Grounding Natural Language with Autonomous

Interaction MAsssgv%xégmongqugn}nE
by OCT 26 2017
Karthik Rajagopal Narasimhan BRARIES
B.Tech., Indian Institute of Technology, Madras (2012) ARCHIVES

S.M., Massachusetts Institute of Technology (2014)

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2017
(© Massachusetts Institute of Technology 2017. All rights reserved.

Author Slgnature redaCted

Department of Electrical Engineering and Computer Science
August 24, 2017

ey, SigNAtUre redacted

Regina Barzilay

Professor of Electrical Engineering and Computer Science

) Thesis Supervisor

Accepted by Slgnature redacted
/) U Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science

Chair of the Committee on Graduate Students

Grounding Natural Language with Autonomous Interaction
by
Karthik Rajagopal Narasimhan

Submitted to the Department of Electrical Engineering and Computer Science
on August 24, 2017, in partial fulfillment of the '
requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

The resurgence of deep neural networks has resulted in impressive advances in nat-
ural language processing (NLP). This success, however, is contingent on access to
large amounts of structured supervision, often manually constructed and unavailable
for many applications and domains. In this thesis, I present novel computational
models that integrate reinforcement learning with language understanding to induce
grounded representations of semantics. Using unstructured feedback, these tech-
niques not only enable task-optimized representations which reduce dependence on
high quality annotations, but also exploit language in adapting control policies across
different environments.

First, I describe an approach for learning to play text-based games, where all
interaction is through natural language and the only source of feedback is in-game
rewards. Employing a deep reinforcement learning framework to jointly learn state
representations and action policies, our model outperforms several baselines on dif-
ferent domains, demonstrating the importance of learning expressive representations.

Second, I exhibit a framework for utilizing textual descriptions to tackle the chal-
lenging problem of cross-domain policy transfer for reinforcement learning (RL). We
employ a model-based RL approach consisting of a differentiable planning module, a
model-free component and a factorized state representation to effectively make use of
text. Our model outperforms prior work on both transfer and multi-task scenarios in
a variety of different environments.

Finally, I demonstrate how reinforcement learning can enhance traditional NLP
systems in low resource scenarios. In particular, I describe an autonomous agent
that can learn to acquire and integrate external information to enhance information
extraction. Our experiments on two databases — shooting incidents and food adul-
teration cases — demonstrate that our system significantly improves over traditional
extractors and a competitive meta-classifier baseline.

Thesis Supervisor: Regina Barzilay
Title: Professor of Electrical Engineering and Computer Science

Acknowledgements

This thesis is the culmination of an exciting five-year journey and I am grateful
for the support, guidance and love of several mentors, colleagues, friends and family
members. The most amazing thing about MIT is the people here — brilliant, visionary,
and dedicated to pushing the boundaries of science and technology. A perfect example
is my advisor, Regina Barzilay. Her enthusiasm, vision and mentorship have played a
huge role in my PhD journey and I am forever indebted to her for helping me evolve
into a competent researcher.

I would like to thank my wonderful thesis committee of Tommi Jaakkola and
Luke Zettlemoyer. In addition to key technical insights, Tommi has always patiently
provided sound advice, both research and career related. Luke has been a great
mentor, and much of his research was a big source of inspiration during my initial
exploration into computational semantics.

I have also had some great mentors over the last few years. In particular, SRK
Branavan and Tao Lei provided valuable advice during my initial years into the pro-
gram. Dipanjan Das provided valuable research and career advice during my time
at Google. I also wish to thank my amazing collaborators — Tejas Kulkarni, Arda-
van Saeedi, Adam Yala, Jiaming Luo, Michael Janner, Damianos Karakos, Richard
Schwartz, Stavros Tsakalidis, Jonathan Huggins, Kayhan Batmanghelich, Nicholas
Locascio, Eduardo DeLeon, Nate Kushman, Josh Tenenbaum, Sam Gershman and
my advisor Regina Barzilay.

My labmates, both current and former, have been a big part of my life at MIT,
ranging from intellectual research discussions to fun social events — thanks to Tahira
Naseem, Yoong Keok Lee, Yevgeni Berzak, Yonatan Belinkov, Zach Hynes, Yuan
Zhang, Darsh Shah, Wengong Jin, Tianxiao Shen, Benson Chen and Abdi Dirie. I
would also like to acknowledge our group’s administrative assistant, Marcia Davidson,
for patiently helping me out with any issue, big or small. Special thanks to the
CSAIL and EECS communities at MIT for fostering the perfect research atmosphere,

balanced with ample opportunity for social interaction.

5

I have been extremely lucky to have wonderful family and friends who have sup-
ported me through this journey. My parents and brother — Uma, Narasimhan and
Bharath — have always encouraged me to aim higher and not rest on past achieve-
ments. My uncle Narayan and his family helped me adjust to a new country and
made sure I always had someone to visit during the holidays. Several close friends —
Julian, Diego, Karthick, Mikhil, Ankur, Rushabh, Andreaa, Vikas, Vaibhav, Sanket,
Suvinay, Anirudh, Rahul and Yewen — were big sources of support and made sure I
had enough play to balance out the workload. Finally, I am grateful to Ramya, whose
love and care helped me handle the ups and downs of PhD life. Meeting her was one

of the best things that happened to me at MIT.

Bibliographic Note

Portions of this thesis are based on prior peer-reviewed publications. The autonomous
player for text-based games, presented in Chapter 2, was originally published in
Narasimhan et al. [78]. The system for improving information extraction with re-
inforcement learning (Chapter 4) was published in Narasimhan et al. [79]. Finally,
a version of the technique for transfer in reinforcement learning by grounding lan-
guage [77] is currently under peer-review.

The code and data for the techniques presented in this thesis are available at

https://github.com/karthikncode

Contents

1 Introduction 23
1.1 Language understanding for text-based games 29
1.2 Policy transfer via language grounding 31
1.3 Improved information extraction with reinforcement learning 34
1.4 Contributions 36
1.5 Outline. 37

2 Language Understanding for Text-based Games 39
2.1 Introduction 39
2.2 Related Work 43

2.2.1 Leveraging text for control applications 43
2.2.2 Linguistic analysis for games 43
2.2.3 Deep reinforcement learning for game playing 44
2.3 Background 45
2.3.1 Game Representation 45
2.3.2 Q-Learning 45
2.3.3 Deep Q-Network, 46
2.4 Model architecture Lo 48
2.4.1 Representation Generator (¢g) 48
2.4.2 Action Scorer (@) 50
2.5 Parameter Learning 52
2.6 Experimental Setup 54
2.6.1 Game Environment L. 54

2.6.2 Evaluation 56
2.6.3 Baselines. 56
2.6.4 Implementation details 57
2.7 Results. o8
271 HomeWorld. o8
2.7.2 Fantasy World 58
2.7.3 Analysis 60
2.8 Conclusions e 66
Policy Transfer via Language Grounding 69
3.1 Introduction 69
3.2 Related Work 73
3.2.1 Grounding language in interactive environments 73
3.2.2 Transfer in Reinforcement Learning 73
3.3 General Framework L o 75
3.3.1 Environment Setup L 75
3.3.2 Reinforcement learning (RL) 75
3.3.3 Text descriptions 76
334 Transferfor RL 77
3.4 Model 78
3.4.1 Representation generator 78
3.4.2 Value iterationnetworko 79
3.4.3 Final prediction 81
3.44 Parameter learningo 82
3.4.5 Transfer procedure 83
3.5 Experimental Setup oL 84
3.5.1 Environments 84
3.5.2 Text descriptions 85
3.5.3 Evaluation metrics 0oL 85
3.5.4 Baselines. 86

3.5.5 Implementation details 86

3.6 Results. 88
3.6.1 Transfer performance 88
3.6.2 Multi-task performance 91
3.6.3 Analysis L 91

3.7 Conclusions e 94

Improved Information Extraction with Reinforcement Learning 95

4.1 Introductiono 95

4.2 Related Work oo 100
4.2.1 Open Information Extraction 100

4.3

4.4

4.5

4.6

4.2.2 Entity linking, multi-document extraction and event coreference 100

4.2.3 Knowledge Base Completion and Online Search 100
Framework 102
4.3.1 States 102
4.3.2 Actions 103
433 Rewards 105
4.3.4 Queries 105
4.3.5 Transitions 106
Reinforcement Learning for Information Extraction 108
441 Model 108
4.4.2 Parameter Learningo 110
Experimental Setup 111
451 Data 111
4.5.2 Base Extraction System 112
4.5.3 Evaluation 113
454 Baselines. L 113
455 RLmodels. 115
4.5.6 Implementation details 115
Results 116

4.6.1 Extraction Accuracy oL

4.6.2 Analysié

4.7 Conclusions . .

5 Conclusions

..............................

..............................

A Language Understanding for Text-based Games

A.1 Environment details

A.1.1 Rewards

A12 HomeWorld

B Policy Transfer via

Language Grounding

B.1 Example text descriptions oo

B.1.1 Freeway

B.1.2 Friends and Enemies

B.1.3 Bomberman

B.1.4 Boulderchase

B.2 Reward curves .

C Improved Information Extraction with Reinforcement Learning

C.1 Query templates

12

123

125
125
125
126

127
127
127
128
128
128
129

131

List of Figures

1-1

1-2

1-3

Examples of text that can influence behavior of an autonomous system
in interactive environments. The top box contains ‘instructions’ that
can be directly mapped to actions, while the bottom one consists of

‘descriptions’ that correspond to dynamics of the environment.

Example of a text-based adventure game (Zork). The text on the left
is what a player gets to observe, while the game engine keeps track of
the hidden state. When the player inputs a command, such as OPEN
MAILBOX, the game transitions to a different state, and presents the

player with the next component of the narrative..

Two different game environments: Boulderchase (top) and Freeway
(bottom), along with associated descriptions in text. Some entities
across these games have similar behaviors. For instance, both the dia-
mond in Boulderchase and the tree in Freeway are motionless objects.
This fact might take the agent several episodes of interaction to dis-

cover, but is clearly discernible from the text.

13

24

30

1-4

2-1

2-2

2-3

2-4

2-5

Overview of our approach to information extraction. While traditional
models perform a single extraction (plus any additional reasoning) from
the original article, our method searches for other related articles on
the web and aggregates information spread across these documents.
We build an RL model that learns to perform both querying and value
reconciliatioh, without need for any extra annotations. As our exper-
iments demonstrate, our system obtains significant performance gains

over traditional systems and simple aggregation baselines.

Sample gameplay from a text-based fantasy adventure. The player
has the quest of finding a secret tomb, and is currently located on an
unstable old bridge (State 1). If the wind blows hard enough, the player
will tumble down into the valley. She chooses an action by typing the
command GO EAST, which brings her to a ruined gatehouse (State 2).
Note how each state description is quite long and requires interpreting

several aspects (and ignoring others) to respond appropriately.

Sample transition in a text-based game. Although the game state is
tracked in a structured form (h), the player only observes the state

descriptions s, based on which she chooses actionsa.

Architecture of LSTM-DQN: The Representation Generator (¢g) (bot-
tom) takes as input a stream of embeddings corresponding to words
observed in state s and produces a single vector representation vs. This
vector is then fed into the action scorer (¢4) (top) to produce Q-values

for all actions and argument objects.

Evolution of average reward (top) and quest completion rate (bottom)

for various baselines and our model (LSTM-DQN) on the Home world.

Evolution of average reward (top) and quest completion rate (bottom)
for various baselines and our model (LSTM-DQN) on the Fantasy

world. Reward here is shown in log scale.

14

35

40

46

99

2-6

2-7

2-8

3-1

3-3

3-4

Quest completion rates of DQN vs. Linear models on Home world.
The graph clearly demonstrates the advantage of using deeper models

to approximate the action value function. 62

Transfer learning in the Home world. For the Transfer condition, a
model was trained on a different world configuration (with same vo-
cabulary), and the learned parameters of the representation generator

(¢r) are used in initializing the new model. 63

Effect of prioritized sampling on learning in the Home world. Priori-

tized sampling leads to faster convergence to an optimal control policy. 64

t-SNE visualization of word embeddings (except stopwords) after train-
ing on Home world. Note that these embedding values are initialized

to random and learned using only in-game rewards. 65

Examples of two different game environments, Boulderchase (top) and
Bomberman (bottom). Each domain also has text descriptions associ-
ated with specific entities, describing characteristics such as movement

and interactions with the player’s avatar. 71

Example text descriptions of entities in different environments, col-

lected using Amazon Mechanical Turk. 77

Representation generator combining both object-specific and description-
informed vectors for each entity. Each cell in the input state (2-D ma-
trix) is converted to a corresponding real-valued vector, resulting in a

3-D tensor output. 79

Value iteration network (VIN) module to compute Q.;, from ¢(s, Z).
The module approximates the value iteration computation using neural
networks to predict reward and value maps, arranged in a recurrent
fashion. Functions fr and fr are implemented using convolutional
neural networks (CNNs). d; is a selection function to pick out a single

Q-value (at the agent’s current location) from the output Q-value map

QM) 80

3-6

4-1

4-2

Reward curve for transfer condition F&E-1 — Freeway. Numbers in
parentheses for TEXT-VIN indicate k value. All graphs were averaged
over 3 runs with different seeds, with shaded areas representing boot-
strapped confidence intervals. Curves for other transfer conditions are

provided in Appendix B.o oo

Reward curve for multitask learning in F&E-2. Numbers in parentheses
for TEXT-VIN indicate k value. All graphs were produced by averaging
over 3 runs with different seeds; shaded areas represent bootstrapped

confidence intervals.

Value maps, V(k)(s, Z), produced by the VIN module for (a) seen en-
tity (friend), (b) unseen entity with no description, (c) unseen entity
with 'friendly’ description, and (d) unseen entity with ’enemy’ descrip-
tion. Agent is at (4,4) and the non-player entity is at (2,6). Note how
the model can construct a reasonably accurate value map for unseen

entities using their descriptions.o

Sample news article (top) and desired extractions (bottom) for a mass
shooting case in the United States. The article contains both the name
of the shooter as well as the number of people killed, but both pieces
of information require complex extraction techniques (e.g. reasoning
‘a couple and four children’ equals six, or ‘suspected suicide’ implies

the shooter was Scott Westerhuis).

Two other articles on the same shooting case shown in Figure 4-1. The
first article clearly mentions that six people were killed. The second

one portrays the shooter in an easily extractable form.

16

90

90

93

96

4-3 Illustration of a transition in the MDP — the top box in each state
shows the current entities and the bottom one consists of the new
entities extracted from a downloaded article on the same event. At
each step, the system makes two choices — a reconciliation decision (d)

and a query selection (q), resulting in a corresponding evolution of the

4-4 Sample state representation (right) in the MDP based on current and
new values of entities (left). The different parts of the state are —
currentConf: confidence scores of current entities, newConf: confi-
dence scores of new entities, matches between current and new values,
docSim: tf-idf similarity between original and currently inspected doc-
ument, and context: tf-idf counts of context words. 104
4-5 Architecture of the deep Q-network (DQN), whose input is the state
vector described in Section 4.3.1 and outputs are Q-values for both
query and reconciliation decisions. L. 109
4-6 Schematic of the working of the meta-classifier. The base extractor is
applied to both the original article and all extra articles downloaded
using the corresponding queries. The meta-classifier takes a reconcilia-
tion decision for each pair of (original article, extra article) to produce
sets of reconciled values. Finally, these values are aggregated using
confidence scores to obtain the final set of values. 114
4-7 Evolution of average reward (solid black) and accuracy on various enti-

ties (dashed lines; red=Shooter Name, magenta=NumKilled, blue=Num Wounded,

green=City) on the test set of the Shootings domain. 118
A-1 Rooms and objects in the Home World with connecting pathways. . . 126
B-1 Example text descriptions of entities in Freeway. 127

B-2 Example text descriptions of entities in Friends and Enemies (F&E). 128
B-3 Example text descriptions of entities in Bomberman. 128

B-4 Example text descriptions of entities in Boulderchase. 128

17

B-5 Reward curve for transfer condition F&E-1 — F&E-2. Numbers in
parentheses for TEXT-VIN indicate k value. All graphs averaged over
3 runs with different seeds; shaded areas represent bootstrapped con-
fidence intervals. L

B-6 Reward curve for transfer condition Bomberman — Boulderchase. Num-
bers in parentheses for TEXT-VIN indicate k value. All graphs averaged
over 3 runs with different seeds; shaded areas represent bootstrapped

confidence intervals.

18

List of Tables

2.1

2.2

3.1

3.2

3.3

3.4

3.5

Various statistics for the two game worlds.

Sample descriptions from the Fantasy world and their nearest neighbors
according to their vector representations from the LSTM representa-
tion generator. The NNs are often descriptions of the same or similar

(nearby) states in the game.

Number of source and target game instances for different transfer con-

ditions.

Overall statistics of the text descriptions collected using Mechanical

Transfer learning results under the various metrics for different domains
(Avg. is average reward over time, Asymp. is asymptotic reward).
Numbers in parentheses for TEXT-VIN indicate k value. TEXT- models
make use of textual descriptions. The max reward attainable (ignoring
step penalties) in the target environments is 2.0, 1.0 and at least 25.0
in F&E, Freeway and Boulderchase, respectively. Higher scores are

better; bold indicates best numbers.
Scores for multitask learning over 20 games in F&E-2.

Transfer results using different input representations with TEXT-VIN
(3). Text only means only a text-based vector is used, i.e. ¢(s) =

v,(s,Z). Text+entity ID refers to our full representation, ¢(s) =
[02(8, Z);06(8)]. + v o o

3.6

4.1

4.2

4.3

4.4

4.5

Average rewards in Bomberman — Boulderchase with different text
representations: Sum of word vectors, or an LSTM-based recurrent

neural network over the entire sentence.

Examples of different query templates for web search for articles on
mass shootings. The last four queries contain context words around
values for entity types ShooterName, NumKilled, NumWounded and
City, respectively. The | symbol represents logical OR. At query time,

(title) is replaced by the source article’s title.

Number of articles in the Shootings and Adulteration datasets.

Different types of dictionary-based binary features used in our Max-
imum Entropy classifier. These features are calculated both for the

current word and words in the surrounding context.

Accuracy of various baselines (italics), our models (RL-) and the OR-
ACLE on Shootings and Adulteration datasets. Agg. refers to aggre-
gation baselines. Bold indicates best system scores. *statistical sig-
nificance of p < 0.0005 vs basic Maxent extractor using the Student-t
test. Numbers in parentheses indicate the optimal threshold (7) for
the aggregation baselines. Confidence-based reconciliation was used

for RL-Query. e

Sample predictions (along with corresponding article snippets) on the
Shootings domain. RL-Extract is able to produce correct values where
the basic extractor (Maxent) fails, by retrieving alternative articles

suited for easier extraction. o

106

112

112

117

4.6

Al

C.1

Effect of using different reconciliation schemes, context-vectors, and
rewards in our RL framework (Shootings domain). The last row is the
overall best scheme (deviations from this are in italics). Context refers
to the type of word counts used in the state vector to represent entity
context. Rewards are either per step or per episode. (S: ShooterName,
K: NumKilled, W: NumWounded, C: City, Steps: Average number of
steps per episode)

Reward structure used in the two game worlds.

Examples of different query templates used by our model in web searches
for articles on food adulteration. The | symbol represents logical OR.
The last three queries contain context words around values for en-
tity types Location, adulterant and food, respectively. At query time,

(title) is replaced by the source article’s title.

21

125

22

Chapter 1

Introduction

A long-standing goal of artificial intelligence has been to enable computers to under-
stand human languages. Progress in this field will increase the ability of autonomous
systems to access, manage and exploit the vast amount of human knowledge collected
in textual form. An important development in this direction has been the resurgence
of deep learning techniques in natural language processing (NLP), bringing about
impressive advances in applications like machine translation [67, 7, 65|, speech recog-
nition [49, 28] and automated question answering [51, 84, 121]. The success of these
neural network approaches, however, is contingent upon access to large amounts of
training data, often manually annotated. Large-scale supervision is often quite ex-
pensive to obtain, and unobtainable for many tasks and domains. A key research
direction, therefore, is the development of NLP techniques that can operate without
requiring substantial supervision. In this thesis, I present systems that directly com-
bine semantic interpretation with autonomous interaction in environments, alleviating
the need for prohibitive amounts of structured annotation.

Traditional approaches to semantics in computational linguistics have sought to
encapsulate the meaning of text into various formal structures. Such formalisms in-
clude semantic role labels (SRL) [83], semantic parse trees [8, 62], and first-order
expressions [89, 11]. Although recent research has demonstrated noticeable improve-

ments on several of these benchmarks, employing these formalisms effectively in tar-

23

Face the octagon carpet. Move until you see red brick floor to your right. Turn }
and walk down the red brick until you get to an alley with grey floor. You should |
be two alleys away from a lamp and then an easel beyond that. Go forward one
segment to the intersection with the pink-flowered carpet.

