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ABSTRACT

This thesis (1) characterizes the gender and skin type distribution of IJB-A, a government
facial recognition benchmark, and Adience, a gender classification benchmark, (2)

outlines an approach for capturing images with more diverse skin types which is then
applied to develop the Pilot Parliaments Benchmark (PPB), and (3) uses PPB to assess

the classification accuracy of Adience, IBM, Microsoft, and Face++ gender classifiers
with respect to gender, skin type, and the intersection of skin type and gender.

The datasets evaluated are overwhelming lighter skinned: 79.6% - 86.24%. IJB-A
includes only 24.6% female and 4.4% darker female, and features 59.4% lighter males.
By construction, Adience achieves rough gender parity at 52.0% female but has only
13.76% darker skin. The Parliaments method for creating a more skin-type-balanced
benchmark resulted in a dataset that is 44.39% female and 47% darker skin. An
evaluation of four gender classifiers revealed a significant gap exists when comparing
gender classification accuracies of females vs males (9 - 20%) and darker skin vs lighter
skin (10 - 21%). Lighter males were in general the best classified group, and darker
females were the worst classified group. 37% - 83% of classification errors resulted from
the misclassification of darker females. Lighter males contributed the least to overall
classification error (.4% - 3%).

For the best performing classifier, darker females were 32 times more likely to be
misclassified than lighter males. To increase the accuracy of these systems, more
phenotypically diverse datasets need to be developed. Benchmark performance metrics
need to be disaggregated not just by gender or skin type but by the intersection of gender
and skin type. At a minimum, human-focused computer vision models should report
accuracy on four subgroups: darker females, lighter females, darker males, and lighter
males.

The thesis concludes with a discussion of the implications of misclassification and the
importance of building inclusive training sets and benchmarks.

Thesis supervisor: Ethan Zuckerman
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1. Introduction

Whoever codes the system, embeds her views.

1.1 Unmasking Bias

Artificial Intelligence - which is infiltrating society, helping determine who is hired,
fired, granted a loan, or even how long someone spends in prison - has a bias problem.
The scope and nature of this problem is largely hidden. Selecting training data to fine-
tune artificial intelligence systems is a pivotal part of developing robust predictive
models. However, bias reflecting social inequities in training data can embed unintended
bias in the models that are created. Furthermore, benchmark datasets are used to assess
progress on specific tasks like machine translation and pedestrian detection.
Unrepresentative benchmark datasets and aggregate accuracy metrics can provide a false
sense of universal progress on these tasks.

To ensure artificial intelligence works well for a given target population, we need to
evaluate the composition of training and benchmark datasets while making subgroup
performance checks part of common practice. Unaddressed, bias in training data can
result in algorithms that perform poorly on underrepresented groups. Unaltered, skewed
benchmarks can mask performance difference between genders, ethnicities, and other
demographic categories. In the case of computer vision powered by artificial intelligence,
skewed benchmarks and aggregate metrics can mask performance disparities between
individuals with different phenotypic features like skin type and facial geometry. This
thesis focuses exclusively on facial analysis in computer vision to demonstrate the more
general need for inclusive benchmark datasets and disaggregated accuracy metrics across
a range of human-focused automated tasks.

The use of automated facial recognition in particular provides an example where a
demographic group that is underrepresented in benchmark datasets is nonetheless
subjected to frequent targeting. At least 117 million Americans are included in law
enforcement face recognition networks. A yearlong research investigation across 100
police departments revealed that African-American individuals are more likely to be
stopped by law enforcement and be subjected to facial recognition searches than
individuals of other ethnicities (Garvie, Bedoya, & Frankle, 2016). Some facial
recognition systems have been shown to misidentify people of color, women, and young
people at high rates (Klare et al., 2012). False positives and unwarranted searches pose a
threat to civil liberties. Monitoring phenotypic and demographic accuracy of these
systems as well as their use is necessary to protect citizen rights and keep vendors and
law enforcement accountable to the public.

Automated facial recognition is not the only area where artificial intelligence is being
applied to computer vision. Self-driving cars are equipped with pedestrian tracking
systems that partially rely on computer vision to prevent automotive fatalities. Ensuring
pedestrian tracking works well on all subjects is not just a technical challenge but also a
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public safety imperative. Beyond the automotive industry, artificial intelligence is
increasingly used in healthcare, employment decision-making, and government
surveillance - parallel problems may exist in these fields where judgments made about a
subgroup of the population are less reliable than judgments made about a majority group.

Given the high stakes, companies, research communities, and foundations are dedicating
substantial resources to explore algorithmic fairness. Algorithmic fairness is an
intersectional domain that spans many areas including computer science, ethics, policy,
and civics. Institutions like Data & SocietyI and Al Now2 are investigating the social
issues stemming from the rise of data-centric technological advances. The Fairness
Accountability and Transparency in Machine Learning (FATML) research community3

supports computer scientists and social scientists who are grappling with the social
impact of machine learning, the leading approach being used in artificial intelligence. The
John S. and James L. Knight Foundation, Omidyar Network, LinkedIn founder Reid
Hoffman, and others announced a $27 million Ethics and Governance of Artificial
Intelligence Fund focused on artificial intelligence research for the public interest.4 The
Partnership for Al is bringing together industry, research, and civic actors to provide peer
support in creating ethical artificial intelligence.' The unifying goal of these initiatives is
to build theoretical frameworks and best practices for developing technical systems that
minimize disparate impacts or inadvertent discrimination.

Because algorithmic fairness is based on different contextual assumptions and
optimizations for accuracy, this thesis aims to show why we need rigorous reporting on
the accuracy rates on which algorithmic fairness debates center. The work focuses on
increasing phenotypic and demographic representation in datasets and algorithmic
evaluation. Inclusive benchmark datasets and subgroup accuracy reports will be
necessary to increase transparency and accountability in artificial intelligence. For
human-focused computer vision, I define transparency as providing information on the
demographic and phenotypic composition of training and benchmark datasets. I define
accountability as reporting algorithmic performance on demographic and phenotypic
subgroups and actively working to close performance gaps where they arise. Algorithmic
transparency and accountability reach beyond technical reports and should include
mechanisms for consent and redress which I do not focus on in this thesis. Nonetheless,
the findings from this work concerning dataset representation and algorithmic evaluation
provide empirical support for increased demographic and phenotypic transparency and
accountability in artificial intelligence.

https://datasociety.net/

2 https://artificialintelligencenow.com/
4 http // Wig4jats gencenow.com/

4http ///wiiffAuhefigion.org/press/releases/knight-foundation-omidyar-network-and-linkedin-founder-
https://knightfoundation.org/press/releases/knight-foundation-omidyar-network-and-Iinkedin-founder-

reid-hoffman-create-27-million-fund-to-research-artificial-intelligence-for-the-public-interest
5 https://www.partnershiponai.org/
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1.2 Full-Spectrum Inclusion: Curation, Testing, and Reporting

Left unchecked, algorithms can reproduce structural bias and manifest discrimination. To
as suitability for real world use, high-impact algorithms will require ongoing monitoring
throughout their lifecycles. Checking for structural bias should be part of the design,
development, deployment, testing, and maintenance of any systems that have profound
consequences for the general public.

For machine learning algorithms that rely on training examples, data is destiny. Biased
data that is not repaired can lead to biased results. Full-spectrum curation involves
collecting diverse data that is inclusive of a target population for a task at hand. Full-
spectrum curation also necessitates continual interrogation of assumptions about
representation. We cannot assume data collected from one demographic group can be
extrapolated to other groups. Even within a demographic group, we need to account for
intragroup variation. For instance, race is a common demographic category in the United
States. However, people who self-identify with the same race can exhibit a range of
phenotypic features such as skin color and facial geometry. In computer vision, full-
spectrum curation for facial analysis tasks must rigorously attend to intragroup variation
as well as intergroup differences.

Despite our best efforts, there will always be unanticipated failure cases. The complement
to full-spectrum curation is full-spectrum testing. Full-spectrum testing provides an
opportunity to catch errors or inaccuracies that were not previously considered. These
failures can provide valuable insights into ways to improve outcomes. More inclusive
benchmark datasets will facilitate full-spectrum testing.

Ideally, full-spectrum curation and testing explicitly attend to individual differences to
create technology that works well for all of humanity. In reality, reflecting the full
breadth of human variation in a single training set or benchmark is challenging and not
always desirable. Creating group-specific datasets can at times yield more accurate
results. Sparse and coarse data for historically excluded groups can also pose a challenge
for full-spectrum curation and testing. Because of challenges with data collection and
representation, transparency about the composition of training sets and the nature of
benchmarks need to be reported for high-impact algorithms that effect areas like
employment, health, and security.

While full-spectrum curation and testing are guiding ideals, in practice, full-spectrum
reporting is a process that can help mark progress towards the ideal of full-spectrum
inclusion. Generalizability is a common goal for artificial intelligence. Artificial
intelligence practitioners aim to create robust systems that can work well on a given task.
When a face detection algorithm is created, the goal is for the algorithm to work well on
any human face. Even if the goal of generalizability is not met or demographic
performance varies, technology such face detection software is presented as general
purpose. This assumption of generalizability risks masking important limitations that can
hide inadvertent discrimination. In this thesis, I understand "discrimination" in terms of
disparate impact. Intent is not essential for a system to discriminate - it merely has to
produce disparate impacts for different social groups to be discriminatory. Echoing
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previous calls for transparency in the use of algorithms6 (Crawford et al., 2016; O'Neil,
2016), high-impact algorithms need to have publicly available reports that document
potential for disparate impact and provide test results on group specific benchmarks
(Garvie et al., 2016).7

1.3 Intersectional Benchmarking

One way to bring increase transparency in artificial intelligence is to examine datasets for
bias. For automated facial analysis tasks like gender classification, benchmark datasets
exist to assess performance. However, as this thesis will highlight, existing facial analysis
benchmarks are not always reflective of target populations and do not explicitly attend to
demographic or phenotypic performance. We need to develop more robust benchmarks
that better reflect the true performance of human-focused computer vision algorithms. In
this thesis, I present the need for subgroup performance reports that can illuminate
disparities hidden in aggregate performance metrics. The goal of full-spectrum testing is
to assess bias that can lead to social identity based discrimination. Prior work has shown
that if a facial analysis algorithm works well on male faces one cannot assume it works as
well on female faces (Ngan & Grother, 2015).

Still, since individuals embody multiple social identities, subgroup analysis should not
stop at evaluating one social identity in isolation. Instead, the intersection of identities
should also be examined. KimberI6 Crenshaw introduced the term "intersectionality" to
describe how intersecting identities like gender and race interrelate and can result in
unique dimensions of discrimination not fully captured by gender or race alone (Collins,
2015). For example, roughly half of adults have the social identity of being a woman in
the United States. While all women may experience some form of sexism -subpar
treatment based on perceived gender- the experience of being an Asian-American
woman, an African-American woman, or a White woman is not the same. Thus, the
experience of one should not be substituted for another, nor should the experience of one
group be used to reflect the experiences of all women or all people.

In machine learning, training data provides an algorithm with experience. Benchmark
data is used to validate an algorithm's suitability for use in the real world. Since an
algorithm learns to represent the world based on the data it is trained on and benchmarks
are meant to reflect real-world scenarios, I apply the social science lens of
intersectionality to computer vision to increase rigor in the evaluation of algorithmic
performance. Crenshaw's argument for intersectional analysis as it relates to cases of
discrimination in a legal context (1989) informs the curation of data and the approach to
algorithmic evaluation used in this work. I examine the intersection of the social

6 In her book Weapons of Math Destruction, Cathy O'Neil talks about how WMDs -widespread,
mysterious, and destructive- algorithms are intentionally obfuscated by industry players and the need to
increase public awareness about their use and impact

7 In the "Perpetual Lineup Report" , devoloping demographic specific acuracy benchmarks is among the
salient recommendations to provide oversight to the use of automated facial analysis by law enforcement.
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identities of gender and nationality, and I also explore the intersection of the social
demographic of gender and the phenotypic attribute of skin type. Because computer
vision algorithms analyze images and for a given nationality, race, or ethnicity there can
be many visual differences within the social group, I explore skin type as a physical
feature that can signal social identity.

An intersectional approach to algorithmic performance evaluation leads to more nuanced
questions. Instead of merely asking "if a facial analysis algorithm works well on male
faces, does it work as well on female faces?", we move to questions like "if a facial
analysis algorithm works well on lighter female faces, does it work as well on all female
faces or darker female faces?" Benchmarks that lack demographic and phenotypic
diversity can make these questions difficult to answer due to a lack of representation.
Without knowing if our facial analysis algorithms achieve an agreed upon threshold of
performance for intersectional subgroups, we risk creating systems that are only
optimized for individuals who are best represented in existing training and benchmark
datasets. Intersectional benchmarking as presented in this thesis will enable researchers
and practitioners to better assess our progress on creating facial analysis algorithms that
work well on a larger portion of humanity.

1.4 Algorithmic Justice League: Fighting the Coded Gaze

Alongside the research efforts presented in this thesis, I founded the Algorithmic Justice
League (AJL) to help increase transparency and accountability in artificial intelligence.
The goal of AJL is to create a world with more inclusive technology by fighting "the
coded gaze", my term for bias in artificial intelligence that can lead to exclusionary
experiences or discriminatory practices. The coded gaze is a view that posits any
technology created by humans will reflect individual or collective values, priorities and if
unchecked, prejudices. To address bias, the coded gaze must be acknowledged. Exploring
the coded gaze can inform ways to make artificial intelligence more inclusive.

AJL fights the coded gaze through a bias-busting strategy that (1) highlights bias by
raising public awareness on the shortcomings of artificial intelligence through media
production, public talks, and exhibitions, (2) identifies bias by conducting research and
building tools that practitioners and researchers can use to check datasets and algorithms
for demographic and phenotypic bias, and (3) mitigates bias by providing inclusive
benchmarks and best practices to create more inclusive artificial intelligence.

Highlighting Bias
To highlight bias, AJL engages in media and advocacy work concerning the need for
algorithmic fairness, accountability, and transparency. I first articulated the term "the
coded gaze" in a May 2016 Medium article that called for an Inclusive Code movement
that would eventually become the Algorithmic Justice League. Since November of 2016,
I have created explainer videos, presented an art exhibition, and given numerous talks.

8 Skin type alone does not necessarily signify membership to a specific nationality, race, or ethnicity.
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The most notable of these public outreach initiatives is a TED.com talk that to date has
received over 750,000 views and spurred public discussion about algorithmic bias.

Identifying and Mitigating Bias
Alongside consciousness raising initiatives, AJL is working on building tools to help
identify and mitigate bias with a focus on facial analysis technology. We start with facial
analysis technology because of its widespread use by law enforcement and in consumer
products. This thesis focuses primarily on identifying demographic and phenotypic bias
in face datasets. The research provides an in-depth approach for evaluating algorithmic
performance to inform strategies for mitigating bias.

1.5 Research Questions

This thesis focuses on the intersectional evaluation of face datasets and gender classifiers
with respect to gender and skin type. Because benchmarks are used to assess the state-of-
the-art for a given computer vision task, I examine the phenotypic and demographic
composition of existing benchmarks. What demographic and phenotypic groups are well
represented in these benchmark face datasets, and which groups are underrepresented? I
then focus on evaluating the performance of four gender classification algorithms (gender
classifiers) on the novel Pilot Parliaments Benchmark (PPB) created for this thesis to
explore intersectional benchmarking. Even though there are a number of automated facial
analysis tasks, for efficiency, I focus on binary gender classification, which by definition
reduces gender identity to a binary construct. The algorithms evaluated classify faces as
either essentially male or female (Fuss, 1989). In this work, the questions I address about
dataset representation and algorithmic performance are as follows:

Dataset Representation: For the IJB-A, Adience, and PPB Benchmarks

e What is the gender composition of the unique subjects in the dataset?
" What is the skin type composition of the unique subjects in the dataset?
e What is the intersectional gender and skin type composition of unique subjects in

the dataset?
e How do the intersectional gender and skin type compositions of the datasets

compare?

Algorithmic Performance: For Microsoft, IBM, Adience and Face++

* What are the classification accuracy rates by gender on PPB in aggregate? By
region? By nationality?

* What are the classification accuracy rates by skin type on PPB in aggregate? By
region? By nationality?
What are the intersectional classification accuracy rates by gender and skin type?
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e How much does each intersectional subgroup (darker-skinned females, darker-
skinned males, lighter skinned-females, and lighter-skinned males) contribute to
the error rates of each classifier?

1.6 Thesis Contributions

1.6.1 Intersectional Demographic and Phenotypic Performance Evaluation

To my knowledge, this is the first investigation of the intersectional performance of
gender classification in relation to both gender and skin type. Studies that look at
subgroup differences in automated facial analysis focus on demographic factors like race
or nationality without attending to interclass or intraclass phenotypic differences like skin
type.

1.6.2 Fitzpatrick Skin Type Labeled Datasets

To evaluate skin type representation in the selected benchmarks and assess phenotypic
algorithmic performance, I first provide new labels to existing datasets that do not have
skin type labels. I use the Fitzpatrick Scale developed to classify skin responses to UV
radiation as a skin type labeling scheme and assess its advantages and limitations. I use
the scale along with gender annotations to produce gender (female, male) and skin type (I
-VI) labels for 1270 unique subjects in the Pilot Parliaments Benchmark dataset
constructed for this thesis. I also produce new skin type annotations for the 500 unique
subjects in the government IJB-A benchmark and 2194 unique subjects in the research
Adience benchmark.

1.6.3 Phenotypically Diverse Face Curation Methodology

Collecting images of diverse faces is a nontrivial endeavor that is complicated by
licensing considerations, underrepresentation in publicly available face images, and
limited discoverability of alternative image sources. This thesis defines a diverse face
curation methodology used to create the intersectional Pilot Parliaments Benchmark that
can be expanded to develop more inclusive training and benchmark datasets for facial
analysis algorithms.

1.6.4 Complementary Contributions

In working to highlight algorithmic bias, I produced a number of media artifacts to spur
public discourse about the need for inclusive artificial intelligence. These artifacts include
"The Coded Gaze: Unmasking Bias" mini-documentary, which debuted at the Museum
of Fine Arts Boston and a widely viewed TED Talk. In partnership with Bocoup

9 "The Coded Gaze" is available at https://www.youtube.com/watch?v= I 62VzSzzoPs
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Foundation, I have also established AJL.ai to gather crowd annotations on existing
facial datasets. AJL.ai currently focuses on demographic labels. The lessons derived from
phenotypic skin type labeling of the Pilot Parliaments Benchmark introduced in this
thesis will be used to develop a system for crowd-sourced phenotypic labels.

1.7 Overview of Thesis

Debates around the need for fairness in artificial intelligence have largely focused on
predictive models for constructs like recidivism risk (Angwin et al., 2016), instead of the
accuracy of models that assess verifiable traits like gender. However, disparities in
accuracy between different demographic and phenotypic groups can also be defined as
unfair. For this thesis, fairness is defined as having comparable classification accuracy
rates across intersectional subgroups. In exploring gender classification in particular, I
argue that to adequately assess fairness we need disaggregated and intersectional
accuracy metrics for human-focused computer vision models.

To begin, Chapter 2 examines common facial analysis tasks, how structural bias can lead
to subpar performance for underrepresented groups, the potential impacts of gender
misclassification, and ways in which gender classification can be abused. Chapter 3
provides a literature review on breakthroughs in automated facial analysis that influence
gender classification, the evolution of benchmark face datasets, related work on
demographic performance evaluation of facial recognition algorithms, and efforts to
curate more inclusive face training data. Chapter 4 situates the evaluation of facial
analysis algorithms in evolving discussions concerning fairness, accountability, and
transparency in machine learning. The chapter also presents existing measures for
discrimination that can be used to assess the demographic and phenotypic performance of
facial analysis algorithms. Chapter 5 outlines the rationale for creating an alternative
gender classification benchmark, a curation methodology for creating an intersectional
gender and skin type benchmark, the selection of demographic and phenotypic labels for
the benchmark, and the limitations of the benchmark. The chapter concludes with a
comparison of the gender and skin type distribution between the new benchmark and
existing ones. Chapter 6 justifies the selection of four gender classification algorithms for
evaluation and details their performance results in regards to gender, skin type,
nationality, and region. Chapter 7 redefines the conceptual task of gender classification,
discusses how curation bias and sensor readings can impact training data, and assesses
algorithmic performance of four gender-classifiers using measures of discrimination as
defined in antidiscrimination legal literature. Chapter 8 closes the thesis with a discussion
of future work and action steps for practitioners committed to full-spectrum inclusion.
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2. Background

Boxes hold judgments, and labels have consequences.

2.1 Common Applications ofAutomated Facial Image Analysis

What is at stake?
Equipping machines with the ability to evaluate faces holds the promise of developing
more empathetic human-machine interactions, monitoring health, and locating missing
persons or dangerous criminals. But automated facial analysis also poses risks to civil
liberties and privacy. Automated facial analysis technology can be deployed in a
clandestine manner that limits public scrutiny due to the often invisible nature of the
technology. In this chapter, I explicitly delineate common applications and implications
of automated facial analysis to illuminate the pressing need for increased transparency in
how these systems are deployed and how well they work on different groups. The history,
implementation, and technical challenges of automated facial analysis algorithms are
addressed in Chapter 3.

Automated facial image analysis entails the use of computer vision to evaluate images
that contain faces to accomplish a range of perceptual tasks. Common facial image
analysis tasks include face detection, face classification, face verification, and face
identification. The domain of facial video analysis is beyond the scope of this thesis,
though many of the tasks and limitations discussed here are applicable. For example, face
detection done over a series of frames in a video stream can be used to accomplish the
task of face tracking, but this thesis focuses on still images and not video.

2.2 Face Detection - Fundamental Task

Face detection is the fundamental task of automated facial image analysis. The task
involves detecting the presence of one or more faces in an image. Face detection is a
popular application of the computer vision task of object detection. By providing training
data with many examples of faces, a face detection algorithm can learn to find locations
in images containing human faces (Viola & Jones, 2001). Though face detection is an
essential precursor to other tasks like face classification and face identification, it can also
be applied in isolation. One of the most visible applications of face detection is on
Facebook, where faces in uploaded images are surrounded with bounding boxes
generated from a facial detection algorithm (see Figure 1). For image editing, face
detection can enable automatic photo cropping that retains the majority of a face within
the resulting photo (Suh et al., 2003; Yamamoto et al., 2016).
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Figure 1. Example of Face Detection on Facebook

Implications of Face Detection for Algorithmic Performance Evaluation

Because face detection is the fundamental facial image analysis task, it can be a hidden
source of bias. If widely adopted face detection methods are less effective for specific
groups, tacit bias will impact dependent facial image analysis tasks. Demographic
evaluations of the performance of these subsequent tasks must factor in the demographic
performance of underlying face detection algorithms on which the tasks depends. In
Chapter 3, I provide technical detail on how face detection can influence the accuracy of
gender classifiers and performance on existing benchmarks.

