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Abstract

With the recent resurgence of Machine Learning and Artificial Intelligence as a com-
petitive advantage in product development, technical executives and managers are
interested in learning what it would take to build intelligent platforms that can lever-
age these advances. In addition, they wish to produce cost estimates for developing
such platforms. The goal of this thesis is to develop a reference architecture for an
intelligent platform and an associated costing model that allows technical managers
to understand the components needed to deliver such a platform and estimate the
cost of each module, estimate the cost of the overall architecture, and enable what-if
analysis to understand the cost tradeoffs. The intent is not to provide the values of
the variables in the model, but to develop a cost model that will enable interested
parties to plug in their estimated values for each factor and generate a forecast of the
build cost.
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Chapter 1

Introduction

With Machine Learning and Artificial Intelligence thrusted back into the technol-

ogy limelight by big corporations like Google, Amazon and Facebook, technology

executives are interested in understanding how they can build the same level of intel-

ligence and capability into their offerings. These executives will find a large number

of published work related to developing machine learning models and all the work

surrounding the tools needed to develop such models. However, an often missed crit-

ical component that these executives should be considering is the overall platform

that they will need to build to capitalize on these advances. In this thesis, we will be

addressing this gap.

1.1 Motivation

In November 2016, Google released a new version of their translation model that vastly

increased the accuracy of their translations. Post update, users found it difficult

to differentiate between the translations done by a human and the ones done by

Google Translate. This has wide impact on Google's products because the same

model will be used by Android users, Google Translate, and Google Search, and
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anywhere translation is needed in Google's products. This is only possible because

Google has a platform that enables it to propagate the technical advances it achieves

to the products in its stack. This capability is not isolated to Google, and we believe

it is accessible to any engineering organization that employs a platform mentality.

1.2 General Objectives

We hope to empower engineering organizations by giving them a reference architecture

that will enable them to build an intelligent platform. We believe this platform will

power their journey towards integrating Machine Learning and Artificial Intelligence

into their software development capability. We believe that by providing the blueprint

for the platform and enabling the engineering team to assess how much investment

they will need, we would make it easier to launch these efforts, thus contributing

to the advancement of Al and ML in products we use everyday and increasing its

ubiquity.

1.3 Literature Review

To successfully achieve the objectives of this thesis, we will perform a literature review

that spans the domains of big data, system architecture, and software estimation.

1.3.1 Big Data

To understand the various components needed in an intelligent platform, we will be

reviewing published work on big data platforms. In our opinion, big data platforms

in literature differ from intelligent platforms by neglecting the data ingestion, AL/ML

model management and the exposure of generated insights for consumption by exter-

nal systems. That said, published work will be instrumental in identifying the core

16



components needed in an intelligent platform.

1.3.2 System Architecture

To develop a usable reference architecture, we need to present the components in a

manner that can be used by readers. This entails understanding what a reference

architecture is, and how to present it to maximize impact. To achieve this, we will

need to review published reference architectures and identify how to communicate

our blueprint of the intelligent platform.

1.3.3 Software Cost Models

As we develop the cost model for the reference architecture, we will need to identify

all relevant software estimation tools and understand their strengths and weaknesses

as they relate to our use case. We will also need to research frameworks that allow

us to compare software estimation models to formulate our selection criteria.

1.4 Specific Objectives

We believe we will be able to achieve the goals of this thesis by organizing the work

into three core objectives :

1. Compare and critique published data analytics platforms. This will allow us

to extract the capabilities needed in an intelligent platform and identify the

architectural components that will be needed.

2. Develop a reference architecture based on the reviewed data analytics platforms

and any pertinent literature review. This will allow us to create a blueprint for

the development of intelligent platforms.

17



3. Create a cost model for the reference architecture. This will be done by first

identifying the ideal software estimation methodology to use, then adapting it

for the reference architecture.

1.5 Thesis Overview

The thesis will be organized as follows

" Chapter 2: This chapter will provide an overview of the technical advances

that contributed to the demand for intelligent platforms.

" Chapter 3: This chapter will present and critique published big data platforms.

" Chapter 4: This chapter will present our reference architecture for intelligent

platforms. It will expand on the role of each component in the platform and

list their interdependencies.

" Chapter 5: This chapter will assess and select a software estimation method-

ologies for the purpose of creating a cost estimation model for the reference

architecture presented in Chapter 4. It will present the created cost estimation

model in a manner that can be leveraged by any organization that wishes to

build the reference architecture.

" Chapter 6: The final chapter will list the key accomplishments of this thesis,

the limitations and potential followup improvements.

18



Chapter 2

Intelligent Platforms

2.1 Introduction

The amount of data created annually is projected to reach 163 zettabytes (163 trillion

gigabytes) by 2025, up from 4.4 zettabytes in 2013 (Reinsel et al., 2017). This 37x

expansion over 12 years - harnessed effectively by companies and the public sectors

- has the potential of positively improving our quality of life.

As we collect more data, we are able to unlock new insights and build product

features that were not previously possible. Let's consider diabetic patients for ex-

ample. If we have enough data about their daily activities, glucose level throughout

the day and their food intake, we can correlate any spikes and dips in their glycemic

level with specific events. We can then tailor activities and diets based on individual

patients lifestyle and propensities. Another example can be taken from the banking

sector. If we have enough information about a person's spending habits, life stages

(Are they looking for a house? Planning a vacation?), and preferences, we can build

applications that help a customer save more money, plan better for their retirement

or pay their loans faster.

The benefits reaped from applying analytics to large data sets is by no means
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Figure 2-1: Data Growth. Source: IDC's Data Age 2025 study, sponsored by Seagate,
April 2017

isolated to a specific industry: A 2013 McKinsey study that surveyed 714 companies

representing various industries and company sizes, showed that companies that in-

vested heavily in analytics reaped a 2x return on investment in 5 years. This is an

ROI that surpasses returns on R&D and Marketing expenditures (Bughin, 2016).

2.1.1 What Are Intelligent Platforms?

To unlock the full potential of the data collected, companies and the public sector need

to invest in the talent and tools needed to enable these analytical efforts. They need

to shift their work from one off analytical projects, to building analytical platforms

that simplify collection of large datasets of data and convert it into useful insight

that can be consumed by other services and applications. We call these platforms

Intelligent Platforms.

Intelligent platforms aim to combine the technological advances made in big data

20



processing, cloud computing and Al to enable teams to build intelligent applications.

These applications can integrate new use cases that would not have been possible due

to cost or lack of needed data. Building these platforms would not have been possible

if the concepts discussed in this chapter were not at their current level of maturity.

2.2 Technical Advances In Data Processing

To understand what intelligent platforms are, we need to first look at the history of

analytical efforts and the technological advances that enabled each evolution in our

analytical capabilities.

2.2.1 The First Statistician

One of the first recorded instance of extracting insight from data is attributed to John

Graunt (1620-1674) (Lewin, 2004). In 1661, he used mortality bills that listed the

total number of weekly deaths, cause of death, births and marriages to detect and

predict epidemic outbreaks. His work helped Londoners decide whether to leave or

stay in London based on the expected epidemic outbreaks (Anonymous, 1865). He

also leveraged this data to construct life tables which measured life expectancy. He

published the results of his analysis in a book titled Natural and Political Observations

Made upon the Bills of Mortality, which ran for five editions until 1676.

Graunt's work was only possible because Lord Thomas Cromwell (1485-1540)

issued a decree in 1538 ordering parishes to record all christenings, weddings and

burials (Dennis J, 2016). This data was made available to the public on a weekly basis.

The original data was by no means perfect and was missing important dimensional

data. For example the data did not include the age at the time of death. Nevertheless,

Gaunt's analytical work had great impact and he is considered the father of statistics.

