map patients precisely to diseases.

There is another piece to precision medicine that is important in precisely defin-

ing diseases. Using diseases with low precision or high variability will not lead to

precise treatments and predictable outcomes. Little attention has been paid to im-

proving diseases on aggregate, such that they will lead to the more precise practice

of medicine. Some have looked at refining individual diseases to be more precise, but

to the best of our knowledge, nobody has looked at how to do so with the compre-
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hensive set of diseases. A comprehensive approach is important because diseases are

used for classification, so different parts of the space can affect each other.

2.6 Data Sets

We provide a list of all data sets used in this thesis with a short description. We

use all of these data sets at different points in the thesis and include them here for

reference.

" Aggregate Analysis of ClinicalTrials.gov (AACT) [119] - A database of infor-

mation on ClinicalTrials.gov in downloadable format.

" Medical Subjects Headings (MeSH) [67] - A database of all terms in the MeSH

vocabulary along with tree structures (hierarchical relationships) and addi-

tional information.

" Unified Medical Language System (UMLS) [120] - A database of terms and

relationships for relating concepts from many different biomedical vocabularies.

" Online Mendelian Inheritance in Man (OMIM) [121] - A database of human

genes and phenotypes regularly updated.

" Phenotype-Genotype Integrator Database [122] - The combination of several

genome-wide association studies (GWAS) housed at the National Center for

Biotechnology Information (NCMI).

" Pubmed - A database of journal citations indexed by MeSH terms.

" Pubmed Central (PMC) [123] - A subset of Pubmed of full-text articles.
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" Human Symptoms Disease Network (HSDN) [124] - A database of diseases and

symptoms connected in the PubMed literature.

* Human Disease Network (HDN) [125] - A database of diseases and associated

genes derived from OMIM.

* Medication Indication (MEDI) [126] - A database of drugs and associated dis-

eases.

" International Classification of Disease (ICD) [127, 128] - A database of dis-

ease terms and hierarchical relationships. Originally constructed for generating

statistics on reasons for death and currently used for a wide range of purposed

including medical billing.

" Systematized Nomenclature of Medicine Clinical Terms (SnoMed CT) [129]

- Standardized vocabulary of clinical terms and relationships.

" DiseaseOntology (DO) [71, 70] - A recent taxonomy of disease meant to unify

biological concepts.

" Surveillance, Epidemiology, and End Results (SEER) [130, 1311 - A history of

cancer incidence compiled by the National Cancer Institute (NCI).

We also list data sets related to the thesis that were useful, but not explicitly

used in the thesis.

" Side Effect Resource (SIDER) [132] - A database of drugs and side effects for

marketed drugs.

" Off-label Side Effects [88] - A database of drug and side effects for non-marketed

drugs.
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* Search Tool for Interaction of Chemicals (STITCH) [133] - A database of rela-

tions among chemicals based on a variety of sources.

* Drubgank.ca [134, 135] - A database of drugs and characteristics such as drug

targets.
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Chapter 3

Estimating Disease Taxonomy

Variance

It is possible to measure error, or conversely accuracy, in supervised learning because

there is a gold standard or labeled data. One can think of defining diseases and how

they relate to each other, such as a disease taxonomy, as an unsupervised task. It is

therefore only possible to measure variance, or conversely precision, of diseases. In

this chapter, we propose methods for measuring variance of the disease taxonomy,

which can in turn be used to increase precision of the disease space.

3.1 Introduction

It is impossible to measure accuracy of diseases, but we might be able to

measure precision.

We cannot assess the absolute error between diseases and true conditions, because

true conditions are unknowns that diseases are trying to approximate. Uncertainty
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or variance within diseases might be assessed though, and it is recognized that un-

certainty within diseases is a hurdle for learning.[136] To the best of our knowledge,

nobody has ever quantified variance of diseases systematically. If we can estimate

variance quantitatively, we can reduce the variance in the disease space and thereby

increase the precision of diseases. We can also approximate uncertainty in supervised

learning tasks that involve disease, enabling us to accelerate the rate of learning from

data. [137]

Measuring precision of diseases in people is not straightforward.

In research, disease models (i.e., not in human subjects) can be used to produce

multiple samples and record statistics to estimate variance. However, in human

subjects this is not possible. Instead, we might use historical clinical data, but

disease definitions change over time. The most straightforward way to measure

variance within diseases is to require detailed diagnostic criteria and longitudinal

patient data. Data on detailed diagnostic criteria over time does not exist, and

longitudinal patient data is very difficult to obtain. Even if this data were available,

there is the challenge of missing data because the patient data that exists depends

on the diagnostic criteria. The question then arises as to whether there is another

way to estimate variance in the set of diseases. But first, we need to understand the

nature of true conditions versus diseases.

True health conditions have an infinite number of states.

The true health condition of any person exists in a complex, multidimensional and

continuous space. For example, Atherosclerosis is the disease approximation for

a condition where coronary arteries harden and is known to be a risk factor for
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heart attacks. Factors contributing to this condition may include diet,[138] physi-

cal activity,[139] genetics,[140] hormones in circulation, [141] other heart or vascular

conditions and many more.[142] Such a condition include many different dimen-

sions along which to understand, analyze or learn about the condition, indicating

a complex and multidimensional space. Comparing two patients may require many

different features such as how long the patient has experienced the condition, how

thick the sclerosing is, how widespread it is throughout the coronary arteries, how

stable any associated plaques are and so forth.[142] Values of these feature may lie

on a continuum, which implies an infinite possibility of states.

We learn using discrete approximations of health conditions called dis-

eases.

The goal of medical diagnosis is to assign a patient with a complex, continuous

condition to one or more discrete disease states that will lead to their optimal

treatment.[12] Diseases are discrete approximations of some portion of the health

condition continuum. Learning about diseases involves searching for previously un-

known associations. For example, to learn what genes[125] or symptoms[124] are

associated with a given disease or what drugs might treat a given disease.[143, 144]

All of the data we have on disease lives in the discrete disease space, which is subject

to a variety of limitations and biases.[10] For example, diseases are often defined

by only a few select attributes such as anatomical location, symptoms observed,

treatments, causative agents, biomolecular etiology, heredity and so forth.[46]
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Mappings of continuous conditions to discrete diseases changes over time.

The way diseases have been discretized and clustered has changed over time. Can-

cers have been defined by anatomical location (breast, brain, pancreatic...) and then

further refined to reflect tissue of origin (carcinoma, sarcoma, lymphoma...). Re-

cent work suggests that genetic similarity is important, often across different tissue

types. [58] It may also be that cancer is the not necessarily the optimal discretization

of the continuous condition as recent work has shown they are largely an immuno-

logical disease. [145] Osteoarthritis(OA) is a more specific example. In 2007 the FDA

requested clarification on the definition of OA and whether subcategories of OA could

be combined and what was the relation to other specific diseases.[59] Other exam-

ples include Myocardial Infarction[60], Parkinsons disease[61] and more. Definitions

therefore change over time to incorporate new information.

We can measure variance of disease looking at diseases over time.

Distinguishing one disease or set of diseases from the rest is called diagnosis, and

depends on the definitions of disease.[146] Disease classifications are often revised to

inform medical diagnosis[147, 148, 149] Given that true conditions live in continuous

space and diseases diagnosed live in discrete space, this begs the question: when

trying to learn new insights from data where disease is a variable, how much can

we trust results given that the diseases themselves are approximations with error?

One way to study this would be to look at how disease descriptions and relationship

defining the disease space have changed over time. If history is consistent, then it

may be the best predictor of how much things will change in the future. The ability

to measure variance or uncertainty has revolutionized entire fields, as in the case of

Shannon's development of information theory for communication. [150]
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Estimating variance over time may help promote precision medicine.

One reason estimating variance or uncertainty is important is that current research

has sought to specify disease more precisely, such as collecting more detailed data on

phenotypes associated with diseases[151] and further dividing disease into potential

subclasses. [152] Some have pointed out the limitations of the current paradigm of

diagnosis based on taxonomy, but little research has been done on how the disease

taxonomy has evolved over time and how it should change to adapt to precision

medicine. [8] To accelerate research to yield more precise medicine and clinical practice

to implement precise medicine, disease definitions must be precise, must be classified

precisely and correspond to precise treatments. Precision medicine therefore requires

more precise diseases.

We can estimating variance using changes to a disease taxonomy over

time.

With the abundance of data available that represent different bases of human health[153],

we hypothesize that there are better way to represent disease than current tax-

onomies. In this chapter we explore how discretized disease space - the National

Library of Medicine's Medical Subject Headings (MeSH) taxonomy - evolves over 50

years. We also compare this taxonomy to other taxonomies to show the variation in

disease relationships. We further demonstrate a quantitative measure of variance to

see how much error might be present in the disease taxonomy. This should allow for

more precise research in those areas to define diseases and identify effective therapies.
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3.2 Background

There is no official description of the space of all diseases, but unofficially it is

the compendium of all medical knowledge. The most official, formal description of

the disease space available is the disease taxonomy. A taxonomy is a particularly

convenient way to represent the disease space because of its hierarchical structure,

which makes for easy communication. [63]

A taxonomy is used for classification into ordered categories, where classifica-

tion is grouping objects by common features. One common example of a taxonomy

in science is the National Center for Biotechnology Information (NCBI) taxonomy

of species.[154] Defining and classifying diseases has been a medical endeavor since

the ancient Greeks.[155] From then to now diseases have been classified by signs

and symptoms, anatomical location, organs affected, "chemical theory," pathology,

biochemistry, genes and specific mutations. [155] Since the 15th century, many scien-

tists and physicians have advocated for classification of disease such as Paracelsus,

Syndenham, de la Croix, Morgagni, Bernard and others.[155] Taxonomies were rec-

ognized as an important way to practice medicine and also to study disease. They

were also shown to predict outcomes as some have shown today. [75] In our data-rich

world today, taxonomies are used for aggregating and sharing knowledge.[156, 64].

Official, comprehensive taxonomies have been developed for purposes of research, [67]

statistics and later even reimbursement [157]. There is not one official taxonomy of

disease, although the structure of medical education, medical specialties, hospital de-

partments and research activities reflect general medical taxonomies engrained in the

study and practice of medicine. Taxonomies are updated regularly and sometimes

a completely new taxonomy is proposed. For example, at the peak of the human

genome project it was proposed to create a "Gene Ontology" to unify all biology. [158]
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The American Medical Association (AMA) in 2004 created a new concise taxonomy

to simplify their categorization of research and practice. [7] The National Library of

Medicine (NLM) also advocated for a new taxonomy based on molecular medicine in

2011.[9] A more recent example is creating a new taxonomy for inflammation specif-

ically based on cytokines, given a modern molecular approach to taxonomy.[159]

These examples show that medical taxonomies are constantly changing based on

new understandings of health conditions and disease.

A precise disease taxonomy would be one that could precisely predict outcome

and treatments. Precision medicine is a term used to characterize more accurate and

precise diagnosis and treatment of patients. From the IOM report "Toward Precision

Medicine: Building a Knowledge Network for Biomedical Research and a New Tax-

onomy of Disease," precision medicine was defined as "tailoring of medical treatment

to the individual characteristics of each patient... the ability to classify individuals

into subpopulations that differ in their susceptibility to a particular disease, in the

biology and/or prognosis of those diseases they may develop, or in their response to

a specific treatment." [9] In the New England Journal of Medicine the goal of preci-

sion medicine to "create diagnostic, prognostic, and therapeutic strategies precisely

tailored to each patient's requirements." [20] This effort has led to increased research

funding and support such as the White House's Precision Medicine Initiative. [22]

Estimating precision, or conversely variance, of the taxonomy is an important step

in advancing precision medicine.
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3.3 Methods

3.3.1 Constructing the MeSH History Dataset

Various taxonomies have'been constructed for medical use, such as the international

classification of disease (ICD) which found its roots as the Bertillion Classification

of Causes of Death in 1893 and was updated as the International Classification

of Causes of Death in 1900.[157] This taxonomy was to be revised approximately

every 10 years and became the International Statistical Classification of Diseases,

Injuries and Causes of Death in its 6th revision. There have been 10 versions so far

with the current version having 155,000 terms. The Systematized Nomenclature of

Medicine (SNOMED)[68] is a collection of medical terms that have been arranged

in a hierarchy. In 2002 it became SNOMED CT and now includes broader relation-

ships. The Medical Subject Heading (MeSH) vocabulary started in 1960 for indexing

literature. [67] Prior to this, the Index Medicus had a vocabulary for indexing medical

literature, which started in 1879 by the Library of the Surgeon General's Office of

the United States Army.[67] We chose to use the MeSH vocabulary and taxonomy

because it has yearly updates, giving 50 continuous years of medical taxonomy. It

is widely used today, especially for indexing and retrieving medical literature, which

contains much of the medical learning of the last several decades.

MeSH is currently available online with digital versions going back to 1997. For

versions prior to 1997, only print versions are available. MeSH was printed in a

few different publication formats. The taxonomy is contained in what is called the

Tree Structures publication. The tree structures did not start until approximately

1965 and were initially restricted to a maximum depth of four. The first year there

was no restriction on depth was 1971. Each node of the tree was assigned a tree
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number associated with its location. One disease could have multiple tree numbers

corresponding to different locations. We obtained PDF copies of the MeSH tree

structures through the HathiTrust[160] and manual scanning -ourselves. We then

used optical character recognition to identify each character on each page. Each

of the 35 years contained 50-200 pages with each page including approximately 30

terms and tree numbers. The optical character recognition (OCR) process was only

approximately 70% accurate, making the data very noisy. Additionally there were

some pages missing or unreadable, which added still more noise.

In order to compare disease terms exactly we needed to clean the data. To clean

up terms and tree numbers, we took advantage of the smoothness in the data to infer

the correct disease names and tree numbers. There were three types of smoothness.

The first was that of tree numbers on a page. Terms on a page were organized by tree

number. For example Arboviurs Infections (C02.081) is following by African Horse

Sickness (C02.081.030) following by Bluetongue (C02.081.125), with tree numbers

always ascending. Deviations from this pattern were not allowed. The second was

alphabetical order of disease terms within the same section, as seen in the previous

example. The third type of smoothness was between years. A disease that showed up

in 1971 and 1973 was very likely to show up in 1972. The same was true for the tree

numbers. It was also unlikely that one name or number only occurred for one year in

isolation. We used the smoothness to automatically correct easy cases (such as when

one year was missing) and produced a flag to manually revise disease-tree number

pairs when the case was not clear. We then ran a series of checks to make sure

the data set was consistent and manually reviewed errors comparing to the original

PDFs. We checked for (1) tree numbers associated with more than one disease (2)

tree numbers that did not have a parent tree number in a given year (3) all disease

names that were not in neighboring years (4) irregularities in tree numbers over years
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for a given disease. A final check used the repetition of tree numbers. Each entry

listed the tree number of the current location along with part of the tree numbers

for other locations. This allowed us to ensure we had the correct number of tree

numbers for each disease.

The next step was to match diseases to each other from one year to the next. The

main challenge in doing so is that disease terms change over time. Sometimes the

concept was the same, but the name changed slightly, for example Cryptorchidism

was introduced in 1995, but was previously Cryptorchism. Others changed the dis-

ease. For example, Gonadal Dysgenesis was introduced in 1980 but previously there

was Turner Syndrome and Sex Differentiation Disorders. Some of the history is cap-

tured in historical notes and previous indexings for diseases documented in recent

versions of MeSH. We extracted these relationships to reconstruct the history of a

given disease. Additionally we automatically went through each year of the taxon-

omy documenting the year of each disease and location. We then manually checked

diseases where the historical relations from our data and the MeSH history did not

align to find undocumented or incorrect historical relations.
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Figure 3-1: Schematic of how the data set was extracted and cleaned. Data was extracted from
three data sources: manual scans of printed MeSH tree structures, scans of the MeSH tree structures
from the HathiTrust and the digital versions of MeSH that started in 1997. Inference to determine
correct terms and tree numbers was based on smoothness in the data and rules were set for error
checking. The final data set includes a taxonomy for year each along with the relation of tree nodes
between years.

3.3.2 Macro Characterization of MeSH Taxonomy History

To characterize how the taxonomy of disease has changed over time, we tracked four

measurements over time. The first was to track the most detailed diseases from 50

years ago up to the present. The most detailed diseases are those that were not

subdivided into further subtypes, or the leaves of the taxonomy tree. These may be

viewed as the most specific diagnoses possible in the taxonomy. If a leaf changed to a

branch of the tree, it would signify further subdividing of that disease into subclasses.

We tracked this by finding the set of diseases that represented all leaves in the 1971

taxonomy. In all subsequent years we characterize each not node in one of three
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categories: (1) a disease that was a leaf in 1971, (2) a node that is a descendant of

a node of type (1), and (3) all other nodes.

The second measurement was the number of diseases that occurred in a given

number of locations in the taxonomy tree. For all years we categorized each disease

by the number of nodes labeled with that disease name. There were between 1 and

19 nodes per disease depending on the disease and the year.

The third measurement was the number of diseases that occurred in a given

number of general categories in the taxonomy tree. We define general categories as

the highest level categories of the disease taxonomy which currently include categories

such as Virus Diseases, Neoplasms, Eye Diseases, and Cardiovascular Diseases. For

all years we categorized each disease by the number of unique general categories it

belonged to. The set of categories for a given disease is found by identifying all nodes

for a given disease and moving up the tree and finding the label of the ancestor that

is a child of the root node.

The final measurement was the number of new diseases in the taxonomy. This

was done by (1) looking at where new diseases occur in the taxonomy by year and

(2) plotting the number of diseases in each level of the taxonomy tree by year. New

diseases were identified as disease terms that did not occur in the previous year and

did not have an alternate name in the previous year.

The taxonomy has several thousand nodes, with an increasing number over the

50 years. To plot such a large graph we use a toolkit developed for visualizing

phylogenetic trees.[161] We color the tree node and the link connecting the node to

its parent to highlight groups of nodes. We found a circular layout with nodes and

the edge directly above each node colored was easiest to visualize and interpret.
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Diseases with largest number of locations

We found that particular types of diseases had more node locations than other dis-

eases. In Table 3.3 we examine all diseases in 2015 that have more than 10 node

locations. We noted that many diseases seemed to either be (1) genetic, (2) be can-

cer or (3) have the word syndrome. We went through and categorized each in the

following way: (1) if there was a genetic component detailed in the MeSH description

such as a specific gene or mutation, (2) included under the Neoplasms category and

(3) if the word 'syndrome' is included in the name or its MeSH description. For

diseases that did not fit one of the categories we suggested a categorization based on

the MeSH description.

We then reversed the analysis and counted the number of locations per disease

for those categorized described above. We calculate this number for three categories

for each year. To generate this data we need a method for automatically categorizing

diseases instead of the manual method we used in the previous paragraph. To do this

we determined that any diseases including the word 'syndrome' in the name could

be categorized as a syndrome. To determine if a disease was genetic we looked to

see if it was in the OMIM database. We plotted the mean number of locations for

these two categories compared to all diseases in Figure 3-5.

Disease overlap

To visualize the overlap of diseases within different disease categories, defined as the

highest level of the disease taxonomy, we used a plot of connected arcs. The 360

degrees of the arc corresponds to the number of diseases in 2015. Each disease that

only occurred in one category was counted as a self-arc. For diseases shared between

multiple categories, an arc was created between each pair of categories inversely
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proportional to the number of categories. To illustrate, if a disease was found to

occur in only one category, it would add 1/N width to the self-arc of that category.

If the disease occurred in two categories, an arc between the two categories would

be added with width 1/2N so that each end of the arc added together was 1/N or

the width of one disease. If the disease occurred in three categories, three arc would

be added, each with 1/6N width so the total would add to 1/N again. In this way

the width of the arcs between categories is actually underestimated. This approach

was necessary because only pairwise interactions could be visualized, but diseases

with more than two categories was common. The graph of 1971 and 2015 is shown

in Figure 3-6.

3.3.3 Micro Characterization of MeSH Taxonomy History

To characterize how the taxonomy changes over time at the level of individual disease

locations in the tree, we traced each change from one year to the next. We chose

to document changes in diseases or disease node locations instead of a single metric

like tree edit distance (see Appendix, Section B.4). The tree operations we identified

are shown in Table 3.1 with an explanation for identifying them. Operations are

identified on a disease-by-disease basis and may affect the entire disease (e.g. - new

disease, deleted disease, or name change operations) or only a specific location of a

disease (e.g. - location change or split operations). We plot the number of different

types of changes over time.

We studied what factors might determine what types of taxonomy operations

occurred. One factor of interest was how long had the disease been considered a

disease. Records rarely exist stating when a disease name precisely came into use,

but we could search historical medical texts for disease names. The National Library
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Operation Description

New Disease A disease exists in a year that could not be traced to any
diseases in the previous year.

Deleted Disease A disease exists in a year that could not be traced to any
diseases in the following year.

Name Change A disease exists in a year that can be traced to one disease

in the previous year that does not exist in the current

year.

Location Change A node is added or deleted for a given disease relative to

the previous year.
Split A disease has a child disease that was not a child disease

in the previous year.

Table 3.1: Description of taxonomy operations from one year to the next.

of Medicine (NLM) has a freely available corpus of historical medical books, mainly

from 1800's. The data is based on optical character recognition (OCR) of scanned

books. We split the set of diseases from the first year of our data set (1971) into two

sets: (1) disease names that occurred in the historical books and (2) those that did

not. We then tracked the number of taxonomy operations that occurred for disease

in each of the two sets. The data is plotted in Figure 3-7.

3.3.4 Estimating Variance Among Taxonomies

In addition to analyzing the MeSH taxonomy over time, we compare it to other tax-

onomies currently used. The International Classification of Disease (ICD) was origi-

nally developed to track statistics of diseases and is now additionally used for reim-

bursement purposes. [157] The Systematized Nomenclature of Medicine (SNOMED) [68]

is a collection of medical terms that have been arranged in a hierarchy. To compare

terms in different taxonomies we used the United Medical Language System (UMLS)

to match terms to each other.[120]
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The Disease Ontology (DO) is a more recent taxonomy developed to be a com-

prehensive knowledge base of human disease including inherited, developmental and

acquired. [71] It has served as a tool for linking biomedical data by human diseases. [69,

70] We did not compare to this taxonomy because UMLS does not have DO mappings

and the mappings provided in DO do not appear to preserve generality of terms.

We compare ancestor/descendant relationships in the different taxonomies to ex-

amine variation across taxonomies. To do this, we enumerate all disease ancestor-+descendant

relationships in a taxonomy. For example, 'Heart Defects, Congenital' shows up in

three locations:

1. Cardiovascular Diseases-+Heart Diseases-+Heart Defects, Congenital

2. Cardiovascular Diseases-+Cardiovascular Abnormalities-+Heart Defects, Con-

genital

3. Congenital, Hereditary, and Neonatal Diseases and Abnormalities--+Congenital

Abnormalities-+ Cardiovascular Abnormalities-+Heart Defects, Congenital

would result in the following ancestor-+descendant relations:

1. Heart Diseases-fHeart Defects, Congenital

2. Cardiovascular Diseases-*Heart Defects, Congenital

3. Cardiovascular Abnormalities-+Heart Defects, Congenital

4. Congenital Abnormalities-+Heart Defects, Congenital

5. Congenital, Hereditary, and Neonatal Diseases and Abnormalities-+Heart De-

fects, Congenital

80



We then convert the relations into the UMLS unique identifiers (CUI's). To

compare the relations, we calculate the percentage of relations preserved between

two taxonomies for which both terms exist in both taxonomies. For example, if

'Heart Disease' and 'Cardiovascular Disease' are both in MeSH and ICD9, we might

expect 'Heart Disease' to be a subset of 'Cardiovascular Disease' in each. More

precisely this can be written as

E ITA (r12) * I[TB(r12) + ITA (r21) * 1TB(721)
di,d2 ED

IDI

where D is the set of all disease pairs that occur in both taxonomies TA and TB,

rij is the relation di - dj, and IT(r) is an indicator function for whether or not a

relation r occurs in a taxonomy Tx, given by:

ITX(r) : I if r Tx,

0 if r Tx.

3.3.5 Estimating Disease Taxonomy Variance

A taxonomy is used for learning to aggregate data by utilizing inferred relations.

These inferred relations are a function of the taxonomy and the taxonomy is a func-

tion of time. Given a data set of diseases-feature associations, the inferred disease-

feature data could change due to the changing taxonomy. Figure 3-2 depicts visually

how the measure of variance is calculated. Taxonomies are commonly used to ag-

gregate features of concepts. For example, in Figure 3-2 concept A has no features

(represented by colored boxes) associated with it, but inherits the features associated

with all of all concepts that are its descendants. In the disease taxonomy, each dis-

ease can be viewed as a collection of features, shown in a bucket in the figure. With
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a fixed data set of disease-feature association, each collection of features or bucket

may change over time due to the changing taxonomy.
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Figure 3-2: A graphical depiction of how variance can be measured in the taxonomy over time.
On top each taxonomy has a set of concepts labeled with different letters and the same set of
features associated with concepts represented by colored squares. On the bottom are two sets of
buckets corresponding to the taxonomies showing how concept-features associations have changed.

We quantify the difference between the set of features association with a disease

in the taxonomy at two different time points using Jaccard similarity. The Jaccard

similarity of two sets A and B is given by the following equation:

J(A, B) =IAfBI

For diseases, we define the set of features associated with a disease d and its

descendants at time t as F(d, t. We can then write the Jaccard similarity as:

J(d t, At) =
F(d, t) n F(d, t + At)|
F(d, t) U F(d, t + At)|
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which gives a similarity measure for one disease at two time points. To generate

statistics over the entire taxonomy we can generate a distribution over all diseases

and all time periods between taxonomies possible. This can be written:

1 2O15-At
p(d, At) 45 At E J(d, t, At)

t=1971

We use four distinct data sets of features including genes from OMIM and Phe-

GenI, journal articles from PubMed and clinical trials from clinicaltrials.gov. For

each of these data sets, researchers have used MeSH to aggregate data.

For each year we find the inferred disease-features by passing features of one node

to all its parents. For each disease we then trace over time for which features are

associated with that disease.

3.3.6 Estimating Variance within a Disease

The variance we measure in the previous section is based on the observation that

diseases are combined into discrete higher level disease concepts. it is not based on

mapping continuous variables into the discretized disease space because data does

not exist to do so as previously noted. One way approximate this though is to

find a set of diseases where the incidence should not change over some time period

because the genetic or environmental factors causing the disease would not likely

change over that given time period. Many cancers would fall under that category

for a time period of a several years. We make this assumption because the known

environmental factor that cause cancer change slowly and the disease develops over

the course of years. The changes in incidence on short time scales would then be due

to changing diagnostic criteria or screening practices.

