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Abstract

The generation of fast movements during sensorimotor control is fundamentally lim-
ited by the biophysics of neural activity and the physiological dynamics of the muscles
involved. Yet, the limiting factors and the corresponding tradeoffs have not been rigor-
ously quantified. We use feedback control principles to identify limitations in the ability of
the sensorimotor control system to track intended fast periodic movements. We show that
(i) a linear model for movement generation fails to predict known undesirable phenomena
encountered in the regime of fast movements, and (ii) the theory of pulsatile control of
movement generation allows us to correctly characterize fundamental limitations in this
regime.

This thesis identifies the fastest periodic movement possible for given musculoskeletal
and neuronal dynamics, which has far-reaching implications in sensorimotor control. The
use of neuronal decoders in the Brain Machine Interface setting is discussed; we introduce a
real-time decoder of neuronal activity, and derive conditions for its stability in the presence
of feedback. The framework developed in this thesis allows us to characterize the effect
of compromised neural and physiological activity on movement, and guide the design of
corresponding therapeutic measures.

Thesis Supervisor: Munther Dahleh
Title: William Coolidge Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Movement generation is one of the primary goals of the brain. Movements are required

for communicating with each other, hunting, feeding, and in fact, all basic activities. The

ability to make voluntary movements is the primary difference between the animal kingdom

and most plant species.

The mechanism of the generation of movements as an experimental paradigm has been

explored in detail for more than a century. The neural control of movements has also been

in active exploration since the early 1900's [46, 103], with some of the seminal experiments

in movement neuroscience performed in the 1950's [78, 8, 43, 44]. Through the years, the

exact mechanism of how movements are driven has been studied at different levels of detail,

using diverse methods such as electrophysiology, behavioral, and whole brain imaging

methods. In the 1970's, the idea of analyzing discontinuities in simple arm movements in

order to study the role of feedback in the generation of movement was popularized [7, 1].

Moreover, the characterization and role of the different types of motor neurons was also

studied in great detail during this time [15, 39].

With all these pieces of experimental evidence, we have an excellent idea of the func-

tioning of different types of motor neurons on one hand, and a systems level view of the

generation of movements on the other. However, relatively few studies tie these ideas

together and delve into the fundamental limitations arising due to the neural control of

movement in simple movements. In the first part of this thesis, we focus on the limitations

due to neural constraints in the generation of fast movements.

21



More recently, studies have collected vast amounts of data from neural activity during

motor tasks, with a large number of experiments focusing on decoding task information

from neural activity [13, 80]. In general, the analysis of movements has long been aided by

studies involving the recording of neural signals in order to perform goal-directed move-

ments. These studies, while highlighting the enormous leaps in feats of engineering, also

provide us some insight into the role of different brain structures and fundamental ques-

tions on the encoding of information by neurons. The paradigm of driving machines like

prosthetic devices using neural activity is named brain machine interface (BMI), and is key

to testing out ideas in movement generation that are formulated using other basic science

techniques. In the second part of this thesis, we provide some results in the BMI setting,

again focusing on the fast movement regime.

Understanding movement generation as an optimal feedback control problem is a well-

known concept in sensorimotor control [74, 105, 101, 113]. Consider the closed-loop sen-

sorimotor control system (SCS) shown in Fig. 1-1. An anatomical schematic is shown in

the left panel, and a block diagram of the SCS is shown in the right panel of Fig. 1-1. We as-

sume that the SCS input is the intended voluntary or reference movement signal, r(t), that

exists in some part of the brain (e.g. in parietal regions). The reference input is processed

by brain structures including the sensorimotor, premotor and motor cortices, and ultimately

the neurons in premotor and motor areas send spike train signals to muscles via the spinal

cord. Appropriate muscles are innervated to generate a movement, z(t), as the system

attempts to follow or "track" r(t). The generated movement (output of SCS) is then fed

back, via proprioceptive and visual feedback, to be processed by structures including the

cerebellum and sensorimotor cortex. There are other structures involved in the generation

of movements such as the basal ganglia and motor thalamus not explicitly shown.

In this thesis, we focus primarily on the regime of fast movements. Although many

experimental studies have analyzed different speeds of movements, we have yet to find

studies that explicitly model neural control of movement in the regime of fast movements,

i.e., when accurate tracking of movements starts to break down. In the first part of this

thesis, we set out to model healthy movement generation in accurate tracking regimes, as

well as in fast movement regimes. This leads us to a cutoff speed past which tracking
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Figure 1-1: (A) Schematic of the sensorimotor control system. (B) Block diagram of the
intact SCS with the relevant structures for movement generation.

suffers; we quantify the dependence of this cutoff speed on the SCS parameters. In the

second part of this thesis, in a BMI setting, we consider the reconstruction of movement

signals using recorded neural activity, and provide a decoding paradigm that inverts the

neural encoding model in real time, and is tunable to function in the fast movement regime.

We also provide conditions on the musculoskeletal system and the feedback system such

that this decoder is stable in closed loop.

1.1 Models of Neural Activity

We consider neural activity as emanating from the brain and driving the musculoskele-

tal system in closed loop, as in Figure 1-lA. This section gives a brief overview of some

widely accepted models for the activity of single neurons. We consider a neuron to be

primarily an input-output device. A neuron communicates information in the form of time-

dependent events which capture the end result of a neuron-specific computation. These

critical events manifest themselves as sudden spikes in the neuronal transmembrane volt-

age, and are called action potentials, or spikes [86, 54]. A collection of these binary events

in time forms a spike train. The spikes are modulated by both extrinsic factors (e.g. behav-

ioral, visual, auditory stimuli) and intrinsic factors (e.g. the neuron's own spiking history,

ensemble activity) [107].

"All models are wrong but some are useful" [5]. We rely on models of neural activity
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to guide us in the analysis of the neural control of movement; discussions of how to fit

the utilized models to data are provided in the relevant chapters. We broadly divide the

different types of models describing neural activity into two categories, (i) models of mem-

brane output voltage, and (ii) probabilistic models for spike occurrences. For details on the

connections between the models in these two categories, refer to [84].

1.1.1 Models for Membrane Potential

The models in this category characterize the membrane potential of a neuron as a func-

tion of the input current provided to the neuron. This input current could be in the form of

an electrical stimulation provided directly to the neuron, or the effect of the input neurons'

spiking activity. Some of these models only hold for supra-threshold activity, while others

are accurate for sub-threshold activity as well. Following are certain key models that fall

in this category, with the most detailed model first.

" The Hodgkin Huxley (HH) [44] model is one of the most detailed and widely ac-

cepted models of the neuron. It is a complex model characterizing the opening and

closing of three ion channels, thus modeling the dynamics of the sodium, potassium

and calcium currents found in a neuron, as well as the membrane potential of the

neuron, using four nonlinear differential equations. Although the subthreshold volt-

age activity as well as the cellular ionic concentrations are modeled accurately, the

model becomes intractable to analyze for the purposes of this study.

" Numerous forms of model reductions of the Hodgkin Huxley model have been doc-

umented [33]. The most notable amongst these are the FitzHugh-Nagumo [49], the

Hindmarsh Rose [42] and the Izhikevich [48]. Each differs in the exact form of the

approximations performed (mainly discounting the dynamics of the slower calcium

channel), with the Izhikevich model resorting to a black-box type approach. These

nonlinear oscillator-type models have been analyzed using sophisticated tools in non-

linear control theory to, for example, analyze bifurcations in the states to characterize

different modes of neuronal activity. For the purposes of this study, where we would

like to perform a systems-level analysis, these models are also intractable.
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* Integrate and Fire (IAF) [60, 54, 11] and its variations have been extensively used

in the past to model neural activity. The basic IAF models takes as its input the

external current inputting the neuron, which is integrated till a threshold is reached.

This integral denotes the subthreshold membrane voltage. Once the threshold is

reached, the integral is reset, and a spike or an action potential is emitted; the spike

train is considered as the output of this model. The simplest variation of the IAF

includes a 'leak' term such that the integral is not held constant for an infinite amount

of time if the input stops, but drops naturally in time. This denotes a 'leak' of the

membrane potential without a current to keep it at a constant level. This variation is

called the 'leaky IAF'. In general, one can add linear dynamics before the threshold

operator to create a 'generalized IAF'. This generalized IAF can fit neuronal activity

quite accurately [33, 6]. Moreover, theoretical studies have also guaranteed an input-

output equivalence between a multiplicative or additive extrinsic signal applied to

the HH model, and the same signal applied to an IAF neuron model with variable

thresholds [64]. We briefly discuss the implications of this to our work in Chapter 3

and Chapter 5. Important for this thesis, generalized IAF models have been used to

model motor neurons in both experimental and computational studies [36, 16].

1.1.2 Probabilistic Models for Spike Occurrences

Several statistics are computed in the neuroscience community to unravel how neurons

encode information through spiking activity. The models in this category generate a prob-

abilistic relationship directly between the input stimulus to spike occurrences. They do not

attempt to model the subthreshold dynamics of the neuronal membrane voltage, concen-

trating on the spike train dynamics. The spike train can be discretized into bins of length

A, and if A is small enough, we are left with a discrete time series of Is and Os. In this

case, the Is are individual spike times and the Os are the times at which no spikes occur.

The probability of spiking can be expressed as the following, for some function f, and the

stimulus s(t).

Pr(spike in(t, t + A]) f (s(t))A. (1.1)

25



Point Process Models (PPMs) utilize the point process nature of a neuron's spiking

activity to model the timing between spikes. The timings between spike events can be

described as a stochastic point process and its probability distribution is characterized by

a rate function, A(t|.), formally known as the conditional intensity function (CIF). The

CIF can be modeled as an explicit function of extrinsic and intrinsic factors, and can be

estimated directly from extracellular in-vivo recordings. It is an estimation of the entire

probability distribution of the spiking activity. Point process methods have been used to

analyze the spike train activity for a broad range of neural systems [4, 83, 89, 107, 92].

A neural spike train can be treated as a stochastic series of random binary events (i.e., the

spike times) continuously occurring in time, otherwise known as a point process [83, 107].

To define a PPM of neural spiking activity, an observation interval (0, T] is considered

to be the length of the spike train, and N(t) is allotted to be the number of spikes counted

in interval (0, t] for t E (0, T]. A PPM of a neural spike train is completely characterized

on a given observation interval (0, T] by defining the CIF [17, 102]:

A(tHt) A limo Pr(N(t + A) - N(t) = 1Ht) (1.2)

where Ht is a vector comprising the relevant covariates at time t, and Pr the probability.

It follows from (1.2) that the probability of a single spike in a small interval (t, t + A] is

approximately A(tIHt)A. Details can be found in [17, 102].

In this thesis, we focus on the IAF and its variations; however, as mentioned earlier in

this section, it is possible to use similar analysis methods for a reduced order HH model.

Moreover, the relationship between the IAF and probabilistic models as in Section 1.1.2

is provided in [84]. An abstract simplified model to describe neural activity is extremely

important for fundamental analyses, and a brief discussion of the methods in the face of

approximate models is given in Chapter 6.
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Figure 1-2: Block diagram of the severed SCS, with the 'brain' structures interacting with
the 'machine' structures, including a prosthetic device driving movement. In this setting,
proprioceptive feedback is usually not possible, but visual feedback is present.

1.2 Sensorimotor Control

The field of neural control of movement ranges from non-mechanistic models of move-

ment generation at a large scale [57, 22, 112], to mechanistic models and descriptions of

individual cellular structures [50, 39, 73]. These different types of models each have their

own utility; however, there is little effort made to unify these in a single theory. Although

this thesis focuses on using abstract models to describe movement generation, some care is

taken to make sure that these models have mechanistic origins. I believe that in future stud-

ies, more care needs to be taken in order to unify detailed mechanistic models and abstract

models of movement generation, and to provide a pathway from mechanistic underpinnings

to phenomena predicted at a larger scale.

In this thesis, we consider two separate settings: (i) intact SCS, and (ii) severed SCS.

Firstly, we examine healthy movements made with an intact SCS as shown in Figure 1-1.

In this context, we analyze movement generation, and the existence of a speed cutoff; a

speed such that if we try to move faster, we may not be able to accurately track desired

movements. In this setting, we analyze the dependence of this speed cutoff on the muscu-

loskeletal system as well as feedback and the neural dynamics. Secondly, we consider the

severed SCS; specifically severed at the spinal cord, such as in Figure 1-2. In this setting,

we assume that the neural activity is being recorded and is driving a decoder and prosthetic

device in real time. In this BMI setting, we consider receiving visual feedback in the ab-
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sence of proprioceptive feedback. Next, we introduce the two separate settings as well as

the questions we pose in this thesis.

1.2.1 Analysis of Healthy Movements

What limits fast movements? As basic as this question may appear, it has not been

rigorously tackled before. Several experimental settings have detailed that as the desired

movement speed increases, we start seeing undesirable phenomena, such as overshoot, un-

dershoot, and skipping cycles. Although current models of movement generation work well

for lower movement speeds, they fail to predict these phenomena, especially the skipping

of cycles. This leads us to the question - are there mechanistic ways to model movement

generation that lead to these phenomena, and can we rigorously show the existence of a

cutoff movement speed past which we see undesirable phenomena?

1.2.2 Brain Machine Interfaces

Building a BMI requires decoding neural activity from recorded areas of the brain in

order to produce a movement signal, with the eventual goal of driving a prosthetic device.

Although the recorded signals are emanating from a combination of neurons, one usually

sidesteps the encoding of the signal by neurons, instead treating the structures of the brain

as a combination of linear plants. Extensive research in neuroscience has provided us with

basic tenets of neuronal firing, but these biophysical models have largely been ignored

when building BMIs. Often, linear decoders are designed, with the firing rates of single

neurons being the input to the decoder, and parameterized movement kinematics being the

output [13, 99, 114]. Assuming firing rates as the output of the neuron averages out the data

and incurs inherent delays in the decoding process. As we record the spikes from single

neurons, can we invert the model for the generation of neural activity in real-time? Can we

design this decoder in such way as to ensure the stability of the closed loop?
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1.3 Thesis Objectives

Aim 1: To analyze fundamental limitations on movement speed during healthy move-

ment generation.

This aim involves (i) building a model of movement generation that holds for the fast move-

ment regime, while displaying known properties of motor neuron activity as well as re-

sponses to different desired movements, and (ii) performing a rigorous analysis to find the

movement speed cutoff past which we see undesirable phenomena as a function of model

parameters. This aim is addressed in Chapters 2 and 3.

Aim 2: To build a stabilizable, real-time decoder of neural activity to drive a pros-

thetic device in the closed-loop BMI setting.

This aim involves (i) the design of a tunable real-time decoder of neural spikes, with full

knowledge of the encoding model, such that the reconstruction error decreases with time,

and (ii) deriving conditions on the stability of the real-time decoder in the closed-loop BMI

setting in order to drive desired movements of varying speeds. The real-time decoder con-

tains a tunable parameter that governs the frequency of reconstructed signals based on the

density of spiking. This aim is addressed in Chapters 4 and 5.

While the specific contributions of this thesis lie in addressing the thesis objectives

outlined above, the primary contribution is to provide a way to think about movement

generation using the language of the control theory community. This enables the use of

sophisticated tools from control theory to address 'difficult' open problems in neuroscience.

The questions addressed in this thesis have their roots in theoretical neuroscience, control

theory, as well as signal processing.
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Chapter 2

Model for the Neural Control of

Movement

2.1 Introduction

Tracking fast unpredictable movements is a very valuable skill in many different situa-

tions. In the animal kingdom, the context includes the action of hunters chasing prey that

is running and dodging at high speeds, for example, a cheetah chasing a gazelle. In the

human setting, the context includes football players tackling others for the ball. The neural

control of tracking unpredictable high speed movements requires substantial feedback in-

formation. Neural control of movement has been studied in the past, with feedforward and

feedback models hypothesized to be activated in various settings [54, 75]. For the purposes

of tracking unpredictable movements, we place ourselves in the feedback setting, while

also discussing ways in which feedforward models can be incorporated in this setting.

In this chapter, we introduce a feedback model for the neural control of movement that

reproduces many experimental properties of movement generation. Tracking periodic sig-

nals is an experimental paradigm that has been explored in many visuo-motor and memory

tasks [37, 98]. Although tracking of movements has been well studied, with competing

mathematical models to describe the phenomena observed [37], the applicability of these

models in the regime of high frequency periodic movements have been overlooked. Impor-

tantly, it has been shown in experimental settings that tracking faster and faster movements

31



leads to a regime where subjects skip cycles because they are unable to keep up. In [30],

monkeys performed an oculomotor task in which they were required to track periodic inputs

with their eye muscles. Tracking was shown to be reasonably accurate at low frequencies,

and the frequency of the input was slowly increased. These monkeys eventually reached a

limit wherein it was difficult to track the movement above a certain cutoff frequency (here

termed as w,), and started to skip cycles (Figure 2-1A). In [108], human subjects were

asked to make quick downward motions on hearing an auditory stimulus, which was pe-

riodic with varying frequency. As expected, when the frequency of the input increased,

accuracy decreased. More importantly, several undesirable phenomena were observed in

the high frequency regime: namely, occasional overshoot, undershoot, and skipped cycles

(Figure 2- 1B). In Figure 2-2, we also show example tracking for an in-house demo made

using Psychtoolbox-3 [56] on MATLAB showing similar results for almost every subject

we tried it on, although this was not verified rigorously. Subjects were asked to direct the

cursor to track the black lines moving horizontally across the screen using the mouse by

making vertical (up-and-down) movements while the cursor was horizontally constrained

to the center of the screen. The horizontal black lines could be programmed to move at a

variety of speeds. The lines that were not reached were subsequently colored in red while

the lines that were reached with the cursor were colored in green.

Models of movement generation have not previously attempted to capture or calculate

such a fundamental frequency wc, or to characterize movements past this frequency in the

regime of fast movements. In this chapter, we formulate a quantitative biophysically-based

model that reproduces these phenomena, as well as other experimental properties observed

in literature and well known properties of motor neurons. Linear models describing the

sensorimotor control system (SCS) components at the systems level fail to capture such

undesirable tracking phenomena, while more complex biophysical models of the SCS are

analytically intractable. In this chapter, we also briefly explore the shortcomings of linear

models describing the sensorimotor control system (e.g. firing rates driving muscles as

opposed to spikes).