The brown scorpions will slowly move towards the player. The red bat also chases
the player. The pickaze can be used to dig the earth. Diamonds can be picked up
by the player. J

Figure 1-1: Examples of text that can influence behavior of an autonomous system
in interactive environments. The top box contains ‘instructions’ that can be directly
mapped to actions, while the bottom one consists of ‘descriptions’ that correspond
to dynamics of the environment.

geted applications remains a challenge. Further, there is no clear consensus within

the NLP community on the relative merits of these different designs.

In this thesis, I explore an alternative approach to language semantics: grounding
textual meaning directly on to control tasks in interactive domains. In these environ-
ments, there exists a flow of signals in two directions — an autonomous system takes
actions that change the world’s state, while receiving feedback based on certain crite-
ria. An agent is considered to have a ‘grounded understanding’ of language if it can
map words and sentences to the objects, dynamics and/or actions in its surroundings.
Consider the examples provided in Figure 1-1 for instance. The first piece of text is
instructive, providing turn by turn directions on the course of action. Learning a
mapping from these words to actions can help the agent successfully navigate the
environment. The second piece of text, on the other hand, describes activities in a
domain, and is hence more subtle. Here, the semantics can be mapped to the dynam-
ics of the environment, an understanding of which helps the agent plan its actions.
In both cases, successful completion of the end task indicates effective interpretation
of language.

This form of semantic interpretation provides two benefits. First, the need for

manual annotation is eliminated. There is no specific intermediate formalism required,

24

since the evaluation of a system is solely based on its ability to successfully navigate
the environment or complete the task. Second, this framework allows for inducing
semantic representations that are optimized for the eventual control task. This can
be achieved by developing models that permit joint learning of both representations
and control policies.

I investigate two directions of integrating language understanding with autonomous
interaction. The first scenario involves learning representations for text using rewards
from environments. Text comprehension is inherently contextual, and varies for each
specific situation. In this setup, we utilize the backdrop provided by the observations
in the environment to induce textual representations optimized for the task. The sec-
ond direction explores the use of knowledge encoded in text to assist policy learning
for control applications. The symbolic information carried by words and sentences
help connect different aspects of the control domain, enabling agents to learn faster
and more accurately. Together, these directions complement each other and form a
holistic view of semantic interpretation of language.

We tackle a few concrete challenges in the environments considered:

e Interpreting compositional language: While some understanding can be
performed at the word level, a complete semantic interpretation often requires
parsing higher-order structures in text. For instance, even though they contain
the same set of words, the difference between the instructions ‘Move to the right,
not the left’ and ‘Move to the left, not the right’ is quite significant in terms of
their implied actions sequences. Hence, we require an effective mechanism to

handle compositional aspects of language such as conjunction or negation.

e Performing the correct level of semantic mapping: As demonstrated
earlier in Figure 1-1, language can be grounded to various aspects of control,
such as actions or environment dynamics. Effectively leveraging the different
types of mapping requires an appropriate model representation. Further, in
each aspect, we are required to handle multiple levels of abstraction in semantic

concepts. Some are low-level (e.g. If you go east, you will be back on solid

25

ground), while some require world knowledge to infer consequences (e.g. The

bridge sways in the wind.).

e Handling Imperfect Text: There is no guarantee that the information pro-
vided in the text is complete. Further, some parts of the text might be irrelevant
to the current situation. We require methods that don’t overly rely on provided
descriptions, but instead integrate useful knowledge derived from text with ex-

perience obtained through direct interaction with the environment.

e Learning semantics from unstructured feedback: In contrast to super-
vised learning, the feedback obtained for control policies is in the form of scalar
values upon completion (or failure) of the task. This necessitates methods that

can leverage such unstructured feedback to learn useful grounding for text.

With these challenges in mind, we model our control tasks as Markov Decision Pro-
cesses (MDP). We then utilize the framework of Reinforcement Learning (RL) [105]
to induce control policies. As opposed to supervised learning, RL does not require
input-output pairs for learning, and tackles the problem of delayed feedback using
approximate dynamic programming [12]. Further, the stochastic nature of these en-
vironments is implicitly accounted for using a value function, which optimizes for
expected future reward over all possible outcomes. Moreover, state space approxima-
tion techniques in deep reinforcement learning provide us with the ability to generalize
well across large state spaces, with far less samples than the entire set of states.

I explore these techniques in the context of three different scenarios:

1. Language understanding for text-based games: Understanding natural
language is inherently contextual, requiring the perception and comprehension
of one’s environment for unambiguous interpretation. In spite of recent advance-
ments in several NLP applications, there has been limited work on integrated
frameworks for language comprehension grounded in interactive environments.
We consider the task of learning to play text-based games [27, 4] without any

prior knowledge of language. The agent is provided with a description of its

26

current state and can ‘act’ by writing text commands to the game environment.
The challenges lie in interpreting compositional text, identifying parts relevant
for choosing actions, and learning from sparse feedback. We assume no other

form of supervision other than the rewards inherent to the game environment.

. Policy transfer via language grounding: Natural language helps encode
world knowledge compactly, enabling people to adapt to different situations
in their lives. Using this insight, we develop autonomous agents that utilize
language to transfer control policies across different domains. Specifically, we
consider environments augmented with textual descriptions of their dynamics,
detailing movements and interactions of various entities without providing any
information about task objectives. In this case, understanding text is an aux-
iliary requirement; an autonomous agent can learn an optimal policy without
doing so. Comprehending the provided text, however, will help the system
learn more effectively (especially in large stochastic environments with sparse
rewards) and generalize faster to new domains. The main challenges lie in in-
tegrating both textual information and experience gained through interaction,
handling incomplete textual information, and learning policies across multiple

tasks.

. Improved information extraction with reinforcement learning: In the
final scenario, we consider the problem of information extraction [41], where the
goal is to process large pieces of unstructured text into structured information.
Traditional approaches perform poorly when the amount of data for training is
limited, mainly because not all forms of expression will be seen during model
learning. We develop an autonomous system that learns to gather and aggregate
extra information from articles on the web to improve extraction performance.
This setting is different from the previous two applications since the entire
world wide web is our virtual environment, presenting a huge state space to
explore. Other challenges here lie in deciding which external articles are relevant

to the event considered and reconciling inconsistent extractions from different

27

sources. Our novel reinforcement learning formulation provides a way to boost

any extraction system by exploiting the redundancy on the web.

I now provide a summary of these three applications and briefly describe how we

tackle each one.

28

1.1 Language understanding for text-based games

We first tackle the problem of developing an autonomous agent to play text-based
games. These games, also known as multi-user dungeons (MUDs), were very popular
before the advent of graphical games, and still have a large following worldwide !, All
interactions in these games are through text — the player is provided with a description
of his current state in the virtual world, and is required to enter a textual command
to take an action. Figure 1-2 provides an example interaction.

There are three main challenges in developing an autonomous player specific to

this domain:

1. No symbolic representation: The most pressing challenge for an autonomous
player is to understand the text provided to make sense of the current situation.
Without correctly interpreting the text, the agent cannot successfully navigate

this domain.

2. Varying state descriptions: The text provided for a room varies consid-
erably, with game developers employing multiple ways of providing the same
information. Thus, the agent cannot simply memorize a mapping from text to

states.

3. Incomplete information: The state descriptions often do not contain every
piece of information about the current state, in contrast to fully observable
graphical games like Pacman. This adds another layer of complication to in-

ducing a successful control policy.

Our goal is to simultaneously learn both a control policy and an optimal represen-
tation for the input text. For supervision, we make use of in-game rewards, coinciding
with happenings in the game. The reward can be either positive, such as when the
player obtains gold or defeats an enemy, or negative, like when the player dies. Even
though this type of feedback is quite unstructured, it provides us with the opportu-

nity of learning representations for text that are directly optimized for the end task.

Thttps://www.mudstats.com

29

You are standing in an Field House
open field west of a white State 1

house, with a boarded (hidden)
front door. There is a
small mailbox here.

@ open mailbox
[Field HHouseJ
State 2
Opening the mailbox 2R

reveals a leaflet. (hidden)

Figure 1-2: Example of a text-based adventure game (Zork). The text on the left is
what a player gets to observe, while the game engine keeps track of the hidden state.
When the player inputs a command, such as OPEN MAILBOX, the game transitions to
a different state, and presents the player with the next component of the narrative.

We formalize the task using the framework of reinforcement learning, where the input
text is treated as a state, and the commands are the actions that an agent can take.
We then learn an action policy in order to choose the best possible commands under
different circumstances.

Through experiments on multiple games we demonstrate that our model learns to
successfully interpret text and navigate through text-based adventures, outperforming
several baselines. Moreover, we show that the acquired representation can be reused

across games, speeding up learning.

30

1.2 Policy transfer via language grounding

In the second application, we utilize natural language to enable transfer for rein-
forcement learning. This work is motivated by a long-standing goal of RL to learn
universal policies that apply across related tasks, in contrast to current methods that
have limited transfer capabilities. Although deep reinforcement learning has been
successfully applied to many tasks [73, 100, 64], its success is contingent upon a sig-
nificant amount of interactions with the environment. This inefficiency has spurred
recent work in transfer methods (85, 91, 31, 112, 92, 93] and generalized value func-
tions [97]. However, a key challenge in performing successful transfer lies in obtaining
an effective mapping between domains (e.g. state or action spaces), which requires a
non-trivial amount of exploration in a new environment.

I propose a novel approach to transfer in reinforcement learning: utilize text
descriptions to facilitate policy generalization across domains. Natural language plays
an important role in human exploration of the world, enabling compact transfer of
knowledge and helping people generalize from their own and each other’s experiences.
For instance, if a person were to find herself in unseen territory (say, the fnoon), she
could make use of information about the environment such as "gravitation of the
moon is 1/6th that of the earth" to pre-adapt known policies like jumping and running
appropriately. Along the same lines, language can act as a bridge to transfer generic
policies across domains, helping constrain the space of dynamics an autonomous agent
has to reason about in a new environment.

Consider the two game environments in Figure 1-3 along with sample descrip-
tions. The two games — Boulderchase and Freeway — differ in their layouts and entity
types. However, the high-level behavior of most entities in both games is similar. For
instance, the diamond in Boulderchase is a motionless entity, similar to the tree in
Freeway. Though this similarity is clearly reflected in the text descriptions in Fig-
ure 1-3, it may require multiple interactions with the environment for the agent to
discover. Therefore, exploiting these textual clues could help an autonomous agent

learn an optimal policy faster.

31

We demonstrate that by learning to ground the meaning of the text to dynamics
of the environment such as transitions and rewards, an agent can effectively bootstrap
policy learning on a new domain. To achieve this, there are two key requirements of a
model - (1) to effectively incorporate (noisy) text into the action-value prediction, and
(2) to learn the transition and reward functions of the world through only interaction.
We satisfy both by combining a factorized representation generator with a model-
aware value iteration network (VIN) [108]. Both modules are parameterized as deep
neural networks and fit together to form a single end-to-end differentiable model. We
demonstrate strong transfer and multi-task results, outperforming several baselines

and a state-of-the-art transfer approach on various domains.

32

- -
B #] is an enemy who chases you

is a stationary collectible

is enemy that moves
horizontally to the right quickly

is stationary; obstructs the

player from goal
Figure 1-3: Two different game environments: Boulderchase (top) and Freeway
(bottom), along with associated descriptions in text. Some entities across these
games have similar behaviors. For instance, both the diamond in Boulderchase and

the tree in Freeway are motionless objects. This fact might take the agent several
episodes of interaction to discover, but is clearly discernible from the text.

33

1.3 Improved information extraction with
reinforcement learning

In the third application, we tackle the problem of information extraction (IE), a tra-
ditional NLP task. Most IE systems require substantial amounts of supervision, with
their performance rapidly diminishing with decreases in training data size. This is
mainly because the same fact can be expressed using a variety of different linguistic
forms, all of which cannot be observed during training. Hence, when a new pattern
is shown during testing, the system has difficulty in reliably extracting the required
information. However, this same information might be expressed in a more ‘under-
standable’ fashion in a different piece of text.

To this end, we propose a system that learns to query and aggregate information
from an external source, like the world wide web, in an autonomous fashion (Figure 1-
4). Given a document and a base extractor to make use of, the model learns to first
search for other articles on the same event from web. Subsequently, the system applies
the base extractor on the retrieved articles, and intelligently aggregates information
extracted from the different sources. This process is repeated until sufficient evidence
is collected. This is very similar to how humans assimilate information. When a
person is given a document she does not understand or does not get the required
details from, she would resort to finding other articles on the same topic to gather
more information.

We encounter two main challenges — (1) event co-reference, which requires us
to identify articles on the same event, and (2) entity resolution, where we need a
mechanism to reconcile the varying predictions from different articles. To address
these challenges, we formulate the information extraction process in a reinforcement
learning framework, using prediction accuracies as a source of rewards. Both article
selection and value reconciliation are actions available to our system to select at each
step. We demonstrate the effectiveness of our approach on two different domains,

with significant performance gains over base extractors and aggregation baselines.

34

extract + reason

Traditional ’:>
formulation
extract aggregate
Our E>
approach ::>

XAt |] find extra articles
Figure 1-4: Overview of our approach to information extraction. While traditional
models perform a single extraction (plus any additional reasoning) from the original
article, our method searches for other related articles on the web and aggregates infor-
mation spread across these documents. We build an RL model that learns to perform
both querying and value reconciliation, without need for any extra annotations. As
our experiments demonstrate, our system obtains significant performance gains over
traditional systems and simple aggregation baselines.

35

1.4 Contributions

The primary contributions of this thesis are threefold:

e Learning representations for language to navigate text-based games:
Given access to an interactive environment such as a text adventure game, we
demonstrate how to effectively learn task-optimized representations for natural
language without requiring any manual annotations. With unstructured feed-
back from the environment, we also simultaneously learn a control policy that

can utilize this representation to navigate the domain.

¢ Leveraging language to enable policy transfer: We explore the utility of
language as a compact representation of knowledge that enables cross-domain
transfer for reinforcement learning. As we demonstrate empirically, access to
even a small amount of textual descriptions results in substantially improved

learning for new domains.

e Autonomous exploration and aggregation of evidence to improve in-
formation extraction: We propose a novel framework for improving infor-
mation extraction by autonomously querying, retrieving and aggregating exter-
nal evidence from the world wide web. Leveraging the redundant information
present across articles on the same event, we demonstrate more accurate and
reliable extraction, especially in low-resource scenarios. This technique can also
be adapted to other related NLP tasks like question answering or automated

dialogue agents.

Together, these pieces of work represent a step towards a tighter coupling of natu-
ral language interpretation and action policies for interactive environments. We show
how each realm can benefit from the other — the context provided by the environment
can aid robust text understanding, while the knowledge encoded in text can help im-
prove performance on control applications. These models open up possibilities for
systems that can ground language onto aspects of their environment, resulting in a

more direct utilization of their understanding.

36

1.5 Outline

The rest of this thesis is organized as follows:

e Chapter 2 presents an approach to learn automated agents for text-based ad-
venture games using only in-game rewards. Using deep reinforcement learning,
the proposed model acquires representations that allow it to successfully navi-

gate these narratives.

e Chapter 3 explores a novel transfer method for deep reinforcement learning,
leveraging knowledge encoded in textual descriptions of environments. Utilizing
a model-aware approach, the method results in faster and more efficient learning

on new, unseen domains.

e Chapter 4 details our system for autonomously obtaining and incorporating ex-
ternal evidence to improve information extraction. Without need for additional
supervision, the system is trained using reinforcement learning and provides

substantial improvements in extraction accuracy over several baselines.

e Chapter 5 concludes the thesis, summarizing the key points and providing a

few directions for future work.

37

38

Chapter 2

Language Understanding for

Text-based (Games

In this chapter, we consider the task of learning control policies for text-based games.
In these games, all interactions in a virtual world are through text and the underlying
state is not observed. The resulting language barrier makes such environments chal-
lenging for automatic game players. We employ a deep reinforcement learning frame-
work to jointly learn state representations and action policies using game rewards as
feedback. This enables us to map text descriptions into vector represéntations that
capture the semantics of the game states. This expfessive representation forms the

basis for effective policy learning, as we demonstrate through our experiments.

2.1 Introduction

Text-based adventure games, predecessors to modern graphical ones, still enjoy a
large following worldwide.! These games often involve complex worlds with rich in-
teractions and elaborate textual descriptions of the underlying states (see Figure 2-1).
Players read descriptions of the current world state and respond with natural language

commands to take actions. Since the underlying state is not directly observable, a

lhttp://mudstats.com/

39

{ Y

State 1: The old bridge

You are standing very close to the bridge’s eastern foundation. If you go east you
will be back on solid ground ...

Under your feet a plank comes loose, tumbling down. For a moment you dangle
over the abyss ...

Below you a particularly large wave crashes into the rocks.
\. J

Command: GO EAST

r \

State 2: Ruined gatehouse

The old gatehouse is near collapse. Part of its northern wall has already fallen
down, together with parts of the fortifications in that direction. Heavy stone
pillars hold up sections of ceiling, but elsewhere the flagstones are exposed to open
sky. Part of a heavy portcullis, formerly blocking off the inner castle from attack,
is sprawled over the ground together with most of its frame.

East of the gatehouse leads out to a small open area surrounded by the remains
of the castle. There is also a standing archway offering passage to a path along
the old southern inner wall.

Exits: Standing archway, castle corner, Bridge over the abyss
\. J

Figure 2-1: Sample gameplay from a text-based fantasy adventure. The player
has the quest of finding a secret tomb, and is currently located on an unstable old
bridge (State 1). If the wind blows hard enough, the player will tumble down into
the valley. She chooses an action by typing the command GO EAST, which brings her
to a ruined gatehouse (State 2). Note how each state description is quite long and
requires interpreting several aspects (and ignoring others) to respond appropriately.

player has to understand the text in order to act, making it challenging for existing

AT programs to play these games [29].

In designing an autonomous game player, we have considerable latitude when
selecting an adequate state representation to employ. The simplest method would
be to use a bag-of-words representation derived from the text description. However,
this scheme disregards the ordering of words and the finer nuances of meaning that
evolve from composing words into sentences and paragraphs. For instance, in State

2 in Figure 2-1, the agent has to understand that going east will lead it to the castle

40

whereas moving south will take it to the standing archway. An alternative approach is
to convert text descriptions to pre-specified representations using annotated training
data, which is commonly used in language grounding tasks [69, 61].

In contrast, our goal is to learn useful representations for text in conjunction with
control policies. We adopt a reinforcement learning framework and formulate game
sequences as Markov Decision Processes. In this setup, an agent aims to maximize
rewards that it obtains from the game engine upon the occurrence of certain events
(such as finding treasure or defeating an enemy). The agent learns a policy in the
form of an action-value function @(s,a) which denotes the long-term merit of an
action a in state s.

The action-value function is parametrized using a deep recurrent neural network,
trained using the game feedback. The network contains two modules. The first
one converts textual descriptions into vector representations that act as proxies for
states. This component is implemented using Long Short-Term Memory (LSTM)
networks [50]. The second module of the network scores the actions given the vector
representation computed by the first. This component is realized as a deep Q-network
(DQN) [73]. Together, both modules form a single end-to-end differentiable network.

We evaluate our model using two Multi-User Dungeon (MUD) games (27, 4|. The
first game is designed to provide a controlled setup for the task, while the second is a
publicly available one containing human generated text descriptions with significant
language variability. We compare our algorithm against several baselines, including a
random player and models that represent the state as a bag of words or bigrams. We
demonstrate that our model, LSTM-DQN, significantly outperforms these baselines
in terms of number of completed quests and accumulated rewards. For instance,
on a fantasy MUD game, our model learns to complete 96% of the quests, while
the bag-of-words model and a random baseline solve only 82% and 5% of the quests,
respectively. Moreover, we show that the acquired representation can be reused across

game instances, speeding up learning and leading to faster convergence of policies.

The remainder of this chapter is organized as follows. We first present a sum-

mary of related work in Section 2.2. In Section 2.3, we provide some background

41

on the framework and methods we use in our system. Section 2.4 details our model
architecture, while Section 2.5 describes our learning algorithm. We provide experi-
mental details in Section 2.6, followed by empirical results and analysis in Section 2.7.

Section 2.8 concludes the chapter and provides directions for future research.

42

2.2 Related Work

2.2.1 Leveraging text for control applications

Learning control policies using text is gaining increasing interest in the NLP commu-
nity. Example applications include interpreting help documentation for software [16],
navigating with directions [114, 56, 6, 69, 5] and playing computer games [33, 14]. The
bulk of these approaches utilize linguistic analysis techniques to structure the infor-
mation contained in text, which can then be utilized by task-specific control policies.
This requires choosing a specific intermediate semantic representation for text, which
might vary depending on the task domain. Our approach, on the other hand, does
not use an explicit intermediate structure, instead learning vector representations

optimized for the control task.

2.2.2 Linguistic analysis for games

Games provide a rich domain for grounded language analysis. Prior work has assumed
perfect knowledge of the underlying state of the game to learn policies. Gorniak and
Roy [40] developed a game character that can be controlled by spoken instructions
adaptable to the game situation. The grounding of commands to actions is learned
from a transcript manually annotated with actions and state attributes. Eisenstein
et al. [33] learn game rules by analyzing a collection of game-related documents and
precompiled traces of the game. In contrast to the above work, our model combines
text interpretation and strategy learning in a single framework. As a result, textual
analysis is guided by the received control feedback, and the learned strategy directly
builds on the text interpretation.