We use the SEER data set [162, 163] to plot the incidence of difference cancers
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over time. The incidence is given in the data by year from 1973 to 2011 for 128

different cancers. We then estimate what the anticipated variance might be for a

randomly chosen type of cancer. We calculate a distribution over At where t is

measured in years. The formula for calculating the distribution is given by:

1 |I(d t + At) -I(d t)
p(At) = D IId (d, t)

dED t=1973

where I(d, t) is the incidence of disease d at time t.

3.4 Results

3.4.1 Macro Taxonomy Changes over Time

We show how the taxonomy structure changes as a whole by plotting the entire tree

structure over time. Figure 3-3 shows the taxonomy at three different time points:

1971, 1990 and 2015. Our data set starts in 1971, the final year of the data set is

2015 and an approximate midpoint is 1990. The center of the circle represents the

root of the tree and the farther away from the root radially represents greater depth

in the tree. We note that the depth of different parts of the tree increases over time.

We plotted each taxonomy with three different node/edge color schemes in the three

columns of Figure 3-3.

The first column shows the leaf nodes and the corresponding edges in 1971 colored

blue with all other nodes/edges in 1971 colored black. Leaf nodes are diseases that

represent the most specific diseases or ones that are not broken down into more

specific diseases. In subsequent years we plot descendants of the 1971 leaves in red.

The diseases in red represent diseases that were newly introduced after 1971 that
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Figure 3-3: The entire MeSH disease taxonomy is plotted for three different years as rows: 1971,
1990, and 2015. In the first column, taxonomy leaves are plotted in blue in 1971 and descendants
of those leaves are plotted in red while all other diseases are plotted in black. In the second column

diseases occurring in multiple parts of the tree are plotted according to the following color scheme
for number of tree locations: 1 (black), 2 (red), 3 times (blue), 4 times (orange) or 5+ times (green).
In the third column are diseases occurring in multiple categories of disease, which correspond to the

top level of disease classification in the MeSH taxonomy such as 'Neoplasms' and 'Cardiovascular
Diseases.' The same color scheme from the second column is used.

subdivided what had previously been a leaf disease. We found that the subdividing

process was non-uniform with some diseases subdividing several times while others
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do not subdivide at all. This may give us an indication of how much our current

diseases may be broken into more specific diseases in the future.

The second column of Figure 3-3 shows all diseases colored by the number of

tree nodes per disease. We found that over time the number of locations per disease

on average increased. If the taxonomy partitions diseases neatly, we would expect

diseases to show up in few places. At the opposite extreme, if all diseases occurred

in all possible locations, the tree would contain no information. To see if diseases

with multiple locations were restricted to the same disease category (again defined

as the highest level category in the taxonomy), we plotted how many categories each

disease occurred in, seen in column three. We observe that many diseases occur

in many (5+) categories. If categories nicely partitioned diseases we would expect

diseases to have one location and most diseases would show up black. Instead we

see diseases that show up in multiple locations showing the overlap in the taxonomy.

We also see that the tree overlaps more and more over time. By 2015 the majority

of the diseases show up in several disease categories.

We quantify these changes in the Figure 3-4. The tree and diagram on the top

left and matrix on the top right show how each measure is calculated. The depth of a

node is defined as the minimum number of edges away from the root seen in the top

left plot. The number of nodes at depths 1-3 remains relatively constant over time

while the number at depths 4-6 represent the vast majority of increase in number of

nodes over time. There are also a few nodes that occur at extreme depths (8+). In

the top right plot we see the number of nodes by height, defined as the minimum

number of edges to a leaf node. It can be seen that the vast majority of nodes added

have height 0 or in other words are leaves of the tree.

The bottom plots show the number of diseases with a given number of nodes

(bottom left) or number of categories (bottom right). We were surprised to see that
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Measure 1971 2015 2065

(modeled)
Number of Diseases 2267 4662 7430
Number of Nodes 3130 11398 24175
Average Nodes per Disease 1.38 2.44 3.25
% of diseases with more than 3 locations 10.1% 19.5% 50.4%
% of diseases with more than 2 categories 2.2% 15.1% 31.7%
% of category pairs with greater than 5% overlap 3.7% 9.5% 26.6%

Table 3.2: Past, current and projected MeSH tree statistics. Regression plots can be found in
Figure B-1 in the Appendix. The complexity of the taxonomy could increase by approximately 2-3
fold over 50 years.

the number of diseases that occur in one location or occur in one category remains

relatively constant. Explanations consistent with this finding could be that those are

the diseases that we have not learned much about and therefore have not changed

or that the taxonomy is constructed so those diseases are classified neatly and they

only require one location.

One characterization of the disease taxonomy is that it has become too large

and complex for physicians to have a handle on. We plotted the measures we have

explored and used linear regression to fit a line to the data as seen in Figure B-1 in

the Appendix. We report in Table 3.2 the statistics from 1971 and 2015 along with

projected measures for 50 years into the future if the trends continue. If the trend

does continue, we will have a taxonomy in 50 years that increases in complexity 2-3

fold depending on the metric used.

To understand why some diseases have so many tree node locations, we looked

for patterns in the diseases with the most diseases or categories. We did not find

consistency over time in diseases with the most nodes. In other words, the diseases

in 1971 with the most tree nodes did not have the most nodes in 2015, nor vice

versa. Neither did we find any observable patterns in the disease categories. Further
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details can be found in Figure B-2 in the Appendix. We did find a noticeable pattern

for diseases considered syndromes or genetic diseases. Figure 3-5 shows the mean

number of tree node locations per disease for all diseases, for syndromes and for

genetic diseases. The syndromes and genetic diseases have significantly more tree

node locations on average.

We also examined all of the diseases with the most tree node locations setting a

threshold of 10 tree locations in 2015 and classified each disease as genetic, syndrome

or other as seen in Table 3.3. We considered a disease a syndrome if syndrome was in

the name or the MeSH disease description. We considered a disease genetic if there

was a reference to a genetic cause in the MeSH description. We classified all other

diseases into general categories and found a large number of cancers and only a few

diseases that would fit in other categories. It was clear that the majority of diseases

were genetic diseases, syndrome or both. It appears that these types of diseases do

not fit neatly into the categories in the taxonomy. We describe potential reasons

why in the Discussion.

Our final macro characterization is to examine the data from the opposite per-

spective, not from diseases but from categories. In Figure 3-6 we plot the amount

of overlap between disease categories in 1971 and 2015. The circumference of each

circle represents the total number of diseases in 2015. Each arc length with a dif-

ferent MeSH tree number represents a diseases category. The same colors between

1971 and 2015 represent the same categories at the two different time points. Some-

times a category divides into multiple categories such as 'Infectious Diseases (CL.)'

changing to 'Bacterial Infections and Mycoses (C01),' 'Virus Diseases (C02),' and

'Parasitic Diseases (C03).' The arcs within the circle represent the amount of over-

lap between categories as the number of diseases that occur in each category. We

observe that most diseases in 1971 have a majority of diseases unique with sparse
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connections to other diseases. In 2015 the number of unique diseases often represents

a small minority and the connections are dense. It can be seen that in the past the

disease categories did a much better job at neatly partitioning diseases, but that is

not the case today given increased the understanding of disease resulting in multiple

categories.
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Figure 3-4: The tree diagram and matrix on the top visually show the tree measures in the plots.
The top left plot shows the number of nodes by depth demonstrating that the majority of growth
in the tree is at depths 4-6. The top right plot shows the number of nodes by height demonstrating
that the vast majority of nodes are leaves. The bottom left plot shows the number of diseases
stacked and colored by the number of tree node locations. The bottom right plot shows the number
of diseases stacked and colored by the number of disease categories.
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Figure 3-5: Number of tree node locations per disease for all diseases, syndromes and those with
associated genes. The number of locations for syndromes and genetic diseases is significantly higher.
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Our Categorization - MeSH Disease
Genetic Syndrome Adrenogenital Syndrome

DiGeorge Syndrome
Oculocerebrorenal Syndrome
Gardner Syndrome
Lesch-Nyhan Syndrome
WAGR Syndrome
Kinky Hair Syndrome
Wolfram Syndrome
Lesch Nyhan Syndrome
Usher Syndromes
Denys-Drash Syndrome
Turner Syndrome
Adenomatous Polyposis Coli
Menkes Kinky Hair Syndrome
22q11 Deletion Syndrome
Polyposis Syndrome, Familial

Genetic Tay-Sachs Disease
Sphingolipidoses
Familial Hypophosphatemic Rickets
Gangliosidoses
Sphingolipidosis
Leukodystrophy, Metachromatic
Neurofibromatosis
Tay-Sachs Disease, AB Variant
Gangliosidoses GM2
Refsum Disease
Niemann-Pick Diseases
Adrenoleukodystrophy
Angiokeratoma Corporis Diffusum
Sandhoff Disease
Leukodystrophy, Globoid Cell
Neurofibromatosis 2
Gaucher Disease
Fabry Disease
Cerebral Amyloid Angiopathy, Familial
Sertoli-Leydig Cell Tumor

Cancer Lymphoma, Mixed-Cell, Follicular
Lymphoma, Small Cleaved-Cell, Diffuse
Lymphoma, Large-Cell, Follicular
Optic Nerve Glioma
Lymphoma, Lymphoblastic
Androblastoma
Lymphoma, Histiocytic
Lymphoma, Large-Cell, Diffuse
Arrhenoblastoma
Lymphoma. Mixed-Cell, Diffuse
Lymphoma, Small Noncleaved-Cell
Lymphoma, Small Cleaved-Cell, Follicular
Nephroblastoma
Burkitt Lymphoma

Syndrome Neuromyelitis Optica
Hermanski-Pudlak Syndrome

Trauma Cerebral Hemorrhage, Traumatic
Pre-Cancer Colonic Polyps
Autoinflammatory Syndrome Reiter Syndrome
Inflammatory Lupus Vasculitis, Central Nervous System

Table 3.3: Diseases that have more than 10 nodes in 2015. We categorized each disease using
the term description in MeSH. Syndromes include the word 'syndrome' in the name or description.
Genetic disease have a genetic basis in the description. We classified all others according to the
MeSH description.

92



1971

1 1

2015

1971 2015
C01 - Bacterial Infections and Mycoses

1. - Infectious Diseases 02 - Virus Diseases
C03 - Parasitic Diseases

2.- Neoplasms, Cysts and Polyps - Neoplasms
3. - Musculoskeletal Diseases C05 - Musculoskeletal Diseases

C4. - Digestive System Diseases C06 - Digestive System Diseases
N/A C07 - Stomato nathic Diseases

A DtC09 - Otorhinolaryn oloic Diseases
12 -I'Male U enital Diseases

6. - Urogenital System Diseases E s13 - Female Urogenital Diseases and Pregnancy
Complications

.-EdridWnG Din*6868 12 i o"% 0W 2
8. - Cardiovascular Diseases C14 - Cardiovascular Diseases

SHernic and Ln - Abnorma1
10. - Nervous System Diseases C10 - Nervous S tem Diseases

C13. - Diseases of Nutrition and Metabolism C8-Nritional and Metabolic Diseases

24 - I ,une Sy Diseses
14,- Ijur, imun Dieas, Pisoing21 Diordrsof Environmental ro

C 15. - Diseases Exclusively of Animals C22 -Animal Diseases
C16. - Neonatal Diseases and Abnormalities 16 - Congenital, Hereditary, and Neonatal Diseases

nd Abnormalities

C24 -Occuptional Diseases
25 - Chemically-Induced Disorders

IC26 - Wounds and Injuries

Figure 3-6: Overlap of diseases categories at two time points. The 360 degree arc length represents
the number of diseases in 2015. The arc length for each disease category represents the number
of diseases in that category. The width of the lines between categories represents the number of
overlapping diseases. The table shows the names of the disease categories in 1971 and 2015.
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3.4.2 Micro Characterization of MeSH Taxonomy History

There is a prevalent assumption that diseases change relatively little over time, but

split into more refined disease definitions. [9] To test this assumption we characterize

all tree operations, which are described in Table 3.1. These operations plotted over

time are found in Figure B-4 in the Appendix. The majority of operations were

tree node location changes. New diseases were the the next prevalent with the

majority of new diseases showing up in leaves. Subdivides were less common than

re-arrangements of tree nodes for a disease. It appears that diseases are less likely to

be refined into more specific diseases. It is more likely that new aspects of a disease

are learned, which changes where it shows up in the taxonomy.

We found that the disease operations do not appear to be more prevalent for

certain categories of disease. We did find a relationship between the number of

operations and how long a disease had been considered a disease. To determine if

diseases had been considered diseases for a long period of time before our data set

starts, we looked at the set of medical books from the 1700-1800's available on the

National Library of Medicine website.[164] There are hundreds of books available

with accompanying optical character recognition (OCR) text data. We searched

through all books for the terms found in 1971 to determine if the diseases existed

in the previous centuries. Due to the noise in the OCR text, our searching can be

viewed as a lower bound on possible occurrences.

In Figure 3-7 we plot the percent of diseases that have an operation depending

separately for whether they occur in the historical medical books or not. We observe

that diseases present in historical medical books are approximately half as likely to

undergo a name change or be deleted. They are also twice as likely to subdivide,

while there is no noticeable difference in the rate at which they change locations.
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It appears that diseases that have been considered diseases for a long time are less

likely to change in name, but just as likely to change in terms of locations in the

tree. Two possible explanations are that (1) diseases that have been called by a term

for a long time are less likely to change name because of convention or (2) there is a

process of refining diseases and those that survive the process more closely resemble

a consistently identifiable condition. We expand on the second explanation in the

discussion.
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Figure 3-7: Percent of diseases with operations determined by two disease sets. One set is diseases
from 1971 MeSH that can be found named in medical books from the 1700-1800s and the other set
is diseases found in 1971 MeSH not found in those books.
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3.4.3 Estimating Taxonomy Variance

Up to this point we have studied how the structure of the taxonomy has changed over

time and characterized how much variance there is with internal measures. We now

look at how the disease taxonomy is used for learning to characterize what variance

a changing taxonomy introduces to the learning problem.

One of the primary uses of any space, and a taxonomy in particular, is to make in-

ferences. A taxonomy is structured so that everything below a node shares something

in common and is also distinct in some way from all other nodes in the taxonomy.

MeSH has been used for retrospective statistical learning to aggregate data using

this assumption. For example, if a disease is associated with a symptom or a gene

or a patient, it may also be assumed that any ancestors of the disease also have the

same relationship even if not explicitly stated.

Using the structure of the taxonomy, we developed a way for quantifying variance

of the taxonomy over time based on external data sets. For any disease-feature

associations, ancestor disease-features can be inferred. We identified how inferred

ancestor-disease features change over time as the taxonomy changes. This can be

quantified as a percentage of associations that change over a given time period. If

disease-disease hierarchical relationships were constant over time, the percent change

would be zero.

Figure 3-8 shows the variance measure plotted for gene data including OMIM

and PheGenI (GWAS). Figure 3-9 shows the variance measure plotted for PubMed

papers (Pmid) and Trials from clinicaltrials.gov. The left column for each figure

shows the number of diseases while the right column shows the percent of diseases.

The different colors represent different time periods the change was measured over (1,

5, 10, 20 and 44 years) and the x-axis is the Jaccard similarity, or percent similarity
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(intersection over union of sets).
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Figure 3-8: Distribution of variance for diseases for five different year differences. The OMIM and
PheGenI (GWAS) databases used to create the distributions are based on disease-gene relations.
Approximately 30% of diseases change by more than 0.5 over the course of 20 years.

For the gene data, we were surprised to see that over a time difference of 10 years,
the similarity was only 0.5 for 20% of the diseases. This indicates that for randomly

chosen diseases and a randomly chosen starting date, over the next 10 years, 20% of

diseases would have 50% or more different genes. The medical literature and trials
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Figure 3-9: Distribution of variance for disease for five different year differences using two
databases: PubMed papers and clinicaltrials.gov Trials.

were less pronounced, but still showed significant changes. The entire distribution

for each can be found in Figure B-6 in the Appendix.

To reiterate, Figures 3-8 and 3-9 were made with a fixed data set of disease-feature

relations where the features were genes, papers and clinical trials respectively. The

only thing that changed over time was the taxonomy which led to different inferred

disease-feature associations. This result suggests that using the same disease-feature
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data sets with a future taxonomy would also generate different results. These plots

give us a measure of how much variation there is in the taxonomy with respect to

a given external data set. For example, our results would indicate that using the

taxonomy to infer relations would be more justified for papers and clinical trials than

genes.

Our estimate also allows us to to put an estimate on the variance introduced by

using the taxonomy in learning. For example, if we use the MeSH taxonomy to study

clinical trials and infer diseases that are associated with trials, using our method we

could put an error bar on the results. This should allow researchers to put an error

bar on their learning problems that use the taxonomy. We have not seen work using

a taxonomy for inferred disease-feature ever estimate an error bar.

We additionally found that the changes are not necessarily monotonic. Approxi-

mately 10% of disease-gene changes reversed, whether it was an addition or removal.

An example is shown in Figure 3-10 showing how diseases associated with Alzheimer

Disease would have changed over time due to the changing taxonomy. We then show

in Figure 3-11 how the Jaccard similarity would be calculated for Alzheimer Disease

at different time points. Another example, Tay-Sachs Disease, is seen in Figure B-5

in the Appendix.

We now provide two benchmarks for how much variance there is in the taxonomy.

In the first we benchmark how much change the taxonomy can introduce with the

disease-symptom associations. These can be extracted from PubMed literature as

done in [124]. We determined how much a change in the taxonomy would change the

results. We also determined how much the results would change if PubMed papers

were only used up to a certain date. We found that the changes in similarities were

approximately same. Details of the methods and plots can be found in Section B.10

in the Appendix. This implies that the changing taxonomy has as much of an impact
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Alzheimer Disease - (HFE, NOS3, PLAU, A2M, MPO, APP}
Creutzfeldt-Jakob Syndrome - {HLA-DQB1, PRNP)
Supranuclear Palsy, Progressive - (MAPT)

Diseases (1971)
Nervous System Diseases

Brain Diseases
Dementia, Presenile (Alzheimer Disease)

Diseases (1975)
Nervous System Diseases

Central Nervous System Diseases
Brain Diseases

Dementia, Presenile (Alzheimer Disease)
Aizheimer's Disease (Alzheimer Disease)

Pick's Disease of Brain

6

6

Diseases (1979)
Nervous System Diseases

Central Nervous System Diseases
Brain Diseases

Dementia, Presenile (Alzheimer Disease)
Atheimer's Disease (Alzheimer Disease)
Creutzfeldt-Jakob Disease (Creutzfeldt-Jakob Syndrome)
Pick's Disease of Brain

Dementia, Senile (Alzheimer Disease)

Diseases (1991)
Nervous System Diseases

Central Nervous System Diseases
Brain Diseases

Dementia, Presenile (Alzheimer Disease)
Aizheimer's Disease (Alzheimer Disease)
Creutzfeldt-Jakob Syndrome

Dementia, Senile (Alzheimer Disease)
Basal Ganglia Diseases

Alzheimer's Disease (Alzheimer Disease)

8

Diseases (1992)
Nervous System Diseases

Central Nervous System Diseases
Brain Diseases

Dementia
Dementia, Presenile (Alzheimer Disease)

Alzheimer's Disease (Alzheimer Disease)
Creutzfeldt-Jakob Syndrome

Dementia, Senile (Alzheimer Disease)
Aziheimer's Disease (Alzheimer Disease)
Supranuclear Palsy, Progressive

Basal Ganglia Diseases
Aizheimer's Disease (Alzheimer Disease)

Diseases (1998)
Nervous System Diseases

Central Nervous System Diseases
Neurodegenerative Diseases

Alzheimer Disease
Brain Diseases

Basal Ganglia Diseases
Alzhseimer Disease

Diseases (2015)
Nervous System Diseases

Central Nervous System Diseases
Neurodegenerative Diseases

Tauopathies
Alzheimer Disease

Brain Diseases
Dementia

Alzheimer Disease

Figure 3-10: Example of disease where the number of genes associated with it changed because
of changes to the taxonomy structure even though the actual disease-gene associations are constant
as seen at the top. The number of genes associated with Alzheimer Disease would vary between
6-9 genes depending on the taxonomy.

as the changing knowledge found in new PubMed papers.

Another way to benchmark the taxonomy change is to compare the similarity of

a disease at a time point 1 to the same disease at a future time point 2 compared to

similarity with its closest neighbors at time point 1. To do this, we search through

all diseases for examples that satisfy:

Sjaccard(d;1971, di;2015) < Sjaccard(di;1971, dj;1971) (3.1)
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Alzheimer Disease - (HFE, NO3, PLAU, A2M, MPO, APP)
Creutfeldt-lakob Syndrome - (HA-DQBI, PRNP)
Supranuclear Palsy, Progressive - (MAPT)

Diseases (1971)
Nervous System Diseases 6

Brain Diseases
Dementia, Presenfle (Alzheimer Disease)

Diseases (1979)
Nenvus System Diseases 8

Central Nervous System Diseases
Brain Diseases

Dementia, Presenile (Alzheimer Disease)
Alkhemese Disease (Alzheimer Disease)
Creutzfeldt-Jakob Disease (Creutzfeldt-jakob Syndrome)
Pisk'sDease of Brain

Dementia, Senile (Alzheimer Disease)

Diseases (1992)
Nervous System Diseases9

Central Nervous System Diseases
Brain Diseases

Dementia
Dementia, Presenfle (Alzheimer Disease)

Alselmer's Disease (Alzheimer Disease)
Creutzteldi-iskob Syndrome

Dementia, Senile (Alzheimer Disease)
Alhelmer's Disease (Alzheimer Disease)
Supransclear Palsy. Progressive

Base Ganglia Diseases
Ailsbelmer's Disease (Alzheimer Disease)

=~,t t IA~d, t) n A(d, t + At) I
JJ~,L A~d, t) UA(d, t+ At)I1

J(AD, 1971,B) = -= 0.75

6

J(AD, 1971,21) = = 0.67
8

J(AD 1979,13) = = 0.89

6
J(AD, 1971,44) = - = 1.0

Figure 3-11: Example calculation of the Jaccard similarity for Alzheimer Disease using the tax-
onomy at three different years.

Restated, disease i in 1971 looks less like disease i at a future year than it does

to some other disease j in 1971. We use the PubMed data set for this example.

The number of diseases where such cases is shown in Table 3.4. Approximately 5-

10% of diseases had at least one other disease more similar in 1971 than the disease

in question at a later date. We provide three example in Figure B-7 in the Ap-

pendix. Looking forward, this suggests that 5-10% of current diseases may not be

distinguishable from other diseases in the taxonomy.
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start year 1971
# diseases with at least one diseases with more similarity 140
# diseases eligible 2049
% of diseases 6.8%
mean # years 15.2
std dev time 10.6

Table 3.4: Diseases that were less similar to themselves in time than they were to other diseases
in the same year.

3.4.4 Estimating Variance Among Current Taxonomies

Thus far we have compared one taxonomy over time to examine variations. We also

compare the MeSH taxonomy to two other widely used taxonomies, SnoMed CT and

ICD9. We would expect that if two diseases are found in two different taxonomies,

that the relationship between the two diseases would also be preserved. To test this

assumption we identify all terms possible in all taxonomies with a unique UMLS

concept id. We then look at all taxonomy pairs and find pairs of diseases that occur

in both taxonomies. Finally, we determine what percent of those disease pairs have

a relationship in one, but not the other compared to how many are in both as seen

in Table 3.5

We found that the smallest overlap was 17% and the largest overlap was 63%.

The smallest percent overlaps into ICD9. This is likely because ICD9 is a strict

taxonomy with only one location per disease, so it has significantly fewer relations in

general - approximately half the number in MeSH and approximately 5% of SnoMed.

The relatively small degree of agreement is surprising since different taxonomies are

used for learning problems in similar ways.
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MeSH ICD9 Snomed CT
Num diseases 4662 17523 69158
Num disease pairs 31752 68634 1199677
Num concepts 8399 16499 68532
Num concept relations (CR) 97200 47368 1171048
Num CR w/both in MeSH 1044 26851
Num CR w/both in ICD9 3838 22539
Num CR w/both in Snomed CT 30797 9085
Overlap in MeSH/ICD9 660 660
% CR in other taxonomy 17.2% 63.2% -
Overlap in MeSH/Snomed CT 14778 - 14778
% CR in other taxonomy 48.0% - 55.0%
Overlap in ICD/Snomed CT 5272 5272
% CR in other taxonomy 58.0% 23.4%

Table 3.5: Overlap of disease relations between taxonomies. 'Concepts' refer to the UMLS con-
cepts, all of which are diseases in our case. There may be zero, one or multiple UMLS concepts for
any given disease in one of the three taxonomies. Concept relations (CR) are the pairs of UMLS
concepts that have an ancestor-descendant relationship in the taxonomy specified by the column.

3.4.5 Estimating Variance within a Disease

Up to this point we have estimated variance within the taxonomy and among tax-

onomies as it pertains to learning. Another type of variance is how data points map

to diseases. To make a proper estimate we would require diagnostic criteria for all

diseases at each point in time. A change in diagnostic criteria implies a change in

population associated with the disease. We are not aware of any historical diagnostic

criteria data that would allow for a reasonable estimate.

Another way to estimate this variance is to find diseases where the environmental

or genetic factors are unlikely to have changed for the course of several years. We

could then assume the change in incidence of the disease would be due to changes in

diagnostic criteria or patterns. Cancers fit this description. We plot the incidence of

disease for cancer which we assume should not change over short time periods due
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Figure 3-12: Incidence of several types of cancer over time. Some types of cancer have highly a
variable incidence even though there is no evidence that causes would have changed.

to causal factors, but more likely due to changes in disease definition or diagnostic

criteria. Figure 3-12 shows several examples of cancers that change significantly or

minimally over only a few years. Though some are relatively constant, some change

dramatically over only a few years. The most dramatic case is Prostate Cancer which

at one point started using prostate-specific antigen (PSA) as a diagnostic. [165] For

the purposes of learning, this changed dramatically the population being studied.

From all of the cancer data we plot in Figure 3-13 an estimate of how incidence

might change over a given time period for a randomly chosen disease.

This estimate appears to work well for cancer, but we might apply the estimate to

a other diseases where causal factors would not change over a time period of several

years. Diseases that would not be included would be infectious diseases, diet-based

diseases or diseases that have a strong environmental factor like lung diseases from

asbestos.
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Figure 3-13: Changes of incidence over A years for all cancers in the SEER data set.