In Chapter 3, we provide formal methods to compute w, based on the neural activity

and models for the cerebrocerebellar system and the musculoskeletal system. We also show
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Figure 2-1: Undesirable phenomena as seen in experiments, figures adapted from A. [30]
and B. [108]. In both cases, fairly accurate tracking is seen in relatively low frequency ref-
erence signals (i.e. w < wW), whereas undesirable phenomena such as skipped cycles (blue

circles), overshoot (orange circle) and undershoot (red circles) are seen in high frequency
signals for w > we for some wc.

the dependence of we on parameters of the models introduced in this chapter.

We first introduce and motivate the different components of our proposed model for

movement generation. Next, we present some computational results showing the repro-

duction of experimental properties, and importantly, the phenomena reproduced past the

fundamental frequency we. We finally discuss the implications of the model and the proce-

dure for fitting it to data with available neural recordings.

2.2 Model Components

The English physiologist and Nobel Prize winner, Charles Sherrington, described the

role of alpha motor neurons as the final common pathway of the motor system [109]. The

upstream computations performed by the brain are converted to spiking activity by the mo-

tor neurons, that directly drive the musculoskeletal system. In this study, we model move-

ment generation as a dynamical model for the cerebrocerebellar processing, that drives the

motor neurons' spiking activity, which directly feeds into a model for the musculoskeletal
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Figure 2-2: An example figure for a subject using an in-house demo built using
Psychtoolbox-3 [56] on MATLAB. Demo details are provided in the main text. Briefly,
subjects made periodic vertical movements to reach horizontally moving lines on the screen
with their cursor. The lines that were reached by the cursor are colored in green, while those
that were not reached are colored in red. Similarly to Figure 2-1, accurate tracking is seen
in relatively low frequency reference signals (i.e. w < w,), whereas undesirable phenom-
ena such as skipped cycles (blue circles), overshoot (orange circle) and undershoot (red
circles) are seen in high frequency signals for w > w, for some wc.

system, all in feedback.

Specifically, we consider a single-joint movement in closed loop, and we assume that

the spike trains that are driving the musculoskeletal system can be modeled using integrate-

and-fire (IAF) dynamics, as introduced in Section 1.1.1 [54]. We model the agonist and an-

tagonist parts of the musculoskeletal system and the cerebrocerebellar feedback controller

as linear time-invariant (LTI) systems, termed here M and K respectively [100]. Specific

dynamical systems are shown for the purposes of this chapter, but this analysis is applicable

to a wide range of LTI M and K.

Discontinuities appearing in slow movements are a well known feature that have been

studied to elucidate the wiring in the downstream motor neurons. Specifically, slow move-

ments display evidence of discontinuities in the finger position trace even while trying hard
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to follow a smooth trace. Following this observation, the threshold-based pulsatile control

of movements was first suggested in 1947 [18], and since then has been in active explo-

ration in the feedback setting [28, 71, 72, 77, 81, 111, 37, 24]. Most of these models differ

in the details of computation before the threshold-based pulsatile movement activation (in

some cases, the movement is termed ballistic; one can consider a ballistic movement as

being a pulsatile output innervating a set movement plan). Here, we use a mechanistic

model for movement generation that also happens to produce pulses; we use known dy-

namical models of neurons in conjunction with previously studied cerebrocerebellar and

musculoskeletal models to come up with a specific structure for the processing of r(t) that

is transformed into the movement z(t). It is possible, however, to use the same analysis

techniques as discussed in this work for the intermittent control paradigm as discussed in

the cited works.

To develop theory that provides insight into fundamental limitations of the SCS to

generate fast movements, we simplify the SCS model to be parameterized by two ma-

jor components (a) neural dynamics, and (b) musculoskeletal dynamics, as in Figure 2-3.

Specifically, we treat the effective contribution of relevant brain structures (e.g. cerebellum,

motor cortical regions) as a linear dynamical feedback controller (K) that processes errors

between actual movements and intended movements. This processed error is encoded in

spike trains which aggregate in the spinal cord to generate spikes in alpha motor neurons. In

our SCS model, we consider two "groups" of alpha motor neurons with spiking threshold

q that actuate agonist and antagonist muscles, respectively for each joint. When q is small,

the density of spikes in the motor neurons is large increasing the bandwidth of the SCS.

Similarly, when q is large the density of spikes is small, which decreases the bandwidth

of the SCS. This simplicity of the brain and spinal cord characterizations enables tractable

analysis of the SCS.

2.2.1 Neural Dynamics

We analytically study the case where the neural activity driving the muscle can be

modeled by generalized IAF models. IAF models have been used to model motor neurons
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in both experimental and computational studies [36, 16].

A. Integrate-and-Fire Dynamics

The spikes innervate an agonist and an antagonist muscle model, as shown in Figure

5-IA. These two muscle models work in tandem to produce single joint movements. The

IAF model integrates the input signal till the integral reaches a threshold q, at which time

it produces a weighted spike p5(t), as shown in Figure 5-lB. These spikes innervate the

corresponding muscle model. The weight of the spike was chosen to be the same as the

integral, following the Henneman's size principle [39]. In general, if we have more than

one neuron innervating the muscle, the innervation amplitude should be proportional to the

activation threshold in keeping with the Henneman's size principle.

B. Cerebrocerebellar System

It is well known that the cerebellum plays a critical role in processing feedback re-

sponses for maintenance of balance and posture. Also it is empirically observed that large

numbers of the cerebellar cells that are involved in motor control are activated by both vol-

untary movement commands and passive movement of the body by an external examiner.

These facts suggest that at least important parts of the sensorimotor control cerebellum lie

in the forward path of a control loop that processes both feedforward and feedback control

signals. It is also well established that the cerebellum operates in close association with

Neural Dynamics

cerebrum

r+ e+ Y Motor U Musculoskeletal Z

+::- Spinal Neurons spikes System

cerebellum -

Figure 2-3: Closed loop model for movement generation at a high level. The reference
movement signal r drives the SCS, which is composed of the cerebrum and cerebellum
feeding into the motor neurons, which themselves drive the musculoskeletal system in feed-
back.
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Figure 2-4: Proposed closed-loop model for movement generation. A. Details of cerebro-
cerebellar dynamics, adapted from [52, 51, 74]. B. Details of the IAF Model [54]. C.
Details of the musculoskeletal system, adapted from [75]. D. A closed-loop model of the
agonist / antagonist muscles acting around a single joint.

the cerebrum where motor commands are issued and where most likely the comparison

between command and sensory signals occurs.

A basic cerebrocerebellar system diagram favored by the neuroscience community is

given in Fig. 2-4A [52, 51, 74]. Thus, to begin with an analytically tractable SCS model,

we propose to characterize the cerebrocerebellar SCS component as a dynamical feedback

control system (K) that compares the intended movement with actual movement. Much

available behavioral and neurophysiological data on human and animal cerebellar motor

control relates to stabilization of posture and accurate control of movements rather than

explicit control of contact force or joint torques. Importantly, though, because of the uni-

formity of its circuitry, intra-cerebellar mechanisms are almost certainly common to both

position and force control systems, especially for fast movements. This motivates our

choice of modeling the cerebrocerebellar system, K, as belonging to a class of linear time

invariant systems including proportional (kp), integral (kl) and derivative (kd) (PID) con-

trollers as in [74, 105, 101, 113].

K(s) = kp+ - + ks (2.1)
s
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Our choice for K is motivated by neuroanatomical and physiological observations that have

suggested strongly that an important part of cerebellar control may be PID [74, 105, 101,

113]. First, proportional scaling of signals is ubiquitous in the nervous system, and twenty

years of research on the control of eye movements indicates the presence of an oculomotor

"leaky" (slowly decaying) integrator associated with brainstem nuclei [69]. This work

strongly indicates that the cerebellum controls the leakiness of this integrator. Other work

suggests that the cerebellum balances the scaling of the proportional and integral processing

of vestibular signals that are transmitted to the eye control circuits [51]. Other parts of the

cerebellum are associated with positive feedback "reverberatory" circuits in the brainstem

that involve the interpositus or fastigial nuclei [2]. These likely also yield integrator activity.

Accordingly, damage to these areas results in a reduced ability to sustain posture against

gravity or against passive elastic restoring forces due to muscles and soft tissues. From

these studies, it appears that the cerebellum is intimately associated with modulating at

least PI control. On the other hand, the dentate nucleus of the cerebellum and parts of the

cerebellum that project to it appear to be important for enhancing the rapidity of movement

onset and with suppression of target overshoot [104]. This is highly consistent with the

presence of derivative action. Consistent with this is the observation that signals recorded

at the dentate appear to be the derivatives of signals recorded at the interpositus.

2.2.2 Musculoskeletal Dynamics

Considerable work has been done on modeling the forward dynamics of the arm [31].

In principle, models can be very complex taking into account multiple muscles [3], their

geometries of origin and insertion [3], effective moment arms [3], activation dynamics

[31, 110, 115], nonlinear force-velocity relations [110, 115], skeletal mass distributions

[31], and spindle behavior [47].

As this study requires analytical tractability of the SCS model, we use a simplified

model of the musculoskeletal system of a single joint as in [75] (Fig. 2-4C). In this model,

the muscle acts like a spring for passive displacements. This formulation is consistent with

alpha-gamma coactivation that maintains the sensitivity of the muscle model to multiple
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Parameter Kc Kt Kd I1 12 Ka Km Im Bm Kf
Value 1 1 0.2 2 0.8 1 1 4 0.1 1 1

Table 2.1: Table showing the values used in this thesis for several parameters. The corre-
sponding model is shown in Figure 2-4.

inputs; deafferented monkey experiments in which the proprioceptive feedback to the spinal

cord is compromised; as well as reflex function of the limbs. As shown in Fig. 2-4C, Km

corresponds to the net stiffness of all muscles acting around the joint, as determined by the

level of agonist/antagonist coactivation, BA is the net viscosity, and IM is the inertia.

This model is taken from the class of "equilibrium-point models" for motor control [75].

Under this class of models, the mechanical properties of muscles and the myotactic reflexes

generate equilibrium positions for the limb. If the limb is displaced from rest position, the

spring-like properties of the muscles generate the appropriate restoring torques to return

the limb to rest (equilibrium).

These models are in reasonable agreement with experimental data, yet are simple enough

to analyze. Analysis can also be carried out using Hill-type models for a single muscle

[100]; however, various combinations of these Hill-type muscle models would be needed

to model a single joint.

2.3 Results

We first show results for some elemental signals. We consider three signals, while

briefly describing what they correspond to in a movement situation. Unless expressly men-

tioned otherwise, the responses correspond to model simulations with parameter values as

shown in Table 2.1. Responses using the model in Section 2.2 are provided in Figure 2-5,

and compared with similar movement types in [79].

1. Step Movement: A step signal corresponds to moving from one location to the other,

and staying there. This paradigm has been explored at length in center-out reach

tasks. Typically, the subject controls a cursor on a screen; the subject starts from

the center position, moves as fast as possible, and stops the cursor within a cued
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Figure 2-5: Examples of movement responses to desired movement signals as described in
the text. In the top row, simulation using our model. In the bottom row, experimental data
(adapted from [79]). A. Step Movement, B. Short Movement, C. Sinusoidal Movement.

target at some radial distance. This movement requires the subject to actively halt

the movement. Figure 2-5A shows the response of the model to the step signal, and

we can see that the response reaches the desired value after some overshoot, which is

seen in experimental paradigms as well. Depending on the model parameters, there

may be some oscillatory activity as well, before the desired value is reached, as in

Figure 2-6C.

2. Short Movement: A short movement corresponds to moving to one location and

then quickly making your way back. In an experimental setting, the subject would

start from the center position, with the hand moving as fast as possible to a cued

peripheral target, immediately reverse direction and return to the center, home target.

This movement requires the subject to rapidly reverse the direction of motion with

no stationary period. Figure 2-5B shows the response of the model to this signal, and

we can see that there is some overshoot while reaching for the target, as well as on

the way back.
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Figure 2-6: Experimental properties displayed in alpha motor neuron activity. In all these
diagrams, to the left is experimental data adapted from literature, and to the right are simu-
lations using our model. A. Henneman's principle [41], B. self-sustained oscillations [38],
C. agonist-antagonist coactivation [34].

3. Sinusoidal Movement: A sinusoidal movement reference movement corresponds to

a back-and-forth movement. In an experimental setting, starting from the center

position the hand will move to a cued peripheral target. As the hand approaches

the first target, the opposite target will illuminate, requiring the subject to move to

that target. This back and forth motion will be repeated at the same tempo for some

number of cycles. By varying the timing of target illumination, the subject can be

required to oscillate between the targets at different frequencies. Figure 2-5C shows

the response of the model to the sinusoidal signal, and we can see that the movement

tracks the sinusoidal fairly well.

Our model can be shown to display several important experimental properties that mo-

tor neurons are known to follow. Alpha-motor neurons are known to display several ex-

perimental properties, including Henneman's size principle, self-sustained oscillations and

agonist-antagonist coactivation [40]. A summary of these experimental properties is shown

in Figure 2-6; the left portions of each panel shows experimental data, while the right por-

tions of each panel show our model simulations.
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Figure 2-7: Experimental properties displayed by closed loop system for movement gener-
ation. The top three rows show the match between spiking patterns for periodic movements,
adapted from [53] (Left), and our simulation results (Right). The bottom row shows data
adapted from [108] (Left), and our simulation results for w > we (Right). We see undesir-
able phenomena in the bottom row, for example, undershoot (red circle), overshoot (orange
circle), and skipped cycles (blue circle).

* As seen in the Fig. 2-6A, the more force that is needed, the more motor units are

recruited in a precise order according to the magnitude of their force output, with

small units being recruited first (Henneman's size principle). Here, in order to display

the accordance with the Henneman's principle, we simulated a network of neurons,

with the signal y going into multiple IAF models, and the output of this network was

a consolidated spike train with reweighted spikes. The weights on the consolidated

spike train corresponded to the integral of y since the last spike from any IAF, which

we can calculate with knowledge of the spike times from every IAF, as long as the

they all have the same initial condition.

* Fig. 2-6B illustrates how motor neurons may produce plateau potentials, resulting

in self-sustained firing, providing a mechanism for translating short-lasting synaptic

inputs into long-lasting motor output. This self-sustained oscillatory behavior is a
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key property observed in more complex models of neural behavior, as described in

Chapter 1.

* Fig. 2-6C shows how during the voluntary contraction of a muscle group, agonist and

antagonist muscles can both be active with a specific activation pattern (agonist first,

then antagonist, and then agonist again at a lower level). This concurrent activation

of agonist and antagonist muscles is referred to commonly as coactivation and is

captured by our model.

Finally, and most importantly, in Fig. 2-7, we show that our model is able to maintain

good tracking performance of a sinusoidal input until the input frequency is larger than the

bandwidth w. After this input frequency, the model displays undesirable phenomena seen

in experimental data. This undesirable phenomena includes the following.

* Undershoot: The fast movements in Figure 2-7 show that these movements may not

reach the desired target.

* Overshoot: The fast movements in Figure 2-7 show that the movements may reach

past the desired target when trying to reach a certain frequency. Both undershoot

and overshoot are phenomena accompanying fast movements in general - i.e. lower

accuracy while reaching for a target, and then correcting the movement when close

to the target. In a repetitive movement, however, the movement is not corrected for

the duration of several cycles, as seen in Figure 2-7. Note that both overshoot and

undershoot are reproducible in linear systems as well.

* Skipped cycles: The fast movements in Figure 2-7, as well as the fast movements in

Figure 2-1A clearly have skipped cycles as a feature (circled in blue). The frequency

of the resulting movement is inherently changed in this paradigm. This is the most

important feature observed in fast movements, since this phenomena (a) cannot be

modeled using linear systems, and (b) cannot be remedied in open loop using a linear

system at the output of the movement.

To our knowledge, this is the first model for movement generation that has been ex-

tended to the fast movement regime.
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2.3.1 Linear Models Characterizing Movement Generation

One can assume that the transformation from the current to the firing rate of the neu-

ronal spikes (here assumed to be the output signal of a neuron) is LTI, i.e. the firing rate

output is some linear and time invariant function of the input entering the neuron. By at-

tempting to learn the movement parameters for the cerebrocerebellar system and the mus-

culoskeletal system from given desired and actual movement data for W < we, in the best

case scenario, we would learn the LTI systems as in Sections 2.2.1 .B and 2.2.2. If we simu-

late this linear model, we see that the response does not display overshoot or skipped cycles,

even at high target frequencies. In Figure 2-8A, for low frequencies, we see that the linear

response Zlinear approximates the full, nonlinear response z adequately. As the frequency

increases, the approximation of the nonlinear response with the linear response gets worse

and worse. Finally, for w > w, as in Figure 2-8B, the nonlinear response displays skipped

cycles, which the linear response does not display. Indeed, next we rigorously show that

for any linear model, the response cannot display skipped cycles.

Using principles in linear dynamical systems, we can show that the closed loop system

without the IAF nonlinearity in the loop, i.e. for Zlinear - 1+KFr, and with r(t) =

R sin(27rwt + 4), the amplitude of Zinea,(t) in the steady state decreases as a function of W

for low pass M and K. The steady state has the following equation, with Glinear = +KF

Ziinear(t) = R|Glinear(jW) | sin(2,rwt + 0 + ZGinear jW)) (2.2)

Importantly, this linear characterization fails to reproduce the phenomena we see in experi-

ments, i.e. the phenomena of skipped cycles. Thus the nonlinear component here described

by the IAF (or some other such nonlinear component) is necessary for the existence of the

specific undesirable phenomena seen in experiments.

2.4 Discussion

Humans can make flexible and fairly fast movements, however damage to various parts

of the central nervous system can limit motor performance. Whether damage is caused
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Figure 2-8: z is the response of the full, nonlinear feedback system as shown in Figure 2-4,
while zlinea, is the response of Giiner. The driving signal r is a sinusoid, i.e., r = sin(wt).
The linear system assumes that the firing rates of the individual neurons are the outputs of
the neuronal system. A. The desired movement r is a 'slow' movement; we see that ziinear
approximates z. B. The desired movement r is a 'fast' movement; we see that Zlinear does
not approximate z, since z contains skipped cycles.

by stroke, multiple sclerosis, amyotrophic lateral sclerosis, or spinal cord injury, weakness

(paresis) occurs routinely after injury to the primary motor cortex (M 1) or its output to the

spinal cord. This weakness is known to be associated with reduced voluntary recruitment

of motor units in the spinal cord, both in terms of the number of motor units recruited

and the firing rates they achieve. Given that weakness translates to deficient production

of muscular forces that are used to accelerate the limbs, we expect weakness to limit fast

movements, with progressively more reduction of neural activity being associated with a

deceleration of voluntary movements. However, to the best of our knowledge, this is the

first time that this relationship can be quantified in one model. The model discussed in this

chapter, while primarily being a feedback control model, is amenable to the addition of a

feedforward system without changing the core results. The quantification as well as the

dependence of the parameters introduced in this section on uc will be presented in Chapter

3.
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Chapter 3

Quantifying Fundamental Limitations in

Movement Speed

3.1 Introduction

Periodic movements faster than a certain 'fundamental frequency' produce undesirable

effects such as skipped cycles, overshoot and undershoot. These phenomena are described

in more detail in Chapter 2. Moreover, a model that reproduces these phenomena in the

regime of fast movements, as well as other experimental properties of motor neurons, is

motivated and discussed in detail. Here, we focus on the phenomenon described till now

as 'skipped cycles', that is otherwise known in nonlinear control theory as subharmonic

oscillations (defined later). In this chapter, we proceed with the theoretical analysis of a

feedback system containing the integrate and fire (IAF) nonlinearity, as detailed in Chapter

2, while proceeding with analysis for general linear time invariant (LTI) cerebrocerebellar

K and musculoskeletal M models. Specifically, we ask two questions, (i) Does there exist

a clear cutoff frequency w, such that for w > w, we may see subharmonic oscillations, and

(ii) Can we calculate w as a function of the rest of the parameters of the feedback system.