2.3 Face Classification - Type of Face

Once a face is detected, additional analysis can be done to classify soft biometric
information including demographic, anthropomorphic, medical, and material attributes
(see Figure 2).

SOFT BIOMETRIC TAXONOMY WITH FOUR GROL PS: 1) DEMOGRAPIIIC,I)
ANTIHROPOMETRIC AND GEOMETRIC, lit) MEDICAL, IV) MATERIAL AND

BEHAVIORAL.
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eye-, hair-. skin-color

body geometry
a" geanetrk a.trbutma and facial geometry

Medicga altributes health condition, BM/
body weight, wrinkles

MalaterIal md behavioral Hat, scarf, bag, clothes,
attributes lenses, glasses

Figure 2. Soft Biometric Taxonomy
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Like a face detection algorithm, a face classification algorithm can learn to apply class
labels to faces by being trained on datasets that provide many examples of a class of
interest. Gender classification can be learned by providing example data of male and
female faces. Likewise, age classification and body type classification can be learned
through many training examples that typify the classes of interest.

Unlike hard biometrics like a fingerprint, soft biometrics do not necessarily reveal an
individual's unique identity on their own. Facial classification algorithms which assess
soft biometric data like gender, age, and ethnicity are used for security, image-tagging,
surveillance, age-specific access control, human-computer interaction, and marketing
(Dantcheva, Elia, & Ross, 2016). Facial expression classification has found use in
affective computing where the emotional states of individuals are the attributes of interest
(Picard, 1997; Poria et al., 2017). Facial expression classification can be used to infer the
Eckman emotions of joy, surprise, disgust, sadness, anger and fear (Hammal et al., 2007).
These inferences can be applied to applications that factor in emotions for decision-
making. In security, the emotion of a person of interest can be used to determine if an
event is flagged as suspicious. Human-computer interaction (HCI) can be augmented
using the perceived emotional state of a user (Abdat, Maaoui, & Pruski, 2011). One
example of facial expression for HCI is the use of smile detection to trigger image
capture on digital cameras (Shan, 2012).

Reductive, Unrepresentative Classiflea/ions

By definition, face classification algorithms label faces with categories. Demographic
categories like gender, race, and ethnicity are linked to a wide range of overlapping
physical attributes and are also historically and socially constructed. As a result, face
classification algorithms focused on identity attributes categorize faces using
simplifications of complex constructs. Many of these categories are reductive and
contested. Though arguably fluid in construction, gender in particular is often reduced to
a binary construct in the coded data structures for identity. Nevertheless, the reductive
categories that are used for classification are mutable. They can be reviewed and
expanded to become more inclusive. Chapter 7 provides an in-depth discussion on how
gender classification in computer vision can be redefined to become less reductive.
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2.4 Implications of Face Classification: Discrimination, Consent

and Profiling

2.4.1 Class- based descrimination

Even when classifications are deemed accurate, their use can perpetuate discrimination
and exclusion. Race or ethnic classification can be used by advertisers to exclude
showing housing listings to a protected class 0 like African-Americans. Individuals
classified as female based on their facial appearance may be subjected to higher prices as
has been reported in instances where vendors use gender information to set prices.
Classifiers that can assess body mass index (BMI) from faces can be used to infer body
type for discriminatory purposes. For example, dating applications that include a
prescreening could use automated body type classification to exclude individuals over a
certain BMI treshhold. Classification algorithms that label accessories could use
particular body adornment or coverings to infer information about ethnicity or religion.
This data could also be used to unfairly exclude or stereotype individuals who exhibit
culutral characteristics deemed unfavorable by the creators of a product or service.
Assessing how facial classification is used is just as important as evaluating the accuracy
of classifications.

2.4.2 Unattainable Consent

Regardless of the labels used for classification, a major question remains: "Can citizens
opt out of being boxed in?"

Biometric data like identified fingerprints generally require cooperation to obtain. Soft
biometric data that do not reveal a unique identity, but instead estimate a demographic
attribute like age, and can be obtained without cooperation using automated facial image
analysis. The 2016 Al Now report emphasizes the need for citizens to have the ability to
know when they have been impacted by automated decision making and to have the
ability to opt out (Crawford et al). The report focuses on automated decision making for
high stake domains like employment, credit, and insurance decisions. Yet predictive
modeling is not the only place automation is being used surreptitiously with large-scale
social impact. The use of automated facial analysis similarly lacks consent and needs an
"invest[ment] in research and technical prototyping that will ensure that basic rights and
liberties are respected in contexts where Al systems are increasingly used to make
important decisions" (p. 23). How can the general public be notified of mass surveillance
that uses soft demographics, which does not on the surface invade privacy directly? Can
individuals opt out? In theory, if the demographic classification data are not stored and
the classification decision made by the system cannot be intercepted by an attacker, then

10 Protected classes are social groups in the United States that have been histroically dicriminated against
and have legal protections against discrimination.
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ad hoc gender classification could pose minimum threat to privacy. Nonetheless, even if
the collection of data is argued to have minimum privacy harms the decisions made based
on protected attributes could still be used for illegal discrimination under the laws of the
United States and the European Union.

2.4.3 Do soft biometrics protect privacy?

Even if gender, age, or race is used to discriminate against a collective group, one might
argue that used alone these soft biometrics can preserve individual privacy. However, one
data point rarely sits in insolation. Used in concert with biometric data, soft biometrics
can be used to enhance surveillance making it easier to identify an individual by
improving and expediting the searching process. In the case of gender-based biometric
indexing, the gender attribute could significantly reduce the search space, the number of
images that needed to be checked to look up an identity (Dey & Samanta, 2014). Due to
the potential for soft biometrics to undermine privacy when used with other information,
soft biometric data should be handled securely.

2.4.4 Stereotype Propagation and Profiling

Beyond creating classifiers for widely accepted demographic categories that can be ill
defined, practitioners continue to develop new face classification algorithms that are
arguably ill advised. Faception, an Israeli startup company uses computer vision to
conduct personality profiling based on facial features. Their personality profile categories
include terrorist, ace-poker player, and pedophile (Lubin, 2016). These categories risk
placing people of certain ethnicities or facial geometries into stereotypical categories that
do not reflect their actual behavior. While a person who is subjected to in-person
profiling has a starting point to initiate a complaint, a person subjected to algorithmic
profiling enabled by face classification is unable to affirm rights for fair and equal
treatment or individual protections granted by law. Given this imbalance of power and
anonymity, regulations that govern disclosure of surveillance should be expanded to
include the use of automated collection of soft biometric data. Citizens can also be
proactive in protecting their soft identities through use of adversarial tactics that
obfuscate demographic markers. Wearing sqnglasses and hats can provide some
protection, but ultimately greater transparency in the use of facial classification
technology will be needed to keep vendors accountable and the public informed.

2.5 Gender Classification

As shown in the previous section, face classification spans a variety of domains. For each
application of face classification, vendors should explore the potential for exclusionary
experiences and discriminatory practices. Since evaluation of the performance of select
gender classification algorithms is a major focus of this thesis, I will now look at some
domain-specific concerns of using automated gender classification.
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2.5.1 Reduced Privacy for Underrepresented Groups

Though a soft biometric like gender can arguably provide more privacy than a hard
biometric like a fingerprint, the level of anonymity is based on the demographic
distribution of the population under surveillance. In a male-dominated workplace
environment that is under soft biometric surveillance, identifying an individual as female
might be equivalent to revealing her individual identity. I choose a male-dominated
workplace as a motivating example since the tech industry and research institutions that
develop gender classification algorithms tend to be overwhelmingly male-identified. If
there are only a few female-identifying workers who are classified as female by the
system, their unique identities can be more readily deduced than their-male identifying
counterparts. In addition, expanding the representations of gender used by these
algorithms can introduce additional harms. If gender classification algorithms that
attempt to categorize trans-identifying individuals are used, they can elevate the risk of
outing an individual in a group who already faces discrimination and hate crimes
(Stotzer, 2009). Gender classification algorithms used in tandem with other demographic
classification algorithms can further reduce privacy and compromise security.

2.5.2 Gender Misclassification

Age & Ethnicity Interactions

Gender classification algorithms are fallible. The National Institute for Standards and
Technology (NIST), a government institution tasked with benchmarking the accuracy of
facial analysis algorithms evaluates voluntarily submitted gender classification
algorithms. The latest gender classification report shows that algorithms NIST evaluated
performed worse for female-labeled faces than on male-labeled faces (see Figure 3).
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The likelihood of misclassifying a female-labeled face increased as the age of female
subjects increased beyond thirty (see Figure 4) (Ngan & Grother, 2015).
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In addition to age, researchers have explored the impact of ethnicity on gender
classification accuracy. However, study designs typically assess a limited set of
ethnicities that hinders the generalizability of the results. Farinella and Dugelay claimed
that ethnicity has no effect on gender classification, but they used a binary ethnic
categorization scheme: Caucasian and non-Caucasian (2012). An experiment with a
richer representation of ethnicity could show an interaction between gender and ethnicity
as it relates to classification accuracy or might increase the validity of the claim that there
is no interaction. In part, one goal of this thesis is to examine if intersectional effects
occur.

The NIST gender report explored the impact of ethnicity on gender through the use of an
ethnic proxy. Acknowledging the challenges of defining etlhnicity, NIST researchers used
country of origin as an ethnic proxy to evaluate the ethnic performance of gender
classification algorithms. None of the 10 locations (Argentina, Brazil, China, Colombia,
Mexico City, India, Israel, Japan, Korea, Peru, Philippines, Poland, Russia, Taiwan) were
in Africa or the Caribbean where there are significant Black populations. Even if it were
argued that Brazil has a significant Black population, we must consider that the NIST
evaluation used VISA images collected between 1996 and 2010. Due to the legacy of
colonization, the portion of the population most likely to obtain a visa would be
"brasileiros brancos ", White Brazilians. To address the underrepresentation of people of
African-descent in previous studies, this work explores gender classification on African
faces to further scholarship on the impact of phenotype on gender classification.

False Negatives and Exclusion

Not only is more work needed on the ethnic dimensions of gender classification, but the
impact of misclassification also needs to be further evaluated. Systems that are used for

27

F - M



gender-specific access control could potentially deny access to individuals who should be
allowed access based on the gender rules of the system. These denials could potentially
have a higher impact on older women or any other group where there are systematically
higher misclassification rates as compared to the overall population. Beyond potentially
offending the misclassified, misclassification undermines the reliability of soft biometric
systems that assess gender. In the case where gender is used to reduce the search space of
a set of possible identities, gender misclassification can result in false negatives that may
have been avoided if the correct gender labels were assigned.

2.5.3 Gender-Discrimination

Gender classification derived from facial image analysis introduces the possibility of
gender-based discrimination that can be exploitive if permitted or outright illegal.
In December 2016, the Joint Economic Committee of the United States Congress
released a report exploring the 'pink tax' - the charge that women pay more for similar
products and services than men.Z f N b, nms Ol-FIT Vhct~t SONa G"# Meoo Men's DWlFIT %Mrt~y SON Golf 5sal

Polo PolLM _ U
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Figure 5. Gendered Pricing Differences

According to a New York City Department of Consumer Affairs report exploring the
price of 400 pairs of consumer goods. Goods differentiated for women had a 7% mark up
on average (2015). Though differentiated prices based on gender-based presentation is
not expressly illegal, the practice leaves women who already face a gender-pay gap
further disadvantaged. The use of gender classification for interactive display ads can
perpetuate the pink tax by using perceived gender to change the price of goods or to show
higher priced goods. Online platforms like Amazon have received criticism for using
demographic information like zip code to change available services and prices (Ingold &
Soper, 2016). The demographic information derived from gender classification
algorithms could be used in a similar manner. Furthermore, the price differentiation can
become even more fine-grained and support the use of predatory marketing tactics. Some
gender classification algorithms provide scores for the maleness or femaleness of a face.
Instead of using gender to produce binary prices, the maleness or femaleness rating of a
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face can be used to further set the price of a product and associated marketing images and
languages used with the product. For some products and service, federal regulations
already exist to prevent discrimination. The Fair Housing Act Amendment of 1974 (42
U.S. Code 3601-3619) prohibits sex-based discrimination to renting and selling houses.
Any advertising system employing gender classification needs to ensure methods for
displaying ads for housing do not violate existing laws. Automated facial analysis as
applied to advertising can make it easier for advertisers to mask intentional sex-based
discrimination, which is in violation of the federal laws of the United States. Greater
oversight is needed.

2.6 Facial Recognition (Verification and Identification)

This thesis is predominantly focused on gender classification, and in the previous
sections I have raised concerns about the use and associated risks with the task of gender
classification and the task of face detection that classification relies on. Here I turn my
attention to facial recognition. While not the core focus of this thesis, facial recognition is
important for two reasons. First, facial recognition is linked to high stakes domains like
national-security and biometric authentication where accuracy is crucial. Unsurprisingly,
facial recognition is a predominant research area in computer vision. Second, given that
facial recognition and face classification performance have both been enhanced by
advancements in the use of convolutional neural networks for deep learning, lessons
learned from exploring facial recognition can inform future directions in face
classification and vice versa.

Even though the term "facial recognition" or "face recognition" is often used colloquially
to refer to a range of automated facial analysis tasks including face detection, biometric
facial recognition is specifically focused on verifying or identifying a unique individual
from an image. The task of face verification involves determining if two images contain
the same face or not. Face verification can be used for security applications like biometric
authentication used by banking institutions. For consumers, Samsung's Galaxy S8 and
iPhone 8 come with the ability to unlock the phone through face verification. The task of
face identification attempts to determine if a probe face is contained in an existing gallery
of faces. For example, a police officer can take an image of a citizen and search it against
a database of wanted criminals to see if there is a match. These algorithms attempt to
return a set of faces from the gallery that most closely matches the probe image.

2.6.1 Enrollment Exclusion- Phenotype-Based Failures

To identify or verify a face, an existing record of the face of interest must be obtained and
stored. The process of capturing a face to be used for a future verification or
identification is called enrollment. The enrollment image, which provides the ground
truth for the facial identity of an individual, is ideally captured in a controlled setting. The
ISO provides a standard for front facing image capture including criteria such as open-
eyes. While this criterion is seemingly innocuous, an infamous visa-enrollment incident
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shows the importance of checking not only for demographic bias that can lead to
exclusionary experiences but phenotypic bias as well.
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Figure 6. Phenotypic-Based Automated Facial Analysis Failure
Credit: Reuters/Richard Lee

As reported by Reuters, an automated passport system in New Zealand failed on a man of
Asian descent deeming the subject's eyes to be closed though they were not. In this case,
a demographic test may or may not have revealed the problem before deploying the
system. A more appropriate test would forego coarse demographic demarcations and
focus on specific phenotypic attributes of interest. A phenotypic test would specifically
focus on a range of eye shapes to see if the automated checks put in place to obtain an
ideal enrollment image could inadvertently exclude particular phenotypic groups. This
border-patrol instance illuminates the importance of checking not only the accuracy of
facial recognitions systems but also the enrollment processes these systems use to obtain
ideal images. As automated facial analysis systems become increasingly used in society,
phenotypic aware algorithms and phenotypic inclusive datasets should be further
developed to minimize exclusionary experiences and offensive outcomes.

2.6.2 Differential Demographic Accuracy in Facial Recognition

There are growing concerns about the use of facial recognition technology by law
enforcement. While it is true facial recognition can be used by law enforcement to
combat identity fraud, identify missing children, and locate criminals, there are few
regulations in place to safe-guard its use in the United States and protect privacy. Past
research has shown that the accuracies of facial recognition systems used by US-based
law enforcement are systematically lower for people labeled female, Black, or between
the ages of 18 - 30 than for other demographic cohorts Klare et al., 2012), yet there are no
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general accuracy standards and no demographic-specific standards in place for the
procurement of facial recognition technology used by most law enforcement departments.

As new algorithmic methods are developed to improve facial recognition, ongoing
accuracy checks that attend to demographic performance are needed. Garvie and
colleagues provide an in-depth analysis of the unregulated police use of face recognition
in 'The Perpetual Lineup'. Of the recommendations made in the report, the following
support the creation of more rigorous standards for the use of automated facial analysis,
racial accuracy testing, and processes for regularly informing the public about the use of
facial recognition.

- Recommendation 7. LEGISLATION Use of face recognition to track people on the
basis of their race, ethnicity, religious or political views should be prohibited.

- Recommendation 8. LEGISLATION All law enforcement use of face recognition
should be subject to public reporting requirements and internal audits

* Recommendation 9. LEGISLATION Congress should provide funding to increase
the frequency and scope of accuracy tests and create more diverse photo datasets
for training.

- Recommendation 14: FBI & DOJ The FBI should test its face recognition system for
accuracy and racially biased error rates and make the results public.

- Recommendation 22: LAW Implement internal audits, tests for accuracy and racial
bias, and the use of trained face examiners.

- Recommendation 26: NIST" Develop tests that closely mirror law enforcement
workflows and issue best practices for accuracy testing

- Recommendation 27: NIST Develop and distribute diverse datasets of photos.

A largely policy oriented report, 'The Perpetual Lineup' broadly proposes ongoing
accuracy audits and more diverse datasets without explicitly delineating the scope of
these audits or what constitutes diversity. What accuracy criteria should be put into place
to deem if a facial recognition system is permissible for wide scale deployment on
diverse populations? What constitutes diverse datasets? Building on recommendation 27,
the Pilot Parliaments Benchmark developed in this thesis provides a concrete example of
how a phenotypically diverse dataset of photos can be constructed. In addition to
assessing demographic representation performance, this thesis argues for the inclusion of
phenotypic performance evaluation. Recommendation 22 should include phenotypic bias
and gender bias in addition to racial bias. This thesis seeks in part to expand NIST facial
recognition standards and argues that intersectional benchmarking should be part of the
best practices for accuracy testing and reporting that are recommended (#8, #9, #14, #26)
in the 'Perpetual Lineup Report'.

" NIST - National Institute for Standards and Technology
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2.7 Synthesis

This review of common applications of face detection, face classification, face
verification, and face identification technologies highlights key limitations in regards to
transparency, demographic performance, and potential abuses. The surreptitious way in
which automated facial image analysis can be deployed requires developing methods to
keep the public informed of the growing use of this technology. It also demands greater
accountability from vendors who deploy these systems as they are positioned to exploit
demographic data obtained from automated facial analysis for discriminatory practices
like gender-based price gouging. Demographic performance for various facial analysis
tasks differ and leave specific groups at higher risk for adverse effects that can result
from differential accuracy. For example African-Americans in the US are subject to more
interactions with law enforcement and also more likely to be misidentified by facial
recognition technology. Automated facial analysis will become more pervasive and
largely hidden from the public. Past research shows this technology performs worse on
people of color than on Whites. In the case of gender classification, males are more
accurately classified than females. Given the pending dangers, it is critical we better
assess the performance of these algorithms. As will be further discussed in subsequent
chapters, more work is needed to compose inclusive benchmarks that provide reality
checks on the advances that have been made in the domain of automated facial analysis.
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3. Related Work

The past dwells within our algorithms.

3.1 Overview

This thesis examines the evaluation of gender classification algorithms in relation to
demographic and phenotypic differences. Of primary concern are influential automated
facial analysis algorithms, means for evaluating algorithmic performance, the face
datasets used to train and benchmark algorithms, and the establishment of fair accuracy
standards. I review the evolution of facial analysis algorithms to highlight key
breakthroughs and their implications for the task of gender classification. Finally, I
present current practices for evaluating automated facial analysis performance along with
the current limitations of existing approaches.

3.2 Breakthroughs in Automated FacialAnalysis

Automated facial image analysis as described in Chapter 2 describes a range of face
perception tasks including, but not limited to, face detection, face classification, and face
recognition. These tasks rely on machine learning, an approach to artificial intelligence
that uses training data to enable an algorithm to learn a task instead of explicitly
codifying rules. For example, instead of attempting to program rules to detect a face in an
image, supervised learning algorithms accomplish the task by training on data that has
images and bounding boxes around faces in the images used. The algorithm can then
learn patterns associated with a human face without being explicitly programmed.
Advances in machine learning techniques, increased computational capacity and greater
availability of facial images as well as public and private investment have galvanized
breakthroughs in automated facial image analysis. This chapter presents a brief survey of
seminal and influential algorithmic developments along with their impact on automated
gender classification. (Zafeiriou, Zhang, & Zhang, 2015), (Chihaoui et al., 2016) and
(Reid et al., 2013) offer a more in-depth survey of advances in face detection, facial
recognition, and gender classification respectively.

3.2.1 Face Detection

Face detection is the fundamental automated facial analysis task that enables other face
perceptual tasks to be performed. Over the years, two dominant approaches have
emerged: rigid-template and deformable parts-based model face detection. Rigid-
template approaches include boosting algorithms and deep convolutional neural networks
that will be further explained in this chapter. Deformable parts-based models use
variations of general object detection methodology in computer vision to detect a face by
relying on its composite components
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Early work in face detection focused on finding faces in a constrained environment where
head pose, scene illumination, and facial expression were relatively fixed and were
commonly referred to as "constrained" (Zafeiriou et al., 2015). These early attempts
performed poorly in real-world conditions where variations in pose, illumination, and
expression along with the introduction of occlusions complicate the task. The major
breakthrough that made unconstrained or "in-the-wild" face detection viable came from
Viola and Jones in 2001. They made real-time face detection possible by combining the
key ideas of the integral image, classifier learning using AdaBoost, and the attentional
cascade structure. The integral image increased efficiency in face detection by enabling
rapid constant time calculation of Haar-like features, which are derived using simple
rectangular templates to find likely face patterns in an image (see Figure 7).
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Figure 7. Examples of Haar-like Features

In this context, features are characteristics of an image. Features used for automated
facial analysis include histograms of oriented gradients (HoGS), local binary patterns
(LBPs), and scale-invariant feature transforms (SIFTs) that can be used to classify the
contents of an image.

Choosing features and a suitable learning algorithm to classify an image based on those
features are pivotal decisions for computer vision tasks. For face detection, Viola and
Jones used the AdaBoost learning algorithm to both choose suitable Haar-like features
and learn classification.