3.5 Discussion

To the best of our knowledge, this work provides the first look at how the taxonomy

of diseases has evolved over the last 50 years. Others have studied how diseases

or disease categories have changed over time, but no work has looked at the com-

prehensive set of diseases in the taxonomy. We observed that the taxonomy grows

rapidly in the leaves, while the branches change relatively little. The highest level

categories of the tree tend not to change. At the same time, diseases have shown up

in multiple locations more and more over time. One explanation is that the disease

categories in the taxonomy that once neatly classified diseases no longer do so as our

understanding of diseases has been updated. For example, cancers have recently been

mixed with immunological, which mirrors much of recent cancer research focusing

on immunology. [166, 145] It may be that diseases need more descriptors or tree node

locations for accurately fit into the taxonomy given the legacy disease categories.
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It is also clear from the history of the taxonomy that the greatest amount of

change is from adding and deleting tree node locations of existing diseases. Diseases

also subdivide to add newer, more specific diseases, but that is not the primary type

of learning incorporated into the taxonomy. It is also common that diseases change

name, but rarely are they deleted. There is sometimes a perception that diseases

are inherently correct and the process of learning is only to refine the current dis-

eases into sub-diseases. Our work shows that much of the new learning is redefining

and reclassifying diseases that may not have been accurately described given the

taxonomy structure, resulting in tree node locations added or deleted.

The past changes in the taxonomy may be the best predictor of the future tax-

onomy, which indicates an increasingly complex taxonomy. As each disease can be

placed in more and more locations, the amount of information in the tree structure

goes down and the less useful the taxonomy is. Increasingly we see that diseases pre-

viously not thought to be related share commonalities and systemic views of disease

show interconnections. One way to address this problem is to change the taxonomy

categories. In computational learning there are a few ways to control for complex-

ity in classification trees. One approach is to prune branches when the information

content decreases. This ensures that the upper levels of the tree lead to the most

information in the tree below. An intuitive example of this can be explained using

the taxonomy of life. If a new organism was found that was classified as a reptile,

mammal and marsupial - scientists might question the validity of those categoriza-

tions.

One way to characterize the process by the taxonomy is updated is as an iterative

process. A disease is described by the other diseases in the taxonomy, but once more

diseases are added to the taxonomy, each disease will have relationships that have

change and consequently diseases may need to change position. This is similar to the
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cycle of learning diseases from populations. A population is defined by some features

and is classified to have a specific disease. Then patients diagnosed with the diseases

are studied to find associated features, which may change the population to study

and the disease definition. This explanation would explain why some diseases appear

to diverge or converge as would be expected with an iterative process. For example,

Dropsy is a disease that disease that was widely diagnosed in the 1800s and the

last patient diagnosed was in the mid 20th century.[167] On the other hand, Cystic

Fibrosis was a disease observed based on observation of fibrosis and cysts in the lungs

and turns out that chloride ion channels were not working properly.[168] Current

diseases that may diverge may be Diabetes or Alzheimer Disease. As we showed,

it appears that diseases that have been around for a longer time have survived the

process and are more likely to stay.

Some of the variation in the process may be inherent to the task of placing diseases

in a discrete space when the true health conditions live in a continuous space. We

demonstrated one way to estimate that variance by using incidence data to show that

a continuous health condition can be approximated by a discrete disease differently

over time. The taxonomy also provides a discrete set of diseases that is used to

compare diseases to each other. If one part of the taxonomy changes, other parts of

the taxonomy may need to change to be correct.

To measure how much variance there is in the taxonomy, we developed a way to

quantify variance over time that may be used to put an error bar on the taxonomy.

Our estimates may be the best predictor of how different the taxonomy changes

will affect learning in the coming years. This is important since many retrospec-

tive learning tasks rely on disease relations in the disease taxonomy. Our method

allows researchers to demonstrate that their results are greater than the noise in the

taxonomy. Furthermore, it will allow researchers to demonstrate how consistent the
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taxonomy is for use with the data set they are exploring. For example, we showed

that disease-gene relations changed significantly over time and inferred relations with

a gene data set may be too noisy for analysis.

There are cases where this variance could have significant implications. For ex-

ample, in drug approval a disease must be named as the primary indication. The goal

is to show that there is a statistically significant result demonstrating the treatment

modulates the targeted condition. If the disease has variance that is significant, it

is like looking for a signal in noise. We are not aware of any previously proposed

methods to systematically correct for the error bar around diseases for drug approval.

One concern from this work is that the definition of disease and current use of

taxonomy may lead the scientific community farther away from precision medicine.

Certainly, the disease categories appear less precise over time. There are many

diseases, particularly genetic diseases, syndromes and cancers that appear not to be

classified precisely and perhaps another classification scheme would allow for more

treatments. We need to be able to learn about individuals and precise conditions

without the need to rely on the discrete disease bins defined in the taxonomy. Any

learning requires aggregating and the taxonomy provides a framework to do that,

but there may be better ways to create a manifold of disease relationships for doing

that. Future work will examine ways to compare diseases for more accurate learning

and possibly better ways to update the disease taxonomy to align with data and

contain more information. Future work should also focus on incorporating different

data sets and combining them for a more comprehensive measure of variance.

One limitation of this work is that we only examined the history of one disease

taxonomy. This was due to the fact that we could only obtain the regular history of

the MeSH taxonomy. However, we were able to compare MeSH to ICD9 and SnoMed

CT in the present finding, concluding that the variance among taxonomies appears
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to be high.

We conclude from this work that taxonomies have been and continue to be useful

for many aspects of medicine, particularly as a tool for communication. Taxonomies

may not be the best tool for learning from data, especially computational learning.

Taxonomies allow information to be compressed in an efficient way to partition a

space. This is a convenient representation for humans, but may result in signifi-

cant information loss that would not be required for a representation designed for

computing. Computational techniques can handle high-dimensional data that is un-

compressed. One area of future research is how to codify learning about diseases in

a way that can be used for officially comparing diseases without having to rely on a

taxonomy.
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Chapter 4

Updating the Disease Space from

Data

In the previous chapter, we showed how to measure uncertainty in the taxonomy

by estimating variance. We made such estimates using the history of the disease

taxonomy and external data sets. In this chapter, we look at how to reduce variance

when comparing external data sets to the disease taxonomy. Using the concept of

reducing uncertainty allows us to setup several learning problems.

4.1 Introduction

In order to alleviate, cure and prevent diseases, there is a vast, ongoing research

effort to learn more about diseases.[9] A recently growing approach to learning is

retrospective data analysis, which uses novel approaches (new data aggregation or

analysis) to use previously collected data to glean new information. [2] This approach

has gained greater acceptance and hope in recent years due to the vast amount of
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untapped data [32, 169, 29, 170] and the recent progress in machine learning and

artificial intelligence algorithms.[171]

In order to aggregate data for statistical learning on diseases, a structured vo-

cabulary is used to define what is considered a disease.[62, 172] Diseases are then

associated with attributes of interest, such as genes, symptoms or drugs. This data

can be used to find further disease-attribute associations or discover new disease-

disease associations. It is often the case that structured vocabularies of diseases

are organized into a taxonomy,[62] which represents the output of experts to help

determine how diseases are related to each other.[173]

It is not unusual for a taxonomy structure to aid in retrospective statistical

learning.[174] What has not been studied in depth though is how well a taxon-

omy reflects the attributes of given diseases. Furthermore, there has been little work

showing how disease attributes can be used to update disease taxonomies that better

align with the data, nor how the expert knowledge captured in taxonomies could be

used to expand disease-attribute data sets. In this work, we show several ways to

analyze how well the taxonomy and the disease-attribute data are aligned, as well as

how one data set could be used to update another. This work creates a way to map

between the disease taxonomy space and the disease attribute space, enabling us to

reduce the variance between the two. These tools will be valuable for computational

learning, where data is sparse and a manifold in disease space is needed.

4.2 Background

Efforts to learn associations between diseases and disease attributes include at-

tributes such as genetic causes,[175, 125, 176] meta-genomics, environmental fac-

tors, symptoms,[124] organs or tissues affected, comorbid diseases,[177, 152] cellular
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pathways, [178] treatments,[144] outcomes and many more. Each attribute has a fixed

set of features that spans the attribute. This spanning creates a mathematical space

in which diseases can be compared. The ability to relate diseases to each other has

several significant uses. For example, finding a differential diagnosis[8, 12] in medical

practice or drawing inferences about similar diseases in retrospective learning.[77]

Developing methods for comparing similarity or distance between diseases in a given

feature space is an ongoing area of research. Often these efforts focus on one dis-

ease attribute in isolation. More recent work has attempted to combine different

attributes. [90, 143, 90]

Another way to define a disease space is through a curated taxonomy as discussed

in the previous chapter. To reiterate, we briefly describe what a taxonomy is and

how it is used in medicine.

A curated taxonomy is constructed by biomedical experts and uses a nested

structure to relate diseases to each other.[7, 65] Typically there is no explicit rea-

soning provided for why diseases are grouped in a particular way, but it is assumed

that all diseases underneath a given disease category share some features in com-

mon. A taxonomy is generally accepted as a formal organization of diseases, though

each taxonomy is constructed and/or curated for a different purpose. For example,

the Medical Subject Headings (MeSH) is used to index medical literature.[67] The

International Classification of Disease (ICD) was originally created for performing

statistics on causes of death and more recently is widely used for medical billing in

the United States.[179] The Systematic Nomenclature of Clinical Terms (SnoMed

CT) is used to standardize medical notes.[68]

Each taxonomy is also a structured vocabulary, which is a discrete set of terms

used to codify concepts that may inherently be continuous. For example, cancers

are often broken down into stages and any patient can be matched to a term in the
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vocabulary even though patients may present across a continuum. Standards are

created such as stage I-IV to create discrete disease concepts.[180] When data sets

matching diseases to attributes are created they rely on a structured vocabulary such

as MeSH, ICD or SnoMed CT.

Recently, there have been calls to restructure the disease taxonomy as a whole to

better reflect up-to-date understanding of diseases. [9, 58] In the previous chapter, our

work showed that taxonomies change substantially over time and inferences derived

by using a taxonomy to augment learning problems can have a significant impact in

only a few years. There has also been a push for more continuous updating of the

taxonomy to avoid time delays between the generation of knowledge and the formal

codification of knowledge.[23] A question these points raise is if a taxonomy can be

automatically updated given new data? The reverse is also a valid question, can

expert knowledge in taxonomies be used to generate hypotheses to update disease-

attribute data sets?

4.3 Data and Methods

4.3.1 Data

The data used includes two disease taxonomies: MeSH and ICD9, and three sets of

attributes associated with diseases: genes, symptoms and drugs.

To represent each disease in the taxonomy as a vector, each disease i is represented

as a binary vector of all other diseases where a 1 in position j indicates that disease j
is an ancestor of disease i. The disease attribute data includes disease-gene, disease-

symptom and disease-drug associations. We refer to genes, symptoms and drugs as

attributes. Each attribute includes a set of features. For example, features of the
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'symptoms' attributes include 'pain,' 'vomiting,' 'amnesia' and so on. Each disease

is represented as a binary vector for each association between a given disease i and

each feature k of a given attribute.

The genetic data came from the Online Mendelian Inheritance in Man (OMIM)

database,[121] the symptoms data was from work extracting relationships between

diseases and symptoms in the PubMed database,[124] and the Medical Indication

Resource - High Precision (MEDI-HPS) data set.[126] The symptoms data set was

constructed using the MeSH vocabulary, so all diseases were included as MeSH dis-

eases. To convert phenotypes in the OMIM database to diseases in MeSH we used the

UniProt Knolwedgebase's "Controlled vocabulary of human diseases," [181] which in-

cludes identifiers used by different databases including OMIM and MeSH. The drugs

data set was constructed using the ICD-9 taxonomy, so we used the Unified Medi-

cal Language System (UMLS) to map ICD-9 concepts to unique UMLS concepts to

MeSH diseases.

We created a binary vector for each disease of length N, where N was the car-

dinality of the set of unique features in each data set. For example, the symptoms

data set included 322 different unique symptoms. For each element in the vector, a

zero indicates no association in the database and a one indicates there is one.

We then created a set of vector to represent the disease taxonomy. We created

a binary vector for each disease of length N, where N was the total number of

diseases in the taxonomy. For each element in the vector, a zero indicates the disease

representing the vector was not a descendent of the disease represented by the element

and a one indicates it was a descendant. A visual depiction of the two types of disease

vectors can be seen in Figure 4-1.
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4.3.2 Similarity Metrics

To define a space, there must be a way to measure distance, similarity or dissimilarity

between data points. The typical way a structured vocabulary is used is that all data

points with the same label have a distance of 0 and all else have a distance of 0. In a

taxonomy it may be assumed that all descendants of a given node share something

in common and therefore have a distance of 0, while all else have a distance of 1

according to the function:

d(ni, n) 0, if nj < ni or ni < n (4.1)

1, otherwise

where nj < ni indicates that node j is a descendant of node i. This binary metric does

not allow for very much granularity. Other distances have been proposed including

least-common subsumer [173, 182]:

max depth(nk)
k

s.t. ni < ngk, (4.2)

nr < nk.

where depth is the number of edges from the root node. Wu and Palmer[183] derive

a metric that uses the same principle as equation 4.1 that all descendant nodes are

considered equal, but seeks to find the most specific node where that is true. The

metric suffers from the same nonlinearity as equation 4.1. Another basic metric that

takes into account distance along links is shortest path [184]:
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min depth(ni) + depth(nj) - 2 * depth(nk)
k

s.t. ni < nk, (4.3)

nj < nk.

which is commonly used in network structures. The metric counts the number of

edges between nodes, but does not take into account the depth of the least common

subsumer. There are many more metrics proposed [185, 186, 173], but they are

generally based on these two basic metrics.

There are a number of ways to measure distance between two binary vectors for

the attributes. We choose to use an information-based similarity metric [187]:

s(Wl, W2) = 2 * I(F(wi) fl F(w 2 )) (44)
I(F(wi)) + I(F(w 2 ))

where F(w) is the set of features associated with w.

The metric is essentially the Jaccard similarity score, but weighted according

information content of each vector element. Some features are more common and

are therefore less informative in distinguishing diseases, so those are weighted less.

For our data sets, there are cases where generic features like 'pain' are less informative

in comparing diseases.

4.3.3 Information Measures

Mutual information (MI) is a measure of how much information is known about one

random variable given another random variable.[188] Mutual information is used

for many tasks such as feature selection[189] or clustering[190] for applications from

Natural Language Processing[191] to Image Analysis.[192] MI for discrete variables
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is calculated:

I(X; Y) = ZEp(x, y)ln AX, ] (4.5)
EXyY -

To calculate mutual information between a taxonomy and a disease attribute

data set, the joint probability p(d, f) that a randomly chosen disease has disease d as

an ancestor and is associated with feature f. MI is the summation of all point-wise

mutual information (PMI) over all elements in each distribution. It can be used to

assess the shared information between elements from the two distributions.

4.3.4 Predictions

The premise of this chapter is that there may be information in data sets that are

not in a formal disease space like the disease taxonomy and vice versa. We would

like to learn to update one data space using the other. The learning problem is the

following: given two set of data vectors, X and Y respectively, create a mapping from

X to Y in order to predict missing values. Specifically, this could be mapping from a

taxonomy T to a disease attribute Az or vice versa, mapping Az to T. For example,

a mapping could be made from disease-symptom associations to relationships in the

MeSH taxonomy. If the taxonomy has some basis in symptoms of diseases and if

some of those associations have not been considered by the experts updating the

taxonomy, then we will learn new taxonomy updates based on data. The problem

can be expanded to include sets of data such as mapping Ta, T to A2, AY, Az. Figure

4-1 shows the vector representation of the prediction problem.

We first give details on the implementation of the approach described above. We

also discovered that the prediction problem could be reversed and we could predict

symptoms from the taxonomy structure. This could be useful for imputing values in
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DiseaseO0 0 1 0 0 0 0 -

DiseaseO 0 0 0 1 0 1

Figure 4-1: Vector representations of disease-attribute data sets and the disease taxonomy. We
start by finding a mapping from symptoms to the taxonomy with the goal of predicting where a
new disease would be located in the taxonomy.

the disease-symptoms database.

Taxonomy Predictions

To provide a baseline prediction, we used a maximum likelihood approach by sum-

ming the number of descendant of each disease. Some categories have more diseases,

making it more likely that a randomly selected disease would occur underneath one

of those diseases.

The most straight-forward prediction we performed was logistic regression with-

out any penalty term.

We also tested a highly-nonlinear and potentially complex model using a deep

neural network (DNN). [193] We tried three different DNN architectures. The first

was a multilayer perceptron with the symptom for the input vector and the taxonomy

as the output vector. The input layer had 322 symptoms and the output layer had

4662 diseases. There were two hidden layers, the first with 322 nodes and the second

with 3000 nodes. All layers were connected in a dense manner with the first three
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Figure 4-2: Diagram of deep neural network combining multiple disease attributes in a multi-view
structure to learn mapping to taxonomy.

layers using a rectified linear activation function and the final layer using a sigmoid

activation for binary classification. The loss function used to train the network was

the binary cross entropy function and a dropout rate of 0.25 is used for each hidden

layer to prevent overfitting.[194]

We also used a multi-view architecture to incorporate different data sets. To do

this we created two more input vectors, one for genes and one for drugs. There

were two hidden layers as described above, but each independent of the others. We

then combine the three hidden layers together into one combined hidden layer. We

tried several merge functions including element-wise addition, multiplication and

maximum. The final hidden layer was then connected to the output representing

the taxonomy as described above. The same activation functions and dropout rates

were also used. We implement the DNN using the keras library for python with

TensorFlow as a backend enginer.chollet20l5keras,tensorflow2Ol5-whitepaper A vi-

sualization of this architecture can be seen in Figure 4-2.
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We performed two slightly different prediction tasks with the methods described.

One was predict where a new node would go for a disease that already exists in the

taxonomy and the second is to predict node locations for a new disease. In the first

case there already exist some locations and we are trying to find another one. In

the second case we have a completely new disease that does not yet occur in the

taxonomy. To create a test set in the first we randomly remove 10% of leaf nodes

from the tree and in the second case we remove 10% of the diseases that have at least

one leaf node. To evaluate performance of this prediction we plot a precision-recall

curve and extract the f-max score. We do this because the problem can be viewed as

information retrieval trying to identify a few diseases out of 4662 and precision-recall

is typically used for information retrieval.[195] We run the prediction/evaluation 100

times with different training and test sets.

Attribute Prediction

To provide a baseline prediction, we used a maximum likelihood approach by sum-

ming all symptoms vectors. Some symptoms occur more frequently than others,

making it more likely that a randomly selected disease would have those symptoms.

As done in the previous section, the most-straightforward prediction was a logistic

regression without any penalty term. We also created a multilayer perceptron as done

in the previous section. The first layer included the diseases in the taxonomy with

length 4662, the next hidden layer had 4662 nodes followed by a hidden layer with

1000 nodes and the final output layer of symptoms with 322 nodes. The activation

functions were rectified linear functions with 25% dropout for the first three layers

and the final layer had a sigmoid activation function.

In this case we only performed one prediction problem by removing 10% of the
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symptoms randomly for the test set. This prediction problem can be viewed as a

multi-class classification problem and we evaluate performance using the area under

the receiver operation curve (AUC). We similarly run the prediction 100 times with

different training and test sets.

Combined Prediction

A DNN architecture that combines the two prediction problems is an autoencoder.

Autoencoders are a popular deep learning structure that has the same input and

output layers with a hidden layer(s) that is smaller.[171] Corrupt data is used at

the input to train the network to ensure that a smooth relationship is learned and

noise is averaged out. We build such an autoencoder structure, but make the hidden

smallest layer also an output being the disease attributes. We train the network by

leaving out 10% of the disease node locations and corrupting the input data. We

then predict the output taxonomy using the uncorrupted input and predict where

new node locations will be and validate on the 10% holdout. Figure 4-3 shows the

structure of the architecture. Each hidden layer has 1000 nodes. Each hidden layer

has a rectified linear activation function and the two output layers have sigmoid

activation functions.

4.4 Results

4.4.1 Similarity in Different Disease Spaces

To visualize the similarity between diseases and symptoms, we plotted the taxonomy

as a treemap and outlined specific diseases associated with a given symptom. We

give two examples, Transient Global Amnesia in Figure 4-4 and Pain in Figure 4-
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Figure 4-3: Deep neural network structure encoding the taxonomy as a set of symptoms and
decoding back to the taxonomy structure. When the input data is corrupted and the network
trained, a denoised mapping is learned between each disease space.

5. Transient Global Amnesia shows specific locations which correspond to specific

etiologies such as neurological disease, stroke or head injuries. This shows that a

symptom could be used to help divide up the taxonomy. Pain, on the other hand,

shows up in many different locations, with the exception of Animal Disease. It

appears that different symptoms may have different weight for distinguishing diseases

in the taxonomy.

We found visual evidence there is similarity between symptoms and the taxonomy

for an example; now we look more comprehensively and quantitatively. We compare

similarity in different diseases spaces to test if there is shared information between

the different data sets. We plotted two tree distance measures, minimum path length

(MPL) and least common subsumer (LCS), compared to similarity based on infor-

mation in different data sets of diseases and attributes according to Eq. 4.4 seen in

Figure 4-6. We observe that there is a general relation between the tree distances and
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Figure 4-4: Diseases associated with the symptom 'Transient Global Amnesia.' The three main
categories of disease they show up in are 'Nervous System Diseases,' 'Cardiovascular Diseases,' and
'Wounds and Injuries.'

124



me 11 aI1-
EP, n.Lj

p

.PD

Longenita, mereatary, Lardiovascular Diseases Skin and Connective
and Neonatal Diseases Tissue Diseases

and Abnormalities

Otorhinolaryngologic
Diseases

- LV n: Fl- ---- - Endocrine System Animal Diseases Stomatognathic
Diseases Diseases

e .. . a -. - Disorders of
Environmental Orin

Figure 4-5: Diseases associated with the symptom 'Pain.' This symptom is prevalent in all
categories except 'Animal Diseases' where pain may not be as much of a priority.
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Figure 4-6: Comparing tree-based distance measures to similarity measures based on disease
attributes. The similarity metric used is information similarity from Eq. 4.4. Error bars are
standard error.

the attribute-based measures. None of the relationships are strictly linear or even

monotonic. These two observations suggest that overall the tree measures capture

the attribute information generally, but one cannot be used as a surrogate for the

other.

We were surprised that drugs had the most linear relationship with the tree

metrics. It may be that the taxonomy as currently structured captures treatments

better because disease classification reflects mechanisms that drugs treat more than

any other metric. The taxonomy is widely described as capturing symptoms [9], so

we expected that attribute to most follow the tree measures, but the two do not

appear to match when the similarity is close to 1.

In this chapter we primarily use symptoms as an attribute. We also show in

Section C.O.1 in the Appendix another example of overlap in the taxonomy using

drugs from clinical trials.
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Symptoms Drugs Genes
0% 0.277 2.11 2.139
1% 0.274 0.0007 2.10 0.0085 2.138 0.0051
5% 0.263 0.0015 2.090 0.0143 2.132 0.0105
10% 0.250 0.0026 2.073 0.0179 2.130 0.0154
25% 0.216 0.0026 2.025 0.0275 2.116 0.0247

Table 4.1: Mutual information for different attributes with variance measures. The left column
is the percent of data that has been randomly shuffled. The mean and standard deviation of 100
trials is given in each cell.

4.4.2 Information Shared between Disease Spaces

Another way to measure how aligned two diseases spaces are is to measure how

much information is contained in one space when another space is known. This can

be measured with mutual information. We calculate the average MI over all diseases

for a given attribute shown in Table 4.1. To measure variance, we randomly shuffle

a percentage of the disease-attribute data and calculate the mutual information. We

repeated 100 times each and report the mean and standard deviation.

We then look at specific cases of the point-wise mutual information (PMI) be-

tween specific diseases and specific symptoms. The largest PMI's are given in Table

4.2. We found that most of the diseases were high level categories in the taxonomy

and associated with symptoms that were often associated with descendants of the

disease, even though the symptom is not associated with the disease category itself

in the data set. Such a relationship opens the opportunity to relate disease categories

to disease attributes without simply percolating relationships up the tree.

PMI is used in natural language processing to find word pairs that occur ex-

clusively together or infrequently together. [196] A negative value indicates concepts

occur together less than random. Some examples of disease-symptom pairs with

negative values include: Central Nervous System Diseases, Edema; Nervous System
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Disease
Congenital, Hereditary, and Neonatal
Diseases and Abnormalities
Skin Diseases
Skin and Connective Tissue Diseases
Eye Diseases
Eye Diseases
Eye Diseases
Stomatognathic Diseases
Genetic Diseases, Inborn
Eye Diseases
Digestive System Diseases
Eye Diseases
Nervous System Diseases
Eye Diseases
Cardiovascular Diseases
Cardiovascular Diseases
Cardiovascular Diseases
Eye Diseases
Digestive System Diseases
Congenital Abnormalities
Eye Diseases

Symptom

Mental Retardation

Pruritus
Pruritus
Amblyopia
Vision, Low
Pseudophakia
Toothache
Mental Retardation
Vision Disorders
Abdominal Pain
Eye Hemorrhage
Perceptual Disorders
Blindness
Angina Pectoris
Heart Murmurs
Acute Coronary Syndrome
Pupil Disorders
Dyspepsia
Mental Retardation
Scotoma

Table 4.2: Pairs of diseases and symptoms with the largest PMI
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Table 4.3: The most general and most specific
information.

symptoms calculated using point-wise

Diseases, Diarrhea; Neoplasms, Dystonia; and Brain Diseases, Chest Pain.

We can also look at average PMI for a given disease or symptom to see which ones

are least/most informative on average. We list the most general and the most specific

symptoms in Table 4.3. We note that pain is not in the top 10 even though it occurs

with 2592 diseases, while "Nuerologic Manifestations" has only 114 and is in the

top 10. Specificity doesn't necessarily correspond to number of diseases. In Figure

4-7 we show an example of one of the general symptoms, Neurologic Manifestations.

In Figure 4-8 we show an example of one of the most specific symptoms, Virilism.

It can be seen that the first is distributed throughout the tree, while the second is

concentrated in several locations. We might suspect that symptoms associated with

more diseases would be more general, but we selected these examples because Virilism

actually has more diseases associated with it than Neurological Manifestations.
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Most General Num diseases Most Specific Num diseases

Seizures 1811 Aphasia, Primary 42
Progressive

Neurologic Manifestations 114 Pseudophakia 99
Muscle Weakness 1562 Virilism 246

Paralysis 1515 Primary Progressive 14
Nonfluent Aphasia

Fatigue 1348 Echolalia 48
Hemiplegia 1156 Feminization 98
Headache 1740 Urinary Incontinence, Urge 68
Quadriplegia 1073 Hypercalciuria 104
Dizziness 1102 Vomiting, Anticipatory 45

mutual
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Figure 4-8: Diseases associated with Virilism are outlined in blue. The associated diseases are
found in many specific locations in the taxonomy, showing the symptom is very specific.
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4.4.3 Learning Between Disease Spaces

Model Selection

Taxonomy to Features In our first learning problem, we predict disease features

from taxonomies. We remove 10% of the disease-feature associations in each data set,

train the model, make predictions and validate on the 10% test set. We repeat 100

times and generate an ROC curve and compute the AUC for each disease. We report

the overall average AUC for each technique in Table 4.4. We note that a mapping

can be found that significantly improves over a naive guess and that deep learning is

the algorithm with the best performance. We also found that combining taxonomies

did not significantly improve the results. This may be because the overlap of data

between the taxonomies is sparse.