In this chapter, we first derive conditions for which the movement signal includes sub-

harmonic oscillations as a function of the parameters of the closed-loop system. We then

show that as w increases, the conditions for the occurrence of these subharmonic oscilla-

tions become easier to satisfy. Lastly, we present a method to calculate the initial conditions
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that will produce subharmonic oscillations given a w, and relatedly, a method to calculate

the w, such that for some w > we, we can calculate initial conditions that lead to sub-

harmonic oscillations. It is important to note that these ideas and results apply to a large

class of systems, thus can be flexibly utilized with different choices of model structures.

We finally present the results for the model introduced in Chapter 2, while discussing the

sensitivity of w, on the relevant model parameters.

3.2 Preliminaries

Linear fractional transformations (LFT) of linear systems were shown to be a powerful

tool for analysis and synthesis of robust controllers [118]. On one hand, feedback inter-

connections are all LFTs in both the plant and controller. On the other hand, and more im-

portantly, LFTs are powerful models for representing plant uncertainty. In order to clarify

the notation used in this chapter, let G be a general LTI system that has two vector-valued

inputs and two vector-valued outputs. G can then be decomposed with these two inputs

and outputs as follows:

y Gil G12 U 31[~]=[ :~: [ U](3.1)
-Z G21 G22 r

Now, consider the feedback interconnection defined as u = sNRy (Fig. 3-1C). Then

the closed-loop mapping from r to z is given by the LFT defined as:

z = LFT(G, NR)r = [G 22 +G21NR(I - NRG)--1 NG12]r (3.2)

An interesting observation is that LFTs can be used to model very general classes of

nonlinear systems, where the nonlinear part is subsumed in NR. It can be easily verified

that any nonlinearity that appears in either part of a feedforward or feedback loop of a

system can be cast in this form. Therefore, one can show that our SCS model has an LFT

of the form: SCS = LFT(G, NR).
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Figure 3-1: Feedback Loop considered in this study. A. The reformulation of the neurons
in the feedback loop as a nonlinearity (as in B.) and the linear systems. B. The nonlinearity
NR. C. Standard nonlinear control framework separating the effect of the nonlinearity NR

from the linear system. D. Switched System, with matrices defined as in (3.9).

3.3 Problem Formulation

First, we map the feedback system shown in Fig. 3-lA to a nonlinear system, NR

y -+ ii, interacting with the linear systems as shown in Fig. 3-lB. This is an exact mapping.

Note that the derivative of the output of NR is a spike train with positive and negative spikes

(this realized in the actual SCS as two positive spike trains activating two different groups

of motor units in the spinal cord). Then, we separate the effect of the nonlinear operator,

NR, and the derivative operator s from the rest of the interconnection, G, as shown in Fig.

3-1C. G is a 2x2 system that represents the mapping from (u r) to (y z). The model for G

can be derived as follows. Let the following equations define the dynamics for the minimal

state-space representation for the musculoskeletal system M and cerebrocerebellar system

K.
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d
M : XM(t)

yM(t)

dtK: dxK(t)

yK(t)

= AMxM(t) + BMu(t); xM(O) = XMO

= CMXM(t)

= AKXK(t)+ BKU(t); XK(O) = XKO

= CKXK(t)+ DKU(t)

Then, the dynamics of the closed loop system can be expressed as follows:

G: dx(t)

y(t)

x(O)

NR: u(t)

= Ax(t) + B1u(t) + B 2r(t)

= Cx(t)

= xo

(6(t)

- -q5(t)

0

y > q

y < -q

-q < y < q

BK

0 ; C= 0

DK J

0 1 ;
XKO

X0= XMO (3.9)

i_

where io is the initial condition of the IAF integrator, and 0 represents a zero matrix of

the appropriate size. We say that a 'negative' or a 'positive' spike is emitted whenever

y(t) reaches q and -q, respectively, at which point u(t) takes values q5(t) and -q6(t),

respectively. See Fig. 3-1D. Note that between spikes, G operates in open loop, i.e.,

without any effect from the nonlinearity. We can thus formulate the feedback system as a

switched.system (Fig. 3-1D); where the state equation switches every time the IAF emits a

spike. In our case, the SCS switches between 3 LTI systems when: (i) y > q, (ii) y < --q,

and (iii) q < y < q, which can be analyzed in a straightforward manner with linear systems

theory [118].
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We study the output of the closed-loop system under periodic forcing, specifically

r(t) = R sin(27rwt + 0), and we are interested in how well z(t) follows r(t) as the band-

width of the reference movement signal w increases. We use tools in nonlinear control

theory to analyze the output for different input classes; we first map the feedback system as

in Fig. 3-lA as a nonlinear system NR : y -+ u (Fig. 3- IB) interacting with linear systems

{M, K} as in Fig. 3-1C. This is an exact mapping.

The feedback system's state vector evolves according to the following equation.

x(t) = e XO + e ̂ (t-)(Blu(T) + B2r(T))dT (3.10)

Definition: Let r(t) = R sin(27wt + q). We define the occurrence of a subharmonic

oscillation of order k, where k E Z, k > 1, as the case where there is exactly one positive

spike and one negative spike per k periods of the input, i.e. there is exactly one up-crossing

and one down-crossing of y within [t, t + 27k/w) for any t E R.

We want to find the minimum frequency past which we see a degradation in tracking in

the form of subharmonic oscillations, i.e. we s.t. Vw > wc, 3{Xo, 0} s.t. 1 2k/w u(t)dt = 0

and f2k/w u(t)Idt = 2q for some k E Z, k > 1. That is to say, u(t) only emits one

positive and one negative spike during more than one period of the input oscillation. This

can be formulated using switching systems theory as y(t) reaches q exactly once and -q

exactly once for t E [0, 27k/w), and ly(t) < q for the rest of the time. Moreover, for this

to be a valid oscillation, the state of the system needs to be the same after every 27rk/w, i.e.

x(t + 27k/w) = x(t) Vt E R. An example sketch is provided in Figure 3-2 to illustrate this

point. This gives us the intuition for the following theoretical results.

3.4 Theoretical Results

We first provide necessary and sufficient conditions for subharmonic oscillations to

exist in this system.

Theorem 1. Consider the system as in Equations 3.5-3.8, with r(t) = R sin(27rwt + Or),

where w > 0 and R > 0. Assume (I - eAMK ) is invertible. Then, IfxO, 0,} such that
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Figure 3-2: A graphical illustration of subharmonic oscillations. Here, the reference signal
r(t) shown in blue is a sinusoidal signal with period T. The state variables of the system
x(t) are represented as a two dimensional object in green. The switching planes are de-
picted in yellow for negative spikes and purple for positive spikes. Left: The switching
period of the system is equal to the period of r(t), which is the desirable case. Right: An
example of subharmonics oscillations for which the switching period is double that of r(t).

subharmonic oscillations occur iff 3k > 1, k G Z s.t. for some On E (-7r, r], and for some

0* E (0, k), the following is true.

1 = yl(0*)

1 > y1 (0) VO E (0,9 *)

1 > y(0) V E (0*, k)

(3.11)

(3.12)

(3.13)

= CeA/w" an - CeA OwB1 + Ro (cos(on) - cos(27rO + Onr))
q 27rwq

= Ce^1 an - C ec(-0*)/ )B1 + Ro (COS(n) - cos(2ir0 + On))
q 21rwq

(3.14)= AMKkw )-eAMKk/w(e-^MKO*/W - I)BMKq

-q

Proof Provided in Section 3.6. D

We also provide the following two functions; the conditions above can be restated in
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terms of these (as provided in Section 3.6).

y1(0) = CeAO/, a + CeAO/wB1 + R (cosQ$) - cos(2w0 + $p))q 27-rwq

y/2(0) = CeA/w an + C(e^A/1 - e^(0-0*)/-)B1 + Ro (cos(4p) - cos(27r +(45))

ap = ( AMKk/w)-1e AMKk/w(I -_ -^MKO*I )BMKq (3.15)
q

With the conditions above, we can now examine the existence of subharmonic oscilla-

tions as a function of the frequency of stimulation w. Firstly, we show that, under certain

conditions, one of the key conditions (Equation 3.24) is easier to satisfy with higher w,

specifically maxoc(o,1) y(O, W2 ) < maxoc(o,l) y'(0, wi) for w 2 > wi (and similarly for y).

Thus, a necessary condition for subharmonic oscillations is satisfied only for high values

of w.

Corollary 1. Consider the system as in Equations 3.5-3.8, with r (t) = R sin(27rwt + Or),

where w > 0 and R > 0. If the dynamical system defined by ss(A, B 1, C, 0) has an impulse

response that is monotonic in t, i.e. CeAtlBia > CeAt2 Bia Vt1 < t2 and a > 0, then for

a given {a, $},

max y'(0, w2) < max y,(0, wi) for w2 > wi (3.16)
OE(0,1) OE(0,1)

min y1(0, w 2) > min y (0, wi) for w2 > wi (3.17)
OE(0,1) P OE(0,1)

Proof Provided in Section 3.6. El

We next provide a means of calculation of {W, 0 , 0r} where w > w, and {xo, 1r} lead

to subharmonic oscillations.

Corollary 2. Consider the system as in Equations 3.5-3.8, with r(t) = R sin(2,rwt + qr).

Assume I - eAMK is invertible and all eigenvalues of AMK are negative. Then, there exists

a w > 0 such that for some w ;> w, {X, 1r}, that will lead to subharmonic oscillations.

Proof Provided in Section 3.6. 0
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Figure 3-3: A. maxo[o,11 Yn(0, w) as a function of w, with an = 0 and # = -. B.
minoE[o,1] y,(0, w) as a function of w, with ap = 0 and #p = -2

As an example, to show that the conditions leading to subharmonic oscillations are

satisfied primarily for high values of w, we fix an and #n, and in Figure 3-3A, we show the

evolution of maxoE[o,1] yn'(0, w); we see that this is less than 1 only for w > w, for some w.

Next, we fix a, and Op, and in Figure 3-3B, we show the evolution of minEo,1 y'(0, w); we

see that this is greater than -1 only for w > w, for some we. Thus, we see that since these

conditions are not satisfied for low values of w, there exists some cutoff frequency w, such

that at least one of these conditions is satisfied. We can indeed calculate w, by taking the

joint minimum of the two functions (maxoE o,1] y1(O, w) -1) and (- minocqo,1] y1(0, w) -1)

over w.

Thus, we provide a formulation to the highest frequency after which we see subhar-

monic oscillations with initial conditions as given in the proof of Corollary 1. In Figure

3-4, we see w, as a function of q for a given-value of R, M and K. In general, w, as q

increases, i.e., as the spikes become sparser, the fastest movement possible is decreased. In

Figure 3-5, we see the effect of varying various model parameters on w. This shows that

as the feedback gain becomes higher, and as the bandwidth of M becomes higher, we have

higher maximum speeds.

3.4.1 Results for K = 1

We consider a musculoskeletal model as motivated in Section 2.2.2, with M(s) =

. 7p We first consider K = 1, and show results for w, as a function of q, for
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CO = f(R,M,K,q)
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1
Figure 3-4: Undesirable subharmonic oscillations with a sinusoidal excitation. Left: w, for
varying q. Top Right: q = 0.1, w = 1, q = 0, xO = [0 0 - 0.1]'. Bottom Right: q = 0.1,
W = 3.18, # = 0, xo = [0 0 - 0.1]'. Here, R = 1, K = 1, F = 1, M(s) = 4.1s

2+1.78s+4

R = 1, and F = f, while varying p and f. In Fig. 3-4, we see that as q increases, the

maximum bandwidth w, decreases. Moreover, we see in Figure 3-5 that as the feedback

gain or as the bandwidth of the musculoskeletal system increases, we have a higher W, for

all values of q.

3.4.2 Results for K as in Section 2.2.1

Next, we show the results for neural dynamics in full generality as described in Chapter

2, specifically, implementing the cerebrocerebellar model as in Section 2.2.1 .These results

are shown in Figure 3-6. We see that as the feedback gain or as the bandwidth of the

musculoskeletal system increases, we have a higher w, for all values of q, as is also true

for K = 1. Moreover, as the cerebellar proportional gain (K,) increases, w, increases,

but not to a large extent. However, as the cerebellar derivative gain (Kd) increases, W,

increases drastically, showing the large degree of sensitivity to Kd. The derivative action is

hypothesized to take place in the dentate neurons of the cerebellum [51], which are known
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Figure 3-5: w, for R = 1, M(s) = . .7, K = 1, F = f. Left: w, for varying q and
f, with p = 4. Right: w, for varying q and p, with f = 1.

to be hypothesized to be important for rapidly implementing a desired action [87, 104].

This feature is corroborated in Figure 3-6D.

3.5 Discussion

The formulation described above provides us an explicit dependence of the emergence

of undesirable phenomena on q, the parameter that directly dictates the density of spikes.

Specifically, we show that for a fixed musculoskeletal system M, cerebrocerebellar dynam-

ics K, and a pair of motor neurons with thresholds q (for activation of agonist/antagonist

pair of muscles), the oscillation input (periodic back-and-forth movement) with frequency

w may generate undesired subharmonics if w is 'too large' and/or the density of spikes

(related to q) is 'too small'. Such undesirable phenomena are consistent with symptoms

observed in patients with movement disorders, and finger tracking experiments wherein

subjects are trained to follow a trace back and forth quickly.

These undesirable phenomena have been reported in various experimental studies. In

[108], also shown in Figure 2-1, we see evidence of subharmonic oscillations as well as

overshoot and undershoot. In [30], we see evidence of skipped cycles in oculomotor track-

ing in apes. Pulsatile control of movement has provided us with insights in the 'slow'

movement regime, but has rarely been analyzed for limitations in tracking 'fast' move-
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Figure 3-6: w, for R = 1, F = f, M as in 2.2.2, K as in 2.2.1. In all the plots, the default
parameters are as in Chapter 2, unless explicitly mentioned.

ments. The processing of the reference signal r(t) leading to the threshold-based condition

has been conjectured as various functions of the error e(t), all producing a pulsatile behav-

ior [37]. However, these conjectured models do not have a basis in the mechanistic transfer

of neural signals. The proposed model can reproduce experimentally known properties of

motor neurons. However, other threshold-based pulsatile models for neural control can be

readily applied to the theory developed here.

With a time varying threshold for each neuron, i.e. threshold for spike i is qi, the

presence of undesirable phenomena would be restricted to a temporary setting. However,

skipped cycles would still be possible with certain initial conditions, and the maximum

threshold would be the relevant parameter, i.e. similar conditions for skipped cycles would

apply as for subharmonic oscillations in this chapter, while replacing q with maxi qi.

Although this study focuses on a pair of neurons driving an agonist and antagonist

muscle, we believe that this phenomenon holds at the brain level as well. Although the

mechanism of translating this study of a limitation due to alpha motor neuron spiking into
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Figure 3-7: Design of a compensator to restore functioning of the SCS in the presence of a
compromised neural system; more details in the text.

a limitation due to the Ml neurons is challenging due to a lack of unified mechanistic

models for the relevant brain structures, these same principles can be applied using an

appropriate model for these neuronal structures. Indeed, the pulsatile control of movements

as discussed in [28, 71, 72, 77, 81, 111, 37, 24] all have a threshold nonlinearity at heart,

which is the driver for the undesirable phenomena in the fast movement regime.

The formulation in this paper quantifies the increase in maximum speed gained due

to the system parameters. It can also help us compensate in limbs by providing either

electrical stimulation directly to the muscles, or using an exoskeletal device that can provide

extra assistance to the limb. An example of these ideas is presented in Figure 3-7. Here,

the block for neural activity contains the cerebrocerebellar model as well as the IAF block

with the threshold parameter q as earlier. Let w, as a function of q for the normal regime

be given by the blue curve in Figure 3-7B, and let the neural activity be compromised such

that q increases (this could correspond to a damage directly in the alpha motor neurons or

the spine). In this case, the operating value for w, would decrease as well. If we add a

compensator as in Figure 3-7A, which takes in the output of the musculoskeletal system,

and directly stimulates the musculoskeletal system in feedback (here, C = 10), and the

output of the musculoskeletal system is also driven up by the same amount, i.e. zew = 10z,

then we can drive up the operating curve to the red curve shown in Figure 3-7B. This shows

us that it is possible to compensate for damage to the neural system using a reinforcements

at the musculoskeletal end. Moreover, the framework allows us to quantitatively design the
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compensator C given the neural and musculoskeletal parameters, i.e. K, q, F, and M.

3.6 Proofs for Chapter 3

This section contains the proofs for Chapter 3. For readability, the theorems are also

rewritten.

Theorem 1. Consider the system as in Equations 3.5-3.8, with r (t) = R sin(2irwt + qr),

where w > 0 and R > 0. Assume (I - eAMK ) is invertible. Then, 3{xo, 0,1 such that

subharmonic oscillations occur iff 3k > 1, k e Z s.t. for some On E (-w , w], and for some

0* G (0, k), the following is true.