Our work closely relates to an automatic player that utilizes text manuals to learn
strategies for the game of Civilization [14]. Similar to our approach, text analysis
and control strategies are learned jointly using feedback provided by the game sim-
ulation. In their setup, states are fully observable, and the model learns a strategy

by combining state/action features and features extracted from text. However, in

43

our application, the state representation is not provided, but has to be inferred from
a textual description. Therefore, it is not sufficient to extract features from text to

supplement a simulation-based player.

2.2.3 Deep reinforcement learning for game playing

Another related line of work consists of automatic video game players that infer state
representations directly from raw pixels [59, 73|. For instance, Mnih et al. [73] learn
control strategies using convolutional neural networks, trained with a variant of Q-
learning [117]. While both approaches use deep reinforcement learning for training,
our work has important differences. In order to handle the sequential nature of text,
we use Long Short-Term Memory networks to automatically learn useful represen-
tations for arbitrary text descriptions. Additionally, we show that decomposing the
network into a representation layer and an action selector is useful for transferring
the learned representations to new game scenarios.

Recent work [46] has built upon the work presented in this chapter to handle
longer text responses from the player to the game engine. The proposed model makes
a choice between predefined responses, by learning a representation for each response

and scoring it conditioned on the current state description.

44

2.3 Background

2.3.1 Game Representation

We represent a game by the tuple (H, A, T, R, V), where H is the set of all possible
game states, A is the set of all commands, T(h’ | h,a) is the stochastic transition
function between states and R(h,a) is the reward function. Each command a € A, is
a two-word phrase (@, d) consisting of an action word @ and an object 6. The game
state H is hidden from the player, who only receives a varying textual description,
produced by a stochastic function ¥ : H — S. Specifically, the underlying state h
in the game engine keeps track of attributes such as the player’s location, her health
points, time of day, etc. The function ¥ (also part of the game framework) then
converts this state into a textual description of the location the player is at or a
message indicating low health. We do not assume the agent has access to either
H or ¥, during both training and testing phases of our experiments. The space of
all possible text descriptions is denoted by S. Rewards are generated using R and
provided to the player upon completion of in-game quests. Figure 2-2 provides a

graphical illustration.

2.3.2 Q-Learning

Reinforcement Learning is a commonly used framework for learning control policies
in game environments [101, 3, 15, 106]. The game environment can be formulated as
a sequence of state transitions (s, a,,s’) of a Markov Decision Process (MDP). The
agent takes an action a in state s by consulting a state-action value function Q(s, a),
which is a measure of the action’s expected long-term reward. Q-Learning [117] is a
model-free technique which is used to learn an optimal Q(s, a) for the agent. Starting
from a random Q-function, the agent continuously updates its Q-values by playing
the game and obtaining rewards. The iterative updates are derived from the Bellman

equation [105]:
Qi+1(s,a) =E[r + ymax Qi(s',a’) | s, d] (2.1)

45

S1)

" You are standing in a : -
an open field west ! ﬁ> . Opening the mailbox .
of a wh'1te house. : reveals a leaflet. | +1
There is a small open mailbox
mailbox here. :
Location: Field Location: Field
Wind level: 3 Wind level: 3
Time: 12pm Time: 12pm
Mailbox: closed Mailbox: open
h’l hZ

/i = hidden game state

s = state description

« = command to execute
1= reward

Figure 2-2: Sample transition in a text-based game. Although the game state is
tracked in a structured form (h), the player only observes the state descriptions s,
based on which she chooses actions a.

where v is a discount factor for future rewards and the expectation is over all game
transitions that involved the agent taking action a in state s.
Using these evolving Q-values, a reasonable policy for the agent is to choose the

action with the highest (s, a), in order to maximize its expected future rewards:

7(s) = arg max Q(s, a) (2.2)

a

For effective policy learning, however, we require a trade-off between exploration of
the state space and exploitation of our current policy. This can be achieved following
an e-greedy policy [105|, where the agent performs a random action with probability

¢, and chooses 7(s) otherwise.

2.3.3 Deep Q-Network

In large games, it is often impractical to maintain the Q-value for all possible state-

action pairs. One solution to this problem is to approximate @)(s, a) using a parametrized

46

function Q(s, a;8), which can generalize over states and actions by considering higher-
level attributes [105, 14]. However, creating a good parametrization requires knowl-
edge of the state and action spaces. One way to bypass this feature engineering is
to use a Deep Q-Network (DQN) [73]. The DQN approximates the Q-value function
with a deep neural network to predict (s, a) for all possible actions a simultaneously
given the current state s. The non-linear function layers of the DQN also enable it

to learn better value functions than linear approximators.

47

2.4 Model architecture

Designing an autonomous player for text-based games provides two main challenges.
First, we need a versatile representation for text that can capture the compositional
aspects of natural language. Second, we require a value function approximator that
can operate over this representation, and generalizing well over large state spaces.
We require the model to provide good Q-value approximations for these games, even

with stochastic textual descriptions.

To satisfy these needs, we divide our model (LSTM-DQN) into two parts. The
first module is a representation generator that converts the textual description of
the current state into a real-valued vector. This vector is then input into the second
module which is an action scorer. Figure 2-3 shows the overall architecture of our
model. We learn the parameters of both the representation generator and the action
scorer jointly, using the in-game reward feedback. Specific implementation details are

provided in Section 2.6.4.

2.4.1 Representation Generator (¢g)

The representation generator reads raw text displayed to the agent and converts it to
a vector representation vs. A bag-of-words (BOW) representation is not sufficient to
capture higher-order structures of sentences and paragraphs. The need for a better
semantic representation of the text is evident from the average performance of this
representation in playing MUD-games (as we show in Section 2.7).

In order to assimilate better representations, we utilize a Long Short-Term Mem-
ory network (LSTM) [50] as a representation generator. LSTMs are recurrent neural
networks with the ability to connect and recognize long-range patterns between words
in text. They are more robust than BOW to small variations in word usage and are
able to capture underlying semantics of sentences to some extent. In recent work,
LSTMs have been used successfully in NLP tasks such as machine translation [104]

and sentiment analysis {107] to compose vector representations of sentences from

48

Q(s,a) Q(s,0) (Q-values)

| (Linear) (Linear J
PA g ‘\\\\ ,///l

Linear + ReLU)

.........................

PR

You " are standing rocks
(input text)

Figure 2-3: Architecture of LSTM-DQN: The Representation Generator (¢g) (bot-
tom) takes as input a stream of embeddings corresponding to words observed in state
s and produces a single vector representation v,. This vector is then fed into the
action scorer (¢4) (top) to produce Q-values for all actions and argument objects.

word-level embeddings [71, 87]. In our setup, the LSTM network takes in word em-
beddings wy, from the words in a description s and produces output vectors z; at

each step.

An LSTM cell consists of an input gate ¢, a forget gate f and a memory cell
c. At each step k, the LSTM takes in the following vectors in R% an input word
embedding w,, the output from the previous step hi_, and a memory vector ci_1,
also from the previous step. The cell produces an output vector z; at each step,

which is an accumulated representation over the preceding words up till the current

49

point. The transition equations for the LSTM can be summarized as:

1 = o(U(i)wk + V(i)hk_l + b(i)),
fr = U(U(f)wk + V(f)hk_l + b(f)),
op = o(Uwy + VOhy_y +50)

(2.3)
2z, = tanh(U Py, + VE by 4 53)

ck =1k @ 2k + fr © ¢kt

T = o © tanh(ck)

where ¢ represents the sigmoid function and © is elementwise multiplication. To
arrive at the final state representation vy, we add a mean pooling layer which computes

the element-wise mean over the output vectors zy.>

1 n
Vg = — E T (2.4)
n
k=1

2.4.2 Action Scorer (¢,)

The action scorer module produces scores for the set of possible actions given the
current state representation. We use a multi-layered neural network for this purpose
(see Figure 2-3). The input to this module is the vector from the representation
generator, vs = ¢gr(s) and the outputs are scores for actions a € A. Scores for all
actions are predicted simultaneously, which is computationally more efficient than
scoring each state-action pair separately. Thus, by combining the representation

generator and action scorer, we can obtain the approximation for the Q-function as:

Q(s,a) = ¢a(¢r(s))[a] (2.5)

An additional complexity in playing MUD games is that the actions taken by the
player are multi-word natural language commands such as ‘eat apple’ or ‘go east’. Due

to computational constraints, we limit ourselves to commands consisting of a single

2We also experimented with considering just the output vector of the LSTM after processing the
last word. Empirically, we find that mean pooling leads to faster learning, and hence use it in all
our experiments.

a0

action word (e.g. eat) with a single argument object (e.g. apple). This assumption
holds for the majority of commands in our worlds, with the exception of one class that
requires two arguments (e.g. move red-root right, move blue-root up). We take into
account all possible actions and objects available in the game and predict both for
each state using the same network (Figure 2-3). The Q-value of the entire command
(G,06) is taken to be the average of the Q-values predicted for the action a and the

object 6. For the rest of this section, we show equations for the overall Q(s,a).

ol

2.5 Parameter Learning

The two components of our model fit together to form a single unit that can be trained
end-to-end. We jointly learn the parameters 0 of both the representation generator
and 64 of the action scorer using stochastic gradient descent with RMSprop [111].
The complete training procedure is shown in Algorithm 2.1. In each iteration i, we
update the parameters to reduce the discrepancy between the predicted value of the
current state Q(s, ar;0;) (where 6; = [fg;04];) and the expected Q-value given the
reward 7, and the value of the next state max, Q(s¢y1,a;60;_1).

We keep track of the agent’s previous experiences in a memory D.% Instead of per-
forming updates to the Q-value using transitions from the current episode, we sample
a random transition ($,a,s’,r) from D. Updating the parameters in this way avoids
issues due to strong correlation when using transitions of the same episode [73]. Using

the sampled transition and (2.1), we obtain the following loss function to minimize:
Li(6:) = E;a[(Q(3,a;0:) — :)°] (2.6)

where y; = E; 3[r + ymaxy Q(s',a';6;_1) | 5, a] is the target Q-value with parameters
0;_1 fixed from the previous iteration.

The updates on the parameters 6 can be performed using the following gradient

of £;(6;):
Vo, Li(0:) = Esal2(Q(5,4;6:) — 4i) Ve, Q(8,a; 6;)] (2.7)

For each epoch of training, the agent plays several episodes of the game, which is
restarted after every terminal state. We perform linear annealing of both € and the

learning rate as training progresses.

Mini-batch Sampling In practice, online updates to the parameters 6 are per-
formed over a mini batch of state transitions, instead of a single transition. This
increases the number of experiences used per update step and is also more efficient

due to optimized matrix operations.

3The memory is limited and rewritten in a first-in-first-out (FIFO) fashion.

92

Algorithm 2.1 Training Procedure for LSTM-DQN with prioritized sampling

1: Initialize experience memory D
2: Initialize parameters of representation generator (¢r) and action scorer (¢4) ran-

10:
11:
12:
13:
14:
15:

16:

17:

3
4
5
6:
7
8
9

: for episode =1, M do
Initialize game and get start state description s;
fort=1,T do

if random() < e then
Select a random action a;
else
Convert text s; to representation vs, using ¢gr
Compute Q(s,a) for all actions using ¢ 4(vs,)
Select a; = argmax Q(sy, a)
Execute action a; and observe reward r, and new state s;11
Set priority p;, = 1if 1, > 0, else p; =0
Store transition (s, ag, 7y, 441, p) in D
Sample random mini batch of transitions (s;, a;,7;, sj+1,p;) from D,
with fraction p having p; =1
{ Tj if 541 is terminal
Set Y; = /. . . .
r; + 7 maxy Q(s;j+1,4a’;0) if s;4+1 is non-terminal
Perform gradient descent step on the loss £(8) = (y; — Q(s;,a;;0))?

The simplest method to create these mini-batches from the experience memory D

is to sample uniformly at random. However, certain experiences are more valuable

than others for the agent to learn from. For instance, rare transitions that provide

positive rewards can be used more often to learn optimal Q-values faster. In our

experiments, we consider such positive-reward transitions to have higher priority and

keep track of them in D. We perform prioritized sampling (inspired by prioritized

sweeping [74]) to sample a fraction p of transitions from the higher priority pool and

a fraction 1 — p from the rest.

93

2.6 Experimental Setup

2.6.1 Game Environment

For our game environment, we modify Evennia,?

an open-source library for building
online textual MUD games. Evennia is a Python-based framework that allows one
to easily create new games by writing a batch file describing the environment with
details of rooms, objects and actions. The game engine keeps track of the game state
internally, presenting textual descriptions to the player and receiving text commands
from the player. We conduct experiments on two worlds - a smaller Home world we
created ourselves, and a larger, more complex Fantasy world created by Evennia’s de-
velopers. The motivation behind Home world is to abstract away high-level planning
and focus on the language understanding requirements of the game.

Table 2.1 provides statistics of the narratives in the game worlds. We observe
that the Fantasy world is moderately sized with a vocabulary of 1340 words and up
to 100 different descriptions for a room. These descriptions were created manually
by the game developers. These diverse, engaging descriptions are designed to make
it interesting and exciting for human players. Several rooms have many alternative
descriptions, invoked randomly on each visit by the player.

Comparatively, the Home world is smaller: it has a restricted vocabulary of 84
words and the room descriptions are relatively structured. However, both the room
descriptions (which are also varied and randomly provided to the agent) and the quest
descriptions were adversarially created with linguistic concepts such as negation and
conjunction to force an agent to properly understand the state in order to play well.

Therefore, this domain provides an interesting challenge for language understanding.

Rewards In both worlds, the agent receives a positive reward on completing a quest,
and negative rewards for getting into bad situations like falling off a bridge, or losing

a fight. We also add small deterministic negative rewards for each non-terminating

‘http://www.evennia.com/

54

Stats Home World Fantasy World

Vocabulary size 84 1340
Avg. words / description 10.5 65.21
Max descriptions / room 3 100
diff. quest descriptions 12 -
State transitions Deterministic Stochastic
states (underlying) 16 > 56
Branching factor (# commands / state) 40 222

Table 2.1: Various statistics for the two game worlds.

step. This incentivizes the agent to learn policies that solve quests in fewer steps.

Details on reward structure are provided in Appendix A.

Home World We created Home world to mimic the environment of a typical
house.> The world consists of four rooms - a living room, a bedroom, a kitchen
and a garden with connecting pathways. Every room is reachable from every other
room. Each room contains a representative object that the agent can interact with.
For instance, the kitchen has an apple that the player can eat. Transitions between
the rooms are deterministic. At the start of each game episode, the player is placed
in a random room and provided with a randomly selected quest. The text provided
to the player contains both the description of her current state and that of the quest.
Thus, the player can begin in one of 16 different states (4 rooms x 4 quests), which

adds to the world’s complexity.

An example of a quest given to the player in text is ‘Not you are sleepy now but
you are hungry now’. To complete this quest and obtain a reward, the player has to
navigate through the house to reach the kitchen and eat the apple (i.e type in the
command eat apple). More importantly, the player should interpret that the quest
does not require her to take a nap in the bedroom. We created such misguiding quest
prompts to make it hard for agents to succeed without having an adequate level of

language understanding.

5An illustration is provided in Appendix A.

95

Fantasy World The Fantasy world is considerably more complex and involves
quests such as navigating through a broken bridge or finding the secret tomb of an
ancient hero. This game also has stochastic transitions in addition to varying state
descriptions provided to the player. For instance, there is a possibility of the player
falling from the bridge if she lingers too long on it.

Due to the large command space in this game,® we make use of cues provided by
the game itself to narrow down the set of possible objects to consider in each state.
For instance, in the MUD example in Figure 1, the game provides a list of possible
exits. If the game does not provide such clues for the current state, we consider all

objects in the game.

2.6.2 Evaluation

We use two metrics for measuring an agent’s performance: (1) the average cumulative
reward obtained per episode, and (2) the fraction of quests completed by the agent.
Although these measures are correlated to an extent, there do exist scenarios when
some agents do well on one and poorly on the other (as we demonstrate in our
experiments). In a single epoch, we first train the agent on M episodes of T steps
each. At the end of this training, we have a testing phase of running M episodes of
the game, again for T steps each. We use M = 50,7 = 20 for the Home world and
M = 20,T = 250 for the Fantasy world. For all evaluation episodes, we run the agent
following an e-greedy policy with € = 0.05, which makes the agent ch;)ose the best

action according to its Q-values 95% of the time.

2.6.3 Baselines

We compare our model (LSTM-DQN) with three baselines. The first is a Random
agent that chooses both actions and objects uniformly at random from all available

choices.” This baseline helps us test whether the game world is easy enough to solve

6We consider 222 possible command combinations of 6 actions and 37 object arguments.
"In the case of the Fantasy world, the object choices are narrowed down using game clues as
described earlier.

56

by performing random moves. The other two baselines are BOW-DQN and BI-DQN,
which use a bag-of-words and a bag-of-bigrams representation of the text as input to
a DQN action scorer. These baselines serve to illustrate the importance of having a

good representation layer for the task.

2.6.4 Implementation details

For our DQN models, we used D = 100000,~ = 0.5. We use a learning rate of 0.0005
for RMSprop. We anneal the € for e-greedy from 1 to 0.2 over 100000 transitions. A
mini-batch gradient update is performed every 4 steps of the gameplay. We roll out
the LSTM (over words) for a maximum of 30 steps on the Home world and for 100
steps on the Fantasy world. For the prioritized sampling, we used p = 0.25 for both
worlds. We employed a mini-batch size of 64 and word embedding size d = 20 in all

experiments.

o7

2.7 Results

2.7.1 Home World

Figure 2-4 illustrates the performance of LSTM-DQN compared to the baselines. We
can observe that the Random baseline performs quite poorly, completing only around
10% of quests on average® obtaining a low reward of around —1.58. The BOW-DQN
model performs significantly better and is able to complete around 46% of the quests,
with an average reward of 0.20. The improvement in reward is due to both greater
quest success rate and a lower rate of issuing invalid commands (e.g. eat apple would
be invalid in the bedroom since there is no apple). We notice that both the reward
and quest completion graphs of this model are volatile. This is because the model
fails to pick out differences between quests like Not you are hungry now but you are
sleepy now and Not you are sleepy now but you are hungry now. The BI-DQN model
suffers from the same issue although it performs slightly better than BOW-DQN
by completing 48% of quests. In contrast, the LSTM-DQN model does not suffer
from this issue and is able to complete 100% of the quests after around 50 epochs
of training, achieving close to the optimal reward possible.® This demonstrates that
having an expressive representation for text is crucial to understanding the game

states and choosing intelligent actions.

2.7.2 Fantasy World

We evaluate all the models on the Fantasy world in the same manner as before and
report reward, quest completion rates and Q-values. The quest we evaluate on involves
crossing the broken bridge (which takes a minimum of five steps), with the possibility
of falling off at random (a 5% chance) when the player is on the bridge. The game
has an additional quest of reaching a secret tomb. However, this is a complex quest

that requires the player to memorize game events and perform high-level planning

8 Averaged over the last 10 epochs.
9Note that since each step incurs a penalty of —0.01, the best reward (on average) a player can
get is around 0.98.

98

Y i FARAT Y
L8 L s -
. 2 -~
i ped L8 e
" LA) g N =
4 - - S .
at s T e " 22
e s f % =
. - .- -
e 3 -= R
- p o
. -

— LSTM-DQON| |
--- BI-DQN
—1.5 > ::""- ':Q:;’:::-,\'-,. = F.2 - I BOW-DQN A
) T Rk R Random

=205 20 40 60 80 100
Epochs

Reward (Home)

=
(=)

=
o)

. ¢ §
L A 4]
P " 'l"\' lt\t"iﬁf"""‘l'

iyulag: — LSTM-DQN|

--- BI-DQN
BOW-DQN

------- Random [

Quest Completion
2 g

=
N

o
O T

60 80 100

Quest completion (Home)

Figure 2-4: Evolution of average reward (top) and quest completion rate (bottom)
for various baselines and our model (LSTM-DQN) on the Home world.

59

which are beyond the scope of this current work. Therefore, we focus only on the
first quest.

From Figure 2-5, we can see that the Random baseline does poorly in terms of both
average per-episode reward!® and quest completion rates. BOW-DQN converges to
a much higher average reward of —12.68 and achieves around 82% quest completion.
Again, the BOW-DQN is often confused by varying (10 different) descriptions of the
portions of the bridge, which reflects in its erratic performance on the quest. The
BI-DQN performs very well on quest completion by finishing 97% of quests. However,
this model tends to find sub-optimal solutions and gets an average reward of —26.68,
even worse than BOW-DQN. One reason for this is the negative rewards the agent
obtains after falling off the bridge. The LSTM-DQN model again performs best,
achieving an average reward of —11.33 and completing 96% of quests on average.
Though this world does not contain descriptions adversarial to BOW-DQN or BI-
DQN, the LSTM-DQN obtains higher average reward by completing the quest in

fewer steps and showing more resilience to variations in the state descriptions.