Method AUC
Most Common 0.825
Logistic Regression 0.891
Deep Learning 0.900
Deep Learning w/Multiple Taxonomies 0.900

Table 4.4: AUC for mapping the taxonomy to symptoms and validating with prediction.

Features to Taxonomy In our second learning problem, we predict taxonomies

updates from disease features. We remove 10% of the leaf disease node locations

in the MeSH taxonomy, train the model, make predictions and validate on the 10%

test set (not removing any disease completely), repeating 100 times for results. We

perform prediction using most descendants, collaborative filtering, logistic regression

and deep learning. This problem is much sparser than the problem above and can be

cast as an information retrieval problem, so we use precision-recall curves to analyze

the prediction results. We report the f-max score in Table 4.5. We show for MeSH
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Method F-Max
Most Descendants 0.181
Logistic Regression 0.364
Deep Learning 0.48
Deep Learning w/Multiple Features 0.48

Table 4.5: F-score for mapping symptoms to the taxonomy and validating with prediction on
randomly removed nodes.

Method F-Max
Most Descendants 0.240
Logistic Regression 0.486
Deep Learning 0.49
Deep Learning w/Multiple Features 0.49

Table 4.6: Mapping symptoms to the taxonomy and validating with prediction on randomly
removed diseases.

with symptoms alone and with all three attributes. We found similar results as

in the previous case, with the exception that deep learning was a more significant

improvement over logistic regression.

We perform the same task of mapping attributes to a taxonomy, but validate by

removing all nodes for randomly chosen diseases. We remove 10% of the diseases

and make predictions. We do not perform collaborative filtering here because of the

cold-start problem where there is no data yet for the predictions we are interested

in - there are no nodes for the diseases we are trying to predict. The results are

reported in Table 4.6. We were surprised that the most descendants and logistic

regression results improved over the previous results. It may be because each disease

now has more node locations to predict allowing for a more robust prediction.

Combined problem A final way to combine the mappings between taxonomy

and disease attributes is by incorporating an encoder. Autoencoders are a popular
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deep learning structure that has the same input and output layers with a hidden

layer(s) that is smaller. Corrupt data is used at the input to train the network.

We build such a structure, but make the hidden smallest layer also an output being

the disease attributes. We train the network by leaving out 10% of the disease node

locations and corrupting the input data. We then predict the output taxonomy using

the uncorrupted input and predict where new node locations will be and validate on

the 10% holdout. The network performs similar to the results in Table 2 with an

f-max of 0.49. This structure allows us to move back and forth between taxonomy

space and attribute space. It also would allow us to expand further research into

discovering new attributes or disease categories as hidden nodes.

4.4.4 Predicting New Associations

We examined the symptom predictions with the highest prediction scores. Each pre-

diction fell into one of three categories: (1) associations that were straightforward (2)

associations that were surprising and we could find evidence for and (3) associations

that were surprising and we could not find evidence for.

Straightforward associations are found in Table 4.7. It may be that such associa-

tions are unsurprising or even known, but did not appear in the data set. Identifying

such associations could be helpful to complete a sparse data set. For example, Lyme

Disease has many neurological symptoms in the data set, but did not include the

specific symptoms "Neurobehavioral Manifestations" nor "Synkinesis." It is unlikely

that is because the association is biologically inaccurate, but due to the manner in

which the data set was compiled that was not comprehensive.

Surprising associations for which evidence exists are found in Table 4.8. These

associations did not appear obvious, but the literature included reports that sug-
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Disease Symptom
Lyme Disease Neurobehavioral Manifestations
Lyme Disease Synkinesis
Tobacco Use Disorder Cheyne-Stokes Respiration
Meningism Primary Progressive Nonfluent Aphasia
Tuberculosis, Cardiovascular Systolic Murmurs

Table 4.7: Predicted disease-symptom associations that were straightforward.

gested they are possible. Bernard-Soulier Syndrome is a rare genetic disease affect-

ing platelets resulting in prolonged bleeding. This would appear not to be related to

Morning Sickness, but in fact causes several problem in pregnancy.[197] In this case

the symptom does not appear to be causal in either direction, but associated with a

particular subpopulation. Tauopathies are neurodegenerative diseases characterized

by aggregation of tau proteins in the brain, whereas Systolic Murmurs are heart

murmurs that can be heard during systole. The two appear unrelated, but a case

report of one of the first cases of a tauopathy not in a human was a chimpanzee who

was relatively healthy except for a history of systolic heart murmur, moderate obe-

sity and high serum cholesterol. [198] This could be random chance or an unexplored

association.

Kaposi Sarcoma is a tumor caused by a herpesvirus infection while Eructation

is what may be commonly termed belching. Case reports have identified patients

with Kaposi Sarcoma noting weight loss, abdominal distention, frequent eructation,

fever and weakness.[199] Though Kaposi Sarcoma is often found on the skin, it

can also be found in the gastrointestinal tract, particularly in patients with AIDS,

and may explain the excess gas and eructation. [200] Chemotherapy-Induced Febrile

Neutropenia is a low number of neutrophil granulocytes in the blood accompanied by

fever. Myokmyia is involuntary twitching of the eyelid. Though seemingly unrelated,

there have been case reports of patients with myokmyia after chemotherapy. [201]
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Disease Symptom
Bernard-Soulier Syndrome Morning Sickness

Tauopathies Systolic Murmurs

Sarcoma, Kaposi Eructation

Chemotherapy-Induced Febrile Neutropenia Myokymia

Table 4.8: Predicted disease-symptom associations that were surprising and supporting evidence
could be found.

Disease Symptom

Fever of Unknown Origin Metatarsalgia

Contrecoup Injury Halitosis
Invasive Pulmonary Aspergillosis Urinoma

Liver Diseases, Parasitic Alien Hand Syndrome
Ehrlichiosis Respiratory Aspiration
Mandibular Diseases Prosopagnosia

Table 4.9: Predicted disease-symptom associations that were surprising and no supporting evi-
dence could be found.

These examples are not conclusive evidence that an association is present, but

they do suggest the predictive algorithm may be able to find non-obvious associations.

For surprising associations like these, it would be useful to find and explore them in

ranked order as provided by our algorithm.

Surprising associations where no evidence could be located are found in Table 4.9.

These associations did not appear obvious and a literature search did not provide any

evidence that they actually exist. That does imply that these are not associations,

but perhaps less likely than the ones above for which some evidence could be found.

There were a few more of these examples than the examples given above.

These predictions in this section could be used to complete a sparse data set. For

example, our data set had 4661 diseases and 322 symptoms. That is more than 1.5

million potential associations, which would be difficult to manually review. It could

also be used to find unknown associations for which we were able to find evidence
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for in a significant number of cases. It may not be likely these associations would be

used to immediately augment a data set, but could be use to inform future research.

4.5 Discussion

This work has demonstrated the potential for using taxonomies to augment disease-

attribute data sets and vice versa. The immediate application is to fill in missing

values in the disease-attribute data sets which may be sparse. For example, the

disease-symptoms data was derived from the corpus of medical literature and is

not meant to be comprehensive. If there is no paper that includes a disease and

symptom together, it does not imply that there is no association. It could be that

the association is known, but does not have any literature. It could be that the

association is not yet known. It could also be that the association is known, but the

literatures is not indexed with the given terms. For the genes data set, it may be

that the experiments have not yet been performed to know if the association exists.

The taxonomy may similarly be sparse. Our previous work showed that the

number of locations in the MeSH taxonomy that a disease occurs in has increased

dramatically in the last decade. This may indicate that experts believe the previous

locations were not sufficient to characterize the disease in the taxonomy. This work

demonstrates one way to make suggestions to experts on how the taxonomy could

be made less sparse based on data.

Beyond the immediate applications described above, this work shows the ability

to move between disease spaces. Many learning problems have used the disease

taxonomy to infer relations between diseases when a data set is sparse. This is

particularly true for disease concepts that are higher in the tree. For example, in the

disease-symptom data set, there are no associations of symptoms with cardiovascular
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disease because cardiovascular disease is too general of a term to be indexed with in

the literature. Similarly, there are no directly associated genes or drugs. In order to

infer relationships between cardiovascular disease and these attributes, many have

proposed using the attributes of all descendants. The challenge with this approach is

that one weak association with one descendant would be treated the same as many

strong associations with many descendants. It also constrains the relationships to

hierarchical ones. A more general disease space could allow for inference more broadly

to provide a scaffold for filling in missing data when a data set may be sparse.

For cases where the taxonomy is used to fill in data, the work here provides

a framework for deciding if there is enough information in the taxonomy about the

attribute to use the taxonomy structure. For example, if a taxonomy did not contain

much of the information that the disease-symptom data set contained, it would not

be reasonable to use the taxonomy for making inferences about disease-symptom

associations.

Finally, we have provided a way to map between disease spaces. Taxonomies are

useful for communication between humans and provide a compact and sparse way to

represent disease associations. For machine learning though, these attributes are not

necessary. It may be that a more complex and dense representation may reflect the

true disease space better. This work may provide the basis for moving away from

using the taxonomy as the accepted disease space to other representations that can

be used in machine learning as formal disease spaces.

138



Chapter 5

Disease-Drug Representation from

Clinical Trials

5.1 Introduction

There is a wealth of biological, medical or health data available to use computational

methods to learn new insights. Such learning may dramatically save time or resources

compared to basic biology research or clinical trials. Gleaning new insights from data

is not just about what data is used or the algorithm applied for learning, but also

the representation of the data setup for the specific learning problem. There have

been strong and laudable efforts to make more medical data available for learning,

but we suspect there may be unexplored opportunities for new representations using

data that is already available. One such opportunity is using clinical trial data.

The collection of all clinical trials represents research carried out on millions of

humans[202] and represents thousands of decisions made by researchers, clinicians,

and executives managing billions of dollars.[203] Each trial teaches us something
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about the specific relationship between a disease and an intervention like a drug that

can be summarized in terms of safety and efficacy. However, the question of how to

learn from the collection of clinical trials remains open. Little is known about the

information clinical trials reveal as a whole.

We hypothesize that, at present, different trials are only connected indirectly

through the expertise accumulated by the scientific, clinical, regulatory and execu-

tive decision-makers that deployed their expertise in several trials. We believe this

expertise is latent in the collection of clinical trials and can be accessed via infer-

ence. Viewing the collection of clinical trials as observables emerging from this latent

knowledge, we show how to leverage clinical trial meta-data to arrive at unique in-

sights into the relationships between diseases. We further show how these insights

may be useful in linking clinical data back to biology by generating hypotheses for

future biological research.

Collections of clinical trials are now available in clinical trials registries, enabling

work like ours to learn from multiple clinical trials together. [82] The desire to increase

learning from multiple trials and possibly further inform scientific research has led

many researchers to push for greater access to patient-level clinical trial data and

even electronic health records. [204, 205, 206] The prevailing assumption within the

field is that the more granular the data the better the learning.

In this chapter, we explore whether relationships among diseases can be learned

from superficial data, like the kind of meta-data available in clinical trial registries,

and how the relationships uncovered compare to relationships learned from molecular

and biological data. If true, this would provide evidence contrary to the prevailing

assumption.

The notion that new knowledge may be generated from the structured aggrega-

tion of databases has been used before to explore relationships between diseases or

140



between drugs. For example, Goh et al. and Butte et al. compared diseases and

phenotypes by shared gene correlations based on the Online Mendelian Inheritance

in Man database[125] and the Gene Expression Omnibus database.[175] Zhou et al.

compared diseases by shared symptoms from text in PubMed.[124] Hidalgo et al.

compared diseases by shared comorbid conditions. [207] Yildirim et al. compared

drugs based on shared targets.[208] Campillos et al. and Tatonetti et al. com-

pared drugs based on shared side-effects. [209, 88] These examples provide a strategy

to access disease similarities that would not have been apparent from individual

experiments. [210]

New insights into disease similarities or dissimilarities can have dramatic re-

sults. For example, the similarity between psoriasis and multiple sclerosis led to

the blockbuster drug Tecfidera (dimethyl fumarate) for treating relapsing-remitting

multiple sclerosis.[108] As another example, the discovery of genetic dissimilarity in

breast cancer corresponding to dissimilar prognoses led to new and improved diagno-

sis and treatment options.[211] Furthermore, similarity metrics between drugs have

been used to predict indications, targets and drug interactions. [212, 213, 89] Such

predictions have enabled repurposing of existing drugs and avoiding adverse drug

reactions. [87]

To some degree, all of these examples may be viewed as accessing latent informa-

tion about underlying biology. In this work, we follow an approach similar in spirit,

but introduce the hypothesis that the underlying biology is contained in the expert

knowledge used to decide to conduct the trials. Expert knowledge may come from

literature reviews, proprietary biological experiments, other clinical trials and the

summary of expert opinions. We further hypothesize that such expert knowledge

may be accessed as latent information from clinical trial meta-data. By uncovering

that latent information, it is possible to extract what experts collectively know about
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the relationships between diseases tested. Using this information, one may explore

the relationships between diseases and generate hypotheses to guide future research.

In this work, we use aggregated clinical trial meta-data to construct relationships

among diseases and show that similar relationships can be learned compared to

analyses based on detailed biological data.

To the best of our knowledge, studying disease relationships by using the entire

set of clinical drug trials along with the premise of expert knowledge latent in the trial

meta-data is novel and a key contribution of this work. Our approach and subsequent

results imply that there is much more knowledge to be gained from existing clinical

trial data. It also suggests a path to compare patient-level data across different trials

when such data becomes more widely available.

The chapter is organized as follows. We explain how we used free text meta-data

from drug trials on ClinicalTrails.gov to construct a model of the diseasome. We

then explore the connectivity between diseases and drugs and visualize the data in a

network layout. We report on the validation of the disease-disease network (DDN)

against a standard disease taxonomy and a diseasome built from genetic data. The

relationships derived from our network show surprising agreement with relationships

based on genetic data or medical taxonomies and show promise for informing future

scientific research.

5.2 Methods

5.2.1 Construction of the Disease-Disease Network

We extracted meta-data from 93,654 clinical drug trials from ClinicalTrials.gov (see

Appendix, Section D.1). The meta-data included a list of one or more free text

142



strings for conditions (diseases) and a similar list for drugs. Comparing diseases

or drugs from different trials was sometimes ambiguous because two different text

strings could represent the same concept. For example, there are 73 different strings

that represent the single concept Type 2 Diabetes Mellitus (see Appendix, Table

D.1).

We found some resources in use to disambiguate disease and drugs on ClinicalTri-

als.gov such as browsing trials by condition or drug intervention on ClinicalTrials.gov[214]

or using the AACT database. [215] These resources included errors though, such as

"Imidacloprid" being a drug for 129 trials when browsing by intervention or in 6

trials in the AACT database. Imidacloprid is actually an insecticide that does not

show up in ClinicalTrials.gov. We traced this false positive to the trade name "Ad-

vantage," which was a synonym for Imidacloprid in the 2013 version of MeSH. These

false positives occur because both resources rely on an automatic algorithm for find-

ing MeSH terms. [215] Such false positives would erroneously connect diseases in our

analysis. We also found that these resources have built in inferences based on the

NLM algorithm or annotations by clinicians. Our goal was to use the raw data as

much as possible, without introducing layers of inference.

Much of the work that analyses large sets of clinical trials is based on the AACT

database.[216, 217, 218] Other works focus on specific aspects of the trials such as

drug combinations[219] or participation criteria,[220, 221] with algorithms tailored

to the specific fields used to automatically extract their data sets. Due to the nature

of our approach, it more important for us to reduce false positives and we therefore

used manual curating of the data. To enable comparison we built a thesaurus of

terms, starting with diseases. The process is outlined in Figure 5-1. We started with

the medical subject headings vocabulary (MeSH)[222] as a base thesaurus. Another

option would have been UMLS, [120] which is a more comprehensive thesaurus based
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on many databases and can be accessed with enhanced tools such as MetaMap.[223]

We chose MeSH because contributors to ClinicalTrials.gov are encourage to use its

vocabulary [224] and by using one database we avoid inferences as described above.

MeSH only identified 22% of the unique disease strings listed in ClinicalTrials.gov,

accounting for 56% of all disease strings and 70% of the trials. We manually reviewed

the 17,970 disease strings not identified by MeSH, comparing each one to the 20

closest terms in MeSH generated by fuzzy string matching (see Appendix, Section

D.2). If a match could not be made and the disease string occurred repeatedly, we

created a new "data-derived" term in the thesaurus. The number of MeSH disease

terms used over time peaked in 2008 and the percentage of terms we added to our

thesaurus increased linearly over time (see Appendix, Figure D-1), suggesting that

the 2014 MeSH vocabulary did not include terms currently used in research, hence

the need for our enhanced thesaurus. Using our thesaurus, we identified 94% of the

disease strings for 96% of the drug trials listed in ClinicalTrials.gov.

Drugs were more challenging to disambiguate because one drug string often in-

cluded multiple drugs and because experimental drugs are often not found in MeSH.

Of 63,066 unique drug strings, we generated 503,270 possible substrings that could

be drugs and used automated and manual filtering to identify all drugs and construct

a thesaurus (see Appendix, Section D.3 and Figure D-2). We analyzed the drug the-

saurus and found similar patterns to that of the disease thesaurus (see Appendix,

Figures D-3 and D-4). We then used the drug thesaurus to identify individual drugs

in drug strings (see Appendix, Table D.5). To assess accuracy, we took a sampling of

100 random trials with 216 drugs and found that 98% were identified (see Appendix,

Table D.6). We also sampled 100 drug strings that were not mapped to any drugs

and found that 92% were correctly excluded (see Appendix, Table D.7). The re-

sulting disease-drug data set accounts for 93,069 trials and includes 132,822 diseases
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Figure 5-1: Creating a thesaurus maximizes the data that can be used. To compare disease terms
to each other, we needed a standard vocabulary with synonyms. We start with the Medical Subjects
Headings (MeSH), but only 70% of drug trials on ClinicalTrials.gov and 56% of the diseases listed
in those trials can be found in MeSH. We augment MeSH by looking at every unique disease string,
of which only 22% are in MeSH. Going through the remaining 78% manually we either add another
synonym to a MeSH term (4b), create new terms from the data with accompanying synonyms (4c)
or discard infrequent or irrelevant strings (4d and 4e). Every unique string has been reviewed and
either included in our thesaurus or discarded. From our thesaurus we can identify 94% of all disease
strings, which mean we can compare data from 96% of the trials.

(3,663 unique) and 175,584 drugs (7,349 unique). "HIV Infections" was the most

tested disease with 2,772 different trials involving 700 different drugs. There were
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1,211 unique diseases tested in more than 10 trials with at least one drug and 1,784

unique drugs tested in more than 10 trials with at least one disease. The variety of

trials involving different diseases and drugs provides the connectivity for a network.

To construct the network we start with the disease-drug network, a bipartite

network of disease nodes and drug nodes. Figure 5-2 shows the process creating the

network and Figure 5-3 shows descriptive statistics of the data. Diseases and drugs

are linked by trials with the width of the edge proportional to the number of trials

with both the disease and drug. The Disease-Disease network (DDN) is constructed

using only diseases as nodes and the edges representing the number of different drugs

tested at least once on both diseases. The connectivity of the Disease-Drug network

follows a power law (see Figure D-5), while the connectivity of the DDN follows an

exponential distribution (see Figure D-5).[225] We assign the weight of all edges in

the graph to 1 indicating a binary connection between diseases for simplicity in this

work.

Disease-Drug Network Disease-Disease Network

Diseases

Trials with 14I l
Dx and D#

Drugs linking
Drugs * * D4 ... DX and Dy

Figure 5-2: Construction of the Disease-Disease Network with descriptive statistics. The disease-
disease network (DDN) is constructed from a bipartite network of diseases and drugs linked by
trials. In the bipartite network, the thickness of edges corresponds to the number of trial that have
both the disease and drug the edge connects. In the DDN, diseases are linked by drugs with the
edges proportional to the number of different drugs tested in trials with both diseases the edge
connects
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Figure 5-3: Descriptive statistics of the disease-drug data set. (A) The number of diseases that
occur in a given number of trials. There are diseases appearing in thousands of trial, but for
visualization purposes the plot is truncated at 200 trials. (B) The top 15 diseases by number of
trials (dark blue) and number of drugs (cyan). (C) The number of diseases tested with a given
number of unique drugs. (D) The number of drugs that occur in a given number of trials. (E) The
top 15 drugs by number of trials. (F) The number of diseases associated with how a given number
of other diseases by the criteria that both diseases were tested with a particular drug. The x-axis
can be viewed as the degree of each node in a network of diseases linked to each other.
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5.2.2 Visualization of the Disease-Disease Network

Visualizing the network is difficult because there are 3,663 disease nodes with hun-

dreds of thousands of edges between them. To reduce the number of edges, we filter

edges to keep ones with strong relationships. We define an edge as strong if one of

the two disease nodes it connects is frequently associated with the drug the edge

represents. A frequently associated disease for a given drug is one that shows up in

a significant percent of all trials for that drug. To determine significance we used a

binary test with a cutoff p-value of 0.001 and used Bonferonni correction for com-

paring multiple diseases. We selected this method for filtering because of a pattern

we found in drug trials. New diseases a drug is tested on are either tested in con-

junction with an established indication for that drug or tested on completely new

diseases. We hypothesized that the first case suggests a deeper characterization of

the drug and diseases, while the latter case suggests an exploration of possible new

indications. We treat the diseases in the first case as having a strong relationship.

Our filtering for strong relationships between diseases is only one way to examine

the data. In the discussion we explain why subtle weak relationships are potentially

more interesting.

The network graph was laid out using the Fruchterman and Reingold method,

though other force-directed layout algorithms gave similar results (see Appendix,

Section D.7 and Figure D-6). Node size is proportional to the number of drugs

tested on the disease and edge width proportional to the number of drugs tested

on both diseases. Nodes are colored according to MeSH categories of diseases (see

Appendix, Section D.8 and Table D.8).
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5.2.3 Validation with the MeSH Taxonomy

The MeSH disease taxonomy is constructed by experts based on their biological and

clinical understanding. If the DDN can reproduce the MeSH taxonomy, it would

suggest the DDN captures the same level of information implicitly that experts ex-

plicitly outlined when constructing MeSH. To explore similarity between the DDN

and MeSH we quantitatively evaluate clustering of diseases in the DDN by MeSH

category. First we evaluated internal consistency of clusters in our network visualiza-

tion using the nearest neighbor index. [226] Second we evaluated how distinct clusters

are based on graph theoretic distance. Third we evaluated how consistent the DDN

and MeSH are compared to a randomly constructed network using a binomial test.

5.2.4 Validation with the Human Disease Network (HDN)

We also validated the DDN by comparing it to the Human Disease Network (HDN),

which was constructed using a database of disease-gene associations. [125] The HDN

was validated by examining clustering by disease categories that match MeSH cat-

egories (see Appendix, Table D.8). First we evaluate the internal consistency of

clusters of nodes within the same category by measuring the fraction of edges con-

necting nodes within that category. Second we use the ratio of shortest paths within

versus without a category to derive a graph theoretic measure of clustering for each

disease category. Lastly we evaluate how much overlap there is relative to a randomly

constructed network using the binomial test.

5.2.5 Prediction Potential

We test the potential of the DDN for prediction by building a rudimentary recom-

mender engine for clinical trials. We used the entire unfiltered DDN, rather than
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the filtered version that we used for visualization purposes, to capture the subtle

relationships among diseases and not just the strongest ones. Our training set con-

tained trials starting before 2011 and our test set contained trials starting in 2011 or

later. The data set contains 2,160 diseases that were tested with at least one drug

in the training set and one drug in the test set. There are 7,349 possible drugs to

predict with 54,509 disease-drug pairs in the training set and 19,157 disease-drug

pairs in the test set. Each disease is represented by a vector of drug variables with

a 1 indicating that the drug was tested in a trial with the disease and a 0 otherwise.

The purpose of the recommender engine is to suggest drugs that had not previously

been tested on a given disease, but may be relevant to a disease based on data in

the training set. For a given disease, we made predictions about each drug using

collaborative filtering[227] with a cosine similarity metric, or the normalized inner

product between disease vectors. We evaluated the performance of the recommender

engine looking at the area under the ROC curve[228] for each disease in the 3.5 year

period after 2011.

5.3 Results

5.3.1 The Disease-Disease Network

The network graph resulting from our layout is plotted in Figure 5-4, which contains

a giant component with 1,101 nodes and 6,972 edges. The distance between nodes

in the graph represents similarity based on shared drugs directly or through other

disease nodes. By visual inspection there is clustering of nodes of the same color

or MeSH category. Many nodes in close proximity are expected such as Crohn's

Disease and Ulcerative Colitis or Parkinson's and Alzheimer's. At the same time
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there are surprises, such as Hypertensipn and Parkinson's being close together. We

also observe similarity of disease categories, such as Psychiatric and Nervous System

diseases next to each other or Cardiovascular and Metabolic diseases mixed together.
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Figure 5-4: Visualization of the Disease-Disease Network. In the disease-disease network, diseases
are represented as nodes in the network with the size of the node proportional to the number of
different drugs tested on that disease. Edges between nodes are drugs tested on both diseases the
edge is connected to. Thickness of the edge is proportional to the number of drugs tested on the two
diseases. For ease of comparison with MeSH we colored nodes according to MeSH disease subtrees,
though that information was not used by the visualization algorithm. A cluster of nodes of one
color indicates the disease-disease database captures information about the relationships between
diseases that can be found in the MeSH taxonomy.

5.3.2 Validation with MeSH

Validation of the DDN against the MeSH taxonomy is shown in Figure 5-5. The

nearest neighbor index (NNI) for a group of data points in a plane indicates whether

the points are randomly spaced (an index of 1), non-randomly clustered (an index
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smaller than 1) or non-randomly spaced apart (an index larger than 1). The NNI

for each MeSH category (Figure 5-5A) is less than 1 for all categories except "Skin."

