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INTRODUCTION

We consider two problems in the geometry of Riemannian manifolds

with boundary.

1. Let 0 be a smoothly bounded strictly convex region in R , its

boundary. A reflected ray in Q is a path consisting of connected line

segments inscribed in 30 and satisfying Snell's reflection law there.

Figure I.1

We are interested in the existence of closed rays in 2. Poincar6 proved

the existence of a closed ray with n vertices for each n > 1. Using

minimax methods, Birkhoff [Bl] extended the argument of Poincard to

establish the existence of a second closed ray with n vertices for each

integer n, when Q C R2

Melrose [Ml] has observed that this problem may be analyzed

by consideration of a pair of transversally intersecting hypersurfaces

in the symplectic manifold T*Rm0 , the cotangent bundle over Rl. These

hypersurfaces are the space of covectors of unit length, S*R m+l, and the

hypersurface, T* R'l formed by the restriction of T*Rm+l to the boundary

3i2. This observation transfers a significant part of the analysis of

reflected rays to the general problem of studying transversally inter-

secting hypersurfaces in a symplectic manifold.
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Recall that a symplectic manifold is an even dimensional

manifold X together with a closed non-degenerate 2-form w. By Darboux's

theorem, there always exist local coordinates (p., q.) (called Darboux

coordinates) such that w has the normal form:

m
W = I dp. A dq. dim X = 2m + 2

i=0

In other words, the only local invariant of a symplectic manifold is its

dimension.

Let F -+ X be a hypersurface in X. As a corollary to the proof

of Darboux's theorem, any hypersurface in X may be brought to normal form.

There will exist local Darboux coordinates (p., q.) such that

F = {q0 = 01

The restriction of w to F, i*w, has rank 2m - 2, so its kernel

defines a characteristic direction at each point of F. The integral

curves of this distribution are called the bicharacteristics of F. Let

G -+ X be another hypersurface in X - transversal to F. Let J be the

manifold F n G, and let x E J. The obvious local invariants at x are

the tangency of the bicharacteristic of F through x, x, to the hyper-

surface G, and the tangency of Kx, the corresponding G bicharacteristic

to F. If x is transversal to G, then Kx is transversal to F and there

are no additional invariants. As a corollary of the proof of

Darboux's theorem, one may always introduce Darboux coordinates (q 0 , p0 )

in a neighborhood of x with
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F = {q0 = 01

G = {p0 = 0}

If x is tangent to G, then one can show (Section 2) that Kx

is tangent to F. Such a point is called a glancing point of (F, G). If

x is tangent to G to first order and Kx is tangent to F to first order,

x is called a non-degenerate glancing point. Melrose [Ml] has shown that

in a neighborhood of such a point, one may introduce Darboux coor-

dinates (q., p.) with

F = {q0 = 01

G = {l/2 po - q- p = 01

In Section 2, it will be shown that reflected rays in 2 may be

described by a symplectic map B : B*3Q B* Q,

B*3T2 = {(x, ) E T*32 : I <l1

called the billiard ball map. If Q is strictly convex, the glancing

points of the pair (S*R3, T*R3) will be non-degenerate. The normal form

for non-degenerate glancing points will imply that B may be locally inter-

polated by the flow of a Hamiltonian vector field. Through analysis of

this flow, it will be proved here that for each closed geodesic, 0 C 3Q,

in general position, there exists an infinite family of closed rays with

vertices lying in a neighborhood of 0. Indeed, it will be shown that

the closed rays in this family approximate 0 uniformly as the number of



8

vertices tends to infinity.

Figure 1.2

2. Consider the obstacle bypassing problem for a smoothly bounded

compact region 2 c R3. The objects of interest are the paths of minimal

length that bypass the obstacle Q. These paths will be made up of geo-

desic segments on the obstacle surface 3Q connected by line segments in

R3 tangent to 3 .

Figure 1.3

As in the case of the closed ray problem, this problem may also

be analyzed in terms of the transversal hypersurfaces S*R3 and T QR3  In

the obstacle bypassing problem, however, this approach leads to difficul-

ties due to the fact that Q is no longer assumed to be strictly convex.

Because of this the glancing points of (S*R3 , T* R3) will not necessarily

be non-degenerate.

Melrose [M2] has shown that hypersurfaces (F, G) in a

symplectic manifold will have formal moduli at degenerate glancing points.
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There will be many normal forms for (F,G). However, Arnol'd has observed

[Al] that much of the analysis of the obstacle bypassing problem may be

described in terms of the nested hypersurfaces (S*R 3, S* R3

For a general symplectic manifold X, classification of the

nested pair (F, J) represents a first step in any classification of

normal forms for (F, G). For the nested pair, (F, J), the obvious local

invariant at x E J is the tangency of the F bicharacteristic, x, to J.

Around points where Zx is transversal or simply tangent to J, there will

be Darboux coordinates (p., q.) such that

Transversal case

F = {q0  01

J = {q0 = p0 = 01

Simply tangent case

F = {q0 = 01

J = {l/2 po - p1 = q= = 01

When Zx is tangent to J to second or third order, then provided J is in

general position, there will exist Darboux coordinates, (pi, qi) such

that

F = {q0 = 01

Second order contact (inflectional point)

3
J= {q0 = 0; p0 + po p, + q,= 01
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Third order contact

J ='{q0 = 0; p + pp2 + p0 1  + q = 0}

The normal form for second order contact was established by Melrose in

[M2] while the third order normal form was established in the category of

formal power series by Arnol'd in [Al] and extended to the category of

smooth diffeomorphisms by Melrose and the author in [MMag].

These equivalence theorems permit introduction of coordinate

systems that simplify the study of the obstacle bypassing problem. In

Part 2, they will be used to discuss the behavior of length minimizing

paths near a line of third order contact to 30.
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PART I

EXISTENCE OF CLOSED RAYS

In Part I, we show that reflected rays in Q may be described

by the billiard map B: B*3Q -+ B*30 which will be a symplectomorphism

of the co-ball bundle over 30. As a direct consequence of the classifica-

tion theorems, described in the introduction, it is shown that B may be

locally interpolated by a hamiltonian flow. Analysis of this flow, in

conjunction with an extremal condition of Poincard will demonstrate the

existence of periodic points of B which will correspond to closed rays

of Q.

Section 1: Poincard's Proof of the Existence of Closed Rays

Let Q be a strictly convex, smoothly bounded region of R

with boundary 32. Let Pn be the space of n-polygons inscribed in the

region Q. Note that this space contains all closed rays with n vertices.

In (,,)n = 3x ... x Q, let Rn be the open dense set of ordered n-tuples

(x0' ''''x )n-) such that x0  x n-l; Xi xij 1 (i = 0, ... , n-2). Then

Pn is the image of Rn under the map sending a point in (,,)n to an

inscribed polygon in Q.

xl0 x1
3

(x0 ' x2, x2 ' x3

x2 4

Figure 1.1
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Note that this map is a local diffeomorphism in a neighborhood of any

point in Rno

Geometrically, a reflected ray is distinguished among inscribed

polygons by the fact that Snell's reflection law is satisfied at each

vertex. Poincar& observed that this geometric condition is equivalent to

an-extremal condition derived from Hamilton's variational principle.

Let Q : 30 - Rm+l be the vector valued function defined by the

inclusion 32 + Rm+1 and set

Q (x0 '' )n-) Q )(x i = 0, ... , n - 1

Define Ln (,,)n + R by

L n Q0 O Q11 + - Q21 + .. + In- - QO

Theorem 1.1 (Poincar6): The inscribed n polygon in 2 defined by linking

consecutive points x0, ... , xn-1 is a closed reflected ray iff (x,.

xn-1) is a critical point of Ln in Rn c (3Q)n

Proof: Note that Rn is precisely the set of points in (9O)n where Ln is

smooth. At (x0  ' ' n-05'

/ / 0 ~0Q 1  Qn-l Q0OdL dQ
n~ ~Q -Q1 In-l ~ Q ' 0/

+/ ~ - 2 _ O -0 ~ dQ
\Q - Q21 Q0  Q 11

+ n. + Qn-1 ~ QO _ n-2 f /n-1 , dQ(1)
In-l ~ QOI In-2 ~ Qn-1 n-
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dQi is a vector valued 1-form taking values in T RM+

n-i and < , > is the canonical inner product on Rm+1

fork =0, .

Since the dQi are independent, dLn(X0 '.' x n-) = 0 iff

Qi ~ Qi+1 _ i-l ~ Qi

i ~ i+1 Qi-1 ~ Qi

dQ = 0

for = 0, ... ,

but this equation is satisfied iff the vector

n. Qi -Qi+l Qi-1 ~ Qi

1i - Qi+1 Qi-j ~ Qi

is orthogonal to the image of the vector valued 1 form (dQ.). But

Image (dQi) = Tx.3s c Rm+1
1

s0 (1.2) is satisfied precisely when n.i is orthogonal toT 3Q

This is equivalent to saying that the reflection law is satisfied

at x . n

x
i-1

xi~

n.

xi~l

x

Xi+1
The reflection law is satisfied iff n is orthogonal to T X.

11

Figure 1.2

(1.2)

n-i

(1.3)

-T
X.



14

Consequently, dLn = 0 at (x0 ' '.. .xn-1) iff the reflection law is

satisfied at each x.

The extremal criterion of Poincard reduces the problem of finding

closed reflected rays to the problem of finding critical points of Ln

L n is a continuous function defined on the compact set (,,)n hence it is

maximized and minimized over that set. The minimum corresponds to

n-tuples X = (x' . x n-1) c ()n with

0 n-lwt

however,

Proposition 1.2: The maximum of Ln is attained in Rn and corresponds to

a closed ray of 2.

Proof: Note that if X = (x0 ' n-) '' R n then x = x i+ for some i.

In this case, the triangle inequality and strict convexity of a imply

that there are polygons X' E R close to X with

L n(X') > L n(X)

X X

x x + xiX~j -l i+2 x~

xi., x i+ x.i~

Figure 1.3
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Hence is maximized at some point (x0 .' . - x R. Since Ln is

smooth on Rn' (x0 ' ''.' n-1) is a critical point'of Ln and hence defines

a closed ray.

When n = 2, the closed ray corresponds to the
longest chord in the interior of the region.

Figure 1.4

While this argument is valid for 2 c R for all m > 0, closed

rays having kn vertices, (k,n)> 1, might not be prime. They could be

iterates of closed rays with fewer vertices. For example the closed ray

with 2n vertices maximizing L2n must be the nth iterate of the closed

ray pictured in Figure 1.4. So, in reality, the extremal condition by

itself only guarantees the existence of prime closed rays for each prime

number p.