1 = yl(0*) (3.18)

1 > yI(0) V0 E (0, 0*) (3.19)

1 > |y2(0)1 V0 E (0*, k) (3.20)

where

y1( 0 ) = CeO/(0 an - CeA0I'B1 + Ro (cos(#n) - cos(27r0 + On))q 27rwq
2(0)A0 C an AO/w - A(0-0*)/w)B

yn(0) = Ceq -a - e )B1 + Ro (cos($n) - cos(27w0 + n ))

aI-eAMKkw ) leAMKk/w (e-AMKO*/W - BMKq
anqI BIq (3.21)

--q

Proof Assume that an asymmetric subharmonic oscillation exists. We let an = [aMK; -q]

be the state of the system at a negative spike, i.e. a down-crossing of y, and #n the offset of

r(t) at the time of the negative spike. Given Equation 3.5-3.8, we can express the condition

that the state returns to an after k periods, as the following.

an = e k/w(an - Bjq) + eA(k-*)/wBiq (3.22)
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Given Equations 3.9, this simplifies to Equation 3.21 as a constraint for an, under the con-

dition that I - eAMK is invertible (which implies that I - eAMKk/w is also invertible).

Given the state evolution as in Equation 3.10, we can now express the condition that a pos-

itive spike, i.e. an up-crossing of y occurs at 6*/w, as Cx(6*/w) = q, which simplifies to

Equation 3.23.

Equations 3.24 and 3.25 represent conditions that there are strictly 2 spikes per k periods

of the reference signal.

The resulting aMK and qdefine the initial conditions that will lead to subharmonic oscilla-

tions, i.e. if xO = aMK and 0,.= On, the system will display subharmonic oscillations
-q

of order k.

Similarly, the conditions can also be stated in terms of the first spike being positive, as

the following. Note that these are equivalent conditions for subharmonic oscillations.

We can find {xo, ,} such that subharmonic oscillations occur iff Ek > 1, k E Z s.t. for

some , E (-c , w], and for some 0* E (0, k),

-1 = yl(9*) (3.23)

1 > y(0)| VO E (0, 0*) (3.24)

1 > y(0)| VO E (0*, k) (3.25)

where

y (0) = CeAO/ a- + Ce^*/wB1 + R (cos(#p) - cos(2w9O + 4))
q 2rwq

y (0) = CeAO/ - + C(e^O/w - e B + R (cos(o,) - cos(27r6 + op))
q 2wwq

ap = [ AMKk/w) -leAMKk/w(I - (3-2MK6*))BMK
q

Corollary 1. Consider the system as in Equations 3.5-3.8, with r (t) = R sin (27rwt + 0,),

where w > 0 and R > 0. If the dynamical system defined by ss( A, B1 , C, 0) has an impulse

60



response that is monotonic in t, i.e. CeAtl Bia > CeAt2 Bla Vt1 < t 2 and a > 0, then for

a given {a, #},

max y,(0, W2) < max y)(Ow1 ) forw2 > 01 (3.27)
SE (0,1) E (0,1) Y 0 i o 2>W

min y1(0,w 2) > min y1(0,wu1 ) for W 2 > W 1  (3.28)
OE(0,1) OE(0,1)

Proof There are two possibilities for subharmonic oscillations, namely, the system starts

with a negative spike and misses the first peak, or the system starts with a positive spike

and misses the first trough. We will consider these two possibilities separately.

Negative Spike. Let an and On be the initial condition and the phase offset in question,

with an [1 I . Let A = VDV-1, where D is the diagonal matrix of eigenvalues
-q

and V a full matrix whose columns are the corresponding eigenvectors. A necessary con-

dition for subharmonic oscillations is yi(0) < q, where yi(0) = CeA/w(an - Bjq) +

CRV eD(O/w-) sin(27rwT + n)dT) V 1 B1 . Since the impulse response is mono-

tonic in t, this can be bounded from above for an - B1 q < 0, by the following.

y' = CeA/w(an - Biq) + CRVDV-'B 1  (3.29)

where D is a diagonal matrix with the following as its ith entry.

b 27w(eoAi/W cos (on) - cos(27r0 + On)) + Ai(eAi /W sin(#5) - sin(270 + On))(3.3O)
A? + 47r2W 2

Here, Ai is the corresponding eigenvalue of A. bij can be bounded from above by the

following.

27w(1 + cos(0n)) - Ai(1 - sin(On)) (3.31)
A2 + 47r2W 2

,which evolves as 1 (1+cos((O)) for large w. Moreover, CeA/w(an - B1 q) for an - Biq <

0 monotonically decreases in w due to the assumptions on the impulse response. Thus, y'nax
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decreases as w increases, and one of the necessary conditions becomes easier to satisfy as

w increases.

Positive Spike. Let ap and Op be the initial condition and the phase offset in ques-

tion, with an = [j. Let A = VDV- 1 , where D is the diagonal matrix of eigenvalues
-q

and V a full matrix whose columns are the corresponding eigenvectors. A necessary con-

dition for subharmonic oscillations is Y2(0) > -q, where Y2(0) = CeAO/w(ap + B1q) +

CRV (fe" eD(/w) sin(2w + p)dr) V 1 B1 . Since the impulse response is mono-

tonic in t, this can be bounded from below for ap + Biq > 0, by the following.

2y = Ce /w(ap + B1q) + CRVbV 1 B1  (3.32)

where b is a diagonal matrix with the following as its ith entry.

27ww(eo'i/) cos(#p) - cos(27r + Op)) + Ai(eAi/) sin(#p) - sin(27r + Op))(3.33)
A 2+ 47r2w 2

Here, Ai is the corresponding eigenvalue of A. Dii can be bounded from below by the

following.

-27rw(1 - ei/w cos(#p)) + Ai(1 + eAi/ sin(#p))
A2 + 47r2W 2

which evolves as (-(I - cos(op))) for large w. Moreover, CeA/w(ap + Biq) for

ap+ B 1q > 0 monotonically increases in w due to the assumptions on the impulse response.

Thus, y;"'f increases as w increases, and one of the necessary conditions becomes easier to

satisfy as w increases. El

Corollary 2. Consider the system as in Equations 3.5-3.8, with r(t) = R sin(27wt + # ).

Assume I - eAMK is invertible and all eigenvalues of AMK are negative. Then, there exists

a w, > 0 such that for some w > we, 3{xo, 0,}, that will lead to subharmonic oscillations.

Proof Let k = 2, and let n be the order of MK, i.e. AMK is an n x n matrix, BMK is

n x 1, CMK is 1 x n. We first let a = [aMK; -q] be the state of the system at a negative

spike, and define a*K as an initial condition that will lead to subharmonic oscillations. We
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find a*K as a function of 0*. If I - eAMK is invertible, so is I - eAMKk/w. Thus, using

Equation 3.21,

a*M(*) = (I - eAMKkw 1 -AMKkw -AMKO*/w - I)BMKq (3.35)

Note that 0* is unknown. #*(0*) is found in the same way, using Equation 3.23; it is the

solution to the following equation.

1 = (a * /q - BMK) + -
2+ sin( *) sin(r* + ) (3.36)

Here, (I* is the 1 x n vector comprising of the lower left hand side entries of e^o*/w. In

the case where r = 1, GIi = CK ( MK.O* Thus, the following holds under the

condition that 1pI 1.

0*(0*) = 27rk' - 7r9* + sin- (p), k' c Z (3.37)

w (q-* (a*MK-BMKq))w7r,where p = Rosin(7r0*)

We now want to find 0* such that Equations 3.24 and 3.25 are satisfied. We first intro-

duce the following.

y'minf(0, a*K(0*), q*(0*))

y1f"a(, a AI (0 *), 0*(0*))

y2fl(0, a*K(0*), 0*(0*))

ynax(0, aM*K(0*), 0*(0*))

= J 1 (amK/q - BMK)+ (cos(q*)-1)
27rwq

= @ 1(amK/q - BMK) + 2rq (COSq *) + 1)

= ( ieAMKO*-MK/q - BMK)

+ (cos(#*) - 1)
27Oq

= 2@1-MK -1 MK/q - BMK)

+ (cos(o*) + 1)
27rwq

In the following, we drop all dependence on a*N and #*, and just keep the dependence

on 0*. Note that y'if(0, 0*) y 1(0, 0*) < yax (0, 0*) and y"if"(0, 0 *) Y2(0, 0*)
max (0, 0Y2 (9 )
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Figure 3-8: A. yi, 0* > 1; B. y2 , 0* 1.

We consider the two cases, (1) 9* > 1, and (2) 9* < 1, separately.

(1) 9* > 1: We need to ensure that y'lin (0, 9*) > -1 and yn'x(0, 9*) < 1, VO E [0, 1).

We approximate O6in = arg minoE[o,1) yin (9, *) and 9 1nax = arg maxoE [o,1) y'"x (9, 9*),

by setting dy1 (9'*) = 0, and approximating eAMKO/ I. This is a function of 9*. We

get an estimate of 9'ximate > rnfx for AMK < 0, which means that ym7 ax (9ylx 9*) <

max ("'Omaimate *); thus if ymax (Omax 0*) < 1, then y'ax (Oma, 0*) < 1. Simi-
Y1 j1 ,estmae 9*) t Y I ~estimate ,l 1 thny7(1,true' ) 1 ii

larly, 9 1estimate - 1,true, which means that y'(i(0ue, 9*) 0 yimi"(9 1i?3timate, 9*); thus if

y1 ,(Ye2stimate, *) > -1, then ym"il( trne 9*) > -1. From now onwards, we character-

ize

yimax (ietimate( 9*) as ymax (9*), and similarly y (in9 (eQtimate (9"), 0*) as y (in )

We can now compute min{i<o*<2} (y'if (9*)), and if this quantity > -1, we will have sub-

harmonic oscillations. This can also be written as the following.

w= min w s.t. y'mi"(9*) > -1, V9* E [1, 2) (3.38)

To find the initial conditions that lead to these subharmonic oscillations, we plug in

0* = arg min{i<o*< 2}(y ma,(0*)) into Equations 3.35 and 3.37.

(2) 9* < 1: We need to ensure that ymin( 9 , 9*) > -1 and ymax( 9 , 9*) < 1, V9 E [1, 2).

We approximate 2'i" = arg minoe[1,2) ymi'(f, *) and 9 nax = arg maxoe[1,2) ynax (9, 9*),

by setting d2 0,0*) = 0, and approximating eAMKO/w . I. This is a function of 9*. We get an

estimate of 2eOimate > 2ie which means that yin( mie, *) > ymi" ( 9 rtimate 9*);

thus if yrZ (2 s'timate, 9*) > -1, then ymij(92fe9*) > -1. Similarly for yjx. From
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now onwards, we characterize y6"if( 9n ,imate(9*) 9*) as ymi" (9*), and similarly, we char-

acterize yfax (O6nO,.mae(9*), *) as ygflax(0*).

We can now compute maxjoOe*<i(ymax(O*)), and if this quantity is < 1, we will have

subharmonic oscillations. This can also be written as the following.

W* = minw s.t. y;ax(Q*) < 1, V9* E [0,1) (3.39)

To find the initial conditions that lead to these subharmonic oscillations, we plug in

0* = arg max{o<o* <1(y"in (9*)) into Equations 3.35 and 3.37.

Finally, w, = min(w*, w*). As k increases, for a given a and 0, subharmonic oscilla-

tions occur at higher values for w. D
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Chapter 4

Real-Time Decoding of an Integrate and

Fire Encoder

4.1 Introduction

One of the most detailed and widely accepted models of the neuron is the Hodgkin

Huxley (HH) model [44]. It is a complex nonlinear model comprising of four differen-

tial equations governing the membrane potential dynamics as well as the dynamics of the

sodium, potassium and calcium currents found in a neuron. We assume in the practical

setting that we are recording multiple neurons using an extracellular electrode, and thus

that the observable postprocessed outputs of each neuron are the time points at which the

membrane voltage crosses a threshold, also known as spikes. Even with complete knowl-

edge of the HH model parameters, it is intractable to decode the extrinsic signal applied to

the neuron given only the spike times. Model reduction techniques are accurate in certain

regimes [33]; theoretical studies have also guaranteed an input-output equivalence between

a multiplicative or additive extrinsic signal applied to the HH model, and the same signal

applied to an Integrate and Fire (IAF) neuron model with variable thresholds [64].

Specifically, take the example of a decoder in a brain machine interface (BMI) device,

where the decoded signal drives a prosthetic limb in order to produce movement. Given

the complications involved in decoding an extrinsic signal using a realistic neuron model,

current practices include decoding using a Kalman filter (Figure 4-1), which often assumes
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3 ,= A fk + B Wk Movement Signal) k = C fk + D ek Firing Rates DKalman Decoded Movement

Figure 4-1: Decoding using a Kalman filter DKalman- Here, the movement signal f is
usually parameterized as the states of the dynamical system (A, B, C, D) as shown in the
diagram, with the firing rates of different neurons as the output of this system.

a linear time invariant (LTI) encoding with the states representing the desired movement

signal, and the firing rate of the neuron(s) as the output [13, 99, 114]. Although extremely

tractable for decoding, this approach (i) assumes a specific parametric structure for the

movement signal, and (ii) ignores the nonlinear processing of this signal by the neurons.

Moreover, assuming firing rates as the output of the neuron averages out the data and incurs

inherent delays in the decoding process. Decoding of spike trains has also been performed

using stochastic jump models such as point process models [10, 23], and [84] details the

relationship between these encoding models and the IAF.

We consider a biophysically inspired IAF neuron model with variable thresholds as the

encoding model, and only assume certain bandwidth and decay properties on the reference

movement signal. It has been shown that, given the parameters of the model and given

the spikes for all time, a bandlimited signal driving the IAF model can be perfectly recon-

structed if the spikes are 'dense enough' [61, 67, 26]. This is a Nyquist-type reconstruction

formula, although the sampling is non-uniform; specifically, samples of the range of the

signal are provided instead of the domain. For this theory to be applicable to a real-time

setting, as in the case of BMI, we need a causal real-time decoder that estimates the signal

at every time t, and an estimate of the time taken for the convergence of the reconstructed

signal to the real signal. There have also been some approaches for causal reconstruction

of a signal encoded by an IAF encoder, such as in [27]. However, these do not show the

convergence of the estimate to the real signal with the advent of time.

In this paper, we introduce a causal real-time decoder (Figure 4-2) that, given the param-

eters of the IAF encoding process, provides an estimate of the signal at every time, without

the need to wait for a minimum amount of time to start decoding. We show that, under
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Figure 4-2: IAF Encoder and a Real-Time Decoder.

certain conditions on the input signal, the upper bound of the error between the estimated

signal and the input signal decreases polynomially in time, leading to perfect reconstruc-

tion as t -+ oc, or a bounded error if a finite number of iterations are used. The bounded

input bounded output (BIBO) stability of a decoder is extremely important to analyze for

the application of a BMI. Here, we show that the L2 norm of the error is bounded, with an

upper bound that depends on the bandwidth of the signal, the density of the spikes, and the

decay of the input signal.

We numerically show the utility of the theory developed here. We first provide example

reconstructions using the real-time decoder and compare our results with reconstructions

obtained assuming a firing rate output. We then show the dependence of the decoding error

on the properties of the input signal.

The theory and algorithm presented in this chapter (also presented in [93]) can be ap-

plied to any system that uses an IAF encoding device, for example in pluviometry. We

introduce some preliminary definitions in Section 4.2, and then present our theoretical re-

sults in Section 4.3. We use a model IAF system to numerically simulate the output of

an IAF encoder and provide causal real-time reconstruction in Section 4.4, and end this

chapter with conclusions in Section 4.5.

4.2 Preliminaries

We first define the subsets of the L2 space that we consider. L' and L' are defined as

the following.

LQ,3= {fgo E L 2 I f(w) = 0 V [-Q, Q] (4.2)

69



where go(t) = (1 + tj)D and f(w) = (Ff)(w) is the Fourier transform of f. We will only

consider signals in LO for 3 > 0.

Next, we define sincQ(t) and Il[a,b] (t), both of which will play an integral part in the

reconstruction of signals.

sinco (t) = { t 0 (4.3)

1 t = 0

1[a,b](t ] (4.4)
0 otherwise

Finally, we define the encoding system based on an IAF neuron model; we term this the

IAF Encoder. We consider that this model has variable thresholds in its most general form,

which may be useful if it is the result of a model reduction technique such as in [64], or

in approaches where ft+' f(r)dr can be calculated through other means, such as in [61].

A typical IAF Encoder is defined in the following way: given the thresholds {qi} where

qi > 0 Vi, the spikes {t2} are such that

f (T)dT = qj (4.5)

This signifies that the encoder outputs a spike at time tj 1 every time the integral f f (-r)d-r

reaches the threshold qj or -qi. We assume that the decoder has knowledge of the value

of the integral as well as the time at which the integral was reached. For a physical rep-

resentation with neurons whose dynamics can faithfully be modeled using IAF neurons,

we can imagine two neurons with the same input f; one neuron spikes when the positive

threshold is reached while the other spikes when the negative threshold is reached. The

decoder views the activity of both of these neurons and, with knowledge of the correspond-

ing thresholds, decodes the signal accordingly. We can also take the approach of limiting

ourselves to positive f (t). In order to remain general in the following treatment, we assume

70



that we have knowledge of { t i+1 f(r)dT}, as well as the corresponding spike times {ti}.

4.3 Theoretical Results

The following is a theorem introduced in [26], which was also applied to IAF Encoders

in [68, 67, 35]. We will later use the operators and concepts introduced in this theorem.

Theorem 2. Perfect Reconstruction: Given a sampling set {ti}iEz and the corresponding

samples f (T)dr, we can perfectly reconstruct f E L' if supiEZ(ti+1 - ti) 6for

some 6 < %. Moreover, f can be reconstructed iteratively in the following way, such that

k+I

||f f (1|2 f 2 (4.6)

and limkno fk f in L2-

f 0 = Af (4.7)

f = (I - A)f 0 + Af =(I - A)Af + Af (4.8)
k

fk - A) fk-1 + Af - (I - A)nAf (4.9)
n=O

where the operator Af is defined as the following.

00 t+

Af = f(T)dT sinc (t - si) (4.10)
i=n1 ti

and si =i+2 +1, the midpoint of each pair of spikes.

Proof Provided in the Appendix. Also in [26]. I

Corollary 3. Perfect Reconstruction after sampling with a multiplicative function: Let

h E 2 such that

|1 - h(T)1 2 dT
< E2 (4.11)

ti+1 - ti
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for some c. Given a sampling set {ti}iEz and the corresponding samples fi f (T)h(-r) dT,

we can perfectly reconstruct f C Li if suPiez(ti+1 - t) = 6 for 6 such that 7+

E(1+ ) <1.

Remark 1. Corollary 3 can be applied to IAF neurons sampled with a refractory period

R if f can be upper bounded by a known quantity F, i.e. |f(t) < F Vt [61]. Here,

h(t) = EiEz 1 [tj+R,tj+1] and e2 / /+R. It can also be applied to leaky IAF neurons

[62], with h(t) = ziEZ exp(-(t t )i1[tt, 1] for some b, and e = 1 - exp(-6/b), which

imposes a constraint on bfor given values of 6 and Q: that the current may not decay 'too

much'.