2.7.3 Analysis

Variations of action scorer How important is the choice of the action scorer to
model performance? To answer this question, we investigated the impact of using a
deep neural network vs a linear model as the action scorer ¢ 4. Figure 2-6 illustrates
the performance of the BOW-DQN and BI-DQN models along with their simpler
versions BOW-LIN and BI-LIN, which use a single linear layer for ¢ 4. It can be seen
that the DQN models clearly achieve better performance than their linear counter-
parts, in both the bag-of-words and bag-of-bigrams cases. This shows that a deeper

neural network is capable of modeling the control policy better.

Transfer Learning We would like the representations learnt by ¢ to be general-
purpose and transferable to new game worlds. To test this, we created a second Home

world with the same rooms, but a completely different map, changing the locations

10Note that the rewards graph is in log scale.

60

-1.5
__ 20
Q
© —-2.5
(@)
e £
(@)}
= 35
© i’
~ R § — LSTM-DQN|
2 a5 -~ BI-DQN ||
< BOW-DQN
N Random ||
s — — S | st
0 10 20 30 40 50 60 70
Epochs
Reward (Fantasy)
1.2
c 1.0
(@)
.E -
Yos o 3
= 4 3
st :
o : :
T 0.4 ' — LSTM-DQN| |
s --- BI-DQN
O 0.2 BOW-DQN |-
Lz an B o R | Random |,
0.0Lk= AR Cet i e NI il I O AT S =3
0 10 20 30 4 50 60 70

Epochs

Quest completion (Fantasy)

Figure 2-5: Evolution of average reward (top) and quest completion rate (bottom)
for various baselines and our model (LSTM-DQN) on the Fantasy world. Reward here
is shown in log scale.

61

o
T)]

p et
u
»

Quest Completion
o
£

0.3 z . nalh i3 fs
%5 7| — BI-DQN
$::l -~ BOW-DQN
Qo2 % |+ BELIN
------ BOW-LIN
0.1 < : . - :
0 10 20 30 40 50 60

Figure 2-6: Quest completion rates of DQN vs. Linear models on Home world. The
graph clearly demonstrates the advantage of using deeper models to approximate the
action value function.

of the rooms and the pathways between them. The main differentiating factor of this
world from the original home world lies in the high-level control policy required to
complete quests.

We initialized the LSTM part of an LSTM-DQN agent with parameters 6 learnt
from the original home world and trained it on the new world.!' Figure 2-7 demon-
strates that the agent with transferred parameters is able to learn quicker than an
agent starting from scratch initialized with random parameters (No Transfer), reach-
ing the optimal policy almost 20 epochs earlier. This indicates that these simulated
worlds can be used to learn good representations for language that transfer across

worlds.

Prioritized sampling As described in Section 2.4, we employ a prioritized sam-
pling scheme to obtain mini-batches of transitions from the experience replay. To

demonstrate its usefulness, we compared the effect of different mini-batch sampling

The parameters for the Action Scorer (f4) are initialized randomly.

62

Reward

—-1.0¢ N --- No Transfer|]
— Transfer
-1.5 - : »
0 10 20 30 40 50

Epochs

Figure 2-7: Transfer learning in the Home world. For the Transfer condition, a
model was trained on a different world configuration (with same vocabulary), and
the learned parameters of the representation generator (¢g) are used in initializing
the new model.

procedures on the parameter learning. From Figure 2-8, we observe that using prior-
itized sampling significantly speeds up learning, with the agent achieving the optimal
policy around 50 epochs faster than using uniform sampling. This shows promise
for further research into different schemes of assigning priority to transitions in the

Imemaory.

Representation Analysis We analyzed the representations learnt by the LSTM-
DQN model on the Home world. Figure 2-9 shows a visualization of learnt word
embeddings, reduced to two dimensions using t-SNE [113]. All the vectors were
initialized randomly before training, and were induced using only the in-game rewards.
We can see that semantically similar words appear close together to form coherent
subspaces. In fact, we observe four different subspaces, each for one type of room
along with its corresponding object(s) and quest words. For instance, food items like
pizza and rooms like kitchen are very close to the word hungry which appears in a
quest description. This shows that the agent learns to form meaningful associations

between the semantics of the quest and the environment. Table 2.2 shows some

63

] L
\unlﬂ‘h",
v Ragn ¢ ¥
(]

-=- Uniform
— Prioritized
-2.0 s : . N
0 20 40 60 80 100

Epochs

Figure 2-8: Effect of prioritized sampling on learning in the Home world. Prioritized
sampling leads to faster convergence to an optimal control policy.

Description

Nearest neighbor

You are halfways out on the unstable
bridge. From the castle you hear a dis-
tant howling sound, like that of a large
dog or other beast.

The ruins opens up to the sky in a
small open area, lined by columns. ...
To the west is the gatehouse and en-
trance to the castle, whereas south-
wards the columns make way for a
wide open courtyard.

The bridge slopes precariously where
it extends westwards towards the low-
est point - the center point of the hang
bridge. You clasp the ropes firmly as
the bridge sways and creaks under you.

The old gatehouse is near collapse.
East the gatehouse leads out to a small
open area surrounded by the remains
of the castle. There is also a stand-
ing archway offering passage to a path
along the old southern inner wall.

Table 2.2: Sample descriptions from the Fantasy world and their nearest neighbors
according to their vector representations from the LSTM representation generator.
The NNs are often descriptions of the same or similar (nearby) states in the game.

examples of descriptions from Fantasy world and their nearest neighbors using cosine
similarity between their corresponding vector representations produced by LSTM-
DQN. The model is able to correlate descriptions of the same (or similar) underlying

states and project them onto nearby points in the representation subspace.

64

600 T T T T T T

“Kitchen”
o red
400} Funar@izza. fu
i h””gg?,f,fﬁd e un Bedroom
| k'tChf%d cokesink area’ B e .
x\‘chinnkﬁnd eecream arf‘i'VEd "woodmattress
200+ bed e - see top R
Aiving games res; geskdresser'
ride roor: 1 watc‘hlrgg e mﬂgépy
; rea e
o ey hug€"Thaity e

sheets, .
' sofas chbndelle%h'ny

\ . frui
comfortableentered bored televiifsn Ut
couch Y Wi
—200} " .
“Living room” watch bike
trees
—_a00l gras? 8 dnst\alng .]
ows
“Garden” .gxerc%b'tsfwtera tti rP '
_500 1 I L 1 1 1 L
—400 —-300 —-200 —-100 0 100 200 300 400

Figure 2-9: t-SNE visualization of word embeddings (except stopwords) after train-
ing on Home world. Note that these embedding values are initialized to random and
learned using only in-game rewards.

65

2.8 Conclusions

In this chapter, we presented a model for end-to-end learning of control policies for
text-based games. Using game rewards as feedback, we demonstrated that optimized
representations for natural language can be learned and employed successfully to
inform an effective control policy. From experiments on two domains, we show that
our model outperforms several baselines that use less expressive representations for
the text. We also discover 'meaningful’ patterns in the representations learned by
the model (both for words and sentences). Below, we provide an account of some
follow-up work that has been carried out hence, and describe some future directions

of investigation.

Future directions

e One limitation of our model is that we restrict ourselves to choosing two-word
commands. Recent work by He et al. [46] has relaxed this assumption to include
longer text responses from the player to the game engine. However, their model
makes a choice between pre-defined responses, by learning a representation for
each response and scoring it conditioned on the current state description. An
interesting direction to pursue is models that can learn to generate phrase-level

responses (say, using a sequence-level decoder [104]).

e Another element lacking in our model is long-term planning. Having a mem-
ory component can help an agent remember pieces of information from previous
states (more than a few time steps in the past), which is often crucial for navigat-
ing these environments. The integration of modules like memory networks [119]
or hierarchical deep Q-networks [60] could lead to successfully solving more

challenging puzzles in these games.

e Improving the sampling scheme for mini-batches from the experience replay is
another area for future investigation. Recently, Schaul et al. [98] proposed a

more general version of our prioritized sampling scheme, demonstrating consis-

66

tent improvements to learning. Developing more efficient schemes that can pick

out diverse experiences are bound to provide a boost to learning.

67

68

Chapter 3

Policy Transfer via Language

Grounding

This chapter presents a method for grounding natural language to adapt and transfer
policies across domains. Specifically, we demonstrate that textual descriptions of
environments provide a compact intermediate channel that facilitates effective policy
transfer. We employ a model-based reinforcement learning approach consisting of a
value iteration network, a model-free policy estimator and a two-part representation to
effectively utilize entity descriptions. We demonstrate that grounding text semantics
to the dynamics of the environment significantly outperforms other approaches on

both transfer and multi-task scenarios in a variety of different environments.

3.1 Introduc»tion

Deep reinforcement learning has emerged as a method of choice for many control
applications ranging from computer games [73, 100] to robotics [64]. However, the
success of this approach depends on a substantial number of interactions with the
environment during training, easily reaching millions of steps (76, 72]. Moreover,
given a new task, even a related one, this training process has to be performed from

scratch. This inefficiency has motivated recent work in learning universal policies

69

that can generalize across related tasks [97], as well as other transfer approaches [85,
91, 31, 112, 92, 93]. In this paper, we explore transfer methods that utilize text

descriptions to facilitate policy generalization across tasks.

As an example, consider the game environments in Figure 3-1. The two games
— Boulderchase and Bomberman — differ in their layouts and entity types. However,
the high-level behavior of most entities in both games is similar. For instance, the
scorpion in Boulderchase (left) is a moving entity which the agent has to avoid,
similar to the spider in Bomberman (right). Though the similarity is clearly reflected
in the text descriptions in Figure 3-1, it may take multiple environment interactions
to discover this. Therefore, exploiting these textual clues could help an autonomous

agent understand this connection more effectively, leading to faster policy learning,.

To test this hypothesis, we consider multiple environments augmented with textual
descriptions. These descriptions provide a short overview of the objects and their
modes of interaction in the environment. They do not describe control strategies,
which were commonly used in prior work on grounding [114, 14]. Instead, they
specify the dynamics of the environments, which are more conducive to cross-domain

transfer.

In order to effectively utilize this type of information, we employ a model-based re-
inforcement learning approach. Typically, representations of the environment learned
by these approaches are inherently domain specific. We address this issue by us-
ing natural language as an implicit intermediate channel for transfer. Specifically,
our model learns to map text descriptions to transitions and rewards in an environ-
ment, a capability that speeds up learning in unseen domains. We induce a two-part
representation for the input state that generalizes over domains, incorporating both
domain-specific information and textual knowledge. This representation is utilized
by an action-value function, parametrized as a single deep neural network with a
differentiable value iteration module [108]. The entire model is trained end-to-end

using rewards from the environment.

We evaluate our model on several game worlds from the GVGAI framework [88].

In our first evaluation scenario of transfer learning, an agent is trained on a set of

70

Q is a randomly moving enemy

is a stationary immovable wall

Figure 3-1: Examples of two different game environments, Boulderchase (top)
and Bomberman (bottom). Each domain also has text descriptions associated with
specific entities, describing characteristics such as movement and interactions with
the player’s avatar.

source tasks and its learning performance is evaluated on a different set of target
tasks. Across multiple evaluation metrics, our method consistently outperforms sev-

eral baselines and an existing transfer approach called Actor Mimic [85]. For instance,

71

our model achieves up to 35% higher average reward and up to 15% higher jumpstart
reward. We also evaluate on a multi-task setting where learning is simultaneously
performed on multiple environments. In this case, we obtain gains of up to 30% and
7% on average and asymptotic reward, respectively.

The remainder of this chapter is organized as follows. Section 3.2 summarized re-
lated work on grounding and transfer for reinforcement learning; Section 3.3 provides
an overview of the framework we use; Section 3.4 describes our model architecture and
its various components; Section 3.5 details the experimental setup, and Section 3.6
contains our empirical results and analysis. We conclude and discuss some future

directions in Section 3.7.

72

3.2 Related Work

3.2.1 Grounding language in interactive environments

In recent years, there has been increasing interest in systems that can utilize textual
knowledge to learn control policies. Such applications include interpreting help docu-
mentation [16], instruction following [114, 56, 6, 69, 5] and learning to play computer
games [14, 78]. In all these applications, the models are trained and tested on the
same domain.

Our work represents two departures from prior work on grounding. First, rather
than optimizing control performance for a single domain, we are interested in the
multi-domain transfer scenario, where language descriptions drive generalization. Sec-
ond, prior work uses text in the form of strategy advice to directly learn the policy.
Since the policies are typically optimized for a specific task, they may be harder to
transfer across domains. Instead, we utilize text to bootstrap the induction of the
environment dynamics, moving beyond task-specific strategies.

Another related line of work consists of systems that learn spatial and topograph-
ical maps of the environment for robot navigation using natural language descrip-
tions [115, 47|. These approaches use text mainly containing appearance and posi-
tional information, and integrate it with other semantic sources (such as appearance
models) to obtain more accurate maps. In contrast, our work uses language describing
the dynamics of the environment, such as entity movements and interactions, which
is complementary to positional information received through state observations. Fur-
ther, our goal is to help an agent learn policies that generalize over different stochastic

domains, while their work considers a single domain.

3.2.2 Transfer in Reinforcement Learning

Transferring policies across domains is a challenging problem in reinforcement learn-
ing [58, 110]. The main hurdle lies in learning a good mapping between the state

and action spaces of different domains to enable effective transfer. Most previous ap-

73

proaches have either explored skill transfer [57] or value function transfer [66]. There
have been a few attempts at model-based transfer for RL [109, 81, 37, 116] but these
methods either rely on hand-coded inter-task mappings for state and actions spaces or
require significant interactions in the target task to learn an effective mapping. Our
approach doesn’t use any explicit mappings and can learn to predict the dynamics of
a target task using its descriptions.

A closely related line of work concerns transfer methods for deep reinforcement
learning. Parisotto et al. [85] train a deep network to mimic pre-trained experts
on source tasks using policy distillation. The learned parameters are then used to
initialize a network on a target task to perform transfer. Rusu et al. [92] perform
transfer by freezing parameters learned on source tasks and adding a new set of
parameters for every new target task, while using both sets to learn the new policy.
Work by Rajendran et al. [91] uses attention networks to selectively transfer from a
set of expert policies to a new task. Our approach is orthogonal since we use text to
bootstrap transfer, and can potentially be combined with these methods to achieve
more effective transfer.

Perhaps closest in spirit to our hypothesis is the recent work of Harrison et al. [45].
Their approach makes use of paired instances of text descriptions and state-action
information from human gameplay to learn a machine translation model. This model
is incorporated into a policy shaping algorithm to better guide agent exploration.
Although the motivation of language-guided control policies is similar to ours, their
work considers transfer across tasks in a single domain, and requires human demon-

strations to learn a policy.

74

3.3 General Framework

3.3.1 Environment Setup

We model a single environment as a Markov Decision Process (MDP), represented by
E=(S,A,T,R,0,Z). Here, S is the state space, and A is the set of actions available
to the agent. In this work, we consider every state s € S to be a 2-dimensional grid
of size m x n, with each cell containing an entity symbol o € O.! T is the transition
distribution over all possible next states s’ conditioned on the agent choosing action
a in state s. R determines the reward provided to the agent at each time step. The
agent does not have access to the true T and R of the environment. Each domain
also has a goal state s, € S which determines when an episode terminates. Finally,
Z is the complete set of text descriptions provided to the agent for this particular

environment.

3.3.2 Reinforcement learning (RL)

The goal of an autonomous agent is to maximize cumulative reward obtained from the
environment. A traditional way to achieve this is by learning an action value function
Q(s, a) through reinforcement. The Q-function predicts the expected future reward
for choosing action a in state s. A straightforward policy then is to simply choose
the action that maximizes the Q-value in the current state: 7(s) = argmax, Q(s, a).
If we also make use of the descriptions, we have a text-conditioned policy: 7 (s, Z) =
arg max, Q(s, a, Z).

A successful control policy for an environment will contain both knowledge of the
environment dynamics and the capability to identify goal states. While the latter is
task-specific, the former characteristic is more useful for learning a general policy that
transfers to different domains. Based on this hypothesis, we employ a model-aware

RL approach that can learn the dynamics of the world while estimating the optimal

In our experiments, we relax this assumption to allow for multiple entities per cell, but for ease
of description, we shall assume a single entity. The assumption of 2-D worlds can also be easily
relaxed to generalize our model to other situations.

75

Q. Specifically, we make use of Value Iteration (VI) [105], an algorithm based on

dynamic programming. The update equations are as follows:

Q("“)(s, a,Z) = R(s,a,Z)
+9) T(s')s,a, 2)V™(s, 2)

s'eS

Vit (s Z) = max QY (s, a, Z) (3.1)

where ~ is a discount factor and n is the iteration number. The updates require
an estimate of 7' and R, which the agent must obtain through exploration of the

environment.

3.3.3 Text desériptions

Estimating the dynamics of the environment from interactive experience can require
a significant number of samples. Our main hypothesis is that if an agent can derive
information about the dynamics from text descriptions, it can determine 7" and R
faster and more accurately.

For instance, consider the sentence “Red bat that moves horizontally, left to right.”.
This talks about the movement of a third-party entity ('bat’), independent of the
agent’s goal. Provided the agent can learn to interpret this sentence, it can then infer
the direction of movement of a different entity (e.g. “A tan car moving slowly to the
left” in a different domain. Further, this inference is useful even if the agent has a
completely different goal. On the other hand, instruction-like text, such as “Move
towards the wooden door”, is highly context-specific, only relevant to domains that
have the mentioned goal.

With this in mind, we provide the agent with text descriptions that collectively
portray characteristics of the world. A single description talks about one particular
entity in the world. The text contains (partial) information about the entity’s move-
ment and interaction with the player avatar. Each description is also aligned to its

corresponding entity in the environment. Figure 3-2 provides some samples; details

76

e Scorpion2: Red scorpion that moves up and down

o Alien3: This character slowly moves from right to left while having the ability to
shoot upwards

o Swordl: This item is picked up and used by the player for attacking enemies

Figure 3-2: Example text descriptions of entities in different environments, collected
using Amazon Mechanical Turk.

on data collection and statistics are in Section 3.5. More descriptions are provided in

Appendix B.

3.3.4 Transfer for RL

A natural scenario to test our grounding hypothesis is to consider learning across
multiple environments. The agent can learn to ground language semantics in an
environment F; and then we can test its understanding capability by placing it in
a new unseen domain, Es. The agent is allowed unlimited experience in F1, and
after convergence of its policy, it is then allowed to interact with and learn a policy
for E5. We do not provide the agent with any mapping between entities or goals
across domains, either directly or through the text. The agent’s goal is to re-utilize

information obtained in E; to learn more efficiently in E,.

77

3.4 Model

Grounding language for policy transfer across domains requires a model that meets
two needs. First, it must allow for a flexible representation that fuses information from
both state observations and text descriptions. This representation should capture the
compositional nature of language while mapping linguistic semantics to characteris-
tics of the world. Second, the model must have the capability to learn an accurate
prototype of the environment (i.e. transitions and rewards) using only interactive
feedback. Overall, the model must enable an agent to map text descriptions to envi-
ronment dynamics; this allows it to predict transitions and rewards in a completely

new world, without requiring substantial interaction.

To this end, we propose a neural architecture consisting of two main components:
(1) a representation generator (¢), and (2) a value iteration network (VIN) [108]. The
representation generator takes the state observation and the set of text descriptions
to produce a tensor, capturing essential information for decision making. The VIN
module implicitly encodes the value iteration computation (Eq. 3.1) into a recurrent
network with convolutional modules, producing an action-value function using the
tensor representation as input. Together, both modules form an end-to-end differen-

tiable network that can be trained using simple back-propagation.

3.4.1 Representation generator

The main purpose of this module is to fuse together information from two inputs -
the state, and the text specifications. An important consideration, however, is the
ability to handle partial or incomplete text descriptions, which may not contain all
the particulars on an entity. Thus, we would like to incorporate useful information
from the text, yet, not rely on it completely. This motivates us to utilize a factorized
representation over the two input modalities.

Formally, given a state matrix s and a set of text descriptions Z, the module

produces a tensor ¢(s, Z). Consider a cell in s containing an entity o;, with a cor-

78

e
n

.

Description

f RNN

[ioooj[oooo]

State S

¢(s,Z)

3
O

i

Figure 3-3: Representation generator combining both object-specific and
description-informed vectors for each entity. Each cell in the input state (2-D matrix)
is converted to a corresponding real-valued vector, resulting in a 3-D tensor output.

responding description z; (if available). Each such cell is converted into a vector

¢i = [vo,; v,], consisting of two parts concatenated together:
1. v,,, which is an entity-specific vector embedding of dimension d

2. v, (also of dimension d), produced from z; using an LSTM recurrent neural

network [50].

This gives us a tensor ¢ with dimensions m x n x 2d for the entire state. For cells
with no entity (i.e. empty space), ¢; is simply a zero vector, and for entities without
a description, v, = 0. Figure 3-3 illustrates this module.

This decomposition allows us to learn policies based on both the ID of an object
and its described behavior in text. In a new environment, previously seen entities
can reuse the learned representations directly based on their symbols. For completely
new entities (with unseen IDs), the model can form useful representations from their

text descriptions.