Earlier I introduced the term classification in the context of "face classification" to
determine attributes about a face such as gender. Here I use classification as a machine
learning term, which means to label a collection of features as an exemplar of a specific
category or "class". In this case, the learning algorithm is used to classify regions in an
image as either having a "face" or "no face" to perform face detection. To make the
process of face detection even faster, Viola and Jones introduced the attentional cascade
structure. This approach quickly rules out background regions that are unlikely to contain
a face to optimize computation on regions in an image more likely to contain a face.
Their ideas continue to influence derivative rigid-template face detection techniques like
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the popular Head Hunter (Mathias et al., 2014) detector. Derivative techniques explore
combinations of alternative features, boosting algorithms, training methods, and
regularization steps that mitigate overfitting.

3.2.2 Neural Networks

In recent years, increased parallel computational power and data abundance have led to
renewed interests in neural networks (NN) for the field of artificial intelligence with
applications in natural language processing as well as computer vision. Convolutional
neural networks (CNNS) are a specific type of NN created for image-related tasks. Deep
neural networks (DNNS) are NNs with many layers of connection. Each additional layer
adds more depth. Deep Convolutional Neural Networks have achieved promising results
for rigid-template face detection (Zhang & Zhang, 2014). Unlike the previously described
methods, features are not explicitly selected. Instead an NN, artificial brain-like structure
can be used to determine the presence, location, and pose of a face. This structure is
composed of interconnected layers of perceptrons that behave like rudimentary neurons.

The DCNN is trained on a large dataset that is used to establish weights and
hyperparameters that tune the DCNN to the task of face detection.

Moving past rigid-template face detection, deformable parts-based models offer another
approach for face detection that has achieved state-of-the-art results on recent
benchmarks. DPMs for face detection build on pictorial structures that represent an object
of interest in a graph of related components and their connections to one another that
define a given object. Figure 8 below shows a representation of a pictorial tree
representation face.
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Figure 8. Pictorial Tree Representation of Face

Face detection is achieved by finding areas in an image that have a probability above a
certain threshold of containing components of interests with connections that
approximate the expected spatial/graph relationship that define a face. In general DPMs
are computationally expensive given that the time required to perform feature extraction
using HoGs, filter features, and score the correlations between features.
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Even though there have been further advances optimizing object detection using DPMs
(Yan et al., 2013, Yan et al., 2014), large scale attempts to collect face image datasets still
rely on rigid-template approaches that can be deployed quickly. Megaface, which to date
is the largest publicly available set of facial images, was composed utilizing Head Hunter
(Mathias et al., 2014) to select one million images from the Yahoo Flicker lOOM image
dataset (Thomee et. al, 2015; Kemelmacher-Shlizerman et al., 2016).

As face detection becomes commodified, any demographic or phenotypic limitations
present in widely adopted pre-trained face detection algorithms can perpetuate bias - i.e.,
any biases Head Hunter is subject to may be perpetuated through dissemination of
Megaface, and future algorithms tuned on Megaface will likely inherit these biases.
Benchmark and training data that are collected using commodity algorithms with tacit
bias can limit the diversity and difficulty of newly collected datasets. The intersectional
benchmarking and curation schemes proposed in this thesis can be applied to face
detection to make measurements of accuracy more robust across a range of facial
geometries and skin types.

3.2.3 Face Recognition

Early work in automated facial recognition began in the 1970s. Goldstein, Harmon, and
Lesk employed 22 manually derived, subjective markers including hair color and lip size
to achieve automatic facial recognition (1971). By the late 1980s Kirby and Sirovich
overcame manual coding of specific features by using the linear algebra technique of
principal components analysis (PCA) (1987). This work undergirded the rise of
appearance-based approaches for facial recognition. Appearance-based approaches, also
called global approaches, treat face images globally instead of focusing on specific facial
regions like the mouth or eyes. The face is represented by a matrix of pixels. For
efficiency, dimension reduction is used to project the discriminative parts of a face into a
lower dimensional sub-space also known as a face space. In 1991, Turk and Pentland
famously extended the use of PCA for facial recognition with the introduction of
eigenfaces. With eigenfaces, linear combinations of the eigenvectors derived from the
covariance matrix of sample faces are used to reconstruct individual faces. The facial
recognition task of identification is achieved by finding a face in a gallery of images that
has the most similar linear combination of eigenvectors as the probe image.
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Figure 9. Eigenfaces

Linear Discriminant Analysis (LDA) for facial recognition also known as Fisher Linear
Discriminant Analysis is another well known appearance-based approach for facial
recognition (Belhumeur, Hespanha, & Kriegman, 1997). The "Fisher faces" method
creates a subspace of a face image that optimally distinguishes the face of different
people. Independent Component Analysis (ICA), Gabor Wavelets, and their derivatives
have all been employed for linear appearance-based face recognition. The "kernel trick"
has been used in combination with the previously mentioned techniques for non-linear
appearance-based face recognition along with support vector machines (SVMs)
(Chihaoui et al., 016).

Feature-based approaches, sometimes referred to as local approaches, for facial
recognition are also used. Here specific features of the face are characterized based on
well-defined statistics. Interest-point-based methods like Dynamic Link Architecture
(DLA) and its derivative Elastic Bunch Graph Matching (EBGM) can be effective in
cases where only a single reference image is available, but they are limited by the
effectiveness of face localization algorithms that find the position of facial landmarks like
the center of the pupils. As with the case of face detection algorithms, feature-point
localization algorithms that can encode tacit phenotypic bias based on original training
data could limit demographic performance of subsequent algorithms that build upon their
results. Local appearance-based approaches use region localization and then proceed to
determine the best representation for each region by using characteristics such as Gabor
Coefficients, Haar wavelets, and Local Binary Patterns. Each region can be classified by
using the most appropriate method. To perform recognition, graph matching or score
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fusion techniques are used. In the former the spatial relationships of regions are
represented by the edges between regions that represent nodes in a face graph. In the
latter, separate classifiers calculate a score for each local characteristic, which is
combined into a global score to determine a match.

Deep learning, machine learning that utilizes many layers of abstractions to map input
data to desired output results, outperforms the local and global approaches described
previously. As with face detection, performance in facial recognition has increased with
the resurgence of neural network based machine learning pioneered by Geoffrey Hinton.
Hinton integrated the backpropagation learning algorithm for training multilayer neural
nets in the 1970s to lay the foundation for the deep learning techniques to come. In 2014,
Facebook researchers published DeepFace, which demonstrated facial recognition could
benefit from the promise of deep learning. Through the application of deep learning on
4.4 million labeled images of 4030 unique subjects, DeepFace achieved 97.35% accuracy
on the Labeled Faces in the Wild (LFW) face recognition benchmark database that was
considered one of the most challenging at the time (Taigman et al., 2014). These results
demonstrated an impressive 27% improvement over the previous state-of-the-art (Sun,
Yang, & Tang, 2014). Google researchers followed with another convolutional neural net
(CNN) trained on over 100 million images of roughly 8,000 subjects and achieved
99.63% Accuracy on LFW (Schroff, Kalenichenko, & Philbin, 2015). These promising
results led to growing research exploring the application of deep learning to face
recognition (Parkhi, Vedaldi, & Zisserman, 2015). Nonetheless, improved performance
on LFW should be celebrated cautiously. As will be further discussed in Section 3.3.4,
the LFW benchmark suffers from significant gender and ethnic imbalances.

3.2.4 Gender Classification & Convolutional Neural Networks

Given the success of convolutional neural networks in computer vision tasks applicable
to automated facial analysis such as object recognition, image classification, and pose
estimation (Gu, 2017), CNNs are also being used for face gender classification.
Introduced in 1991 SEXNET, one of the first gender classification approaches, relied on
a three-layer fully connected neural network (Golomb, Lawrence, Sejnowski). For
efficiency, convolutional neural network architectures eschew fully connected layers
throughout all levels and instead use strategic subsets of artificial neurons to perform
convolutions between layers in a network. More recently, influenced by the gains made
in facial recognition made with CNNs, Israeli researchers improved the state-of-art on
gender classification by using a standard CNN structure and introduced a new gender and
age benchmark dataset called Adience
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Figure 10. CNN Architecture for Face Classification
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The Adience benchmark was introduced because less work has been done to benchmark
performance on gender classification than on facial recognition (Levi & Hassner, 2015).
However as of 2017, The National Institute of Standards and Technology is starting
another challenge to spur improvement in face gender classification by expanding on the
2014 -15 study (see section 2.5.2 for performance results).

3.3 Evaluation in Automated FacialAnalysis

3.3.1 Overview

Mechanisms for tracking and improving performance on face perception tasks play a
critical role in moving the state-of-the art for automated facial analysis. To galvanize
research and development activity, facial analysis challenges are overseen by government
agencies, conference organizations, and research institutes. Peer recognition, published
rankings, and at times monetary incentives motivate participation. Standard benchmarks
in the form of datasets provide a comparable means of assessing competing algorithms
and evaluating the current state-of-the-art for specific tasks. These benchmarks are
crucial in improving facial analysis algorithms because they set uniform standards by
which researchers and companies publicly prove the effectiveness of their algorithms.
Once a benchmark is saturated, that is to say numerous methods are developed that
achieve perfect or near perfect performance accuracy, more challenging benchmarks are
composed. Performance on a benchmark dataset is measured by using standard machine
classification and accuracy metrics that are generally reported in aggregate. In addition to
benchmark datasets, training datasets of face images are also made available to
researchers.
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This thesis makes the case for reconfiguring the way in which benchmark and training
datasets are composed and how benchmark metrics are reported so that demographic and
phenotypic performance become part of standard evaluation procedures. This segment
will conclude with a look at seminal research demonstrating the utility of demographic-
specific evaluation when investigating algorithmic performance.

3.3.2 NIST Benchmarks and Challenges

The National Institute of Standards and Technology (NIST), a United States government
agency tasked with promoting innovation and advancing national competitiveness
through advancing standards, continues to release a series of projects focused on
improving the state of automated facial analysis. In 1993, the Department of Defense
(DoD) Counterdrug Technology Development Program Office introduced the five-year
Face Recognition Technology (FERET) Program. FERET focused on sponsoring
research to creating the FERET dataset consisting of 14,126 facial images of 1199
individuals captured in constrained environments and to evaluate performance on that
dataset (Phillips et al., 1996; Phillips et al., 2000). FERET was instrumental in moving
facial recognition from research into practice and setting precedents for biometric
evaluation that has influenced subsequent evaluation programs including the UK
Biometrics group. As with other datasets, the FERET dataset was used not just for face
recognition but also for comparing research results on face detection (Zafeiriou et al.,
2016) and face gender classification (Levi & Hassner, 2015). NIST maintains the FERET
database that has been distributed to over 100 external entities. After FERET, NIST
began a series of Face Recognition Vendor Tests (FVRT) (2000, 2002, 2006, 2013) with
each interaction introducing improved test procedures such as sequestering test images to
mitigate overfitting to the benchmark.

In February of 2017 in accordance with the recommendation from 'The Perpetual
Lineup' (Garvie et al., 2016) report to provide continuous monitoring of facial
recognition algorithms, NIST announced initiative FVRT Ongoing (FRVT-0). The first
evaluation available focuses on the task of facial verification. Beyond verification, there
are planned ongoing evaluations for one-to-many identification accuracy - NISTIR
8009,12 face detection accuracy (Cheney et. al., 2015), age estimation - NISTIR 7995,"
and gender estimation - NISTIR 8052.14 To motivate participation in FVRT-O, NIST in
partnership with the Intelligence Advanced Research Project Activity (IARPA) is
offering a total prize purse of $50,000 in its first ever Facial Recognition Prize
Challenge. 5 Monetary incentives along with the public prestige awarded to creators of
inclusive algorithms may prove effective in driving work to mitigate demographic and
phenotypic bias.

12 https://www.nist.gov/node/558561

" http://ws680.nist.gov/publication/getpdf.cfm?pub id==915238
" http://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.8052.pdf
15 https://www.challenge.gov/challenge/face-recognition-prize-challenge/
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Figure 11. Awards for NIST Face Recognition Prize Challenge

3.3.3 Influential Benchmarks

Beyond NIST projects, other initiatives have produced influential benchmarks. In
addition to the FERET dataset, XM2VTS, PIE, and FRGC were constrained face datasets
used to train or test face detection. The PASCAL Visual Object Classes benchmarks and
challenges (Everingham et al., 2014) along with Face Detection Dataset and Benchmark
(FDDB) introduced unconstrained images to advance face detection. For facial
recognition, FERET has been used along with the widely adopted Labeled Faces in the
Wild (LFW) and derivative datasets. Demonstrating its prolific impact FERET, was also
used for benchmarking gender estimation algorithms, though now there are datasets like
Adience that provide more challenging faces for benchmarking gender estimation.

3.3.4 Dataset Challenges

Labeled face datasets have spurred the development of automated facial analysis that
employs supervised learning techniques. Still, creating a labeled face dataset is often
resource intensive, and current curation methods can be susceptible to bias. The process
of labeled dataset creation includes defining labels, collecting face images, reliably
applying labels to face images, and making the data available to the benefit of the
research community. The ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) provides a comprehensive overview of the steps and technical challenges
involved in collecting large image datasets in general (Russakovsky & Deng, 2015).

When defining demographic labels for face datasets, coarse categorization can make it
difficult or impossible to assess subgroup performance due to omission or multi-group
aggregation. For example, ethnic demographic labels for early face datasets often
included categories for White or Asian. Faces falling into alternative groups were
categorized as non-White or other due to underrepresentation in training sets. As a result,
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the training set is less useful for training algorithms to distinguish people of African
ancestry, Indian ancestry, or other omitted groups. Next, even though collecting face
images has become easier because of the large number of images available online, the
images collected can have significant demographic skews. In the past, celebrity photos

have been used to create face datasets due to image availability and the ability to verify
identity (CelebA, FaceScrub, PubFig, IMDB-WIKI). Yet, celebrity demographics are not
representative of population demographics. Furthermore, when face detection algorithms
are used to scrape images online, any tacit bias present in the face detector can skew the

images that are collected.

Applying demographic labels to faces can also prove challenging as social constructs like

race are not well defined. When manual annotation is employed, cross-race effects may

influence the effectiveness of labeling faces that are not like the face of the annotator.
Though less apparent, dataset accessibility can also introduce bias. Large companies have

resources to develop proprietary datasets that may have more diverse faces than the
datasets available to researchers. Researchers then default to open datasets, some of
which have been documented to contain significant demographic bias. LFW which has
been the defacto benchmark dataset for face recognition was estimated to be 77.5%
(10258/13233) male and 83.5% (11045/13233) White (Han & Jain, 2014) The dataset is
composed of celebrities, and images were scraped using the OpenCV implementation of
the Viola Jones face detector. In other words, it is a deeply non-representative set that is
widely used primarily due to its openness.

In response to these limitations IARPA, released the IJB-A dataset as the most
geographically diverse set of collected faces, and no face detector was used to select
images to limit bias (Klare et al., 2015). Given the importance of benchmark datasets and
the influence of NIST that maintains the IJB-A dataset, this thesis will examine the
current composition of the dataset to make recommendations about how to make the
benchmark and annotations more inclusive.

3.3.5 Benchmark Metrics

The need to standardize measures of accuracy and reporting requirements drove the
development of challenges and benchmarks like PASCAL VOC, LFW, and FRVT. For
all automated facial analysis tasks computational efficiency is of concern, thus metrics
related to runtime and memory use are reported. Specific automated facial analysis tasks
have associated accuracy metrics. In this thesis I adopt the approach used in the NIST
Gender FVRT (NISTIR 8052) for reporting gender classification, which defines metrics
for male accuracy, female accuracy, and overall accuracy as follows:

Let M and F represent the total number of male and female images. Let TM and TF
represent the true males and true females classified by the algorithm.

Female Accuracy =
F
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Male Accuracy = TM
M

Overall Accuracy = TF + TM
F+M

The NIST Gender FVRT report also explores the impact of gender and ethnicity on the
classification accuracy. I follow a similar reporting pattern but with attention to the

impact of skin type phenotype on classification accuracy. Disaggregating performance
results can provide new insights that lead to better algorithms. In the seminal paper "Face

Recognition Performance: Role of Demographic Information", FBI Expert Brendan Klare
examined for the first time the impact of race, gender, and age on facial recognition

performance. The study showed that the leading recognition algorithms of the time
performed uniformly worse on faces labeled as female, youth (18 -30), and Black.
However, for trainable algorithms, researchers were able to improve performance on
these groups by training those algorithms on a dataset with uniform representation. The
report did not look at the intersection of race and gender on facial recognition but called
for future work in the area (2012). Now with the advent of deep learning and increased
use of automated facial analysis, it is even more imperative that we examine the role of
demographics in this domain. In addition, the role of phenotype on classification
accuracy that may not fall along traditional demographic demarcations needs to be
examined.
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4. Fairness, Accountability, and Transparency in Al

The coded gaze reflects both our aspirations and our limitations.

4.1 Overview

Breakthroughs in artificial intelligence have increased the adoption of automated facial
analysis technology for authentication, face-based searches, and a growing number of
widely used platforms like Facebook and Snapchat. In general, artificial intelligence is
increasingly employed for high stakes decision making in areas such as insurance, credit
lending, employment and even criminal sentencing. As automation and the adoption of
artificial intelligence rises, there is a growing consensus on the need to develop fair
algorithms and to establish processes for accountability and transparency in artificial
intelligence. In this chapter, I situate the establishment of subgroup accuracy standards in
ongoing debates around fairness, accountability, and transparency in artificial
intelligence. I end, by exploring measures for discrimination and fairness as defined by
legal scholars and how they can be applied for intersectional benchmarking (See Section
1.3).

4.2 Challenges with Defining Fairness

Defining fairness presents both ethical and technical challenges. Power inequities and
a lack of diversity among researchers, data scientists, artificial intelligence practitioners,
and policy makers also means those who are at risk for the adverse impacts of artificial
intelligence currently have little voice and influence in shaping future technology.
Algorithmic fairness debates have been galvanized as of late by the 2016 ProPublica
investigation of recidivism risk scores generated by Northpointe. Northpointe developed
the COMPAS Risk Assessment using machine learning to predict the likelihood that an
individual will reoffend. The risk score can then be used by judges to inform sentence
length. Presumably, individuals with high risk scores are given longer sentences than
people with low risk scores facing similar criminal charges.

ProPublica journalist Julia Angwin investigated the accuracy of the risk scores in regards
to race. Her team's analysis revealed that false positives rates for Black individuals were
nearly twice as high as false positive rates for White individuals. Black individuals with a
low recidivism risk were twice as likely to be misclassified as high risk than White
individuals with low risk. White individuals with a high recidivism risk were nearly twice
as likely to be classified as low risk than Black individuals (48 percent vs. 28 percent)
(2016). Thus, Angwin concluded the COMPAS Risk Assessment is racially biased. From
an ethical perspective given similar charges, it is unfair for Black individuals to face
longer sentences and White individuals to face shorter sentences because of algorithmic
bias. Northpointe countered Angwin's claim of bias citing that the positive predictive
value was equal between Black and White individuals. The overall accuracy rate was
evaluated to be 70% with minimal deviation for both Black and White individuals.
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Though outside observers may question the suitability of using a risk assessment with
70% accuracy for positive prediction, the company deemed its product fair because the
likelihood that someone who is likely to be arrested again is arrested is the same between
the two races (Dieterich, Mendoza, & Brennan, 2016).

This debate reveals how competing perspectives on fairness prevent a singular definition
of equality. Because false positive and false negative rates differ between Whites and
Blacks in Angwin's analysis, the assessment is deemed unfair. From Northpointe's
analysis, because the positive predicative value (people who are predicted to rescind who
in fact rescind) is roughly equal between the two groups, they deem the assessment fair.
By focusing on different metrics to define fairness, Angwin and Northepointe reach two
different conclusions even though they analyze the same data. The COMPASS debate
typifies the difficulty of defining fairness.

Furthermore, fairness definitions have technical implications. In machine learning
classification, the positive predictive value is captured in a metric known as precision, a
measure of the proportion of cases deemed positive examples that are true positives.
Recall, also called sensitivity, is a metric that measures how many of the true positive
examples were correctly identified. When a learning algorithm is trained, a cost function
is defined that can optimize for precision or recall. Selecting which errors to minimize is
based on the context in which an algorithm will be used. A false negative for a cancer
diagnostic is arguably more costly for the individual than a false positive. Ideally, we
would want to minimize all errors, yet as Kleinberg et al. (2017) prove, balancing false
negative rates and false positives rates while maintaining high predictive accuracy is
impossible when population priors differ. Trade-offs must be made based on subjective
judgments about the perceived impact of false positive predictions versus false negative
predictions.

4.3 Worldviews on Fairness

Frielder et al. (2016) define the study of algorithmic fairness as an exploration of two key
transformations between three spaces. The first space is the construct space that
represents an abstract concept or unobservable trait like creditworthiness or intellectual
capacity. The space cannot be directly known so it is approximated by the observation
space with proxy attributes related to a construct. The attributes are finally mapped to a
decision space using a learning algorithm that is optimized to make a prediction related to
the construct. Judgments about algorithmic fairness are influenced by worldviews
regarding construct and observation spaces that are not always explicitly articulated.

Frielder et al. also highlight that definitions of algorithmic fairness have underlying
worldviews. Dwork et al. (2012) make the case that with fair algorithms 'similar people
should be treated similarly. Here what Friedler et al. call a "What you see is what you
get" (WYSIWYG) assumption is made. A WYSIWYG worldview assumes the inputs
used in the observation space can be taken at face value as good proxies for the construct
of interest. For example, it may be assumed that standardized test scores are a good
reflection of a student's intellectual capacity. If this is the case, using standardized tests to
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distribute opportunities can be determined using a WYSIWYG worldview. However,
when it is suspected that attributes in the observation space reflect structural bias in
society, an alternative worldview "We are all equal" (WAE) may be used. This
worldview assumes that differences in observable attributes can be more a reflection of
historical and social factors than an individual's inherent attributes. Thus members of
groups that have been disadvantaged should still have access to opportunity. Given prior
research showing standardized tests have higher socioeconomic class correlations than
grade correlations (Zwick & Green, 2007), a WAE worldview would question the
suitability of standardized test scores as a definitive measure of intellectual capability.

In addition, underlying worldviews made when creating predictive models have
mathematical implications for individual fairness and group fairness. Techniques used to
optimize for individual fairness rely on WYSIWYG worldview and break down when
being used in a domain where structural bias has limited opportunities in the past.
Conversely, techniques used to optimize for a WAE worldview that takes structural bias
into account, do not function well when working on a construct space that can be viewed
as representative of an inherent individual trait or objective performance (Friedler et al.,
2016).