Although providing perfect reconstruction, Theorem 2 and Corollary 3 both require an

infinite number of spikes in order to start decoding. No results exist for the truncation errors

for decoding from an IAF neuron, i.e. what happens if we have a finite number of spikes?

We provide results for this question while considering real-time decoding. We would like

a real-time decoder that outputs the 'best guess' at every time t in order for us to act on

the estimate of the signal. In this paper, we introduce one such decoder; we first provide a

high-level description of the real-time decoder, then a recursive algorithm to apply in the

practical case, and finally we will provide error bounds for its performance.

Real-Time Decoder

At every time t, the decoder outputs an estimate of the input signal ft(t), where ft(t) is

an estimate of the signal calculated using all the spikes from time 0. to t. Since there is no

new information between spikes, this is essentially the same as calculating an estimate after

every spike ti, fti (t), and using this estimate till the next spike, i.e. for time t E [ti, ti+1]

(see Figure 4-3).

We will show that we can calculate the estimate after every spike f+ 1 as the sum of the

previous estimate fti and an innovation gt2+1 . This procedure is captured in the algorithm

given in Equations 4.12 and 4.13.
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Figure 4-3: A visualization of the decoding
black and the spikes {ti} are shown in blue.

process. The original signal f(t) is shown in
As each spike t, arrives, a new estimate ft, (t)

of the signal is formed (shown in green), which is modified after the next spike tj+1 by
the innovation function g 1 . The output of the decoder ft(t) = Ejsz ft,(t)I1I[tstj+n(t) is
shown in red.

Recursive Algorithm

- t +Ig - ft + (g94- + g - Atigt-

Here, fIto = 0, andg90 (t) f(T)dT) sinc(t--s). Wedenoteft (t) = limk-_oc ftit)

and g7e 1 (t) = limko gi 1 (t). We define the operator ATf used in Equation 4.13 as the

following.

ATf
i |t <T t,

f(T)dT sincQ (t - si) (4.14)
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The output of our causal real-time decoder can also be written as the following.

ft (t) = Ztt)titis(t) (4.15)
iEZ

In the case of a decoder that uses a finite number of iterations K at every step, i.e. calculates

fi after every spike ti, the decoded signal is f/ (t) - Eiz Ift (t)I[t,ti+1)(t). {ft }k are

stored after every spike ti, and thus do not need to be recomputed at the arrival of the next

spike. Thus, when a new spike arrives at ti+1, each ff can be modified by adding the

innovation functions g .

Next, we show an upper bound on the error incurred by the decoder.

Theorem 3. Real-time reconstruction: Given a signal f E L2, passed through an IAF

encoder with known thresholds, and given that the spikes satisfy a certain minimum density

supiEZ(ti+1 - ti) = 6for some 6 < 2, we can construct a causal real-time decoder that

reconstructs a function ft(t) using the recursive algorithm in Equations 4.12 and 4.13, s.t.

| f(t) - ft (t)|I< i CJ I g |f 1|2,0 (1 + t)-_' (4.16)

where c depends only on 6, Q and 3.

Moreover, if we use a finite number of iterations K at every step, we obtain the following

error

~ -(tK+ 
K+1 + 6_

if (t) - f/ (t)I < c 11f 2,0 (1 + t)-+ |If12 (4.17)

Theorem 3 shows that the upper bound of the real-time reconstruction error using the

decoding algorithm in Equations 4.12 and 4.13, decreases as a function of time. This

implies that the approximation ft (t) becomes more and more accurate with the passage of

time, and moreover, we can calculate the exact amount of time we would need to record to

have a given level of accuracy. Given a maximum allowed error 6 > 0, these bounds can

provide a combination (t, K) that will ensure If(t) - f/K(t)| I < if f C L", and if the

density constraint is met.

We can further show that the L2 norm of the reconstruction remains bounded with a
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bounded input (BIBO stability), by bounding the L2 norm of the error between the original

signal and the reconstruction.

Corollary 4. Bounded L2 norm: The causal decoder provided in Theorem 3, with the same

assumptions and in the case of K -+ oc, constructs a signal ft(t) s.t. the L2 norm of the

error |lf - ft||2 = f0* f(t) - ft(t) 2dt is bounded: ||f - t|2 < ||If 112,, where

c is the same constant as in Theorem 3.

Remark 1: This result also implies that we have a decay in the root-mean-square (RMS)

error, i.e. V' fj' f(t) - ft(t) 2dt T+) 0. For the case of a finite number of iterations

K < oc, the RMS error converges to a non-zero constant (7) 11f 12.

Remark 2: The methods used in Corollary 4 also provide a bound on the error in the

weighted L2 norm, i.e. ||f - f1|2,4 0 < ' |lf 12,8 for 3 > 2, which may be a more

intuitive form to use for a subsequent stability analysis.

Corollary 5. Real-Time Reconstruction after sampling with a multiplicative function: Let

the assumptions in Corollary 3 hold. Iff E LQC and we receive samples of f'i' f (T)h(T)dT,

we can construct a causal real-time decoder that reconstructs a function ft(t) such that

I f (t) - ft(t)I < C6',/(1 + | f|2,1(1 + )--3(4.18)
1 - (-T + 6 (1I + -7,) )

where c6,Q,, is the same as defined in Theorem 3, and E is the same as defined in Corollary

3.

Corollary 5 can be applied to the real-time reconstruction if receiving spikes from an

IAF neuron with a refractory period, or a leaky IAF neuron, by applying the concepts in

Remark 1.
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Figure 4-4: (A,C,E,G) Four example reconstructions using the Real-Time Decoder, with
the original signal f(t) in black solid and the reconstructed signal ft (t) in red dashed lines.
Here, [3, K] = [2, 500], and qi = 0.01 Vi. (B,D,FG) The same signal was decoded using a
Linear Firing Rate (FR) Decoder. A window size of A = 3s was used.

76

:1
I, I

~ :::~
I '. I~ j~I, ~*,

'I, i I:

I: ~.

UA ~ 6--.

0.1 0.1

0.06

0.04-



Rx 10

2

1.5

0.5F

0.8 1 1.2 1.4 1.6
6

(A) Q is varied; [3, 6, K] = [2, ', 500]

2.5 3 3.5
/3

(B) 6 is varied; [Q, 3, K] = [0.37, 2, 500]

x 4

N

4 4.5 5 0'- 100 200 300 400 500
K

(C) # is varied; [Q, 6, K] = [0.37, , 500] (D) K is varied; [Q, 6, 3] = [0.37r, , 2]

Figure 4-5: Average error for 20 different signals while varying different parameters.

4.4 Numerical Simulations

We simulated signals f (t) of the following form, for t E [0, 100], using a stepsize of

10-2.

Z$1Wk (since (t - dk))
f (M =50o

Ii=1 Wk
(4.19)

Here, the Wk's and dk's were picked uniformly at random from the interval [0, 1] and [0, 100]

respectively. Note that f E C130. All simulations were performed using MATLAB R2014a.

For each simulation experiment, at every time t we decoded using only the spikes before

77

3 X10'

2

II

0 L,
0.1pi 0.2pi 0.3pi

Q
0.4pi

104

0-

10~

10
2

0.6

1

1



time t.

We first provide example reconstructions using the Real-Time Decoder for four signals

in Figure 4-4, using constant thresholds, i.e. qi = q Vi. We compare our results to those

obtained using a Linear Firing Rate (FR) Decoder, i.e. we let the reconstructed signal be a

linear function of the number of spikes in the past A seconds, A being the window size. We

can see that there is a delay in the reconstruction with this decoding approach. Moreover,

the reconstruction is not as accurate as that using the Real-Time Decoder.

Next, we show the decay of the real-time error by averaging out the error for 20 differ-

ent input signals, while varying certain parameters, namely Q, /, 6 and K (Figure 4-5). The

thresholds qi were chosen to be constant a priori, but were reduced to satisfy the density

constraint wherever necessary.

According to Equation 4.41 (including the effect of the constant c), the error should de-

crease as Q is decreased. We see this effect in the simulation study in Figure 4-5A. For

these simulations, we chose 6 such that 1 < 1, thus 6 was decreasing as Q increased;

however, the effect of the increasing Q dominated in this case.

In Figure 4-5B we see that increasing 6 while keeping the bandwidth constant does

indeed increase the error, thus the algorithm is sensitive to the density of the spikes. In this

figure, all the values of 6 satisfy the density constraint, i.e. ! < 1.
7r

Increasing # is seen to have a large effect, as seen in Figure 4-5C: the error decreases

polynomially in / (note the log scale on the y-axis). Although increasing /3 in our simula-

tions also increased the bandwidth of the signal, the faster decay had a larger effect on the

error than the change in bandwidth.

In Figure 4-5D, the effect of increasing K is apparent; however, this error flattens out

for large values of K, showing convergence of the algorithm.

4.5 Conclusions

We provide a real-time decoder to reconstruct a signal f E L' encoded by an IAF

encoder Under Nyquist-type spike density conditions, we show that the reconstructed

signal ft(t) converges to f(t) polynomially in time, or with a fixed error that depends on
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the computation power used to reconstruct the function. Moreover, we get a lower error as

the spike density increases, i.e. we get better results if we have more spikes. Decreasing

the bandwidth or increasing the decay of the signal both lead to a decrease in the error,

corroborated by the numerical simulations. In simulation, this decoder outperforms the

linear decoder that acts on the firing rate of the neuron. However, the main utility of this

decoder is that it comes with verifiable bounds on the error of decoding as we record more

spikes.

There is a severe need in the BMI community for considering error bounds while de-

coding signals from the brain. For example, in the case where the reconstructed signal is

driving a prosthetic, we are usually placing the decoder and machine in an inherent feed-

back loop (where the feedback is visual in this case). A stability analysis of this feedback

loop includes calculating a bound on the error incurred by the decoding process, which

is the first step for the construction of a device that robustly tracks agile maneuvers. In

this chapter, we provide an upper bound on the error incurred by the real-time decoding

process, which can be used along with concepts in robust control theory to provide suffi-

cient conditions on the prosthetic and feedback system in order to ensure stability. Stability

analysis for the decoder presented in this chapter is provided in Chapter 5.

4.6 Proofs for Chapter 4

Here, we provide the proofs for theorems and corollaries presented in this chapter. For

readability, the theorems and corollaries are also provided here again.

Theorem 2. Perfect Reconstruction: Given a sampling set {ti}iz and the corresponding

samples f f(T)dT, we can perfectly reconstruct f (E L if supiEz(ti+1 - ti) = 6for

some 6 < . Moreover f can be reconstructed iteratively in the following way, such that

60k+1
|f- fk12 ---- 1|2 (4.20)
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f 0 = Af

f = (I-A)f0 +Afz=(I-A)Af+Af
k

fk (I -A)fk-1+ Af = (I -A)nAf
n=O

where the operator Af is defined as the following.

f(T)dr sinco (t - si)

(4.21)

(4.22)

(4.23)

(4.24)

and si = ti+, the midpoint of each pair of spikes.2)

Proof As presented in [26]

We first define an operator Af built only from the samples of f (t). We will then show that

applying this operator iteratively leads to perfect reconstruction of f under some conditions.

Af = J
i=1 is

f(r)dT sincQ(t - si)

Here, si = "+g", the midpoint of each pair of spikes.29

Next, we calculate the error I|f - Af1|2 incurred by this operator. It is easier to calculate

the error incurred by the adjoint A*, calculated below. In the following, we take both f and

g to lie in L . Since f is bandlimited, f = since * f, where * denotes convolution.

(f, A*g) = (Af, g) = sincQ * f, 1[ti,ti+1]) sinc-(- - si), g)

00

= ~z~(f, sincQ * , (sincQ(- - si), g)

00

( f~ s1iIcQ * I1t. ]g(Si)

(4.26)

(4.27)

(4.28)

80

, and limkoe fk = f in L2.

00 ti+1
Af = E

i=1 ti

(4.25)



Thus it follows that the adjoint operator A* is defined as the following.

00

A*f = f(si)(sincQ * )

Note that A*f c L for all f E LQ.

We now bound the error I|f - A*f1|2-

sincQ * (f

< (f - f (si)
icz

-E
iGZ

f (Si) 1[tt+
1])

2

)1 i
2

- ij +1

We split each integral in Equation (4.32) in two and use Wirtinger's inequality [26] to

bound these (we need f, f' E L 2 (t,_ 1 , ti), V i). We have,

|f(t) - f(si)|2dt
4

< (si -ti) 2
4

|f'(t)|2dt + (ti+1
72

<7 ti+1

|f'(t) 2dt

We sum over i and use Bernstein's inequality [26] to obtain

1A~fH2 < 62Ilf - A*f| 2 - 72 ' 2
62 Q 2

72 11 f11 2
__ "|f| 2

Given that HIAH12 = |A* 12, we see that H f - Af1H2 < 9 HfHI2.

Finally, if 6 < n, f E C2 is uniquely determined by its samples ti1f()d and can

be reconstructed iteratively as the following.

fo = Af

= (I - A)fo + Af = (I - A)Af + Af
k

fA (I - A)fk-1 + Af = )7 A)n
n=O

(4.34)

(4.35)

(4.36)
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(4.29)

Hf - A*f2 =2

2

2

(4.30)

(4.31)

(4.32)

fti+1 - si) 2 f'(t)|2dt

(4.33)

f(t) -- f (Si)12 dt



If ! < 1, then limk , 0 fk = f in L2.

Corollary 3. Perfect Reconstruction after sampling with a multiplicative function: Let

h E L2 such that

fti 1 - hr|d
ti -< E 2
ti+1 - ti-

(4.37)

for some E. Given a sampling set {ti }iez and the corresponding samples f> f (T)h(T)dr,

we can perfectly reconstruct f c L' if supjE_(ti+1 - ti) = 6 for 6 such that ! +

e(1+ ) <1.

Proof We define the following operator Ah.

0h ti+1
Ahf = i

f(T)h(r)dT sincQ(t - si)

Its adjoint is given by the following, where h(t) = h(-t).

00
A~f =Z (si) (sincQ* tjt+]

j=1
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(4.38)

(4.39)
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We now calculate an upper bound on I|f - A*f 112 = |lf - Ahf|12 as the following.

||f - A*f 1 2 = f * sinc - E f(sj)h[t,,t, ] * sincQ

iEZ 2

< f - E f(si)hlt ,t ,1+
iEZ 2

< f - E f(si)i1[,2 ,t[+11  + E f(s)(1 - h)1[t,,t,+1]
i zZ2 icZ 2

< -Hf-z ft1< lf2 + ( - h(C) 2 dT

iEZ t"

< f|fH2+E E f(si)[ti,t+1]
icZ 2

o( 6Q\
< - f1 + 1+ -) f12

Now we have the following condition for perfect recovery:

< 1 (4.40)

We can reconstruct the function f in the same way as in Theorem 2, using the operator Ah

instead of A. D

Theorem 3. Real-time reconstruction: Given a signal f E L"2, passed through an IAF

encoder with known thresholds, and given that the spikes satisfy a certain minimum density

supiez(ti+1 - ti) = 6for some 6 < 2, we can construct a causal real-time decoder that

reconstructs a function ft(t) using the recursive algorithm in Equations 11 and 12, s.t.

If (t) - ft (t)| I < '3 1' f112,0(1 + t)4 (4.41)
7r
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, where c depends only on 6, Q and /.

Moreover; if we use a finite number of iterations K at every step, we obtain the following

error

~ 1 - }" 6 K+1

If (t) - ft' (t)| I C6, Q - ( | lf (1+t)- (+ 6"K1|f|12 (4.42)
71 -7rr

Proof We start with a few preliminaries, and the definition of a constant c that will be used

later in the proof. These preliminary notions are also provided in [25]. We define a local

maximum function on f:

f#(t) = sup If (t + u)| (4.43)

Note the following two properties of f# (t) for f E L, with a function p, (t) such that

pi,(w) = 1 for w E [-Q, Q], and p, E flL , for some a > 0. Here, * denotes the

convolution operator.

1Ef (sj)1[t,,t,+ (t)I < f*(t) pointwise (4.44)

f#(t) = (f * pa)#(t) (|f I * pa#)(t) (4.45)

As a consequence of equation (5.21), we obtain the following bound on the L2 ,,3 norm of

the local maximum function (5.19), using a function pa(t) as described above.

We denote infpI lp#P, for some a > 4 by c6,QO, which depends only on 6, Q and 4.

We now bound the L2 norm of the error incurred using a decoder acting on all the spikes

in a finite time period T, i.e. {ti}ji:jtjjT, and show that this error is decaying in T.

We consider that after the first approximation ATf with a finite number of spikes, we
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can construct {ti} i:Iti>Tsuch that SUPj:tjI>T(ti+1 - ti) is less than the required 6. Thus we

can construct an operator A as long as it is not acting directly on f, where A is defined as

in Theorem 2. The adjoint operators of A and AT for f E L are A* and A* respectively.

A*f

A* f

S f (si)(sincQ * 1[tt+])I
iEZ

= f (si)(sincQ * 1[t 2ti+1])
i:|t|I<T

(4.47)

(4.48)

Equation 4.47 is shown in the proof of Theorem 2, and Equation 4.48 follows similarly.

We first define fT as the result of the following iteration, i.e. fT = lim, 4 " f .

~ATf

(I-A)f- +Af =(I - A)ATf+ ATf
k

= (I- AfT"- + ATf =j(1 - A) ATf
n=O

(4.49)

(4.50)

(4.51)

To derive Ilf - fJT12 for f E L', we first note that the error incurred using a fi-2'g

nite number of spikes is the same as the error in the adjoint space, i.e. Hlf - fT12 =

l f - En=O(I - A)n ATf 11 2 = Hf - J=0(1 - A*)n A*H 2

We can thus work exclusively with the adjoint operators A*f and A* f in order to derive
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If - fT12 [12].

00 00

||f - M2 I - A*)nl(A*f-A*f) < Z 1(' -A*)nl(A*f- Af)11 2

n=O 2 n=O

< :( 7()n+1 *f
n=O

1 f(si)I~tit+1
1 - 'l i

Si:|ti)>T

1

7r
f# R\[-TT 2

Ar f||2 = 1 _1 m f(si)11tit 1 *
7 i:Itil>T

2

using (5.21))

1
fir|

sup (1 +
teR\[-T,T]

< cQ f|1 2 ,0 (1 + T)-O
7r

(using (5.22))

where c5,op depends only on 6, Q and 3.