3.4.2 Value iteration network

For a model-based RL approach to this task, we require some means to estimate T’

and R of an environment. One way to achieve this is by explicitly using predictive

79

ﬁeward \
New value

Ji| |
| Al Q("+1 (n-i-l)
Qev value k recurrencej
Os

Qm’n

Figure 3-4: Value iteration network (VIN) module to compute Qi from ¢(s, Z).
The module approximates the value iteration computation using neural networks to
predict reward and value maps, arranged in a recurrent fashion. Functions fr and
fr are implemented using convolutional neural networks (CNNs). &5 is a selection
function to pick out a single Q-value (at the agent’s current location) from the output

Q-value map Q

models for both functions and learning these through transitions experienced by the
agent. These models can then be used to estimate the optimal) with equation 3.1.
However, this pipelined approach would result in errors propagating through the

different stages of predictions.

A value iteration network (VIN) [108] abstracts away explicit computation of T°
and R by directly predicting the outcome of value iteration (Figure 3-4), thereby
avoiding the aforementioned error propagation. The VI computation is mimicked by
a recurrent network with two key operations at each step. First, to compute @, we
have two functions — fgr and fr. fgr is a reward predictor that operates on ¢(s, Z)
while fr utilizes the output of fr and any previous V' to predict (). Both functions
are parametrized as convolutional neural networks (CNNs),? to suit our tensor rep-
resentation ¢. Second, the network employs max pooling over the action channels

in the -value map produced by fr to obtain V. The value iteration computation

2Qther parameterizations are possible for different input types, as noted in Tamar et al. [108].

80

(Eq. 3.1) can thus be approximated as:

O (s, a, Z) = fT(Fr((s, Z), a:0r), VP (s, Z); 9T) (3.2)
V(s Z) = max Q"+ (s, a, Z) (3.3)

Note that while the VIN operates on ¢(s, Z), we write Q and V in terms of the original
state input s and text Z, since these are independent of our chosen representation.

The outputs of both CNNs are real-valued tensors — that of fz has the same di-
mensions as the input state (m xn), while fr produces Q™) as a tensor of dimension
m x n x |A|. A key point to note here is that the model produces @ and V values
for each cell of the input state matrix, assuming the agent’s position to be that par-
ticular cell. The convolution filters help capture information from neighboring cells
in our state matrix, which act as approximations for V(™ (s’, Z). The parameters of
the CNNs, 6 and 6r, approximate R and T, respectively. See Tamar et al. [108] for
a more detailed discussion.

The recursive computation of traditional value iteration (Eq. 3.1) is captured by
employing the CNNs in a recurrent fashion for k steps.® Intuitively, larger values of
k imply a larger field of neighbors influencing the Q-value prediction for a particular
cell as the information propagates longer. Note that the output of this recurrent
computation, Q®, will be a 3-D tensor. However, since we need a policy only for the
agent’s current location, we use an appropriate selection function ds, which reduces

this Q-value map to a single set of action values for the agent’s location:
Quin(s,a,Z;01) = 6,(QW (s, a, 2)) (3.4)

3.4.3 Final prediction

Games follow a complex dynamics which is challenging to capture precisely, especially
longer term. VINs approximate the dynamics implicitly via learned convolutional
operations. It is thus likely that the estimated @Q,;, values are most helpful for short-

term planning that corresponds to a limited number of iterations k. Therefore, we

3k is a model hyperparameter.

81

need to complement these ‘local’ Q-values with estimates based on a more global
view.

To this end, following the VIN specification in [108], our architecture also contains
a model-free action-value function, implemented as a deep Q-network (DQN) [73].
This network also provides a Q-value prediction — @, (s, a, Z; ©4) — which is combined

with Qin using a composition function g*:

Q(Sa a, Z7 @) = g(Qvin<57 a, Z) @1)7 QT(Sa a, Z7 92)) (35)

The fusion of our model components enables our agent to establish the connection
between input text descriptions, represented as vectors, and the environment’s tran-
sitions and rewards, encoded as VIN parameters. In a new domain, the model can
produce a reasonable policy using corresponding text, even before receiving any in-

teractive feedback.

3.4.4 Parameter learning

Our entire model is end-to-end differentiable. We perform updates derived from the

Bellman equation [105]:

Qi—l—l(sva’ Z) = E[T +F}/ma,'XQi(s,aala Z) | S,(I] (36)

where the expectation is over all transitions from state s with action a and 7 is the
update number. To learn our parametrized Q-function (the result of Eq. 3.5), we can

use backpropagation through the network to minimize the following loss:

L(©;) =Esa(yi — Q(3,8,Z;6,))? (3.7)

where y; = r + ymaxy, Q(s',d', Z;0©;_1) is the target Q-value with parameters ©;_;
fixed from the previous iteration. We employ an experience replay memory D to
store transitions [73], and periodically perform updates with random samples from

this memory. We use an e-greedy policy [105] for exploration.

4Although g can also be learned, we use component-wise addition in our experiments.

82

Algorithm 3.1 MULTITASK _TRAIN (&)

1: Initialize parameters © and experience replay D
2: for k=1,M do > New episode

3: Choose next environment F;, € £
4 Initialize Ej; get start state s; € Sg
5 fort=1,N do > New step
6: Select a; ~ EPS-GREEDY (s, Qo, Zk, €)
7 Execute action a;, observe reward r; and new state sz
8 D = DU (s, a¢, T, St41, Zk)
9: Sample mini batch (s;, aj, 7}, 841, Zx) ~ D
10: Perform gradient descent on loss £ to update ©
11: if sy is terminal then break
12: Return ©

Algorithm 3.2 EPS-GREEDY (s,Q, Z, ¢)

1. if random() < € then

2 Return random action a

3: else

4 Return argmax, Q(s,a,Z)
5: Return ©

3.4.5 Transfer procedure

The traditional transfer learning scenario considers a single task in both source and
target environments. To better test generalization and robustness of our methods,
we consider transfer from multiple source tasks to multiple target tasks. We first
train a model to achieve optimal performance on the set of source tasks. All model
parameters (©) are shared between the tasks. The agent receives one episode at a
time from each environment in a round-robin fashion, along with the corresponding
text descriptions. Algorithm 3.1 details this multi-task training procedure.

After training converges, we use the learned parameters to initialize a model for
the target tasks. All parameters of the VIN are replicated, while most weights of
the representation generator are reused. Specifically, previously seen objects and
words retain their learned entity-specific embeddings (v,), whereas vectors for new
objects/words in the target tasks are initialized randomly. All parameters are then

fine-tuned on the target tasks, again with episodes sampled in a round-robin fashion.

83

3.5 Experimental Setup

3.5.1 Environments

We perform experiments on a series of 2-D environments within the GVGAI frame-
work [88], which is used for an annual video game Al competition.® In addition to
pre-specified games, the framework supports the creation of new games using the
Py-VGDL description language [96]. We use four different games to evaluate transfer
and multitask learning: Freeway, Bomberman, Boulderchase and Friends € Enemies.
There are certain similarities between these games. For one, each game consists of
a 16x16 grid with the player controlling a movable avatar with two degrees of free-
dom. Also, each domain contains other entities, both stationary and moving (e.g.
diamonds, spiders), that can interact with the avatar.

However, each game also has its own distinct characteristics. In Freeway, the goal
is to cross a multi-lane freeway while avoiding cars in the lanes. The cars move at
various paces in either horizontal direction. Bomberman and Boulderchase involve
the player seeking an exit door while avoiding enemies that either chase the player,
run away or move at random. The agent also has to collect resources like diamonds
and dig or place bombs to clear paths. These three games have five level variants
each with different map layouts and starting entity placements.

Friends & Enemies (F&E) is a new environment we designed, with a larger vari-
ation of entity types. This game has a total of twenty different non-player entities,
each with different types of movement and interaction with the player’s avatar. For
instance, some entities move at random while some chase the avatar or shoot bul-
lets that the avatar must avoid. The objective of the player is to meet all friendly
entities while avoiding enemies. For each game instance, four non-player entities are
sampled from this pool and randomly placed in the grid. This makes F&E instances
significantly more varied than the previous three games. We created two versions of

this game: F&E-1 and F&E-2, with the sprites in F&E-2 moving faster, making it a

Shttp://www.gvgai.net/

84

harder environment. Table 3.1 shows all the different transfer scenarios we consider

in our experiments.

Condition Source Target
F&E-1 — F&E-2 7 3
F&E-1 — Freeway 7 5
Bomberman — Boulderchase 5 5

Table 3.1: Number of source and target game instances for different transfer condi-
tions.

3.5.2 Text descriptions

We collect textual descriptions using Amazon Mechanical Turk [18]. We provide
annotators with sample gameplay videos of each game and ask them to describe
specific entities in terms of their movement and interactions with the avatar. Since we
ask the users to provide an independent account of each entity, we obtain “descriptive"
sentences as opposed to “instructive” ones which inform the optimal course of action
from the avatar’s viewpoint. From manual verification, we find less than 3% of the
obtained annotations to be “instructive".

We aggregated together four sets of descriptions, each from a different annotator,
for every environment. Each description in an environment is aligned to one con-
stituent entity. We also make sure that the entity names are not repeated across
games (even for the same entity type). Table 3.2 provides corpus-level statistics on

the collected data and Figure 3-2 has sample descriptions.

Unique word types 286
Avg. words / sentence 8.65

Avg. sentences / domain 36.25
Max sentence length 22

Table 3.2: Overall statistics of the text descriptions collected using Mechanical Turk.

3.5.3 Evaluation metrics
We evaluate transfer performance using three metrics employed in previous approaches [110]:

85

e Average Reward, which is area under the reward curve divided by the number

of test episodes.
o Jumpstart performance, which is the average reward over first 100k steps.

e Asymptotic performance, which is the average reward over 100k steps after

convergence.

For the multitask scenario, we consider the average and asymptotic reward only. We

repeat all experiments with three different random seeds and report average numbers.

3.5.4 Baselines

We explore several baselines:

NO TRANSFER: A deep Q-network (DQN) [73] is initialized at random and
trained from scratch on target tasks. This is the only case that does not use

parameters transferred from source tasks.

e DQN: A DQN is trained on source tasks and its parameters are transferred to

target tasks. This model does not make use of text descriptions.

e TEXT-DQN: DQN with hybrid representation ¢(s, Z), using text descriptions.
This is essentially a reactive-only version of our model, i.e. without the VIN

planning module.

e AMN: Actor-Mimic network, a recently proposed [85] transfer method for deep

RL using policy distillation.®

3.5.5 Implementation details

For all models, we set v = 0.8, D = 250k. We used the Adam [55] optimization
scheme with a learning rate of 10™*, annealed linearly to 5 x 107°. The minibatch

size was set to 32. ¢ was annealed from 1 to 0.1 in the source tasks and set to 0.1

6We only evaluate AMN on transfer since it does not perform online multitask learning and is
not directly comparable.

86

in the target tasks. For the value iteration module (VIN), we experimented with
different levels of recurrence, k € {1,2, 3,5} and found k = 1 or k = 3 to work best.”
For DQN, we used two convolutional layers followed by a single fully connected layer,
with ReLU non-linearities.The CNNs in the VIN had filters and strides of length 3.
The CNNs in the model-free component used filters of sizes {4, 2} and corresponding

strides of size {3,2}. All embeddings are initialized to random values.®

"We still observed transfer gains with all k values.
8We also experimented with using pre-trained word embeddings for text but obtained equal or
worse performance.

87

3.6 Results

3.6.1 Transfer performance

Table 3.3 demonstrates that transferring policies positively assists learning in new
domains. Our model, TEXT-VIN, performs at par or better than the baselines across
all the different metrics. On the first metric of average reward, TEXT-VIN (1) achieves
a 8% gain (absolute) over AMN on F&E-1 — F&E-2, while TEXT-VIN (3) achieves a
35% gain (absolute) over TEXT-DQN on F&E-1 — Freeway. This is also evident from

a sample reward curve, shown in Figure 3-5 (left).

In jumpstart evaluation, all the transfer approaches outperform the NO TRANSFER
baseline, except for AMN on Bomberman — Boulderchase. In all domains, the TEXT-
DQN model obtains higher scores than DQN, already demonstrating the advantage of
using text for transfer. TEXT-VIN (3) achieves the highest numbers in all transfer
settings, demonstrating effective utilization of text descriptions to bootstrap in a new

environment.

On the final metric of asymptotic performance, TEXT-VIN achieves the highest
convergence scores, except on F&E-1 — F&E-2, where AMN obtains a score of 1.64.

9

This is in part due to its smoother convergence”; improving the stability of our model

training could lead to improved asymptotic performance.

Negative transfer We also observe the challenging nature of policy transfer in
some scenarios. For example, in Bomberman — Boulderchase, TEXT-DQN and AMN
achieve a lower average reward and lower asymptotic reward than the NO TRANSFER
model, exhibiting negative transfer [110]. Further, TEXT-DQN performs worse than
a vanilla DQN in such cases, which further underlines the need for a model-aware

approach to truly take advantage of the descriptive text.

9This fact is also noted in [85]

38

68

Model F&E-1 — F&E-2 F&E-1 — Freeway Bomberman — Boulderchase

Avg. Jumpstart Asymp. Avg. Jumpstart Asymp. Average Jumpstart — Asymp.

... NOTRANSFER 086 019 140 015~ -1.06 - 081~ 950 288 1099
DQN 102 073 130 0.06 -0.96 082 9.63 3.84 11.28
TEXT-DQN 1.03 040 133 038 050 0.85 852 3.42 9.45

AMN (Actor Mimic) ' 1.22 013 b U SR SR 075 622 0.78 820
TEXT-VIN (1) 1.38 093 153 0.63 -0.58 0.85 1141 442 12.06
TEXT-VIN (3) 127 1.04 144 073 -0.01 0.85 1093 4.49 12.09

Table 3.3: Transfer learning results under the various metrics for different domains (Avg. is average reward over time, Asymp.
is asymptotic reward). Numbers in parentheses for TEXT-VIN indicate k value. TEXT- models make use of textual descriptions.
The max reward attainable (ignoring step penalties) in the target environments is 2.0, 1.0 and at least 25.0 in F&E, Freeway
and Boulderchase, respectively. Higher scores are better; bold indicates best numbers.

——

Condition
—— no transfer
—— DQN
- text-DQN
—— AMN
-1.5 —— text-VIN (1)
—— text-VIN (3)

100 200 300 400 500 600 700
steps (thousands)

Figure 3-5: Reward curve for transfer condition F&E-1 — Freeway. Numbers in
parentheses for TEXT-VIN indicate k value. All graphs were averaged over 3 runs
with different seeds, with shaded areas representing bootstrapped confidence intervals.
Curves for other transfer conditions are provided in Appendix B.

2.0
15
1.0
B 05
S
2 00 .
3 Condition
-0.5)J\’HJJ —— DQN
& text-DQN
-1.0 —— text-VIN (1)
—— text-VIN (3)
-1.5

500 1000 1500 2000 2500 3000
steps (thousands)

Figure 3-6: Reward curve for multitask learning in F&E-2. Numbers in parentheses
for TEXT-VIN indicate k& value. All graphs were produced by averaging over 3 runs
with different seeds; shaded areas represent bootstrapped confidence intervals.

90

Model Avg Asymp.

DQN 0.65 1.38
TEXT-DQN 0.71 1.49
TEXT-VIN (1) 1.32 1.63
TEXT-VIN (3) 1.24 1.57

Table 3.4: Scores for multitask learning over 20 games in F&E-2.

3.6.2 Multi-task performance

The learning benefits observed in the transfer scenario are also present in the multi-
task setup. Table 3.4 details the average reward and asymptotic reward for learning
across twenty variants of the F&E-2 domain, simultaneously. Our model utilizes the
text to learn faster and achieve higher optimum scores, with TEXT-VIN (1) showing
gains over TEXT-DQN of 30% and 7% on average and asymptotic rewards, respectively.

Figure 3-5 (right) shows the corresponding reward curves.

3.6.3 Analysis

Effect of factorized representation We investigate the usefulness of our fac-
torized representation by training a variant of our model using only a text-based
vector representation (Text only) for each entity. We consider two different transfer
scenarios — (a) when both source and target instances are from the same domain
(F&E-1 — F&E-1) and (b) when the source/target instances are in different domains
(F&E-1 — F&E-2). In both cases, we see that our two-part representation results
in faster learning and more effective transfer, obtaining 20% higher average reward
and 16% more asymptotic reward in F&E-1 — F&E-2 transfer. Our representation
is able to transfer prior knowledge through the text-based component while retaining

the ability to learn new entity-specific representations quickly.

Text representation: Sum vs LSTM We also consider a different variant of our
model that uses a simple sum of the word embeddings for a description, instead of

an LSTM. Table 3.6 provides a comparison of transfer performance on one of the

91

Condition Model Avg Jump Asymp.

Text only 1.64 048 1.78
F&E-L = FEE-L i fentity ID 170 1.09 1.78

Text only 1.05 0.62 1.15
F&E-1 — F&E-2 Text+entity ID 1.27 1.04 1.44

Table 3.5: Transfer results using different input representations with TEXT-VIN (3).
Text only means only a text-based vector is used, i.e. ¢(s) = v.(s,Z). Text+entity
ID refers to our full representation, ¢(s) = [v,(s, Z);v,(8)].

Model Sum LSTM

TEXT-DQN 6.57 8.52
TEXT-VIN (1) 926 11.41
TEXT-VIN (2) 9.17 10.78
TEXT-VIN (3) 10.63 10.93
TEXT-VIN (5) 9.54 10.15

Table 3.6: Average rewards in Bomberman — Boulderchase with different text
representations: Sum of word vectors, or an LSTM-based recurrent neural network
over the entire sentence.

conditions. We observe that across all models, the LSTM representation provides
greater gains. In fact, the Sum representation does worse than vanilla DQN (9.63) in
some cases. This underscores the importance of a good text representation for the

model.

Value analysis Finally, we provide some qualitative evidence to demonstrate the
generalization capacity of TEXT-VIN. Figure 3-7 shows visualizations of four value
maps produced by the VIN module of a trained model, with the agent’s avatar at
position (4,4) and a single entity at (2,6) in each map. In the first map, the entity is
known and friendly, which leads to high values in the surrounding areas, as expected.
In the second map, the entity is unseen and without any descriptions; hence, the
values are uninformed. The third and fourth maps, however, contain unseen entities
with descriptions. In these cases, the module predicts higher or lower values around
the entity depending on whether the text portrays it as a friend or enemy. Thus, even
before a single interaction in a new domain, our model can utilize text to generate

good value maps. This bootstraps the learning process, making it more efficient.

92

(o]

o
o
ol

(c) (d)

Figure 3-7: Value maps, V) (s, Z), produced by the VIN module for (a) seen
entity (friend), (b) unseen entity with no description, (c) unseen entity with "friendly’
description, and (d) unseen entity with ’enemy’ description. Agent is at (4,4) and the
non-player entity is at (2,6). Note how the model can construct a reasonably accurate
value map for unseen entities using their descriptions.

93

3.7 Conclusions

We have proposed a novel method of utilizing natural language to drive transfer
for reinforcement learning (RL). We show that textual descriptions of environments
provide a compact intermediate channel to facilitate effective policy transfer. Using
a model-aware RL approach, our design consists of a differentiable planning module
(VIN), a model-free component and a two-part representation to effectively utilize
entity descriptions. We demonstrate the effectiveness of our approach on both transfer
and multi-task scenarios in a variety of environments. We discuss a few research

directions that can be pursued based on this work.

Future work

e Using language for policy transfer in deep RL is complementary to other tech-
niques such as policy reuse [39] or skill transfer [42] among other approaches [31,
112, 123]. A combination of one of these methods with language-guided transfer

could result in further improvements.

e A major factor in successfully utilizing the text descriptions for transfer was
the model-based VIN component. However, in the current form, this requires
specifying the recurrence hyper-parameter k, whose optimal value might vary
from one domain to another. An interesting research direction is to investigate
models that can perform multiple levels of recurrent VI computation, possibly
in a dynamic fashion. This would allow an agent to plan and act over multiple

temporal scales.

94

Chapter 4

Improved Information Extraction

with Reinforcement Learning

In this chapter, we demonstrate the utility of sequential decision making to enhance
systems for information extraction, a traditional NLP task. We design a system that
can automatically issue queries on the web, retrieve external articles and aggregate
information from multiple sources. We train the system using Reinforcement Learning
to maximize the accuracy of the final extractions. Our experiments demonstrate a
clear advantage in exploiting redundant sources of information, resulting in more

robust extractions.

4.1 Introduction

The problem of information extraction (IE) has remained a mainstay of traditional
natural language processing over the last few decades [70, 21, 95, 1]. At its core,
the task involves wresting out structured pieces of knowledge from raw, unstructured
text documents. Many approaches to the problem exist, ranging from manually
created rules [75] and fully supervised extraction models [94, 86] to semi-supervised
approaches [25, 53, 19]. In the latter two statistical approaches, the key idea is in

learning to identify patterns of text that help extract the values of interest. The more

95

A couple and four children found dead in their burning South Dakota home

had been shot in an apparent murder-suicide, officials said Monday.