4.4 Accountability and Transparancy

Setting aside questions about ideal ways to create fair algorithms and more representative
datasets, we must still ask fundamental normative questions. If we know an algorithm
performs "poorly" on a specific demographic group, should we use that algorithm to
make high-stake decisions about that demographic group? Further still,
if an unfair or harmful decision is made by an automated system, the question of
accountability remains. Deciding who is accountable for an algorithmic decision is
complicated by the distributed nature in which algorithms are combined and
developed. At times inherited code cannot be easily changed. In reviewing breakthroughs
in automated facial analysis, we have seen the interconnected manner in which artificial
intelligence evolves. Thus, if a company uses off-the-shelf commodity face detection
software based on a series of algorithms refined overtime by academics and trained on
data sourced from the Internet, what entities should be held responsible for adverse
impacts? Arguably immediate responsibility accrues to whomever ultimately decides to
incorporate the algorithm into a product. However, if a commodity face detector is made
part of a software library reported to have passed a prolific benchmark with over 95%
accuracy, and the developer incorporating the library is unable to retrain the face
detector, should the developer, product manager, or company be held responsible if the
face detector is found to systematically work poorly on female faces?

Furthermore, demanding transparency with either algorithms or datasets is hindered
by the economic imperative for companies to limit access to proprietary
information. Even when algorithms are not Black boxed, the underlying model of a
neural network used for predictive modeling may be uninterpretable. Even if we have
accuracy metrics from benchmark or validation data, precisely how the model makes a
decision cannot be explicitly explained. There is growing interest in the realm of
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explainable Al, particularly as regulations increase (DARPA-BAA- 16-15).16 In 2016, the
European Union passed a new General Data Protection Regulation that will take effect in
2018. The legislation restricts automated decision-making that significantly impacts
individuals and calls for a right to explanation. Individuals will have the right to request
information on how a high stakes automated decision was made (Goodman & Flaxman,
2016). Existing machine learning techniques like the convolutional neural networks used
for automated facial analysis will need to become more interpretable or defensible to
justify their use. In 2017, United States House Committee on Oversight and Government
Reform held a Hearing on Law Enforcement's Use of Facial Recognition Technology. In
a written testimony Senior Staff Attorney Jennifer Lynch states:

Now, law enforcement officers can use mobile devices to capture
face recognition ready photographs of people they stop on the street;
surveillance cameras boast real-time face scanning and identification
capabilities; and the FBI has access to hundreds of millions of face
recognition images of law-abiding Americans. However the adoption
of face recognition technologies like these has occurred without
meaningful oversight, without proper accuracy testing of the systems
as they are actually used in the field, and without the enactment of
legal protections to prevent their misuse. (p.2)

The time is now to increase transparency by creating more rigorous standards for the
accuracy and applicable use cases of automated facial analysis.

4.5 Measures for Discrimination

Ongoing monitoring of the performance of automated facial analysis can improve
transparency. In addition to creating processes for more rigorous accuracy testing,
determining acceptable accuracy rates for different demographic and phenotypic groups
must be addressed. As acknowledged in the prior section, defining fairness is not simple.
Even when positive outcomes are equal between groups, negative outcomes may
disproportionately impact a specific group. In attempting to optimize for fairness, the
utility or predictive power of an algorithm can at times be compromised (Dwork et al.,
2012). When should we deem an algorithm discriminatory? What factors should be
considered? This section explores existing definitions for discrimination that can frame
how we interpret the fairness of measures of accuracy between different groups.

4.5.1 Disparate Treatment versus Disparate Impact

Legal literature provides a rich jurisprudence history about defining discrimination.
Legally discrimination falls under two main categories: disparate treatment and disparate
impact. Disparate treatment occurs when intentional acts of discrimination are

16 DARPA Broad Agency Announcement for Explainable Artificial Intelligance
https://www.darpa.mil/attachments/DARPA-BAA-16-53.pdf
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perpetrated. For example, a landlord may refuse to offer housing to people of a specific
ethnicity. Disparate treatment assumes intent to discriminate, which can be difficult to
establish in a court of law when there is plausible deniability. Proving disparate treatment
in the use of automated facial analysis based on deep learning is difficult. Learning
algorithms are not explicitly programmed to produce an outcome. They arrive at
decisions through a learning process. Disparate impact focuses on the outcomes of
processes that can lead to discrimination or unequal opportunity regardless of intention.
The process can appear to be neutral and done in good faith, but if the outcome
disparately impacts a protected group then there can be a legal case for discrimination. In
general, protected groups are people who have been historically denied opportunities like
women and African Americans. The use of biased facial recognition technology can
result in a disparate proportion of individuals from a protected group being subjected to
unwarranted interactions due to misclassification or false identification. However, legally
proving disparate impact from algorithmic classification is challenging. Even with the
risks for disparate impact posed by artificial intelligence and large stores of data, current
legal frameworks lag behind rapidly evolving technology (Barocas & Selbst, 2014).
Regardless of the current legal landscape, creating technology that works well for
subgroups and minimizes disparate impact should be a goal for all vendors and
researchers who aim to develop generalizable facial analysis algorithms.

4.5.2 4/5ths Rule and Disparate Impact Risk

What constitutes disparate impact in algorithmic classification? How might we measure
differences in outcomes? Statistical analysis provides a number of measures that have
been adopted to assess discrimination between groups including risk difference, risk
ratio, and the odds ratio also referred to as the selection rate. Given p1 is the probability
that group one does not receive a benefit and p2 is the probability that group two does not
receive a benefit, the measures for discrimination are defined as follows:

Risk Difference: (p1 - p2)

Risk Ratio: -
p2

Odds Ratio/Selection Rate: 1-p
1-p2

Though legal practitioners in the UK and the EU use risk difference and risk ratio
respectively to compare benefits denied between different groups, the United States uses
the selection rate to compare benefits granted. (Zliobaite, 2015)

Regardless of the measure, a threshold for discrimination is needed. What constitutes
unfairness? Let us look at a legal measure that is commonly referenced in computer
science papers exploring fairness. When faced with establishing a guideline threshold for
discrimination based on statistical measures, the Equal Employment Opportunity
Commission (EEOC) recommended the 4/5ths rules for assessing disparate impact. In the
EEOC Uniform Guidelines on Employment Selection Procedures, a legal case for
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employment discrimination could be justified when compared to a privileged group
another group has less than an 80% chance of having the same opportunity with a
confidence interval of 95%. 7 Looking at automated facial analysis technology, a similar
principle could be applied to accuracy. If a specific group has accuracy that is less than
80% of the overall accuracy advertised by a vendor, then the system can be said to risk a
disparate impact on that group. When looking at accuracy instead of employment
opportunities, we can assess bias by calculating disparate impact risks for specific
demographic groups. Disparate impact specifically deals with the notion of harm, which
in the case of employment is defined as having less chance of obtaining a job than
someone of a different demographic with comparable qualifications. A case for economic
harm can be made.

While the 4/5ths threshold provides a borrowed guideline that informs the assessment of
disparate impacts, aiming to pass a minimum threshold or accuracy between different
subgroups should not preclude efforts to develop algorithms that work exceptionally well
for all groups. Focusing on maximizing benefits, which in this case means optimal
accuracy on all groups, has the side effect of reducing harms caused by misclassification.
Still, we should keep in mind that even accurate algorithms, especially those that classify
demographic information like gender and race, can be employed in ways that perpetuate
discrimination. In Chapter 2, I explore the potential harms that can arise from gender
misclassification in addition to how accurate information about gender can be used to
treat one gender group worse than another.

4.5.3 Relevant Populations and Data Repair and Accuracy Reporting

With automated facial analysis, the datasets used to train algorithms can lead to varying
levels of accuracy on specific subgroups due to a lack of diversity in the data. Datasets
should be reflective of the populations that will be impacted by their use. Data that is
representative of the relevant populations should be used to train and benchmark
algorithms. However, determining a relevant population and the appropriate
representation is not simple. Overrepresentation and underrepresentation is dependent on
the definition of the population of interest. To deal with the issue of relevant populations,
the Castanda rule was introduced. The rule states for work opportunities the number of
people selected from a protected group should not be smaller than 3 standard deviations
from the number expected in a random selection. Though this could be applied to training
datasets, ultimately the outcomes of using the data should be the main focus. It could be
the case that a biased training set can be manipulated to produce acceptable results.
Skewed data is common in machine learning, and there are a number of approaches for
data repair that attempt to mitigate data bias.

17 Uniform Guidelines on Employment Selection Procedures, 29 C.F.R. 1607.4(D) (2015)
https://www.law.cornell.edu/cfr/text/29/part-1607
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If automated facial analysis were only used on a specific demographic group, a
homogenous dataset could be permissible if there is a low enough chance of encountering
someone outside of the group. However, automated facial analysis is used on
heterogeneous populations and in locations like airports where people of multiple
ethnicities congregate. Studies have shown that facial recognition systems developed in
Western and East Asian countries tend to perform better on their respective populations
(Phillips et al., 2011). As a result, we need to test performance on the relevant
populations on which the systems will be used instead of accepting performance results
on benchmarks that are not reflective of target populations. Acceptable accuracy reports
should be based on accuracies for subgroups of target populations.

4.5.4 Assessing Fairness Requires Better Benchmarks

The public debate over algorithmic fairness initiated by Angwin's recidivism risk score
investigation and algorithmic academic discourse have focused on predictive machine
learning models. These models predict an unknown future outcome on an unobservable
trait. This trait -for example the likelihood to commit a crime- can be viewed as innate or
the result of external factors. Less attention has been focused on the accuracy of
algorithms assessing readily verifiable traits like apparent gender in a given image.
Accuracy for a biometric classification does not rely on an uncertain future. The gender
or age of an individual can be known in a given instance. Because fairness is based on
different contextual assumptions and optimizations for accuracy, this thesis aims to show
why we need more rigorous reporting on the accuracy rates on which fairness debates
center. This thesis focuses on deterministic accuracy for gender classification. Here
fairness is defined by equal accuracy within a threshold margin of error for gender
classification. Overall, this work highlights the need for transparency and accountability
for automated facial analysis. What is the composition of the data we are using to train
and test systems? How are we reporting accuracy? Better processes for transparency and
accountability can provide nuance in assessing fairness agnostic of the criteria being
used.

50



5. Parliaments Benchmark & Dataset Diversity

A dataset of the people and for the people. No prediction without representation.

5.1 Overview

Face datasets are samples meant to represent populations. Politicians, like images in a
dataset, are also representatives of populations. And like images in a dataset, they do not
always neatly resemble the population. This parallel inspired the creation of Pilot
Parliaments Benchmark (PPB) for intersectional benchmarking. The Pilot Parliaments
Benchmark consists of 1270 individuals from three African countries (Rwanda, Senegal,
South Africa) and three European countries (Iceland, Finland, Sweden) selected for
gender parity and skin type. Figure 12 provides as sample of the images included in PPB.

Figure 12. Sample Images from Pilot Parliaments Benchmark

This chapter presents the rationale for constructing the Pilot Parliaments Benchmark
(PPB), the curation methodology for collecting a phenotype attentive dataset, the labeling
scheme used to annotate images in the dataset, existing datasets that were also labeled
with skin type for this research, and the limitations of PPB. The chapter concludes with a
comparison of this new benchmark to existing benchmarks with respect to gender and
skin type.

5.2 Benchmark Rationale

To conduct an intersectional evaluation of gender classification algorithms, I needed a
new benchmark with greater phenotypic representation of skin type.
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TABLE 1. PILOT PARLIAMENTS BENCHMARK DECOMPOSITION

SET Size F M Darker Lighter F Darker F Lighter M Darker M Lighter

All Unique Subjects 1270 566 704 596 674 281 285 315 389

Africa 661 290 371 573 88 266 24 307 64

South Africa 437 181 256 349 88 157 24 192 64

Senegal 149 64 85 149 0 64 0 85 0

Rwanda 75 45 30 75 0 45 0 30 0

European 609 276 333 23 586 15 261 8 325

Sweden 349 162 187 16 333 11 151 5 182

Finland 197 84 113 7 190 4 80 3 110

Iceland 63 30 33 0 63 0 30 0 33

Requirement - Gender Balance and Greater Representation of People of Color
Popular public benchmarks for automated facial analysis that have been assessed for
representativeness tend to exhibit demographic skews in relation to ethnicity and/or
gender (see Table 2).

TABLE 2. LFW/ LFW+ AGE, GENDER, AND ETHNIC COUNTS
Labeled Faces in the Wild (LFW)

Table reproduced from (Han & Jain, 2014)
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Age Group 0-20 21-40 41-6 61+ Total
Female 114 1,685 1,011 165 2,975
Male 95 2,501 5,021 2,641 10,258
Black 17 532 354 219 1,122
White 169 3,368 5,140 2,368 11,045
Asian 23 284 537 219 1,063
Unknown 0 2 1 0 3
Total 209 4,186 6,032 2,806 13,233
Labeled Faces in the Wild Extended (LFW+)
Age Group 0-20 21-40 41-6 61+ Total
Female 1248 1,685 1,011 165 4,109
Male 1427 2,501 5,021 2,641 11,590
Black 40 532 354 219 1,145
White 1497 3,368 5,140 2,368 12,373
Asian 1126 284 537 219 2,166
Unknown 12 2 1 0 25

2675 4,186 6,032 2,806 15,699



Moreover, many of the publicly available datasets tend to be composed of celebrity faces,
which are not representative of the general population. For example, the IMDB-WIKI"
dataset which its creators position to be the largest public face dataset with labels for age
and gender exhibits a strong age skew as shown in Figure 13. In addition, celebrities who
face pressure to maintain cultural beauty standards tend to have body types that are not
reflective of the general population.

IMO
-WIKI

- IMDB-WIKI

C
0

0 10 20 30 40 50 60 70 80 90 100
Age

Figure 13. IMDB WIKI Age Distributions

Requirement - Faces with Minimal Privacy Concerns
Celebrity photos are often used because of availability and fewer concerns with privacy.
Furthermore collecting and distributing images can be challenging given copyright laws
that limit the images that can be made publicly available. As a result, many research
datasets are available by request only. For example, the CASIA-WebFaces dataset, which
has been used to train a number of notable face recognition algorithms is not publicly
available (Yi et al., 2014).

Requirement - Publicly Available
Because this thesis is focused on increasing demographic and phenotypic transparency
with automated facial analysis, constructing a diverse and publicly available dataset was
a requirement for PPB. Subsequent benchmarks can be governed in a way that prevents
vendors from gaming accuracy tests.

5.3 Phenotype and Gender Parity-Aware Curation Methodology

To satisfy these requirements, I decided to use images of parliamentarians since they are
public figures with known identities and photos available under non-restrictive licenses
posted on government websites. To add phenotypic (skin type) diversity to the training
set, I chose to use parliamentarians from African and European countries. The map below

18 IMDB-WIKI Dataset is available at https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/.
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shows an approximated distribution of average skin types around the world based on UV
exposure.
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Figure 14. Global Map of Skin Color
Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103266/

The African and European countries were selected based on their ranking for gender
parity as assessed by the Inter Parliamentary Union. Of all the countries in the world,
Rwanda has the highest proportion of women in parliament. Scandinavian countries were
also well represented in the top 10 nations. Given the gender parity and the prevalence of
lighter skin in the region, Iceland, Finland, and Sweden were chosen. To balance for
darker skin, the next two highest-ranking African nations Senegal and South Africa were
added to the list.

TABLE 3. WOMEN IN PARLIAMENT WORLD RANKINGS

Rank Country Elections

1 Rwanda 16.09.2013

2 Bolivia

3 Cuba

5 Nicaragua

6 Sweden

7 Senegal

8 Mexico

9 Finland

12.10.2014

03.02.2013

F,9.10.2016

06.11.2016

14.09.2014

01.07.2012

07.06.2015

19.04.2015

Seats* Women % W

80 491

130

612:

691

299

63 30I

92 42 45.70%

349 152 43.60%

150 64

500 213 42.60%

200 84 42.00%

" South Africa 07.05.2014 398 167 42.00%
* Rankings as of May 2017 - Full Rankings available at http://www.ipu.org/wmn-e/classif htm -Table Shows Single or Lower
House Seats
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Image Collection
Six web scrapers were developed to retrieve images of parliamentarians along with

available metadata like name and birth date where available. The images were collected

from the official websites of the parliaments. Translation services were used to aid in the

scraping of websites in Finnish and French. The images were collected for research

purposes, which do not appear to be in violation with the use of terms of the websites.

Different countries have varying policies on the use of government photos.

5.4 Label Selection

To assess accuracy for classification by not just gender but also the intersection of gender

and skin type, PPB needed both demographic labels for gender and phenotypic labels for

skin type.

Binary Gender Labels
In adherence with the binary construction of gender used by the algorithms audited, I

chose the reductive binary gender labels of female and male.

Fitzpatrick Skin Type Labels
Though the demographic of race or ethnicity is used to label some face datasets as a way

of accounting for diversity, race and ethnic labels can include faces with large intraclass

variation. In the United States, individuals who self identify as Black exhibit a wide

variety of facial geometries and skin types. Thus skin type was used to account for

phenotypic diversity. Furthermore, skin type was chosen as a phenotypic factor of interest

because default camera settings tend not to properly expose darker skin. Poorly exposed

images that result from sensor optimizations for lighter skin or poor illumination can

prove challenging for automated facial analysis. By labeling faces with skin type, we can

increase our understanding of performance on this important phenotypic attribute.
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Figure 15. Fitzpatrick Skin Type Chart
Source: http://www.skincancer.org/

The Fitzpatrick classification system is used to categorize skin type in PPB.
Dermatologists use the Fitzpatrick Scale to assess skin cancer risk. It is a classification of
skin response to UV radiation (Fitzpatrick, 1988).

The six-point Fitzpatrick classification system is skewed to lighter skin and has three
categories that can be applied to people perceived as White. Yet when it comes to fully
representing the sepia spectrum that characterizes the rest of the world, the
categorizations are fairly coarse. Nonetheless, the scale provides a scientifically based
starting point for exploring algorithmic performance by skin type.

5.5 Benchmark Limitations

Limited to Face Detection and Face Classification
The Pilot Parliaments Benchmark (PPB) only contains one image of each unique subject
in the dataset. Single images of parliamentarians do not make this a suitable benchmark
for facial identification or face verification. However, the methodology used to collect
these images and corresponding metadata could be extended to expand the dataset so it
can be used for facial recognition benchmarking. For example the names of the
parliamentarians can be used to seed searches for additional photos.

Constrained dataset
PPB is highly constrained since it is composed of official profile photos of
parliamentarians. The majority of the photos are taken in a setting where pose is fixed,
illumination is constant, and expressions are neutral or smiling. By using a constrained
dataset to test the algorithms, variations in a performance that are impacted by pose,
illumination, or expression are limited. Future work should explore an unconstrained
benchmark.
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Diversity
PPB consists of a limited set of parliamentarians from African and European countries.
An expanded benchmark could incorporate parliamentarians from other continents. More
work can be done to include other phenotypic measures like facial landmarks. The dataset
is also composed of parliamentarians who by law have to be over a certain minimum age.

Label Accuracy
Gender labels were determined based on the name of the parliamentarian, gendered title
and prefixes such as Mr or Ms, the pronouns used to describe the individual where
available, and the appearance of the photo. The data was manually annotated by one
research assistant, which introduces the potential for bias. Future work will incorporate
multiple annotations per image and metrics on intercoder reliability.

Skin type labels were determined based on a subjective assessment of the subject in a
photo using guidance from www.skincancer.org to guide labeling. The descriptions for
the Fitzpatrick type are ill suited for individuals of Asian origin with fair skin and dark
eyes. The annotator for PPB was not officially trained in assessing Fitzpatrick skin type;
however, given that the majority of the parliamentarians were on opposite ends of the
scale it was deemed suitable to have a non-dermatologist label the dataset. Moreover, the
range of human skin tones as demonstrated in the Humanae project well exceeds a six-
point classification scale that is used to assess skin type (see Figure 16). The Fitzpatrick
classification system is only a starting point for labeling skin type differences.

PAN TONE 7020 C PANTONE 775 C PANTONE 48B '

A~-AA.
Figure 16. Humanae Project Highlighting Unique Skin Tones

Photographer: Angelica Dass

Dataset Size
PPB is a relatively small dataset comprised of 1270 images of unique individuals and
would not be suitable for training deep neural networks. The benchmark is a starting
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point for constructing a more inclusive benchmark for auditing gender classification
algorithms.

5.6 Benchmark Distribution

The PPB dataset will be released under a Creative Commons license. The release does
not endorse using images of elected official in ways that suggest individuals depicted
support a particular product, service, or entity. Longer-term, the aim is to expand the
benchmark and add more parliamentarians from different regions of the world, including
the Caribbean, Central America, South America, East Asia, South Asia, the South
Pacific, Australia, and the Middle East.

5.7 Additional Datasets and Labeling

Since the goal of PPB was to create a dataset with a wider representation of skin types,
the success of this aim is assessed by comparing the Fitzpatrick distribution of PPB with
two baseline datasets.

The first dataset chosen for comparison is the IJB-A dataset. IJB-A is described as the
most geographically diverse dataset collected by the National Institute for Standards and
Technology (NIST). At the time of assessment, the dataset consisted of 500 unique
subjects who are public figures. One image of each unique subject was manually labeled
with one of six Fitzpatrick skin types.