Now, only using a finite number of iterations, we have the following error bound.

K

- A*)nlA*f - (I-
n=O

A*)nA* f
2

K 00

('I-A*)nl(A*f - A*f) + (I- A*)nlA*f
n=O 2 n=K+1 2

1 - I fH(K++
C6 cQ~,p Pr |f 112,0(1 + T)-

6Q) K+1
+ -

+ 6Q3

'HIf 1121--1i-

We now construct ft(t) using spikes {ti}.i:tI<t at every time t. Thus, at every time t, we

have a causal decoder that uses all spikes that have already occurred. We bound the error

at every time t as the following.

f (t) - ft(t) sup If (T) - ft (T) I f - ft112 < C " 1f11 2, (1 + t)-'3
rER -

(4.58)
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sincQ

2

(4.52)

(4.53)

f#[R\[_TT](1 + tD)(1 + It)-'3 2

(4.54)

|Hf - K|2

00

= ('
n=O

(4.55)

(4.56)

(4.57)



Here, we used the fact that ||XII,, < WIX|12 VX E L2 for the first inequality, and Equation

4.54 for the second inequality. The proof for Equation 4.42 follows similarly from Equation

4.57.

We note that as a new spike tji 1 arrives, we can calculate the new estimate as a function of

the old estimate due to the following.

f, = At f = Atif + /i++ti
f(-)dT) sinc(t - si) = ft + g

We can carry the term gy 1 forward, and track its effect on future iterations to calculate

k as a function of g-, to obtain Equation 4.13.

Corollary 4. Bounded L2 norm: The causal decoder provided in Theorem 3, with the same

assumptions and in the case of K -- oc, constructs a signal ft(t) s.t. the L2 norm of the

error ||f - Jt|2 = fo f(t) - ft(t)|2dt is bounded: ||f - ft12 c/V ||_||2, where

c is the same constant as in Theorem 3.

Proof

If(t) - ft(t)|2dt

Here, the first inequality

same.

< 00 ( C2', (1f + t)- 20dt = 23 |ff|2,c10in I)12 6Q1- - 12,

is due to Theorem 3, and all the constants are as defined in the

FD

Corollary 5. Real-Time Reconstruction after sampling with a multiplicative function: Let

the assumptions in Corollary 3 hold. Iff e and we receive samples of f (r)h(T)dT,

we can construct a causal real-time decoder that reconstructs a function ft(t) such that

If (M) - ft M)I < C6,QO (I + E) If 11f|2,0(1 + t)-3 (4.60)
1 - (-Tr + E (1I + -;-) )

where c,,Q is the same as defined in Theorem 3, and c is the same as defined in Corollary

3.
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Proof We use the same arguments as in the proof of Theorem 3, with the operator Ah as

in Corollary 3. Let c, = + e (1 + ')). Continuing from the equivalent of Equation

4.52, we have the following.

Ilf -fTH2 < f (si)h[t,t+]
i:jtjf>T 

2

1 C, f ( I iti + f (s) )(I -, )1,2
i:Iti\>T 2 i \ti|>T 2

< C6,Q,3 f 12,0(1 + T)-3 + 1 E
1 - Ci 1 - Cidt> tt+

J i+1< c6,o |f 112,3(1 + T)-3 + E I

< C', '(1 + E)| f112,0(1 + T)-1
T - co

The rest of the proof follows as in Theorem 3.

If(s,)1 2 |1 - h(r) 2d-r

I f (s,) 2dr (using (4.11))
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Chapter 5

Analyzing the Stability of the Real-Time

Decoder in Feedback

5.1 Introduction

Understanding movement generation as an optimal feedback control problem is a well

known concept in literature [74, 105, 101]. In these formulations, the output is usually the

movement or the muscle activity, and the plant and the controller are relevant structures

of the brain. However, one usually sidesteps the binary nature of neuronal encoding and

treats the structures of the brain as continuous input - continuous output plants in closed

loop. The binary encoding and perfect decoding of neurons has, in fact, been studied in

open loop using existing neuron models as encoders [61, 65, 63], with the caveat that the

decoder needs access to all of the spikes. In practical applications, we need to understand

the effect of finite time binary neuronal encoding and causal decoding on the closed loop

feedback control formulation. Previous work on communication in feedback with finite

measurements includes [90, 91].

Here, we employ an explicit neuronal model to encode the continuous time movement

signal into spikes, then study the effect of decoding a finite number of spikes on the feed-

back loop model as shown in Figure 5-1. Employing a dynamic model instead of a non-

parametric model for neuronal encoding has the advantage that the decoder is able to obtain
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Decoder Plant Z

feebac sna (u)

Figure 5-1: A schematic of the human motor system. The reference movement signal
r provides input to a feedback ioop in which the error signal drives a neuronal encoder.
The spikes from the encodeir directly drive the muscle model, which is decoupled in our
analysis into a decoder and a plant P. The movement signal produced by the muscle
model provides feedback to the reference signal, via the visual and proprioceptive feedback
system (modeled by K). Our aim is 'to i) provide conditions for the well-posedness and
stability of the feedback loop and ii) provide a reconstruction of r given a finite number of
spikes {ti}.

an approximate reconstruction of the signal with each added sample.

We limit ourselves to reference signals in the bandlimited 122 space. The motor neurons,

here modeled as integrate and fire (IAF) neurons [54, 20], act as encoders of the error signal

between the reference movement and the feedback. The resulting spikes are transformed

into a smooth movement signal by the muscles. The movement information is fed back

to the motor neurons via visual and proprioceptive feedback (here modeled by K). We

consider that the muscle model can be decoupled into a decoder and a continuous time plant

(P) in series, as we show in Figure 5-1. We use an IAF Decoder as presented in [61, 67] in

the context of a neural decoder, although first presented in [26] as a reconstruction operator

in the context of sampling theory. This decoder, given all spikes, perfectly reconstructs a

bandlimited signal that has been fed into an IAF Encoder (see Equation (4.5)) under certain

density conditions.

The main goals of this work are: i) to analyze the effect of a finite time encoder on

the closed loop formulation and ii) to derive the conditions under which it is possible to
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{tj}j:Iti<; T
> IAF Encoder ft >:t1_ Decoder f

Figure 5-2: IAF Encoder and Decoder in open loop with a finite number of spikes.

reconstruct the reference signal r if we record a finite number of spikes {ti} as in Figure

5-1. To address these questions, we first show that the reconstruction error while decoding

a finite number of spikes is bounded in open loop for bandlimited signals. We use these

results to provide conditions on P and K such that the closed loop is well-posed and stable.

Finally, we provide a method to reconstruct an approximation of the reference signal given

a finite number of spikes {ti} in the closed loop. Moreover, we show that if we record all

spikes {t2 } such that t, E [-T, T], the reconstruction error decreases as O(T-0) if r E L',

(see Equation (4.2)).

The mathematical notation in Chapter 4 will be relevant in this chapter again. In Section

5.3, we consider the effect of a finite number of samples on the open loop reconstruction

error for bandlimited signals. In Section 5.4, we first provide conditions for the well-

posedness and stability of the feedback loop. We then provide a reconstruction method

for the reference signal r given a finite number of spikes {ti } from the output of the IAF

Encoder, and show the decay of the reconstruction error with added spikes. In Section 5.5,

we show the results of numerical simulations using the reconstruction algorithm developed

in this paper. We finally conclude this chapter with possible future directions in Section

5.6.

5.2 Perfect Reconstruction

We wish to reconstruct a bandlimited signal f E L' while receiving all spike times

{ti}Ez, and with knowledge of the corresponding integrals {fti+1 f (T)dT . In Chapter

4, we provided a summary of the theorem (Theorem 2), proof and algorithm for perfect

reconstruction first presented in [26], since it will play a role in the subsequent analyses for

an approximate reconstruction of the signal given a finite number of samples.
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5.3 Reconstruction using a finite number of spikes

Let us now consider the case where we only have knowledge of a finite subset of the

spikes from a bandlimited signal; let all spikes {ti} such that Itil < T (denoted {ti}.i:tiI T)

be accessible to the decoder. We want to find the error incurred by using these spikes for

reconstruction, i.e. we want to find an upper bound on IIf - fT112, where the reconstructed

function is denoted fT (see Figure 5-2).

Theorem 4. Reconstruction using a finite number of consecutive samples: Given an in-

complete sampling set {ti}j:itjjI and the corresponding samples f (T)dT off EE

s.t. SUpj:I.ij<T(tj+1-tj) = 6for some 6 < ,we can construct fT s.t. |f -T2 c6,n ffl2,

where cSQ depends only on the values of Q and 6.

Proof Provided in Section 5.7.

Note that the construction of ATf only uses the timing information of the spikes

{tj}i:ItjjIT and the integral thresholds fi+1f (r)d}.
t Ii:|tj|GT'

5.4 Encoder and Decoder in Closed Loop

We now analyze the closed loop formulation of the encoder. We consider that the

muscle model can be decoupled into the IAF Decoder of the form (5.25), and a plant P.

The movement information z is fed back via visual and proprioceptive feedback modeled

by the feedback system K, as in Figure 5-1. We first want to determine the conditions

under which the feedback loop is well-posed and stable. Next, given samples of the error

signal {tj}, we would like to reconstruct the reference signal r.

We first describe the causal implementation of the IAF decoder. First note that at every

time t, the decoder internally calculates an estimate of the signal using all the spikes till

time t, i.e. the decoder internally has an estimate of the entire signal f given all spikes up

till time t, which is ft(t). However, at every time t, the decoder only outputs the value of

this estimate at time t; we call this signal ft(t), the output of the causal decoder, defined as
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K

Figure 5-3: Representation of the IAF Encoder and Decoder as a multiplicative uncertainty
(1 + A) acting on the plant P.

the following.

(t= - A)Atff (t) (5.1)
\n=O/

Note that ft(t) = ft(t) for every time t E R.

Although ft(t) is bandlimited, ft(t) is not necessarily bandlimited, and since this signal is

fed back (Figure 5-3), f is not necessarily bandlimited. Thus, we first calculate the error in

decoding incurred due to a non-bandlimited f, for every time t. We denote fQ = sincQ * f.

|f(t) - ft(t)| (5.2)

< ||f - fP10 (5.3)
00

< f - fZ + fQ - (I - A)"At f
n=O

00 00

+ E(I - A)n AtfQ - J(I - A)n At f (5.4)
n=O n=O

11-00< ||f-fn|| 2 + Th -Z(I -A) At fQ
n=O 2,

00 00

+ (I - A)n AtfQ - (I - A)n Atf (5.5)
n=O n= c

Note that I = III = Oif f = fQ.

I |1f|12, and II < c6,Q|jf 12 via Equation 5.34. We now consider the third term, and we
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have the following error bound for f # fQ.

III 6Q E +(f - fQ)(T)dT (5.6)
7ri ti|I<t ti

1 f t

< Q I(f -fQ) (T)dT
0

<

Thus, If(t) - ft (t) \ t- (1+cf)+-4) if 12-

5.4.1 Well-posedness and Stability of the Feedback Loop

We first introduce the notation used in this section. We denote an operator M :22 -+

L2 acting on a signal f E L2 as Mf. In full generality, M is allowed to be nonlinear

and time varying. Note that if the operator in question is time invariant, we can express

the action of the operator in terms of convolution in the time domain or multiplication in

the Fourier domain. We define the L2-Induced norm of M as I|M12-ind = ||Mloc =

sup IIMX . This is a standard abuse of notation utilized in control theory, and for more

details, we refer the reader to [117, 21].

In order to determine well-posedness and stability of the feedback loop despite the

approximate reconstruction of the error signal, we first express the feedback loop as in

Figure 5-3, where A is an operator acting on f E 12, defined as the following.

( f)(t) = f (t) - ft (t) (5.7)

=( (I - A)n(Af - Atf) (t) (5.8)
\n=O
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Next, we calculate the truncated L 2 norm incurred by the A operator.

T  2(A 12dt) (5.9)

( If(t) - ft(t)I2dt) (5.10)

T\ 2

]J - ft(t)1 2dt) (5.11)

< T(I + c6,Q + 1 11f )1 f|2 dt 2(5.12)

)11

= (1 + c6,Q)2T + 4(1 + c6,Q)T .5  T2 2

3 (1 - !"') 2 (1 -))
-1f 112 (5.13)

We define y = (1+ c6,Q)2 + _ + 1 2 . We now have two upper bounds

depending on the value of T:

|I(Af)2[O,T]12 <_ 711f 12 T < 1 (5.14)
yTjf 112 T > 1

The representation of the IAF Encoder and Decoder as f + Af allows us to treat the

effect of the truncated reconstruction as an uncertainty for the plant P, and thus provide

conditions on stability using concepts in robust control.

Theorem 5. Let K be stabilizing for the nominal plant P, i.e., by assumption, K and

(1 + KP)-1 are stable. The closed loop in Figure 5-3 with A as in (5.8) is bounded-input

bounded-output (BIBO) stable if

||1(I + KP)- KP [ I1-2S] 00< (5.15

where S(s) = in the Laplace domain.S

Proof. Provided in Section 5.7. El
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{ tili}jtj I<T rT
> Causal Decoder P K ZEO 0 (I - A)"AT +r

Decoder

Figure 5-4: A schematic for the approximate reconstruction of r(t) given {tj}i:jijI .

5.4.2 Reconstruction of the Reference Signal in Closed Loop

By observing the spikes {ti}ji:jtj<T, we can reconstruct an approximation of the refer-

ence signal r E Lo driving the feedback loop.

Proposition 1. Reconstruction of the reference signal in feedback: Given {ti }ti IT in the

feedback loop shown in Figure 5-1, and with P and K stable, we can reconstruct 'T as

shown in Figure 5-4 for r E Lo, with ||r - fT 1 2 < c6,o|r 1 2, with c6,o as in Theorem 4.

Moreover if r E LQ2, |1r - fT112 = O(T-3).

Proof Provided in Section 5.7. E

If we record a finite number of spikes from the encoder in closed loop, we can have

an approximate reconstruction of the reference movement signal, where the approximation

error decreases polynomially with the amount of time for which the spikes are recorded.

5.5 Numerical Simulations

In general, the constants c6,0 and c6,Q,, are not easy to calculate. Here, we provide a

method to calculate an upper bound on c6,Q for a given pair {6, Q}. We want to construct

a function p E L, such that P(w) = 1 Vw E [-Q, Q]. One such function is defined by

PC(t) = (cos(Qt) -cos((Q+7r)t)), whose Fourier transform is given by the following.

{Q+7T-< I

j3c(w) = _-' Q < |w < Q + (5.16)

0 o.w.
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The maximum value of pc(t) is given by p,x (Q + ) , and the envelope to 1p.(t)I

is given by &c(t) = min 322 Ip ';x). Since this envelope is monotonically decreasing,

we can calculate the following upper bound on infI lp#| 1.

inf |Hp#H1 < |1p*#11 < pelli + 26p5ax (5.17)
p

This gives us an upper bound on c6,0; c6,Q < 11_ . For example, co. 2 ,4  10.45.

We simulate the feedback loop shown in Figure 5-1 for three different reference signals

{DID=2,3,4 defined as

,,D 5 D

TD(t Ck (sinc (2(t - dk))D (5.18)

where Ck's and dk's were picked uniformly at random from the interval [0, 5] and [0, 3]

respectively. Note that TD E c , where QD = 2D, and /D = D - 1. We simulated

signals for t E [0, 20] with a stepsize of 10-4. All simulations were performed using MAT-

LAB R2013a. The integrals {qj} were usually equal to 0.1, but were chosen more carefully

at low values of the signal in order to ensure the density condition. For each simulation

experiment, the decoder estimated a signal ft, but the output of the causal decoder was

called ft(t). We considered the plant P(s) = (s+2) and the feedback system a simple gain

K(s) = k. For the values of {6, Q} = {0.2, 4}, the estimated value for -Y is 12.29. The

sufficient condition for stability we derived in Theorem 5 is met with k = 0.15.

In Figure 5-5, we show the simulation for the aforementioned system and signals. We

also tested the system for higher values of 6 and k, for which the feedback was numerically

observed to be stable for the signals we considered. We show the results in Figure 5-5.

We can see that the reconstruction is better for higher values of D, since the signal decays

faster. The reconstruction is seen to be slightly better for low values of k. For all values of

T and D, we noticed a good local reconstruction, i.e. for Itl < T, even for low values of

T.
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Figure 5-5: Reconstruction using the method described in Section 5.4.2, while varying
T, for D = 2 (left column), D = 3 (middle column), and D = 4 (right column). The
parameters are as follows: {k = 0.15, 6 < 0.2} for the top row, {k = 2, 6 s.t. < 1}
for the middle and the bottom rows. The IAF Decoder has access to all spikes {tI} s.t.
tj E [-T, T]. D controls the decay of the signal, and is defined in the text.
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5.6 Conclusions and Future Work

In this chapter, we analyze the effect of a finite time IAF encoding model in a closed

loop formulation, and provided an algorithm for the reconstruction of the reference signal

given a finite subset of the samples from the IAF Encoder.

We first analyze the effect of a finite number of spikes {ti j:i}IT on the decoding

process, with the encoder and decoder in open loop as in Figure 5-2. We show that if

fEL , then the L2 error between the reconstruction fT and f is bounded. Moreover, we

can show that if f c L', then the reconstruction error Hf - fT 2, decreases polynomially

with T (using concepts presented in Proposition 1).

Next, we examine the effect of the encoder and the causal implementation of the decoder

on the feedback loop. We provide conditions on the plant P and feedback system K for the

well-posedness and stability of the closed loop despite the approximate reconstruction of

the encoded signal f. We also show that, if r E 2 and I P, K } satisfy certain conditions,

then it is possible to reconstruct an approximation of r given all spikes {ti} in [-T, T] such

that the L2 reconstruction error decreases polynomially with T, i.e. as O(T-).

Throughout this paper, we had a density condition on the spikes, i.e. sup(ti+i - ti) =

for some 6 < n. However, our sampling is directly dependent on the integral thresholds

qj's, whereas the sampling times ti's and thus 6 depend nontrivially on these thresholds.

It is conceivable to a priori initialize a set of qj's such that the density condition holds,

given additional conditions on r, P and K. Further work is needed to identify such a set

of conditions. Moreover, even if the density condition is not met in some cases, we have

seen the algorithm to be robust to 'missing spikes' through numerical experiments, and in

the future we would like to identify the exact effect of this phenomenon on the stability of

the feedback loop as well as on the reconstruction error.