The State Attorney General’s office said Monday that preliminary autopsy re-
sults identified cause of death for Nicole Westerhuis and her children Nicole,
Kailey, Jaeci, Connor and Michael as “homicide by shotgun." Scott Wester-
huis’s cause of death was "shotgun wound with manner of death as suspected

suicide," it added in a statement. __

ShooterName: Scott Westerhuis
NumKilled: 6

NumWounded: 0

City: Platte

Figure 4-1: Sample news article (top) and desired extractions (bottom) for a
mass shooting case in the United States. The article contains both the name of the
shooter as well as the number of people killed, but both pieces of information require
complex extraction techniques (e.g. reasoning ‘a couple and four children’ equals six,
or ‘suspected suicide’ implies the shooter was Scott Westerhuis).

patterns an IE system can identify, the more accurate it is likely to be.

In many realistic domains, information extraction (IE) systems require exceed-
ingly large amounts of annotated data to deliver high performance. Increases in the
amount of training data enable models to robustly handle the multitude of linguistic
expressions that convey the same semantic relation. Consider, for instance, an IE sys-
tem that aims to identify entities such as the perpetrator and the number of victims
in a shooting incident (Figure 4-1). The document does not explicitly mention the
shooter (Scott Westerhuis), but instead refers to him as a suicide victim. Extraction
of the number of fatally shot victims is similarly difficult, as the system needs to infer
that "A couple and four children” means six people. Even a large annotated training

set may not provide sufficient coverage to capture such challenging cases.

In this chapter, we explore an alternative approach for boosting extraction ac-
curacy, when a large training corpus is not available. The proposed method utilizes

external information sources to resolve ambiguities inherent in text interpretation.

96

The six members of a South Dakota family found dead in the ruins of their
burned home were fatally shot, with one death believed to be a suicide, author-
ities said Monday.

AG Jackley says all evidence supports the story he told based on preliminary
findings back in September: Scott Westerhuis shot his wife and children with
a shotgun, lit his house on fire with an accelerant, then shot himself with his
shotgun.

Figure 4-2: Two other articles on the same shooting case shown in Figure 4-1. The
first article clearly mentions that six people were killed. The second one portrays the
shooter in an easily extractable form.

Specifically, our strategy is to find other documents that contain the information
sought, expressed in a form that a basic extractor can "understand". For instance,
Figure 4-2 shows two other articles describing the same event, wherein the entities of
interest — the number of people killed and the name of the shooter — are expressed ex-
plicitly. Processing such stereotypical phrasing is easier for most extraction systems,
compared to analyzing the original source document. This approach is particularly
suitable for extracting information from news articles, since a typical event is often

covered by multiple news outlets.

There are two main challenges to this approach. First, we have the task of per-
forming event coreference, which entails retrieving suitable articles describing the
same incident as our original document. Querying the web (using the source article’s
title for instance) often retrieves documents about other incidents with a tangential
relation to the original story. For example, the query “4 adults, 1 teenager shot in
west Baltimore 3 april 2015” yields only two relevant articles among the top twenty
results on Bing search, while returning other shooting events at the same location.
The second challenge is that of value reconciliation. Even when we have two articles
on the same event, our extraction system can provide us with conflicting values for
each slot. It is very likely that some of these, if not all, are inaccurate. Therefore,

we require a good mechanism for resolving the differing predictions and producing a

i)

single final answer.

One solution to this problem would be to perform a single web search to retrieve
articles on the same event and then reconcile values extracted from them (say, using
another classifier). However, if the confidence of the new set of values is still low,
we might wish to perform further queries. Further, the queries we utilize may vary
depending on the type of information we seek to obtain (e.g. the values the system is
currently least confident about). Thus, the problem is inherently sequential, requiring

alternating phases of querying to retrieve articles and integrating the extracted values.

We address these challenges using a Reinforcement Learning (RL) approach that
combines query selection, extraction from new sources, and value reconciliation. To
effectively select among possible actions, our state representation encodes information
about the current and new entity values along with the similarity between the source
article and the newly retrieved document. The model learns to select good actions
for both querying and value reconciliation in order to optimize the reward function,
which reflects extraction accuracy and includes penalties for extra moves. We train
the RL agent using a Deep Q-Network (DQN) [73] as a value function approximator.
The DQN is used to predict both querying and reconciliation choices simultaneously.
While we use a maximum entropy model as the base extractor, this framework can
be inherently used with other extraction algorithms.

We evaluate our system on two datasets where available training data is inherently
limited. The first dataset is constructed from a publicly available database of mass
shootings in the United States. The database is populated by volunteers and includes
the source articles. The second dataset is derived from a FoodShield database of
illegal food adulterations. Our experiments demonstrate that the final RL model
outperforms basic extractors as well as a meta-classifier baseline in both domains.
For instance, in the Shootings domain, the average accuracy improvement over the

meta-classifier is 7%.

The rest of this chapter is structured as follows. Section 4.2 discusses prior re-
lated work on information extraction, entity linking and knowledge base completion.

In Section 4.3, we describe our entire MDP framework for learning to query and

98

aggregate external evidence. Section 4.4 details our model and learning procedure.
Section 4.5 explains our experimental setup, and Section 4.6 presents the results along
with some analysis. Finally, we conclude in Section 4.7 and provide some suggestions

for future work.

99

4.2 Related Work

4.2.1 Open Information Extraction

Existing work in open IE has used external sources from the web to improve extrac-
tion accuracy and coverage [2, 34, 35, 120]. Such research has focused on identifying
multiple instances of the same relation, independent of the context in which this in-
formation appears. In contrast, our goal is to extract information from additional
sources about a specific event described in a source article. Therefore, the novel
challenge of our task resides in performing event coreference {63, 10| (i.e identifying
other sources describing the same event) while simultaneously reconciling extracted
information. Moreover, relations typically considered by open IE systems have sig-
nificantly higher coverage in online documents than a specific incident described in a
few news sources. Hence, we require a different mechanism for finding and reconciling

online information.

4.2.2 Entity linking, multi-document extraction and event

coreference

Our work also relates to the task of multi-document information extraction, where the
goal is to connect different mentions of the same entity across input documents [68, 20,
44, 32]. Since this setup already includes multiple documents, an extraction system is
not required to look for additional sources or decide on their relevance. Also, while the
set of input documents overlap in terms of entities mentioned, they do not necessarily
describe the same event, as is the case in our setup. Given these differences, the

challenges and opportunities of our framework are distinct from these works.

4.2.3 Knowledge Base Completion and Online Search

Recent work has explored several techniques to perform Knowledge Base Comple-

tion (KBC) such as vector space models and graph traversal [102, 122, 36, 80, 43].

100

Though our work also aims at increasing extraction recall for a database, traditional
KBC approaches do not require searching for additional sources of information. Work
by West et al. [118| explores query reformulation in the context of KBC. Using ex-
isting search logs, they learn how to formulate effective queries for different types
of database entries. Once query learning is completed, the model employs several
selected queries, and then aggregates the results based on retrieval ranking. This
approach is complementary to the proposed method, and can be combined with our
approach if search logs are available.

Kanani and McCallum [54] also combine search and information extraction. In
their task of faculty directory completion, the system has to find documents from
which to extract desired information. They employ reinforcement learning to address
computational bottlenecks, by minimizing the number of queries, document down-
loads and extraction action. The extraction accuracy is not part of this optimization,
since the baseline IE system achieves high performance on the relations of interest.
Hence, given different design goals, the two RL formulations are very different. Our
approach is also close in spirit to the AskMSR system [9] which aims at using in-
formation redundancy on the web to answer questions better. Several slot-filling
methods have also experimented with query formulation over web-based corpora to
populate knowledge bases [103, 52]. Though our goal is similar, we learn to query

and consolidate the different sources of information instead of using pre-defined rules.

101

4.3 Framework

Our main goal is to augment traditional IE systems with the capability to au-
tonomously locate additional sources on the web, determine their relevance, and ag-
gregate information reliably. The kind of external document sought, however, depends
on the particular type of information the system is looking for. This could be a fact
that is missing in the original article, or a value that the system has low confidence
on. For instance, if the name of the shooter is missing, the system should probably
look for articles containing words such as shooter, perpetrator, gunman, etc. Further,
we would like the system to retrieve and process a small number of extra documents
to minimize the cost associated. These requirements point towards a framework that
enables sequential decision making.

To this end, we model the information extraction task as a markov decision process
(MDP), where the model learns to utilize external sources to improve upon extractions
from a source article (see Figure 4-3). The MDP framework allows us to dynamically
incorporate entity predictions while also providing flexibility to choose the type of
articles to extract from. At each step, the system has to reconcile the extracted
values from a new article with the current set of values, and then decide on the next
query for retrieving more articles. We represent the MDP as a tuple (S, A, T, R),
where S is the space of all possible states, A = {a = (d, q)} is the set of all actions,
R(s,a) is the reward function, and 7(s'|s,a) is the transition function. We describe

these in detail below.

4.3.1 States

A state s € S in our MDP consists of the extractor’s confidence in predicted entity
values, the context from which the values are extracted and the similarity between
the new document and the original one. We represent the state as a continuous

real-valued vector (Figure 4-4) incorporating these pieces of information:

1. Confidence scores of current and newly extracted entity values.

102

Shooter: Scott Westerhuis
NumKilled: 4
NumWounded: 2

Location: S.D

reconcile (d)

Shooter: Scott Westerhuis
NumKilled: 6
NumWounded: 2
Location: S.D

Shooter: Scott Westerhuis Shooter: Westerhuis
i sselect
NumKilled: 6 5 NumKilled: 4
NumWounded: 2 extract NumWounded: 0
Location: Platte seard\ Location: Platte
State I Jackley Concludes Scott Westerhuis Killed State 2

Farnlly in Beds, Torched House, Shot Self

160 145k by ey 109 Crmrons

wuary fae uqm 1apped up his press conievence in Plasie

discusurn the iovesigation of the deaths of Scot and Nicola Westervins and

IMMFM(mevdnmx,edmmnmumrym

Septrsnber 17, 2015, AG lackley <ay3 all evidence sunpons the siory he tokd by

wgmwmuufndlvlhck Septemiver: Scott Westerhon shot his witt and

Kithes i shotgun. it his house un fire with an acerierant, then shot bime
s shotgun.

e, Slicolaand i

new article

Figure 4-3: Illustration of a transition in the MDP — the top box in each state shows
the current entities and the bottom one consists of the new entities extracted from a
downloaded article on the same event. At each step, the system makes two choices
— a reconciliation decision (d) and a query selection (q), resulting in a corresponding
evolution of the state.

2. One-hot encoding of matches between current and new values.
3. tf-idf similarity between the original article and the new article.

4. Unigram/tf-idf counts' of context words. These are words that occur in the
neighborhood of the entity values in a document (e.g. the words which, left,

people and wounded in the phrase “which left 5 people wounded”).

These four parts serve as signals for our system to use in performing both event

coreference (#3,#4) and value reconciliation (#1,#2,#4).

4.3.2 Actions

We design our system to jointly reconcile values and perform event coreference. At

each step, the agent is required to take two actions - a reconciliation decision d,

LCounts are computed on the documents used to train the basic extraction system.

103

State vector

0.3
0.2 | currentConf
Confidence 0.1
: : 0.4
Shooter: Scott Westerhuis Q_-_3 0.6 | newConf
NumKilled: 4 0“_2. “ 0.3
Location: S.D 0.1 1 .
: = 0 matches
i | Shooter: Scott Westerhuis : 0.4 0
: B b Fagl e
NumKilled: 6 ; 06 =y
Location: Platte Pl aal ey
i 0.3
; i 1
0
St
ate . context
0
0

Figure 4-4: Sample state representation (right) in the MDP based on current and
new values of entities (left). The different parts of the state are — currentConf:
confidence scores of current entities, newConf: confidence scores of new entities,
matches between current and new values, docSim: tf-idf similarity between original
and currently inspected document, and context: tf-idf counts of context words.

104

and a query choice q. The decision d on the newly extracted values can be one of the
following types: (1) accept a specific entity’s value (one action per entity)?, (2) accept
all entity values, (3) reject all values or (4) stop. In cases 1-3, the agent continues
to inspect more articles, while the episode ends if a stop action (4) is chosen. The
current values and confidence scores are simply updated with the accepted values and
the corresponding confidences.®> We restrict ourselves to these choices instead of all
possible subsets due to computational constraints. The choice ¢ is used to select the
next query from a set of automatically generated alternatives (details in Section 4.3.4)

in order to retrieve the next article.

4.3.3 Rewards

The reward function is chosen to maximize the final extraction accuracy while min-
imizing the number of queries. The accuracy component is calculated using the

difference between the accuracy of the current and the previous set of entity values:

R(s,a) = Z Acc(el) — Acc(e?)+

cur prev
entity 7

There is also a negative reward per step (§) to penalize the agent more for longer

episodes.

4.3.4 Queries

The queries used by our model are based on automatically generated templates, cre-
ated using the title of an article along with words* most likely to co-occur with each
entity type in the training data. Table 4.1 provides some examples — for instance, the
second template contains words such as arrested and identified which often appear
around the name of the shooter. Templates for the domain of food adulteration are

provided in Appendix C.

2No entity-specific features are used for action selection.
3We also experiment with other forms of value reconciliation. See Section 4.5 for details.
4Stop words, numeric terms and proper nouns are filtered.

105

(title)

(title) + (police | identified | arrested | charged)
(title) + (killed | shooting | injured | dead | people)
(title) + (injured | wounded | victim)

(title) + (city | county | area)

Table 4.1: Examples of different query templates for web search for articles on
mass shootings. The last four queries contain context words around values for entity
types ShooterName, NumKilled, NumWounded and City, respectively. The | symbol
represents logical OR. At query time, (title) is replaced by the source article’s title.

We employ a search engine to query the web for articles, using one of the filled-in
query templates, and then retrieve the top k links per query.® Documents that are

more than a month older than the original article are filtered out of the search results.

4.3.5 Transitions

Each episode starts off with a single source article z;, from which an initial set of
entity values (eg) are extracted. The subsequent steps in the episode involve extra
articles from the web, downloaded using different query formulations based on the
source article. A single transition in the episode consists of the agent being given
the state s containing information about the current and new set of values (extracted
from a single article) using which the next action a = (d, q) is chosen. The transition
function T'(s'|s, a) is responsible for incorporating two effects — (1) the reconciliation
decision d from the agent is used to combine the two sets of values in state s into the
first set of values in the next state s’, and (2) the query g is employed to retrieve the
next article, from which values are extracted to produce the second set for s’. The
episode stops whenever d is a stop decision.

Algorithm 4.1 details the working of the MDP framework during the training
phase. During the test phase, each source article is handled only once in a single

episode (lines 8-23).

5We use k=20 in our experiments.

106

Algorithm 4.1 MDP framework for Information Extraction (Training Phase)

1: Initialize set of original articles X
2: for z; € X do
3: for each query template 79 do

4: Download articles with query 7(x;)
5: Queue retrieved articles in Y;?
6: for epoch =1, M do
7: fori=1,|X| do > New event instance
8: Extract entities ey from z;
9: Ecur < €0
10: q+ 0,70 > Variables for query type, reward
11: while Y not empty do
12: Pop next article y from Y}
13: Extract entities e, from y
14: Compute tf-idf similarity Z(z;,y)
15: Compute context vector C (y)
16: Form state s using ecur, €new, 2 (i, y) and C(y)
17: Send (s, 7) to agent
18: Get decision d, query ¢ from agent
19: if d == sTOP then break
20: €prev € €cur
21: ecur < Reconcile(ecyr, €new, d)
22: T Eentity i Acc(egur) - Acc(eg‘)rev)
23: Send (Seng, T) to agent

107

4.4 Reinforcement Learning for Information

Extraction

4.4.1 Model

To learn a good policy for an agent, we utilize the paradigm of reinforcement learn-
ing (RL). The MDP described in the previous section can be viewed in terms of a
sequence of transitions (s, a,r,s’). The agent typically estimates a state-action value
function Q(s,a) to determine which action a to perform in state s. A commonly
used technique for learning an optimal value function is Q-learning [117], in which
the agent iteratively updates (s, a) using the rewards obtained from episodes. The

updates are derived from the recursive Bellman equation [105] for the optimal Q:

Qit1(s,a) = E[r +ymaxQy(s’,a’) | s,

Here, r = R(s,a) is the reward and ~ is a factor discounting the value of future

rewards. The expectation is over all transitions involving state s and action a.

Since our problem involves a continuous state space S, we use a deep Q-network
(DQN) [73] as a function approximator, Q(s,a) = Q(s,a;#). The DQN, in which the
Q-function is approximated using a deep neural network, has been shown to learn
better value functions than linear approximators [78, 46] and can capture non-linear

interactions between the different pieces of information in our state.

We use a DQN consisting of two linear layers (20 hidden units each) followed by
rectified linear units (ReLU), along with two separate output layers.® The network
takes the continuous state vector s as input and predicts Q(s,d) and Q(s,q) for
reconciliation decisions d and query choices ¢ simultaneously using the different output

layers (see Figure 4-5 for the model architecture).

5We did not observe significant differences with additional linear layers or the choice of non-
linearity (Sigmoid/ReLU).

108

Q(51Q) Q(Sad) (Q-values)

| I
(Linear] [Linear]
\ /"
[Linear + RelLU)

-

[Linear + RelLU]

-~

(.J (input state vector)

Figure 4-5: Architecture of the deep Q-network (DQN), whose input is the state
vector described in Section 4.3.1 and outputs are Q-values for both query and recon-
ciliation decisions.

Algorithm 4.2 Training Procedure for DQN agent with e-greedy exploration

1: Initialize experience memory D
2: Initialize parameters 6 randomly
3: for episode = 1, M do

e

14:

15:
16:

Initialize environment and get start state s;
fort=1,N do

if random() < € then
Select a random action a,
else
Compute Q(s¢, a) for all actions a
Select a; = argmax Q(s, a)
Execute action a; and observe reward r; and new state sy,
Store transition (s, as, ¢, $¢+1) in D
Sample random mini batch of transitions (s;, aj, 5, s;+1) from D
0 if s;41 is terminal
Yi = { r; + v maxy Q(sjy1,a’;0;), else
Perform gradient descent step on the loss £(0) = (y; — Q(s;,a;;0))?
if s;41 == Seng then break

109

4.4.2 Parameter Learning

The parameters 6 of the DQN are learned using stochastic gradient descent with
RMSprop [111]. Each parameter update aims to close the gap between the Q(s;, as; 0)
predicted by the DQN and the expected Q-value, r; + v max, Q(s¢+1, a; 6), from the
Bellman equation. Following Mnih et al. [73], we make use of a (separate) target
Q-network to calculate the expected Q-value, in order to have ‘stable updates’. The
target Q-network is periodically updated with the current parameters §. We also make
use of an experience replay memory D to store transitions. To perform updates, we
sample a batch of transitions (§,a, §,r) at random from D and minimize the loss

function”:

where y = r + ymax, Q(8',d';0;) is the target Q-value. The learning updates are

made every training step using the following gradients:

VoL (0) = E;4[2(Q(3,0;0) —y)VeQ(3, a; 0)]

Algorithm 4.2 details the DQN training procedure.

"The expectation is over the transitions sampled uniformly at random from D.

110

4.5 Experimental Setup

4.5.1 Data

We perform experiments on two different datasets. For the first set, we collect data

8 a website tracking shootings in the United States.

from the Gun Violence archive,
The data consists of one news article on each shooting and annotations for (1) the
name of the shooter (ShooterName), (2) the number of people killed (NumKilled), (3)
the number of people wounded (Num Wounded), and (4) the city where the incident
took place (City). We consider these to be our entities of interest, to be extracted
from the articles. The second dataset we use is the Foodshicld EMA database,’
documenting adulteration incidents around the world since 1980. This data contains
annotations for (1) the affected food product (Food), (2) the adulterant (Adulterant)
and (3) the location of the incident (Location). Both datasets are classic examples

where the number of recorded incidents is insufficient for large-scale IE systems to

leverage successfully.

For each source article in the above databases, we download extra articles using the
Bing Search API' with different automatically generated queries, limiting ourselves
to the top 20 results per query. We use only the source articles from the train portion
to learn the parameters of the base extractor. This is basically similar to how one
would train a supervised model on the available data. To train the DQN agent (and
the meta-classifier baseline, described in Section 4.5.4), we use the entire train set
plus the downloaded articles. Note that the extra articles are noisy and most of them
remain irrelevant to the original article. The parameters of all models are tuned on
the dev set. For the final results, we train the models on the combined train and dev
sets and use the entire test set (source + downloaded articles) to evaluate. Table 4.2

provides statistics on the data.

8www.shootingtracker.com/ Main_Page
9www.foodshield.org/member/login/
Oyyw.bing. com/toolbox/bingsearchapi

111

Shootings Adulteration
Train Test Dev Train Test Dev

Source articles 306 292 66 292 148, 42
Downloaded articles 8201 7904 1628 7686 5333 1537

Table 4.2: Number of articles in the Shootings and Adulteration datasets.