These events shows that for an analytical effort to be successful, we need someone

21
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2.2.2 Automated Data Processing

The next leap in data processing would once again emerge from the study of demo-

graphics. This time in 1880 at the hand of Herman Hollerith (1860-1929). Hollerith,

while working at the U.S. Census Bureau, discovered that it would take 8 years to

manually tabulate the 1880 census (Isaacson, 2014). It was also projected that the

1890 census would not be completed before the 1900 census began. Since the U.S.

constitution mandates a census every year, this would be a big problem (Anonymous,

2017b). Hollerith resolved to automate the process of tabulating the census. Histori-

ans debate whether he took inspiration from the Jacquard loom - a power loom that

weaves pattern in fabric dictated by punch cards - or from the manner in which train

conductors punch holes in customer tickets (Randell, 1982). Regardless of the true

source of inspiration, Hollerith went on to design an electrical system that leverages

punch cards to automatically tabulate the census. Thanks to his invention, the data

for the 1890 census was tabulated in 1 year (Isaacson, 2014).

Prior to Hollerith's invention, collected data, like census information, was pro-

cessed manually by an army of analysts. This made data processing economically

expensive, time intensive and error prone. The reliance on manual processes also

meant that as the dataset grows, the resources needed to process the data in ad-

equate times would grow beyond economical feasibility. But with the introduction

of the punch card, operators were able to process data 10 times faster than before

(Anonymous, 2017b).

Hollerith's devices proved useful beyond census tabulation and were later used

in business and inventory tracking. This marked the beginning of automated data

processing and the company he founded would later become - after a series of mergers

and accessions - International Business Machinery (IBM). With the invention of the

tabulating machine, humans now had the ability to automate the data analysis of
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large amounts data (relative to that period). This invention would help business

calculate large sums of data from 1890 to 1950, when commercial general purpose

computers took over.

2.2.3 Emergence of Business Intelligence Systems

The proliferation of automated data processing devices presented a new opportunity

to Hans Peter Luhn (1896-1964), an IBM researcher and manager of of the information

retrieval division. In 1958, Luhn published a paper titled "A Business Intelligence

System" that outlined the design of a system capable of (1) ingesting data from

documents relevant to a domain, (2) performing statistical analysis on the content

of the documents to extract salient content, and (3) pushing summarized data to

interested parties to assist in their day to day decision making (Luhn, 1958). Luhn

envisioned such a system deployed in government, law, commerce, industry, and other

areas, to "apprehend the interrelationships of presented facts in such a way as to

guide action towards a desired goal". Luhn's paper laid the foundation for Business

Intelligence (BI) systems to come.

Presently, BI systems are employed in major organizations to guide decision mak-

ers. These systems have access to large amounts of raw data that relate to the

organization's day to day. Data can be collected internally from across the organiza-

tion (For Example: daily sales by branch, number of knee surgeries performed, total

number of products shipped, etc.) or externally (For Example: industry benchmarks,

competitor data, stock market, etc.). The data collected can be aggregated, combined

with other facts and summarized into reports or active dashboards for consumption.

Consumers of the information can drill up and down the data, while varying the

dimensions to focus on the factors that affect the decision under consideration.

Several technological advances contributed to the increases the ubiquity of BI sys-
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tems. These advances included breakthroughs in storage devices (Goda and Kitsure-

gawa, 2012), the creation of relational databases models (Codd, 1983), and advances

in data visualization.

In the decades that followed Luhn's paper, BI became an integral tool in the

arsenal of any organization. Without the power that it provides to decision makers,

organizations would find themselves losing to competitors that are more adapt at

harnessing the power of their data.

2.2.4 Big Data

At the turn of the 21st century, researchers lamented the lack of tools to process

large datasets. Computers were able to generate large amounts of data, but it eluded

analysis because it simply did not fit into the memory of even the highest end com-

puters (Bryson et al., 1999). The solution to this problem would emerge from papers

published by Google in 2003 and 2004.

As a search engine, Google needed to perform three tasks efficiently: (1) Crawl

the entire web, (2) store the generated index, and (3) serve search requests from the

index as quickly as possible (Mellor, 2010). Performing these tasks over 1 billion

webpages - the number of webpages in 2000 (Alpert and Hajaj, 2008) - was resource

intensive. Typically companies would have relied on pre-built rack servers, but Google

discovered that keeping their search service free would be challenging if they rely on

costly servers (Shankland, 2009). In addition, these servers would also becomes points

of failure in their infrastructure. Google realized that the jobs it will execute can be

parallelized, therefore, instead of buying expensive powerful machines, they can split

the job over multiple smaller inexpensive commodity machines. In the end they opted

to invest in a large number of commodity off-the-shelf x86 machines that are 5 to 10

times cheaper than pre-built servers (Mellor, 2010). The servers Google purchased
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early on had 160GB disk space and 4-8GB of RAM (Dean and Ghemawat, 2008).

By April 2003, Google was powered by more than 15,000 of these comodity servers

(Mellor, 2010).

Since no other company at Google's scale had used such an infrastructure, it had to

invent the necessary tools. In 2003 the public learned how Google was leveraging this

infrastructure when a paper titled "Google File System" (Ghemawat et al., 2003)

was published by Google researchers. In the paper, Google described a new type

of file system called Google File System (GFS). According to the paper, GFS is a

"scalable distributed file system for large distributed data-intensive applications. It

provides fault tolerance while running on inexpensive commodity hardware, and it

delivers high aggregate performance to a large number of clients" (Ghemawat et al.,

2003). GFS presents the entire set of commodity servers as one large file system by

abstracting the underlying infrastructure. It is built with the assumption that the

underlying hardware will fail, thus failover and fault-tolerance are core tenants of its

design. GFS enabled Google engineers to perform large scale data processing over

large clusters of servers. The largest cluster at the time of publication was a 1,000

server cluster that provided 300TB of disk space (Ghemawat et al., 2003).

GFS shed the light on how storage was handled on a parallelized infrastructure but

did not detail how data processing and analysis was performed on the stored data.

The answer to that would come in another Google paper published in 2004 titled

"Mapreduce: simplified data processing on large clusters" (Dean and Ghemawat,

2004). In that paper, MapReduce, a programming model for parallel processing of

large datasets was unveiled. Prior to MapReduce, data analysts needed to develop

special purpose computation for every analysis they wished to perform (Dean and

Ghemawat, 2008). MapReduce instead suggests breaking down every data analysis

job into a sequence of map and reduce jobs. A map job takes data as input and

produces a key-value pair that represents the output of executing the function on the
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data. A reduce job on the other hand takes the output of a map job and summarizes

the data based on logic specified by the data analyst. Under this model, data analysts

need to provide the input data, dictate to MapReduce the sequence of map/reduce

functions, and the code that implements each intermediate map/reduce function.

MapReduce can then take this input and determine how to parallelize the execution

over the distributed cluster. Since the underlying infrastructure uses commodity

hardware, a data analysts that wishes to speed up his data processing, or expand the

size of his dataset, only has to requisition new cheap hardware to extend his cluster.

The MapReduce algorithms will automatically distribute his data and jobs over the

expanded capacity. Thanks to this platform, Google was able to run a data analysis

job over 403,152TB of data in 6.5 minutes using 394 commodity servers (Dean and

Ghemawat, 2008).

Even though Google released the designs behind the tools it used in-house, it

never released the tools themselves. But with both papers now public, the open

source community had enough information to translate the papers into tools that

can be used by the community. Their efforts culminated in the creation of Hadoop.

which quickly enabled the same data analysis capabilities as Google. Practitioners

could now leverage Hadoop to perform data analysis over Petabytes of information.

It became so popular that by 2012, 25 of the fortune 50 companies were running

Hadoop clusters (Anonymous, 2012).