2
Poincard's original argument was written for Q C R2. In this

case an additional topological constraint can be used to address the

problem of iterated closed rays. Assign to each element of Rn a positive

integer called the winding number, N. The winding number resolves each

Rn into a finite number of components. L may be maximized on eachn n

component. In particular, maximizing Ln over the component with winding

number, N= 1, will establish the existence of a prime closed ray with

n vertices for each n > 1.
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N =1 N = 2

Trace the sequence of vertices x0, .. , xn-1
clockwise around 9Q. N is the number of times

one passes x0 *

Figure 1.5

The case Q c R2 allows one more extension of these arguments

due to Birkhoff. Birkhoff observed that given a vertex number n > 1,

and winding number N, the extremal criterion of Poincar6 would yield

a second closed ray with n vertices corresponding to the minimax of L n

Let X = (x0' ''' xn-l) be a point that maximizes Ln among the

n-tuples with winding number N, and set X' = (x1 , ... ,xn-i' xO). Let

a be a real number and define the set La to be

La {X E (,,)n : Ln(X) > a}

The minimax of Ln associated to X and X' is

minimax n = max{a : X, X' lie in the same connected
component of Lal

When 2 c R2 , Ln is a CI function on (,,)n, thus the set

M = {X E (,,)n : L (X) = minimax L }
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must contain a critical point of L n. (For an exposition of this

argument, see, for example, [Mathl].) This critical point represents a

second closed ray with n vertices and winding number, N.

In summary, when Q C R2, these arguments guarantee the existence

of two closed rays for each winding number N and sufficiently large

vertex number n. Unfortunately, in higher .dimensions, neither the wind-

ing number argument or the minimax argument apply in any straightforward

way. The problem with the winding number is obvious. In higher dimen-

sions, there is no easy way to define it.

The problem with generalizing the minimax argument to higher

dimensions is that when Q E Rm+l, m > 1, the function Ln is no longer C1

on (,,)n This is not necessarily a fatal problem. The minimax argument

will apply in certain situations. For example, when n = 2, there exists

a E R, 0 < a < minimax L such that La CR2. This means that the singu-

lar set of L2 and the minimax set, M, lie in disjoint open neighborhoods

of (3Q)2. Under these circumstances, the hypotheses of the minimax

argument are satisfied and the set M will contain a critical point of

L2. (The corresponding closed ray is pictured in Figure 1.6.)

Figure 1.6

Unfortunately, a > 0 such that a < minimax L and L C R does not existn a n

in general and this condition is not easy to check when n > 2.
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As one further drawback in higher dimensions, none of these

arguments give very much information about the position of the closed rays

in 0. Correcting this deficiency is the key to obtaining better existence

theorems for the higher dimensional cases. Observe that as the angle of

incidence of its segments approaches zero, the limiting behavior of a

reflected ray is that of a geodesic in the boundary i. In the following

sections, it will be shown that this limiting behavior may be used to

reduce the higher dimensional problem to one very similar to the case

Q cR2
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Section 2

THE BILLIARD BALL MAP AND THE INTERPOLATING HAMILTONIAN

To understand the relationship between reflected rays in 2 and

geodesics in 3Q, it is convenient to introduce an alternative description

of reflected rays given by the billiard ball map on the co-ball bundle

of 3Q.

B: B* Q + B*N2

B*92= {(x,) e T*92 : 1 l}

The billiard ball map is defined as follows (refer to figure

2.1.) Given x E 32 let n(x) be the outward unit normal vector to

at x. If E T*30 with j(| < 1 there is a unique unit vector n E (Rm+ )*

such that

n(x) J n < 0

J denotes interior product

and

v J = v -J n

for v tangent to 32 at x. Via the canonical inner product on Rm+1

m+lidentify n with a unit vector e(x, ) E R+. Convexity of 3 guarantees

the existence of x', the unique point of intersection of 2 with the

positive line segment, {x + te, t > 0}. Let ' be the unique element of

T*,3Q for which
x
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<e(x,5), V> = v I

for v tangent to 30 at x'. For (x,C) in the interior of B* Q, i.e.

{(x,-) : 1 | < 11, B is the map sending (x, ) to (x', '). Extend B to

the rest of B*O2 by requiring

B(x, ) = (x, ) when K( = 1

As a corollary to the following discussion, it will be shown that

B: B*3- + B*9Q preserves the canonical symplectic structure of B*3"2.

T 302

x

Figure 2.1

Figure 2.1 shows that the projection of an orbit of B onto

determines the sequence of vertices of a reflected ray and conversely,

a reflected ray determines an orbit of B. Closed rays then correspond

to periodic points of B.

The billiard ball map arises naturally as an invariant

defined by the intersection of two hypersurfaces in T*R Consider

the following general situation. Let (X,w) be a symplectic manifold

(Dim X = 2m+2). Recall that the symplectic structure is given by W,

a closed non-degenerate two-form. If F -+ X is a hypersurface, then the

pull back of o to F defines a fol iation of F by bicharacteristic lines.

Let f eCz(X) be a defining function of the hypersurface F, i.e.
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F = {x E X : f(x) = 0} ; df f 0 on F}

Recall that the symplectic two-form defines a map from T*X to T XX

by

V E TxX + V J ET*X

The fact that w is non-degenerate implies that any function f E C,(X)

defines a hamiltonian vector field, Hf, on X, where

df = H f _J O

Since

Hf J df = W(Hf, Hf) = 0

Hf is tangent to the level sets of f.

V E T x F.

O(HfV)

Next suppose that x E F and

= V J df

= 0

Thus Hf lies in the one-dimensional kernel of the pull back of w to F.

In particular, this means that Hf is tangent to the bicharacteristic

lines of F.

Let x E F, locally about x, the quotient space MF of the

bicharacteristic foliation will be a smooth 2m-2 dimensional manifold.

MF has a canonical symplectic structure 'F defined by

TTF F
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where Tr1F i

MF

are the canonical projection and inclusion of F into MF and X

respectively.

w also defines a Lie bracket on C3(X) where the bracket is given

by

{f,g} = HF J dg

{ , } is called the Poisson bracket. Anti symmetry of { , I follows from

the anti symmetry of w and the fact that w is closed will ensure that

{ , I satisfies the Jacobi identity. (See [AMl].)

Let F and G be transversally intersecting hypersurfaces in X with

defining functions f,g E C'(X). Form the manifold J = F n G and set

K = {x E J : {f,gj(x) = 0]

K is called the set of glancing points. Let x E K, then

Hf J dg = {f,g}(x) = 0

and

H9 IJdf = {g,f}(x) = 0

so x E K iff the bicharacteristic of F through x, Z ,, is tangent to G and

the bicharacteristic -of G through x, K,, is tangent to F. Let x E K.

F :X

7rF
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Locally, the spaces of bicharacteristics of F and G, MF, and MG

respectively are defined as smooth manifolds for a neightborhood of x.

Letting 7F and G denote the canonical projection of points in F and G

to the bicharacteristic lines containing them, consider the following

commutative diagram.

GF

MF

Figu

J

M

K

ire 2. 2

In J\K, the restrictions

TF J MF

7G J MG

are local diffeomorphisms. If x e K then x is said to be a non-degenerate

glancing point if

{f,{f,g}}(x) + 0

{g,{f,g}}(x) t 0

Geometrically, this is the situation where Zx is simply tangent to G and
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K is simply tangent to F. At a non-degenerate glancing point x E K,

the restrictions of TF and TrG to J have simple fold singularities.

J

F

Figure 2.3

Thus, in a neighborhood of such a point, BF = F(J) C MF has the structure

of a manifold with boundary. Locally, ;BF may be identified with K and

TF has a pair of inverses, a+ : BF -* J such that

7F O a+ = id on BF

The analogous considerations apply to G and define a space BG c MG and

maps : BG + J. Finally, the maps

6 : B F + BF

= F + G -

are the generalized Billiard maps of the pair (F,G). These maps will be

symplectic with respect to the symplectic structure on M F'

The major result of Melrose [Ml] is that there exist Darboux

coordinates (p0' '..' Pm' q0 ' ... , qm) for X about x so that

F = {q0 0 }

2G = {4p0 - q0 ~ pm = 0}
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These coordinates induce canonical coordinates (ql, ... , qM' p1' '0' Pm)

on BF C MF. With respect to these coordinates

3BF = m =

and

6 : BF - BF

takes the form

' . . m)

Equivalently, we can say the billiard maps 6 are locally interpolated by

the hamiltonian flow generated by the function pm

6+ = exp( pf Hp)m P

Recall that the cotangent bundle of any manifold has a canonical

symplectic structure. In the symplectic manifold, T*Rm+l, define the

following hypersurfaces

S*R3 = {(x,5) e T*R3 .

T* R3 = {(x,) E T*R 3 x =

S*Rm+l and T* Rm+l

surfaces in T*Rm+l

S * Rm+l

play the role of transversally intersecting hyper-

The intersection manifold, J, may be identified as

= {(x, ) E T*Rm+l : I = 1; x e 30}

aracteristics of S*R and T*R , M and M are bThe~ spce of bihB

''' m 9 '' ' m m 'E 'S+ : (qg, 9 0 .. , qm' l' I

The spaces of bich oth
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defined globally over their respective hypersurfaces. ME is the space of

oriented lines in R . The points in BE are those lines passing through

o. There is a natural identification

ME z T*Sm

given by mapping (e, ) E T*Sm to the oriented line

Z { + et : t E R}

Remark: To regard as an element of Rm+l , use the canonical inner

product of Rm+ to identify T*Sm with a subspace of Rm+l

MB may be identified with T*3Q via the projection

T* Rm +l T*

given by the restriction map T* Rm+l T *32. With this identification

B x

B B = B*9Q

These identifications are symplectic in that the canonical symplectic

structure on MB agrees with that of T*9Q and the canonical symplectic

structure of ME agrees with that of T*Sm up to a change of sign.

Finally, using the canonical inner product on Rm+ , (or the Riemannian

structure for a general Riemannian manifold) there is a natural inclusion

T*3 +-- T* Rm+l

preserving symplectic structures. (The fact that the inclusion preserves
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symplectic structures means that the pull back of the symplectic form of

T*Rml to T*30 is the symplectic form of T*90. This fact will be dis-

cussed at length in Section 9.) Via this inclusion,

S*3 + S* Rm+l

is the manifold of glancing points K. Figure 2.2 specializes to

T* R

T* Rm+i '

S*TR*

B =B*9Q
B

S* Rm+l

E

Figure 2.4

Given that 2 is strictly convex, the points in K ~ S* Q consist entirely

of non-degenerate glancing points. (The proof of this fact will be

deferred to Section 9.) Inverses a, + for TTB' 7E are defined globally

on BB, BE respectively.

S*M0

+1
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+

Pictorial representations of a ,

Figure 2.5

Finally, the billiard map may be identified with the composition

B B 0+ * TE 0 a-

The equivalence theorem for non-degenerate glancing points

implies that for (x,5) E S*9Q C B*3Q, there exists a neighborhood

U c B*32, (x,") E U and a function c E C"(U) such that

B = exp(-c2 H )

C is called a local interpolating hamiltonian for B. c is a defining

function for the hypersurface U n S*9Q. As a corollary to the proof of

Melrose [Ml], c is unique to the extent that if c' is another interpolat-

ing hamiltonian on U, c - c' vanishes to all orders at S*3Q.

cc_(x,9)
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Section 3

BILLIARD HEURISTICS

In general, the interpolating hamiltonian cannot be defined

globally on B*90, but for the sake of illustration, assume that c exists

globally on such a B*X2. Consider the following situation. Let (X,w)

be a symplectic manifold, dim X = 2m + 2. Let F -+ X be a hypersurface

and suppose that F contains a closed bicharacteristic j c F. Let pEE 0

and let W -+ F be a local transversal section of J (dim W = 2m) at p. The F

bicharacteristics near J induce a local diffeomorphism

a : W W

O(p) = p

F

Figure 3.1

called a Poincard map.