The encoder here is based on the IAF neuron model, which we showed in Chapter 2

to emulate the firing of motor neurons in a feedback setup. Although the setup in Chapter

2 showed K to be in the forward loop, the results discussed here can easily be extended

to that setup. Further experiments would need to be performed in order to validate the

theory discussed in this chapter. Specifically, with a similar experimental paradigm as
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discussed in the conclusion of Chapter 3, we can first apply system identification methods

to find K and q, and we can then use recorded motor neuron spikes and directly drive the

real-time decoder and prosthetic device with desired movement signals as specified in the

experiment. Instead of just showing the target to be reached, one can specify the trajectory

that needs to be followed as well, to have more complicated shapes for r. We can then

analyze the time taken to reconstruct r from the spikes, as a function of Q, in order to

validate this theory.

The stable implementation of a binary encoder and a causal decoder in a feedback

system gives us some insight into a possible method of neuronal decoding in the human

body, with the systems P and K being tunable in order to reflect more realistic models

of the muscles and the visual and proprioceptive systems, respectively. Moreover, the

accurate reconstruction of the driving signal from neuronal spikes leads us to believe that

the concepts developed in this paper may be used to drive further research in prosthetic

control via neuronal decoding.

5.7 Proofs for Chapter 5

Theorem 4. Reconstruction using a finite number of consecutive samples: Given an

incomplete sampling set {ti}j:Itji s:and the corresponding samples f>+ 1 f (T )dr of f E L

s.t. SUP:1t.i<T(ti+1-ti) = 6for some 6 < 2, we can construct f s.t. If-TH2 c6,n f f 2,

where c6,Q depends only on the values of Q and 6.

Proof We first define a local maximum function on f [25]:

f#(t) = sup Jf(t+u)J (5.19)

Note the following two properties of f# (t) for f E Ci, with a function p(t) such that

p(w) = 1 forw E [-Q, Q], and p E L1.

(si)1[t,t ](t)J < f#(t) pointwise (5.20)
(i= (
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As a direct consequence of equation (5.21), we obtain the following bound on 11f#|2. We

denote inf p# 1 by d6,Q.

lf#|2 < inf |p#1 fH12:= d6,3||f|12

We define two operators adjoint to each other for f C L2.

i:ltilT

f (r)dr sincQ(t - si) (5.23)

(5.24)-E~ f(s)(sinc * 1l[t,,t,+1])
i:Iti<T

We consider that after the first approximation ATf with a finite number of spikes, we

can construct {ti}i:Itji>T such that SUPj:jt j>T(ti+1 - ti) is less than the required 6. Thus we

can construct an operator A as long as it is not acting directly on f. We define fT as:

fT= I - Af
n=O

(5.25)

To derive IIf - fT 112 for f E L', we first note that the error incurred using a finite

number of spikes is the same as the error in the adjoint space, i.e.

||f - f 12 f

= f --

00

(I - A)n ATf
n=O 2

=(I
n=0

(5.26)

(5.27)- A*)"lA* f
2

We can thus work exclusively with the adjoint operators A*f and A* f in order to derive

f - M12. The following calculation is similar to that for the truncation error provided in

101

(5.22)

ATf

A* f



[12].

00

If - IM2 = J(I - A*)nl(A*f - A*f) (5.28)
n=O 2

00

< 3 (1 - A*)nl(A*f - Alf)1 2  (5.29)
n=0

A - Arf 2  (5.30)
n=0

= f(SO)[ti't]l * sincQ (5.31)
7 i: ti>T 2

1 1 Si)[tit 1 (5.32)
7r i:ltil>T 2

1
< _Qf *a IR\-,T]2 (5.33)

2 (5.34)

We have |f - fTr2 c,If 112, where c6,Q= only depends on 6 and Q. LI

Theorem 5. Let K be stabilizing for the nominal plant P, i.e., by assumption, K and

(1 + KP)- 1 are stable. The closed loop in Figure 5-3 with A as in (5.8) is bounded-input

bounded-output (BIBO) stable if

1
(I + KP) -1 KP [I 52S] 00< (5.35)

where S(s) = in the Laplace domain.

Proof From Equation (5.14), we see the upper bound of I(Af)I[0,T] 12 is different for the

two cases T < 1 and T > 1. These two cases need to be dealt with separately, and for this

reason, we introduce a separate uncertainty operator for each case, Ai and X 2 respectively,

with Z = [A ]. We define the two arbitrary operators with the following constraint; for

i E {1, 2},A : 2 -+ L2 such that |IA|xI|2 7i|xI| 2Vx E 12, or equivalently IAI < -y.

We consider the larger class of uncertainties [1 VS]A, and show that this satisfies the
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same conditions as A. Thus, if stability is achieved for [1 v/2S]A, it will be achieved for

" Case 1: T < 1 We have |j(Af)I[o,T]j2 lV(if)l 2 < Y1f 112. Thus, Ai satisfies

the same constraints as A for T < 1.

" Case 2: T > 1 Denote f 2 (t) = (A2 f)(t), and u(t) a unit step, i.e. the impulse re-

sponse of S.

|j(SA2f)1[0,T] 112 (5.36)

jT2
= (f2 * U)(t)1 2 dt) (5.37)

< (jT f 2 (Tr)u(t - T)d dt 2 (5.38)
J0

< 1 f2 (7-)1 2dr f 'T u(t - r )12dtdT (5.39)

0 0O
(j' lf2 (r) 2 dTj(T - T)u(T - Tr)dTr) 2 (.0

< TK1f|12 (5.41)

Thus, V/2SA 2 satisfies the same constraints as A for T > 1.

We have shown that [1 v/2S]A adequately captures the uncertainty in A. We now express

constraints on K and P such that the feedback loop is stable for the uncertainty set A s.t.

oc = []i I 0< V2. The condition in Equation (5.35) follows from the small

gain theorem [117, 21], with the plant having a multiplicative uncertainty in the form of

(1+ [1 x/2S]A). Note that the uncertainty does not need to be linear or time invariant for

the small gain theorem to apply.

Here, we provide a brief exposition of the reason that the condition in Equation (5.35) is

sufficient for BIBO stability. For more details, refer to [117, 21]. Since we have obtained

an equivalent uncertainty set A, we will write our signals as a function of this operator. We
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first write r as a function of f (Figure 5-3).

r = f + (KP(1 + [1 v/2S]A))f (5.42)

= (1 + KP)(1 + (1 + KP)-KP[1 x/2S]A)f (5.43)

(1 +KP)-1 is stable by assumption. For (1+ (1 +KP)-1 KP[i y'2S]A) to be invertible,

we need 1|(1+ KP)- 1KP[i V'_S]An|| < 1. We know that 11A 5 x , and using the

assumption in Equation (5.35), we have that

(1 + KP) -KP[1 V'S] Afl (5.44)

< 1(1 + KP)-KP[1 v/2S]jjoco (5.45)

< 1 5(5.46)

Thus, the interconnection is BIBO stable. D

Proposition 1. Reconstruction of the reference signal in feedback: Given {ti}i:ItiI< in the

feedback loop shown in Figure 5-1, and with P and K stable, we can reconstruct iT as

shown in Figure 5-4 for r E LI, with |jr - fT1|2 c6,0||r||2, with c6,Q as in Theorem 4.

Moreover, if r E 2, ||r - T1|2 = O(T-3).

Proof Firstly, we can construct fT using the samples as in (5.25). Next, we note the

following relation due to the feedback loop.

f(t) = (I - A)n AT f (t) (5.47)
(n=O

= ( (I - A)nAT(r - KPft) (t) (5.48)
n=0

Note that we can construct ft(t) using the spikes {t} :It,I<t for t E [0, T]. Since the op-

erators A and AT are additive for a given sampling set {ti}, i.e. AT(f + g) = ATf +

ATg V(f, g) E L 2 , we can construct fT = E (I - A)rATr from our spikes in the

following way, also shown in Figure 5-4. Note that we need P and K to be stable for fT to
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be bounded.

T ( IT + - A)n ATKPfjt (t) (5.49)

Similarly to equation (5.34), this approximation of r is such that

i - VT 2 CSQ||r|l2 (5.50)

We will now show that, if r(t) is in the polynomially weighted L2 space, i.e. r c L2,

as defined in (4.2), then our reconstruction error decreases polynomially with added spikes.

The following calculation is similar to that provided in [12].

Firstly, similar to the arguments in the proof of Theorem 4, we obtain the following

bound on the 2,3 norm of the local maximum function (5.19), using a function p,(t) such

that P,3(w) = 1 for w E [-Q, Q], and p, E L1,a, for some a > /.

|1r* |2, < inf |jpI#H1i,,||r||2,0 (5.51)
Pa

We denote inf ,,P 11P. I,a for some a ;> 0 by d6,Q,- .

We can now calculate the approximation error of r c L". Note that we obtain the first

inequality as in (5.33).

r- fT2 (5.52)
1

< 6 r r#IR\[_T,T] 2 (5.53)
7r

r# 1R\[_T,T](1 + ItI)yL+ - Itl)- 2 (5.54)
7r

1 r# SUP (I + 2t,)-, (5.55)
7 t E R\[-T,T]

< 6 rI23 (1 + T)-4 (5.56)

Let 6, be denoted by csQ, which only depends on 6, Q and 3. Thus, for r E 1Q the

L2 error decreases as O(T- 3 ) as T increases, i.e. as we have more spikes. D
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Chapter 6

Conclusion and Future Work

6.1 Conclusions

This thesis focuses on the regime of fast movements in sensorimotor control. Specifi-

cally, we accomplished two goals:

1. We built a model of movement generation that is able to reproduce properties of

spiking motor neurons, as well as recreate typical movement trajectories for simple

movements. Moreover, this model encompasses the regime of fast movements, i.e.

we capture the phenomena that occurs during the tracking of periodic fast move-

ments, specifically, overshoot, undershoot and skipping of cycles.

2. In the BMI context, we designed a decoder for an integrate-and-fire encoding neuron

model that provides a real-time estimate of the input signal given the spike times,

and importantly, we can show that the reconstructiQn error decreases with time. We

then provided conditions on the sensorimotor feedback system such that this real-

time decoder is stable during reconstruction. We also provided means to reconstruct

the reference signal from the spike times while in feedback.

6.1.1 Cutoff Frequency for the Real-Time Decoder

We can ask the question whether the real-time decoder provided in Chapter 4 also fol-

lows the concepts in Chapter 3, i.e. whether there exists a cutoff frequency w, such that
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Figure 6-1: A. Cutoff frequency w, as a function of the threshold parameter q for the Real-
Time Decoder as in Chapter 4, with B = 2; B. Results for q = 0.1, w = 0.5 < w,; C.
Results for q = 0.3, w = 1.05 > w. Here, we see evidence of undesirable phenomena
as in Chapter 2, i.e., overshoot (red circle), undershoot (orange circle), and skipped cycles
(blue circles).

we may see subharmonic oscillations for movements faster than this frequency. This is not

evident since we showed all results in Chapter 3 for linear 'decoders', i.e. LTI systems that

produce the same response at each spike. Note that linear decoders including firing rate

decoders also fall in this regime, with the analyses following exactly as in Chapter 3. Here,

we show in simulation that similar concepts hold for the real-time decoder, which produces

a more accurate estimate of the encoding signal after every spike, i.e., a different response

at every spike (time varying system). Although we are not able to show whether subhar-

monic oscillations as defined in Chapter 3 exist or not, we are able to show in simulation

that as the frequency of oscillation increases, the same undesirable phenomena discussed in

Chapter 2 exist, i.e., overshoot, undershoot, and skipped cycles. There is a cutoff frequency

past which we see skipped cycles, and we show in Figure 6-1A this cutoff frequency w, as

a function of the spiking threshold q, with model parameters as in Chapter 2. We also show

in Figure 6-1B evidence of skipped cycles at a high frequency w > w,. Intuitively, as long
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as the spiking signal is being low-pass filtered, even if the decoder is a time varying system,

it should follow similar concepts as in Chapter 3, though proving this rigorously is beyond

the scope of this thesis. Thus, the concept of a cutoff frequency is a general one - with

decoders and prosthetic devices also falling in this paradigm.

6.1.2 Discussion on Simplified Models

Throughout this thesis, we utilize the power of simplified abstract models in order to

derive the theoretical results. The utility in our case is twofold: (a) to observe and prove the

existence of phenomena that may be much more difficult to prove in a more complicated

nonlinear model, and (b) to design controllers for stabilization of dynamics incurred due to

nonlinearities. In fact, in the world of control systems, one usually uses simple low-order

models in order to design controllers; one famous example is the design of a controller to

stabilize the dynamics of an airplane; this uses just a second-order model of the airplane.

Our goal as theoreticians is to simplify the dynamics to the 'correct' degree that leads us to

insights, without compromising on the actual effects seen. One of the important next steps

is to validate the simplified model, or be able to have a path going forward to show that the

results hold in face of more complex systems; and this is discussed below.

Using an IAF model for neural activity. Although the IAF model provides a clear

and computable cutoff frequency above which we see undesirable phenomena, do the

simplifications outweigh the utility? Would it be reasonable to demand a fit to this

kind of model for motor neuron activity? Moreover- how do we go from a single neu-

ron model to a network of motor neurons all innervating the same muscle? In fact, the

threshold nonlinearity represented by the IAF may be a manifestation of a systems-

level phenomenon. One of the pieces of evidence lies in the reproduction of observed

undesirable phenomena (skipping of cycles, undershoot, overshoot) past the cutoff

frequency, while another piece of evidence is the successful modeling of movements

using very similar threshold nonlinearities [28, 71, 72, 77, 81, 111, 37, 24]. It is,

however, entirely possible that these phenomena arise from a different nonlinearity,

and further experimental studies need to be performed in order to validate this model.
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Some experimental and algorithmic ideas in order to test this model are detailed in

the next section.

* Using a second-order model for the musculoskeletal system. It is important to

note that this model, although discussed and motivated in detail in Chapter 2, is still

a simplified model of the musculoskeletal system. It is only valid in certain regimes,

and various highly sophisticated models of the musculoskeletal dynamics have been

utilized in the past in different studies [54, 45, 116]. Our results in Chapters 3-5

hold for any low-pass LTI model for musculoskeletal dynamics; they hold for higher

order models than the one we considered in Chapter 2. However, many of the muscle

models that accurately describe musculoskeletal activity across several regimes are

either time varying or nonlinear in nature [45, 59, 116]. These models in particular

would not fall in the scope of this thesis, but in general, it is possible to encompass

bounded nonlinearities in an uncertainty block as described below.

* Using deterministic models for neural and musculoskeletal activity. Although the

theory as well as the algorithms presented in this thesis have concerned purely deter-

ministic models for both neural activity and musculoskeletal system, we believe that

the addition of stochastic models should not change the results greatly, depending on

the type and amplitude of noise. One way to think about noise in threshold models is

to express the thresholds themselves as some baseline plus additive noise, i.e. qi + fi,

with ci arising from a uniform or Gaussian distribution with some amplitude o.

In the first part of this thesis, the concept of a cutoff frequency past which we may see

skipped cycles, would still hold in the face of stochastic threshold model for neural

activity. These skipped cycles may be transitory in the face of stochastic thresholds,

but the concept of the cutoff frequency would still hold, though the value would now

depend on the level of noise in the thresholds, i.e. the parameter a. If the noise is

modeled as additive noise on the signal, the same concepts apply. In fact, it can be

shown that these two modalities are equivalent [66]. In the second part of this thesis,

the stability of the feedback loop can be ensured in the face of stochastic models,

using an uncertainty block as described below.
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Figure 6-2: The utilization of uncertainty blocks A, for robust control to subsume unmod-
eled nonlinearities, stochasticity or both. (A) The design of a controller K in the face of
an unstructured uncertainty A, and (B) the analysis of multiple uncertainties Aj on the
nominal system G.

An uncertainty block can be used to encompass uncertainty due to unmodeled nonlinear

behavior, stochasticity in the system, or both. A detailed expose of corresponding methods

are provided in [117], and we provide a brief overview here. In Section 3.2, an outline of

linear fractional transformations (LFT) of systems is provided, also seen in Figure 6-2A.

The system G contains known dynamics of the system, while uncertainty or nonlinearities

in the system may be subsumed by the system into an unstructured block A. As long as

A can be bounded, i.e. ||All 0 < y, we can analyze the system to prove stability, and

moreover, design a controller K in order to stabilize as well as guide the dynamics of the

closed loop system.

This provides us a framework in which to deal with unmodeled dynamics. In fact, this

procedure is used to prove the results in Chapter 5 of this thesis. Moreover, with additional

uncertainty or nonlinear blocks such as in Figure 6-2B, and with knowledge of bounds on

each of them, i.e. ||Ajj, < yi, the closed loop is only stable if the structured singular

value p of G satisfies some bounds as well (more details in [117]). Thus, it is possible to

add details to the models discussed in this thesis, as well as incorporate additional bounded

nonlinearities and uncertainties, using concepts from robust control theory.
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6.2 Future Work

This thesis presents ideas that are motivated by experimental observations, and rooted

in theoretical neuroscience as well as control theory. There are a number of experimen-

tal studies that burgeon out of this thesis. I describe some experimental and algorithmic

paradigms next. In brief, we would like to record data from relevant motor structures in the

brain as well as the neurons directly driving the musculoskeletal system, while the subject

performs different types of tasks. Models can be built for the neural activity as well as the

musculoskeletal dynamics using algorithms detailed here, and the concepts presented in

this thesis can be verified using this experimental data. In general, more experiments need

to be designed in order to accurately characterize the fast movement regime, especially in

the context of feedback control.

It is extremely important, and the next natural step in the course of this study, to an-

alyze the data sources that we would need to validate the theory, as well as the methods

required to fit the relevant models. For this purpose, we describe a summary of an exam-

ple experiment to conduct, as well as procedures to fit the models described in Chapters 2

and 3. We will also discuss fitting and analysis of network-based models currently used to

characterize neural activity.

Moreover, there currently do not exist many experimental studies that quantitatively

analyze the movement properties in the 'fast' movement regime, i.e. for high frequency

periodic movements where subharmonic oscillations may occur, or at least where subjects

start skipping cycles. We will detail one such primate experiment that may be carried out,

though many such experiments are conceivable.

6.2.1 Desired Experimental Data for Model Fitting

We can use data from subjects performing reaching tasks in order to fit the relevant

models. The desired movements would be simple in nature, only using single joints at

a time, in order to not have undue external influences. We would record spiking data

from the alpha motor neurons during these experiments; this spiking data can either be

directly recorded using extracellular electrodes in the muscles, or via the deconvolution of
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electromyographic (EMG) signals of the relevant muscles [76]. Since model fitting only

needs EMG recordings at the minimum, and is thus noninvasive, this task is amenable for

humans as well as primates. Any neural recordings made would be an added bonus that

would benefit the model fitting procedure.