2.2.5 The Cloud

As we saw in the previous section, the tools needed to perform analysis of large

datasets was now available for anyone to use for free. But to be able to execute these

tools on large datasets, data analysts needed access to compute resources where these

tools can be deployed and executed. Unlike Google, typical companies do not have
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large infrastructures waiting to execute data analysis jobs. To perform any serious

data analysis, companies would need to invest in their infrastructure. Nevertheless,

even large corporations with dedicated datacenters require a lead time to fulfill any

internal demand for computing resources. Moreover, when the extra compute resource

is added to the datacenter, this capital expenditure can sit idle up to 80% of the time

(Gillis, 2015). The solution to these problems would emerge from Amazon in 2006.

In 2003, Benjamin Black, at the behest of his manager Chris Pinkham, was work-

ing on optimizing the Amazon infrastructure. The goal was to abstract the infras-

tructure as much as possible to simplify usage by the Amazon team. After some

progress, they decided to pitch the idea of exposing the infrastructure externally as

a service to Jeff Bezos. Bezos liked the idea and tasked Chris with developing what

would become Amazon's Elastic Compute Cloud (EC2) (Black, 2009). The service

was released to to the public in 2006.

Amazon effectively opened up its highly optimized computing infrastructure for

anyone to use. It exposed storage and computing resources on a metered basis.

Anyone, from individuals to Fortune 500 companies, could register an account and

start using the service in minutes. Users of the service have access to 76 compute

instance types with varying compute capacity, memory and network performance

(Anonymous, 2017a). Users can spin up large compute clusters in minutes, run any

job they wish to execute, and then turn off the cluster - paying only for the time

used. Following Amazon's success, Microsoft, Google, and Oracle would follow suite

and each would establish their own competing public cloud service.

Thanks to Amazon, and the companies that followed it, anyone building a data

pipeline now has access to unlimited resources, both from a storage and computational

standpoint.
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2.2.6 The Spring of Al

The next key evolution is the creation of the field of Artificial Intelligence (Al).

This field emerged from a conference at Dartmouth organized by John McCarthy

(1927-2011), Marvin Minsky (1927-2016), Claude Shannon (1916-2001) and Nathaniel

Rochester (1919-2001) in the summer of 1956. The intent of the conference was to

discuss the possibility of creating machines that can achieve human-level problem

solving by unifying work from various fields (McCarthy et al., 2006). The conference

was attended by leading researchers from the fields of mathematics, electrical engi-

neering, neurophysiology and cognitive psychology, who would go on to become the

leaders of this field.

Ever since that conference in 1956, Al practitioners have been attempting to build

systems that can match - and surpass - human's ability at solving tasks that require

cognitive capabilities. Effectively, the field has been attempting to imbue machines

with the following capabilities:

Two approaches to building Al systems emerged in the 1950s and 1960s: symbolic

vs subsymbolic.

Symbolic systems used a combination of algorithms, domain knowledge represen-

tations and heuristics to attempt to deliver the above capabilities. Developers of

symbolic systems had to create symbolic knowledge representations of the domain

where the Al will be deployed. This would entail codifying the objects, valid states,

properties, interrelationships, and rules of the domain in a format that the Al sys-

tem could traverse. When presented with an input, the system would leverage the

algorithms to traverse the knowledge representation to accomplish the task at hand

(Nilsson, 2010).

Subsymbolic approaches to Al on the other hand combined Neural Networks,

probability and statistics to mimic human intelligence. Neural Networks had been
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Table 2.1: Al Capability

30

Capability Description

Text Recognition The ability to understand the content, context and ontol-
ogy of textual information (Jurafsky and Martin, 2009)

Text Generation The ability to generate meaningful text that is understand-
able by humans (Jurafsky and Martin, 2009)

Object Recognition The ability to recognize and extract contextual information
from objects in a scene (Szeliski, 2011)

Object Generation The ability to generate objects that fit a target context in
a scene (Szeliski, 2011)

Speech Recognition The ability to transcribe and extract information from spo-
ken language (Jurafsky and Martin, 2009)

Speech Synthesis The ability to synthesize meaningful spoken language that
is understandable by humans (Jurafsky and Martin, 2009)

Planning The ability to formulate a sequence of steps that accom-
plish a desired end-state (Lee et al., 2015)

Inference The ability to suggest and/or rank actions based on pro-
vided data (Gramatica and Pickering, 2017)

Learning The ability to observe or perform an action followed by
internalizing the results to assist in future actions (Higgins
et al., 2017)

Pattern Detection The ability to surface patterns, correlations, and trends in
data (Bishop, 2006)



initially proposed by Warren McCullough (1898-1969) and Walter Pitts (1923-1969)

in a paper titled "A Logical Calculus of Ideas Immanent in Nervous Activity" (McCul-

loch and Pitts, 1943). In that paper, McCullough and Pitts proposed constructing an

information processing system that mimics the neurons in the brain. Frank Rosen-

blatt (1928-1971) would push their concept further by inventing the perceptron in

1957 (Rosenblatt, 1957). Rosenblatt's perceptron was the first model ever created to

learn how to classify inputs from to a set of categories by being previously shown a

sample from each category (Goodfellow et al., 2016). Neural networks proved itself

well suited for human sensory tasks, such as recognizing objects and detecting pat-

terns: as far back as 1969, neural nets were achieving 98% accuracy on handwritten

character recognition (Nilsson, 2010) (Munson, 1968). Even though neural networks

showed great promise, Marvin Minsky and Seymour Papert (1928-2016) would later

publish a paper that shows a serious limitation in the perceptron that Rosenblatt

created (Muller and Reinhardt, 1990).

The concept of Machine learning emerged during the early stages of Al as a

methodology to teach machine to think by exposing them to large amounts of data

(Nilsson, 2010). The term was first used by Arthur Samuel (1901-1990) in his 1959

paper (Samuel, 1959). It is important to note that Machine Learning spans both

symbolic and sub-symbolic techniques.

After its inceptions, the field of Al would experience a series of ebbs and flows

throughout the years:

After the second Al winter in 1993, research into Al fragmented across several

disciplines such as computer science, mathematics, economics, operational research,

and robotics. Advances in those areas made their way into everyday product and

services that we use. For example, advances in vision where used to automatically

check claims. Google used PageRank, an advance in recommendation systems, to

build the best search engine. Credit card companies leverage Al techniques to combat
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Period Description

1950 - 1960 The field of Al is created. Researchers setup labs to focus on sym-
bolic and sub-symbolic areas of AL. Neural networks are invented.

1960 - 1970 Major advances in vision, knowledge representation and natural
language processing. Minsky and Papert expose a limitation in
neural networks.

1970 - 1980 First AI Winter: limitations in both computing power and symbolic
techniques meant a lot of promises made by Al researchers failed to
materialize. Most of the advances developed proved successful only
on toy problems in the lab and struggled in real-world settings. A
new architecture of Neural Network was designed to tackle limita-
tions, but interest in Neural Networks stagnate nonetheless.

1980 - 1990 Interest in expert systems revive interest in the field. This is fol-
lowed by a second Al winter when to total cost of maintaining
expert system becomes clear. Renewed interest in neural networks
after a new learning algorithm was developed.

1990 - 2000 Increases in computing power overcomes some of the limitations
that triggered the first Al winter. Research into Al techniques is
now fragmented into various fields due to the second Al winter.
DeepBlue beats Garry Kasparov. Emergence of self driving cars
from DARPA challenge.

2000 - Present Al Spring: Availability of large amounts of data coupled with in-
crease in computing speed trigger renewed interest in the field of
Al and Machine Learning

Table 2.2: History of Al
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fraud on a daily basis. In addition, the reduction in cost of storage meant we now

had large amounts of data to train sub-symbolic systems. This, coupled with the

decrease in cost of computing and GPUs (Graphical Processing Units) to speed up

model learning caused a resurgence in machine learning techniques. This phase is

being dubbed the Al Spring.