4.5.2 Base Extraction System

We use a maximum entropy classifier for the base extraction system, since it provides
flexibility to capture various local context features and has been shown to perform well
for information extraction [24|. The classifier is used to tag each word in a document
as one of the entity types or not (e.g. {ShooterName, NumKilled, NumWounded,
City, Other} in the Shootings domain). Then, for each tag except Other, we select
the mode of the values in an article to obtain the set of entity extractions for that
article.!!

The types of features used in the classifier include:

e Word type indicator for each word in our vocabulary. This is set for the current

word as well as words occurring within a context window of size three.
e Tag type indicator for the previous three words.

e Dictionary-based features for the current word plus context words within a

neighborhood of three steps. A list of these features is provided in Table 4.3

Type Features

Names isMaleName, isFemaleName

Lexical isCapital, isLongWord, isShort Word

Numeric isDigit, containsDigit, isNumberWord, isOrdinalWord
Cities isFullCity, isPartialCity

Table 4.3: Different types of dictionary-based binary features used in our Maximum
Entropy classifier. These features are calculated both for the current word and words
in the surrounding context.

1 We normalize numerical words (e.g. "one" to "1") before taking the mode.

112

The features and context window ¢ = 4 of neighboring words are tuned to max-
imize performance on a development set. We also experimented with a conditional
random field (CRF) (with the same features) for the sequence tagging [26] but ob-
tained worse empirical performance (see Section 4.6). The parameters of the base

extraction model are not changed during training of the RL model.

4.5.3 Evaluation

We evaluate the extracted entity values against the gold annotations and report the
corpus-level average accuracy on each entity type. For the ShooterName entity, the
annotations (and the news articles) often contain multiple names (first and last) in
various combinations, so we consider retrieving either name as a successful extraction.

For all other entities, we look for exact matches.

4.5.4 Baselines

We explore 4 types of baselines:

e Basic extractors: The simplest baselines to consider are the base extraction
systems themselves. Here, we make use of the CRF and the Maxent classifiers

described previously.

e Aggregation systems: The second type of baselines we consider are basic aggre-
gation systems. These methods first run the base extractor on both the original
articles as well as the extra documents, and then utilize simple heuristics to
aggregate the values. We examine two systems that perform different types of
value reconciliation. The first model (Confidence) chooses the entity value for
a slot by picking the one with the highest confidence score assigned by the base
extractor. The second system (Majority) takes a majority vote over all values
extracted from the different articles. Both methods filter new entity values us-
ing a threshold 7 (tuned on the development set) on the cosine similarity over

the tf-idf representations of the source and new articles.

113

Original Extra Reconciled

Shooter: Scott Westerhuis Shooter: Scott Westerhuis Shooter: Scott Westerhuis Conflden ce agg j
NumKilled: 4 NumKilled: 6 — NumKilled: 6
Location: 5.D Location: Platte LR ikt \‘
SHooter Seon Westertin Shooter: Westerhuis i i
ooter. CO- esternuis :) Shooter: Westerhuis Shooter: Scott Westerhuis
NumKilled: 4 NumKilled: 0 NumKilled: 4 — NumKilled: 6
Location: S. ion: :
ocation: 5.0 Location: Platte Location: Platte Location: Platte
: Final
Shooter: Scott Westerhuis Shooter: Scott Shooter: Scott Westerhuis /
NumKilled: 4 NumKilled: 2 e NumKilled: 2
Location: 5.0 Location: S.D Location: S.D

Figure 4-6: Schematic of the working of the meta-classifier. The base extractor
is applied to both the original article and all extra articles downloaded using the
corresponding queries. The meta-classifier takes a reconciliation decision for each
pair of (original article, extra article) to produce sets of reconciled values. Finally,
these values are aggregated using confidence scores to obtain the final set of values.

e Meta-classifer: To demonstrate the importance of modeling the problem in the
RL framework, we consider a meta-classifier baseline. The classifier operates
over the same input state space and produces the same set of reconciliation
decisions {d} as the DQN. For training, we use the original source article for
each event along with a related downloaded article to compute the state. If the
downloaded article has the correct value and the original one does not, we label
it as a positive example for that entity class. If multiple such entity classes
exist, we create several training instances with appropriate labels, and if none
exist, we use the label corresponding to the reject all action. For each test
event, the classifier is used to provide decisions for all the downloaded articles
and the final extraction is performed by aggregating the value predictions using
the Confidence-based scheme described above. Figure 4-6 provides a schematic

depiction of the meta-classifier.

e QOracle: Finally, we also have an ORACLE score which is computed assuming
perfect reconciliation and querying decisions on top of the Maxent base extrac-

tor. This helps us analyze the contribution of the RL system in isolation of the

114

inherent limitations of the base extractor.

4.5.5 RL models

We perform experiments using three variants of RL agents:

1. RL-Basic: This variant performs only reconciliation decisions at every time
step. Articles are presented to this agent in a round-robin fashion from the

different query lists.

2. RL-Query: This agent takes only query decisions with the reconciliation strat-
egy fixed (similar to Kanani and McCallum [54]). We use a confidence-based
reconciliation, i.e. at each step, between two values, choose the one with the

higher confidence assigned by the base extractor.

3. RL-FExtract: This is our full system incorporating both reconciliation and query

decisions.

These different models help us evaluate the relative importance of the reconcilia-
tion and query decisions. As we shall see in Section 4.6, the two types of actions are
heavily interlinked; having the flexibility to choose both leads to substantially larger

gains in performance.

4.5.6 Implementation details

We train the models for 10000 steps every epoch using the Maxent classifier as the
base extractor. The final accuracies reported are averaged over 3 independent runs;
each run’s score is averaged over 20 epochs after 100 epochs of training. The penalty
per step is set to -0.001. For the DQN, we use the dev set to tune all parameters. We
used a replay memory D of size 500k, and a discount () of 0.8. We set the learning
rate to 2.5E°. The ¢ in e-greedy exploration is annealed from 1 to 0.1 over 500k

transitions. The target-(Q network is updated every 5000 steps.

115

4.6 Results

4.6.1 Extraction Accuracy

Table 4.4 details the performance of all models on the two datasets. We observe that
the base models, CRF and Maxent achieve somewhat low numbers, with the CRF
in particular performing quite badly. The aggregation baselines, Confidence and
Magjority obtain slight improvements of 2-4%, but are unable to take full advantage
of the extra articles available. The meta-classifier obtains similar performance to
the aggregation baselines, in spite of being trained to reconcile values from the extra

articles.

In contrast, our system (RL-Extract) obtains a substantial gain in accuracy over
the basic extractors on all entity types in both domains. For instance, RL-Extract
is 11.4% more accurate than the basic Maxent extractor on City and 7.1% better on
NumKilled, while also achieving gains of more than 5% on the other entities on the
Shootings domain. The gains on the Adulteration dataset are also significant, up to
a 11.5% increase on the Location entity.

RL-Extract outperforms the aggregation baselines by 7.2% on Shootings and 5%
on Adulteration, averaged over all entities. Further, the importance of sequential
decision-making is demonstrated by RL-Extract performing significantly better than
the meta-classifier (7.0% on Shootings over all entities). A key reason for this is
the fact that the meta-classifier aggregates over the entire set of extra documents,
including the long tail of noisy, irrelevant documents. RL-Extract, on the other
hand, aggregates information from a small set of articles, tailored to the specific
details sought.

From the same table, we also observe the advantage of providing our system with
the flexibility of both query selection and value reconciliation. RIL-Extract signifi-
cantly outperforms both RL-Basic and RL-Query on both domains, emphasizing the
need for jointly modeling the interplay between the two types of decisions.

Figure 4-7 shows the learning curve of the agent by measuring reward on the test

116

L1T

System Shootings Adulteration
ShooterName NumKilled NumWounded City Food Adulterant Location
CRF extractor 9.5 65.4 64.5 47.9 41.2 28.3 51.7
- Mazent extractor 2 9.7 686 3.1 560 527 678
Confidence Agg. (r) ~ 45.2'(0.6) 70.3 (0.6) 72.3°(0.6) 55.8 (0.6) 56.0 (0.8) '54.0 (0.8) 69.2 (0.6)
. Majority Agg. (r) 476(06) 69.1(09) 68.6 (0.9) ~~ 54.7(0.7) 56.7(0.5) 506 (0.95) ~ 72.0 (04)
Meta-classifier 45.2 70.7 68.4 595.3 55.4 52.7 72.0
RL-Basic 45.2 71.2 70.1 54.0 57.0 55.1 76.1
RL-Query (conf) 39.6 66.6 69.4 44 4 39.4 35.9 66.4
RL-Extract 50.0 77.6* 74.6* 65.6" 59.6" 58.9* 79.3*
ORACLE 57.1 86.4 83.3 71.8 64.8 60.8 83.9

Table 4.4: Accuracy of various baselines (italics), our models (RL-) and the ORACLE on Shootings and Adulteration datasets.
Agg. refers to aggregation baselines. Bold indicates best system scores. *statistical significance of p < 0.0005 vs basic Maxent
extractor using the Student-t test. Numbers in parentheses indicate the optimal threshold (7) for the aggregation baselines.

Confidence-based reconciliation was used for RL-Query.

0.25 , . . - 80
el [-7t ..:“ ’\—"‘:\ ‘\\ "“/'\’ “"l":“" 75
I,._I"- ''''' bl Y Tent PR
:G;’ "\'_,-'\:bo"‘
© 0.15 s, aa RS LE
L T T S
§ 160 >
P (18]
v ' 55 5
< 0.10f S
cmmm e 50 <
l- - -\'“‘ . ,ﬂ"_ - |
0.05f] 5 45
127 W ! Ha
I] V2 "Taaewse- 740
0.00 ' : ' * 5
0 20 40 60 80 10%)
Epoch

Figure 4-7: Evolution of average reward (solid black) and accuracy on various
entities (dashed lines; red=ShooterName, magenta=NumKilled, blue=Num Wounded,
green=Clity) on the test set of the Shootings domain.

set after each training epoch. The reward improves gradually and the accuracy on
each entity increases correspondingly. We do notice a trade-off in the accuracy of
different entity values (around epoch 60), where the accuracy of ShooterName and
NumWounded drop while that of City increases. However, this is quickly resolved

with further learning and by epoch 100, all entity types reach peak accuracy.

4.6.2 Analysis

Table 4.5 provides some examples where our model extracts the right values although
the base extractor fails to do so. In all of the cases, we see that the original arti-
cle contains the correct information, albeit in a slightly complicated fashion for the
base extractor. Our model is able to retrieve other articles with more prototypical
language, resulting in successful extraction.

We also analyzed the importance of different reconciliation schemes, rewards and
context-vectors in RL-Extract on the Shootings domain (Table 4.6). In addition to

simple replacement (Replace), we experimented with using Confidence and Majority-

118

Entity System: Value Example

A source tells Channel 2 Action News that
Basic: Stewart Thomas Lee has been arrested in Mississippi
ShooterName ’ ... Sgt . Stewart Smith, with the Troup
County Sherift’s office, said.
~ RL-Extract: Lee Lee is accused of killing his wife, Christie; ...
) Shooting leaves 25 year old Pittsfield man
NumKilled ’ dead , 4 injured
S One man is dead after a shooting Saturday
RL-Extract: 1 night at the intersection of Dewey Avenue
and Linden Street.
Basic: 0 Three people are dead and a fourth is in the
NumWounded hospital after a murder suicide
""" RL-Extrac t 1 3 'fiéad,' 1 injured in possible Fla. murder-
suicide
A 2 year old girl and four other people were
Basic: Englewood wounded in a shooting in West Englewood
Thursday night, police said
"""""""""""" At least 14 people were shot across Chicago
RL-Extract: Chicago between noon and 10:30 p.m. Thursday. The

last shooting left five people wounded.

City

Table 4.5: Sample predictions (along with corresponding article snippets) on the
Shootings domain. RL-Extract is able to produce correct values where the basic
extractor (Maxent) fails, by retrieving alternative articles suited for easier extraction.

based reconciliation schemes for RL-Extract. We observe that the Replace scheme
performs much better than the others (2-6% on all entities) and believe this is because
it provides the agent with more flexibility in choosing the final values.

From the same table, we see that using the tf-idf counts of context words as
part of the state provides better performance than using no context or using simple
unigram counts. In terms of reward structure, providing rewards after each step is
empirically found to be significantly better (>10% on average) compared to a single
delayed reward per episode. The last column shows the average number of steps
(= extra articles examined) per episode — the values range from 6.8 to 10.0 steps
for the different schemes. The best system (RL-Extract with Replace, tf-idf and

step-based rewards) uses 9.4 steps per episode.

119

Reconciliation Accuracy

(RL-Extract) Context Reward S K W . Steps
Confidence tf-idf Step 475 T1.5 704 60.1 8.4
... Majority thidf Step | 436 718 69.0 5921 9.9

Replace No context Step 444 771 725 634 8.0
... Replace Unigram Step | 48.9 768 740 63.2) 100

Replace tf-idf Episode | 42.6 62.3 68.9 52.7 6.8
o Replace tf-idf Step | 50.0 77.6 74.6 65.6| 94

Table 4.6: Effect of using different reconciliation schemes, context-vectors, and
rewards in our RL framework (Shootings domain). The last row is the overall best
scheme (deviations from this are in dtalics). Context refers to the type of word
counts used in the state vector to represent entity context. Rewards are either per
step or per episode. (S: ShooterName, K: NumKilled, W: NumWounded, C: City,
Steps: Average number of steps per episode)

120

4.7 Conclusions

In this chapter, we have explored the task of acquiring and incorporating external
evidence to improve information extraction accuracy for domains with limited access
to training data. This process comprises issuing search queries, extraction from new
sources and reconciliation of extracted values, repeated until sufficient evidence is
obtained. We use a reinforcement learning framework and learn optimal action se-
quences to maximize extraction accuracy while penalizing extra effort. We show that
our model, trained as a deep Q-network, outperforms traditional extractors by 7.2%
and 5% on average on two different domains, respectively. We also demonstrate the
importance of sequential decision-making by comparing our model to a meta-classifier
operating on the same space, obtaining up to a 7% gain. We now summarize some

follow-up work that has been performed and suggest future directions of research.

Future research

e The techniques presented in this chapter are not specific to information extrac-
tion. An autonomous system that can query over the vast web and aggregate
information can prove useful to a variety of other NLP tasks such as open-
domain question answering [90, 23| or automated dialogue systems [30, 38].
Future work can investigate such approaches in conjunction with improvements

to base systems.

e A limitation in our current framework is that our choice of queries is restricted
by our query templates. Recently proposed methods to reformulate queries
on-the-fly [82, 17] can be use to improve the diversity of articles retrieved and

provide greater accuracy gains.

e In our current setup, the base extraction model is trained once and its pa-
rameters remain fixed throughout the RL agent training phase. An interesting
direction to explore is retraining the base model with the extra (noisy) data

retrieved from the Web;

121

e Another direction for improvement is in the training time for the RL agent.
This enforces limits on the number of extra articles we can consider in our
setup. Recent work [99] has explored replacing the DQN in our setup with
an Actor Critic architecture [72]. They demonstrate a significant reduction
in training speed without much loss in accuracy. Other RL algorithms could

potentially provide further improvements in this direction.

122

Chapter 5

Conclusions

In this thesis, I have explored methods that integrate natural language understand-
ing with autonomous behavior in interactive environments. Such frameworks enable a
contextual interpretation of language semantics while alleviating dependence on large
amounts of manual annotation. As we demonstrate through several experiments, our
models can exploit unstructured feedback in the form of reward signals to learn mean-
ingful representations for text, which are optimized for utilization in the end task.
Further, we also demonstrate that leveraging the knowledge encoded in text can pro-
vide significant boosts to performance of autonomous agents in control applications.
Textual information provides connections between the dynamics of the environment
that may otherwise require a significant number of interactions to discover.

I have demonstrated these ideas in the context of three different applications.
First, we looked at an approach for learning to play text-based games, where all in-
teraction is through natural language. Second, I exhibited a framework for utilizing
textual descriptions to assist cross-domain policy transfer for reinforcement learning.
Finally, I showed how reinforcement learning can enhance traditional NLP systems for
tasks such as information extraction in low resource scenarios. Together, these meth-
ods open up new research directions, towards a tighter coupling between semantic

interpretation of language and control policies of artificially intelligent agents.

123

Future directions

We now provide some future directions of research that follow from this thesis:

e Integrate visual understanding: Visual stimuli are a major sensory compo-
nent of our lives, and it is imperative for an Al system to demonstrate visual
perception and understanding. Vision provides more context for language and
policies, while meaningful representations can be learned using linguistic knowl-
edge and feedback from control applications. Although recent work [48, 22| has
started to show promise in this area, further research is needed to form a greater
synergy between these components, a key requirement for achieving general ar-

tificial intelligence.

Leverage generic knowledge Another research direction is to leverage in-
formation present in knowledge bases such as Freebase [13] to improve perfor-
mance on control applications. Such knowledge is not directly aligned with the
end task, and leveraging the most relevant information is a major challenge.
However, systems can still benefit from the extra information to improve their

control policies.

Explore hierarchical control policies: Information can be present in text
at multiple levels of abstraction. In this thesis, we make no explicit distinction
between these while integrating with control applications. One direction for
future research could be to integrate hierarchical methods for reinforcement
learning [60] with semantic interpretation, and thereby explicitly leveraging

text at different granularities.

124

Appendix A

Language Understanding for

Text-based Games

A.1 Environment details

A.1.1 Rewards

Table A.1 shows the reward structure used in our games. Positive rewards are pro-
vided for completing quests and reaching significant checkpoints in the game. Nega-

tive rewards are provided for invalid commands and failures.

World Positive Negative

Home Quest goal: +1 Negative per step: -0.01
Invalid command: -0.1

Fantasy = Cross bridge: +5 Fall from bridge: -0.5
Defeat guardian: +5 Lose to guardian: -0.5
Reach tomb: +10 Negative per step: -0.01

Invalid command: -1

Table A.1: Reward structure used in the two game worlds.

125

A.1.2 Home World

A schematic of the Home world is provided in Figure A-1. The world consists of four
rooms, each containing a characteristic object. A player is randomly placed in one of

the rooms and provided a quest.

Living [j d@ Garden

Bedroom |I— aj Kitchen
]

Figure A-1: Rooms and objects in the Home World with connecting pathways.

126

Appendix B

Policy Transfer via Language

Grounding

We provide a few sample descriptions for each domain used in our experiments. These
sentences were collected by asking workers on Amazon Mechanical Turk to watch

videos of gameplay and describe each entity observed on screen.

B.1 Example text descriptions

B.1.1 Freeway

e Carl: wehicle that is red and fast going right
o Car2: car that is going slow and to the right

e Card: enemy that moves horizontally to the left quickly

Treel: these items do not move but also block the player from moving to their
space

Figure B-1: Example text descriptions of entities in Freeway.

127

B.1.2 Friends and Enemies

Scorpion2: enemy that moves to the north

Bear2: enemy who chases you

Beel: black bug that can be collected by the player

Bird2: a bird that must be avoided

Figure B-2: Example text descriptions of entities in Friends and Enemies (F&E).

B.1.3 Bomberman

Flamel: this fires from bombs and will destroy anything it touches

Spider3:enemy that moves horizontally left and right

Scorpion4: enemy that moves randomly

Scorpiond: a fairly slow moving enemy

Figure B-3: Example text descriptions of entities in Bomberman.

B.1.4 Boulderchase

e Batl: enemy that can dig through dirt

Pickaxel: pickaze that can be used to dig the earth

Scorpion3: enemy that follows player

Diamondl: this item is picked up by the player when they move across it

Figure B-4: Example text descriptions of entities in Boulderchase.

128

B.2 Reward curves

Below, we provide the reward curves for the transfer conditions of F&E-1 — F&E-2

and Bomberman — Boulderchase.

2.0

E 0.5 Condition
) —— no transfer
—— DQN
0.0 text-DQN
—— AMN
-0.5 —— text-VIN(1)
—— text-VIN(3)
-1.0
200 400 600 800 1000

steps (thousands)

Figure B-5: Reward curve for transfer condition F&E-1 — F&E-2. Numbers in
parentheses for TEXT-VIN indicate k£ value. All graphs averaged over 3 runs with
different seeds; shaded areas represent bootstrapped confidence intervals.

129

14

12
10
8
% 6 Condition
E —— no transfer
4 ¢ = [ON
: text-DQN
E —— AMN
0 — text-VIN(1)
— text-VIN(3)
-2
500 1000 1500 2000 2500

steps (thousands)

Figure B-6: Reward curve for transfer condition Bomberman — Boulderchase.
Numbers in parentheses for TEXT-VIN indicate k& value. All graphs averaged over 3
runs with different seeds; shaded areas represent bootstrapped confidence intervals.

130

Appendix C

Improved Information Extraction

with Reinforcement Learning

C.1 Query templates

Here, we provide examples of query templates used for the domain of food adulter-
ation incidents, sourced from the EMA database. The query templates were created

automatically, using high co-occurence words with gold values in the training set.