Intramuscular EMG activity can be recorded using established techniques [94, 88, 97,

19], each subject can be implanted with bipolar EMG electrodes in multiple upper extrem-

ity muscles that act across the shoulder and/or elbow for a reaching task.

A standard setup for the task consists of a screen with a central target and eight pe-

ripheral dots. The subject controls the cursor. A green light comes on in the center when

the task begins, and when a peripheral dot lights up green, the subject reaches towards

that target and performs the relevant task. Only one peripheral dot would be lit at any

one time. With timing information also included in the task, we can control how fast we

would like the subject to move. Different tasks that would be useful for our purposes are

(1) a center-out reaching task from a central location to a peripheral target, (2) one smooth

there-and-back movement from the center to a peripheral target and back to the center, and

(3) a back-and-forth movement consisting of reaching from the center to a peripheral target

multiple times in a row. The desired movements in these cases can be modeled as (1) a step

signal, (2) an impulse signal, and (3) a sinusoidal signal. All three of these cases and the

expected responses are also discussed in Chapter 2. These desired movements would be

r(t), while the actual movement by the cursor would be z(t). During the task, spike trains

from alpha motor neurons would be recorded (either directly or via EMG).

In case the reference signal r(t) is not directly provided in given experimental data, it

can be estimated using the starting and ending points and the total time taken to get there.

To examine the bottlenecks in information transfer in the sensorimotor control pathway, it is

also important to record neural activity simultaneously with the experiments. The recorded

neural and EMG activity would allow us to build the models discussed in Chapter 2, with

example algorithms provided below, and the cutoff frequency can then be calculated using

the relevant parameters as in Chapter 3. In order to validate the cutoff frequency, we need

an experimental paradigm with an explicit reference signal to be tracked.

113



6.2.2 Offline Closed-Loop System Identification of the Neuronal Model

There exist numerous algorithms to fit a linear dynamical system feeding into a gen-

eralized IAF model as described in Chapter 2. Some are given in [58, 85, 83, 106]. We

describe a procedure here, heavily following ideas in [85]. We assume that we have access

to r(t), z(t), and the alpha motor neuron activity driving the musculoskeletal system, i.e.

the spike train u(t). We assume that all the directionally tuned neurons' spike trains can be

merged to form u(t). In full generality, we assume that we are recording from a stochastic

leaky IAF, i.e. the subthreshold voltage evolves according to the following equation.

dV_
d -aV(t) +] k(r)e(t - T)dr + aNt (6.1)

where Nt is standard Gaussian noise, k(t) is the impulse response of K, and e(t) =

r(t) - Fz(t). When V(t) reaches a threshold q, it emits a spike. This translates to linear

constraints on V(t); we first characterize the evolution of V(t). Between any two spikes

t, and ti+1, i.e. for t E [ti, ti+1), in the absence of noise (- = 0), the membrane voltage

evolves as the following.

V(t) = Voea(t-) + J(k -e)(s)e-a(t-)ds (6.2)

Here, V is the reset voltage after a spike, and (k - e)(s) = foJ k(r)e(s - T)dr. We first

normalize all the above parameters by dividing by q, e.g., fo = L, k = j. We then have

that the normalized V(t), i.e. V (t) = V, emits a spike when it reaches a threshold of 1. It
q

is known that that adding Gaussian noise to f1(t) at each time t induces a Gaussian density

over V(t), since linear dynamics preserve Gaussianity [55]. Following the nomenclature in

[85], we denote this Gaussian density G(V(t) ri, zi, 6), where 0 = {k, fo, F, a, -}, and ri

and z are the known chunks of desired and actual movement, that is ri = r(t), t E [ti, ti+ 1)

and zi - z(t), t E [ti, ti+1). Over the course of any interspike interval t E [ti, ti+11, we

know that V(t) is less than 1 for all times before ti+1, and is equal to or greater than 1 at

114



ti+1. This can be written as the following set of linear constraints on V(t).

C = n {(t) < 1} n {(ti+ 1 ) > 1} (6.3)
ti:t<ti+1

Thus, the likelihood that the neuron first spikes at time ti+1, given that there was a spike at

time ti, is the probability of the event f(t) E Ci, which is given by

/ EC G (V(t) Iri, zi, 0) (6.4)

This is the integral of the Gaussian density G(V(t) Iri, zi, 0) over the set Ci of (unobserved)

voltage paths consistent with the observed spike train data. The likelihood for the entire

spike train is therefore the product of these terms over all observed spikes. The full likeli-

hood can now be written as the following.

L{ri,zi,ti}(0) = v i G((t)ri, zi, 0) (6.5)

where the product, is over all observed spike times {tj} and corresponding desired and

actual movement segments {ri, zi}. As proved in [85], this likelihood has no nonglobal

local extrema in the parameters 6 for any {ri, zi, tj}. Thus, the maximum likelihood es-

timation of 0 can now be performed using computational methods described in detail in

[85]. Moreover, details of model validation techniques based on [9], also described in [85],

are necessary using unobserved data in order to verify that the learnt 6 fits the spiking data

well.

Fitting a model for M is easier since we have the input spike train u(t), as well as the

actual movement output z(t), and we need to fit a linear model to find m, the impulse re-

sponse of M. There are numerous techniques for this; the standard techniques are provided

in [70]. In brief, we can apply linear regression techniques, with regularization if needed.
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6.2.3 Verification of Fundamental Limits on Speed

Once we have an identified model for k, M, and F, with q = 1, we can apply the

analysis as in Chapter 3 in order to find w, as a function of these parameters. We first

investigate whether the estimated fundamental limits on speed are physiologically relevant,

given the identified neural model and the musculoskeletal system. We can then test these

fundamental limits in an experimental procedure in the same subject. This would be done

by using various sinusoidal signals at the increased speeds (Task 3) at frequencies that the

subject cannot track well, and starts skipping cycles. The frequency of the target signal

would be randomized at each subsequent trial, and the sinusoidal target signals would be

interleaved with target signals of other shapes, for ex. ramps and chirps. This is to ensure

that the subject cannot predict the next signal, and thus uses a feedback mechanism to

make the movement. This speed at which tracking breaks down would be compared to the

derived w.

Specifically, at low frequencies, as seen in the data in [14], we expect that the EMG

signal and the alpha motor firing show periodic oscillations with frequency roughly equal

to the frequency w of the reference signal r(t). In this low frequency regime, the primate

is able to accurately track the sinusoidal signal. In this regime, we can take the discrete

Fourier transform of the cursor movement trajectory over multiple trials to quantify the

mean power (and the standard deviation around the mean) at subharmonic frequencies w/k

where k is an integer, for k E [2, 10]. These mean values and standard deviations will

be used as a 'null model' to evaluate whether there is statistically significant increase in

power at subharmonic frequencies for movement frequencies w beyond the predicted Lo.

Similarly, we can also quantify the overshoot and undershoot in the movement as a function

of the reference movement frequency w. We can use the regime of slow and accurate

movement to quantify the null expectations and detect statistically significant overshoots

and undershoots for the higher frequency movements.

Further experiments can be performed in order to robustly verify the fundamental limits

as they depend on the different system parameters. For example, we can perform reversible

inactivation of certain brain structures or directly the alpha motor neurons in order to study
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the effect on wc. Reversible inactivation of the cerebral cortex can be produced by intracor-

tical injection of the GABAA agonist, muscimol, using techniques as detailed in [96, 95].

Muscimol reliably provides a steady, prolonged inactivation of a substantial cortical terri-

tory.

6.2.4 Extensions using Neural Data recorded from Brain Structures

Intuitively speaking, the subharmonic regime is reached due to the inability of the neu-

rons to process information 'fast' enough. Although in this thesis we model subharmonics

being generated at the level of the alpha motor neurons, the 'bottleneck' could actually

be present at any point in the sensorimotor pathway. Here, I detail a possible mechanism

to pinpoint the location of the bottleneck, using simultaneous recordings from individual

neurons in various structures along the sensorimotor pathway. In diseased states, this could

be used to design stimulation paradigms in the identified structures to restore functioning

where it is needed.

Modeling Networks of Neurons

In either of the two experiments discussed above, the dynamics of both the neural and

EMG data can be modeled in a closed loop sensorimotor control model with a structure as

shown in Figure 6-3. Depending on the experimental paradigm, z(t) is commonly a 2 or

3 dimensional signal denoting the dynamics of the recorded angle (position, velocity and

acceleration) of a mechanical joystick, or the dynamics of a cursor on a screen. The EMG

signal that feeds into the musculoskeletal system M is denoted by y(t) and the propriocep-

tive and visual feedback denoted by F. The 'error' between the reference signal and the

feedback signal d(t) is denoted by e(t) = r(t) - d(t).

We can first fit a model M for muscle activity using the measured EMG activity y(t)

and measured movement output z(t). Since the dimension of y is usually much higher than

the dimension of z, and there are several trials for each task, we can apply standard linear

regression to fit M [70].

Next, we can fit a dynamical model to describe neural activity using the reference sig-
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Figure 6-3: The closed loop model of neural activity. We can use a network of gIAF

neurons, to model the motor cortex neural dynamics.

nal, the muscle model, and the EMG signal. We model the spiking activity of the neurons

as emanating from a spike-based network of interconnected generalized integrate-and-fire

(gIAF) neurons [85]. An LTI feedback model F can be fitted concurrently with each of the

neural models. We can also incorporate additional data collected from different parts of the

motor cortex, cerebellum, and the primary visual cortex directly into this model by adding

external currents to this state equation.

Each neuron's spikes is modeled as emanating from a stochastic gIAF (also known as

linear-non-linear integrate and fire L-NLIF [85]), which receives its inputs from the error

signal as well as the spiking activity of all other neurons. Specifically, for each of the M

task-related neurons recorded in the brain with spike trains ui(t), i E [1, M], the dynamics

of the subthreshold voltage Vi at a time t between two spikes ti,, and ti,n+1 is described as

follows (now expressed in discrete time).

t Al t

Vi(t + 1) = -aiVi(t) + E ki(T)e(t - TF) + E3E hij(T) u,(t - T) + wi(t) (6.6)
T=O j=1 r=O

When Vi reaches a threshold 1, it emits a 'spike', with the spike time represented as ti,,+,

and the membrane voltage is reset to Vio. The spike trains u(t) are now a series of l's and

O's, i.e. 1 at every spike time {t., . .. , tiN}, and 0 otherwise. wi ~ N(0, ua) represents

noise. The parameters ai > 0, {ki(r)}irl[1,M,TE[o,T and {hij (-)}ijE[1,Mj],TE[,T2]represent

the leak factor, the convolutional kernel describing the effect of the input signal on each

neuron, and the strength of the interneuronal interactions, respectively. The vector 0 to be
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estimated using maximum likelihood methods consists of these parameters, as well as Vio,

and -i for i E [1, M]. T and T2 can be pre-chosen from a distribution of physiologically

relevant durations for these different interactions.

The problem of determining 6 from data on the spiking times can be cast as a maxi-

mum likelihood estimation problem, with no nonglobal local maxima [85]. Briefly, if two

consecutive spikes occur at ti,, and ti,,+ 1 for the ith neuron, the probability of observing

the interspike interval ti,n+1 - ti,n can be calculated given 6, e(t) and entire spike trains

from all neurons, i.e. {ui(t)}iE[1,K]. The dynamics of the neuron voltage in the interspike

interval can be described by a linear Fokker-Plank equation. Notably, efficient methods

have been developed to numerically estimate the probability that a neuron voltage exceeds

its threshold in time ti,,+1 - ti,, [85, 82, 32]. The total likelihood for a spike train of one

neuron is simply a product over all these separate interspike intervals. Assuming that the

spike trains of all neurons are mutually conditionally independent, i.e. given all spike trains

and the input e(t), the network likelihood is the product over all the likelihoods for each

neuron.

Despite efficient methods to compute the likelihood, the number of parameters to be

estimated may still be prohibitively large. In order to limit the number of fitted parameters,

we can impose Lj regularization to estimate the strength of the interneuronal interactions,

thus rendering sparse estimates of the relevant kernels, and 2 regularization can be used

to avoid overfitting. In addition to imposing Ci regularization, in order to gain tractability,

we can impose that individual neurons are governed by a linear combination of multiple

spike trains rather than individual spike trains, thus simplifying the matrix of interactions

hij. Moreover, model validation techniques based on [9], also described in [85, 82], are

necessary using unobserved data in order to verify that the learnt 6 fits the spiking data

well. Using MLE methods, a family of networks consistent with the experimental data

with different parameters and regularization terms can be obtained.

Next, we can use a two step process to model the EMG as an output of the neural

dynamics. We can first model the EMG signal as being produced by alpha motor neuron

activity [76]. Next, we can incorporate these motor neurons in the gIAF network model.

In addition to fitting the models to data, we can also investigate whether the mod-
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els resemble the physiology of motor cortex neurons and whether they are generalizable.

Specifically, we can address the following questions. (1) Does a network-based model fit

the neural and EMG data better as compared to a linear dynamical system feeding into an

IAF, and what does this say about the importance of modeling the network activity? (2)

Does the degree of interconnections of the neuronal connections as learnt by the models

match the level of known synaptic interconnections in the motor cortex and other recorded

structures? (3) Does the model learn connections specifically for the movement types in the

experiment, or can I input other types of signals (eg. chirps, triangular), with reasonable

tracking accuracy? (4) What is the level of redundancy in the network? For example, if I

knock out a subset of the neurons, what is the decline in accuracy of the output?

Approximate methods to find w,

For the data as well as the model, we can first investigate the dependence of the accuracy

of the movements on their speeds, with the hypothesis being that faster movements are less

accurate, as found in earlier motor control experiments as in [29]. Next, for a given model,

we can computationally analyze the Fourier spectrum of the output z(t) as a function of the

frequency w of the input r(t) to identify the cutoff frequency w, beyond which the output

Fourier spectrum shows a significant peak in frequencies w/k where k > 1 is an integer.

We expect these outputs to also show undershoot and/or overshoot in the time domain,

which can be quantified as well.

We would have at our disposal a family of networks, i.e. a distribution of parameters,

that are consistent with the experimental data. We can next explore whether w, is robustly

predicted across this parameter distribution. Specifically, we can calculate the coefficient

of variation of w, for the distribution of parameters, and further refine the models if the

coefficient of variation (CV) is large. We can test the robustness of W, with respect to small

changes in model parameters, specifically, the neural and feedback parameters. We can add

Gaussian noise with variance a' one-by-one to each parameter, and test the sensitivity of

c by calculating the CV of c as compared to o-2. We can also test the sensitivity of c

to the network structure by (1) knocking out a subset of the interneuronal interactions, (2)

producing a graded decrease in interneuronal interactions, (3) producing a graded decrease
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in the parameters dictating the output of the motor cortex neurons to the EMG signal. We

hypothesize that these alterations will produce a significantly lower W, in all cases.

We can also extend theoretical analyses as discussed in Chapter 3 to develop analytical

methods to characterize the maximum speed past which we see undesirable phenomena.

This can be done by first exploring the existence of key 'bottleneck' connections where, if

the spiking activity is further lowered by increasing the relevant neuronal thresholds, unde-

sirable phenomena will be apparent. Then, we can linearize the remaining connections and

thus have a tractable model which retains only the essential nonlinearities. We can proceed

as discussed in Chapter 3, to analytically characterize wc. Briefly, we can reformulate the

closed loop as a switched linear system with possibly a larger number of linear manifolds,

and build a Poincard map to analytically calculate the switching times and thus W that lead

to subharmonic oscillations.

If the network model fails to show subharmonic behavior, or if w, is significantly vari-

able across multiple maximum likelihood estimated models, we can constrain the models

further by requiring that the output of the neural activity not only reproduce the experimen-

tally measured EMG signal but also the experimentally measured kinematics. This may

further constrains the models to show physiologically realistic properties. We can then

carry out the above computational analysis on these constrained models.

Validating w, and characterizing the 'information bottleneck'

Next, we can identify the regions of the sensorimotor system that act as 'information

bottlenecks' giving rise to subharmonic oscillations. When w > we, we hypothesize that

(a) the EMG signal displays subharmonic oscillations since the kinematics are a direct

result of the muscle activity, and (b) that a subset of the motor cortex neurons display

subharmonic oscillations since there exist direct connections to the alpha motor neuron

activity driving the EMG signal. Intuitively speaking, the subharmonic regime is reached

due to the inability of the neurons to process information 'fast' enough. The motor cortex

receives inputs from several structures, and we may see both harmonic and subharmonic

activity by the neurons. Moreover, with recordings from a variety of the structures involved

in sensorimotor control, we may be able to pinpoint where the activity of the neurons
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Figure 6-4: Hypothetical data in the subharmonic regime. The reference signal is a sinu-
soidal signal, shown in the background of every signal. The cursor kinematics as well as
the example EMG signal are periodic with 1/2 the driving frequency. The neuronal ac-
tivity shows a dichotomy of responses, allowing us to characterize the 'bottleneck' as the
connections where the harmonic responses switch to subharmonics.

switches from harmonic to subharmonic. As a result, we would be able to identify the

bottleneck for the transfer of information as the structure at which the activity switches

from harmonic to subharmonic oscillations (see Fig. 6-4 as an example). This idea holds

in particular for tree structures of graphs, and to elucidate it further, a tree structure can be

imposed when learning the parameters of the network model in the previous section. If the

majority of the motor cortex neurons fire at the reference movement frequency while the

EMG signal shows subharmonic oscillations, we can conclude that the bottleneck for the

transfer of information lies between the motor cortex and the alpha motor neurons.

It is also conceivable to implement the real-time decoder in feedback as discussed ear-

lier in this thesis, and investigate (a) the stability and performance of this decoder in feed-

back, and (b) the existence of undesirable phenomena with this decoder in feedback. The

implementation of such a decoder would require real-time spike sorting from recorded data

- either EMG signals or extracellularly recorded brain structures.

If the primate fails to display regular subharmonic oscillations due to lack of incentive

in the high frequency regime or due to noisy movement signals from one trial to the next, we

can analyze the inaccuracies for high frequency movements, including undershoot, over-

shoot, and lack of robustness of responses, and analyze the neural mechanisms for these

undesirable phenomena using similar models.
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We provided one testable hypothesis in this chapter emanating directly from the theo-

retical work in this thesis. There are a number of intriguing experiments and fresh analyses

conceivable within the framework outlined in this work. We hope to have provided the rudi-

ments for research directed towards further elucidating the neural control of movement.
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