2.3 Conclusion

In this chapter, we went over the importance of harnessing the large amounts of data

that is being collected. In addition, we went over the definition of intelligent platform

and detailed the technical advances that enable building these platforms. In the next

chapter, we will take a deep dive into the technical components of intelligent platforms

to understand how the concept discussed in this chapter manifest in the architecture

of the platforms.
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Chapter 3

Survey of Intelligent Platform

Reference Architectures

3.1 Introduction

In this chapter we survey intelligent platform reference architectures from Microsoft,

IBM, NTT Data and NIST. We intend to analyze each architecture to identify the

ideal architecture to be used in developing our cost models. We found that none of

the surveyed architectures where enough on their own to be adopted as our reference

architecture, either because the components where not defined at a fine enough level

of granularity, where coupled to vendor specific tools, or had a system boundary

that would not be helpful in building the cost models. We were able to identify

critical components that we will use in the subsequent chapter to develop our reference

architecture.

It is important to note that the above mentioned organizations - except for the

NIST - published these reference architecture as an effort to promote their products.

This fact exposes the core weakness behind these reference architecture, as they will
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always be biased towards the vendor's tools and preferences.

For every architecture listed here, we will provide a brief summary of the role of

each component and then detail what we believe the it did well and where it fell short.

It is important to note that the analysis is seen from the viewpoint of developing a

cost model. Our analysis would be different if we were analyzing these architecture

based on a different criteria.

3.2 Architecture Comparison

The architectures in this section will be assessed based on the following criteria

" Vendor Agnostic: This criterion determines how coupled the architecture is to

a specific vendor tool or platform.

" Data Source Ingestion: This criteria assesses the diversity of data sources that

the platform is capable of ingesting from.

" System Boundary: This criterion determines if the architecture contains com-

ponents that are not related to intelligent platforms.

" Component Granularity: This criterion is used to assess the level of granularity

that each components is defined at.

" Component Completeness: This criteria is used to determine if a core capability

is missing from the platform.

" Integration Support: This criterion determines how well the architecture enables

other services and applications.

We will summarize the assessment of the architectures by scoring them against

each criteria on a scale from 1 to 5. A score of 5 indicates that architecture perfectly

satisfies the criterion. The full comparison summary can be see in figure 3.1.
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NIST Microsoft IBM NTT Data

Vendor Agnostic 5 3 5 4
Data Source Ingestion 2 3 5 3
System Boundary 2 2 2 4
Component Granularity 1 2 4 4
Component Completeness 2 3 4 4
Integration Support 2 2 3 5

Table 3.1: Architecture Comparison

3.3 NIST Big Data Reference Architecture

In 2015 the NIST's Big Data Public Working Group published the first version of their

big data reference architecture (NIST Big Data Public Working Group, 2015c). The

NIST developed the reference architecture by surveying 9 big data architectures pro-

vided by large organizations (NIST Big Data Public Working Group, 2015b) and 51

Big Data use cases collected from various industries (NIST Big Data Public Working

Group, 2015a).

The published reference architecture outlined critical components that were com-

mon in the surveyed architectures. These components include:

" System Orchestrator: The system orchestrator is responsible for combining the

various components and functions in the platform the deliver the needed busi-

ness value. The orchestrator can be a human or a software component that

coordinates the workflows.

" Data Provider: The data provider is any data source that provides new informa-

tion to the platform. This can either be an external system, internal component

to the platform or human operator. The data can arrive at different velocities

and can be structure or unstructured based on the data source.

* Big Data Application Provider: This component is responsible for executing
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the workflows dictated by the system orchestrator. This is done by collecting

the data needed, preparing it for analysis by applying required transformations,

analyzing it based on supplied criteria, visualizing it to communicate results to

analysts and finally providing the result of the analysis to interested stakehold-

ers.

" Big Data Framework Provider: The big data framework provides the shared

infrastructure, data platform and processing frameworks that supports all the

components of this reference architecture.

" Data Consumer: The data consumer is defined in the NIST reference archi-

tecture as either another system or a human end-user. This encompasses any

entity that will consume the information produced by the platform and benefit

from the analysis.

The NIST reference architecture suffers from 2 core weaknesses that stop us from

adopting it as the basis of our cost mode. First the components of the platform,

as they are decomposed by the report, are not granular enough. The architecture

does not break down the components at a level that allows us to detail the cost

model needed to deliver each component. Second, the architecture breaks down the

components by roles to show that a component's action can be played by a software

system or a human actor. This prevents us from drawing a system boundary around

the software system.

3.4 Microsoft's Big Data Reference Architecture

Microsoft's Big Data Reference architecture is broken down in 5 core components:

o Data Sources: This layer of the architecture shows the various data sources that

a big data platform can integrate with.
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" Integration: The integration layer is the interface between external data sources

and the big data platform.

" Data Stores: The data stores contain the structured, semi-structued and un-

structured data stored in the platform.

* Data Model and Analytics: This layer contains the data models that are used

to resolve the queries made to this platform.

" Visualization and Reporting: The visualization and reporting layer encompasses

all the tools that are used to show users the results of executing their queries.

The Microsoft reference architecture does a good job of showing the various types

of data sources that a platform can ingest from. This architect also clearly shows

the need for a data quality services sub-component to control the quality of data

coming from the data sources. On the other hand, this architecture suffers from three

core weaknesses that prevents it from being adopted as the basis for developing a

cost model. The first weakness is due to including the data sources into the system

boundary of this platform. This is a big flaw because it eliminates the interface

from the architecture. Instead, this architecture should have explicitly added a data

ingestion layer as the interface with the external data sources. We assume that this

was done to show the the integration with Azure Marketplace to source datasets. The

second weakness is the lack of an API component that allows the data models and

analytics to be used by other services and applications. This architecture focuses more

on generating reports and integrating into Microsoft's products (Example: Office,

Power BI, SQL Server). It does not show how the data stores, the model and analytics

layer can be shared by other services and applications. It is critical to design the

system with these shared components in mind, as adding them later is too a complex

of an undertaking. The third weakness is that the platform is too vendor specific;
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Figure 3-2: Microsoft's Big Data Reference Architecture. Source: (Microsoft, nd)

Microsoft built this architecture with the intent of mapping the components of the

platform to it's offering. This disqualifies it for a general reference architecture since

implementors will have different preferences for the software stack to use.

3.5 IBM's Big Data Reference Architecture

IBM's reference architecture breaks down the big data platform into 8 core compo-

nents:

e Data Sources: This components lists the data sources that can be ingested by

the a big data platform. It provides a detailed list of sample data sources for

each sub-component listed in this layer.
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" Data Massaging and Storage Layer: This layer is responsible for converting

the data ingested from the data sources - arriving at various velocities - into a

format that can be processed by the downstream layers. It is also responsible for

storing the data in a raw and converted format for later retrieval by downstream

layers.

" Analysis Layer: The analysis layer contains the business logic that converts the

data into actionable insights. It also stores the models that run on the streaming

and batch data received from the upstream layers.

* Consumption Layer: The consumption layer is responsible for exposing the

result of executing the models and business logic on the data. It makes this

information available for consumption by humans and other systems.

" Integration Layer: This layer allows all the above mentioned components to

interact with each other. This is achieved using standardized protocols and

API contracts.

" Big Data Governance: Big data governance permeates the entire platform. It is

responsible for defining the policies that relate to data handling, retention and

regulatory compliance.

" Quality of Service Layer (QOS): The QOS layer handles the security, quality of

data, and service level agreements throughout the platform. It sets the policies

related to privacy, security, data filters and masks.

" Systems Management: System management is responsible for handling the over-

all infrastructure, system monitoring and policy management.

IBM's reference architecture does a great job in several areas. First, it provides

a comprehensive list of data sources that can be critical for a big data platform.
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Not only does it provide a high-level view of these data sources, but it also details

lists of data sources from each category. Second, the reference architecture explicitly

mentions model management as a sub-component of data analysis. This is a critical

part of data analysis and IBM's architecture is the only one that explicitly calls it out.