Remark: Technically, 0 is a map 0 : U 0 - 1 where U0, U1 are neighbor-

hoods of W each containing p. The author has overlooked this point to

avoid yet another layer of notation.
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The derivative of E induces an isomorphism

DE : TpW + TpW

The bicharacteristic O is called non-degenerate if Do does not have 1 as

an eigenvalue. This notion is well defined. Given a different p' E 0

and transversal section W', the bicharacteristics of F determine a local

diffeomorphism

W +W

4)(p) = p'

In particular, the map Dp : T pW - T pW' conjugates Do to Do', consequently,

Do and Do' have the same spectrum.

Next, let f E C"(X) be a defining function of F, let Hf be the

Hamiltonian vector field associated to f. The bicharacteristics of F

will be integral curves of Hf. Thus O7will be a closed orbit of Hf.

Let W -* X be a transversal section of J in X at p. W = fl n F will be a

transversal section of Jin F. Then the integral curves of Hf define a

Poincard map Df : W -+ W extending 0 : W -+ W.

Lemma 3.1: There exists a path y : (-&, s) + W, transversal to F with

y(O) = p such that

of o y(r) = y(r) for all r e(-, =)

i.e. the non-degenerate bicharacteristic U determines a cylinder of

closed orbits of Hf.
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F = {F = 0}

Figure 3.2

Proof: The result follows from the implicit function theorem. Introduce

coordinates (q,, ... , q2m) on W and extend them to coordinates (q,.,

q2m, f) on W. Then Of : W +* W is defined in coordinates by

Of : (q ,f) (qi',f)

Keep in mind that when f = 0, 0. = 0. Form the map D : R2m+l + R2m

defined by

(q , ... m f) = (q - q11, ** ' q2m - q2m )

For f = 0, q = 0, the derivatives of DD in the q variables may be

written as

D = 1 - Do

Since Jis non-degenerate, 1 - DO is invertible and the implicit function

theorem implies the existence of functions q.: (-&,) + R such that

Of(qi(f),f) = (q.(f),f)
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f is automatically preserved since any Hamiltonian is preserved by its

Hamiltonian flow.

Remark: The points on the path y(t) are periodic points of the

Hamiltonian flow generated by Hf. They define a smooth one parameter

family of closed orbits of Hf. Since f is constant on these orbits and

y is transversal to F, this family may be parameterized (locally) by f.

The orbit cylinder associated to Hf and 0 is the map

Tf : S1 X [-65] X

which maps SI x {r} into the closed orbit defined by f = r.

The cosphere bundle S* Q is a hypersurface in the symplectic

manifold B*qQ. A standard result from symplectic geometry is that the

bicharacteristics of the cosphere bundle of a Riemannian manifold, M,

project to geodesics of M. Indeed, there will be a bijective corres-

pondence between oriented geodesics of M and bicharacteristics of S*M.

Let 0 be an oriented closed geodesic in 9Q and J be the corres-

ponding bicharacteristic in S*3Q. 0 is said to be non-degenerate if 0

is non-degenerate. One defining function of S*9Q is the kinetic energy

function.

E(x, ) = 1/2 W 2

In this case, the orbit cylinder, TE, is simply the family of closed HE
orbits generated by the homogeneous structure of the fibers in T*3Q. The

interpolating Hamiltonian, C, is also a defining function of S* Q. Thus
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a transversal section W c B*90 of 0 at p E J defines a curve

y (1- e, 1] + Bh S*30

y() = p

of periodic points of the flow generated by H . Let T(r) be the period of

y(r). Periodic points of the billiard ball map will correspond to solu-

tions of the equation

T (r) = n(1(y(r))) n = 2, 3, ... (3.2)

Since T(r) is smooth in r, T(l) $ 0, and

(c(y(r))) 1/2 ~0(1 - r)l/2

(3.2) will have a unique solution rn for each sufficiently large n.

Finally, to incorporate the winding number, N, into this

construction, it suffices to consider the Poincar6 maps (0) N and (of) N

in Lemma 3.1 and extend the notion of a non-degenerate closed bicharac-

teristic to that of a N-non-degenerate closed bicharacteristic.

Remark: Since the path y defined in (3.1) may be constructed for each

point in 0 and Equation (3.2) may be solved for each such y, existence

of an interpolating Hamiltonian defined on a neighborhood of Twould

imply the existence of a 1-parameter family of periodic orbits of B for

each winding number N and sufficiently large vertex number n. This is

unlikely to be true in general.
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Section 4

EXTENSION OF THE INTERPOLATING HAMILTONIAN

In general, while the interpolating Hamiltonian, C, is not well

defined on a neighborhood of S* o c B*32, it may be extended to a neigh-

borhood of any compact segment of a bicharacteristic in S*39. This fact

will be proved in this section. Unfortunately, there is a global obstruc-

tion to extending ; to a neighborhood of a closed bicharacteristic 0.

This problem may be overcome by considering a neighborhood V C B* Q,

J c V satisfying

V is diffeomorphic to U x S

U c R+ x R2m (4.1)

First, note that a winding number may be defined in this setting.

Lemma 4.1: For sufficiently small V c B*3Q, V - a neighborhood of 0of

the form (4.1), it is possible to assign a canonical winding number to

any sequence of points (x0' V1I ... ' (xn-l' n-l) in V.

Proof: The Riemannian structure of 3Q will define a canonical local

normal fibration of B*9Q over the closed bicharacteristic which induces

a canonical retraction of V to 0. So a sequence of points (x0 ' ... '

(xn-l' n-1) in V defines a sequence of points in U and any sequence of

points in U has a canonical winding number, N, defined, e.g., as in

Figure 1.5. This is well defined so long as V lies in the domain of the

normal fibration.
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Next, let V be the universal cover of V. Let 0 be the pull back

of D to V. Given any finite segment I of 0, the billiard map may be

lifted to B, a map defined on an open neighborhood, V1, of I. By

restricting V, this ploy permits construction of an interpolating

Hamiltonian c for B on V . The interpolating flow may be analyzed using

Poincare maps as in Section 3, but there will be a loss of control in one

degree of freedom due to the fact that Z is not periodic on V, hence

will not be globally invariant under the interpolating Hamiltonian flow.

Nevertheless, a winding number, N, will define Poincar6 maps which will

yield, for each sufficiently large n, a family of nearly periodic points

Pn S

uniquely characterized by the properties

B(x(s), i(s)) = (x(s), '(s)) s E S

='(s) = t (s) for some a > 0 (4.2)

and

The sequence {(x0 ' %' ... (x n-l' n-l)I} defined by

(x, gg) = B (x(s), i(s)) e V will have winding number N. (4.3)

The extremal criterion of Poincar6 applied to this family will yield a

pair of closed rays with n vertices.

With 3 a closed bicharacteristic of S*9Q. Let W C B*9Q be a

transversal section of U, W = W n S*9Q. Form the space W x R and use the

geodesic flow generated by the Hamiltonian
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r(x, ) =

to define a map X : Wx R - B*30

X(p, t) = exp(LO, tHr)(P)

(4.4)
LO = arclength 0

Defining a symplectic structure on W x R by = X*w, X projects

the bicharacteristics of the hypersurface W x R c W x R onto the bicharac-

teristics of S*9Q. In particular, X projects 0 = {0} x R onto the closed

bicharacteristic 0 c S*, and

X(0,0) = p0 0 W

x(Ot + k) = x(Ot)

Let I be a compact segment of 0, I = {O} x [a,b]. By restricting

VI to be a suitable, small neighborhood of I, VI c W x R

X : VI - V C B*9Q

will be a covering map from V to a neighborhood V of B*3Q of the type

described in (4.1).

Moreover, since B fixes S*9Q,

Lemma 4.2: V may be chosen small enough so that the billiard ball map

lifts to a map

B :V + W x R
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Proof: Given p E O C B*3&, since X is a covering map, there exists

U C V, p E U such that X~ 1 (U) is a finite union of disjoint connected

open sets.

-1 n
X 1(U) = U .

i=l1

k1 (p) = {p} , ... , n

with X : U. + U a diffeomorphism. Since p E S*3Q, B(p) = p, so there

exists U' c U such that B(U') c U. Define 1 on U 1, n 0 by

X o B=B o X (4.5)

Since I is covered by a finite collection of U!, it is clear that B

may be defined on a neighborhood of I.

Theorem 4.3: By shrinking VI further, it is possible to define a

function Z E C'(V1 ) such that

B = exp(-c1/2H ) (4.6)

and Z is a defining function for aV = X~ (S* Q) n V 1 .

Proof: Let O = (0,0) E W x R. p = X(O). There exists U c B* Q,

p E U with an interpolating Hamiltonian defined on U. Define on the

PO component of X (U) , 0 by

0= o X (4.7)

c is extended from U0 by requiring

S=c(4.7a)

By construction, c is a local interpolating Hamiltonian of the lifted
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billiard map B on U0, i.e., (4.6) holds on U0. It will be shown that

Equation (4.6) implies that B acts on V as a singular shift. Thus

Equation (4.7a) defines a smooth extension of on V1 n Xint(B*M2).

It is not clear that this extension will be smooth at 3V .

W B(W) B 2(W) 3
B (W)

Sx R

0V

a b

Figure 4.1

Local existence, (Eqn. (4.7)), implies that Z is defined and

smooth on a neighborhood of 0 x (-t1 , t 1 ) c 9 x R. It suffices to show

that (4.7a) defines a smooth extension of c to a neighborhood of

0 x (-t1, t1 + e) for some e > 0 (extension at the left endpoint being

entirely ana-logous.)

Let p1 = (0, t1) E W x R. Then by existence of a local

interpolating Hamiltonian, there exists a neighborhood N C VI of p and

coordinates (ql, ... , q2m, z, c') on N so that c' is an interpolating

Hamiltonian of and in these coordinates

B(q,z,?') = (q,z - ,1/2 ,)

O = {q 0, c' = 0}
(4.8)

A = 0

3i- dz > C > 0
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In these coordinates, there exists 6 > 0 such that

N = {0 < Iq1, c' < 6; - 62/2 < z < 6 2/21

and that the set

M = {O < Iq1, c' < 6; - 62/2 < z - /2

lies in U0 n N. On M, and c' are both well defined, smooth interpolat-

ing Hamiltonians of B. The derivatives of c are bounded on M, and c -

C' vanishes to infinite order uniformly on M as C' -+ 0.

Set

z + 6 /2
n1(z,') = , 1/2

(L

[[ ]] = greatest integer function

(4.10)
n2(z,') = [[+/2 - 1/21

For either function,

-62/2 < z - n (z')(')1/2 < - 62 /4 i = 1 ,2

So that I (p ) E M for all p E N. Formulas (4.7a), (4.8) then imply

that on N,

1/2c~q~~c')= c(q,z - ng(z,c')(c') ,c) i = 1 ,2 (4.11)

for points [ E N where n. is locally constant. Since C o B = c on M,

these two equations agree where their domains overlap. Together, they

(4.9)
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may be used to study the smoothness of the extension of ~ to N.