Finally, the Adience dataset, which was released to serve as a benchmark for gender and
age classification, was also labeled with the Fitzpatrick type. The Adience benchmark
contains 2,284 unique individual subjects. 2,194 of those subjects had first reference
images that were discernable enough to be labeled by skin type and gender. Like the IJB-
A dataset, only one image of each subject was labeled for skin type.
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5.8 Gender and Skin Type Distributions

I Skin Type I Count %Type %Total Countl %Type %Total Count[Type %

118 38.06% 9.29% 192 61.94% 15.12% 310

137 59.05%! 10.79% 95 40.95% 7.48% 232

III

26 48.15%

71143.56%

2.05%

5.59%

28151.85%

92156.44%

2.20%

7.24%

54

163 12.83%1

II 170 39.35% 13.39% 262 60.65% 20.63% 432 34.02%

I 44 55.70% 3.46% 35 44.30% 2.76% 79 6.22%

Totals 566 704 0271

TABLE 5. IJB-A FITZPATRICK DISTRIBUTION

Skin Type Count %Type %Total Count %Type %Total Count Type %

4 13.79% 0.80% 25 86.21% 5.00% 29

5 50.00% 1.00% 5 50.00% 1.00% 10

13 20.63% 2.60% 50 79.37% 10.00% 63

III 57 25.91% 11.40% 163 74.09% 32.60% 220 44.00%

II 37 22.42% 7.40% 128 77.58% 25.60% 165 33.00%

I 7 53.85% 1.40% 6 46.15% 1.20% 13 2.60%

Totals 123 N377 500

TABLE 6. ADIENCE FITZPATRICK DISTRIBUTION

Skin Type Count %Type %Total Count %Type %Total Count Type %

16 55.17% 0.73% 13 44.83% 0.59% 29

60 62.50% 2.73% 36 37.50% 1.64% 96

86 48.59% 3.92% 91 51.41% 4.15% 177

III 269 55.35% 12.26% 217 44.65% 9.89% 486 22.15%

II 657 49.14% 29.95% 680 50.86% 30.99% 1337 60.94%

I

Totals

53

1141

76.81%1 2.42% 16

1053

23.19%1 0.73% 69

2194

59

I

3.14%



TABLE 7. PPB, IJB-A, AND ADIENCE FITZPATRICK SIX CLASS COMPARISON

12.83% 1631 4.25% 54118.27% 232124.41% 3101

TOTAL

1270

JB-A 2.60% 13 33.00% 165 44.00% 220 12.60% 63 2.00% 10 5.80% 29 500

3ADIENCE .14% 69 60.94% 1337 22.15% 486 8.07% 177 4.38% 96 1.32% 29 2194

TABLE 8. PPB, IJB-A, AND ADIENCE FITZPATRICK LIGHTER AND DARKER SKIN

DATASET LIGHTER SKIN (I, II, III) DARKER SKIN (IV, V, VI) TOTAL

PPB 53.07% 674 46.93% 596 1270

IJB-A 79.60% 398 20.40% 102 500

ADIENCE 86.24% 1892 13.76% 302 2194

Tables 4 - 8 show skin type distribution for unique subjects in PPB, IJB-A, and Adience.
For the purposes of analysis, lighter skin will refer to faces with a Fitzpatrick skin type of
1,II, or III. Darker skin will refer to faces labeled with a Fitzpatrick skin type of IV,V, or
VI.

While all the datasets have more lighter skinned unique individuals, PPB is around half
light at 53.07% whereas the proportion of unique subjects with lighter skin in IJB-A and
Adience is 79.6% and 86.24% respectively. PPB provides substantially more darker-
skinned unique subjects than the IJB-A and Adience. Even though Adience has 2194
unique subjects labeled, which is nearly twice that of the 1270 subjects in PPB, it has 302
darker skinned subjects, nearly half the 596 darker skinned subjects in PPB. Overall, PPB
has a more balanced representation of lighter and darker skin as compared to the IJB-A
and Adience datasets.

60

PPB

DATASET I H

6.22% 79 34.02% 432



5.9 Intersectional Subgroup Representation

Tables 9 - 11 show the intersectional breakdown of the unique subjects of the data in
respect to gender and skin type.

'ERSECTIONAL FITZPATRICK DISTRIBUTION

281 315 596

% 22.13% 24.80% 46.93%

Female Male Types I - III Total

I _Cou_ 285 389 674

% 22.44% 30.63% 53.07%

TABLE 10. IJB-A INTERSECTIONAL FITZPATRICK DISTRIBUTION

Count 22 80 102

% 4.40% 16.00% 20.40%

Female Male Types I - III Total

Coun 101 297 398

% 20.20%1 59.40% 79.60%/o

TABLE 11. ADIENCE INTERSECTIONAL FITZPATRICK DISTRIBUTION

Count 162 140 302,

% 7.38% 6.38% 13.76%

Female Male Types I - III Total

Coun 979 913 1892

44.62% 41.61% 86.24%
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PPB provides the most balanced representation of darker skinned females, darker skinned
males, lighter skinned females, and lighter skinned males. IJB-A has the least balanced
distribution (see Table 12).

Faces labeled with darker skin and female are the least represented in the IJB-A (4.4%).
Faces labeled with darker skin and male are the least represented in the Adience (6.38%)
dataset. Faces labeled with lighter skin and male annotations are the most represented
unique subjects in all datasets. IJB-A is composed of 59.4% unique lighter skinned males.
Adience is composed of 41.6%, and PPB is 30.63%.

TABLE 12. PPB, IJB-A, AND ADIENCE INTERSECTIONAL COMPARISON

59.4

30.63

22.1P4' 2.4

PPB

----- 16
20.

IJB-A

44.bi
41.61

7.386.328 '0

Adience

0 Darker Female 22.13 4.4 7.38

0 Darker Male 24.8 16 6.38

4 Lighter Female 22.44 20.2 44.63

* Lighter Male 30.63 59.4 41.61

5.10 Analysis

Inclusion Priorities
As a gender benchmark, Adience was constructed to have gender parity. It is unclear to
what extent the creators of the benchmark considered skin type diversity. IJB-A, which
serves as a recognition and detection benchmark, was constructed to be geographically
diverse, but its unique subjects do not reflect the geographic distribution of gender
worldwide.

Diversity of online images
Adience uses images uploaded to Flickr and by construction achieves gender parity.
However, the limited representation of individuals with darker skin could be a reflection
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of the Flickr user base at the time of image collection. The personal photos uploaded are
presumably of family members and friends. A largely homogeneous user base can limit
the phenotypic diversity of available images. Furthermore, images for the Adience
dataset were automatically collected using facial detection software (Kemelmacher-
Shlizerman et al., 2016). Systematic facial detection failure on individuals with darker
skin could also have limited inclusion in the dataset.

Power Distribution and Media Attention Influence Data Availability
The IJB-A benchmark is composed of public figures. The gender skew of the unique
subjects in IJB-A reflect structural factors that have led to public figures being
predominantly male. The UN Women in Politics report shows that worldwide, women
make up only 5.7% (11/193) of heads of governments as of January 2017. Available
media is another factor shaping the composition of the images in the IJB-A dataset.
Countries that receive less international coverage are less likely to have as many images
and videos of their public figures available online.

Diversity priorities shape the composition of datasets. More inclusive datasets need the
explicit prioritization of diverse demographic and phenotypic representation. One without
the other is not sufficient. Collecting a gender-balanced dataset will not assure
phenotypic variation nor will collecting a geographically diverse dataset assure gender
parity.

Due to existing structures of power and skews in media creation, constructing diverse
datasets will take intentional effort. The reliance on automated face detection can limit
the diversity of images collected from online sources. The sources themselves may also
lack phenotypic diversity. PPB was constructed to prioritize both gender parity and skin
type representation. The benchmark only focuses on one demographic attribute, gender,
and one phenotypic attribute, skin type. Additional demographics like age and
phenotypes such as facial geometry can shape the creation of more representative
datasets.
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6. Gender Classification Performance Evaluation

6.1 Overview

Advances in deep learning have shown promising results for automated facial analysis
tasks like gender classification (Levi & Hassner, 2015). Yet benchmarks like Adience
and IJB-A used to evaluate and compare algorithmic performance on automated facial
analysis underrepresent individuals with darker skin (see Section 5.9). As the use of
automated facial analysis increases, we need to assess the accuracy of these algorithms
across a diverse range of people. Even though more people of color are increasingly
using and being impacted by these technologies, little work has been done to explicitly
assess algorithmic performance on individuals with darker skin. This chapter presents a
performance evaluation of four gender classification algorithms on the Pilot Parliaments
Benchmark (PPB). PPB was developed for this thesis to support intersectional
algorithmic performance evaluation on the following groups: darker-skinned females,
lighter-skinned females, darker-skinned males and lighter-skinned males.' 9

Key Findings on Classifiers Evaluated
- Gender Classifiers perform better on male faces than female faces

(10 - 21% accuracy difference)
- Gender Classifiers perform better on lighter skin than darker skin

(9 - 20% accuracy difference)
- Classifiers perform worst on darker females

(20 - 37% error rate)
- Classifiers perform best on lighter males (-l % error rate)
- The Error Rate Gap between best classified group (lighter males) and worst classified

group (darker females) is as much as 36%

6.2 Target Gender Classification Algorithms

Gender classification algorithms have reached a state where technology companies sell
them as a service. The algorithms are marketed in a manner that suggests universal
performance across all faces. I chose to focus on binary gender classification algorithms
due to increased commercial confidence in their performance and the low cost of
conducting a performance evaluation on available gender classifiers. Three commercial
gender classifiers and one freely available for research applications were chosen for
evaluation.

Research Gender Classifier: Adience
On the research end, convolutional neural networks (CNNs) have produced the most
promising results for automated facial analysis tasks like face verification. The Adience

19 Darker and Lighter Skin Designations are based on the Fitzpatrick Skin Type Scale (see Chapter 5.).
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gender classification algorithm was selected because it uses a basic implementation of a
CNN architecture for classification in keeping with the state-of-the-art. The Adience
gender classification model is publicly available, and it can be fine-tuned with additional
training data.

Commercial Gender Classifiers: Microsoft, IBM, and Face++
On the commercial side, I focus on gender classifiers sold in API bundles made available
by Microsoft, IBM, and Face++. Microsoft's Cognitive Services Face API and IBM's
Watson Visual Recognition API were chosen since both companies have made
significant investments in artificial intelligence, capture significant market share in the
machine learning services domain, and provide public demonstrations of their facial
analysis technology. At the time of evaluation, Google did not provide a publicly
available gender classifier. Previous studies have shown that facial recognition systems
developed in Western nations and those developed in Asian nations tend to perform
better on their respective populations (Phillips et al., 2011). Face++, a company
headquartered in China, was thus chosen to see if this observation holds for gender
classification. Like Microsoft and IBM, Face++ also provides a publicly available
demonstration of their gender classification capabilities.

6.3 Evaluation Overview

6.3.1 Gender Classification Benchmark

The Pilot Parliaments Benchmark was created to better assess algorithmic performance
across intersection subgroups with regard to gender and skin type. 1270 images of unique
individuals representing Rwanda, Senegal, South Africa, Sweden, Finland, and Iceland
make up PPB. See section 5.1 for gender, skin type, and intersectional breakdown of
benchmark by region and country.

TABLE 13. PPB SKIN, GENDER, AND INTERSECTIONAL COUNTS

SET Size F M Darker Lighter F Darker F Lighter M Darker M Lighter

All Unique Subjects 1270 566 704 596 674 281 285 315 389

6.3.2 Evaluation Metrics

Aggregate Classification Accuracy
In following the gender classification evaluation precedent established by the National
Institute for Standards and Technology (NIST), I assess the overall classification
accuracy, male accuracy, and female accuracy for all fours classifiers on PPB. These
accuracies are combined with the percentage of misclassified males and females to create
confusion matrices for each gender classifier.
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Disaggregated Classification Accuracy
The male and female accuracies are then evaluted by country and region.

Male and Female Error Rates
To conduct a demographic performance analysis, the differences in male and demale
error rates for each gender classifer is compared first in aggregate and them by region and
country.

Darker and Lighter Skin Type Error Rates
To conduct a phenotypic performance analysis, the differences in darker and lighter skin
type error rates for each gender classifer is compared first in aggregate and then by region
and country.

Intersectional Error Rates
To conduct an intersectional demographic and phenotypic analsyis, the error rates for
four intersectional groups (darker-skinned females, lighter-skinned females, darker-
skinned males and lighter-skinned males) are compared in aggregate and then by region
and country.

Subgroup Contribution to Aggregate Error Rates
Finally, the error rates for each gender classifier are disagegated by gender, skin type, and
intersectional subgroup.

6.4 Classification Accuracy

In following the precedents established by the National Institute of Standards and
Technology (NIST), I evaluate the gender classifiers out of the box to approximate real
world use cases. The intrepid developer looking to quickly integrate gender classification
into software might not change any default configurations. Table 14 presents the
accuracy of the Adience, IBM, Face++, and Microsoft gender classifiers on the Pilot
Parliaments Benchmark, and Table 15 presents accuracies broken down by country.

TABLE 14. AGGREGATE GENDER CLASSIFICATION ACCURACY

Adience IBM Face++ Microsoft

Accuracy 77.81% 88.12% 89.92% 94.78%

Female Male Female Male Female Male Female Male

%Classified Female 65.88% 12.66% 80.36% 5.54% 78.62% 0.88% 89.46% 0.87%

%Classified Male 34.12% 87.34% 19.64% 94.46% 21.38% 99.12% 10.54% 99.13%

N = 1270, Females = 566, Males= 704
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The Microsoft gender classifier leads the others with a 94.78% accuracy score, outpacing
the next classifier by almost 5 percentage points. The noncommercial Adience gender
classifier has the worst performance with a 77.8 1% accuracy score. Unlike the
commercial gender classifiers, the Adience classifier is open source and trainable. With
fine-tuning, better results may be achieved. Table 14 shows all algorithms have higher
male classification accuracy than female classification accuracy. The differences in
accuracy between male and female range from 9.66% to 21.46%. Section 6.5 offers an in-
depth analysis of each classifier's male and female error rates.

TABLE 15. GENDER CLASSIFICATION ACCURACY BY COUNTRY

SOUTH AFRICA (N =437) SWEDEN (N =349)

AdienceSA 69.57% AdienceSW 88.10%

IBMSA 85.00% IBM _SW 96.28%

FaceSA 86.74% FaceSW 94.54%

MSFT SA 91.71% MSFT SW 99.14%

SENEGAL (N =149) FINLAND (N =197)

AdienceSE 71.14% AdienceFL 83.52%

IBM _SE 69.44% IBM _FL 97.97%

Face_SE 81.40% Face_FL 95.43%

MSFTSE 91.73% MSFTFL 98.48%

RWANDA (N =75) ICELAND (N =63)

AdienceRW 74.67% Adience_IL 83.93%

IBM _RW 67.12% IBM _IL 100.00%

FaceRW 80.95% FaceIL 95.24%

MSFT RW 82.86% MSFTIL 100.00%

Since technology companies can train their algorithms on substantially larger datasets
than those available to researchers, I expected all of the commercial classifiers to perform
better than the noncommercial classifier. Surprisingly, the IBM gender classifier
performs worse on the Senegal and Rwanda parliaments than the Adience classifier.
Section 6.9 explores how systematic failure on darker skin impacts IBM's overall
accuracy.

TABLE 16. IBM VS. ADIENCE ON SENEGAL & RWANDA

SENEGAL (N =149) RWANDA (N =75)

AdienceSE 71.14% AdienceRW 74.67%

IBM _SE 69.44% IBM _RW 67.12%
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Adience was benchmarked to have an accuracy of 85.9%, which is in alignment with the
results achieved on the Sweden (88.1%), Finland (83.52%), and Iceland (83.93%)
parliaments. However, compared to the benchmark performance, accuracy drops by over
10% when Adience classifies the South Africa (69.57%), Senegal (71.14%), and Rwanda
subsets (74.67%). Chapter 4 presents an overview of the estimated composition of the
Adience benchmark. It is 88.68% of the faces featured that have lighter skin. This skew
in the benchmark presents the potential to bias accuracy towards lighter skin.

Overall, the Microsoft gender classifier performs the best on all countries with a perfect
result on Iceland. IBM's poor performance on African parliamentarians recovers with a
perfect result on the Iceland benchmark. Still, as shown in Table 17, IBM has the largest
disparity in performance between the African and European parliaments. Accuracy drops
by 17.78% when moving from European classification to African classification.
Microsoft maintains its dominant performance with an 8.27% gap between countries
representing the Global North and the Global South

TABLE 17. GENDER CLASSIFICATION ACCURACY BY REGION

AFRICA EUROPE DIFFERENCE
(N =661) (N =609)

AdienceAF 70.50% AdienceEU 86.24% Adience 15.74%

IBM AF 79.43% IBM _EU 97.21% IBM 17.78%

Face_AF 85.05% FaceEU 94.90% Face 9.85%

MSFTAF 90.74% MSFT EU 99.01% MSFT 8.27%

When announcing state-of-the-art gender classification performance using CNNs, Levi
and Hassner, only reported overall accuracy for gender classification (2015). While one
accuracy metric may make it easier to compare algorithms, it is not sufficient for
revealing subgroup performance that may uncover systematic failures. To see if overall
accuracy holds across gender, skin type, and the intersection of gender and skin type, the
next sections explore subgroup error rates.

6.5 Error Rates By Gender

TABLE 18. AGGREGATE GENDER ERROR RATES

CLASSIFIER Female Error Male Error Error Difference
(N=1270) (N=566) (N=704)

AdienceALL 34.12% 12.66% 21.46%

IBM _ALL 19.64% 5.54% 14.10%

FaceALL 21.38% 0.88% 20.49%

MSFTALL 10.54% 0.87% 9.66%
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The NIST Evaluation of Automated Gender Classification Algorithms report revealed
that gender classification performance on female faces was 1.8% to 12.5% lower than
performance on male faces for the nine algorithms evaluated (Ngan & Grother, 2015).
The gender error rates on the Pilot Parliaments Benchmark replicate this trend across all
algorithms as seen in Table 18. The difference between female error rates and male error
rates ranged from 9.66% to 21.46%

Chapter 7 provides a deeper discussion about using different thresholds to make a case
for discrimination (better treatment of one group than another) based on the error rates
reported in this section.

TABLE 19. GENDER ERROR RATES BY REGION

AFRICA Female Error Male Error Error Difference
(N=661) (N=290) (N=371)

AdienceAF 37.24% 23.45% 13.79%

IBM _AF 32.75% 10.76% 21.98%

FaceAF 32.85% 0.58% 32.27%

MSFTAF 19.01% 1.42% 17.60%

EUROPE
(N=609) (N=276) (N=333)

AdienceEU 30.62% 0.00% 30.62%

IBM _EU 6.16% 0.00% 6.16%

FaceEU 9.82% 1.20% 8.62%

MSFT EU 1.81% 0.30% 1.51%

The tendency for these gender classifiers to perform better on male faces holds on a
regional basis as well (Table 19). For both regions nearly all gender errors produced by
commercial classification are a result of misclassification of images labeled female. IBM
is a notable exception with a 10.76% error rate for males in the African region. All
algorithms perform better on the European subset than on the African subset of faces
across both genders. The commercial classifiers have an average error rate of 28.20% for
females in African parliaments and an average 5.95% error rate for females in European
parliaments. They have an average error rate of 4.25% for males in African parliaments
and average 0.5% error rate for males in European parliaments

The noncommercial Adience classifier has the highest error rates across both regions and
both genders with one exception. The Adience classifier has a 0.00% error rate for males
in European parliaments, which is significantly less than the 23.45% error rate for males
in African parliaments.
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TABLE 20. GENDER ERROR RATES BY COUNTRY

SOUTH AFRICA (N=437) Female Error (N=181) Male Error (N=256) Error Difference

AdienceSA 44.20% 20.70% 23.50%

IBMSA 28.81% 4.94% 23.88%

FaceSA 31.64% 0.40% 31.24%

MSFTSA 20.22% 0.00% 20.22%

SENEGAL (N=149) (N=64) (N=85)

AdienceSE 25.00% 31.76% -6.76%

IBM _SE 38.71% 24.39% 14.32%

FaceSE 39.34% 0.00% 39.34%

MSFTSE 17.74% 0.00% 17.74%

RWANDA (N=75) (N=45) (N=30)

AdienceRW 26.67% 23.33% 3.33%

IBM _RW 40.00% 21.43% 18.57%

FaceRW 28.21% 4.17% 24.04%

MSFTRW 15.91% 19.23% -3.32%

SWEDEN (N=349) (N=162) (N=187)

AdienceSW 26.14% 0.00% 26.14%

IBM _SW 8.02% 0.00% 8.02%

FaceSW 10.56% 1.07% 9.49%

MSFTSW 1.23% 0.53% 0.70%

FINLAND (N=197) (N=84) (N= 113)

AdienceFL 38.46% 0.00% 38.46%

IBM _FL 4.76% 0.00% 4.76%

FaceFL 8.33% 1.77% 6.56%

MSFTFL 3.57% 0.00% 3.57%

ICELAND (N=63) (N=30) (N=33)

AdienceIL 33.33% 0.00% 33.33%

IBM _IL 0.00% 0.00% 0.00%

FaceIL 10.00% 0.00% 10.00%

MSFT IL 0.00% 0.00% 0.00%

Table 20 shows the error rate for females and males by country. In general female error
rates are higher or equal to male error rates across all countries with two notable
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exceptions. The Microsoft gender classifier has a higher error rate for males in Rwanda
(19.23%) than females in Rwanda (15.91%). Similarly the Adience gender classifier has
a higher error rate for males in Senegal (31.76%) than females in Senegal (25%). The
performance of commercial classifiers on the Senegal subset varies substantially. While
the Face++ and Microsoft classifiers have 0.00% error rates for males in this set, IBM has
a 24.39% error rate. IBM's performance on Senegal reflects overall poorer performance
on darker skin. Section 6.9 shows the IBM classifier performs worse on darker skin than
lighter skin on both males and female.

For commercial classifiers the error rates are highest for females in South Africa,
Senegal, and Rwanda. For this group, error rates range from 15.91% to 40%. The IBM
gender classifier has the worst classification error rate of 40% on detected females in the
Rwandan parliament. Face++ is close behind with a 39.34% failure rate on detected
females in the Senegalese parliament. Microsoft achieves the best performance with
15.91% error rate on detected females in the Rwandan parliament.

The Microsoft gender classification error rate for males is .53% or less for all countries
except for Rwanda where the error rate is 19.23%. The Face++ classifier performs the
best on males in the Rwanda subset.

The noncommercial Adience classifier performs male classification well on Sweden,
Finland, and Iceland with an error rate of 0.0% on all three. The Adience classifier
struggles the most with female classification for the South African parliament at an error
rate of 44.2%

6.6 Error Rates by Skin Type

TABLE 21. PPB AGGREGATE SKIN TYPE ERROR RATES

CLASSIFIER Darker Skin Error Lighter Skin Error
(N=1270) (N=596) (N=674) Error Difference

AdienceALL 31.76% 13.28% 18.48%

IBM _ALL 22.76% 2.40% 20.36%

FaceALL 16.49% 4.76% 11.73%

MSFTALL 10.31% 0.89% 9.42%

To attend to skin type phenotypic variation, the images in PPB were labeled with one of
six Fitzpatrick skin type categories. Table X shows the error rates for darker skin
classified with Fitzpatrick type IV, V, and VI and lighter skin classified with Fitzpatrick
type I, II, and III. All algorithms perform better on lighter skin than on darker skin in
PPB. Of the commercial classifiers, Microsoft achieves the best result with an error rate
of 10.31% on darker skin and an error rate of .89% on lighter skin. On darker skin, IBM
achieves the worst classification of the commercial classifiers with an error rate of
22.76%. This error rate is nearly 10 times higher than the IBM error rate on lighter skin.
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Overall, the open source Adience gender classifier has the overall worst performance on
darker and lighter skin with error rates of 31.76% and 13.28% respectively.