Third, this architecture provides a comprehensive list of analytical techniques in the

analysis engine. It explicitly mentions data analysis using complex event processing,

and model execution. Fourth, IBM includes the 4 critical components that are needed

to run any big data platform. These include : integration layer, big data governance,

systems management and quality of service (QOS). Lastly, the architecture is vendor

agnostic and the layers mentioned can be implemented using a wide range of available

technologies.

Even thought IBM's architecture has a lot of positives, it is not suitable as the

basis for a cost model. Similar to other architectures, IBM includes the data sources

as part of the system boundary of the architecture. Our reference architecture will

need to remove these data sources from the architecture, and instead focus on the

interface between those systems and the components included within the boundary

of the platform. The second problem is that the architecture does not decompose the

data massaging components into detail sub-components. it glosses over the details

of data masking, data conversion and how data arriving at various velocities are

converted into a usable format. It also neglects to detail the types of data storage

needed to support such a platform.

3.6 NTT Data's Big Data Reference Architecture

NTT Data breaks down its big data reference architecture into 8 core components:

* Information Gathering: This components is responsible for aggregating and

validating raw data from various data sources. It exposes the data collected for
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data processing and storage by downstream layers.

" Data Processing: Data processing is responsible for ingesting data from the

information gathering layer, processing it, and transforming the data into a

format that can be used for analysis.

* Information Store: The information store layer is used to persist the raw and

processed data. The data can be stored in a structured, semi-structure and

unstructured format.

" Data Analytics: Analysis of the data is performed using machine learning tech-

niques, simulation and using various mining techniques.

" Analytics Methodology: This is a proprietary analytics methodology that is

developed by NTT data.

* Decision Support and Utilization: This layer is responsible for exposing the

processing data for use by external consumers.

" Governance: The governance component of this architecture is responsible for

ensuring the security of the platform, maintaining data quality and managing

the data lifecycle. It spans all the components of the architecture.

* Infrastructure: The infrastructure layer encompasses all the hardware and soft-

ware components that are necessary to run the platform.

NTT Data's reference architecture provides a comprehensive list of components

needed to deliver a reference architecture. It does this while providing a fine enough

level of granularity that would enable an implementor to understand the necessary

components. It also leaves the big data sources outside the system boundary. That

being said, NTT Data does sugger from several issues that prevent it from being used
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Figure 3-4: NTT Data's Big Data Reference Architecture. Source: (NTT Data
Corporation, 2015)

as is. The first problem is that the sub-components detailed for the data analytics

capability are not comprehensive: it does not list all data analysis sub-components

that can be used to analyze the ingested data. It also includes a non-vendor specific

implementation - BICLAVIS - without detailing non-vendor specific equivalents. An-

other problem is that the data analysis component mentions Machine Learning as a

broad capability, but does not call out model execution and model management as a

needed capability. Finally, the reference architecture does show interactions between

the components, but does not explicitly define what each interaction is.

46

C

Media

Sensors/
Meters

Files

Database

Socid
Media

Coud
Service

Information Life
0/cle M.a.gemen

0

Ut

Infrastructure Management



3.7 Conclusion

Even though we were not able to identify a reference architecture that we can use as

is, thanks to Microsoft, IBM, NTT Data and NIST's reference architectures we can

now extract the core components that an ideal intelligent platform should implement.

In the next chapter, we will build on the knowledge gleaned from these architecture

to present the reference architecture that we believe will help us develop the cost

models.

47



48



Chapter 4

Intelligent Platform Reference

Architecture

4.1 Introduction

In this chapter we will outline a reference architecture for intelligent platforms. We

intend to use this holistic architecture throughout this thesis to define the core com-

ponents needed to deliver an intelligent platform and subsequently determine the cost

model of each component. To develop this list we extracted core components from

the architectures reviewed in the previous chapter and added components that we

found critical when delivering intelligent platforms in our professional experience.

4.1.1 Definition of Reference Architecture

Throughout this thesis, we will adopt Cloutier et al.'s definition of reference architec-

tures:

"Reference Architectures capture the essence of existing architectures, and

the vision of future needs and evolution to provide guidance to assist in
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Figure 4-1: Framework for Reference Architectures. Source: (Cloutier et al., 2010)

developing new system architectures."

We do not expect the reference architecture detailed here to be implemented as is.

Instead, we expect it guide the development of an organization specific architecture

that incorporates all the business needs and vision of the implementing organization.

Therefore, the reference architecture should be technology and vendor agnostic, giving

organization the freedom to select the appropriate vendors and tools.

4.2 Reference Architecture
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4.3 Data Ingestion

The first core layer in our architecture is the data ingestion layer. This layer sits

at the boundary of the platform and acts as the interface for ingesting data from

various sources. The sub-components in this layer can consume data in a push or

pull paradigm; some of the information needed by the platform will be pushed into

it by external data sources, whereas other data sources will require the platform to

explicitly pull the data it needs. The latter will be triggered by an event - external

or internal to the platform - or based on a predefined schedule.

4.3.1 Data Sources

The data sources are outside the boundary of our platform, but the interfaces with

them are not. Therefore it is critical to list the types of data sources that this platform

can interact with. In addition, the velocity of data sources that an organization wishes

to consume from can heavily dictate the selected sub-components. For example,

an organization wishing to consume data from high-velocity sources - such as IoT

devices - will need an ingestion layer that allows it to ingest and propagate the data

downstream to the analysis layer with sub-second latency. A platform that will be

consuming slow moving data on the other hand, does not need such strict latency

requirements. To understand the sub-components needed by an organization, we will

categorize the data sources along the dimensions defined in table 4.1.

We believe a reference architecture should support ingesting data from the below

listed sources.

Sensors & IoT devices

The the proliferation of IoT devices has created an opportunity for organizations

to collect data from their products in real-time. An intelligent platform should be
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Criteria Description Values

Velocity This criteria qualifies the speed Low-Latency: The data should
at which the data consumption be consumed in near real-time
should happen to extract the (sub-second) latency to extract
most utility from the data source maximum utility.
(Rubinfeld and Gal, 2017) High-latency: The data can be

consumed without any real-time
constraints.

Access This criteria qualifies if the data Push: The external data source
is pushed by the data source into is responsible for pushing the data
the platform, or if the platform into the platform.
itself has to pull the data from the Pull: The platform must pull the
source information it needs by reaching

out to the data source in question.
Structure This criteria determines if the Structured: The data held in

data source holds structured or this store has metadata associ-
structured data (Rubinfeld and ated with each element.
Gal, 2017) Unstructured: The data in this

store has unmarked text, video,
or audio content. The data ele-
ments will need to be identified
to perform further analysis.

Table 4.1: Data Source Dimensions

able to ingest data from these data sources and make it available for analysis as

close to near real-time as possible. We define near real-time as sub-second latency

from the moment the data is received by the platform to the time it is available for

analysis by downstream layers. This data would be considered streaming real-time

data. An example of this data source includes smart meters that can push the current

electrical consumption at near real-time intervals, telemetry data from cars, and GPS

information from shipping containers.

Data coming from these data sources is usually structured information as it is

almost always pushed into the platform via its exposed APIs. It is is not advisable to

54



have unstructured data coming from these data sources as the transformation steps

needed to convert this to structured data for analysis can add to the latency.

Table 4.2: Sensors & IoT

Aggregated Data Providers

An organization might need to consume from entities that aggregate data for a certain

domain. These entities could be governmental, non profit organizations, or third party

data vendors. The data they offer can be instrumental in enriching an organization's

existing information.