Lemma 4.4: On N, extend c to C' = 0 by

= a' where ' = 0

a_1 a2 aC3

aq 32 3

Then Z is smooth on N.

Proof: It is sufficient to show that 1a3 I vanishes to infinite

order as ' + 0.

I 30(z '(q,z,c') k+j <a3
k,j>O

Ck ,j n 1(z')k ,k/2-j ak,j

Recall n (zc') <

ak,j = (a, , o2 + k,a 3 - k - j)

)1/2 so that
( ) )/

(q,z - nk+j<a 
3

k,j>O

- ( ' )1/2 s ) I

Finally, recall that C - ' vanishes to all orders of ' uniformly on M.

So for n > 0, there exists K > 0 such that on M

ja k j(~ - c')| < )n

> 0, there exists K' > 0 such that on N

ac

3'(~c - c') I C 9 c')~d13af'd(C - C'I)

Hence, for n'

- C' )I
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,ak _ < )n

Since Z can be extended smoothly to a neighborhood of 0 x (-t, t + c) C

9 x R, ; can be extended to a neighborhood of I = {0} x [a,b] C W x R.
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Section 5

EXISTENCE OF ALMOST PERIODIC POINTS

In this section, given a winding number, N, and a non-degenerate

closed geodesic, 0, it will be shown that for sufficiently large n,

there will exist a family of nearly periodic points.

Pn : S V

satisfying and determined by (4.2), (4.3) where V is a neighborhood

0 C V c B*32 satisfying the hypotheses of Lemma 4.1.

Let I be the segment

I = {0} x[-i, N+i] + W x R

From the previous section, there exists a neighborhood Vc IC W x R,

I C VI with

X : VI - V

where V, described above, is a neighborhood of 0, diffeomorphic to U x S'

where U c R+ x R2m. The billiard map may be lifted to a map B

VI - W x R satisfying

X B 0 X

and there exists a function i E C'(VI) such that

exp(-c1/2 H-)

We use the canonical local normal fibration of B*M over J to define an
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an SI parameterized family of transversal local sections I c B* Q of

j in V.

s7

Figure 5.1

Set W = 3w = S*32 n ws. Then, via X, these transversal sections define

local transversal sections Ws of 0 in V .

Note that X restricts to diffeomorphisms

: + W i = 0, ... , N s E [-1/2, 3/2]

By these correspondences, the integral curves of H-

s : W, + W s

define a map

s e [-1/2, 3/2]

which induces a Poincard map

O : W - W

which extends the Nth iterate of the Poincard map

Ses : Ws +* W s

defined by the bicharacteristics of S*3Q in Section 3.
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Definition 5.1: The bicharacteristic _U is N-non-degenerate iff (DO)N

does not have 1 as an eigenvalue.

For the next lemma, let E : B*30 0 30 S*30 be the map

S:(x,)+ (x,E/~)

Lemma 5.2: Assume that ® is N-non-degenerate. There is a unique smooth

path ys : (1 - s, 1] + s ; s (-1/2, 3/2) such that y S*3Q and

SO ys s(r) =-E - ys(r) (5.1)

Moreover, Ys is smooth in s.

Proof: Introduce local coordinates (q1 , ... , q2m) on W and extend them

to be constant on the radii of the fibers of B*3Q. Then with r(x,) =

I l,(qi, r) form a coordinate system on Ws. In coordinates, let 0is

W W s be given by

Ss : i, r) (q r

As in Lemma 3.1, form the map

(q , r) + (q - q'.)

The non-degeneracy condition on J implies that the derivative of CP

in the q variables is non-degenerate at (0,0) so the implicit function

theorem implies the existence of unique functions qi(r) such that

s(qi(r), r) = (qi(r), r')

Note that,in general, r does not equal r'. This represents the loss of
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control mentioned in Section 4.

YS(r) is the path defined by the qi(r). In coordinates

YS(r) = (qi(r), r)

It is clear that ys varies smoothly in s for s (-1/2, 3/2).

Let T s(r) be the return time of the point ys (r) defined as

follows. Let - (r) be the point over y (r) in Ws T s(r) is the time

required to flow along Hz from ~s(r) to e s(-(r)). In Section 3, Equa-

tion (3.2) gave the condition for distinguishing periodic points of B

within the path y(r). The analogous condition here is

n(C(s(r)))l/2 = Ts(r) (5.2)

Lemma 5.3: There exists N0 > 0 such that for n > N0 there exists a

unique function r n(s), s E (-1/2, 3/2) such that

n(c(ys (rn(s)))) = Ts (rn(s)) (5.3)

Proof: T s(r) is a smooth function in r and s with

Ts(1) = 0 >0

where T0 is the period of j as an orbit of H . (Note that H- is a

well defined vector field on S*32.)

c o ys(r) is a smooth function in r and s with

M' (0 - r) < Ic o s (r)1 < M(O - r) M, M' > 0

0 < (1-r) < 6
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Consequently, for s E (-1/2, 3/2), Equation (5.3) has a unique solution

rn(s), for n sufficiently large

vary smoothly in s.

(see Figure 5.2). This solution will

1/2
''''-p., agrrj

1/2

/

/ T (r)
S

/ 7
~I /7'K /
~, / ,/~

~/ /1

Figure 5.2

Set pn (s) = a s(r n(s)). From Lemmas 5.2, 5.3, p n(s)

unique point in W s such that

Bn(p n(s)) C Ws

qi[B n(n(s))] = q (Pn(s))

the sequence (x0 ' '9

has winding number N in V, where (x

i = 1, ..., 2m

.*..) (xn-l'

., 
) = B

n)

(pn(s))

Letting (x0, ;) = n(s), (xn' n) = Bn(x 0 ) , conditions

(5.4), (5.5) are equivalent to

xn = X0

n 0 C > 0

( I -r)

is the

and

(5.4)

(5.5)

(5.6)

(5.7)

---c1/2
I (.



Theorem 5.4: pn is a smooth map pn : S-+ V

Proof: W s is periodic in s. pn (s) is locally smooth in s and defined

uniquely in Ws by (5.6), (5.7). Consequently, p n(s) is periodic in s.

A point (x, ) in B*30 defines an element of (,,)n by

(xi, ) = BI(xi)

In the next section, we use this fact to define Ln on pn and look for

periodic points of B among the critical points of LnlPn*

For Section 6, the following is proved here.

Proposition 5.5: There exists N > 0, C, C' > 0 such that

C' n-2 < (1 - r) o pn(s) = 1 - rn(s) < C n-2 n > N0

Proof: Since T s(r) is continuous and bounded on V1, with Ts( = O'

there exists 51 > 0 and constants K1, Ki such that

K1 < Ts(r) < K' 0 < (1 - r) < 61

Since (1 - r), and ~ are defining functions of 3V1, there exist K2, K ,

62 > 0 such that

K2Z < (1 - r) < K 0 < (1 - r) < 62

Since lim r n(s) -+ 1 uniformly in s, there exists M 0 > 0 such that for

n > 0 N0 (1 - rn(s)) < min(61 , 62
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So by Lemma 5.3, when n > N0,

K2  -2 n K2 -2
i n < p < Ki n

and hence

(K1 )2  -2 <(- r) on = -rn) < (K1 )2 K n-2

Proposition 5.6: pn converges uniformly to the characteristic 0 in the

C topology.

Proof: y : (-1/2, 3/2) x (1 - s, 1] + B*90 is a smooth map with

YS (rn(s)) = pn(s)

and the path ys(l) a smooth parameterization of the closed bicharacter-

istic 1J. By Proposition 5.5, rn - 1 converges uniformly to zero as n-)'

and so the result follows.
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Section 6

PERIODIC POINTS OF B

In the previous section, a winding number N and a N-non-

degenerate closed geodesic 0, determined for each sufficiently large n

a path

The extremal criterion of Poincare will detect periodic points of B

within pn*

Pull back Q: ao -+ RmIl to a function Q: B*30 +* R m+ and set

H n: B*2 -+ R equal to

H = IQ - QoBI + IQoB - QoB 21 + ... + IQoBn-l - QI

Let (x, ) E B*X2 and define (x0, g) ... , _, (X1n-l ) by

(xi, E ) = B (x,5)

Theorem 6.1: If (x' ' ' n-l' n-1) is a closed orbit of B, then

(x0 ' E) is a critical point of Hn'

Proof: Define hn B*M * (,,)n by

(xn E ) + (x' ' n-1)

where

(xi, ) = Bi (x,5)

pn : S +* V
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Note that Hn = hLn* So if (X0 9 ' .''' ( nn-l' - is a periodic

orbit of B, (x0 ' .. '' xn-1) is a critical point of Ln and thus (x,E) is

a critical point of Hn = h*L
n nn

Lema 6.2: A formula for dHn

If the n-tuple (x0 ' ''' Xn-l) is defined by

(x., E$) = B (x,) for some (x, ) E B*9S

then the reflection law will be satisfied at the points x , ... , xn-l.

Consequently, all but the first and last terms of Equation (1.1) vanish.

So

dH = h* dL =n n n

Q oBn- - Q -- QoBn2  Q o Bn-l d(Q o Bn-l
\IQ o B n- - Q1 IQ o Bn-2 - Q o Bn-l

+ Q - Q o B Qo Bn-l dQ (6.1)
IQ - Q o BI IQ Bn - Qj

Set (x', ') = B(x, E). Then in rough terms, the first term

of dHn(x,C) measures the separation of x and x'. It will vanish iff

x = x'. The second term measures the difference between E and ('. When

x = x', it will vanish when = '. Unfortunately, in this situation,

dHn can sometimes vanish when ( ' , but this will not be a significant

probl em.

Consider the composition Hn o pn : S + R. We need to

calculate
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d(Hn 0 pn
ds S = S0

So let

(x,E) = pn(x)

(x', E') = Bn(x, )

Then by construction

xI = X

' = C C > 0

So by Lemma 6.2.

dH Q - Q o B - Q o B n-l - Q

n IQ - Q o BI IQ o Bn-l Q1
dQ (x

Regarding , ' as elements of T 30 via the Riemannian structure (6.3)

may be rewritten as

dH n(x,) = - >

= (1 - C)< , dQ(xq)> (6.4)

From (6.4),

d(H n 0 )

ds
= (1 - C)i(, p ( ) J dQ (6.5)

s=s0

Let i : T*32 + 32 be the canonical projection, then the vector

K (s) =p (-) J dQ E T M (6.6)

(6.2)

(6.3)
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may be identified as the tangent vector to the path Tr o pn at x in 30.

Lemma 6.3: There exists N0 > 0 such that n > N0 implies

<4(s), K n(s)> t 0 s E S1  (6.7)

Proof: According to Proposition 5.6, the path pn : SI + B*3Q converges,

in the C topology, to the bicharacteristic 1J as n-- . Thus the vectors,

(s) and Kn(s), defined by Equations (6.2), (6.7), respectively, converge

to tangent vectors to the geodesic 0 - uniformly in s. Thus for suffi-

ciently large n,

<i(s), K (s)> t 0 for all s E S

Let n > No, as in Lemma 6.3. The function H n * n : S + R

must have two critical points, s , s2 corresponding to its maximum and

minimum.