TABLE 22. PPB SKIN TYPE ERROR RATES BY REGION

AFRICA Darker Skin Error Lighter Skin Error
(N=661) (N=573) (N=88) Error Difference

AdienceAF 32.46% 10.23% 22.23%

IBM _AF 23.34% 1.25% 22.09%

FaceAF 17.20% 1.15% 16.05%

MSFTAF 10.75% 0.00% 10.75%

EUROPE
(N=609) (N=23) (N=586)

AdienceEU 13.64% 13.77% -0.13%

IBM _EU 8.70% 2.56% 6.14%

FaceEU 0.00% 5.30% -5.30%

MSFTEU 0.00% 1.02% -1.02%

When focusing on the darker skin error rates for the African region and the lighter skin
error rates in for European region, observations made about the overall darker skin and
lighter skin error rates in Table 22 follow the trends previously described since most of
the darker skinned parliamentarian are in the African region and most of the lighter skin
parliamentarians are in the European region. The lighter skin error in the African region
is comparable to the lighter skin error in the European region. The darker skin error in the
European region is notably less than the darker skin error in the African region. However,
since there are only 23 individuals in the European subset with darker skin, looking at the
aggregate accuracy on the total number of images (596) labeled with darker skin in PPB
is a better indicator of darker skin classification performance. The negative error
difference for European classification indicates that performance is better on darker skin,
but thesubset is only composed of 3.77% images labeled with dark skin. The European
regional error difference between light and dark skin classification shows how low
representation in a dataset can impact results of subgroup accuracy. In instances where
there is low representation, oversampling can be used to increase proportional
representation. However if the subgroup sample is not representative of subgroup
population, oversampling can provide a misleading view of accuracy.
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TABLE 23. PPB SKIN TYPE ERROR RATES BY COUNTRY

SOUTH AFRICA Darker Skin Error Lighter Skin Error
(N=437) (N=349) (N=88) Error Difference

Adience SA 35.53% 10.23% 25.30%

IBMSA 18.24% 1.25% 16.99%

FaceSA 16.33% 1.15% 15.18%

MSFTSA 10.40% 0.00% 10.40%

SENEGAL (N=149) (N=149) (N=O)

AdienceSE 28.86% Not represented Only Darker Skin

IBM _SE 30.56% Not represented Only Darker Skin

FaceSE 18.60% Not represented Only Darker Skin

MSFTSE 8.27% Not represented Only Darker Skin

RWANDA (N=75) (N=75) (N=0)

Adience_RW 25.33% Not represented Only Darker Skin

IBM _RW 32.88% Not represented Only Darker Skin

FaceRW 19.05% Not represented Only Darker Skin

MSFTRW 17.14% Not represented Only Darker Skin

SWEDEN (N=349) (N=16) (N=333)

AdienceSW 0.00% 12.46% -12.46%

IBM _SW 0.00% 3.90% -3.90%

FaceSW 0.00% 5.72% -5.72%

MSFTSW 0.00% 0.90% -0.90%

FINLAND (N=197) (N=7) (N=190)

AdienceFL 42.86% 15.43% 27.43%

IBM _FL 28.57% 1.05% 27.52%

FaceFL 0.00% 4.74% -4.74%

MSFTFL 0.00% 1.58% -1.58%

ICELAND (N=63) (N=0) (N=63)

AdienceIL Not represented 16.07% Only Lighter Skin

IBM _IL Not represented 0.00% Only Lighter Skin

Face_IL Not represented 4.76% Only Lighter Skin

MSFTIL Not represented 0.00% Only Lighter Skin
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Given low representation or no representation of individuals with darker skin in Sweden
(16), Finland (7), and Iceland (0), the classifiers' darker error rates ranging from 0% to
42.85% lack statistical strength. All of the commercial gender classifiers perform
relatively well on lighter skin across all countries where lighter skin is represented. With
the exception of South Africa, Face++ has the highest lighter skin error rates of the
commercial classifiers. This difference could be a reflection of a presumed optimization
for Asian faces as opposed to European faces. Given significant differences in the
distribution of skin types across counties, careful consideration must be made when
country of origin is used as a proxy for assessing phenotypic accuracy.

6.7 Intersectional Error Rates by Skin Type and Gender

The error rate by gender and the error rate by skin type show that all algorithms perform
better on the male subgroup and the lighter skin subgroup (See Table 18 and Table 21).
Here, I present error rates on the intersectional subgroups of darker female, lighter
female, darker male, and lighter male.

TABLE 24. PPB INTERSECTIONAL SKIN TYPE AND GENDER TYPE ERROR RATES

CLASSIFIER Darker Female Lighter Female Darker Male Lighter Male
(N=1270) (N=281) (N=285) (N=315) (N=389) D.Fem.-L. Male

AdienceALL 36.79% 31.34% 27.30% 0.27% 36.52%

IBM _ALL 34.42% 5.28% 12.17% 0.26% 34.16%

Face_ALL 33.58% 9.86% 0.69% 1.03% 32.55%

MSFT_ALL 19.64% 1.75% 1.68% 0.26% 19.38%

Best Classified vs Worst Classified
For the entire Pilot Parliaments Benchmark, all four gender classifiers perform the worst
on the darker female subgroup. With the exception of Face++, these algorithms perform
the best on the lighter male subgroup with error rates ranging from .26% to 1.03% The
difference in error rates for the darker females and lighter males is substantial. For the
darker female subgroup, error rates range from 19.64%to 36.79%. On the commercial
side, the IBM and Face++ gender classifier misclassifies 1 out of 3 darker females. The
Microsoft classifier misclassifies 1 out of 5 darker females. Conversely, Microsoft and
IBM only misclassify .26% (1/385) of the lighter male subgroup. Face++ does slightly
worse with a 1.03% error rate on lighter males.

Notable Differences In Error Rates
In general the algorithms perform better on the lighter skin subgroup and the male
subgroup than on their counterpart darker skin subgroup and female subgroup. Still, skin
type and gender accuracies on their own do not provide information on the difference
between intersectional subgroups. Table 25 shows that the difference in error rates
between the darker female subgroup and the lighter male subgroups ranges from 19.38%
and 36.52%. Though performance is better on the lighter subgroup and the male
subgroup, without the intersectional break down provided in Table 25, the performance
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differences between lighter females and darker males would be obfuscated. The
performance difference between lighter females and darker males are mixed with IBM++
performing 6.89% better on lighter females than on darker males. Microsoft has roughly
equivalent performance with a difference of .07%. Both Adience and Face++ perform
better on darker males than lighter females with error difference of 4.04% and 9.17%
respectively.

TABLE 25. SUBGROUP DIFFERENCES IN INTERSECTIONAL ERROR RATES

CLASSIFIER Female - Male Error Darker - Lighter D. Female -L. Male L.Female - Darker Male.
(N=1270) Difference Error Difference Error Difference Error Difference

AdienceALL 21.46% 18.48% 36.52% 4.04%

IBM _ALL 14.10% 20.36% 34.16% -6.89%

FaceALL 20.49% 11.73% 32.55% 9.17%

MSFT ALL 9.66% 9.42% 19.38% 0.07%

TABLE 26. INTERSECTIONAL SKIN TYPE AND GENDER ERROR RATES BY REGION

AFRICA Darker Female Lighter Female Darker Male Lighter Male
(N=661) (N=266) (N=24) (N=307) (N=64) DF-LM

AdienceAF 37.59% 33.33% 28.01% 1.56% 36.03%

IBM _AF 35.63% 0.00% 12.50% 1.75% 33.88%

FaceAF 35.57% 4.17% 0.71% 0.00% 35.57%

MSFTAF 20.77% 0.00% 1.73% 0.00% 20.77%

EUROPE
(N=609) (N=15) (N=261) (N=8) (N=325)

AdienceEU 21.43% 31.15% 0.00% 0.00% 21.43%

IBM _EU 13.33% 5.75% 0.00% 0.00% 13.33%

FaceEU 0.00% 10.38% 0.00% 1.23% -1.23%

MSFTEU 0.00% 1.92% 0.00% 0.31% -0.31%

For completeness the error rates by region and country are presented in Tables 26 and 27.
Given the imbalance of darker female, lighter female, darker male, and lighter male
representation across regions and countries, assessing intersectional subgroup
performance by region and country is limited by low number counts. The Europe
Subgroup for example, only has 2.4% (n=15) darker females and 1.3% (n=8) darker
males.
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TABLE 27. INTERSECTIONAL SKIN TYPE AND GENDER ERROR RATES BY COUNTRY

SOUTH AFRICA Darker Female Lighter Female Darker Male Lighter Male
(N=437) (N=157) (N=24) (N=192) (N=64) DF-LM

AdienceSA 45.86% 33.33% 27.08% 1.56% 44.30%

IBMSA 33.12% 0.00% 5.91% 1.75% 31.36%

FaceSA 35.95% 4.17% 0.53% 0.00% 35.95%

MSFTSA 23.38% 0.00% 0.00% 0.00% 23.38%

SENEGAL (N=149) (N=64) (N=0) (N=85) (N=0)

AdienceSE 25.00% Not represented 31.76% Not represented Only Darker Skin

IBM _SE 38.71% Not represented 24.39% Not represented Only Darker Skin

FaceSE 39.34% Not represented 0.00% Not represented Only Darker Skin

MSFTSE 17.74% Not represented 0.00% Not represented Only Darker Skin

RWANDA (N=75) (N=45) (N=0) (N=30) (N=O)

AdienceRW 26.67% Not represented 23.33% Not represented Only Darker Skin

IBM _RW 40.00% Not represented 21.43% Not represented Only Darker Skin

FaceRW 28.21% Not represented 4.17% Not represented Only Darker Skin

MSFTRW 15.91% Not represented 19.23% Not represented Only Darker Skin

SWEDEN (N-349) (N=1 1) (N=151) (N=5) (N=182)

AdienceSW 0.00% 27.97% 0.00% 0.00% 0.00%

IBM _SW 0.00% 8.61% 0.00% 0.00% 0.00%

FaceSW 0.00% 11.33% 0.00% 1.10% -1.10%

MSFTSW 0.00% 1.32% 0.00% 0.55% -0.55%

FINLAND (N=197) (N=4) (N=80) (N=3) (N=1 10)

AdienceFL 75.00% 36.49% 0.00% 0.00% 75.00%

IBM FL 50.00% 2.50% 0.00% 0.00% 50.00%

Face_FL 0.00% 8.75% 0.00% 1.82% -1.82%

MSFTFL 0.00% 3.75% 0.00% 0.00% 0.00%

ICELAND (N=63) (N=0) (N=30) (N=0) (N=33)

AdienceIL Not represented 33.33% Not represented 0.00% Only Lighter Skin

IBM _IL Not represented 0.00% Not represented 0.00% Only Lighter Skin

FaceIL Not represented 10.00% Not represented 0.00% Only Lighter Skin

MSFTIL Not represented 0.00% Not represented 0.00% Only Lighter Skin
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Iceland has no representation of darker females or males. Rwanda and Senegal have no
representation of lighter females or males. The country breakdown of results underscores
the importance of representation for evaluation. For example in Sweden where only 11 of
349 parliamentarians are darker women, all algorithms perform flawlessly on this
intersectional subgroup. If one were to address under representation by oversampling the
darker females from the Sweden subset, a false notion of accuracy would be established.

In an era where algorithms can be trained on 1 00s of millions of images, it may seem
attending to issues of representation are of less concern. (Surely 1 00s of millions of
images have enough representation so that oversampling is feasible at least on the
training side). Benchmarks, however, are substantially smaller. For example the Labeled
Faces in the Wild (LFW) benchmark that has served as the gold standard for facial
recognition contains 13,233 images. As documented in Chapter 5, the benchmark has
significant gender and ethnic skews. In addition, the latest NIST benchmark that is the
United States national benchmark to assess algorithmic performance on the task of facial
verification is only composed of 4.4% darker females, which amounts to 22 unique
subjects. We need to have better standards. By creating more inclusive benchmarks with
attention to gender and skin type we can (1) prove the suitability of using an algorithm
for high stakes decision making and (2) catch systematic errors early.

Not attending to subgroup accuracy can no longer be an option. The evaluation of
commercial gender classifiers provides evidence to show accuracy can differ
substantially between intersectional subgroups. In the best case darker females were at
least 32 times more like to be misclassified than lighter males. In the worst-case darker
females were at least 136 times more likely to be misclassified than lighter males. When
we put these numbers next to the 4 /5t1 threshold recommendation for assessing disparate
impact, we see that compared to lighter males darker females are at greater risk to
experience harm from misclassification.

Though this intersectional subgroup evaluation focuses on gender classification, other
automated facial analysis tasks like facial detection, facial identification, and facial
verification should be assessed using intersectional subgroups.

6.8 Error Rates and Image Quality:South African Case

TABLE 28. SOUTH AFRICA - GENDER AND SKIN TYPE CLASSIFICATION ERROR RATES
Total Female Male Darker Skin Lighter Skin

AdienceSA 30.43% 44.20% 20.70% 35.53% 10.23%

IBMSA 15.00% 28.81% 4.94% 18.24% 1.25%

FaceSA 13.26% 31.64% 0.40% 16.33% 1.15%

MSFTSA 8.29% 20.22% 0.00% 10.40% 0.00%
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I present a deeper look at images from South Africa to see if differences in algorithmic
performance are mainly due to image quality from each parliament. In PPB, the European
parliament images tend to be of higher resolution with less pose variation when compared
with the images from African parliaments. The South African parliament, however, has
comparable image resolution and has the largest skin type representation of all the
parliaments. Members with lighter skin make up 20.14% (n=88) of the images, and
members with darker skin make up the remaining 79.86% (n=349) of images. Table 28
shows that all algorithms perform worse on female and darker skin subgroups when
compared to their counterpart male and lighter skin subgroups. The Microsoft gender
classifier performs the best, with zero errors on the male and lighter skin subgroups.

TABLE 29. SOUTH AFRICA - INTERSECTIONAL SKIN TYPE AND GENDER ERROR RATES

SOUTH AFRICA Darker Female Lighter Female Darker Male Lighter Male
(N=437) (N=157) (N=24) (N=192) (N=64)

Adience SA 45.86% 33.33% 27.08% 1.56%

IBMSA 33.12% 0.00% 5.91% 1.75%

FaceSA 35.95% 4.17% 0.53% 0.00%

MSFTSA 23.38% 0.00% 0.00% 0.00%

As seen in Table 29 all the error for Microsoft comes from misclassifying images of
females with darker skin. The table also shows that all algorithms perform worse on the
women of color in the dataset. The Adience algorithm fails at a rate of 45.86% for this
subgroup, which is 15.43% higher than its error for the entire dataset. All the commercial
algorithms (IBM, FACE++, MSFT) have at least double the error rates for darker skinned
females when compared to the overall error rates. On average, classification of lighter
skinned males contributes the least to overall error rates.

TABLE 30. PPB - INTERSECTIONAL SKIN TYPE AND GENDER ERROR RATES

ALL Darker Female Lighter Female Darker Male Lighter Male
(N=1270) (N=281) (N=285) (N=315) (N=389)

AdienceALL 36.79% 31.34% 27.30% 0.27%

IBM _ALL 34.42% 5.28% 12.17% 0.26%

Face_ALL 33.58% 9.86% 0.69% 1.03%

MSFTALL 19.64% 1.75%. 1.68% 0.26%

Examining algorithmic performance on the South African subset of PPB (Table 29)
reveals trends that closely match the algorithmic performance on the entire dataset (Table
30). Thus, I conclude variation in performance due to the image characteristics of each
country subset does not fully account for the differences in error rates between
intersectional subgroups. In other words, the presence of more darker-skinned individuals
is a better explanation for error rates than a deviation in how images of parliamentarians
are composed and produced.
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6.9 Subgroup Contribution to Aggregate Error Rates

In addition to using the balanced accuracy measure, reporting subgroup contribution to
overall error will help attend to systematic errors.

Table 31 and 32 show how much each subgroup contributes to the overall error rate or
each gender classifier.

TABLE 31. ERROR CONTRIBUTION BY GENDER AND SKIN TYPE
ALL Female Male Darker Lighter
(N=1270) (N=566) (N=704) (N=596) (N=674)

AdienceALL 68.25% 31.75% 68.98% 31.02%

IBM _ALL 74.32% 25.68% 89.19% 10.81%

Face-ALL 95.16% 4.84% 74.19% 25.81%

MSFTALL 90.77% 9.23% 90.77% 9.23%

For the commercial gender classifiers, around three quarters or more of the overall error
comes from the misclassification of female faces. Likewise with skin type, three quarters
or more of the total errors comes from the misclassification of darker skin. With the
noncommercial Adience classifier, over two thirds of the overall error come from
misclassifying females when looking at gender and darker skin when looking at skin
type. Face++ has the largest female contribution to error at 95.16% and Microsoft has the
highest dark skin contribution to error at 90.77%.

TABLE 32. ERROR CONTRIBUTION BY INTERSECTIONAL SUBGROUP
ALL Darker Female Lighter Female Darker Male Lighter Male
(N=1270) (N=281) (N=285) (N=315) N=(389)

AdienceALL 37.59% 30.66% 31.39% 0.36%

IBM _ALL 64.19% 10.14% 25.00% 0.68%

FaceALL 72.58% 22.58% 1.61% 3.23%

MSFTALL 83.08% 7.69% 7.69% 1.54%

In the intersectional subgroup breakdown, we see across the board that darker females
account for the largest proportion of misclassifications for all algorithms. Even though
darker females make up 22.13% of the benchmark, they constitute between 64.19% to
83.08% of error for the commercial classifiers. White males who make up 30.63% of the
benchmark contribute only 0.68% to 3.23% of the total errors from these classifiers. With
the Adience classifier, error is more evenly distributed between darker females (37.59%),
lighter females (30.66%), and darker males (31.39%), Lighter males contribute to only
0.36% of the Adience error. Considering that the Adience dataset is estimated to be
86.24% White, the low error rate on lighter skin seems to be reflective of dataset
representation. Notably, even though it is estimated that lighter females (44.46%) and
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lighter males (41.61%) make up a roughly equal proportion of the Adience dataset, the
lighter female group contributes 30.66% of the error whereas lighter males contribute less
than 1%. These results suggest representation in training may not be the only factor to
consider when composing new training datasets. The algorithms as well as datasets need
to be reexamining and reconstructed to improve classification performance. Nonetheless,
balanced benchmark datasets enable better assessment of subgroup performance
regardless of how algorithms were trained.
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7. Discussion

7.1 Overview

"To study algorithmic fairness is to study the interactions between different spaces that
make up the decision pipeline for a task" - Sorelle Friedler (2016).

I look at gender classification through the construct space, observation space and decision
space to uncover key assumptions and limitations that need to be overcome to achieve a
richer understanding of algorithmic fairness as it relates to the accuracy of verifiable
traits like gender. The discussion of the intersectional benchmark results presented in
Chapter 6 will be guided by an analysis of each space in regard to the performance of
four gender classifiers. The Pilot Parliament Benchmark (PPB) was created to enable
intersectional benchmarking with attention to gender as well as skin type.

Key Findings
- Aggregate Selection Rate analysis using the 4/5ths threshold does not reveal

statistical evidence for disparate impact based on gender or race
- Subgroup Selection Rate analysis using the 4/5ths threshold reveals statistical

evidence for racial and gender discrimination for darker females
- Absolute Accuracy analysis reveals instances of gender, racial, and intersectional

disparate impact when using the 4/5ths disparate impact threshold or 95%
accuracy minimum

- Existing legal frameworks are not well equipped to deal with phenotypic or
intersectional discrimination

- The PPB intersectional evaluation reveals systematic subgroup error

The notable accuracy gaps in relation to gendered skin type and intersectional subgroups
show (1) the importance of attending to phenotypic attributes when assessing the
performance of automated facial analysis and (2) the utility of intersectional
benchmarking in revealing systematic error.

7.2 Construct Space: Gender Classification as Gender

Presentation

For classification algorithms, defining the construct of interest is fundamental for
establishing the related classes of that construct. The gender classifiers evaluated in this
work all assume a binary construction of gender that is classified as either male or
female. There is an underlying assumption that gender is fixed and can be known based
on the characteristics of a face. For computer vision algorithms, the terms gender and sex
estimation are often used interchangeably with the binary labels of male and female as
opposed to the labels man and women which more explicitly deal with gender identity or
the labels masculine or feminine which deal with degrees of gender expression. We need
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to examine precisely what these algorithms attempt to estimate. By construct, a classifier

that attempts to estimate assigned sex based on biological features is not the same as a

gender classifier that attempts to estimate gender identity based on gender norms.
Geometric based gender estimation approaches, which have been less successful, are

based on the assumption that facial geometries vary in discriminant ways between the

sexes. Appearance based methods take in implicit gender cues, which are not limited to

facial geometries. Here classification is not solely based on biological sex as determined

by chromosomes nor is it based on the individual's self-identity. Instead, gender is

shaped by socially, culturally, and historically influenced manifestations of gender

display (Goffman, 1979).

Deep learning algorithms inextricably link the assessment of gender to the visual gender

display norms inferred from a training set of images. Since gender display norms are

culturally influenced, curating diverse training data must be given careful attention. This

means attributes like hairstyle, accessories like nose rings, or other characteristics that

have strong cultural gender norms, which can change based on a population of interest,
need to be considered in data gathering and benchmarking.

The binary construction of gender also erases individuals who do not fit into socially

constructed male or female gender norms. Cultures around the world recognize genders

that transcend a binary view of gender. Indigenous American and Siberian tribes
recognize "two-spirit" individuals (Jacobs, 2005). Increasingly, transgender individuals

are gaining increased legal recognition. In 2014, the Supreme Court of India officially

recognized hijras who do not fit neatly into a male and female gender binary as belonging

to a third sex. A person's assigned biological sex may not match the individual gender
identity (self-concept) or gender expression (behavior) that can change over time.

Regardless of assigned sex, gender nonconforming individuals may intentionally take on

androgynous modes of gender display. The naive binary gender classification that is used

today lags behind expanding and centuries old understandings of gender. The gender

displays of groups that are absent or underrepresented in training data and binary labels

will not be well modeled. Even when gender display is somewhat binary within a culture,
across cultures display norms may differ. For example, if it is customary for women in

one population to wear short hairstyles, but a model has been trained to associate short
hair with men, this variable gender display norm could lead to inaccurate classification of

new female images that break the learned norm.

By construct, binary gender classification models based on deep learning predict gender

based on gender display. Beyond appearance based models gender classification, there
are other models that use facial geometry to determine gender or sex based on difference

between male and female face geometries influenced by sex hormones (Burton et al.,
1993) Geometric methods have not been as successful as appearance-based models

suggesting that factors beyond facial geometry signal gender. Even when facial geometry
is being explicitly measured, phenotypic gender difference between populations should
be accounted for by including sufficient male and female training samples of each target
subgroup.