(title)
(title) + (state | country | india | china | province)
(title) + (adulterated | fake | food | products | samples)
(title) + (food | oil | milk | honey | price | brands | formula)

Table C.1: Examples of different query templates used by our model in web searches
for articles on food adulteration. The | symbol represents logical OR. The last three
queries contain context words around values for entity types Location, adulterant and
food, respectively. At query time, (title) is replaced by the source article’s title.

131

132

Bibliography

[1]

2]

3]

[4]

[5]

(6]

7]

8]

9]

Charu C Aggarwal and ChengXiang Zhai. Mining text data. Springer Science
& Business Media, 2012.

Eugene Agichtein and Luis Gravano. Snowball: Extracting relations from large
plain-text collections. In Proceedings of the fifth ACM conference on Digital
libraries, pages 85-94. ACM, 2000.

Christopher Amato and Guy Shani. High-level reinforcement learning in strat-
egy games. In Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: Volume 1, pages 75-82. International Founda-
tion for Autonomous Agents and Multiagent Systems, 2010.

Eyal Amir and Patrick Doyle. Adventure games: A challenge for cognitive
robotics. In Proc. Int. Cognitive Robotics Workshop, pages 148-155, 2002.

Jacob Andreas and Dan Klein. Alignment-based compositional semantics for
instruction following. In Proceedings of the Conference on Empirical Methods
wn Natural Language Processing, 2015.

Yoav Artzi and Luke Zettlemoyer. Weakly supervised learning of semantic
parsers for mapping instructions to actions. Transactions of the Association for
Computational Linguistics, 1(1):49-62, 2013.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt,
Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. Abstract meaning representation (amr) 1.0 specification. In Parsing
on Freebase from Question-Answer Pairs. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing. Seattle: ACL, pages
1533-1544, 2012.

Michele Banko, Eric Brill, Susan Dumais, and Jimmy Lin. Askmsr: Ques-
tion answering using the worldwide web. In Proceedings of 2002 AAAI Spring
Symposium on Mining Answers from Texts and Knowledge Bases, pages 7-9,
2002.

133

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Cosmin Adrian Bejan and Sanda Harabagiu. Unsupervised event coreference
resolution. Computational Linguistics, 40(2):311-347, 2014.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic pars-
ing on freebase from question-answer pairs. In EMNLP, volume 2, page 6,
2013.

Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1.
Athena Scientific Belmont, MA, 1995.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Tay-
lor. Freebase: a collaboratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIGMOD international conference
on Management of data, pages 1247-1250. AcM, 2008.

SRK Branavan, David Silver, and Regina Barzilay. Learning to win by read-
ing manuals in a monte-carlo framework. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language
Technologies- Volume 1, pages 268-277. Association for Computational Linguis-
tics, 2011.

SRK' Branavan, David Silver, and Regina Barzilay. Non-linear monte-carlo
search in Civilization II. AAAI Press/International Joint Conferences on Arti-
ficial Intelligence, 2011.

SRK Branavan, Luke S Zettlemoyer, and Regina Barzilay. Reading between
the lines: Learning to map high-level instructions to commands. In Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics,
pages 1268-1277. Association for Computational Linguistics, 2010.

Christian Buck, Jannis Bulian, Massimiliano Ciaramita, Andrea Gesmundo,
Neil Houlsby, Wojciech Gajewski, and Wei Wang. Ask the right questions:
Active question reformulation with reinforcement learning. arXiv preprint
arXw:1705.07830, 2017.

Michael Buhrmester, Tracy Kwang, and Samuel D. Gosling. Amazon’s me-
chanical turk. Perspectives on Psychological Science, 6(1):3-5, 2011. PMID:
26162106.

Andrew Carlson, Justin Betteridge, Richard C Wang, Estevam R Hruschka Jr,
and Tom M Mitchell. Coupled semi-supervised learning for information extrac-
tion. In Proceedings of the third ACM international conference on Web search
and data mining, pages 101-110. ACM, 2010.

Angel X Chang, Valentin I Spitkovsky, Eric Yeh, Christopher D Manning, and
Eneko Agirre. Stanford-ubc entity linking at tac-kbp. In TAC, 2010.

134

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

Chia-Hui Chang, Mohammed Kayed, Moheb R Girgis, and Khaled F Shaalan. A
survey of web information extraction systems. IEEF transactions on knowledge
and data engineering, 18(10):1411-1428, 2006.

Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Ku-
mar Pasumarthi, Dheeraj Rajagopal, and Ruslan Salakhutdinov. Gated-
attention architectures for task-oriented language grounding. arXiv preprint
arXw:1706.07230, 2017.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading
wikipedia to answer open-domain questions. In Proceedings of the 55th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1870-1879, Vancouver, Canada, July 2017. Association for Com-
putational Linguistics.

Hai Leong Chieu and Hwee Tou Ng. A maximum entropy approach to infor-
mation extraction from semi-structured and free text. In Proceedings of AAAI

2002.

Michael Collins and Yoram Singer. Unsupervised models for named entity clas-
sification. In Proceedings of the joint SIGDAT conference on empirical methods
in natural language processing and very large corpora, pages 100-110, 1999.

Aron Culotta and Andrew McCallum. Confidence estimation for information
extraction. In Proceedings of HLT-NAACL 2004: Short Papers, pages 109-112.
Association for Computational Linguistics, 2004.

Pavel Curtis. Mudding: Social phenomena in text-based virtual realities. High
noon on the electronic frontier: Conceptual issues in cyberspace, pages 347-374,
1992.

Li Deng, Geoffrey Hinton, and Brian Kingsbury. New types of deep neural
network learning for speech recognition and related applications: An overview.
In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on, pages 8599-8603. IEEE, 2013.

Mark A DePristo and Robert Zubek. being-in-the-world. In Proceedings of
the 2001 AAAI Spring Symposium on Artificial Intelligence and Interactive
Entertainment, pages 31-34, 2001.

Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao, Yun-Nung Chen, Faisal
Ahmed, and Li Deng. Towards end-to-end reinforcement learning of dialogue
agents for information access. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages
484-495, Vancouver, Canada, July 2017. Association for Computational Lin-
guistics.

135

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Yunshu Du, V Gabriel, James Irwin, and Matthew E Taylor. Initial progress
in transfer for deep reinforcement learning algorithms. In Proceedings of Deep
Reinforcement Learning: Frontiers and Challenges Workshop, New York City,
NY, USA, 2016.

Greg Durrett and Dan Klein. A joint model for entity analysis: Coreference,

typing, and linking. Transactions of the Association for Computational Lin-
guistics, 2:477-490, 2014.

Jacob Eisenstein, James Clarke, Dan Goldwasser, and Dan Roth. Reading to
learn: Constructing features from semantic abstracts. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, pages 958—
967, Singapore, August 2009. Association for Computational Linguistics.

Oren Etzioni, Anthony Fader, Janara Christensen, Stephen Soderland, and
Mausam Mausam. Open information extraction: The second generation. In
IJCAI volume 11, pages 3—-10, 2011.

Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations
for open information extraction. In Proceedings of the Conference on Empairi-
cal Methods in Natural Language Processing, pages 15635-1545. Association for
Computational Linguistics, 2011.

Matt Gardner, Partha Talukdar, Jayant Krishnamurthy, and Tom Mitchell.
Incorporating vector space similarity in random walk inference over knowledge
bases. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 397-406, Doha, Qatar, October 2014.
Association for Computational Linguistics.

Milica Gasic, Catherine Breslin, Matthew Henderson, Dongho Kim, Martin
Szummer, Blaise Thomson, Pirros Tsiakoulis, and Steve Young. Pomdp-based
dialogue manager adaptation to extended domains. In Proceedings of SIGDIAL,
2013.

Marjan Ghazvininejad, Chris Brockett, Ming-Wei Chang, Bill Dolan, Jianfeng
Gao, Wen-tau Yih, and Michel Galley. A knowledge-grounded neural conversa-
tion model. arXiv preprint arXiv:1702.01932, 2017.

Ruben Glatt and Anna Helena Reali Costa. Policy reuse in deep reinforcement
learning. In AAAI pages 4929-4930, 2017.

Peter Gorniak and Deb Roy. Speaking with your sidekick: Understanding situ-
ated speech in computer role playing games. In R. Michael Young and John E.
Laird, editors, Proceedings of the First Artificial Intelligence and Interactive
Digital Entertainment Conference, June 1-5, 2005, Marina del Rey, Califor-
nia, USA, pages 57-62. AAAI Press, 2005.

136

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

Ralph Grishman. Information extraction. In The Ozford handbook of computa-
tional linguistics. Oxford University Press, 2012.

Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine.
Learning invariant feature spaces to transfer skills with reinforcement learning.
arXiw preprint arXiw:1703.02949, 2017.

Kelvin Guu, John Miller, and Percy Liang. Traversing knowledge graphs in
vector space. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 318-327, Lisbon, Portugal, September
2015. Association for Computational Linguistics.

Xianpei Han, Le Sun, and Jun Zhao. Collective entity linking in web text:
a graph-based method. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval, pages 765—
774. ACM, 2011.

Brent Harrison, Upol Ehsan, and Mark O Riedl. Guiding reinforcement learning
exploration using natural language. arXiv preprint arXiv:1707.08616, 2017.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, and Mari
Ostendorf. Deep reinforcement learning with a natural language action space.
In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1621-1630, Berlin, Germany, Au-
gust 2016. Association for Computational Linguistics.

Sachithra Hemachandra, Matthew R Walter, Stefanie Tellex, and Seth Teller.
Learning spatial-semantic representations from natural language descriptions
and scene classifications. In Robotics and Automation (ICRA), 2014 IEEFE
International Conference on, pages 2623-2630. IEEE, 2014.

Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner,
Hubert Soyer, David Szepesvari, Wojtek Czarnecki, Max Jaderberg, Denis
Teplyashin, et al. Grounded language learning in a simulated 3d world. arXiv
preprint arXw:1706.06551, 2017.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups. IEEE Signal Processing Magazine,
29(6):82-97, 2012.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735-1780, 1997.

Mohit Iyyer, Jordan L Boyd-Graber, Leonardo Max Batista Claudino, Richard
Socher, and Hal Daumé III. A neural network for factoid question answering
over paragraphs. In EMNLP, pages 633-644, 2014.

137

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Heng Ji and Ralph Grishman. Knowledge base population: Successful ap-
proaches and challenges. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies -
Volume 1, HLT ’11, pages 1148-1158, Stroudsburg, PA, USA, 2011. Associa-
tion for Computational Linguistics.

Rosie Jones. Learning to extract entities from labeled and unlabeled text. PhD
thesis, Carnegie Mellon University, Language Technologies Institute, School of
Computer Science, 2005.

Pallika H Kanani and Andrew K McCallum. Selecting actions for resource-
bounded information extraction using reinforcement learning. In Proceedings of

the fifth ACM international conference on Web search and data mining, pages
253-262. ACM, 2012.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Thomas Kollar, Stefanie Tellex, Deb Roy, and Nicholas Roy. Toward under-
standing natural language directions. In Human-Robot Interaction (HRI), 2010
5th ACM/IEEE International Conference on, pages 259-266. IEEE, 2010.

George Konidaris and Andrew G Barto. Building portable options: Skill transfer
in reinforcement learning. In IJCAI, volume 7, pages 895-900, 2007.

George D Konidaris. A framework for transfer in reinforcement learning. In
ICML-06 Workshop on Structural Knowledge Transfer for Machine Learning,
2006.

Jan Koutnik, Giuseppe Cuccu, Jiirgen Schmidhuber, and Faustino Gomez.
Evolving large-scale neural networks for vision-based reinforcement learning.

In Proceedings of the 15th annual conference on Genetic and evolutionary com-
putation, pages 1061-1068. ACM, 2013.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum.
Hierarchical deep reinforcement learning: Integrating temporal abstraction and

intrinsic motivation. In Advances in Neural Information Processing Systems,
pages 36753683, 2016.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and Regina Barzilay. Learning
to automatically solve algebra word problems. ACL (1), pages 271-281, 2014.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke Zettlemoyer. Scaling
semantic parsers with on-the-fly ontology matching. In 2018 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2013. Association
for Computational Linguistics (ACL), 2013.

138

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Heeyoung Lee, Marta Recasens, Angel Chang, Mihai Surdeanu, and Dan Ju-
rafsky. Joint entity and event coreference resolution across documents. In
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, EMNLP-
CoNLL ’12, pages 489-500, Stroudsburg, PA, USA, 2012. Association for Com-
putational Linguistics.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end
training of deep visuomotor policies. Journal of Machine Learning Research,
17(39):1-40, 2016.

Wang Ling, Isabel Trancoso, Chris Dyer, and Alan W Black. Character-based
neural machine translation. arXiv preprint arXiv:1511.04586, 2015.

Yaxin Liu and Peter Stone. Value-function-based transfer for reinforcement
learning using structure mapping. In Proceedings of the national conference on
artificial intelligence, volume 21, page 415. Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999, 2006.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches
to attention-based neural machine translation. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language Processing, pages 1412-1421,
Lisbon, Portugal, September 2015. Association for Computational Linguistics.

Gideon S Mann and David Yarowsky. Multi-field information extraction and
cross-document fusion. In Proceedings of the 43rd annual meeting on association
for computational linguistics, pages 483-490. Association for Computational
Linguistics, 2005.

Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, and Dieter Fox. Learning
to parse natural language commands to a robot control system. In Experimental
Robotics, pages 403-415. Springer, 2013.

Andrew McCallum. Information extraction: Distilling structured data from
unstructured text. Queue, 3(9):48-57, 2005.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy P Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In International Conference
on Machine Learning, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Ve-
ness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and

139

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

Demis Hassabis. Human-level control through deep reinforcement learning. Na-
ture, 518(7540):529-533, 02 2015.

Andrew W Moore and Christopher G Atkeson. Prioritized sweeping: Reinforce-
ment learning with less data and less time. Machine Learning, 13(1):103-130,
1993.

Ion Muslea et al. Extraction patterns for information extraction tasks: A sur-
vey. In The AAAI-99 workshop on machine learning for information extraction,
volume 2. Orlando Florida, 1999.

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon,
Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles
Beattie, Stig Petersen, et al. Massively parallel methods for deep reinforcement
learning. 2015.

Karthik Narasimhan, Regina Barzilay, and Tommi Jaakkola. Deep trans-

fer in reinforcement learning by language grounding. arXiv preprint
arXw:1708.00133, 2017.

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. Language under-
standing for text-based games using deep reinforcement learning. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing, 2015.

Karthik Narasimhan, Adam Yala, and Regina Barzilay. Improving informa-
tion extraction by acquiring external evidence with reinforcement learning. In
Empirical Methods in Natural Language Processing (EMNLP), 2016.

Arvind Neelakantan, Benjamin Roth, and Andrew McCallum. Compositional
vector space models for knowledge base completion. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 156-166, Beijing, China, July 2015. Association for
Computational Linguistics.

Trung Nguyen, Tomi Silander, and Tze Y Leong. Transferring expectations in
model-based reinforcement learning. In Advances in Neural Information Pro-
cessing Systems, pages 2555-2563, 2012.

Rodrigo Nogueira and Kyunghyun Cho. Task-oriented query reformulation with
reinforcement learning. Proceedings of the Conference on Empirical Methods in
Natural Language Processing, 2017.

Martha Palmer, Daniel Gildea, and Nianwen Xue. Semantic role labeling. Syn-
thesis Lectures on Human Language Technologies, 3(1):1-103, 2010.

Boyuan Pan, Hao Li, Zhou Zhao, Bin Cao, Deng Cai, and Xiaofei He. Memen:
Multi-layer embedding with memory networks for machine comprehension.
arXiv preprint arXw:1707.09098, 2017.

140

[85]

[86]

[87]

[83]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep
multitask and transfer reinforcement learning. International Conference on
Learning Representations, 2016.

Fuchun Peng and Andrew McCallum. Information extraction from research
papers using conditional random fields. Information processing € management,
42(4):963-979, 2006.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global
vectors for word representation. Proceedings of the Empiricial Methods in Nat-
ural Language Processing (EMNLP 201/4), 12, 2014.

Diego Perez-Liebana, Spyridon Samothrakis, Julian Togelius, Tom Schaul, and
Simon M Lucas. General video game ai: Competition, challenges and opportu-
nities. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

Hoifung Poon and Pedro Domingos. Unsupervised semantic parsing. In Pro-
ceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing: Volume 1-Volume 1, pages 1-10. Association for Computational
Linguistics, 2009.

John Prager et al. Open-domain question-answering. Foundations and
Trends®) in Information Retrieval, 1(2):91-231, 2007.

Janarthanan Rajendran, Aravind Lakshminarayanan, Mitesh M Khapra,
Balaraman Ravindran, et al. a2t: Attend, adapt and transfer: Attentive deep
architecture for adaptive transfer from multiple sources. 2017.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progres-
sive neural networks. arXiv preprint arXiv:1606.04671, 2016.

Himanshu Sahni, Saurabh Kumar, Farhan Tejani, Yannick Schroecker, and
Charles Isbell. State space decomposition and subgoal creation for transfer
in deep reinforcement learning. 3rd Multidisciplinary Conference on Reinforce-
ment Learning and Decision Making (RLDM 2017), 2017.

Sunita Sarawagi and William W Cohen. Semi-markov conditional random fields
for information extraction. In Advances in neural information processing sys-
tems, pages 1185-1192, 2005.

Sunita Sarawagi et al. Information extraction. Foundations and Trends® in
Databases, 1(3):261-377, 2008.

Tom Schaul. A video game description language for model-based or interactive
learning. In Computational Intelligence in Games (CIG), 2013 IEEE Confer-
ence on, pages 1-8. IEEE, 2013.

141

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value
function approximators. In Proceedings of the 32nd International Conference
on Machine Learning (ICML-15), pages 1312-1320, 2015.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized
experience replay. arXiv preprint arXw:1511.05952, 2015.

Aditya Sharma, Zarana Parekh, and Partha Talukdar. Speeding up reinforce-
ment learning-based information extraction training using asynchronous meth-
ods. Proceedings of the Conference on Empirical Methods in Natural Language
Processing, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-

shelvam, Marc Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. Nature, 529(7587):484-489, 2016.

David Silver, Richard S Sutton, and Martin Miiller. Reinforcement learning of
local shape in the game of go. In IJCAI volume 7, pages 1053—-1058, 2007.

Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Rea-
soning with neural tensor networks for knowledge base completion. In Advances
in Neural Information Processing Systems, pages 926-934, 2013.

Mihai Surdeanu, David McClosky, Julie Tibshirani, John Bauer, Angel X
Chang, Valentin 1 Spitkovsky, and Christopher D Manning. A simple distant
supervision approach for the tac-kbp slot filling task. In Proceedings of Text
Analysis Conference 2010 Workshop, 2010.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to sequence learning
with neural networks. In Advances in Neural Information Processing Systems,
pages 3104-3112, 2014.

Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning.
MIT Press, 1998.

Istvan Szita. Reinforcement learning in games. In Reinforcement Learning,
pages 539-577. Springer, 2012.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved seman-
tic representations from tree-structured long short-term memory networks. In
Proceedings of the 58rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1556-1566, Beijing, China, July
2015. Association for Computational Linguistics.

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value

iteration networks. In Advances in Neural Information Processing Systems,
pages 2154-2162, 2016.

142

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

Matthew E Taylor, Nicholas K Jong, and Peter Stone. Transferring instances for
model-based reinforcement learning. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 488-505. Springer, 2008.

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning
domains: A survey. Journal of Machine Learning Research, 10(Jul):1633-1685,
2009.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradi-
ent by a running average of its recent magnitude. COURSERA: Neural Networks
for Machine Learning, 4, 2012.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and
Pieter Abbeel. Domain randomization for transferring deep neural networks
from simulation to the real world. arXiw preprint arXiv:1703.06907, 2017.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9(2579-2605):85, 2008.

Adam Vogel and Dan Jurafsky. Learning to follow navigational directions. In
Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, pages 806-814. Association for Computational Linguistics, 2010.

Matthew R Walter, Sachithra Hemachandra, Bianca Homberg, Stefanie Tellex,
and Seth Teller. Learning semantic maps from natural language descriptions.
Robotics: Science and Systems, 2013.

Zhuoran Wang, Tsung-Hsien Wen, Pei-Hao Su, and Yannis Stylianou. Learning

domain-independent dialogue policies via ontology parameterisation. In SIG-
DIAL Conference, pages 412-416, 2015.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,
8(3-4):279-292, 1992.

Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul Gupta,
and Dekang Lin. Knowledge base completion via search-based question answer-
ing. In Proceedings of the 23rd international conference on World wide web,

pages 515-526. ACM, 2014.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv
preprint arXiv:1410.3916, 2014.

Fei Wu and Daniel S Weld. Open information extraction using wikipedia. In
Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, pages 118-127. Association for Computational Linguistics, 2010.

Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention net-
works for question answering. arXiv preprint arXiv:1611.01604, 2016.

143

[122] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embed-

ding entities and relations for learning and inference in knowledge bases. arXiv
preprint arXiv:1412.6575, 2014.

[123] Haiyan Yin and Sinno Jialin Pan. Knowledge transfer for deep reinforcement
learning with hierarchical experience replay. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,
California, USA., pages 1640-1646, 2017.

144