Theorem 6.4: (x, ) = pn(s ) (i = 1 or 2) is a periodic point of B with

period n.

Proof: From previous results, (x',')= B(x, ) satisfies

x = x'

' =C C > 0

Equations (6.5), (6.6) imply

0 = (1 - C)<E, Kn >

So by Lemma 6.3, C = 1 and so (x,) = (x', i').
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This completes the proof of the existence of closed rays in 0.

In the following sections, we examine the length spectrum of the closed

rays, winding number N = 1, associated to the closed geodesic 0.
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Section 7

THE LENGTH SPECTRUM

The length spectrum associated to the region Q is the set of

lengths of the closed reflected rays in Q. Guillemin and Melrose [GMl]

have shown that the length spectrum of 0 is a symplectic invariant of

the symplectic manifold B*90 and the symplectic map B. For background,

their argument is included here.

Let w be the symplectic form on B*DQ(DQ C R , m > 1). Let 6

be a one form on B*9i such that w = -d0. Then since B: B*K 4 B*K2 is

a symplectic map and B*K2 is simply connected, M - B*6 is an exact form.

Define F on B*K by

F1 = 0 (7.1)

dF = - B* (7.2)

F will be a smooth function on the interior of B* Q.

Theorem 7.1 (Guillemin, Melrose): Given a closed orbit of B

cJ n (XO' (x ''' n-1' %-1)

n-l
Ln n) = . F(x, i.). (7.3)

1=0

This means that if B*9Q is considered as an abstract manifold with

symplectic structure and the map B given, then Ln Sn() may be recovered.

Theorem 7.1 is a corollary of the following lemmas.
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Lemma 7.2: Given 5' satisfying w = -d5', define F' according to

Equations (7.1), (7.2). Then

F(x., . )
n-1

= I F'(x., )
i=0

In other words the summation in Equation (7.3) is independent of the

choice of the one form S that defines F.

Proof: Since d(S - S') = w - w = 0, 5 - S' is an exact form. Let

G C"(B*aQ) be a function such that

dG = S - 5' .

Then

F - F' = G o B - G.

So since (x0' )

n-i
SF(x,

i=0

is a periodic point of B with period n,

n-1
Y) =

i=0
F'(x., Es )

F'(x., . )

+ G o B(xn-l' n-1) - G(x0 ' Y

(7.6)

Define the function H on B*3& by H(x, ) = Ix - x'1 where

(x', ') = B(x,-). Equivalently, H may be written in terms of the map

Q : B*3i + R-m+ as H = IQ - B o QI. Note that

n-i
LnQcn) = H(xi, j)

i =0
(7.7)

n-1

i =0
(7.4)

n-i
I= F' (xi , )i=0

+ (G o B - G)(x1, i)

n-i
= I

i=0



56

Let a be the canonical 1-form on T*90. The symplectic form -

is given by w = -da. Given V E T (B*30),

V _J a(x,) = x, V J E ,

where 7: T* 2 -+ Q is the canonical projection.

Riemannian metric, < , >, to identify T*M2 withx

written in terms of the R

Alternatively, using the

T 3D c R ', a may be

valued 1-form, dQ, as

a = <1, dQ(X')> (7.8)

Lemma 7.3:

dH = a - B*a

Proof:

dH = - o B (x,)
(x IQ - Q o Bj

- Q - Q o B

\IQ - Q o B

dQ(XI)

(X90/j (7.10)

As in Section 2, set

e(x,E) =Q Q B
IQ - Q o BI

If (x', E') = B(x, ) , the one forms (dQ) and (B* dQ)

in T x and T ,3Q respectively.

in Section 2,

take values

Thus, by the construction of B, outlined

(X20) (7.11)

(x, ) , (B* dQ)
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e(x,E), dQ(x,)) = <E, dQ( ) >= a(x,) (7.12)

e(x,E), (B*dQ) (x= (B*dQ) (x9> (7.13)

But

(B*t)(x,E) = B*(a(x' , E'))

= <B*(dQ(x ,))9 ,

= <(B*dQ)x), '>

So that dH = a - B*ct.

Lemmas 7.2, 7.3 along with Equation (7.7) prove Theorem 7.1.

In the case where 2 c R*, Marvizi and Melrose [MMarl] extended

the preceding argument to derive an asymptotic formula giving the lengths

of closed rays (of fixed winding number) in terms of the number of their

vertices. Let n = {(x0 ' )' ... I n-1  n-l)I} be a closed billiard

orbit with winding number N = 1. Then, taking Le, to be the arclength of

32, Ln(jn) may be written as a formal power series in n-2

00

L n(I n) LOO + Ckn- 2k (7.14)
k=l

modulo errors of order n-2k
each k > 0.

This formula and its analogs for higher winding numbers holds for all

strictly convex Q C R2. In higher dimensions, it will be generalized
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here to describe the lengths of the family of closed rays associated to a

closed geodesic 0 C X2. To derive this higher dimensional version, it is

convenient to introduce a globally defined, approximate interpolating

Hamiltonian, r, on B*3Q.

Lemma 7.4: There exists a function r E C"(B*3Q) such that F - c vanishes

to infinite order at S*DQ for any local interpolating Hamiltonian c. 1 is

called an approximate interpolating Hamiltonian.

Proof: Since S*9Q is compact, local existence of interpolating

Hamiltonians implies that there exists a partition of unity {oi on B*3Q

and interpolating Hamiltonians {C } with c . defined on a neighborhood of

suppo . Define r by

Let c be a local interpolating Hamiltonian defined on a open set U. By

local uniqueness, - , vanishes to infinite order at S*3Q on U n supp$ .

Hence C - r will vanish to infinite order at S*3Q ( U.

As a corollary to Lemma 7.4, r will be a defining function for

S*9Q and so by the construction in Section 3, there will be a 1 parameter

family, TP of closed H. orbits associated to the non-degenerate closed

bicharacteristic Y. In general terms, the following calculations will

approximate the relevant features of the billiard system by an approximat-

ing billiard system on the two-dimensional image of T .

Define an approximate billiard map A: B*3Q + B*9Q by
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A = exp(-r/ 2Hr)

A is a symplectic map which is smooth on the interior of B*3Q and fixes

S*30. Define H' on B* Q by

H' =0

S*9Q 
(7.16)

dH' = a - A*a.

The orbit cylinder for r is a map

Tr : S x [0, E) - V CB*2 (7.17)

where SI x {t} is mapped to the closed Hr orbit defined by r = t. Using

the path pn defined in Section 5, define a path an by

Sn(s) = T (s, ropn(s)) . (7.18)

Heuristically, an is the projection of pn onto the orbit cylinder, Tr'

Given (x0 ' r , then (x0, = n(sO) for some s,. Set

(y0'n 0) = an(s0). As the first step in the reduction to the two-

dimensional case, we wish to show that given k, there exists N > 0 such

that when n > N,

n
Ln(c] n) . (HOB')(x0 ' o

1=0
n
= (H'oAi)(y0,'0 )

i=0

modulo errors of order ((7.19)
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Let I = {0} x [-1/2, 5] C W x R. Then by Theorem 4.3, there

exists VI c W x R with a function G C C C(V) such that 5 = exp(- 1/2H ),

is the lift of the billiard map to VI. Next, pull r back toW x R. c - r

will vanish to infinite order at 9V . Set A = exp(-r1 /2H ), A is the lift

of the approximate billiard map A to V .

By restricting VI if necessary, there will exist functions

p., $., z defined on V, such that ($., ., z, r) are Darboux coordinates

on V1. In these coordinates,

m
W = dz Ad r + d d Ap. d$ (7.21)

1=1

so that Hr '

Let I' = {0} x [-1/4, 5/4] cW~ x R and let V' be a neighborhood

of I' in V . Let 6 > 0 satisfy exp(tH )(V') C VI for all t < 6.

Lemma 7.5: Given k > 0, there exists C > 0 such that

z o B - z o A i, jr o B - I'o A < C K

oP 0 B - o A , V$ o B - o Au

for i < 6Cl/2 and p E V'

Proof: Since r and c are both defining functions of 3V1, there exist

constants M, M' > 0 such that

Mc < r < m'c

Since H -H vanishes to infinite order at 3VI, there exists M" > 0 such

that, for example
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dt k
I (z0 exp(tH~ )~) - 1| < Mc ~

Since c is constant on the flow lines of H , (7.22) implies that

Iz o exp(tH ) - t - z! < tM" k

for all p E V' where exp(tH ) is defined.

This means that for p E V', i < 6

az o B1 - z .All = jz o exp(ic1/2H ) -

< 1/2Mlck + |l /2+

z + i 1/2

i 1/2

k< cr

The other coordinates are treated in exactly the same way.

Lemma 7.6: H - H' vanishes to infinite order at S*30.

Proof: It suffices to work locally. Using the coordinates of Lemma 7.5,

given k > 0, there exists a function f E C"(R x VI) and 6 > 0 such that

z o exp(tH ) - z o exp(tH,) = rkf(tp)

Hence

z 0 B - z o A = k+l f(- 1/2, p) + cl/2 _ Fl/2

so that

(7.22)
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d(z o B - z o A) = (k + 1) Fkf dr +

1 -1/2 3f + 1/2(C 1/ 2 dc - F1/2dr)

Each term on the right can be bounded by r k

to infinite order on S*92. Analogous

Hence B*dz - A*dz vanishes

results hold for the functions F, i,

Together with Lemma 7.5, this

d(H - H') =

vanishes to infinite order at S*30.

function vanishing to

Lemma 7.7:

implies that

A*a - B*a

This implies that H - H'

infinite order at S*3Q.

Given a function f E C"(B*9Q) and k > 0, there exists M, N > 0

such that when n > N,

if a B

where this inequality is valid for all points in X(V').

Proof: Pull f back to V .

exist constants K, K'

D(p, p') = jz(p)

Since f has bounded derivatives on V

> 0 such that when p,

- z(p')J

pI E VI and

+ I r(p) -

m
+ (p)

i=1

satisfies D(p, p') < K', then

if(p) - f(p'

- ip) + LPi(p) - cip(P)I

< K D(p, p') .

Fk+1d f

$1.

is a C

0 pn o Ai 0 < Mr k i <n

, , there

(7.23)

2
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Since X(V') is a neighborhood of 0, it contains the image of pn for n

sufficiently large. Hence pn may be lifted to a path segment in V'. Next,

the winding number of the sequence defined by pn' n n o B, .*., pn o B n-l

is N = 1. Thus, in Lemma 7.5, 6 may be chosen so that n < 6 (r o pn

for all n. Hence

D(B o pn, A o Pn) < M rk i <n

and the estimate follows.

Lemma 7.8: Given k, there exists C such that

IH o B i Pn - H' o Ai Pn < C rk, i < n

valid for n sufficiently large.

Proof:

IH o B - H' o A 1 < |H o B - H o A' + jH o A' - H' A' |

By the triangle inequal ity,

H o B - H o A iI< IQ o B i- Q o A I + IQ o B i+l - Q o BA I

and Lemma 7.7 implies that both terms on the right may be bounded by Fk

Next, by Lemma 7.6,

IH - H' I < M rk

Thus, since r is invariant under A,
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IH oA - H' o A < Mrk

Lemma 7.9: Given f E C (B*9Q), k > 0, there exists M, N > 0 such that when

n > N,

If o A o pn - f o A a an0 < M(r o pn)k (7.24)

As a corollary, this estimate will hold when f = H'.