Compared to randomly connected networks, 13 of the 15 disease categories with

10 or more nodes have a significantly smaller (p<.05) NNI (see Appendix, Table

D.9). All three disease categories with fewer than 10 nodes were not significant. All

p-values were calculated empirically using Monte Carlo simulations (see Appendix,

Table D.9).[2291

Figure 5-5B shows how close nodes of the same MeSH category are (colored

bars) compared to how close nodes of different MeSH categories are (gray bars)

using shortest path distance. Distinct clusters have a significantly shorter colored

bar than gray bar, which is the case for all 15 disease categories with 10 or more

nodes. Compared to randomly connected networks, 14 of these categories have a

significantly (p<.05) shorter colored bar (see Appendix, Table D.9). Only 1 of the

3 disease categories with fewer than 10 nodes had a shorter colored bar, which was

also significant compared to randomly connected networks. Figure 5-5C shows the

binomial distribution of the number of edges connecting nodes of the same category

if they were randomly placed in the network and the red arrow indicates how many

correct links we observe in the DDN. For the binomial test the p-value cannot be

calculated using double floating point precision (see Appendix, Section D.9).

The three evaluations show that the connectivity of the network as a whole sig-

nificantly reflects categories in MeSH. In addition to the clustering within categories,

we note related diseases of different categories that are close such as "AIDS" (En-

docrine) and "Hepatitis C" (Digestive), "Myelodysplastic Syndromes" (Hemic and

Lymphatic) and "Leukemia" (Neoplasms) or "Hypercholesterolemia" (Metabolic)

and several Cardiovascular diseases.
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Figure 5-5: The DDN shows clustering by MeSH category. (A) Nearest neighbor index (NNI) for
each MeSH disease category. Values significantly less than 1 indicate clustering in our visualization.
Error bars are standard error and numbers on bars are the number of nodes in the category. (B)
Average shortest path length between nodes in the same category (colored bars) compared to the
average shortest path between a node within a given category and all nodes outside the category
(white bars). Colored bars significantly lower than white bars indicate more distinct clusters in
the network. Error bars are standard error, the numbers on the bottom indicate how many edges
are within the category and the numbers on top indicate how many edges leave the category. (C)
Binomial distribution of edges between nodes of the same category if they were randomly placed
on the graph (purple shading) compared to the observed number of edges in the disease-disease
network (red arrow).

153

0. x a - -- -

I



5.3.3 Validation with the HDN

There are visual similarities between the DDN and HDN such as Neoplasms/Cancer

being the largest cluster. There are differences too, such as deafness being prominent

in the HDN but absent in our plot, which reflects the different data sources. Deafness

may be strongly associated with certain genes, but does not currently have any phar-

maceutical treatment options. Quantitatively, the average degrees fraction within a

disease category indicates how connected nodes in the category are to each other.

Figure 5-6A shows average degree fraction is similar or larger for the DDN (color

bars) compared to the HDN (gray bars) for 13 of the 15 MeSH categories with 10 or

more nodes and for 0 of the 3 with fewer than 10 nodes. The two categories with more

than 10 nodes and a smaller average degree fraction in the DDN are "Metabolic" and

"Hemic and Lymphatic." "Hemic and Lymphatic" is an interesting case where the

DDN has a smaller degree fraction than the HDN. This is true because it is mixed

with Neoplasms in the DDN, which may reflect the similarity in treatment in hema-

tology and oncology while the genetic basis may be more distinct. The difference

between the DDN and HDN compared to the difference between randomly connected

networks and the HDN is significant (p<.Ol) for all categories except "Muscular,"

and "Skin," which do not have any directly connected nodes (see Appendix, Table

D.10).

Taking into account indirect connections between nodes, Figure 5-6B shows the

mean of the ratio of shortest path within versus without each category, where a

smaller ratio indicates tighter clustering within the category. The DDN has a similar

or smaller ratio for 10 of the 15 categories with 10 or more nodes and for 1 of the

3 with fewer than 10 nodes. The difference between the DDN and HDN compared

to the difference between randomly connected networks and the HDN is significant
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(p<.Ol) for all categories except "Connective Tissue," "Muscular" and "Skin." (see

Appendix, Table D.10).

Comparing the two networks directly we found 181 common nodes with 764

edges among those nodes in the DDN and 192 edges among the same nodes in the

HDN. The expected number of overlapping edges is a binomial distribution as seen

in Figure 5-6C. We observed 73 edges were the same giving a p-value of 9 x 10-42 (see

Appendix, Section D.9). There is significant overlap in disease relationships found

in the DDN compared to the HDN even though the two networks are constructed

using very different datasets.
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Figure 5-6: The DDN shows similarity in clustering of MeSH categories compared to the Human
Disease Network (HDN), which is based on a very different data set. (A) The average degree
fraction ratio for nodes within the same category. The ratio is the number of edges extending to
nodes in the same category to the number of edges extending to nodes in different categories. The
DDN is shown in color for each category with the HDN in gray next to it. In general the DDN
shows a similar or greater ratio than the HDN demonstrating similar or even tighter clustering.
(B) The average shortest path ratio for nodes within the same category. The shortest path ratio
for a node is the mean of the shortest path to every node in the same category to the mean of
the shortest path to every node outside the category. As in (A) the color bars correspond to the
DDN and the gray to the HDN. In general the DDN shows a similar or smaller ratio than the HDN
demonstrating similar or possibly better clustering. (C) Binomial distribution of overlapping edges
between the disease-disease network and the HDN if edges were randomly placed between nodes
with the observed number shown with the arrow. The comparison is only made for nodes that are
identical in the two graphs.
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5.3.4 Prediction Potential

Figure 5-7 shows the AUC for all diseases as a scatter plot also showing the disease

category, the number of drugs in the training set and the number of drugs in the test

set. Random predictions would give an AUC around 0.5 while the majority of our

predictions have an AUC much larger. The average AUC for diseases was 0.845. The

histogram of all AUC's compared to random predictions benchmarks the predictive

ability of the network (see Appendix, Figure D-7). Using the Shapiro-Wilks test for

normality of the AUC scores, the p-value is 6 x 10-. We note that if a trial did not

occur in the 3.5 year test set time period it does not indicate that a trial will not

happen in the future or that there is no connection between the drug and disease,

so this result represents a conservative estimate. Examples of diseases with an AUC

of more than 0.95 are provided in Table D.11 in the Appendix along with references

to recent literature supporting the connection between the disease and the predicted

drug.

157



E 0

*0

~ 0,*
*0** * *.* .0

0
0

* - S

400 600
Number of Training Drugs

1.0

0.8

0.6

800

Figure 5-7: Area under the curve for drug predictions for individual diseases. The AUC for
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shown as the color of the circle. Intuitively, more data should lead to more accurate predictions,
but as the number of drugs in the data set increases, the AUC actually decreases. This may be
because diseages that have many drugs (more than 50-100) may be more prevalent and result in
more random exploration of drugs than those with just a few.

5.4 Discussion

Our results demonstrate that clinical trial meta-data can be used to infer disease

relationships found in genetic data or medical taxonomies. Such agreement is sur-
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prising given that the meta-data used contains no explicit information about biology.

The agreement suggests that our method succeeded in leveraging information latent

in the collection of clinical trials to draw conclusions beyond what any single trial

could reveal. The aggregate expert knowledge may reveal disease relationships one

group of experts may not have identified by themselves. This result opens the pos-

sibility that such latent information in clinical trial data or other types of clinical

data can be used to uncover biological relationships that otherwise might only be

found by using detailed biological data, by gaining access to large amounts of clin-

ical data or by resource-intensive research. There are several promising avenues to

use the disease-disease network (DDN) as a resource to generate new hypotheses for

biological and medical research.

The visualization of the DDN we presented provides a quick global reference of

the therapeutic links among diseases that conveys the underlying similarity between

diseases. This similarity is based on the decisions to run specific clinical trials as

observed in ClinicalTrials.gov. The decision to conduct a trial is based on the sum-

mation of biological and medical knowledge, such as published research, proprietary

in vitro or animal study results, clinical observations, results from previous clinical

trials, and economic considerations. This represents a significant body of cross-

disciplinary information leading to the decision to run any single trial. At present,

lessons learned from this cross-discipline endeavor are shared in part through publi-

cations, reviews and conference proceedings; collating this information for the entire

body of clinical trials to derive lessons about human biology would be very time

intensive. Instead, our representation of clinical trial meta-data allows us to access

that cross-discipline information implicitly to derive conclusions and lessons learned.

The DDN we built demonstrates one way in which access to that implicit or latent

information can be used to draw conclusions beyond the information contained in
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any single trial - such as similarities between diseases.

As an example, asthma and inflammatory bowel diseases (Crohn's disease and

ulcerative colitis) are closely related in the DDN map even though the MeSH tax-

onomy classifies them differently and there is little direct connection between the

diseases in the data set. They are each inflammatory diseases though and recent re-

search suggests that patients with asthma are at higher risk for inflammatory bowel

disease.[230] Such similarities could stimulate hypotheses about related biological

pathways, epidemiological connections, comorbidities in patients or new indications

for drugs.

As a computational tool, we showed that the DDN may be used to recommend

drugs to test on a given disease. Similarly, for a given drug, one might predict which

set of diseases would most likely benefit. Others have tried this approach by relating

drugs using aggregated datasets as described earlier.[208, 83, 88] The DDN may be

most useful in combination with other data sources. For example, overlap of gene

expression in two diseases in the Human Disease Network (HDN) [125] seemed to

indicate the genes might be involved in the same biochemical pathways in the two

diseases. The DDN also provides information about shared biochemical pathways,

but from the perspective of drugs that could modulate those pathways. Together, the

HDN and DDN could point more precisely to pathways or help distinguish between

a genetic or environmental etiology. The DDN could be used in conjunction with

data sets such as epigenetics, metabolomics, environmental factors, symptoms and

others that could be layered together to support inference.

In this work, we limited ourselves to trial header information, based on our desire

to focus on what we called superficial information and our intent to explore the limits

of learning imposed by availability of data. Our work shows that there is potential

to extract more information from clinical trial data.
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Now that we have established this as a benchmark, future work could make use

of additional information about each trial such as inclusion/exclusion criteria or trial

results. The thesaurus we built and the cleaned trial data will be extremely useful

for expanding this work and may prove useful for other research in related areas such

as meta-analysis.

For visualization and validation, we limited our exploration to a subset of the

network. We filtered out some of the nodes for easier comparison with the human

disease network (HDN), such as infectious diseases that do not occur in the HDN. We

filtered out edges for clearer visualization and to demonstrate the structure present

in our data. Having validated a large subset of the network, future work could

explore visualization methods on the unfiltered network, other filtering techniques to

extract different meaning from the network, and the use of other similarity metrics

and inference on graphs such as in [231].

There is other information in the clinical trial data such as economic potential

of drugs, special interest in orphan diseases or prevalence of diseases in developed

countries. Such information may bias an attempt to draw inferences about biological

relationships. In this work, we focused on capturing all learning from trials. Future

work using this learning for inference should account for bias depending on the

specific inference problem. One example where bias would not need to be removed

would be predicting which sets of diseases are least explored. Such predictions would

be useful for determining what future trials would lead to the greatest increase in

understanding of diseases. The amount of learning indicated by the topology of

the DDN does not always match a straightforward measure such as the number of

trials or drugs tested on a disease (see Appendix, Figure D-8). Beyond the DDN as a

resource, the approach we demonstrated may prove useful in other areas where latent

information is contained in seemingly superficial data. Though it is anticipated that
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floodgates of medical data will be released in the future, there is much more that can

be done with the seemingly superficial data that is currently available. For example,

"off-label" prescription data could be used in the same manner to uncover aggregated

learning implicitly taking place by physicians in clinical practice.

Our results provide an example of using experimental data on humans, which

is rare and valuable, to extract biologically useful information. This approach is

different from the typical approach of learning biology mechanisms in models and

testing to see if they also hold in humans. Here, we have shown how relationships

can be derived from testing in humans and then explored to see if those relationships

can improve understanding of biological mechanisms. As more clinical data does

become available, it will be important to have tools like these in place to more

rapidly uncover biological insights and discover effective treatments. For example,

patient-level clinical trial data is becoming more available to researchers, but it is

not clear how to compare two patients from two different trials that were constructed

for different purposes. As patient-level data becomes available, we see opportunities

to extend this work to provide a structure for making such comparisons and posing

research questions that do not depend on clinical end-points.

We demonstrated that clinical trial meta-data can be used to derive biologically

meaningful disease relationships as tested using other disease networks and tax-

onomies. We therefore conclude that there is latent expert knowledge in the meta-

data. Our disease-disease network (DDN) shows a way to access that knowledge

and to leverage the collective expert understanding of diseases. The relationships

unique to the network can be used to generate new hypotheses for future biological

and clinical research. This demonstrates a new strategy to leverage research data

on humans to advance our understanding of biological mechanisms. Furthering this

approach of translating clinical data back to biological research will become even
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more important as more granular clinical data becomes available.
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Chapter 6

Discussion

In this discussion we will recap the central premise we started with and the main

results. We then go through each of the results chapters individually, providing a

brief summary of the results along with a discussion of the impact of the results.

Additionally, for each chapter we enumerate the limitations and avenues for future

work to build towards. We conclude the discussion by relating this work to the

current movement for advancing precision medicine.

6.1 Summary of Central Premise

This thesis started with the premise that more precise diseases lead to better health-

care and that measuring and reducing variance will lead to more precise diseases.

Researchers and practitioners aspire to learn what causes diseases, how to iden-

tify diseases, what treatments will affectively alter a disease and so forth.[9] Using

computers to aid learning is a relatively young field of study and provides a useful

perspective from which to understand learning in medicine.[232, 233] In the intro-
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duction, we defined computational learning as selecting a mapping or function from

a set of possible functions to explain a relationship using data.[14] This definition

implies that the mapping identified is optimal for any intended data set - not just the

limited training set. One of the biggest and most fundamental challenges in compu-

tational learning is that data is limited and often sparse, requiring prior knowledge

to allow for models to generalize.

Prior knowledge can be incorporated in a variety of ways. All computational

learning problems require a representation, typically a vector, that a computer can

interpret. To compare vectors, a distance or similarity function is required. Together,

the representation and distance create a space in which the data exists, where each

piece of data is a point in space as seen in Figure 6-1. Prior knowledge can be

incorporated into the design of the representation, the distance functions or the reg-

ularization technique. One of the most accepted and formalized knowledge bases

of diseases is the disease taxonomy. The disease taxonomy has been used as prior

information for learning tasks to help cope with the challenge of data sparsity.[174]

Essentially, it partitions the space of diseases in a nested manner, but it has not yet

been proven that this is the best way to incorporate prior knowledge for computa-

tional learning.

In this work, we explored how computational learning may be affected by variance

inherent in the disease space, particularly the disease space defined by the disease

taxonomy. To do so, we (1) quantified how much variance exists in the disease taxon-

omy, (2) propose new methods for updating the disease space using the taxonomy as

a starting point, and (3) explored new representations of diseases. We explored the

history of the disease taxonomy and developed a method for measuring variance of

the disease taxonomy in chapter 3. We then looked at ways to reduce variance in the

disease space by using external data sets in chapter 4. We also found that we may
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Figure 6-1: Diagram showing how raw data is mapped to a space where learning takes place.
Features are extracted from the data to create a vector of numbers representing each data point. A
distance function relating vectors to each other indicates how far points are away from each other,
creating a mathematical space.

use the disease space to predict gaps in external data sets. Finally, in chapter 5 we

showed that external data sets do not need to be detailed, patient-level data sets, but

can be superficial data that is currently available. We discuss each of these results

below, including limitations of the work and future directions. We then discuss the

results of the current efforts to achieve more precise medical practice.

6.2 Variance in the Disease Space

We first used the history of the disease taxonomy over approximately 50 years to

estimate variance within the disease taxonomy. We compared several data sets of

diseases and other associated variables such as genes, clinical trials and medical

literature to quantify the extent to which inferred relations in the disease space

could vary over time. We found the amount of variance surprising; in the case of

gene associations, we observed that approximately 20% of diseases changed by 50%

over a period of 10 years. We cannot definitively say that one taxonomy is better
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than another over that 10-year span, but the variance over that time allows us to

quantify an error bar. If current trends continue as they have over the past 50 years,

our estimate may be the best predictor of, how much inferred associations could

change 10 years in the future. This technique provides a tool for quantifying noise

by deriving an estimate in contrast to assuming there is no noise.

One implication of this work is that the confidence of the conclusion of learning

problems about diseases depends on the confidence of disease definitions, not just the

data. For example, if the taxonomy is used to infer disease relationships with other

variables, the degree to which the taxonomy changes should be used to estimate

variance in the output to determine confidence.

We made the assumption that biology is consistent, but human understanding

of biology is not. True underlying conditions are continuous concepts that remain

constant over years or decades, but diseases used to describe those conditions are

discrete and change over time. Sometimes, they change so much that they cease

to exist. The conclusion of a learning problem can only be as good as the data is

consistent. For example, "Cardiovascular Disease" may mean something different in

2015 than it did in 1971. In this thesis, we validated this assertion by examining the

diseases that are underneath another disease in the taxonomy.

Other variables, such as genes, biochemical pathways, RNA sequences, cellular

processes, physiological processes, organs affected, external effects, structural changes

and interventions, can be associated with a disease. If the disease changes - such as

being split or removed, as we saw in the history of the taxonomy - the associated

variables would be re-allocated. The same is true if relationships in the taxonomy

change. The key idea is that diseases are not only human constructs created to

approximate true conditions, but are ultimately a variable themselves.

We further uncovered evidence that diseases converge or diverge in the updating
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Figure 6-2: The cycle of the disease learning hypothesis. Once a disease is defined, it implies a
given population, which can be sampled for learning. New features can be found in that population,
such as certain symptoms, genetic markers or drugs, that may be effective. New learning from these
features may lead to a redefinition of the disease or associated diseases.

process just described. If a disease is precisely defined, it can likely withstand the

test of time. We established that many diseases change over time some do not

change very much, while some change so much that they eventually go away. This

notion indicates a process of convergence or divergence. One reason we found that

a disease may diverge is because there may be a way to break it into very different

diseases. On the other hand, a converging disease may be one that can be identified

and where new learning is consistent with its original definition. Over time, our

understanding of the biological processes will be updated.

One way to describe the process by which diseases are described relative to other

diseases, as done in a taxonomy, is as an iterative process, as shown in Figure 6-2.

A disease is described by other diseases in the taxonomy, but once more diseases

are added, the taxonomy has been changed, meaning that each disease may need to
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change position. This is similar to the cycle of learning diseases from populations. A

population is defined by some features and is classified as having a specific disease.

Then, patients diagnosed with the disease are studied to find associated features,

which may change the study population and the disease definition.

This hypothesis would explain why some diseases appear to diverge or converge,

as would be expected with an iterative process. For example, Dropsy is a disease

that was widely diagnosed in the 1800s and removed around the middle the 20th

century. [234] On the other hand, Cystic Fibrosis is a disease based on the observation

of fibrosis and cysts in the lungs, and only later was the cause discovered to be chloride

ion channels were not working properly. [235, 236] Current diseases that may diverge

include Diabetes or Alzheimer disease.[237, 238] As we have shown, it appears that

diseases which have been around for a longer time have survived the process and are

more likely to remain. Understanding this cycle may help future researchers as they

define and redefine diseases, both for medical practice and learning.

6.2.1 Limitations

The first limitation of our result is that we only had one taxonomy history available

for testing. The MeSH taxonomy is the only taxonomy that has been consistently and

regularly updated over the last 50 years, and we selected it for this reason. We did

compare the 2015 version of MeSH to current versions of the ICD9 and SnoMed CT,

finding high variances among the taxonomies. However, we did not have historical

versions of ICD or SnoMed to perform our analysis.

The second limitation is that we were only able to examine changes due to the

taxonomy. We would have liked to examine changes that resulted exclusively from

moving continuous information to a discrete space by examining how disease-feature
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associations change over time. For example, when 'Dropsy' was removed from the

disease taxonomy, were features of Dropsy re-allocated to new diseases? Such an

analysis would require historical data on disease-feature association, which does not

currently exist. We used one data set of cancer incidence to approximate this.

Finally, our work was setup to treat all data sets independently. However, it is

possible that there was an overlap in information between data sets, such as genes

and symptoms if certain gene mutations resulted in certain symptoms. If these two

attributes have features that are coupled, they should not be treated independently.

It may be possible to categorize variance based on attributes such as causes, effects or

interventions. As has been pointed out in previous work, the disease taxonomy may

focus more on symptoms and capture that information better. [9] We can expand the

data sets used to evaluate variance, and then combine them for a more comprehensive

measure of variance along multiple dimensions.

6.2.2 Future Work

One example where our work could have a significant impact is in drug testing and

approval. A drug must be tested on a specific indication, and the starting point for

such an indication is a disease from the given set. However, if the variance within

that disease is high, trying to learn whether a treatment is effective on the disease

may not be feasible. The disease itself should be treated as a variable and modified

to result in a consistent treatment response. One way to further develop precision

medicine would be to reduce variance in diseases by redefining diseases. To test the

validity of this approach, it may be possible to look at trials that were successful

versus trials that were not successful and compare the variance of diseases within

those groups. We would expect unsuccessful trials to be more likely to have higher
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variance overall.

Estimating precision of diseases in the context of clinical trials could open the

possibility of multiple tiers of evidence required for trials. Currently there is a stan-

dard measure of evidence required by the FDA and a somewhat different bar of

evidence for orphan diseases.[239] This has lead to a steady increase in the number

of drugs approved for orphan diseases. [240] Many of these diseases are more precisely

defined because they have a specific genetic cause.[241] An alternative paradigm to

this two-tiered approach would be to have the bar of evidence inversely proportional

to the disease variance. Thus a precise orphan disease would require less evidence

compared to a highly variable or less precise broadly-defined disease, but instead of

only two options the bar of evidence would match the disease. This would encourage

development of drugs not only for orphan diseases and diseases that correspond to

a blockbuster, but everything in between.

6.3 Updating Disease Spaces

Our work in the previous chapter showed that a disease space can be defined in

many ways. Formally it could defined as a disease taxonomy, but could also be

defined by features in a data set connecting diseases to an attribute such as genes or

symptoms. We demonstrated several ways for using one approach to augment the

other. This provides us with a technique to make hypotheses about missing data,

either in the taxonomy or for a given data set. The implication is that we can update

the taxonomy automatically from data or update a sparse data set using the expert

knowledge contained in the disease taxonomy. We gave examples of predictions for

imputing values in the disease-symptom data set that appeared surprising, but had

support in the literature.
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The literature on taxonomies show they are useful for communication between

humans, and provide a compact way to represent disease associations. However,

for machine learning, these attributes are not necessary; it may be that a more

complicated and dense representation reflects the disease space better. This work

may provide the basis for moving away from using the taxonomy as the accepted

disease space to other representations that can be used in machine learning as formal

disease spaces. Our predictions would form the basis for using the current disease

taxonomy as a starting point and automatically changing the structure to create a

new disease space.

6.3.1 Limitations

The main limitation of this work is that we only used one taxonomy. There are several

available taxonomies, but they do not overlap completely (i.e. terms that occur in

one, but not another taxonomy). There is no straightforward way to combine all

taxonomies and vocabularies, so we only used one. However, one taxonomy only

captures one set of experts and perhaps one set of applications. It would also be

useful to estimate confidence levels in predictions. In this work we demonstrated

that algorithms could provide scores with a reasonable ordering of predictions, but it

would also be important to know confidence to understand where a threshold should

be set for predictions.

6.3.2 Future Work

Our work has three main areas of application. The first is updating the given tax-

onomy. For example, we could make predictions about taxonomy updates, provide

them to the National Library of Medicine, and see how many of the proposed changes
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would be adopted. The advantages of systematically updating the taxonomy are that

it can include a broad range of data that experts may not have mentally present and

allow for continuous updating based on new data points as they are produced. An

improved taxonomy would be less likely to change over time if it better reflects un-

derlying conditions, so in the future, the rate of change of the taxonomy could be a

proxy for how well previous taxonomies approximated disease.

The second area of application is merging data from different taxonomies. Many

data sets are constructed using a controlled vocabulary from a taxonomy. For ex-

ample, our symptoms data set was constructed using MeSH terms for diseases and

symptoms. The MEDI-HPS drugs data set we used was constructed using ICD-9

codes. The only way to compare diseases from one data set to another is using a

thesaurus, such as the United Medical Language System (UMLS). Many terms do

not have an equivalent in another vocabulary and therefore cannot be used. The

methods we developed would allow us to predict where a term might go in another

taxonomy. This ability would allow us to merge data sets and taxonomies in a way

not currently possible.

The third area of application is imputing values in sparse data sets based on the

taxonomy. The disease taxonomy was constructed by experts and contains a wealth

of information. This expert information could be used to predict what values might

be missing in a sparse data set. In our work we gave the example of 322 symptoms for

4662 diseases resulting in a possible 1.5 million associations. It would not be feasible

to manually assess each association to ensure the data set is complete. If a list of

predictions were available, perhaps the top 10 symptoms for each disease, it might

be possible to manually review them. Up to this point, taxonomies have typically

been used to impute values only by inheritance, meaning that a higher level concept

inherits all associations of lower level concepts. This approach may not properly
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account for patterns of diseases that occur in many different locations. It has been

shown in previous machine learning literature that the taxonomy can be very useful

for augmenting a data set and results in improve predictive performance. [174] Our

method may be able to further improve performance.

6.4 Disease Representation

In the previous chapters, we found that the variance of diseases could be measured

using features of diseases and that the taxonomy could be updated using a variety of

external data sets. We next wanted to answer the question of how granular does data

need to be to improve our understanding of diseases? For example, is patient-level

data necessary? We developed a representation of diseases based on clinical drug

trials that contains latent information about expert knowledge connecting diseases

and drugs (we note that the data set of disease and drugs we created for this chapter

is distinct from the MEDI-HPS data set of diseases and drugs that we used in the

previous chapter).

Our representation produced results with surprising similarities to those obtained

using a genetic database, even though our representation uses only trial meta-data

and contains no explicit information about biology. We demonstrated that this new

representation could be used for predicting new clinical trials. It is also possible that

the latent information uncovered can also be used to reveal biological relationships

that otherwise might only be found by using detailed biological data, gaining ac-

cess to large amounts of clinical data or conducting resource-intensive research. At

present, lessons learned from this cross-discipline endeavor are shared in part through

publications, reviews and conference proceedings; collating this information for the

entire body of clinical trials to derive lessons about human biology would be very
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time intensive. In contrast, our representation of clinical trial meta-data allows us

to access cross-discipline information implicitly and derive conclusions and lessons

learned.

For many retrospective learning tasks, data is fixed and therefore new experiments

cannot be engineered to collect the data of most interest for the learning problem.

For this reason, the information of interest is often latent. If the representation is

engineered correctly, it can represent the desired information and allow that informa-

tion to be extracted. There are many examples of data used for one purpose, where

researchers later determined that latent information in the data could be used for

another learning problem. For example, drug side effects are documented carefully

to warn patients and inform clinicians what to watch out for. However, researchers

later realized that the latent information was biochemical pathways. [83] With the

assumption that the same pathway leads to the same observed effect, (whether a

primary effect or side effect) the researchers set up a learning problem to find similar

drugs based on the pathways they affect and the observed side-effects. We believe

there is much more to be learned from latent information in the data that is currently

available.