The data ingested from these sources are typically high latency data due to the

nature of the work needed to aggregate, transform and expose the data. Organizations

that wish to ingest data from these sources typically have to pull in the data into the

platform either by calling APIs exposed by the external entity or by consuming batch

files. By definition, this data is structured to enable consumption by external entities.

Examples of such data sources include population health information, or geospatial

information.

Table 4.3: Aggregated Data Providers
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Velocity Low-Latency
Access Push
Structure Structured

Criteria Value

Velocity High-Latency
Access Pull
Structure Structured



Data Stores

An organization might have a number of internal or external data stores that contains

information of interest. These stores might be repositories of information for disparate

business units, or repositories that can be accessed under data sharing agreements

between the data store owner and consumer. This data is often pulled by the platform

based on a set periodicity or in response to an event.

Data ingested from these sources could be either low or high latency based on

the type of data in the stores, and the use cases. The data stores could be relational

databases, NoSQL databases, or raw file stores. Relational data stores would contain

structured data, whereas NoSQL databases and raw files could contain either struc-

tured or unstructured data based on the associated metadata. Examples of these

data stores include relational databases used by an organization's finance department

or a hospital's medical notes on patient visits.

Criteria Value

Velocity High-Latency & Low-latency
Access Pull
Structure Structured

Table 4.4: Data Stores

Operational Logs

A large organization typically has a large number of software application continuously

generating operational logs. These logs capture user interactions with the software

product, the errors encountered and any other information that the developers have

decided to output. This data can help an organization understand how their cus-

tomers are using their products. In addition, this can be instrumental in detecting

problems or bugs in the deployed systems. For example, in the early data of Google,
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a developer inspected users' clickstreams after they performed search to track the

relevance of the returned search results (Levy, 2011).

The data from these logs is often pushed into the platform in near real-time by a

log aggregator (a software application that sits outside the boundary of the intelligent

platform). All applications in an organization are typically programmed to forward

their logs into the aggregator. It then forwards the logs to designated endpoints -

including the intelligent platform.

Based on the amount of data transformation performed in the log aggregator, the

data can be structure or unstructured. Adding too many costly transformations in

the log aggregator can delay the data from reaching the analysis layer of the platform.

Example of this data can be the position of the user's cursor, click coordinates on

a web page, screens visited on a mobile application, and intrusion detection logs from

a company's mission critical servers.

Table 4.5: Operational Logs

Public Data Sources

Public data sources present the broadest data source category in our list. It en-

compasses social media, blogs and public websites. Data extracted from these data

sources can have a huge impact on the type of analysis that an organization can per-

form on. For example, an organization can run sentiment analysis on social media

posts around the launch of a product or marketing campaign to track efficacy and

engagement. They can also use this channel to detect customer complaints and go-

57

Criteria Value
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Access Push
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live issues early on. This allows them to be pro-active in addressing brand damaging

problems early on.

The highest utility can be extracted from this data when the platform pulls it

in real-time. Data sources could be accessible using public APIs (Example: Twitter

API, Facebook API, Weather Channel API) or scrapped from the original data source

to extract the needed information. If the data was pulled from APIs, then it is

often structured, whereas scrapped data is unstructured and requires transformation

before analysis. Some examples of these sources include, Twitter, Facebook, Yelp,

Weather.com, Amazon and Reddit.

Table 4.6: Public Data Stores

Systems & Applications

An organization's internal systems and applications can be an excellent data source.

They can include Enterprise Resource Planning (ERP) systems, Customer Relation-

ship Management (CRM) systems, billing systems or any other custom built or ac-

quired applications used by the organization.

The data from these platforms can be pushed or pulled based on the use cases.

These products typically contain plugins that allow external application - like the

intelligent platform - to pull data on demand. They can also be programmed to

export data on a pre-set schedule and push it to an endpoint. Since organizations

typically own these products, they can dictate the ideal data retrieval mechanism for

the use cases in question. The data is often structured and ready for analysis by the
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Velocity Low-latency
Access Pull
Structure Structured
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platform.

Table 4.7: Systems & Applications

4.3.2 Data Retrieval Engine

The data retrieval engine is the sub-component in the data ingestion layer responsible

for pulling data from external sources. It fulfills all the use cases where the sources

were marked with a pull access in section 4.3.1. The retrieval process can be trig-

gered by a schedule provided to this sub-component or by a stimulus from an event

originating inside or outside the platform.

To fulfill its role, this engine relies on the following critical sub-components:

Scheduler

The scheduler maintains a list of data sources and its respective data retrieval sched-

ule. When it is time to pull a piece of information into the platform, it triggers the

API retriever or the batch retriever depending on the type of retrieval mechanism

exposed by the source in question.

Event Listener

The event listener idly waits for a predefined set of events to trigger. These events can

originate internally from the platform, or from an external source. When a recognized

event is received, it triggers - similar to the scheduler - the API retriever or the batch
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Velocity Low-latency
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retriever depending on the type of retrieval mechanism exposed by the data source

in question.

API Retriever

The Application Programming Interface (API) retriever is responsible for pulling in-

formation from an external data source that has an API exposed. It is responsible for

maintaining the API contract information in order to request the needed information

when triggered. The data is then pushed to the Data Transformation Layer (Section

4.4).

Batch Retriever

The Batch Retriever maintains a list of all sources that expose data batched in files.

When triggered, it reaches into to the data source in question and retrieves the stored

files. The Batch Retriever will then pass the files to the Batch Data Processor com-

ponent (Section 4.4.1) for transformation.

4.3.3 Ingestion API

Data sources can push data into the platform using an Application Programming

Interface (API). Exposed APIs accept structured data that adheres to its contract.

It is responsible for receiving data from all sources listed in section 4.3.1 marked with

a push access. When data is received from a source, this layer passes it to the Data

Transformation Layer (Section 4.4) for further processing.
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4.4 Data Transformation

The data used for analysis will arrive into the platform at various velocities and from

a large number of sources with varying structures. The purpose of this layer is to

normalize the data into a final structure that can be used for data analysis. Once

the ingested data goes through all the transformations listed in this section, it will

be ready for consumption by the Data Analysis layer (Section 4.5)

4.4.1 Batch Data Processor

The batch data processor layer is responsible of extracting the needed information

from the batches of files retrieved by the Batch Retriever. This layer holds the ex-

pected structure of the input files and the set of transformations that enable it to

convert the data into individual records. For this transformation, we will follow the

architectural pattern set in the paper "Data Ingestion for The Connected World"

(Meehan et al., 2017). In the paper, the authors recommend having one common

data transformation pipeline for real-time data and bulk data. This architectural

decision is critical as it has ramifications on the complexity of data transformations

and the complexity of interaction between components. This aligns with our profes-

sional experience. We observed that this approach reduces complexity of downstream

processing by assuming that all data going into transformation will be in the same

pipeline. Therefore, this component will breakdown the batch files into individual

records - as if they were received individually from a real-time data source - and

push them into the data transformation pipeline for further downstream processing.

4.4.2 Aggregation Engine

Related pieces of information can come from various data sources at different speeds.

This layer is responsible for making sure related data fragments are aggregated into
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a unified structure. This is crucial to ensure that the analysis layer has an accurate

picture when the analysis is performed. This layer will inspect the pipeline as data

is flowing then stitch the data elements together to form the full picture.

4.4.3 Enrichment Engine

The data coming into the platform will rarely hold all the identifying information.

More than often, the platform will need to enrich the flowing data with further infor-

mation. For example, a bank transaction coming from a main frame might hold the

accounts involved in the transaction, but not the customer identifiers. This layer will

be responsible for looking up the data needed and injecting it into the flowing data.

This layer will retrieve the necessary data from local stores (Section 4.6).

4.4.4 Masking & Encryption Engine

All ingested data will contain a large variety of information. Some of this information

might be regulated, or the organization might want to prevent security compromises

from exposing it. For example, personally identifiable information in healthcare is

protected under the Health Insurance Portability and Accountability Act (HIPAA)

in the United States. All HIPAA data needs to be encrypted when stored. This

layer is responsible for identifying the pieces of information that require masking or

encryption and applies the equivalent transformation.