Proof: Using the analog of Prop. 7.5 for the interpolating flows exp(tH )

and exp(tH ), it may be shown that the Poincard map 0 : s * W defined in

Section 5 agrees with the Poincard map or : W s : W s to infinite order at

3*s. Thus the path y s(r), defined in Section 5 contacts the orbit cylinder

T, to infinite order at y s(1). Since p n(s) lies on y s(s), (7.24) holds

for i = 0. Lifting pn and an to V', this implies that the quantity

D(p, p') from equation (7.23) satisfies

D(a ,n p) < M(r o p n k

But from (7.23) and the fact that r o a = 1 o pn'

D(A o pn, A a an) = D(p an) 

Thus the estimate for f follows by pulling f back to V and applying the

argument of Lemma 7.7. The extension to H' follows from the triangle

inequality and Lemma 7.6 as in Lemma 7.9.

Together, Lemmas 7.8 and 7.9 imply



65

n-i n-i
H o B o pn= I H' o A 0 pn

i=1 i=0

n-i
= H' o A 0 an (7.25)

i=0

modulo errors of order (r)k

From this point, the analysis may be restricted to S x [0, E).

s is defined so as to restrict to the arclength coordinate on S x {0}.

So on S1 x [0, ), (s, r) will form a system of coordinates. For (s, r)E

S1 x [0, c), define z(s,r) to be the flow time along Hr from (0, r) to

(s,r). Where z is well defined, z and r form a set of Darboux coordinates,

with w = dz A dr. Unfortunately, the form dz is only well defined on

0 < s < .. Set

1(r) = z(l,r).

Then d(z/I) is a globally defined one form on S x [0, e). Set

r
J(r) = I(t) dt

0

and define the 1 form ' by

= J(r) d(z/I) + L. ds . (7.25)

Since w = dz A dr, d6' = -o . So let F' be defined by the conditions

dF' = ' - A* '

F' =0

r = 0
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From (7.21)

F' = 2/3 r3/2 + J~r3 r1/2 + s o A - s

Next since

fx1 =S x{0} 0

S x{0}

=

S= k 1Lds =

a - S' is exact. So by the argument of Lemma 7.2, there exists

G E C (S x [0,E)) such that

H' = F' + G 0 A - G

So

n H' o A1 (sr) = n[(2/3)r 3/2

i=0
_ L rl'/2I + s o An - s + G o An - G .

Now, let (x0 ' % e n and let (y0, n0 ) be defined by (7.18), then

Lemma 7.10: Given k > 0, there exist C, N > 0 such that for n > N,

a(G o An - G)(y0 , n0 )l < C F k

Proof: Extend G to a smooth function on B, then the result follows from

Lemmas 7.7 and 7.9, and the fact that (x0 ' ) is a periodic point of B

with period n.

Similarly, given the hypotheses of Lemma 7.10
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(s o An - s)(y0 , n0 ) - Lj < C rk

so combining (7.22) with these last results,

Ln(C) = n[(2/3)r3/ 2 _ J} r p1/2] + LO (7.27)

modulo rk

where r is evaluated on any point in n'

While the functions I and J depend on the choice of r, their

Taylor series at r = 0 will be well defined. Let 70  be the transversal

section s = 0 defined in Section 5. For p E WS, let I be the return time.

of p, i.e., the time required to flow along Hr from p E -g to 0(p) E -go

The function I in Equation (7.21) is precisely the pull back of T to

S1 x [0, E). In fact, I(r) is the period of the Hr orbit defined by r = t.

The estimates in Lemma 7.7 may be used to show that a different

choice of r, say r', will change I by terms vanishing to infinite order at

3W 0 Also, one may show, along the lines of Lemma 7.9, that T. and T.'

are tangent to infinite order at J. Consequently, any ambiguity in the

function I will vanish to infinite order at r = 0. In particular, the

Taylor coefficients

dk I
k+1 d rk

are defined independently of the choice of r.

By examining I in more detail, one may show that

Lemma 7.11: Given (x0 ' 0)'
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I(r(x0 ' V) n(r(x0, o))1/2

modulo rk

(7.26)

k > 0 .

Proof: By lifting to VI, define the return time I:

polating flow exp(tH ).

il0 + R for the inter-

By Equation 5.

i(x0 ' 0) = n(w(x0 ' %))

I - I will vanish to infinite order at 3W 0 so (7.27) may be approximated

by (7.26).

Lemma 7.11 implies that I(r(x0 ' Y

defined asymptotic expansion in powers of n-2 .

(xO ) E cn has a well

Substituting this expansion

prove (7.14) for the case Q c Rmdl

(7.27)

into (7.27) will
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APPENDIX 1

CALCULATION OF THE TAYLOR SERIES OF c

Let p c S*30. Then there exists U C B*30, P c U and an

interpolating Hamiltonian c E C (U). Since r(x, ) = [EI is a defining

function for the hypersurface S'3Q, there exist functions c3, 2'

Cw(U), constant on the radii of B*30, such that

(I- r)1 + ... + (1 -r)kk + Rk+1

where R k+ is a function vanishing to order k+1 at S*30. The uniqueness

properties of interpolating Hamiltonians imply that the ck can be ident-

ified with globally defined smooth functions on S*3Q. In this section,

it will be shown that for (x, ) E S*30,

C3 = 2 (Tr (EV' V)_ 72/3

where Tr denotes the second fundamental form of the hypersurface M.

Let (x0 ' F) E S*M. This point defines an oriented geodesic

0 in M0 and a bicharacteristic, J, in S*3Q. Using the Riemannian struc-

ture on 30, define an orthogonal section, W0 C M2 , to 0 at x0 (use the

exponential map). W0 induces a transversal section, W to _ in B*3Q.

Let qi ... , q2m be coordinates on the submanifold 3W0=

W0 n S*M2. Extend these to a neighborhood of (x0 ' F; ) in B*30 by requir-

ing them to be constant on the bicharacteristics of S*32, and constant

on the radii of the fibers in B*30. Take s to be the arclength coor-

dinate along the bicharacteristics of S*yM extended to be constant in the

radial direction and normalized by the condition:
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= 0

Then (q., s, r) form a local coordinate system of B*92 in a neighborhood of

(x0 ' V'

Let a(a) = (x' c 0 a ), a < 1. In coordinates a is given by

r(a) = a ; (s, qi) = 0

Let S(a) = B o ct(a). Calculate s o (a) using the fact that B =

exp(-Q1/2H ).

s o0 (a) = s - 1 /2H s + 0(l-a)

where the terms on the right are
evaluated at a(a).

In terms of C ,

(W)1/2 = (1 - r) 1/2 )1/2 + 0(1 - r) .

Next since

d = - dr + 0(1 - r)

H = - 1Hr + 0(1 - r)

= - c + 0(1 - r)

Hence

H s = - + 0(1 - r)

Combining these formulas gives

s o (a) = (1 - a)1/2 )3/2 + 0(1 - a)

s liw
0
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Alternatively, s o S(a) may be calculated in terms of the

curvature of aQ. Use the Riemannian metric to introduce a normal fibra-

tion of 30 over 0 in a neighborhood of x0. Let S measure the arclength

along 0 with S(x0 ) = 0. Extend S to a neighborhood of x0 by requiring

that S be constant on the fibers of the normal fibration.

Let 6(a) be the projection of (a) onto 3Q. Let T(a) be the

arclength along 6 from x0 to 6(a). 6 is a planar curve, and T(a) has an

expansion in powers of (1 - a)1/2 with coefficients determined by the

curvature of . It will be shown here that:

T(a) - S o 6(a) = 0(1 - a),

S o 6(a) - s o S(a) = 0(1 - a)

so that r can be determined by the expansion of T(a).

Proposition Al.l: T(a) - S o 5(a) = 0(1 - a)

Proof: The curve 6 is tangent to the geodesic 0 up to second order at

x0. Hence S may be approximated on 6 by the arclength T, measured along

8 with errors that are third order in T.

S o 6(a) = T(a) + 0(T3)

= T(a) + 0(1 - a)

Lemma Al.2: The curve may be smoothly parameterized by the coordinate

s. Moreover, if the bicharacteristic 0 is parameterized by s, then the

two curves have second order contact at s = 0.
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Proof: There exist coordinates $ , ... , $2m, z, such that B is given

by (p., z, ) + ($, z + Cl/2, c). The path a is defined by

z = 0; $ C = (() with $ (() = 0(c)

And 3 is defined by

$ , C = 0

In these coordinates, is defined by

z= Cl/2.

or equivalently,

= ((2)

c = z

Proposition Al.3: S o S(a) - s o S(a) = 0(1 - a).

Proof: A1.3 follows from Al.2 and the following:

Regard S as a function on B*3Q. The level sets of S and s

define 1 parameter families of transversal sections of J in S*9Q, Ws and

W' respectively. Let p(s) E J denote the point of intersection of 0 and

W So

Claim: T W = T W' (Al.1)

Proof: The Riemannian metric may be used to identify T*90 with T3Q. In

this identification, the symplectic form may be written in terms of the
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the metric as

W(X, Y) = <Xn, v > - (Al.2)
n

where Xv and Xh denote the vertical
and horizontal components of X.

Equation (Al.2) may be used to identify T(S) Ws and T(S)

symplectic orthocomplement of the space

Equation (Al.1) implies that

S(qi, s) = s + O(qi)

the result now follows from Lemma Al.2.

Combining equations, conclude that

T(a) = (1 - a) 1/2 3/2 + 0(1 a)

y

/
x

W' as the

(Al.3)

cos$ = a

Figure Al.3
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Parameterize the planar curve 6 by its arclength T. Let K(T)

denote the curvature of 6 as a function of arclength. Set

T

6(T) = K(t) dt

0

Then

T

X(T) = cos(0(t)) dt

0

T

Y(T) = sin(e(t)) dt

0

Compute the low order terms of X, Y:

cos(6(T)) = 1 - 2  + 3(T )

X(T) = T = K2T3  + 0(T4 )
6

sin(e(T)) = KT + 0(T2)

Y(T) = +0(T 3 )

tan$ = = (1/2) KT + 0(T2)

= (1/2) (1 - c)1/2 K(c1 )3/2 + 0(1 - a)

while

tan$ = 2 21 /2 = (2)1/2(1 - a)1/ 2 + 0(1 - a)

Hence

= 2(K)-2/3
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Recall that if Tr denotes the fundamental form of Do at x0 '

Then K is precisely K = Trx 0 E ). Thus we have shown

i1 (x0 9 %) = 2(7 0 O' E -))2/3
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APPENDIX 2

THE TANGENT SPACE TO THE ORBIT CYLINDER

Consider the orbit cylinder

Tr : SI x [0, s) -+ B*30

defined by the approximate interpolating Hamiltonian r. As an application

of the computation of Appendix 1, in this section, we will compute the

tangent space of this orbit cylinder for points p on the closed bicharac-

teristic Z.

In particular, if p E J, then Tp(Tr) will be spanned by S, the

tangent vector to 3 and a second vector transversal to S*90. This

second vector may be taken to be R + v, where R is the radial direction

of the fibers, and v E TP S*90.