Currently, there is a push for more detailed data in health care, which due to

privacy concerns is hard to obtain. Though we feel this is a productive development,

it may result in efforts only concentrated on fighting for more access to data[242, 243]

or only result in work completed with the detailed data currently available, typically

using ICU data.[244] While excellent work is being undertaken in these areas, our

results also show more could be done with the data available today. Not only will

this help us learn more now, but it will also help future researchers design adaptive

learning problems for when more detailed is made available.

Diseases are connected to other variables in many data sets and will become
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connected to patients once more patient-level data becomes available. There are

still many pairwise relationships which can be learned and combined for further

research. Humans are very good at learning, but they can only handle so much data

and complexity, which are both aspects that computers can handle much better. For

example, finding relationships between genes, biochemical pathways, mRNA, cellular

processes, physiological processes, organs affected, external effects, structural changes

and interventions will likely require the use of computers.

6.4.1 Limitations

There is other information in the clinical trial data besides biological information,

such as economic potential of drugs, special interest in orphan diseases and prevalence

of diseases in developed countries. If the goal of using the representation is learning

new biology, then these other sources of information could bias results. For learning

problems where this information is of interest, such as determining which diseases

are least explored, different biases would need to be accounted for. In this work, we

did not try to remove bias because defining what bias is depends on the learning

problem itself.

Another limitation to our approach is that we treated all trials equally. It might

be that later stage trials (e.g. stage-3 versus stage-1) or trials with more partici-

pants should be weighted more heavily. We also limited ourselves to trial header

information, but there may be more information to be gleaned using trial stages,

study design, available results and funding sources to augment our approach. We

also propose exploring new filtering techniques for comparing diseases as an area that

may need more exploration. Another recommendation to expand this work is to ex-

plore similarity metrics that define the disease-drug space and inference on graphs
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for prediction. Our work only touched on each of these areas.

6.4.2 Future Work

This work may have significance going forward in a few different areas. The first is

generating hypotheses for future biomedical research. Our representation allowed us

to make comparisons between diseases and find some surprising connections between

diseases. We do not know if these connections are accurate, but there were enough

accurate connections to believe they could be. It would be possible to select several

overlapping diseases and design biology experiments to see if there is indeed biological

overlap.

Another area of impact is using our disease representation as a scaffold to inter-

pret other data sets. Our representation is entirely empirical and does not make any

biological assumptions. Because it was constructed independent of any other data

set, it can be used as a prior to compare other data sets with attributes of disease.

For example, one could compare diseases based on genes associated with disease and

infer further relations using our representation as the underlying space. Another

example could be comparing patient level data in clinical trials. There is a current

push to make more patient-level data available from clinical trials, but comparing

patients from different trials is not straight-forward given the setup and assumptions

behind different trials may be substantially different. Our representation would pro-

vide a yard stick for comparing patients from different trials. Such an effort would

help bridge the gap between 'micro' patient-level research and 'macro' disease-level

research.

An advantage that our representation has is it allows for continuous updates,

making a real-time intelligent database of disease relations possible. As each new
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trial is added to clinicaltrials.gov, the representation can automatically update and

one could track how our understanding of disease is updating with each new data

point. This would provide a model for the future of continuous learning in medicine

and could translate to patient-level data when it become more readily available.

In addition to the representation we created, we believe our approach could be

applied to other areas as well. We believe there is more to be done with the superficial

data that is currently available. One example that is very similar to our approach

would be to use "off-label" prescription data to uncover aggregated learning implicitly

taking place by physicians in clinical practice.

Finally, an area for further exploration and impact is the visualization and data

cleaning methods from this work. Data cleaning in medicine is time-consuming and

our results may help speed up further efforts. In a similar way, visualization is key

to interpreting data and what we have provided in this thesis will allow for more

exploration of the data by a broader group of researchers and clinicians.

6.5 Precision Medicine

The work done in this thesis ties in to the movement of precision medicine. Precision

medicine has gained momentum and there is much hope it can help progress medicine

rapidly in the coming decade. [22, 21, 20] Ironically, precision medicine is rarely de-

fined precisely. In this thesis, we define precision medicine as being able to precisely

map a patient to a particular treatment, which currently happens through diseases.

A disease-centric approach focuses on diseases and what they map to. On the other

hand, a patient-centered approach focuses on the treatment patients receive. There

is an underlying assumption in the disease-centric approach that learning diseases is

the best way to treat people. In the patient-centric approach, diseases are simply
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variables that can be manipulated and are convenient for communication.

One explanation for why patient-centric precision medicine is so elusive is that

diseases often get stuck in local optima. In optimization theory, there are strict con-

ditions under which a global optimum can be achieved. Nonlinear spaces are almost

never convex, meaning that one can only find local minima.[245, 246] It appears

that the way to break out of a disease local optima is for evidence to accrue that

meets some threshold. As there is generally inertia or tradition that keeps diseases

in a status quo, the evidence has to be compelling. In nonlinear optimization, one

way to deal with significant nonlinearity is through simulated annealing or stochas-

tic gradient descent, which make random jumps that allow one to get out of a local

optima.[247, 248] Larger jumps may be needed to break away from local optima

when refining the disease space. Another way is to run the algorithm again with a

different random starting point or make significant changes, such as pruning high up

in a decision tree. [249, 250] Such an overhaul may be challenging in medicine, but we

would recommend a regular overhaul of the disease space, include the disease taxon-

omy. It may be difficult to come to an agreement, so automated methods like those

we developed for updating the taxonomy with expert tweaking could be a preferred

approach.

We also concluded that quantifying variance may be one of the keys to precision

medicine. The primary aims are to identify, quantify and then reduce variance to

achieve precision. These factors have been identified as a cause for success in a

number of other industries as well. [251] Attention to measuring variance in medicine

has been lacking, however, and this thesis should draw attention to this.
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Chapter 7

Conclusions and Contributions

7.1 Conclusions

We conclude with the premise we started with, that there is an opportunity for

faster learning in medicine. In this thesis we focused on learning diseases as a space of

discrete concepts that are related to each other. Using computational learning theory

as a guide, we characterize learning the disease space as an unsupervised learning

problem. We conclude that the best way to measure precision of disease learning

is by estimating variance within diseases. This is challenging due to the continuous

nature of underlying health conditions and the discrete nature of disease, but we

developed a method for estimating variance based on the historical relationships

between diseases, using the disease taxonomy as a model disease space. We found

that the variance within diseases was often significant (greater than 25%) even on

short time scales (10 years). We conclude that disease variance should be considered

when drawing conclusions from other types of learning problems. We also see the

potential for reducing variance to achieve precision medicine.
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We further showed how to reduce variance between external data sets that asso-

ciate diseases with attributes and the disease taxonomy. We conclude that expert

knowledge encoded in the disease taxonomy can be used to hypothesize data points

that are sparse in data sets. Similarly, information in external data sets can be used

to the disease taxonomy or any disease space. Taxonomies have been and continue

to be useful for many aspects of medicine, particularly as a tool for communication,

but may not be the best tool for representing the disease space using computational

learning. One area of future research is how to codify learning about diseases in a

way that can be used for officially comparing diseases without having to rely on a

taxonomy.

Finally, we point out that a movement in the field of machine learning in medicine

is a push to make more detailed, patient-level data available. We support these ef-

forts, but also are interested in limits of what can be learned with data currently

available. In this thesis we show that it is possible to get similar results from clinical

trial meta-data compared to results from detailed genetic data. This results is sur-

prising and encouraging. We conclude that highly granular or patient-level data is

not necessary to achieve significant learning results. Such work with the data avail-

able now will prepare the way for more detailed patient-level data when it becomes

available.

7.2 Main Contributions

The three main contributions of this thesis were the following:

1. We estimated the variance quantitatively in the accepted disease taxonomy.

The disease taxonomy is used to define diseases and the a significant challenge
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has been how to measure the uncertainty or variance that the taxonomy intro-

duces. Our estimate enables researchers to put an error bar on learning results

and use computational tools to learn an improved disease taxonomy.

2. We developed methods to reduce the variance between the disease taxonomy

and external disease data sets. This reduction allows for a more precise update

of the set of diseases based on available data, as well as for the discovery of

new disease-feature associations.

3. We developed a new representation of diseases using clinical trial meta-data

that contains latent information, similar to that found in a drug-gene networks.

This result demonstrates that a surprising amount of learning is possible with

superficial data sets. It further implies that diseases can be updated more

precisely without having to obtain detailed patient-level data.

7.3 Additional Contributions

In order to address the central premise undergirding this thesis we found it necessary

to explore multiple data sources and strategies, which is a central part of all data

science endeavors. The data science required to explore the central premise of this

thesis yielded numerous additional contributions in the form of visualization tools,

methods and data sets that can become the basis for future work. We enumerate

the most salient contributions emerging from our data science efforts below:

1. The disease-drug data set constructed from meta-data on clinicaltrials.gov.

This data set required significant automated processing and manual review to

ensure clean data. We published this data set as part of the supplemental
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materials in [144]. The thesaurus we compiled to augment MeSH and our data

cleaning methods may also have application for cleaning other data sets.

2. The history of the Medical Subject Headings (MeSH) disease taxonomy from

1971-2015, including the taxonomy for each year as well as how concepts in

one year correspond to concepts in the next year. To get digital files required

extracting digital data from manually scanned PDF files. This data set also

required significant automated processing and manual review to ensure clean

data. At the time of writing this thesis we are preparing to publish this data

set along with a journal article.

3. A suite of web-based visualization tools for exploring the history of the MeSH

taxonomy and how it relates to associated variables such as genes, drugs and

symptoms. These tools include tool to track diseases in the taxonomy over

time, a tool to compare disease categories in different years (see Figure 3-6)

and a tool to see where disease features, such as a specific symptom, occur in

the taxonomy in a given year. These tools make it easy to explore the data for

researchers and clinicians alike. We will make these tools available online.
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Appendix A

Background - Supplemental

Materials

A.1 Terminology

Terminology in medicine can be ambiguous, which may lead to confusion in commu-

nication. We define important terms here, as we use them in this thesis, that may

have different definitions in other contexts.

* Continuous - Unbroken or uninterrupted. An infinite set of possibilities over a

range exist.

* Discrete - Individually distinct and separable. A finite set of possibilities exist.

* Condition - The state of the human body characterized by all biological pro-

cesses occurring at a given time. Conditions lie on a continuum because the

possible conditions are near-infinite.
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* Disease - A discrete, agreed-upon approximation of part of the spectrum of

conditions.

" Disease State - A discrete subcategory of a disease. It could be a more specific

classification than what is generally accepted as a disease or a disease at a

particular point in a progression.

" Disease Attribute - A class of characteristics associated with many diseases.

Characteristics within an attribute are either disjoint or are subsets of each

other. Examples include genes and symptoms.

* Disease Feature - A single characteristic associated with a disease. This could

be a specific gene, symptom or process. Typically, these are discrete biological

concepts.

A.2 Computational Learning

We start by giving an overview of computational learning for those unfamiliar with

the topic. We also expound on terminology as a reference for the rest of this chapter.

Learning can be an ambiguous term. One dictionary definition is "the acquisition

of knowledge or skills through experience, study or being taught." [252] Experiences

or studies provide new information or data from which new knowledge can be gleaned.

For the past several decades, researchers have studied how computers can be used to

acquire new knowledge from data with promising results. [50] We refer to this field

as computational learning, though aspects of it can also be described as machine

learning, artificial intelligence or statistical learning. [253]

Computers require explicit instruction and we therefore need a more precise defi-

nition for learning than one used to describe human learning. We adopt a definition
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by Vapnik of the learning problem as "a problem of finding a desired dependence us-

ing a limited number of observations" [254], where the dependence can be described by

a mathematical function. Broadly speaking, there are two types of learning: super-

vised and unsupervised. In computational learning theory, these modes of learning

have important similarities and differences. Each are described in the context of

computational learning below.

A.2.1 Supervised Learning

Vapnik defined supervised learning precisely as "that of choosing from the given

set of functions the one which best approximates the supervisor's response." [254]

Supervised learning assumes there is some fixed, but unknown function that acts

on variables.[254] Though the true function is unknown, we have input and output

data and can infer what function may approximate the true function. For example,

one could learn the relationship between the velocity of falling items (output) and

height (input) to model gravity (true function). The force of gravity is constant

on the surface of the earth, so many samples could be used to learn a function to

approximate gravity. If the true function is not consistent over the data points, an

approximate function could not be accurately learned. For example, if measurements

were taken from the surface of the Earth, the moon and Jupiter, a single constant

for the force of gravity could not be learned.

Two main goals of supervised learning are: (1) to understand the relationship

between inputs and outputs explicitly, as in the case of modeling gravity, and (2) to

make predictions of output values based on inputs that are not in the data set used

for learning. However, the second goal does not require the first to be evident. A

complicated function may be approximated that does not reflect the true function,
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but is still useful for making predictions.

A.2.2 Unsupervised Learning

Unsupervised learning likewise assumes that while there is a fixed function generating

the data, there is no output data. The goal is therefore to find the relationship

among the data points. The relationships can be described comprehensively as a

probabilistic density, or less complex models such as clustering can be used. As an

example, we might be given a group of animals and be tasked with organizing them

by similar characteristics. We could create a joint distribution of the characteristics

shared by all animals, but that would be a very complicated model (Nnc), where N

is the number of animals and nc is the total number of characteristics. Such a density

would be hard for people to work with. A simpler model would be to cluster animals

by similar characteristics into groups. Unsupervised learning can be more subjective

in nature because there is no absolute standard for what these groupings should be.

This is generally a free parameter in the learning algorithm that is pre-defined or

trained according to some pre-defined criteria.

Like supervised learning, there are two main goals of unsupervised learning. One

is to understand which data points are clustered together. The other is to identify

which points are close to a new data point. There is no explicit output to predict

or label to identify, but there is often an assumption that similar data points share

similar features. Identifying points that are near each other can help predict other

features.

Unsupervised learning is related to Hebbian learning,[255] a hypothesis proposed

in the 1950's that is often summarized as "neurons that fire together are wired

together." [256] This hypothesis suggests that unsupervised learning is similar to nat-
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ural neurological patterns used to organize information in the brain.

A.2.3 Other Learning

Additional types of learning have been proposed which are variations of the above

two. For example, hybrid supervised/unsupervised learning is where only a subset of

data points are labeled.[257] Reinforcement learning starts with a reward function,

and through unsupervised exploration, data points receive a label according to the re-

ward function. [258] Reinforcement learning is particularly useful in robotics. [259] Ac-

tive learning is where some data points are labeled and the goal is to find the next data

point that provides the most information for learning a supervised relationships. [260]

A.2.4 Empirical Risk Minimization Principle

In all of the above cases, there is the concept of what Vapnik terms the "risk

functional" [261] The risk functional represents the amount of error or how different

the outputs of the model or function are from a ground truth or pre-defined function.

The risk is quantified by a loss function over a set of functions. [14] Minimizing the

risk makes the model as close to the truth as possible. This principle makes the

learning problem well suited for computers because methods have been developed

for optimizing (minimizing) functions with many variables. Algorithms have been

developed to efficiently solve optimization problems. Due to the complicated nature

of the optimization problems, there is no guarantee that the solution found can be

considered a global optimum, but local optima have been useful in practice. There

are several design considerations when setting up a computational learning problem

that the user must define. We describe several of these in the following subsections.
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Space of Functions

A necessary constraint for computational learning problems is to define a set of

functions to search over. As there are an infinite number of types of functions,

it would not be possible to search exhaustively in a finite time period. A set of

functions and parameter ranges must be pre-defined to constrain the problem to one

that can be solved in a reasonable amount of time. A straightforward example is

linear regression where the set of functions is only one (y = x + a) and the search is

designed to find the best values for a and 3, which could be any real numbers. [262]

In this case, an analytic solution is available for the optimal solution. In many

cases, specific algorithms are developed to solve an optimization problem for a given

function or set of functions.

The power of computational learning is that many functions can be quickly eval-

uated. Traditional hypothesis-based approaches are forward-looking, proposing a

single hypothesis and using statistics to refute or confirm the hypothesis. [263] Ma-

chine learning can rapidly sort through a large number of functions to find the best

fit to the data. The set of functions to search over is the choice of the user who is

responsible for setting up the learning problem.

With a loss function and set of functions to search over, it is possible to minimize

the risk. However, there is one more design consideration to ensure that results

extend beyond the data set used for learning, which is known as generalization. [137]

Rule-based functions: a history We pause here to give a small piece of history

in computational learning regarding functions to search over. One of the most natural

functions for humans to consider is rules. A rule is a binary function, with one output

if a condition is met and another output if it is not met. Rules are generally easy to
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interpret and are familiar in many contexts. Early efforts in computational learning

focused on rule-based learning.[264] One example is machine translation where early

efforts focused on inducing rules for how a word or group of words would translate

to a similar word or words in another language. Progress hit a wall, which was

broken through by enabling a more probabilistic approach. This expanded the set of

functions to search over. One proposed explanation is that rules are considered the

most nonlinear function, and a smoother set of functions is better.[265]

Generalization

Identifying possible functions for a single data set is a relatively simple task, as an

arbitrarily complicated function can fit the data. For the learned relationship to be

useful, it must hold for any data set that exhibits that relationship. The challenge

of any learning task is doing so with a limited data set. However, because learning

requires a limited number of examples to identify a mapping, a strategy must be

developed regarding the most efficient use of the data to ensure generalization and

to include prior knowledge about the learning problem if needed. The first is known

as validation and the second as regularization. [266]

The method to ensure generalization is a choice for the user. Validation involves

dividing the data set into multiple sets and performing training and validating on

different data subsets.[261] A validation data set is one that the model does not

see for training. The data subsets.can be fixed in advance, or many disjoint data

subsets can be generated using cross-validation. [266] Validation does not use external

information; rather, it only uses the data set more carefully. Regularization uses

external information to help make a decision about the function selected. An example

could be Occam's Razor, which says that a simpler explanation is more likely the

191



correct explanation, so a penalty would be placed on functions that are more complex.

The opposite of generalization is overfitting. Overfitting refers to fitting a model

to a data set that is specific only to that data set. [267] It is easy to find an arbitrarily

complex function that will yield very little loss for a given data set, but much of what

has been learned would be specific to that data set. In general, we do not want to

learn a function that fits all facets of the data set, but rather some particular aspect

that is of interest. For example, with respect to learning gravity, the data is affected

by every other force, such as wind resistance, as well as measurement error. If we

developed a model of gravity on data using feathers, it would not generalize to other

objects. It is also worth noting that to learn a function, the data must contain

information about that function. For example, it would not be possible to learn

about the gravitational force of the object itself because its affect would be too small

to be found in the data. Even if the data allowed us to draw some conclusions, we

know it would not generalize.

For unsupervised learning, there is no absolute truth, so a complexity parameter

is often pre-defined. For example, in clustering, one may set the number of clus-

ters, as in k-means, or set the number of neighbors to compare to, as in nearest

neighbors.[268] These parameters would be based on prior domain knowledge.

A.2.5 Data Space

Up to this point, we have assumed that the data given to the user for setting up a

learning problem is already matched to the problem. For some problems, the data

measured can be used directly for the learning problem, as in the gravity example.

In many cases though, features must be extracted from the data to create a set of

numbers to represent a data point. For example, text cannot be directly used by a
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computer - there must be a way to represent text or compare it quantitatively. This

is both a challenge and an opportunity for users.

There is inherent bias in machine learning which is manifested in how the user

chooses to features that represent concepts and the hypothesis space to explore.[269]

It has been shown that if machine learning "tasks are known to possess a common

internal representation or preprocessing then the number of examples required per

task for good generalization" goes down. [270] The "Physical Grounding Hypothesis,"

which states that an intelligent system should have its representations grounded in

the physical world as opposed to derived symbolic representations, suggests that

representations try to make use of measured data when possible as opposed to data

derived from measurements. [271] According to this hypothesis, a good representation

for computational learning will minimize the number of biases imposed.

The user therefore needs to engineer a data space by defining features to represent

each data point and develop a way to compare similarities or distances between data

points. It is also desirable to avoid bias and inferences in constructing the space.

Continuous vs Discrete

Feature values (either input or output data) can be continuous or discrete. When

the output data is discrete, the task is classification, and when the output data is

continuous, the task is regression. [137] The task does not depend on the nature of

the input values. Computers can only work with discrete values, but can discretize

continuous values with a high level of precision.

In all cases, each data point must consist of a discrete set of values. It is not

possible to represent all values along a continuous dimension. For example, a physical

picture must be discretized in space. Data that is best represented on a continuous
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spectrum or across many dimensions must be converted into a discrete set of values.

A.3 Analogies for Variance in Learning

It is not immediately obvious why estimating variance or uncertainty is important for

analyzing the disease taxonomy. Two reasons why this is the case is diseases are often

studied one at a time narrowing our focus when learning and because the taxonomy

changes so slowly many may view it as constant. Yet, measuring uncertainty can

revolutionize a field as Shannon did for communication. [150]

To aid in framing the problem, we propose two analogies that may help clarify the

objective and approach of this thesis. These analogies frame the problem in more

familiar domains and show where the benefits of the approach can be seen more

clearly.

A.3.1 Organizing Toys

In explaining the thesis to my 6-year old daughter, I found that our family uses the

same principles when organizing toys.

With three kids we have a variety of toys, which sometimes end up strewn across

our apartment. We have several containers to store the toys, where our kids can

put toys after they have finished playing with them. It is our desire to organize the

toys so we can find specific toys when someone wants one. Sometimes, we decide to

change our organization system.

We could have one big bucket with all toys, but that would not really help us find

specific toys. We could also buy a bucket for every toy, but that would be equally

ineffective. Generally, our approach is to group toys together and put them together
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in a bucket. This is typically based on some subjective intuition or general set of

rules. We then identify attributes for toys in a given container, such as color, size,

age group, electronic component and so on. We then teach the rules to our kids so

they know where any given toy should go. Some rules we have are that animals go in

one basket, things that make music go in another, small toys that could be a choking

hazard go in a bucket up high and so forth.

At some point, we decide that our rules for what goes where need to be updated.

We also find we may need to redefine what goes into a bucket. We therefore have

two tasks that depend on each other: (1) how do we divide up toys into groups, and

(2) how do we identify which toys go where? The two tasks may appear very similar,

but are actually distinct. The rules allow us to communicate to our kids what goes

where and to generalize this to new toys. As an example of the former, we had an

animal bucket but also had a lot of other similarly sized toys that often got played

with alongside the animals. We changed the bucket to include "creatures," which

consisted of animals, dinosaurs, toy people, snowmen figures and similar toys.

Why it is useful

This process is surprisingly similar to the process of learning about diseases. There

are many people and it would not be helpful to have one disease to categorize all

people under. It would be similarly ineffective to say every individual has a different

disease. In either case, we could not learn from other cases.

In medicine, there are also two related learning tasks, one that is clustering (i.e.

putting biological features in a bucket) and the other is determining how to map

data points to diseases. The data points mapped could represent patients or other

concepts like treatments. Mapping rules allow clinicians to place new patients into
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buckets.

The analogy is particularly useful because there is no absolute truth to organizing

diseases. In medicine, there is similarly no absolute truth to disease organizations,

but we could cluster diseases by organ systems affected, symptoms or genes. There

is no way to determine which one is more accurate.

Where it breaks down

The analogy is dissimilar from medicine in several ways. One is that in the toy

example, clustering and mapping are often done very close together. This is because

features are generally readily apparent. In medicine, the process is often much slower.

A disease may be defined initially by symptoms, and over time, other diagnostic

criteria may be used to map patients to a disease. Moreover, with new features, the

disease itself gets updated. This could take decades.

The analogy may also seem unrelated because the primary purpose of organizing

toys is to find them later. We generally think that the primary purpose of diseases is

to provide treatments, but they too are used for quickly finding examples of patients

for future learning.

A.3.2 Exploring North America

This analogy is to help make the concept of measuring precision more concrete.

Exploration of diseases is not dissimilar to physical exploration of the earth. The

goal of explorers is to map out some physical area for future use, such as charting

routes. One particularly famous case is the exploration of what eventually became

the United States. Prior to 1492, there were two entire continents virtually unknown.

In that year, Columbus discovered that there was something there, but by no means
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had he mapped out the continents. Over the following centuries, explorers chartered

what the surface of the land looked like.

This process resulted in numerous data points that cartographers could examine

to create a model of physical space. These models are called maps. Many maps were

made over the years with varying degrees of accuracy. We may assume that geography

has not changed dramatically over the last several centuries, so geographical features

like coastlines, rivers, mountains and so forth should be in the same location they

were then. We can therefore compare current maps to earlier versions and see whether

any inaccuracies exist.

It is easy to see where cartographers were not accurate. If we were to go back in

time though, there would be no absolute reference. It would not be possible to look at

a set of maps and determine accuracy, but it would be possible to determine precision.

This could be done by tracking variance among maps over time. For features that

have high variance, we may assume that those features are not precisely identified.

Why it is useful

Diseases are similar in that we are currently exploring what diseases are. Biology

does not change significantly over a short time scale, so we may attribute variance

to the exploration process. If we go back in time, we would find that there is no

absolute truth in this exploration analogy. It may be useful to have a measure of

precision about physical features though, just like case of diseases.

Where it breaks down

The analogy is clearly different in that the physical world has a ground truth. This

makes it easy to see inaccuracies in our example since the world has now been
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Figure A-i: Old maps of the America continent. There are inaccuracies that are apparent
compared to current maps. From these maps imprecision can also be seen.

mapped accurately in detail, but that is not the case for current disease understand-

ing. However, it is easy to look back and see where we got some things wrong about

disease. The physical world is also very constrained in dimensions; typically maps

are two or three dimensions - perhaps a few more if information about soil or water is

given. Exploring diseases involves many more dimensions. The exploration process

is therefore much more sparse.
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Appendix B

Estimating Disease Taxonomy

Variance - Supplemental Materials

B.1 Taxonomy statistics prediction

We plotted several taxonomy statistics over time and fit a line to the data using

linear regression. We used these linear approximations to predict what the statistics

might be 50 years into the future.
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B.2 Diseases with the most tree nodes

To understand why some diseases do not appear to fit neatly into the taxonomy,

we explored the diseases that occur in many different locations. In Figure B-2 we

plot the average number of locations for diseases over time. In the top left plot

is the number of nodes per disease for four sets. The four sets are based on the

number of tree node locations in 1971. If diseases were known to be complex then

and the number of nodes simply increased over time we would expect to see the set

of diseases with most locations over time result in the set with the most locations in

the future. Instead we see only a small increase over time. In the top left plot the

sets of diseases are fixed by the number of tree node locations in 2015. We arrive at

the same conclusion. It therefore appears that the number of locations in the past

cannot be used to predict which diseases would have the largest number of locations

in the future.
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Figure B-2: Number of nodes plotted over time. The top two plots show that number of nodes in
the past could not be used to predict which diseases would have the largest number of nodes in the
future. The bottom left plot shows which categories have the most diseases with multiple nodes.
The bottom right shows that syndromes and genetic diseases have significantly more locations that
the average.