4.4.5 Validation Engine

Data elements flowing in the the platform will need to adhere to a set of business and

syntactical rules. For example, a date field must not have a month value bigger of 12

and an email address cannot contain two 'Ld' symbols. These constraints are crucial

to ensure the analysis is accurate. Such errors could have a catastrophic impact on
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reliability of the platform. Since the data will be coming in from various data sources

that the consuming organization cannot govern, the validation layer is the defense

against having these errors impact the platform. This layer will have a list of fields

and their equivalent constraints. Any field that does not adhere to the constraints

will be rejected and an alert raised for further investigation.

4.5 Data Analysis

The data analysis is the core layer that is responsible for extracting the insight from

the collected information. This is where the culmination of the research done in Al

and machine learning manifests itself. This layer holds all the components that allows

a firm to turn the data into actionable insights.

4.5.1 Rules Engine

The rules engine sub-component is a store of rules hand crafted by domain experts.

It monitors data elements flowing through the pipeline and triggers events or alerts

based on the coded rules. For example, the rules engine might have a rule that

instruct it to release pressure on a valve if it starts seeing temperatures for a boiler

above a certain critical level. Another example is a medical diagnosis system that

contains the rules and symptoms for various diseases. Such a system would be able

to suggest a prognosis based on the observed symptoms by consulting its knowledge

base.

The cost of codifying the entire rules of a domain is too prohibitive, but these

engines can be great for centralizing a small set of rules that need to be shared by

various processes across an intelligent platform. This would streamline changing the

business rules and propagating them across the data analysis jobs that utilize them.
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Figure 4-4: Complex Event Processing Engine. Source: (Leavitt, 2009)

4.5.2 Complex Event Processing Engine (CEP)

Complex event processing (CEP) engines extend typical rules engines by focusing on

the relationship between real-time events flowing through the system. Such an engine

is able to make inferences based on observing a sequence of events originating from

disparate data sources (Leavitt, 2009). From example, A CEP engine can determine

if a transaction is fraudulent by parsing - in real-time - all the financial events flowing

throughout the system. Another heavy use of CEP is in cybersecurity, where CEP

engines are used to correlate events occurring in an organization's infrastructure to

detect attempts of cyber intrusion. CEP's are also powerful enough to send an alert

when an expected event does not occur.
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Figure 4-5: Streaming Data. Source: (Psaltis, 2017)

4.5.3 Streaming Data Analysis Engine

Streaming data analysis engines excel at running analytical tasks over data flowing

into the platform in near real-time. These engines are typically distributed in-memory

gird clusters, where an analytics job would be split over machines in the cluster. These

engines excel at resolving continuous queries over the streaming data in addition to ad-

hoc queries similar to RDBMS systems (Psaltis, 2017). This is achieved by retaining

a number of data elements - called a window of data - in memory for quick access

and query processing (Psaltis, 2017). The number of elements in a window of data is

usually configurable but limited by the memory and processing capacity of the servers

where the streaming engine is running.

Streaming engines are able to run any type of analysis on the data retrained in

the window. This includes executing code from custom code, rules engines, CEP

engines, and executing pre-trained models. That said, streaming engines also excel

at answering summarization queries that span the full history of the data streamed.
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Questions such as : how many times has event X occurred, or what is the event that

occurred the most between two dates? This is achieved by leveraging probabilistic

data structures like bloom filters (Bloom, 1970) and hyperloglog (Flajolet et al., 2007).

For example, using these algorithms, streaming engines can determine the frequency

of occurrence of one billion distinct items with an accuracy of 2% using only 1.5k of

memory (Psaltis, 2017).

4.5.4 Offline Analysis Engine

Offline analysis engines are used to run analytical jobs that require an amount of data

that makes it prohibitive to process it in near real-time. These engines usually have

the same exact capabilities as the streaming data analytics engines - especially since

a number streaming analytics engine support both offline and real-time analytics.

Similar to streaming data analytics, these engines can execute custom code, rules

engines, CEP engines and pre-trained models over the data. They are typically

executed periodically, for example executing fraud analysis over petabytes of data

every night, or based on a trigger from a process in the platform. The result of the

analysis is often stored back into the local data stores. The result of the analysis can

also trigger events or alerts in the platform.

4.5.5 Model Management

One of the core capabilities needed in the platform is the ability to execute models on

the ingested data. The term model is a highly overloaded and we were not able to find

a single definition that accurately captures all the types of models that an intelligent

platform should support. Therefore, for this platform, we will assume models can

capture the following information :

* Summary statistics representing the probability distribution and their associ-
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ated hyper-parameters

" Regression parameters

" Set of rules and branch values that define decision trees

" The network structure, weight values and classes that summarize a neural net-

work

" Natural language processing domain datasets and their associated algorithms

" Clustering parameters

" Parameters representing recommender systems

A model management system should be able to store all the parameters associated

with these models. It must expose the parameters for retrieval by the offline and

streaming analytics engines. It should also be easy to update the parameters, and be

able to run test to compare version of models against each other based on a supplied

accuracy measure.

4.6 Data Storage

The data flowing into the system will need to be persisted for later access or offline

analysis. The result of the analysis will also need to be captured for dissemination.

Since we expect to ingest large amounts of data, these data storage layer should be

able to hold large amounts of data - from terabytes to petabytes of information based

on the organization. The data storage layer should be able to store data of varying

types: text, binary, images, audio or video.

The data stored by the platform will become essential to the data scientists in

their effort to optimize their models and tackle new business problems. Therefore
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- in addition to storing this data in production - data scientists should be able to

easily access the information they need to run experiments. This is further compli-

cated when data stored is sensitive and cannot be openly shared internally in the

organization. That said, the architecture of these platforms should make it easy for

data scientist to run any experiments with little friction to make sure that the full

potential of the data is unlocked.

Non-media data should be stored in relational database management systems

(RDBMS), NoSQL or graph databases based on the data's size and use cases. Databases

are inefficient for storing binary or media files. This type of information must be stored

in a file system. A platform might commit to a single type of these databases or use

a mix based on the needs and tradeoffs. None of these database technologies are

dominant as each one offers varying tradeoffs as we will see in the following sections.

4.6.1 Relational Database Management System

In a relational database management system (RDBMS), the data is highly structured,

has minimal data redundancy (normalized) with consistent relationship (imposed

referential integrity). This is a strength for databases as the data models can mimic

business models and impose constraints when inserting new data. This process of

imposing the data integrity during write is called "schema on write". An example of

a schema and sample data can be found in figure 4-6.

As an organizational's data needs start to expand, RDBMS system become dif-

ficult to manage (Bazar and Iosif, 2014). Changing the data structure (schema)

becomes problematic as modifying the model would risk breaking the existing ref-

erential integrities and migrations between versions of the schema become a costly

process. This causes organizations to avoid changing their schemas too much, thus

reducing their agility in responding to business changes.
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http://www.linkedin.com/in/williamhgates

Bill Gates
Greater Seattle Area I Philanthropy

Summary

Co-chair of the Bill & Melinda Gates Foundation.
Chairman, Microsoft Corporation. Voracious
reader. Avid traveler. Active blogger.

Experience
Co-chair . Bill & Melinda Gates Foundation
2000 - Present

Co-founder, Chairman - Microsoft
1975 - Present

Education
Harvard University
1973-1975

Lakeside School, Seattle

Contact Info
Blog: thegatesnotes.com
Twitter: @BillGates

users table

user-id first-name lastname summary

251 Bill Gates Co-chairof ... blogger.

region-id industry-id photo-id

us:91 131 57817532

regions table industries table

id region-name id industry-name

us:7 reater Boston Area 43 Financial Services

us:91 Greater Seattle Area 48 Construction

131 Philanthropy

positions table

id user-id job-title organization

458 251 Co-chair Bill & Melinda Gates F...