82



In keeping with the appearance-based approach, the convolutional neural network (CNN)
based Adience gender classifier reflects state-of-the-art methods for using deep learning
for computer vision. The exact implementations of the commercial gender classifiers are
proprietary, but given the companies' investments in deep learning, it is likely they are
created with CNNs. The explicit view of gender as a binary construct and the implicit use
of gender display to estimate gender make gender classification models especially
susceptible to stereotypes of visual masculinity and femininity present in training data.
By conceptualizing appearance based gender classification as an imprecise exercise of
inferring gender display norms and not estimating biological sex, machine learning
practitioners can learn from considerable scholarship that has explored how gender
display manifests in different cultures. Insights on cross-cultural gender display norms
can inform the creation of more inclusive training sets and benchmarks.

7.3 Observation Space

Understanding that gender is socially constructed, we seek an observation space that is
used as a proxy to estimate the gender construct. The observation space is composed of
features -attributes that provide useful information to inform classification. Discussions
of algorithmic fairness have mainly centered on predictive models that use explicitly
defined features to determine class membership. Observable features for predictive
models are chosen as proxies for the unobservable construct of interest such as
creditworthiness. Creditworthiness can be assessed using a set of features, including
income, occupation, and age. By United States law, a set of protected attributes like
gender cannot be legally used to determine access to credit. Feature selection introduces
the possibility for bias and the possibility of redundant encodings. A redundant encoding
is a feature that is highly correlated to a protected variable like ethnicity. Zip codes are
highly correlated to socioeconomic status, and can also encode attributes like race.
Redlining practices of the past that limited access to credit, insurance, and loans based on
the zip codes of individuals have not been eliminated by algorithmic automation.
Training data that reflects redlining in the past in the real world can embed racial bias
into virtual predictive models even if no race labels are used. Because of the possibility of
redundant encodings, Hardt, Price, and Srebro argues it is best to explicitly attend to
protected features like gender and ethnicity when attempting to create fair algorithms
(2016). By explicitly attending to difference in predictions between different subgroups,
various techniques can actively be used to curb discrimination.

7.3.1 Visual Redundant Encodings

To date, redundant encodings have been defined by intentional feature selection. As a
result, algorithm designers can choose to exclude features known to redundantly include
protected data. For gender classification using convolutional neural networks, features are
not explicitly understood variables. Instead, discriminative features are inferred based on
the images provided in training data as exemplars of classes of interest, like male or
female presented faces. Though the observation space for gender classification models is
visual, unlike the predictive models discussed, there is still the possibility for redundant
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encodings. An image of an individual can contain cues that are highly correlated to
perceived gender, perceived ethnicity, or perceived religion. Even if no categorical
information about gender, ethnicity, or religion is available, these attributes can still be
redundantly encoded. Human bias that leads to redundant encodings through feature
selection in the case of predictive models can be introduced through bias in training data
selection for vision-based models. Studies that attempt to use face images to infer
intrinsic qualities about individuals such as trustworthiness or criminality (see the
controversial 2016 Wu and Zhang study on inferring criminality from faces), risk
perpetuating stereotypes that can be a reflection of external factors like ethnic profiling
more than intrinsic factors. Visual redundant encodings like categorical redundant
encodings can reflect "the prejudice of prior decision makers" as Barocas and Selbst
would say (2014). In human-focused computer vision classification, diverse phenotypic
representation is needed for each class of interest to mitigate visual redundant encodings.
Without care, visual redundant encodings can give rise to digital phrenology that
propagates prejudice under the guise of objective analysis.

7.3.2 Phenotype Awareness

In the spirit of fairness through awareness, explicitly attending to the face phenotype can
help mitigate demographic bias that is based on phenotype correlations. The finding that
the gender classification algorithms perform the worst on females with darker skin
provides evidence that the algorithms can systematically fail on demographic groups
whose class association is in part influenced by perceptions of darker skin. The finding
that classification is substantially worse for darker females than darker males also shows
that intersectionality - the intersection of multiple identities (gender and perceived
ethnicity based on skin type) - cannot be ignored. Beyond gender classification, if an
automated facial analysis system is tested to work well on individuals with darker skin,
but the majority of those individuals are male, it cannot be assumed the system will also
work well on female faces and vice versa. The current gender imbalance of darker skin in
the National Benchmark for facial detection and facial recognition is cause for concern
when it comes to assessing the accuracy of algorithms.

7.3.3 Relating Phenotype and Demographics

The overlap of phenotypic and demographic groups is not one to one, but the impact of
skin type on ethnic and racial perception should not be underestimated. In the US,
individuals with type VI skin would likely be perceived as Black. Individuals with type
IV skin may belong to a wide range of ethnic groups but would not be considered White.
Failure rates on darker skin as defined by the Fitzpatrick skin type can serve as a proxy
for failure rates on non-White individuals using US racial classification norms. Canada
uses the term visible minority to underscore that certain phenotypic characteristics make
membership to a demographic group more explicit. Here darker skin can be viewed as a
visual redundant encoding for belonging to the visible minority in the Canadian context.
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Skin type of course is not the only phenotypic attribute that can be assessed. Prior
research has explored facial regions that impact gender classification when using
appearance-based approaches like principal component analysis. By masking facial
regions such as the forehead, eyebrows, eyes, nose, lip, and chin, Ozbudak et al.
produced experimental results that show the nose was the most influential region for
gender classification followed by the forehead. The chin was the least influential. They
claim their study to be the first to test for the influence of racial features on gender
classification.

However, their results do not report how many of the 480 images they used were
categorized into Asian, European, or African faces. The images were reportedly taken
from the FERET gray scale database, but the demographic breakdown of the images is
not reported thus making it difficult to assess the statistical strength of the results that
Asian faces had 0% error and African faces had 13% error. Furthermore, the gender
breakdown of the error is not reported so it is unclear if misclassification is equally
distributed across gender or predominantly due to either male or female error. These
uncertainties call for further scholarship that attends to the impact of phenotypic
characteristic on gender classification that extends beyond skin type. For some
populations, skin type may be correlated with other phenotypic characteristics. Future
analysis should examine the influence of different facial regions on gender classification.

7.3.4 Skin Type is an Imprecise Ethnic Proxy

Still, it should be noted that skin type alone is not an adequate proxy for ethnic or racial
classification. For a given skin type, multiple ethnicities can be associated. The following
individuals hailing from four different regions could be classified as Type IV on the
Fitzpatrick scale though ethnicities differ (see Figure 17).

rW

USA INDIA PERU PHILIPiPINES-
Figure 17. Fitzpatrick Skin Type IV Across Four Regions

Even though people perceived as belonging to specific ethnicities have skin types
associated with these perceptions, skin type alone does not determine ethnicity nor does
ethnicity necessarily define skin type. Sandra Laing - a south African woman born to
Afrikaner parents with a traceable legacy of three generation of Afrikaner heritage was
labeled "coloured" by the Apartheid South African government because of her hair
texture and skin color. Self-perception is also variable. Public figures like Tiger Woods
who is described as African-America by the media, self-identify in ways that embrace a
multi-ethnic heritage.
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In the US, hypodescent also known as the "one-drop rule" was used to erase multifaceted
ethnic identities. Depending on the state, if an individual had 1/32 to 1/4 or more African
ancestry, laws legalizing Black/White segregation deemed the individual to be Black
discounting the other portion of ancestry.

Hypodescent laws in part account for the large intraclass variation of people perceived
and self-identifying as Black or African-American in the United States. The following
images of public figures who identify or are perceived as Black in the United Stated show
this range of intraclass variation (see Figure 18).

Figure 18. Individuals Perceived of Self-Identifying as Black/African-American in United States

Skin type is a limited proxy for ethnicity, and ethnicity is an unstable predictor of skin
type. This is not to say there can be no correlation between the two. Given interclass
variation in regard to phenotypes associated with an ethnicity, assessing phenotype
directly is more useful than using demographic proxies when we want to evaluate how
specific facial characteristics influence classification accuracy. Most critically, when
attempting to create inclusive benchmarks, we need to account for intraclass variation
within demographic groups.

Since the highest failure rates were on people of African descent in this study, I conclude
this section with skin type implication for the Black demographic in the United States.
Further work is needed to assess intraclass variation in other demographic groups that
have been created around the world based on political, social, and cultural factors. The
Fitzpatrick scale has 3 categories for classifying White skin and 3 categories for people
with non-White skin. The National Survey of Black Americans (Jackson & Neighbors,
1997) has a 5-point system for assessing skin color of African-Americans to provide
more nuance than the Fitzpatrick scale that was developed to measure skin response to
UV radiation. With intraclass variation in mind, a benchmark that only included light
skinned persons who may be more likely to be celebrities with readily accessible images
would not adequately represent the phenotypic variation of the Black population in the
United States.

The phenotypic characteristics of public figures who self-identify or are classified in a
demographic group may not always be representative of intragroup variation. The NIST
strategy of using public figures to collect seemingly representative samples must also
consider the way in which the privileging of lighter skin can skew the phenotypic
representation of those positioned to be public figures. In this study, the Pilot Parliaments
Benchmark exemplifies how visible representatives of populations do not always reflect
the phenotypic characteristics or distribution of a population. Even though White South
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Africans account for 8.9% percent of the population, phenotypically lighter skin
accounted for 20% of South African 0 elected or appointed officials in PPB.

Some countries with colonial histories also have an overrepresentation of lighter skinned
politicians that do not phenotypically represent the majority of the population. Lighter
skin overrepresentation, beyond politics, can also impact the reliability of using countries
as ethnic proxies. As touched on in section 2.5.2, the NIST Gender report used country of
origin as a proxy for ethnicity to determine the gender classification accuracy across
ethnicities. The visa images of visitors from different countries around the world to the
United States comprised the datasets. This approach is limited given that (1) ethnicity is
an unstable proxy for phenotype characteristics, (2) individuals with the ability to obtain
visas may not be phenotypically representative of the population, and (3) countries with
multiethnic populations like Brazil are ill suited for mono-ethnic approximation.

To increase algorithmic transparency in the future, explicit attention must be given to
phenotype characteristics when assessing the performance of automated facial analysis
algorithms. Assessing performance across skin types using the Fitzpatrick scale is a
minimum starting point. Disparities in performance between skin types can be used by
analysts to determine the demographic groups defined in a given country that are most at
risk for inaccurate classification. In this this, intersectional benchmarking revealed that
females with darker skin who would fit into the African-American/ Black race category
of the US could have a high risk for misclassification by the gender classifiers tested.
Still, it cannot be assumed that all females of darker skin coming from different
populations around the world will be classified in the same way. These results show that
further assessments are needed before confidently deploying automated gender classifiers
on multiethnic populations. Classification accuracy must be contextualized to fit the
target population on which technology will be used. Fairness awareness in the context of
computer vision requires phenotype awareness along with an understanding of the
historical, political, and social factors that shape demographic distinctions.

7.3.5 Data Quality and Sensors

In the observation space, bias can arise due to under or over representation in data
observed. The quality of available data on specific groups can also be limited. In the case
of computer vision, in addition to assuring adequate diversity in training data, the quality
of data is directly associated with quality of sensor readings that produce the original
digital image in a training set.

It is well established that pose, illumination, and expression (PIE) can impact the
accuracy of automated facial analysis. Techniques to create robust systems that are
invariant to pose, illumination, expression, occlusions, and background have received
substantial attention in computer vision research. Illumination is of particular importance

20 2011 South Africa Census is available at
https://www.statssa.gov.za/publications/P030 14/P03014201 .pdf
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when doing an evaluation based on skin type. Default camera settings are often optimized
to expose lighter skin better than darker skin. Underexposed or overexposed images that
present significant information loss or a lack contrast can make accurate classification
challenging.

With full awareness of the challenges with pose and illumination, I intentionally chose an
optimistic sample of constrained images that were taken from the parliamentarian
websites. Each country subset had its peculiarities. Images from Rwanda and Senegal had
more pose and illumination variation than the images from the other counties. The
Swedish parliamentarians all had photos that were taken with a shadow on the face. Of all
the subsets, the South African subset had the most consistent pose and illumination for
the images. The South African subset also was composed of a substantial number of
lighter skinned and darker skinned subjects. Given the diversity of the training set, the
high image resolution, and the consistency of illumination and pose, the finding that
classification accuracy varied by gender, skin type, and the intersection of gender with
skin type do not appear to be confounded by the quality of sensor readings. The
disparities presented with such a constrained dataset do suggest that error rates would be
higher on more challenging unconstrained datasets. Future work should explore gender
classification on an inclusive benchmark composed of unconstrained images.

7.4 Decision Space

In machine learning, the decision space is the central focus. Perfecting prediction or
classification even if the mechanism for either is not fully understand remains the
priority. While debates about transparency and accountability in Al tend to question
constructs, feature selection, or data composition, debates on fairness Al focus on the
outcome of algorithmic prediction or classification. To expand the conversation about
fairness we cannot concern ourselves only with the decision space without also
questioning how decisions are reached and who determines how they are used.
Regardless of algorithmic accuracy, larger ethical questions remain about whether or not
gender classification should be used in the first place and to what extent those impacted
by classifiers are informed of their use and have the agency to opt out. Chapter 2 explores
potential misuses of gender classification, which enhances covert surveillance and
introduces the potential for gender discrimination in face-based target advertising. This
section examines criteria to evaluate the readiness of gender classification from a
technical perspective. We should remain skeptical about the appropriateness of using
gender classification and explore pathways to engage the public in governing the use of
automated facial analysis.

Since bias is a social and technical concern, being able to explain how different attributes
--be they categorical or visual redundant encodings--impact algorithmic decisions
provides a map into how to mitigate unwanted bias. Enthusiasm over improved accuracy
on benchmarks once deemed challenging has overshadowed analysis of error rates that
can inform questions surrounding algorithmic fairness.
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For gender classification, I define fairness as having comparable accuracy and error rates
between subgroups. In addition to looking at overall accuracy on the Pilot Parliaments
benchmark, I explore error rates with an attention to demographic, phenotypic, and
intersectional subgroups. The purpose of this exploration is to examine the decision space
in such a way that it can offer answers about factors that contribute to gender
misclassification. Prediction and explanation are both vitally important if we want to
identify and mitigate subgroup bias in classification accuracy.

7.4.1 From Aggregate Results to Intersectional Analysis

The results of the overall gender classification accuracy show the obfuscating nature of
single performance metrics. Taken at face value, the accuracy of classifiers ranging from
77.81% to 94.78% on the PPB, suggests that some classifiers are suitable to use on the
entire population represented by the benchmark. A company might justify the market
readiness of a classifier by presenting performance results in aggregate. Yet a gender and
phenotypic break down of the results show that performance differs substantially for
distinct subgroups. Classification is 10 - 21% worse on female than males and 9 - 20%
worse on darker skinned than lighter skinned subjects.

Though helpful in seeing systematic error, gender analysis and skin analysis by
themselves do not present the whole story. Is misclassification distributed evenly
amongst all females are there other factors at play? Likewise is the misclassification of
darker skin uniform across gender?

The intersectional error analysis that targets gender classification performance on darker
females, lighter females, darker males, and lighter male subgroups provides more
answers. Across the board darker females constitute the majority of misclassification for
all gender classifiers ranging from 64.19 - 83.08% for commercial classifiers. Lighter
females contribute to 7.69% to 22.5% of the misclassification for commercial classifiers.
Darker males contribute 1.61% to 25% of these classifications. Lighter males contribute
0.68%to 3.23% of misclassifications. We can see that the most improvement is needed on
darker females specifically, and more broadly speaking the 10 - 21% gap between male
and female classification should be closed. When examining the gap in lighter skin and
darker skin classification, we see that even though darker females are most impacted,
darker males are still more misclassified than lighter males.
These results raise more questions.

In this thesis, I consider gender classification, but what differences might subgroup error
analysis reveal in other automated facial analysis tasks? A benchmark dataset that
underrepresents darker females which is true of existing benchmarks would not be
suitable for finding this kind of disparity. What steps can be taken to create more
inclusive benchmarks to uncover subgroup disparities, and what steps can be taken to
mitigate the disparities that are uncovered? Most critical to questions around fairness,
how do we establish permissible accuracy thresholds for fairness. Appropriate thresholds
will be context specific. Next, I look at ways we can construe fairness for binary gender
classification.

89



Are differences in subgroup classification error rates grounds for disparate impact
claims?
The gender, skin type, and intersectional error analyses (see Chapter 6) show subgroup
differences with gender classification accuracy. By using different measures for
discrimination that have been defined in legal literature, it is possible to examine these
results through selection rate analysis and the 4/5ths threshold.

In the United States selection rate is used to measure disparate impact. In the context of
gender classification, I define discrimination in terms of a gender classifier having
accuracy differences between two groups that exceed the disparate impact threshold.
Here the comparison group will be the intersectional subgroup that has the highest
accuracy deemed Abest and another subgroup deemed Aworst.

Selection Rate: 1 - p = 1-Error worst _ A-worst
1-p2 1-Errorbest Abest

Table 33 shows the selection rates between the best-classified group and the worst
classified group.

TABLE 33. SUPBGROUP SELECTION RATES

Selection Rate

ALL Female/Male Darker/Lighter D.Fem/L.Male D.Fem/D.Male

AdienceALL 84.66% 78.69% 63%, 86.95%

IBM ALL 91.19% 79.14% 66% 74.67%

FaceALL 87.44% 87.69% 67% 66.88%

MSFTALL 94.39% 90.49% 81% 81.74%

If we use the 4/5ths precedent to assess discrimination, we reach the following
conclusions. The selection rate between males and females is above 80% for all
classifiers and does not meet the 4/5ths threshold. The selection rate between lighter and
darker skin is on the border of the discrimination threshold for the Adience (78.69%) and
IBM (79.14%) classifier. When we look at the selection rate between the worst classified
group which is darker females across the board and the best classified group which is
lighter males for the Adience, IBM, and Microsoft classifiers and darker males for the
Face++, we have 3 instances that surpass the discrimination threshold. The selection rate
between darker females and lighter males for the Adience (63%), and IBM( 66%)
classifier and the selection rate between darker females and darker males for the Face++
(66.88%) are all well below the 80% mark. The Microsoft classifier is on the border with
an 81% selection rate between darker females and lighter males.

Can we conclude there is no gender discrimination even though darker women are
significantly misclassified? Can we conclude there is no potential for race discrimination
since darker skin misclassification is on the border or above the 80% threshold? Using
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the current threshold and data, there is not enough statistical evidence to make a claim for
gender discrimination in the aggregate or enough evidence to make a strong racial
discrimination claim using darker skin as a proxy for non-White. Even though there is
statistical evidence that shows darker females are misclassified at a rate that well exceeds
the discrimination threshold, we lack legal frameworks that address intersectional
discrimination. The 4/5ths rule applies to protect classes which includes females and
Blacks, but it does not include explicitly include Black females.

Beyond the legal implications, selection rate analysis faces two key limitations. One,
even if the rate between groups is within a suitable threshold, the overall classification
rates may not be acceptable for the task. For example, if gender classification for the
best-classified group in at 70% and the worst classified group is at 68%, the selection rate
of 97.14% may be acceptable. However, the suitability for use in a high stakes scenario is
questionable given the 30 and 32% error rates on the groups respectively. Two, the use of
selection rate prioritizes group accuracy over individual accuracy. In a case where
exceptional accuracy is achieved for one subgroup and acceptable accuracy is achieved
for another, using selection rate analysis to prohibit automated classification may limit
benefits for individuals in a subgroup that will be correctly classified.

Should a member of the worst performing group who would be correctly classified not
receive the benefits of classification? Hypothetically, the benefit of accurate classification
could mean the ability to use an automated system that saves time and reduces costs.
Even if the system fails on 1 out of 5 individuals in a disadvantaged subgroup, 4 out of 5
individuals in the subgroup still receive the benefit of efficiency.

Beyond the perceived benefit of efficiency, how might we factor in that the efficiency
introduced might have externalities relating to security and privacy that are not factored
in? These open-ended questions provide reasons to reevaluate how we assess the relation
between aggregate accuracy, subgroup error rates, and algorithmic fairness.
The selection rate can be used to assess relative differences for assessing fairness in
opportunity. Comparing the selection rate for men and women when it comes to receiving
a positive credit rating can be helpful for analyzing gender fairness. Using selection rate
to assess fairness of the classification accuracy for verifiable traits like gender is ill
posed. Relative performance is not as important as absolute performance. The suitability
of a verifiable classifier should be determined by ensuring that the accuracy of all
subgroups of interest is above an absolute threshold and not a ratio-based threshold. As a
thought experiment, let us require the minimum threshold of accuracy to be 80% for all
subgroups of interest.
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TABLE 34. AGGREGATE GENDER AND SKIN TYPE ACCURACY

Accuracy

ALL Female Male Darker Lighter

AdienceALL 65.88% 87.34% 68.24% 86.72%

IBM _ALL 80.36% 94.46% 77.24% 97.60%

FaceALL 78.62% 99.12% 83.51% 95.24%

MSFT ALL 89.46% 99.13% 89.69% 99.11%

Using this criterion, we can see that if our subgroups are just demographic by gender,
IBM and Microsoft pass the test since the accuracies for males and females are above
80%. If we only split the subgroup by skin type, Face++ and Microsoft pass the test.
Using absolute performance and not relative performance we can use the 4/5ths threshold
to state there is a statistical case for gender discrimination with the commercial Face++
classifier. There is also a case for racial discrimination with the IBM classifier. The
Adience classifier has the poorest performance across gender and skin type, but it is not
sold commercially. In addition, the Adience gender classification model can be retrained
and improved before being used. Keep in mind 80% accuracy is a generous threshold for
a binary classifier. A human parity standard which states automation technology is
suitable for adoption when it matches or exceeds human performance on a task negates
the use of the 4/5ths rule for gender classification. If we find human performance on
estimated gender to be 95% and required absolute performance for all subgroups to be at
95% or higher, all the classifiers evaluated would be deemed to demonstrate both gender
and racial discrimination.

TABLE 35. INTERSECTIONAL GENDER AND SKIN TYPE ACCURACY

Accuracy

ALL Darker Female Lighter Female Darker Male Lighter Male

AdienceALL 63.21% 7 68.66% 72.70% 99.73%

IBM _ALL 65.58% 94.72% 87.83% 99.74%

FaceALL 66.42% 90.14% 99.31% 98.97%

MSFTALL 80.36% 98.25% 98.32% 99.74%

If we evaluated intersectional subgroups using either the 80% or 95% thresholds, we see
that none of the classifiers definitely pass the test mainly due to poor performance of
classification on darker females. Microsoft comes the closes with a borderline 80.36%
accuracy rate on darker females. The dividing lines matter. Establishing the subgroups of
interest that must have accuracies that exceed the minimum threshold is a critical
decision that impacts fairness evaluations. How might we establish which subgroups are
most relevant to test? How do we establish appropriate accuracy thresholds?
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7.4.2 Impact Population, Benchmark Data, and Training Data.