Let r(x, ) = 1 1. Then the Hamiltonian vector field H

generates the geodesic flow on B* O. Let TG and TB denote the periods

of the closed bicharacteristic D considered as a closed orbit of exp(tH r)

and exp(tHr) respectively. Let G and F denote the fixed time maps

G = exp(TG Hr)

F = exp(TB Hr)

The vector, v, will be determined, modulo S by the equation

(1 - DG)v = w (A2.1 )
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where w e T PS* is a tangent vector determined, modulo S,. by the

equations

L(w, u) = u . S for all u e T p(S*30)

and

0

f= C [exp(tHr) dcl]dt

TG

If p E T, then p is a fixed point of both G and F. Consider

the symplectic linear map

DG : T (B*30) -T*(B*0)
p p

and let V be the generalized eigenspace associated to 1. The non-

degeneracy condition on C implies that V is precisely two dimensional

(see [AMl], pages 524, 573-576). Indeed, V is readily identified as

V = span{R, S}

As in Proposition Al.3, let V denote the symplectic orthocomplement of

V. V is invariant under DG and since the restriction of w to V is non-

degenerate (R is transversal to S*92), V n V1 = 0 and T p(B*30) = V +

V1. In addition, the non-degeneracy assumption implies that

(Id - DG) : V - VI

is invertible.
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Analogous considerations apply to the map DF : T p(B*92)

T*(B*90). The corresponding eigenspace V' is two dimensional and is

spanned by c and some vector transversal to S*90. Most importantly,

V is Tp(Tr)d

Proposition A2.1: V' = span{S, R + v} where v E VI is defined by the

equations

DF(R) = w mod V, w E V

v = (1 - DG)~1 w

Proof: Since r,r are defining functions of S*90, both DF and DG restrict

to maps T (S*aQ) + T (S*90). Moreover, because both Hr and H flow along

the characteristics of S*30,

DF = DG mod S (on T (S*90))

Claim: DF(R) = R + w mod S, where w E V

Proof: 0 w w(S, R) = (DF(S), DF(R))

= (S, DF(R)) .

Hence R - DF(R) lies in the symplectic orthocomplement of S, i.e.

T P(S*30).

Since T p(B*32) = V + V1, there exists a unique v E V1 such that V' =

{R + v, SI, v satisfies
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DF(R + v) = R + w + DG(v)

DF(R + v) = R + v

Solving these two equations for v gives

v = (1 - DG) w

Proposition A2.3: Identification of w.

Let u E V1, then

0 = w(R, u) = w(DF(R), DF(u))

= W(R, DF(u)) + w(w, DG(u))

Since w is non-degenerate on V1, w is defined by

W(w, DG(u)) = -w(R, DF(u))

where -w(R, DF(u)) is the S component of DF(u). Given that H ~,

on S*32, this quantity is given by the following equation:

-w(R, DF(u)) =
TG

0

(exp(tHr )* u J dc 1 )

and

mod S

mod S

Hr

dt
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PART II

THE OBSTACLE PROBLEM

In the obstacle problem, consider 0 c R 3, a smoothly bounded,

compact region in R3. The objects of interest are the length minimizing

paths in R3 which bypass the obstacle Q. It is clear that these paths

will consist of geodesic segments in the boundary surface 30 joined by

line segments in R3 tangent to the geodesic segments at their endpoints.

Figure II.1

This is a variational problem with constraints that may be

analyzed by analogy with the variational problem of finding length mini-

mizing paths in a Riemannian manifold. Let (M, < >) be a Riemannian

manifold. The paths in M that are length extremal are geodesics. In

symplectic geometry, the space of oriented geodesic segments with initial

point x0 may be identified with a Lagrangian submanifold A0 c T*M.

Analogously, the corresponding space of extremal bypassing

paths in R \0 may be identified with a Lagrangian submanifold in T*R3

In the obstacle problem, however, this Lagrangian submanifold will have

singularities. These singularities may be analyzed using the normal

forms for nested hypersurfaces in a symplectic manifold.
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Section 8: Characteristics and the Space of Tangent Rays

Let (M, < , >) be a Riemannian manifold. The metric defines a

hypersurface S*M C T*M whose bicharacteristics project to geodesics on M.

In the obstacle problem, this correspondence between bicharacteristics

and geodesics may be used to describe extremal paths in R3\2.

Let 0 c M be an oriented geodesic segment. 0 will determine a

unique bicharacteristic CC S*3 C T*M. By using the Riemannian metric

to identify

T*R3  TR3

T*30 ~ TM0

there is a natural inclusion T* - T*R .

Use this inclusion to map S*M into S*R3. Continue J into S*R3

along the backward and forward rays of the S*R3 bicharacteristics passing

through the endpoints of D. The projection of this extended bicharac-

teristic is a length extremal path in R3\ 2.

The S*R3 bicharacteristics passing through S*30 are called

tangent rays (Arnold [Al]). The space of tangent rays, A, will be a hy-

persurface with singularities in the manifold of S*R 3 bicharacteristics,

ME. Given the identification, of ME with oriented lines in R 3, A will

be shown to be the space of lines tangent to 32 while the singular points

will be the lines having higher order contact.

Remark: The inclusion T*32 -+ T*R 3 is not only well defined for any

Riemannian manifold M with submanifold N, but
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Proposition 8.1: Let w, w30 denote the canonical symplectic forms on

T*R3 and T*30 respectively. Then

i*W = (i)

where

i : T*0 -+ T*R3

Proof: Given any Riemannian manifold (M, < , >), the symplectic structure

defined onTR by the identification T*R3 = TR3 is given in terms of < , >

by

w(X, Y) = <Xh' Y V> - <X v > (8.1)

where X Xh denote the vertical and horizontal components of X E TP(TR3

The proposition now follows from the fact that aQ carries the metric

induced by R3

Corollary 8.2: If wE is the canonical symplectic structure on ME then,

*

rEWE = iW30

where TrE S*Q -+ M E is the restriction of the map rE : S*R3 -+ ME and

i : S*32 -+ T*92 is the inclusion.

Proof: This follows from the fact that if j : S*R - T*R3 is the inclu-

sion then wE is defined by

*
=E E*
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where w is the symplectic structure of T*R3

Note that these results also hold for general Riemannian manifolds.
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Section 9

SINGULARITIES OF THE SPACE OF TANGENT RAYS

From Section 2, let (X,w) be a symplectic manifold, (F,G)

transversally intersecting hypersurfaces in X with defining functions

f, g. Setting J = F n G, the set K, of glancing points was defined as

K = {x E J {f,gl(x) = 01

The projections

1TF J MF

T G :J MG.

were analyzed around non-degenerate glancing points. These points were

defined by the conditions

x E K

{f, {f, g}}(x) + 0 (9.5)

{g, {f, g}}(x) + 0 (9.6)

In the obstacle problem, the region Q is not assumed to be

strictly convex. Hence, the intersecting hypersurfaces (S*R 3, T * R )

will have degenerate glancing points. Generically, for Q C R3, the

obstacle problem will require consideration of the cases where (9.5)

is relaxed to

{f, {f,g}}(x) = 0

{f, {f, {f,g}}}(x) t 0 (9.5')



85

and

{f, {f,g}}(x) = {f, {f, {f,g}}}(x) = 0

i* (d{f, {f,g}}) t 0

{f, {f, {f, {fg}}}}(x) t 0 (9.5")

Geometrically, these conditions correspond to the cases where

the bicharacteristic of F through x, Zx, contacts G to second and third

order at x. In each case, condition (9.6) will continue to imply that

G J -+ MG has a simple fold singularity at xE K and that K is a smooth

hypersurface of J in a neighborhood of x. For the projection 7F, condi-

tion (9.5') implies that '7F : J + F has a cusp (S1 ,1,0) singularity

at x, while (9.5") implies that lTF has a swallowtail singularity

(Sl ,1,1,) at x.

Definition: Points satisfying (9.4), (9.5'), (9.6) are called inflection

points while points satisfying (9.4), (9.5"), (9.6) are called swallow-

tail points.

Melrose has shown [M2] that there are formal obstructions to

the existence of a normal form of the pair (F, G) around a cusp or

swallowtail point. Fortunately, in the obstacle problem, one may examine

the space of tangent rays, A, by studying the nested hypersurfaces

(S*R3, S R . In the general setting, this corresponds to studying the

nested pair (F, J). For a pair of transversally intersecting hyper-

surfaces, (F, G), the nested pair (F, J) admits the following normal forms:
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Theorem 9.2: If x E K, then there exist Darboux coordinates (p., q.)

such that

if x is a non-degenerate glancing point of (F, G),

F = {q 0 , 0}

J = {p2 + p = 0; q= = 01

if x is an inflection point of (F, G):

F = {qO = 0}

J= {qO = 0; p0 + po p, + q,= 0}

finally, if x is a swallowtain point of (F, G) and

F = {q0 = 0}

J = {q = 0; p4 + p 92 + p0 ql + p,= O

For non-degenerate glancing points, Theorem 9.2 was the first

step in classifying the pair (F, G) in [Ml]. Inflection points were

analyzed in the contact category in [M2]. Finally, the swallowtail case

was first considered by Arnol'd in [Al], who proved Theorem 9.2 over the

category of formal power series. This result was extended to the

category of smooth diffeomorphisms by Melrose and the author in [MMag].

These normal forms are used to analyze the singularities of

A, the space of tangent rays in M Recall that A is the image of S*9Q

under the projection
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TrE : S*R3 + ME

In Theorem 9.3 below, the space of tangent rays, A, is identified as the

space of lines tangent to 30. A tangent ray, 2, is said to be an asymp-

totic or biasymptotic tangent ray if Z is tangent to 32 to second or third

order respectively.

Theorem 9.3: (x, *) E 3 is a glancing point of (S*R3, T R3) iff

(x, E) E S*30. Hence, (x,E) is a glancing point iff the oriented line

= rE(x,E) is tangent to 30 at x. (x, ) is a non-degenerate glancing

point iff k is simply tangent to aQ, an inflectional point if 2 is an

asymptotic ray, and a swallowtail point if Z is a biasymptotic ray and

30 is in general position.

Proof: Let (x, E) E S*R3 . Locally, about x, 30 may be considered as a

graph over its tangent plane. There will exist a function $ E C (R2

with $(O) = 0 and &(0) = 0 such that 32 is defined in R3 by

q3 =(q q2)

for some choice of orthogonal linear coordinates on R3. The qi's induce

canonical Darboux coordinates (q., p.) on T*R3. In these coordinates,

G = q3 - (q, q 2 )

E(x, ) = 1/21El = 1/2 p2

are defining functions for T*R3 and S*R3 respectively. Calculate

Hamiltonian vector fields for E and G
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H 
3

E 1 3q

2

HG -p3 + 1=-1 -q p

and consider the iterated Poisson bracket:

{E, {E, ... , {E,G}}. .. } (x, () = (HEKG)(x, ()

F (9.9)
F G(x + t )

dt t=O

Since G is a defining function of MQ in R 3, from (9.9), k = 1, it follows

that Z is tangent to a 2 iff (x, ) E S*aQ and that S*30 is precisely the

set of glancing points of {S*R3, T R 3. Note also, that Equations (7.5)

and (7.5') are satisfied when Z is a simply tangent or asymptotic ray

respectively. If Z is a biasymptotic ray, then

{E, {E,G}} = {E, {E, {E,G}}} = 0

{E, {E, {E, {E,G}}}} = 0

but iS*a2(d{E, {E,G}})t 0 may or may not hold. In general, it must be

assumed as an additional hypothesis. Hence, the assumption of general

position.