B.3 Taxonomy operations over time

To approximate the amount of time between taxonomy operations, we plotted the

inter-operation times.Approximate chance of an event is 5%. The distributions ap-

proximately match suggesting that for any given disease at any give time point, the

chance of a taxonomy change is 5%. From this estimate we may assume that a given

disease may change once every 20 years or for a given year, one in every 20 diseases

will change. This rate of change is more frequent that we would have anticipated.
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Figure B-3: Inter-operation times, actual and simulation for a probability of 0.05.

B.4 Tree Edit Distance

Tree edit distance is one way to estimate how similar/dissimilar two trees are. [272]

The basic edits or operations are node deletions and node adds and perhaps a node

relocation. The distance is a minimization over the number of edits required to to

change one tree to the other and unordered trees, like the disease taxonomy, are

computationally much more expensive than ordered trees. [273, 274] Trees where

the children of a node have an inherit ordering have efficient algorithms to calculate

distance. [275] Our trees are so large that the optimization problem is could not be

calculated and there is no intuitive meaning to the distance metric.

The reason we did not use it is that the taxonomy trees are updated in a deliberate

way that does not necessarily match a least number of edits framework. Also, it is

assumed that taxonomy changes are made on a disease-by-disease basis or by group
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of diseases, but on a node-by-node basis as tree edit distance assumes. For these

reasons we chose to document the disease changes and not use tree edit distance.

B.5 Taxonomy operations

On the top left we see the total number of operations, which is dominated by location

changes, then new diseases added and very few diseases deleted. There are a couple

years where the whole taxonomy was overhauled, including 1975 and 2000, where

spikes in activity can be found.

The other three plots we show what happens to diseases when the disease name is

removed (top right), when new diseases are added (bottom left), and when changes

occur where the disease name does not change (bottom right). When a disease

name is removed, it is most likely because the name of the disease has changed and

not because the disease was deleted. There were very few cases where the disease

went away and was replaced by multiple diseases, representing a split in the disease.

When new diseases were added, most were new leaves, but in 1996 and 2000 there

was a significant number of new branches added. This may suggest that in general

new diseases are leaves or very specific diseases, but sometimes the taxonomy is

overhauled to change the branch structure. Finally, when a disease stays and there

is a change, most of the time the change is a subdivide (new diseases are added

below) or a location added or removed.

If diseases simply subdivided, we would expect to see few location changes with

many splits or subdivides. Instead we see new diseases throughout the tree and many

location changes, both deletions and insertions.
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Tay-Sachs Disease - {HEXA)
Neuronal Ceroid-Upofuscinoses -{PPT1, CLN3, TPP1, CLN8, CTSD, CLN5, CLN6)
Sandhoff Disease - {HEXB}

Diseases (1971)
Nervous System Diseases

Brain Diseases, Metabolic
Amauorotic Familial Idiocy (Tay-Sachs Disease)

Mental Retardation (intellectual Disability)
Amauorotic Familial Idiocy (Tay-Sachs Disease)

Diseases of Nutrition and Metabolism (Nutritional and Metabolic Diseases)
Metabolism, Inborn Errors

ipid Metabolism, Inborn Errors
Amauorotic Familial Idiocy (Tay-Sachs Disease)

Diseases (1979)
Nervous System Diseases 2

Central Nervous System Diseases
Brain Diseases

Brain Diseases, Metabolic
Gangliosidosis (Gangliosidoses)

Amauorotic Familial Idiocy (Tay-Sachs Disease)
Sandhoff Disease
Tay-Sachs Disease

Mental Retardation (Intellectual Disability)
Idiocy (Intellectual Disability)

Amauorotic Familial Idiocy (Tay-Sachs Disease)
Gangliosidosis (Gangliosidoses)

Amauorotic Familial Idiocy (Tay-Sachs Disease)
Sandhoff Disease
Tay-Sachs Disease

Nutritional and Metabolic Diseases
Metabolic Diseases

Metabolism, Inborn Errors
Lipid Metabolism, Inborn Errors

Lipoidosis (Lipidoses)
Sphingolipidosis

Amauorotic Familial Idiocy (Tay-Sachs Disease)
Tay-Sachs Disease

Diseases (1983)
Nervous System Diseases 8

Central Nervous System Diseases
Brain Diseases

Brain Diseases, Metabolic
Gangliosidosis (Gangliosidoses)

Amauorotic Familial Idiocy (Tay-Sachs Disease)
Sandhoff Disease
Tay-Sachs Disease

Mental Retardation (Intellectual Disability)
Idiocy (Intellectual Disability)

Amauorotic Familial Idiocy (Tay-Sachs Disease)
Neuronal Ceroid-Lipofuscinosis (Neuronal Ceroid-Lipofuscinoses)

Gangliosidosis (Gangliosidoses)
Amauorotic Familial Idiocy (Tay-Sachs Disease)

Sandhoff Disease
Tay-Sachs Disease

Nutritional and Metabolic Diseases
Metabolic Diseases

Metabolism, Inborn Errors
Upid Metabolism, Inborn Errors

Lipoidosis (Lipidoses)
Sphingolipidosis

Amauorotic Familial Idiocy (Tay-Sachs Disease)
Tay-Sachs Disease

Diseases (1985)
Nervous System Diseases

Central Nervous System Diseases
Brain Diseases

Brain Diseases, Metabolic
Gangliosidosis (Gangliosidoses)

Tay-Sachs Disease
Mental Retardation (Intellectual Disability)

Idiocy (Intellectual Disability)
Gangliosidosis (Gangliosidoses)

Tay-Sachs Disease
Nutritional and Metabolic Diseases

Metabolic Diseases
Metabolism, Inborn Errors

Lipid Metabolism, Inborn Errors
Lipoidosis (Lipidoses)

Sphingolipidosis
Tay-Sachs Disease *2015 has 9 different locations under 3 different categories

Figure B-5: Example of disease (Alzheimer Disease) that changed the number of genes associated
with it because of changes to the taxonomy structure even though the actual disease-gene associ-
ations are constant as seen at the top. The number of genes associated with Tay-Sachs Disease
would vary between 1-8 genes depending on the taxonomy.

B.7 Error Bar complete

Figure B-6 shows the complete 2-dimensional distribution over years whereas Figures

3-8 and 3-9 only showed 5 cases of the 1-dimensional (for 1, 5, 10, 20 and 44 years).
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B.8 Examples of diseases less like themselves
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Figure B-7: Examples of a disease and other diseases that are less like themselves than another
over time.
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B.9 Systematic Reviews

One area the inferred disease-feature relations could have a significant impact is

for systematic reviews. All systematic reviews start with a structured literature

search. The majority of systematic reviews use the MEDLINE search which is an

advanced version of a standard PubMed search. MeSH terms are'exploded' to search

for everything under a term. The explode operation is a function of time since the

taxonomy changes over time. It is therefore possible that a taxonomy change could

result in a different set of papers/trials to start looking for studies to include.

We examined 20 different systematic reviews in detail to see if a taxonomy changes

would result in a different starting set of studies that could affect the conclusion of

the systematic review. We found that the study search strategies use expanded

strategies beyond exploding MeSH terms. As an example, one systematic review on

barbiturates for traumatic brain injury [276] used a search term to explode 'Barbitu-

rates' and 'Craniocereberal Trauma.' The systematic review was published in 2000

with 8 studies included. The change in taxonomy between 1999 and 2000 would

have resulted in one study not being include, except that the systematic review used

additional search terms including: "pentobarb* or phenobarb* or methohexital* or

thiamyl* or thiopental* or amobarb* or mephobarb* or barbital* or hexobarb* or

murexide* or primidone* or secobarb* or thiobarb*" and "((injrpr* or trauma* or

lesion* or damage* or wound* or destruction* oedema* or edema* or fracture* or

contusion* or concus* or commotion* or pressur*) and (head or crani* or capitis or

brain* or forebrain* or skull* or hemisphere or intracran* or orbit* or cerebr*))" It

appears that the experts conducting the systematic review were aware of limitations

that MeSH has and knew terms that could be used specifically for this systematic

review overcome those limitations.
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B.10 Changes in taxonomy vs literature for disease-

symptom associations

sim(di, dj) = f (9j, 9j)

where 9i is a vector of all symptoms used to describe disease i. It is a binary vector

with a 1 in cases where there is an association between disease i and a given symptom

and 0 elsewhere. We could change the year in which the symptoms were selected

from or a year up to which PubMed papers are examined. This new similarity takes

the form

sim(di, dj, y, y,) = f(9j, sy)

where y, is the year used to get the symptoms and y, is the year up to which papers

are used.

In Figure B-8 we plot sim(di, dj, y, 2011) = f(9, 9j) in solid lines with y, on the

x-axis and sim(di, dj, 2011, y,) = f(9i, 9j) in dashed lines with y, on the x-axis. For

two examples the change in similarity is approximately the same.

We also plot the room mean squared error (RMSE) of all similarities between the

year 2011 and all other years according to the following two equations:

[sim(di, di, ys, 2011) - sim(di, dj, 2011, 2011)]2 (B.1)

[sim(di, dj, 2011, y,) - sim(di, dj, 2011, 2011)]2 (B.2)

The blue line in Figure B-9 corresponds to Equation B.1 and the green line

corresponds to Equation B.2.
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Figure B-8: Examples of three disease pairs whose similarity changes over time. The solid lines
represent similarity changes due to the changing taxonomy while dotted lines represent similarity
changes due to changes in the literature. For these examples the change in similarity is approxi-
mately with one exception.
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Figure B-9: The root mean squared error (RMSE) of the difference in similarity between the year
2011 and other years. The blue line represents the change due to taxonomy changes and the green
line represents changes due to changes in the literature.

In this case, the taxonomy changes were only the symptoms. One section of the

disease tree contains symptoms. For disease-symptoms relations we used diseases in

2011 and varied the symptoms by taxonomy from different years.
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B.11 Examples of Symptoms in Taxonomy

We provide two examples of where symptoms show up in the taxonomy according to

the diseases they are associated with. Pain is a general symptom that is associated

with many diseases throughout the taxonomy and therefore provides little informa-

tion about diseases it is associated with. Transient Global Amnesia on the other

hand is much more specific and shows up with a limited set of diseases in a much

more limited set of the taxonomy.
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Figure B-11: Diseases associated with the symptoms 'Transient Global Amnesia' are highlighted
in blue in this tree map. This symptom is more sparse with a higher information content.
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Appendix C

Updating the Disease Space from

Data - Supplementary Materials

C.O.1 Example of Drug Variance in Taxonomy

We give one example of variance that results in apparent inconsistencies in the

disease taxonomy. The data set we use is drugs used in clinical trials. To achieve

precision medicine, disease definitions and classifications must map to treatments.

Drug therapies represent a large subset of possible disease treatments. Drugs used in

clinical trials have previously been used to show disease relationships. Here we use

all drugs tested in clinical trials to explore variance in the disease taxonomy. Each

drug can be mapped to one or more disease and each disease can be mapped to one

or more locations in the disease taxonomy. We use drugs from clinical trials for this

example only because it is a much larger data set than approved drugs.

We first find drugs with high variance in the taxonomy. We describe a high

variance drug as one that has been tested on diseases that show up in many locations
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in the disease taxonomy or in ones that show up in many unique locations. To find

such drugs we use the metric of average shortest path length between diseases in

the taxonomy that correspond to a drug. A short path length suggests clustering

of diseases while a longer path length suggests diseases are distributed throughout

the taxonomy. To restrict the scope of the paths, we only examine the k-nearest-

neighbors paths.

We next find drugs in parent/child nodes. If the child nodes partition the parent

node we would expect attributes of the parent disease to be divided among the

child diseases. If child diseases overlap with each other mechanistically it would be

expected that the same drugs would be used to treat them. We find the parent/child

relationships with the largest discrepancies of drugs used. We expect to find areas

of the taxonomy that do not reflect well the treatments for those diseases. We then

show which areas of the taxonomy would be most changed by incorporating the data

from drug trials in a modified taxonomy.

Figure C-1 shows the 2015 taxonomy with diseases colored on which the drug

"Cyclophosphamide" was tested in clinical trials. It can be seen that this drug was

tested on many different diseases that are found throughout the taxonomy. Other

drugs are only tested on a few diseases which may be clustered together or may be

dispersed throughout the taxonomy. There are two interpretations to the dispersion.

One is that the drug affects many different disease mechanisms or that the disease

definitions and classifications are not precisely defined.

Figure C-2 shows specific parent/child disease relationships in the MeSH taxon-

omy along with the number of drugs tested in clinical trials on that disease. The

pie charts for each disease show the number of overlapping drugs with sister nodes,

or with child nodes in the case of the one parent node. If diseases were partitioned

nicely we might expect to find most drugs for a disease were specific to that disease
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Figure C-1: The drug "Cyclophosphamide used in clinical trials mapped to the diseases it is
tested on in clinical trials. Those diseases are colored and dispersed throughout the taxonomy.

or child node. At the same time, if we see that a disease shares few drugs with other

diseases it may indicate they are not related in a therapeutic sense. The lack of

overlap of some disease and the extent of overlap for others suggest the taxonomy

may not capture the therapeutically relevant relationship in parts of the taxonomy.

This suggests the opportunity to modify the MeSH disease taxonomy according to

the clinical trial drug data.

We provide several additional examples of drug variance among diseases very close

together. We selected several parent diseases that were distinct from each other and

exhibit a variety of patterns of overlap. The color scale corresponding to overlap

shown in Figure C-2 is the same for all other plots.
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Figure C-2: Overlap of drugs tested on diseases in close proximity in the disease taxonomy. The
parent disease is Autoimmune Diseases.
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Appendix D

Disease-Drug Representation from

Clinical Trials - Supplemental

Materials

D.1 Clinical Trials Database

We examined the largest clinical trial registries including CclinicalTtrials.gov, the

EU Clinical Trials Registry, ISRCTN, the Japan Primary Registries Network and the

Australian New Zealand Clinical Trials Registry; [277] as well as the GlaxoSmithKline

company registry and the International Clinical Trial Registry Platform. We chose

to use CclinicalTtrials.gov because it is the largest and most consistent source of

trials. We explored the option of combining CclinicalTtrials.gov with other registries

such as the EU Clinical Trials Register or the International Clinical Trials Registry

Platform, but found it difficult to match trials from one database to another. We

also found in a small sample that CclinicalTtrials.gov had the vast majority of trials
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found in the other registries. We used the March 27, 2014 release of the Clinical

Trials Transformation Initiative (CTTI) Database for Aggregate Analysis of Clini-

calTrials.gov (AACT available on www.ctti-clinicaltrials.org), comprised of 163,764

trials.

D.2 Disease Disambiguation

Many diseases are named in multiple ways, but our analysis requires each concept

to be identified by the same string. An example of one disease with many different

strings found for it on clinicaltrials.gov is seen in Table D.1. This section describes

how we mapped on all terms to a common vocabulary of diseases.

Of the 163,764 available trials, 93,654 have at least one intervention labelled

"Drug," "Dietary Supplement," or "Biologic." For those 93,654 trials there are

155,816 diseases listed, but only 23,162 of them are unique strings ignoring case. Of

those, 5,192 are in the MeSH vocabulary under the Diseases[C] or Pyschiatry and

Psychology[F] subtrees. To make use of the remaining 18,420 strings we augmented

the MeSH thesaurus with new terms and synonyms. The steps to create the thesaurus

are shown in step 4 of Fig. 1.

The first step (4a) was to remove all exact matches to the MeSH vocabulary

as previously mentioned. The second step (4b) was to compare each disease string

to every disease term in MeSH (approximately 75,000) using fuzzy string match-

ing. For fuzzy string matching we considered Levenshtein distance[278] and Rat-

cliff/Obershelp pattern matching[279] for similarity metrics used to compare strings.

We selected a modified version of the R/O algorithm because it looks for the longest

matching substrings and can therefore account for word order changes. We identified

the closest 20 fuzzy matches and manually selected one or more if it was the same
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1. t2dm 38. non insulin dependent diabetes
2. non-insulin-dependent diabetes mellitus 39. adolescent type 2 diabetes
3. patient with type 2 diabetes treated with insulin using 40. diabetes mellitus non-insulin-dependent
a baseline/bolus strategy
4. diabetes mellitus type 2 (t2dm), 41. insulin-requiring type 2 diabetes mellitus
5. diabetes mellitus type 2 42. foot dryness in patients with niddm
6. type 2 diabetes on medication 43. type-2 diabetes mellitus
7. diabetes mellitus type 2 ire or nir 44. impaired glucose or type 2 diabetes
8. type 2 diabetes 45. type2 diabetes
9. diabetes mellitus, type 2 and metformin 46. patients with type 2 diabetes
10. type 2 diabetes (t2d) 47. diabetes mellitus, adult-onset
11. type 2 diabetes melitus 48. patients with type 2 diabetes mellitus who have been

examined at a medical institution
12. diabetes type 2 49. newly diagnosed type 2 diabetes (during the last 12

months)
13. type 2 diabetes mellitus without insulin treatment 50. diabetes mellitus, type 2
14. insulin dependent diabetes mellitus (type ii diabetes) 51. type 2 diabetes (treated with exenatide or other oral

antidiabetic therapies)
15. diabetes, type 2 52. type 2 diabetes treated with insulin
16. type 2 diabetes mellitus(t2dm) 53. gad ab positive clinically type 2 diabetic patients
17. type 2 diabets mellitus 54. type-ii diabetes mellitus
18. type 2-diabetes 55. diabetes mellitus, adult onset
19. diabetes mellitus type ii non insulin dependent 56. type 2 diabetes mellitus, non insulin dependent.
20. subjects with type 2 diabetes mellitus. 57. type ii diabetes
21. diabetes mellitus type 2; 58. diabetes mellitus type ii
22. diabetes mellitus type-2 59. diabetes, type ii
23. type 2 diabetes mellitus related endothelial dysfunc- 60. niddm
tion
24. diabetes mellitus ii 61. type 2 diabetes mellitus (t2dm)
25. type 2 diabetic patients with ihd 62. newly diagnosed type 2 diabetes
26. type 2 diabetic patients 63. foot transepidermal water loss in patients in niddm
27. type two diabetes mellitus 64. diabetes mellitus non insulin dependent oral agent

therapy
28. diabetes mellitus, non-insulin dependant 65. type ii diabetes in the not so obese
29. diabetes mellitus, non insulin dependent 66. non-insulin dependent diabetes mellitus
30. diabetes mellitus, non-insulin dependent 67. type 2 diabetes with nephropathy
31. diabetes mellitus type 2 not well controlled 68. diabetes mellitus - type 2
32. diabetes mellitus, non-insulin-dependent 69. type ii diabetes mellitus
33. diabetes mellitis type 2 70. adult type diabetes mellitus
34. type 2 diabetes mellitus (t2d) 71. diabetes mellitus, type ii
35. type-2 diabetes 72. type 2 diabetes mellitus
36. type-2-diabetes mellitus 73. type 2 diabetes patients'
37. antihyperglycenic effect in type 2 diabetic patients
with secondary failure to oral hypoglycemic agents

Table D.1: List of strings in data corresponding to Type 2 Diabetes Mellitus. Each of the 73 is
a different way the free text in the disease field on ClinicalTrials.gov represents the same concept

Type 2 Diabetes Mellitus.
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concept as the disease string.

The next step (4c) was to create new terms to include in our vocabulary based

on their occurrence in the data set. Two strings were merged if they represented the

same concept. If terms that were merged together still appeared in 2 or fewer trials

or the trials had 2 or fewer different diseases total, then the term was discarded in

the next step (4d). Our motivation is to show relationships between diseases and

drugs, so if one is only connected to the other once or twice it provides very little

insight. We found that diseases occurred infrequently either because they were too

specific (e.g. - "cancer with transdermal accessible tumour," "muscle sensitivity to

pressure," or "ny-eso-1-expressing tumors") or too general (e.g. - "spinal disorder,"

"intestinal inflammation," or "chemical injuries").

The remaining disease strings were set aside in the next step (4e) because they

were not diseases. These strings fell into one of the following categories: drugs (e.g.

- "pharmacokinetics of asp015k and midazolam," "beta blocker," "desmopressin"),

procedures (e.g. - "mitral valve surgery," "surgery of the pancreatic head," "sedated

for cardiac catheterization"), measurements (e.g. - "detection rate," "blood mark-

ers," "effects of 2 mu-opiates on gastrointestinal transit"), body parts or processes

(e.g. - "middle ear gas exchange," "inflammatory status," "abdominal") and other

("randomized clinical trial," "for recipients:," "health care quality"). When map-

ping to MeSH terms, we only used the portions of the vocabulary matching diseases,

"Diseases[C]" and "Pyschiatry and Psychology[F]." For strings mapped to MeSH

terms, we convert any synonyms or entry terms to the MeSH heading. Entry terms

for a heading are "synonyms, alternate forms, and other closely related terms in a

given MeSH record that are generally used interchangeably with the preferred term

for the purposes of indexing and retrieval." [279]

Figure D-1 shows how many terms were in MeSH versus data-derived terms as
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well as how many mappings were "exact" vs "approximate" synonyms.
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Figure D-1: Categorization of disease strings by date show a fewer percentage of strings were
either direct synonyms or MeSH terms over time. (A) The cumulative number of disease strings
that were mapped to MeSH terms or Data-Derived Terms. By 2014 more than 75% of strings were
mapped to MeSH terms, though at a decreasing rate. (B) The cumulative number of strings that
were either approximate synonyms (approximately the same as the term in the thesaurus) compared
to strings that were exactly the same or equivalent synonyms. By 2014 approximately 67% of the
disease strings were exact or equivalent, though at a decreasing rate. (C) The number of diseases
strings by month with MeSH terms distinguished by approximate and equivalent. The number of
exact and equivalent MeSH terms peaks around 2008. (D) The percentage of disease strings by
month. The percentage of approximate MeSH synonyms and data-derived terms increases linearly
starting around 1995.

D.3 Drug Disambiguation

Drugs are different from diseases because they are more discrete in nature, do not

often change, are often shorter in length and less variable in spelling. There are

additional challenges specific to our data set including new drug terms, strings that
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include multiple drugs and strings with additional information. New drugs occur

often in our dataset and do not have official names (identified only by a code name)

or have not yet been included in the MeSH vocabulary. The other challenge is that

each drug string may contain more than one drug or contain information such as

dose or administration route, which makes it hard to automatically extract drug

names. It often takes a careful reading of a trial to determine if drugs are used as a

combination or in different treatment arms of the study. We therefore assume that

all drugs may individually have an effect on the disease.

To identify new drugs or find different spellings of drugs in MeSH, we start with

the assumption that every possible drug name is a word or group of consecutive words

in the drug string, which we will refer to as substrings. Substrings are identified as

every possible set of characters between non-alphanumeric characters in a string.

Each substring must have alphanumeric characters, but is not restricted to them

because drug strings often contain spaces and commas or in the case of chemical

names, dashes and parentheses. As an example of possible substrings, "Fenofibric

Acid (Fibricor) 105 mg Tablet" has five spaces, "(", "", and ")" as non-alphanumeric

characters which leads to 42 different substrings ("Fenofibric", "Fenofibric Acid",

"Fenofibric Acid (", "Fenofibric Acid (Fibricor", "Fenofibric Acid (Fibricor" and so

on). Two of the substrings are "Fenofibric Acid" and "Fibricor" which we want to

identify as drugs. The rest of the substrings are not drug strings because they do not

contain a drug (e.g. - "Tablet," "105 mg," or ")") or contain additional information

with the drug (e.g. - "Fibricor").

Figure D-2 in the Appendix shows the processing which starts by extracting

503,270 substrings from the original 66,066 unique intervention strings. The next

step is to automatically filter out substrings that are already in MeSH or are not drug

terms. We constructed several different filters after examining the different types of
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substrings. The first is to remove any substring that only shows up 2 or fewer times

because we are only interested in drugs that show up multiple times. Misspellings

that only occurs once or twice may be removed at this step, so we return to them

later. The second filer is when more than 50% of the words are English words, which

we identified using a basic dictionary available online with 109,582 English words

(SIL International). Many of the substrings in the data are combinations of English

words that are used to describe something about the intervention and this filter will

discard those.

The next filter was to remove substrings that contained dosing or administration

information, because those could not be drug strings. It is possible such a substring

could contain a drug name, but that drug name would be found by itself as a different

substring. Examples of specific words are "and," "tablet," "mg" and "experimental."

A complete list of all 121 words are found in Table D.2.

The last filter removed substrings that began or ended with a non-alphanumeric

character or had unbalanced parentheses. From our previous example "Fenofibric

Acid (Fibricor) 105 mg Tablet", the following substrings would be filtered: "Fenofib-

ric Acid (Fibricor" - unbalanced parentheses, "Fenofibric Acid (Fibricor T M ) 105 mg"

- dosing information, and "Tablet" - more than 50% English words.

After filtering, we were left with 11,876 substrings. We performed fuzzy string

matching to find close MeSH terms and manually made matches if the drug was

the same. These steps are described above under disease disambiguation. We also

used fuzzy matching to identify terms that could be merged. Lastly, we set aside

substrings that were not drug strings.

Once we had a preliminary thesaurus, we returned to the substrings that were fil-

tered because they only showed up once or twice. We then computed the Levenshtein

distance between each of those substrings and all terms in MeSH and our thesaurus.
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Figure D-2: Process to create a thesaurus of drug terms to maximize data that can be used.
The process to disambiguate drugs was similar to disambiguation of disease strings, but had to be
modified because multiple drugs often occur in one string and many drugs still being researched are
not in MeSH. The steps are shown on the left. The first is to find every possible substring of the
drug strings. Those are then filtered automatically in step 2 to remove substrings that are clearly
not drugs or only occur once or twice. In steps 3-5 we manually review the remaining substrings.
Step 6 is used to go back through all the substrings and find any substrings that are infrequent,
but very close to one of the MeSH or Data-Derived terms. The output of the process is a thesaurus
of MeSH.and Data-Derived terms along with synonyms. Each drug string is then matched to one
or more terms in the in the vocabulary if possible.