The subgroups of interest for a gender classifier should reflect the population that will
most likely be impacted. The demographics and phenotypic composition of the impacted
population should be reflected in benchmark datasets used to determine suitable use.
Classifiers that learn on training sets that are inclusive of the impacted population will be
best positioned to do well on population inclusive benchmarks.

If a gender classifier is being used for a mono-ethnic population with small intraclass
phenotypic variation, the gender subgroups may be sufficient for determining
acceptability of use. However, the reality is that automated facial analysis is being
deployed on multiethnic populations at transportation hubs like airports and embedded in
consumer products like smart phones that are sold in global markets. For companies like
Microsoft and IBM that operate on a global scale, the mono-ethnic assumption is not
credible or viable. Face++, which appears to focus mainly on China, reports their facial
recognition software is embedded in Lenovo laptops that are sold globally by IBM. It is
not uncommon for large corporations to use subcontractors to add specific functionality
to products. Due to increased globalization, any company that is offering facial analysis
for high stakes tasks like authentication or surveillance must ensure the technology works
well across the sepia spectrum of human faces.

How then do we proceed with evaluating the accuracy of automated facial analysis on
multiethnic populations? While census data offer demographic information for some
populations down to precinct levels, phenotypic information is not readily available. We
have also seen that phenotypes and ethnicities do not have a direct relationship. To
address this question, let us return to the overarching goal of generalizability for facial
classification. Developers of gender classifiers have the ultimate goal of creating
classifiers that works well on all faces. One way of setting the standard to reach that goal
is to work towards creating a globally representative benchmark. Admittedly, such a
benchmark will be a work in progress since capturing the variation between 7 billion
people will not happen all at once. Since classifiers can be used in a variety of contexts
and population dynamics continue to change, developing a globally representative
benchmark will give a better picture of the overall state of the art with automated facial
analysis technology.

A global benchmark would include at minimum balanced gender representation across
specific age brackets and phenotypic traits. The age brackets can follow the categories
already set out by the National Institute of Standards and Technology. For phenotypic
traits, at a minimum skin type can be factored in given the interaction of skin reflections,
camera calibration settings, and illumination. Factoring other phenotypic factors like eye
shape or nose/lip/chin ratios can help define additional components to increase diversity.
Following from the use of 500 unique subjects in the NIST benchmark, let us pose that
each intersection subgroup requires at least 500 unique subjects. So then there are 9 age
subgroups split by decade, 6 skin types and 2 genders to result in 108 intersectional
subgroups. With each subgroup containing 500 unique individuals, the total benchmark
would need 54,000 images. The number can be reduced when we take into account the
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difficulty of distinguishing children under the age of 8 and that 3 of the Fitzpatrick skin
types are applicable to White skin. With this reduction we now have 8 age groups, 4 skin
types, and 2 genders resulting in a benchmark of 32,000 unique individuals.

Using a phenotypically inclusive benchmark as a starting point, the state of the art of
automated facial analysis algorithms can be more rigorously assessed. Such a benchmark
will need to be not only phenotypically inclusive but phenotypically balanced to enable
meaningful subgroup error analysis. A geographically inclusive dataset like IJB-A should
not be conflated with a phenotypically representative dataset. Including a few examples
of subjects with phenotypes that differ from the majority is not enough to make a suitable
benchmark. The Pilot Parliaments benchmark is a starting point towards making a
benchmark that is phenotypically balanced in regard to skin type. Further work will be
needed to include unique subjects that represent more phenotypic diversity around the
world. At the very least, the Central and South American parliaments that are in the top
10 ranking for women's representation in parliaments can be included.

While performance on a global benchmark can be used to determine the technical
suitability of using an algorithm on a target population, citizens themselves should have a
voice in the use of these technologies in local jurisdictions. For example, following the
notice-and-comments process used for environmental impact statements, citizens can
weigh in on discriminatory impact assessments (Selbst, 2017). These impact assessments
posed by Selbst in the context of predictive policing can be extended to automated facial
analysis, which is increasingly adopted by law enforcement. For the case of automated
facial analysis, discriminatory impact assessments should incorporate local benchmarks
showing the accuracy on a sample of faces selected to be demographically representative
of the jurisdiction of concern can serve as a complement to a global benchmark. By
constructing a phenotypically diverse benchmark and requiring the reporting of accuracy,
error rate, and contribution to overall error rate of each intersectional subgroup, we can
increase transparency. By requiring that all subgroups perform at an agreed upon
minimum accuracy we can increase fairness. Accountability will need to be established
through a repeatable process where vendors are required to check the subgroup accuracy
of their classifiers periodically on both the expanding global benchmark and local spot
checks.

7.4.3 Revisiting the articulation of intersectionality

Though there are explicit laws against gender-based discrimination and race-based
discrimination, laws around phenotypic discrimination are not defined. For people
seeking redress on issues of colorism, defining intraclass discrimination proves
challenging in the current legal landscape. To coincide with existing legal frameworks
using skin type as a cue for race can enable phenotypic accuracy assessments to be used
as evidence for potential disparate impacts. Even if color is associated with race, the
intersection loophole remains. The selection rate analysis showed that by using the 4/5ths
rule there was not a strong statistical case for gender or racial discrimination even though
darker females who can be translated as non-White women were significantly more likely
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to be misclassified than lighter males, a group we can translate as White men. In 1990
Kimberle Crenshaw introduced the term "intersectionality" to address how intersecting
identities can lead to outcomes that cannot be assessed in analytic silos. Her earlier 1989
analysis of discrimination cases brought forward concerning Black women showed the
limitation of anti-discrimination law that treated sex and race discrimination separately.
In a sex-based discrimination case brought against General Electric, since discrimination
against Black women did not indicate discrimination against all women, the judge
rejected the claim of sex-based discrimination. For a race-based discrimination class
action lawsuit brought against Travenol, two Black women provided statistical evidence
of overall race-based discrimination, but the defendant was able to limit back pay to just
Black woman and exclude redress for Black men.

These cases highlight two dangers with a single-issue view of discrimination. In the
former case, intraclass variation is overlooked to deny discrimination. Females are seen
as a monolith, thus Black women should not be treated as a hybrid case. In the later case,
intraclass similarity is overlooked to limit responsibility. Black women are not seen to
represent Black people as a whole. A single-issue approach to discrimination
marginalizes people who have intersectional issues and enables the abdication of
intraclass responsibility. Intersectionality is a necessary analytical frame that can help
identify issues of equity would otherwise be dismissed. Going back to gender
classification, looking at the performance on females alone or darker-skinned individual
alone is not enough to identify the potential result in disparate impact for women of color.
The results of the Pilot Parliaments Benchmark show the importance of applying an
intersectional analytic frame to gender classification in particular and automated systems
that make determinations about individuals in general.

7.5 Synthesis

In examining the construct space, observation space, and decision space for gender
classification, I show the need to revisit how we approach definitions of gender
classification, how we configure training datasets, and how we analyze algorithmic
performance on gender classification. I argue gender classification in computer vision is
an exercise of inferring gender display norms. Since these norms vary from culture to
culture, it is of critical importance to create datasets that are informed by a nuanced
understanding of gender identity, gender expression, and their relationships to gender
display. When gathering data to represent gender norms, I emphasize the importance of
being aware of phenotypic differences like skin type and the complex relationship
between skin type and perceived ethnicity. Finally, I look at how existing measures for
discrimination prove inadequate for assessing the fairness of classifiers that estimate
verifiable traits like gender instead of estimating an unknown future behavior like
likelihood to default. I present intersectional subgroup analysis as a way to more
rigorously assess gender classification across phenotypic and demographic categories. As
automation becomes increasingly embedded in decision-making, this thesis shows
intersectional curation of training data and intersectional analysis of algorithmic accuracy
will inform our understanding of algorithmic fairness.
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8. Conclusion

Future Work

This thesis focused on the diversity of benchmark datasets and the performance of gender
classification algorithms in regard to gender and skin type. Future work is needed to
advance scholarship on dataset representation and intersectional evaluation of algorithms
not limited to gender classification. More face datasets should be assessed for gender and
skin type representation as well as other demographic and phenotypic factors like age and
eye shape respectively. The Pilot Parliaments Benchmark dataset only focused on
individuals from European and African countries. Larger phenotypic representation is
needed for the Americas, Asia, Australia, and Pacific Islands. For efficiency this thesis
evaluated four gender classifiers. Gender classifiers made available from the research
community like IMDB-WIKI and tech companies like Amazon, which embeds gender
classification in its Rekognition services should be evaluated to see if the disparities
uncovered in these results persist. Unsupervised learning techniques should also be
employed for cluster analysis that can reveal novel subgroups inferred from the
classification accuracies. Beyond gender classification, intersectional subgroup
evaluation with attention to phenotype can be applied to all automated facial analysis
tasks including face detection and facial recognition.

Summary

Advances in automated facial analysis have led to renewed enthusiasm about the
potential for deep learning techniques to outperform humans on facial perceptual tasks
like gender classification. Automated gender classification is increasingly used to
customize product experiences and enable covert soft biometric surveillance. Leading
technical companies operating in global markets now sell gender classification powered
by deep learning breakthroughs. Law enforcement officials are increasingly employing
automated facial recognition software that relies on analogous machine learning
approaches used for gender classification. Increased adoption of gender classification
suggests the technology has reached maturation, yet previous research and performance
reports on the accuracy of these classifiers fail to rigorously address how phenotypic
differences impact accuracy. There is also little research on how intersectional
phenotypic and demographic factors influence classification. Since skin reflectance
influences sensor readings and can prove challenging in low illumination conditions, I
decided to evaluate skin type as a phenotypic attribute of concern.

To increase scholarship on classification accuracy in relation to skin type and gender, I
first assessed the suitability of existing facial analysis benchmarks for this task. I
evaluated the gender parity and skin type representation for the government administered
IJB-A dataset and Adience benchmark developed to assess the state of the art of research
gender classifiers. This work demonstrates that significant gender and phenotypic skews
persist in influential datasets. Analysis revealed the government benchmark was
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composed of only 24.6% women. The distribution of skin type for this benchmark was
heavily skewed to lighter skin (79.6%). I then looked at an intersectional breakdown of
the benchmark in regard to gender and skin type distribution. The least represented
group, darker-skinned women made up only 4.4% of the benchmark compared to the
most represented group, lighter males, who made up 59.4% of the benchmark. For the
Adience benchmark, gender parity was reached, but darker skin represented only 13.76%
of the benchmark. Since the skin type representation was heavily skewed, I concluded
neither benchmark would be suitable to serve as a tool to assess gender classification
performance in an intersectional manner. Nonetheless, the process of assessing
representation resulted in skin type annotations of unique subjects in the datasets that can
be used for phenotypic evaluations in the future. To become more inclusive, the Adience
and IJB-A benchmarks should be extended to increase phenotypic representation
particularly of men and women with darker skin. Other influential datasets used in
human-focused computer vision should be evaluated for phenotypic representation and
extended to become more representative if needed.

Given the representational shortcomings of the Adience and IJB-A datasets, the Pilot
Parliaments Benchmark (PPB) was created. The benchmark is composed of
parliamentarians and appointed officials from three European countries and three African
countries to balance for skin type. The benchmark contains 1270 unique individuals split
into four intersectional subgroups: darker females, lighter females, darker males, and
lighter males. This new benchmark can be extended by the research community for more
in-depth intersectional analysis of gender classification.

Equipped with the newly constructed Pilot Parliaments Benchmark, I then selected four
gender classification algorithms to evaluate: Adience, IBM, Microsoft, and Face++. The
evaluation of the Adience, IBM, Face++, and Microsoft gender classification algorithms
using the PPB, shows that these gender classifiers perform better on male faces than
female faces (9 -10%) and perform better on lighter skin than darker skin by (10 - 2 1%).
All classifiers perform the worst on the darker female faces, and the majority perform the
best on lighter male faces. The difference between performance on the best-classified
group and the worst classified group is as much as 36%. Based on these results, I
replicate the established finding that gender classification tends to perform better on male
faces than on female faces (Ngan & Grother, 2015). To my knowledge this is the first
study that looks at the impact of phenotypic and demographic attributes on gender
classification accuracy. The performance results indicate that only assessing accuracy by
gender or skin type will not reveal important subgroup systematic error.

Intersectional subgroup analysis revealed that for the best performing classifier, darker
females are 32 times more likely to be misclassified than lighter males on a benchmark
that is has an overall accuracy of 94.78% on the fairly balanced Pilot Parliaments
Benchmark. Subgroup error analysis showed that of the misclassified, darker females
contributed 37 - 83% of the error rates, lighter females contributed 8 - 30% of the error
rates, darker males contributed 2 - 31% of the error rates, and lighter males contributed .4
- 3% of the error rates. The disparities revealed in these error rates show the utility of
explicitly checking for intersectional subgroup performance. Even on a fairly balanced
benchmark, systematic subgroup failure can be obfuscated by aggregate accuracy
numbers.
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Finally, I analyzed the difference in classification accuracy between subgroups (darker
females, lighter females, darker males, lighter males). Subgroup accuracies were
compared to see the applicability of using legal measures for discrimination in gender
classification that have been used in legal cases to establish disparate impact in the
United States. Existing legal measures like selection rate that define discrimination based
on relative performance to the most privileged group prove inadequate when establishing
accuracy benchmarks for gender classification. Here discrimination means the accuracy
of a group is less than 4/5ths of the accuracy of the best-classified group. Since gender
classification is used for high stakes decision-making, absolute minimum accuracy
standards that must be achieved across all subgroups will ensure that systems are suitable
to use on phenotypically diverse populations.

Final Thoughts

The intersectional dataset evaluation demonstrates existing face datasets do not reflect the
increasingly diverse populations that are exposed to automated facial analysis systems.
Most alarmingly the government IJB-A dataset described as being geographically diverse
severely underrepresents females with darker skin while significantly over representing
lighter males and lighter-skinned individuals in general. Like prior benchmarks, it also
fails to achieve gender parity with a ratio of 1 female to every 3 males. Datasets that are
largely male and pale provide a false sense of universal progress when used as
benchmarks and can encode bias when used for training machine learning algorithms. To
provide a more realistic picture of the current state-of-the-art for automated facial
analysis tasks like gender classification, benchmarks need to be more phenotypically and
demographically representative. Performance metrics on more inclusive benchmarks
must be disaggregated to show subgroup performance. As shown in this work,
intersectional analysis can highlight performance disparities between subgroups that are
otherwise obfuscated by aggregate measures. Minimal accuracy standards must be
achieved on each subgroup of interest before an automated facial analysis algorithm can
be used reliably for high stakes decisions resulting from biometric classification.

Commercial products that use gender classification should provide data on how well their
services perform across a range of demographic and phenotypic attributes. At the
minimum, the skin type phenotype for which there is an existing scientific classification
scale, namely the Fitzpatrick Scale, can be used. Datasheets that outline how an artifact
performs under various physical conditions have long been provided for hardware
components. Inclusion datasheets can be used for algorithms to outline how they perform
in relation to various social, cultural, and where appropriate, phenotypic conditions.
Figure 19 provides an example of what such a report could look like.
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ALGORITHM INCLUSION SCORECARD
Quick Stats Usage Success Rates Fail Rates Ideal Use Challenges
Release Year Target Age # Age #s Range Range

DataSet Gender # Gender #s Genders Genders

Provider Ethnic # Ethnic #s Accurate Ethnic Bias
SkinType # Ethnicities

Size Detection # Detection # Conditions Conditions

Quick Stats Usage Success Rates Fail Rates Ideal Use Challenges
2017 General Age Performance Age Bias 20-40 (50-60)

Trained: LFW Gender Performance Gender Bias Male Hispanic Male

Provider: MIT Ethnic Performance Ethnic Bias White, Asian Black
Skin Performance Dark Skin
Detection: 95% No Face:5% Outdoors Night Time

Figure 19. Algorithmic Inclusion Scorecard

Caution should be taken in using nationality as a proxy for ethnicity or ethnicity as a
proxy for phenotypic characteristics like skin type or eye shape. Though previous studies
have used nationality as a proxy for ethnicity, ethnicity and race distinctions are unstable,
overlapping, and defined differently in nations around the world. The rules for
membership evolve overtime. The United States census has an option for selecting
Hispanic ethnicity that can be applied to any race on the census. For a given nation,
migrations can shift population demographics and phenotypic dimensions. In a
multiethnic country like Brazil, an aggregate accuracy measure would not adequately
map to a specific ethnicity or phenotype. For a given ethnic or racial classification,
intraclass variation can be wide. Attention must be taken to adequately represent
phenotypic variations within these classifications. In the United States, attempting to
diversify a dataset by including only light-skinned African-Americans would be
insufficient for full phenotypic representation as it relates to skin type for all African-
Americans.

Without care a dataset that is geographically diverse may not be phenotypically inclusive.
Still, nationality or ethnicity can be used to help guide curation as a starting point but not
as an end to itself. The Pilot Parliaments Benchmark was constructed based on expected
skin type distribution in European and African countries, but the final analysis was
performed on subgroups based on phenotypic characteristics. Light-skinned women in
South Africa were grouped with the light-skinned women from European parliaments.

Discussions about fairness, accountability, and transparency in artificial intelligence
fueled automation have largely focused on predictive models that make inferences about
an uncertain future. Less attention has been focused on the accuracy of verifiable tasks
like gender classification that are tackled by machine learning. The fairness discourse can
be broadened by acknowledging the accuracy disparities on verifiable tasks constitute

99



another form of unfairness that must be actively assessed. Algorithmic accountability for
human-focused computer vision necessitates measures that explicitly attend to
phenotypic differences between groups. For the case of gender classification, skin type
and national origin were used in concert to assess classification performance on distinct
subgroups in this work. For tasks like iris verification or hand tracking, the relevant
phenotypic differences will need to be established. We cannot assume largely
homogenous or heavily skewed datasets can form the basis of unquestioned metrics that
are presented in a universal manner. A single accuracy measure without subgroup
analysis should be explicitly recognized as a cursory and incomplete analysis.
National benchmarks and competitions need to specifically include subgroup
accuracy as part of overall performance scores if the goal is to create systems that
work well for all of humanity and not a few data rich groups. Algorithmic
accountability as it relates to human-focused computer vision must include transparent
rigorous evaluation across phenotypic and demographic factors.

Accountability must also start at the conceptualization stage when a construct or target
variable is defined. When supervised computer vision models are used to assess
constructs like gender, the models have been trained to learn the visual displays of
the construct. Thus gender classification as is practiced is an exercise of learning gender
display norms. Gender display is socially, historically, and culturally influenced. An
individual's display of gender in one cultural or temporal space may not be the same in
another. Social expectations for gender expression to fall along masculine or feminine
continuums and what is perceived as masculine or feminine change over time. Moreover,
the cultural recognition of hijras and two-spirit people has existed for over a millennia,
yet current binary gender classifiers by construct fail to account for non-binary gender
identities and also do not account for transgender identities. Advanced identity
representation provides alternative ways of representing group membership that can
inform a more robust construction of gender for machine learning in the future (Harrell,
2009). Instead of using a binary flag to denote belonging or exclusion to a class, Harrell's
system uses measures of centrality in relation to members who most typify class identity.
Establishing archetypes can still inculcate bias, but by stating the assumptions that are
made about group membership, we can better represent identities that fall outside of
normative assumptions and understand the ways in which these assumptions can be
shaped to become more inclusive.

Next, accountability should continue during the data collection and labeling stages.
Actively checking for demographic and phenotypic representation as well as gender
parity should become part of common practice rather than merely a commendable
option. Transparency in the demographic and phenotypic composition of training data
and benchmarks will increase credibility and confidence in using inferences resulting
from datasets to make performance claims. Figure 20 presents an image of what a data
diversity report could look like at a minimum.
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DATASET DIVERSITY SCORECARD
Quick Stats Population Age Gender Race/Ethnicity Phenotype

Total Size Target Range %Female # Categories Skin tones

Subjects Notable Overrepresented %Male Overrepresented Eye Shapes
Exclusions

Release Year Match with Underrepresented %Unknown Underrepresented Nose Shapes
Target

Provider Distribution Pie Chart Face Shapes

Quick Stats Population Age Gender Race/Ethnicity Phenotype

Size: 10,000 Target: USA Range: 10-78 24%Female [Asian, Black, White] [tone image]

Subjects: 250 Exclusions: (40-55) 70% 75%Male White 80% Average Shape
Hispanic [eye image]

Release: 2007 Set is older + (12-18) (66+) 1%Unknown Asian 2% Average Shape
more male [nose image]

Provider: MIT Charts API Charts API

Figure 20. Dataset Diversity Scorecard

Inaction, ambivalence, and a reliance on skewed data and aggregate accuracy metrics will
not just undermine the development of artificial intelligence but will be a form of gross
negligence. Inattention to an algorithm's effectiveness on a variety of subgroups can
perpetuate harms in any other domain that is touched by automated decision-making. If
predictive models trained on largely homogenous data are used for medical diagnostics,
the people who are least represented in the data risk receiving the wrong medical advice
and treatments. The promise of personalized medicine may only become a true option for
people who are data rich, that is to say well represented or modeled by existing data
gathering processes. Given the skews that can exist in benchmarks, we must increase the
rigor with which benchmarks are constructed and be transparent about differences in
performance between different groups. Results must be published with context.

Researchers, policy makers, and industry practitioners who aim to create generalizable
models, serve global public interests, or reach broader markets need to place more
attention on the under-sampled majority, namely women and people with non-White skin
who have been highlighted in this work. I return to the Jablonski map of skin type
distribution to show that even though existing face datasets tend to be largely pale and
male, they are not reflective of the beautiful sepia spectrum that makes up the majority of
humanity now and in the future.
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Figure 21. Jablonski Skin Map

As we move into the automation era, we risk propagating and obscuring the bias of the
past if we fail to change the ways we design, develop, deploy, and evaluate artificial
intelligence. To create a future where full-spectrum inclusion is a reality in our datasets,
benchmarks, and automated decision-making processes, we must proceed with intention.

Because automation increasingly impacts people's lives, we cannot place data or data-
centric technologies like artificial intelligence in a vacuum. Just as when an aerospace
engineer moves from textbook models of ideal planes to real aircraft, we have to attend to
the real world pressures and frictions that result from bias and external conditions.
Acknowledging social, cultural, and historic turbulence will be necessary if artificial
intelligence is ever to ascend to the elusive stratosphere of fairness and inclusion.
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