Next, let (x, ) E S*3Q. E may be assumed to be E = dq,. Then,

{G, {E,G}}(x, ) = -1

Consequently, (9.6) is satisfied at every glancing point of {S*R 3, TR 3}.

Remark: A path, p, in R3 \2 is said to be locally length minimizing if
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every finite segment of p is length minimizing.

Corollary 9.3: A locally length minimizing path cannot contain an

asymptotic ray.

Proof: From Theorem 9.2, an asymptotic ray is the image of an inflectional

point (y, ) E S*30. Equations (9.5) and (9.9) imply that the curvature

of aO in the direction E is concave near the point y. Thus, if the curve

p leaves 3Q along an asymptotic ray, then it will be possible to define

comparison curves having shorter length.

Figure 9.1

The normal forms in Theorem 9.2 imply that

Theorem 9.4: Let (x, E) E S*9Q and set Z = Tr E(x,) C ME If (x,E) is

a non-degenerate glancing point of the pair (S*R3 T* R3) , then A c ME

is a smooth hypersurface in a neighborhood of Z and there exist Darboux

coordinates (ql, q2 ' P1 ' P2) defined in a neighborhood of Z E ME such

that

Aiyi{q = 0

Similarly, if (x, E) E Q is a cusp point, then 7rE has a cusp
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singularity at Z and there exists Darboux coordinates (q1 , q2 ' P1 ' P2)

such that

A = {pl, q, ; p3 + p1 pO + q has a double root for some p0 '}

Finally, if (x, ) S* 2 is a swallowtail point, then TrE has a swallowtail

singularity. Provided that the pair {S*R 3, T* R3} is in general position,

there exist Darboux coordinates (ql , q2 5 P1 ' P2 ) such that

4 2
A = {q, q2 ' P1' P2  p0 + p0 p1 + q 2 P0 + p2

has a real double root.}

Proof: These normal forms follow directly from the normal forms of

Theorem 9.9. In each case, the projection irE : S*R3 -+ ME is given by

Since ql, q2 ' Pl' P2 are constant on the bicharacteristics of

S*R3 and the pull back of w to S*R3 is given locally as

dql A dpl + dq2 A dp2

ql, q2 ' pl' p2 form Darboux coordinates in ME.
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Section 10

THE LAGRANGIAN SUBMANIFOLD OF FALLING RAYS

Definition: Let (X,w) be a symplectic manifold. A submanifold i L -X

is Lagrangian if dim L = 1/2 dim X and i*w = 0.

Let x0 E R3 \. Define rx0 c S*R 3 as

rx0 = {(x , E) E T*R3 : = 1; x = x0 + tE. t E R}

The tangent rays passing throuh x0 may be identified with the image under

WE of rx0 n S**.

Proposition 3.1: Let Z E A C ME be a tangent ray touching M2 at y0 E

and passing through x0. Then there exists E0 Sy* with Z = 1E(YO' %)
y0

If Z is a regular point of A, then 1x0 is transversal to S*aQ at (y0, E '

That is, rx0 n S*a2 is a smooth 1-dimensional submanifold of S*92 in a

neighborhood of (y0, n0 ).

Proof: Let r ; T*R3 - R3 be the canonical projection. Note that for

(x,) E rX0, X X0, the projection 7 : rx0 -+ R3 is regular. This implies

that S*R3 A 1x0 at (y0 ' s E

Next, since z E A is a regular point, (y0 , Eo) is a non-degenerate

glancing point of (S*R3, T R3). Let T be the S*R3 bicharacteristic

passing through (y0, %). Then T is contained in Px0, 2 is tangent to

S* R3 , but, by the non-degeneracy assumption, T is not tangent to S*MQ.

Thus
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T (S* R3) c T (' + T *(YO, E) a & (yog E)F) + y )(Sg

so that rx0 f S*90 at (y0, n0) in S*R3

Corollary 3.2: Since 7 : rx0 - R3 is regular at (y0 ' 0), the tangent

rays through x0 trace out a smooth curve S in a neighborhood of y0 E M

S is Tr(S*3o n rx0)'

At each point y E S, the tangent ray, Ly, passing through x0 and y

determines a unique oriented geodesic in M. This geodesic is just the

natural continuation of ky into the obstacle surface, Do. Using the

correspondence between oriented geodesics and the bicharacteristics of

S*90, the one parameter family of oriented geodesics defined in this way

may be identified with Ax0, the 2-dimensional manifold formed by the union

of the S*9& bicharacteristics passing through S*9o n 17x0 .
Let U c 90 be the domain covered by the geodesics. As long as

U is sufficiently small, each point x e U lies on a unique geodesic in the

1-parameter family. The tangent space at x to this geodesic determines

a tangent ray. This tangent ray is called a falling ray associated to

x0. Let Ax0 c A denote the space of such falling rays.

Proposition 3.3: Ax0 is a Lagrangian submanifold of ME.

Proof: Ax0 is the image under E of the two-dimensional manifold .

Any two-dimensional submanifold that is the union of the bicharacteristics

of a hypersurface in a four-dimensional symplectic manifold will be

Lagrangian. Hence is a Lagrangian submanifold of r*MQ. Thus the
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result follows from Corollary 8.2.

Note also that Corollary 8.2 implies that 7T E maps bicharacteristics of

S*302 to bicharacteristics of A c ME.
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Section 11

SINGULARITIES OF Ax0 AROUND A BIASYMPTOTIC RAY

The singularities of Ax0 will occur at the same kind of points

as the hypersurface A, at points corresponding to asymptotic and

biasymptotic rays. From Corollary 9.3a, asymptotic rays cannot be incor-

porated within length minimizing paths. Biasymptotic rays, however, may

appear in length minimizing paths. For this reason, it is important to

examine the singularity of Ax0 about a biasymptotic ray.

The major consequence of Theorem 9.3 by Arnol'd in [Al] is that

when the obstacle Q and x0 E R3 \ Q are in general position, Ax0 has,

close to a biasymptotic ray, a singularity diffeomorphic with the singu-

larity of the open swallowtail at zero. (This result was at the level of

formal power series.) The extension of Theorem 9.2, due to the author

and Melrose, extends this result to the category of smooth diffeomor-

phisms. The open swallowtail is the set A0 c R4

A0 = "P 1 ' P2 9p, 9 q2 ) e R4 -

5 3

(p 5 + 3 + 2 + P2P0 + 2

has a root of multiplicity > 3}

Let Z E A be a biasymptotic ray. By Theorem 2.3, in a

neighborhood of Z, ME is symplectomorphic to R4 by a map carrying A to

the surface:
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9 , 9 -= R 4 : p 4 2 q p
=(p, p2' q1, q2 ) e p0 + p0 P1 + q0p0 + p2

has a double root}

[ is the product of the ordinary swallowtail in R3 with R. Its projection

into (p1, p2 9q2) space is drawn in Figure 11.1. The lower edges J+, -

correspond to asymptotic rays in A while the swallowtail tip corresponds

to biasymptotic rays.

2

dq

q2

J+

Figure 11.1

In particular, [ is self-intersecting along the two-dimensional

surface I, defined by

I = = 0 ' 2 27

Points in I correspond to rays that contact 3Q at two points. The reduc-

tion of Ax0 to normal form begins with a description of the bicharacter-

istics of _. In [Al], Arnol'd showed that the bicharacteristics of

were given by translations along the q, axis of curves defined by the

conditions:
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5 3 2
(0) = + +2p0 + p3 2 p2 0 + -- has a root of multiplicity>3.

(11.1)

2. p1 = c - an arbitrary constant.

Alternatively, the bicharacteristics are given in parametric form by

p, = c; q2 -4 - 2c ; p2 = 3 4 + cE2

q, = -12/5 5 2/3 c 3 + K (11.2)

where c and K are constants.

Lemma 4.1 (Arnol'd): A Lagrangian submanifold, A, in general -position

lying on I can be locally reduced to normal form

A0 = {(p, q1 P2, q 2) ; 0 has a root of multiplicity > 3}

Proof: Since A is composed of characteristics of 1, it suffices to

reduce to normal form a 1 parameter sub-family in general position in

the two parameter family of Equation (11.2).

For such a family, K may be taken to be a smooth function K(c). Then the

symplectomorphism defined by

(plt p2 , 92 q2) l' 2' q1 - K(p1), p2 9q2)

carries A to normal form.

While the swallowtail has a self-intersection set I = {q2 = 0;
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p2 /4}, A0 is not self-intersecting. However, A0 does intersect I

in two curves, I ,+' 10,-
defined by the condition = -(-c/2)1/2 in

Equation (11.2).

1 has two families of bicharacteristics passing through I ,+'

One family corresponds to A The other defines a second Lagrangian

submanifold A 1. A1 intersects A0 along I +'

Sketch of A0 showing

bicharacteristics and

\10,+ drawn in.

Figure 11.2

Sket

ing

0,4
/

/

A /*1

ch of A0, A1 show-

intersection line

Figure 11.3
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In particular, I,+ and I ,- describe families of falling rays in Ax 0

that are tangent to Ax0 at two points.

Remark: Note that A1 will also intersect I in two curves I I

Note also that I = I+0
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Section 12

EXAMPLE: ANALYSIS OF LENGTH MINIMIZING PATHS AROUND A

BIASYMPTOTIC RAY

Consider the situation illustrated in Figure 12.1.

The geodesics emanating from the contact line, S, establish

a map from U c 30 to the Lagrangian submanifold Ax 0 C ME. We assume

that y0 E U is mapped to a biasymptotic ray in Ax0 and that the region

lying between the curves J- and J+ in Ax0 corresponds to a region of

concavity as shown in Figure 12.1.

Following the geodesic from y E S to y' E 1 ,the length

minimizing path will follow one of two routes, it can either continue

on along the geodesic into the floor of the valley, pv, or it can jump

across the valley along the fallong ray tangent to the right hand ridge

at y' and the left hand ridge at y", pr* At y", the falling ray defines

a geodesic in 30 continuing the path into 3Q.

By simple comparison arguments, a length minimizing path may

not travel through the region of concavity bounded by J+ and J_. Thus

the interesting path is the one crossing the valley via the falling ray,

Pr'-

This path is described in terms of the Lagrangian submanifolds

A0, A1. The path of tangent rays defined by pr follows the A bicharac-

teristic contained in A0 up to the intersection line 10,+. Then it

leaves 10,+ by the A bicharacteristic contained in A1. Since the
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bicharacteristics of A determine bicharacteristics of S* Q, this

description actually specifies pr'

- 10,+
0,-9

yI

rK

py
v

S
x

0

Figure 12.1
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A0

A 1

Sketch of A0, A1,

showing intersection

line I0,+ and the

bicharacteristics

corresponding to p
and pr'

Figure 12.2
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