Levenshtein distance is the minimum number of character insertions, deletions or

substitutions to go from one string to another,[278 which we chose specifically for

finding misspellings. We only looked at string pairs that had a distance of less than

or equal to 2 for substrings with more than 4 characters. We then manually went

through those remaining terms and created a match if the drug was the same.
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and
plus
tablet
tablets
with
dose
doses
mg
mcg

g
kg

ml
treatment
treatments
months
month
year
years
cycle
cycles
day
days
level
placebo
of
or
in
ug
every

for
week
weeks
pharmaceuticals
drug
comparator
formulation
oral
period
high
low
transdermal
intramuscularly
usp
hour
hours
patch
iu
biologic
ophthalmic
diseases
subcutaneous
maintenance
period
inhaled
inhalation
microspheres
system
solution
sustained

lot
spray
sprays
seasonal
cohort

cohorts
group
cream

release
infusion
infused

cohort
phase
combined
air
injectable

suspension
experimental
chemotherapy
via

adjuvant
extended
children

nanoparticle
intraperitoneal

mist

treatment
solution
formulation
prodrug

used
panel
gel
transdermal
nasal
hourly
capsules
weekly
coated
tumor
candidate
over
24hr
24hrs
48hr
48hrs
adjusted
prolonged
from
containing
powder
inhaler
er
diet
dose
excipient
subconjunctival
prefilled
label
transdermal
administered

Table D.2: Words used to filter potential drug substrings. These words appear frequently in the
intervention strings for drug trials. Most of the words relate to dosing or administration. If one of
these words occurs in a drug substring we filter out the substring because it cannot be a drug by
itself.
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Figure D-2 shows how many strings were filtered or manually assigned at each

step. The majority of substrings are filtered because they only show up once or twice,

leaving approximately 40,000 substrings. Through the additional filtering steps we

reach a more manageable number of 11,876. From these we were able to map 4,061

substrings and then go back to the misspellings and map 2,334 more substrings.

The filial step was to review all mappings manually. For mappings that were not

straightforward we searched ClinicalTrials.gov to ensure that the terms referred to

the same drug. This often occurred when there were other names listed for a drug on

ClinicalTrials.gov that were not listed as synonyms in MeSH. We documented at least

one of the trials for each of these mappings. We also checked the MeSH synonym

mappings to ensure that very general terms and non-drug terms were excluded as

well as synonyms that might not refer to a drug. We included these lists of terms in

Tables D.3 and D.4.

After completing our drugs thesaurus with MeSH and supplemented terms, we

went through the drug strings and identified terms in the thesaurus. We only kept

the longest substring if one substring was the complete subset of another. We also

searched in the strings in the "intervention arm groups" and "intervention other

names" fields which are sometimes included on CclinicalTtrials.gov. Table D.5 in

the Appendix shows 10 randomly selected intervention strings with the drug names

that were automatically extracted using our thesaurus.

We plot in Figure D-3 how many strings are MeSH terms vs data-derived terms

vs those that could not be mapped. Figure D-4 shows the temporal patterns of the

same data.
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Acids
Adhesives

Adjuvants, Immunologic
Alloys
Amino Acids
Anabolic Agents
Analgesics
Anti-Anxiety Agents

Anti-Arrhythmia Agents

Anti-Asthmatic Agents
Anti-Bacterial Agents
Anti-HIV Agents
Anti-Obesity Agents
Antibodies
Anticoagulants
Anticonvulsants
Antidepressive Agents

Antiemetics
Antifibrinolytic Agents
Antigens
Antigens, Surface
Antihypertensive Agents
Antiparasitic Agents
Antiperspirants
Antipsychotic Agents
Antirheumatic Agents
Antiviral Agents
Bacterial Vaccines
Biological Factors
Biological Markers
Biological Products

Bronchodilator Agents
Capsules

Carbohydrates
Carbon
Cardiovascular Agents

Ceramics
Chewing Gum

Cholinergic Agents
Colloids
Coloring Agents
Contraceptive Agents
Contrast Media
Cosmetics

Dentifrices

Deodorants
Detergents
DNA
Drug Carriers
Dust
Emetics
Emulsions
Enzymes

Food Additives
Gels
Genetic Markers
Hormones
Hydrogel
Hypoglycemic Agents
Hypnotics and Sedatives
Ice
Immunosuppressive Agents
Indicators and Reagents
Keratolytic Agents
Lipoproteins
Minerals
Nasal Sprays

New-Fill
Nucleoproteins

Oils
Ophthalmic Solutions
Peptides

Pharmaceutical Preparations
Phytochemicals

Plant Extracts
Plant Nectar
Plant Oils
Plastics
Polymers
Powders

Prescription Drugs

Proteins
Proton Pumps
Protons
Receptor, Adenosine Al
Receptor, Cannabinoid, CB1
Receptor, Cholecystokinin B
Receptor, Endothelin A
Receptor, Epidermal Growth
Factor
Receptors, AMPA
Receptors, Androgen
Receptors, Angiotensin
Receptors, Antigen
Receptors, Antigen, T-Cell
Receptors, Bradykinin
Receptors, Calcium-Sensing
Receptors, Cholinergic
Receptors, Endothelin
Receptors, Erythropoietin
Receptors, Ghrelin
Receptors, Glutamate
Receptors, Interleukin- 1
Receptors, Interleukin-4

Receptors, Leukotriene
Receptors, Lysophosphatidic
Acid
Receptors, Mineralocorticoid
Receptors, Muscarinic
Receptors, Nicotinic

Receptors, Opioid
Receptors, Platelet-Derived
Growth Factor
Receptors, Progesterone
Receptors, Prolactin
Receptors, Purinergic P2
Receptors, Serotonin, 5-HT3
Receptors, Somatostatin
Receptors, Tumor Necrosis
Factor
Receptors, Vascular Endothe-
lial Growth Factor
Receptors, Vasopressin
Salts
Silicates
Silicones
Soaps
Smoke
Solutions
Starch

Steam
Surface-Active Agents
Sweetening Agents
Tablets
Tablets, Enteric-Coated
Tissue Adhesives
Toothpastes
Tumor Markers, Biological
Vaccines
Vaccines, Conjugate
Vaccines, DNA
Vaccines, Inactivated
Vaccines, Subunit
Vaginal Creams, Foams, and
Jellies
Vasoconstrictor Agents
Vasodilator Agents

Venoms
Vitamins

Table D.3: MeSH drug terms that are too general or do not refer to a drug. These terms or
one of their MeSH synonyms were found in the ClinicalTrials.gov drug interventions fields. They
were removed because they were too general to be useful, e.g. - Vaccines, or because they were not
actually drugs, e.g. - Capsules.
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dtpa
pep
alum

merlin

monitor
imp
ado

advantage

mph
amp

luminal

sentinel

toto

prod

peek

complement

ors

carob
crystalloid

simplex

ppd
manna
sol
vessel

int

brand

retinal

quad

smokeless

cit
trim

tan

mil

cave
foxy
nota

sham

lam
lab
mad
icon
cpi
dom
counter
mimic

Table D.4: MeSH drug synonyms that are ambiguous. These MeSH synonyms were found in the
ClinicalTrials.gov drug interventions fields, but did not always refer to the MeSH term they were a
synonym for. They were removed to prevent false positives.

Original Drug Extracted Terms
diclofenac + calcitriol diclofenac, calcitriol

placebo (plb) placebo
candesartan cilexetil (atacand) atacand, candesartan cilexetil
intra-amniotic injection of digoxin digoxin
loperamide/simeticone 2 mg/125 mg chewable tablets loperamide
recombinant luteinizing hormone (r-lh) luteinizing hormone
supplements of -methionine, betaine and folate folate, betaine, 1-methionine
dabigatran with asa dabigatran

buspirone hcl buspirone
mp-470 + carboplatin/etoposide mp-470, carboplatin, etoposide

Table D.5: Original drug strings and extracted drug terms. These 10 strings were randomly
selected from the data in the intervention field on ClinicalTrials.gov. The terms on the right are
those that were extracted from the original data using the thesaurus we constructed.
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Figure D-3: Categorization of drug strings shows most trials have a MeSH drug term. Each
unique drug string was categorized as having a Data-Derived (DD) match, a MeSH match, both or
neither. We did the same categorization for trials on the right where each trial could have one or
more unique strings. Even though there are many unique drug string that could not be matched
to a drug in the thesaurus, they are infrequent and make up a small percent of all trials. Drug
strings matched to MeSH terms are the opposite, even though they account for approximately 60%
of unique strings, they account for approximately 85% of all trials.
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Figure D-4: Categorization of drug strings over time show similar patterns to disease string
categorizations. (A) The percentage of drug trials each month that have a drug string that matches
a MeSH term decreases over time, while the percentage of those that match a data-derived term
increases over time. (B) The number of trials in each category by month shows that MeSH matches
peak around 2008, as in the case of condition strings. (C) The cumulative sum of the data in (A).
(D) The cumulative sum of the data in (B). Approximately 80% of the trials have a MeSH match.
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D.4 Sampling and Validation of Drug Strings

We sampled 100 trials and examined the text of each trial relative to the drug

names automatically extracted using our thesaurus. Of the 100 trials, 0 trials had

an incorrect drug, 4 trials had a missed drug and 6 trials had an approximate match

to a drug with some loss of detail (see Table D.6). Of the missing, 3 were missing

because they were not listed in the drug field of the trial or because the drug was

not in MeSH and did not occur often enough to create a new category. In the 100

trials there were 216 drugs total, so the error rate by drug string is actually lower.

We also sampled 100 trials that did not have any drugs extracted. Of those, 92

were correctly ignored given our criteria (true negatives). The 92 trials were not

matched because there were either too few of the drugs listed to form a new term,

too few diseases associated with the drug to form a new term, the drugs listed were

too general or were not actually drugs (see Table D.7). The 8 trials with drugs that

were not in the thesaurus were automatically filtered because they only showed up

once (5 trials), were in the English dictionary (2 trials) or were manually filtered (1

trial). The 5 trials that only showed up once could have been mapped to other terms

in the thesaurus, but were not found using Levenshtein distance because of unique

word ordering or the use of acronyms.
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Error Number Notes
Missing a drug 4 3 of the 4 were missing because they were not listed in

the drug field or because the drug did not occur often
enough to become its own term in the vocabulary.

Incorrect 0
Approximate match 6 1. Lipid A vs. Glucopyranosly Lipid A

2. Meningococcal Vaccines vs. Meningococcal B Vaccine
3. Peginterferon vs. Peginterferon a2
4. CD133 vs. CD133+ cells
5. Insulin vs. Basal Insulin
6. t-cells vs. Xcellerated T Cells

Table D.6: Evaluation of 216 randomly selected mappings from drug strings. There were three
possible types of errors: "Missing a drug" indicates that the extracted term was partially correct,
but did not include all drugs listed in the original string. "Incorrect" indicates that the drug in
the original string and the drug in our data set are not the same. "Approximate match" indicates
the original drug is somewhat different from the drug extracted to our data set. The notes section
under "Approximate match" shows the extracted term compared to the original term. We randomly
selected 100 trials and those trials contained 216 drugs total.
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Reason no match Number Notes
Too few trials 45 The drug only showed up in 2 or fewer trials.
Too few disease 18 Though the drug show up in 3-10 trials, it only showed

up with 2 or fewer diseases.
Too general 17 These terms could be considered drugs, but were too gen-

eral or too vague to be its own term (e.g. "hormonal con-
traceptive" or "Alcon investigational agent" where Alcon
was the company).

Not a drug 12 Examples: "blood collection," "phenotypical approach,"
"ling," "5mg," "10mg"

Missed mappings 8 1. "AC-170" [5 trials] manually filtered
2. "donor natural killer cell infusion" [various trials] fil-
tered because of English words
3. "psilocybin" [14 trials] In English dictionary because
a recreation drug
4. "Multivitamins (including B, C and E)" [1 trial] word
order
5. "EIA chemotherapy" [1 trial] too few, but EIA is an
acronym for 3 drugs
6. "IC Green" [1 trial] too few, acronym for indocyanine
green
7. "acid Zoledronic" [1 trial] too few, word order
8. "EBV-Specific CTLs and CD45 Mab" J1 trial] too
few, uses acronyms

Table D.7: Evaluation of 100 random drug strings that were not mapped to drug terms. The
left column gives the reasons why a string was not mapped to a term in our data set and the
middle column shows how many and the right column gives an explanation of the reasons. The
missed mappings represent drugs that could have been included in our data set, representing a false
negative rate of 8%. The notes for missed mappings includes the drug substring that was missed,
how many trials it showed up in and why it was not mapped to a drug term in our data set.
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D.5 Disease Representation

The inspiration for the drug-based disease representation came from an examination

of specific blockbuster drugs. We noted that even though a blockbuster drug was

approved for a only one or a few indications, it was often tested on a wide variety

of diseases in clinical trials. It appears that once a blockbuster drug is approved,

the number of trials involving goes up exponentially. With sufficiently many trials

creating relationships between drugs and diseases, it is possible to analyze them as

a connected web. Such an analysis is reminiscent how social networks are analyzed.

By now there are sufficient trials and sufficient diversity to create a representation

based of disease based on drugs.

We further noted in our explanation that there appeared to be two types of

trials performed on a blockbuster drug. One type revolves around the approved

indication where similar diseases are tested or the original indication is tested along

with a secondary indication. The other type of exploration appears unrelated to

the original indication with trials including a wide variety of diseases. This insight

allowed us to filter the data to preserve the strongest relationships between disease

noted by the first type of exploration.

D.6 Network Connectivity

For space constraints we do not visualize the Disease-Trial-Drug Network (DTDN)

nor the complete Disease-Disease Network (DDN), but we plot the distribution of

node connectivity for each in D-5.
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Figure D-5: Degree distribution of nodes in the Disease-Trial-Drug Network (DTDN) and the
Disease-Disease Network (DDN). For each plot, the y-axis shows proportion of nodes P(k) while
the x-axis shows the degree. Note that (a) log-log plot while (b) is a log-linear plot. (a) The DTDN
Disease-Drug Network degree distribution follows a power law with coefficient - = 1.8 as shown
with the red fit line. (b) The DDN degree distribution follows an exponential distribution with
coefficient y = .0018 as shown with the red fit line.

D.7 Network Layout

Our purpose in displaying the network is to show similarity between nodes approxi-

mated by proximity, so a natural approach for a layout is a force-direct algorithm. [280]

The basic idea is set up a system of forces drawing nodes together and push-

ing them apart, then solve for the minimum energy of the system. The "spring

force" attracts nodes proportional to some function of distance and weighting of the

edge. [281, 282, 283] A repulsive force can be used to space nodes apart, which is

often proportional to 1/distance between the nodes. It could also be proportional

to degree of the two nodes[283] which can be useful for scale-free networks[225] that

have some highly connected nodes as in our case. We chose to experiment with

the Fruchterman and Reingold,[281] Kamada and Kawai[282] and ForceAtlas2[284]

methods.
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All of the three algorithms use simulated annealing to minimize the energy of

the system because it is more likely to find a global optimum.[247] Each algorithm

starts with nodes at random positions and the final position may depend on those

starting positions. Running an algorithm different times will yield different absolute

positions, but we are interested in the relative position of each node to others.

To ensure that relative distance between nodes did not depend on starting posi-

tion and did not vary strongly by algorithm, we measured the variance of distance

between every node for 10 independent layouts generated by each of our three algo-

rithms. We plot a histogram of the more than 125,000 variances and normalize the

histogram so the integral equals 1 as seen in Figure D-6. The histogram indicates

what proportion of nodes stay the same distance away from each other over multiple

runs of the layout algorithm. If our layout is consistent, we would expect the dis-

tance between most pairs of nodes to be relatively constant while distance between

some pairs of nodes would be relatively random because they are unrelated or distant

on the graph. For a reference distribution we simulated a distribution of randomly

placed nodes on the same size plot. We see our layouts have variance distributions

shifted strongly toward zero indicating the relative distances in our network plot can

be reproduced consistently.
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Figure D-6: Small variations in distance between node pairs indicates the plotting algorithms are
consistent. Three different force-direct network layout algorithms were used to plot the disease-
disease network 10 times each on the same scale. The variance in Euclidean distance between the
same pairs of nodes was calculated and a histogram of all such variances is plotted. There were
more than 125,000 node pair distances for each plot. The variance for a random layout is also
shown. The vast majority of node pair distance change very little independent of the algorithm or
if the algorithm is run several times. There are some node pairs that do appear to be more random,
which may be the result of weakly connected nodes in the network that therefore end up in more
random locations.

D.8 MeSH Categories

We use the subtrees "Diseases[C]" and "Pyschiatry and Psychology[F]" to catego-

rize the diseases and to compare the DDN with the HDN (see Table D.8). We do

not include "Bacterial Infections and Mycoses [CO1]," "Virus Diseases [C02]," "Para-

sitic Diseases [C03]," "Male Urogenital Diseases [C12]," "Female Urogenital Diseases
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and Pregnancy Complications [C13]" because they were not included in the HDN.

We also do not include "Disorders of Environmental Origin [C21]," "Animal Dis-

eases [C22]," "Pathological Conditions, Signs and Symptoms [C23]," "Occupational

Diseases [C24]," "Chemically-Induced Disorders [C25]," and "Wounds and Injuries

[C26]" because they do not partition the human disease space.

MeSH Categories MeSH Tree Number HDN Categories
Bone and Joint C05.116/C05.550 Bone
Neoplasms C04 Cancer
Cardiovascular Diseases C14 Cardiovascular
Connective Tissue Diseases C17.300 Connective tissue
Skin Diseases C17.800 Dermatological
Congenital, Hereditary, and Neonatal C16 Developmental
Diseases and Abnormalities
Otorhinolaryngologic Diseases and C09/C07 Ear, Nose, Throat
Stomatognathic Diseases
Endocrine System Diseases C19 Endocrine
Digestive System Diseases C06 Gastrointestinal
Hemic and Lymphatic Diseases C15 Hematological
Immune System Diseases C20 Immunological
Metabolic Diseases C18.452 Metabolic
Muscular Diseases C05.651 Muscular
Nervous System Disease C10 Neurological
Nutrition Disorders C18.654 Nutritional
Eye Diseases C11 Ophthamological
Psychiatry and Psychology F Psychiatric

Renal
Respiratory Tract Diseases C08 Respiratory

Skeletal
Multiple Multiple
None Unclassiffied

Table D.8: MeSH categories and Human Disease Network categories. MeSH categories for disease
nodes were selected based on the subtrees of the "Diseases [C]" and "Psychiatry and Psychology
[F]." We modified these categories slightly to be able to make direct comparisons with the Human
Disease Network.

Each disease that is a MeSH descriptor has one or more tree numbers. Those
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that are a MeSH concept point to one or more descriptors. For each disease we

can therefore trace it to one or more tree numbers and move up the tree to the

categories listed in the table. If it fits under more than one heading (e.g. - 'Colorectal

Neoplasms' shows up under 'Digestive System Diseases' and 'Neoplasms'), we assign

it to one of the categories if more than 66% of the categories are the same, otherwise

it is classified as "multiple."

D.9 Binomial Testing

We use a one-tailed binomial test to compare overlap of the disease-disease network

(DDN) with other data sources. The test is based on the binomial distribution . For

comparing the DDN to MeSH, we test how many edges are between nodes of the

same MeSH category compared to randomly distributed edges. In this case, n is the

number of edges in our graph, k is the number of edges between nodes of the same

MeSH category and p is the probability of randomly placing an edge between nodes

of the same category. We calculate p as the total possible edges between nodes of

the same category divided by the total number of possible edges in the graph.

For comparing the DDN to the HDN, we look at the subset of nodes that are

exactly the same in each network and test how many edges are the same in each

graph compared to randomly distributed edges. In this case, n is the number of

edges in the DDN subset network, k is the number of edges exactly the same in both

subset networks, and p in the probability of randomly placing an edge correctly in

the HDN subset. We calculate p as the number of edges in the HDN subset divided

by the total possible edges in the HDN subset.

For comparing the DDN with MeSH and the HDN for each category, we ran 1000

Monte Carlo simulations to randomly assign edges for the nodes in the network. To
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calculate the NNI we also ran the layout algorithm for each of the 1000 randomly

connected networks. Table D.9 shows the p-values calculated for comparing the DDN

and the MeSH taxonomy by categories. Table D.10 show the p-values calculated for

comparing the DDN and the HDN by categories.

MeSH Categories NNI p-value Shortest Path p-value
Bone and Joint <.001 <.001
Cardiovascular <.001 <.001
Connective Tissue .160 .722
Developmental .877 <.001
Digestive <.001 <.001
Ear, Nose and Throat .034 <.001
Endocrine .016 <.001
Eye <.001 <.001
Hemic and Lymphatic <.001 <.001
Immunological .245 <.001
Metabolic <.001 <.001
Muscular .333 .065
Neoplasms <.001 <.001
Nervous System .002 <.001
Nutrition .003 <.001
Pyschiatric <.001 <.001
Respiratory <.001 <.001
Skin .339 .981

Table D.9: Statistical significance of clustering by category relative to MeSH. One-tailed p-values
were calculated using 1000 Monte Carlo simulations to randomly assign edges between the nodes
in the network and layout each network with the same algorithm used to display the DDN. Of the
15 categories with more than 10 nodes, 13 have a significantly smaller NNI (p<.05) and 14 have a
significantly smaller average shortest path within the category compared to without (p<.05). The
NNI represents a clustering of the physical layout in 2 dimensions and the shortest path represents
clustering strictly in terms of network connectivity.
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MeSH Categories Degree Fraction p-value Shortest Path p-value
Bone and Joint <.001 <.001
Cardiovascular <.001 <.001
Connective Tissue <.001 .950
Developmental <.001 ..002
Digestive <.001 <.001
Ear, Nose and Throat <.001 <.001
Endocrine <.001 <.001
Eye <.001 <.001,
Hemic and Lymphatic <.001 <.001
Immunological <.001 <.001
Metabolic <.001 <.001
Muscular - .253

Neoplasms <.001 <.001
Nervous System <.001 .001
Nutrition .003 <.001
Pyschiatric <.001 <.001
Respiratory <.001 <.001
Skin .941

Table D.10: Statistical significance of clustering by category relative to the Human Disease Net-
work (HDN). The one-tailed p-values were calculated using 1000 Monte Carlo simulations to ran-
domly assign edges between the same collection nodes of nodes as in the DDN. The categories
that had at least one pair of nodes directly connected all showed significant differences except for
"Connective Tissue." The degree fraction represents connectivity within the same category and
shortest path represents connectivity but takes into account indirect connections.

D.10 Drug Predictions Using MeSH

We used distance in the MeSH hierarchy to predict drugs in the test set for a disease

based on proximity to drugs in the training set. We define distance as the number of

links in the tree structure between two drugs in MeSH. If the drug shows up multiple

times in MeSH it is the minimum of all such distances. We then rank potential

test drugs by the minimum distance between the test drug and all training drugs.

The highest ranked predictions are then those that are closest to one or more of the
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training drugs. The histogram of all AUC's in our data is plotted in Figure D-7

compared to the histogram for random predictions.
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Figure D-7: Histogram of AUC's for drug predictions for each disease compared to random.
Histogram of all disease AUC's (red) along with the distribution of AUC's for random predictions
(cyan). For each disease, a score was obtained by collaborative filtering which was used to prioritize
drugs. An AUC was then calculated by comparing the drug scores and the drugs tested in trials
for that disease. The collection of all AUC's was used to create the histogram in red. The training
data set includes all trials before January, 2011 given and the test data set includes trials after
January, 2011. The blue histogram was calculated by generating random scores and comparing to
the test data.

Specific examples of predictions are shown in Table D.11. A large MeSH predic-

tion often meant that the predicted drug was close to one of the test drugs, such

as "Testosterone" and "testosterone undecanoate" or "Botulinum Toxins" and "Bo-
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tulinum Toxins, Type A." Canakinumab is close to Interleukin-1 in MeSH because

it is an Interleukin-1 beta blocker. To provide intuition for the meaning of AUCs,

there are 7,671 drugs in the data set, so an AUC of 0.99 would indicate drugs in the

test set would be included in approximately the top 77 predicted drugs.

D.11 Neighborhood Connectivity

One of the advantage of a network model is to capture indirect relationships among

elements. Direct relationships are modeled as the edges between nodes in a network,

but two nodes can have a relationship indirectly through other nodes. For example,

if node A and B have no edge, but A and B are both connected to C, D and E then

we might conclude that A and B are indeed related. Figure D-8 plots the number

of trials and drugs for a given disease along with the degree of neighbors. There are

many cases where the neighborhood size does not scale with the number of trials or

drugs, indicating information in the network connectivity.
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Disease Drugs in Training Set DDN Nave Unique Drugs in Test Set
AUC AUC

Brain Concussion Magnesium Sulfate 0.98 0.58 Melatonin
Metoclopramide Fatty Acids, Omega-3[285]

- Progesterone
* docosahexanoic acid[285]
- resveratrol
- Ondansetron

Polypoidal Choroidal bevacizumab 0.99 0.49 1-phenyl-3,3-dimethyltriazene
Vasculopathy combretastatin - Aflibercept[286]

- fosbretabulin salicyihydroxamic acid
* ranibizumab
- verteporfin

Heart Block Adrenal Cortex Hormones 0.97 0.08 Hydroxychloroquine[287]
* Dexamethasone
* Immunoglobulins, Intravenous

Bulimia duloxetine 0.97 0.81 Liraglutide[288]
- orlistat
* sibutramine
- topiramate

Adenomatous Polyps Aspirin 0.99 0.17 - Metformin[289
* beta-Glucans

Calcitriol
- Calcium
- Curcuminoids

DFMO
* Eflornithine

Eicosapentaenoic Acid
- erlotinib
- Polyethylene Glycols

Adenomatous Poly- - celecoxib 0.98 0.38 Metformin[2891
posis Coli Curcumin

- Eicosapentaenoic Acid
- erlotinib

Inulin
* MK0966
* Probiotics
- rofecoxib
- Starch
- Ursodeoxy
- DFMO

Eflornithine
- Sulindac

Eisenmenger Com- bosentan 0.96 0.42 Citrulline
plex sildenafil Epoprostenol

* tadalafil Iloprost[290]
- malic acid

Schnitzler Syndrome givinostat hydrochloride 1.0 0.99 Canakinumab[291, 292]
- rilonacept
* Interleukin-1

Hypogonadotrophic testosterone undecanoate 1.0 0.99 Testosterone
Males - vardenafil
Crow's Feet - onabotulinumtoxinA 1.0 0.99 - Botulinum Toxins

Botulinum Toxins, Type A

Table D.11: Drugs in training and test sets for select diseases with large AUCs showing prediction
potential of DDN data. Diseases are shown on the left with the drugs in the training set (trials
before 2011), the AUC for that disease using our data, the AUC for that disease using a closest
drugs in MeSH approach (see Appendix:Methods) and the unique predicted drugs in the test set.
References are given for some test drugs predicted showing recent research that suggests a confirmed
link between that drug and the disease. The first seven diseases were selected where the DDN
prediction AUCs were much larger than the MeSH prediction AJCs. The final three show cases
where the AUCs are close.
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