457 251 Co-founder, Microsoft
Chairman

education table

id user id school-name start end

807 251 Harvard University 1973 1975

806 251 Lakeside School, NULL NULL
Seattle

contact-info table

id userid type url

155 251 blog http://thegatesnotes.com

156 251 twitter http://twitter.com/BillGates

Figure 4-6: RDBMS example. Source: (Kleppmann, 2017)
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"user-id": 251,
"firstnww": "Bill",
"lastnaNe": "Gates",
"summary": "Co-chair of the Bill & Melinda Gates... Active blogger.",
"regtonj.d": "us:91",
"industryid": 131,
"photourl": "/p/7/00/253/sb/38dd6e.jpg",
"positIons": [

{"jobtitle": "Co-chair", "organization": "Bill & Melinda Gates Foundation"),
("jobttle": "Co-founder, Chairman", "organization": "Microsoft")

1
"education":

{"school_name": "Harvard University", "start": 1973, "end": 1975),
{"schoolnam*": "Lakeside School, Seattle", "start": null, "and": null}

1,
"contactinfo": {

"blog": "http://thegatesnotes.con",
"twitter": "http://twitter.co/BillGates"

}

user 251

E positions education

job 1 job 2 job 3 edu 1 edu 2

0 7-;0 0 E r~ E 'r
o to

Figure 4-7: NoSQL Document example. Source: (Kleppmann, 2017)

4.6.2 NoSQL Databases

In contrast to RDBMS systems, NoSQL databases eschew schemas. Instead, they

act as simple document or key/value data storage systems. Without performing

any checks on the relationship between the data elements when the data is inserted.

They assume that the relationship between the data elements is known by all data

requestors. This paradigm is known as "schema on read". Figure 4-7 shows how the

same data from Figure 4-6 can be captured in a NoSQL document store.

The lack of schema makes it easy to ingest large amounts of data without the need

70



type: continent type: continent
name: North America name: Europe

within within within

type: country type: country type: country
name: United States name: United Kingdom name: France

within within within

type: state type: country type: region
name: Idaho name: England name fr: Bourgogne
abbreviation:ID name-en: Burgund

type: city .S :( p n
name: London type: d4partement

name: C6te-d'Or I

bo.ma in livesin livNesin wst m

with nsurng daa cosistecy arossall dta rcords Sine mothinoQ dabse

type: person married_ type: person bornin
name: Lucy name: Alain name: Beaune

Figure 4-8: Graph Relationship example. Source: (Kleppmann, 2017)

to craft a schema that represents the relationship between the elements (Bazar and

Iosif, 2014). The major problem with NoSQL databases is the complexity associated

with ensuring data consistency across all data records, Since most NoSQL databases

do not ensure transactional consistency.

4.6.3 Graph Databases

Graph database attempt to capture the relationship between data elements to make

it easy for traversing the data stored based on the relationship. Since the data is

captured as a connected graph, determining relationships between entities is done by

traversing the edges that connect them. This makes it easy to answer queries that

are focused on the connection between data elements. Therefore they are excellent at

modeling domains where many-to-many relationships dominate (Kleppmann, 2017).

The weakness of graph databases lies in the difficulty in performing queries that

require aggregating data (Kleppmann, 2017). Due to the data being captured in a

graph format, queries that requires merging information about multiple unrelated

relationships are complex to implement.
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4.7 Consumption Layer

The consumption layer is responsible for (1) exposing the data collected, (2) making

the data analysis accessible to external consumers, (3) and allowing external services

to trigger data analysis jobs.

4.7.1 Consumption API

The consumption API is a service contract that allows external applications to inter-

act with the platform. This the core component that enables internal and external

application developers to build products using this platform. This API exposes the

full capabilities that the platform offers.

4.7.2 Batch Data Output

Just like external data sources can push data into the intelligent platform, the plat-

form itself should be able to export bulk data to external data sources. Similar to

the ingestion batch components, this too can be triggered using an event or based off

of a schedule.

4.8 Infrastructure

To run all the software needed to deliver the components mentioned so far, we will

need an underlying infrastructure of hardware and software, and the necessary gov-

ernance policies.
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4.8.1 Servers & Networks

An organization will need access to servers that are able to execute the software

necessary to power this platform. Due to advances in cloud computing, organizations

now have almost unlimited on-demand infrastructures that can be spun up in minutes.

By leveraging a cloud infrastructure, an organization can dynamically respond to

spikes in demand by automatically provisioning the hardware needed. The resources

can then be reclaimed when the demand subsides to reduce the operational cost of

the platform.

4.8.2 Message Brokers

Message brokers are essential in an intelligent platform due to the distributed nature

of the components that will be running. Message brokers act as a conduit that ties

all the components together. Components subscribe to message topics where they

receive the data needed to operate. When a message is pushed to that specific topic,

all subscribed services are alerted. They subsequently retrieve the pushed message,

perform their operation, and then pass the result of their operation into a subsequent

message topic to alert downstream components.

4.8.3 Disaster Recovery

The platform, ingested data and analysis performed by this platform will become a

core asset for the organization. Therefore special process should be put in place to

make sure the platform is resilient against external events that can adversely affect

it.
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Figure 4-9: Message Broker. Source: (Psaltis, 2017)

4.8.4 Monitoring, Dashboards & Reports

To make sure the platform is operating properly, an organization must have proper

tooling in place to continuously monitor all services and components. This includes

continuously monitoring the logs generated by the services, the infrastructure's oper-

ational parameters.

4.8.5 Security

The platform needs to have security policies that protects the data from being exposed

and the servers from being compromised with intrusion or denial of service attacks.
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4.9 Conclusion

In this chapter we have presented a reference architecture for an intelligent platform.

The architecture combines our survey from the previous chapter in this thesis with

our personal experience and research. We presented each component and provided

an explanation over the role the components plays in the platform. An organization

should be able to take this reference architecture and tailor it to the use cases it is

attempting to enable.

It is important to note that even though this reference architecture provides a

good overvicw of the components needed, each organization has to assess if it sup-

ports their use cases. This is due to the general nature of reference architectures.

Organizations should always assess the requirements they have and treat our archi-

tecture as a starting point. They should not assume that it will cover all needed

scenarios. Said organizations should also consider the following key decisions when

designing their architectures:

" Service level objective of data analysis: Deciding on how fast the data needs

to be analyzed after ingestion can have a big impact on the complexity of the

overall platform.

" Type of analytical models: The analytical models that the platform needs to

support will have a big impact on the complexity of the analysis engines and

model management

" Data masking and encryption: The amount of data privacy and encryption

needed - which can vary based on the use cases and business domain - can

have a big impact on the complexity of the infrastructure needed to ensure the

platform is compliant.

" Talent: An organization has to validate that its staff has the correct set of
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skillsets needed to build such an platform. Specialized skills like data engineer-

ing, data science and security architects will be needed to make this platform a

success.

In a subsequent chapter, we will develop a cost model that captures the effort

needed to develop each of the components detailed in this section.
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Chapter 5

Cost Model

5.1 Introduction

In this chapter, we will select a software effort estimation methodology and use it

to create a cost model for the reference architecture we previously introduced. Our

model will allow an organization to customize it based on the components they decide

to implement. It is important to note that we will use the terms effort and cost

interchangeably in this section, as effort - presented in units of person-months - can

be trivially converted to cost.

5.2 Overview of Effort Estimation Models

There are several published methodologies on software effort estimation. In this

section we will provide an overview of the various approaches available, provide a

comparison and then select the one we will use to develop the effort model. We found

the book "Software Project Effort Estimation" (Trendowicz and Jeffery, 2014) to be

an excellent guide in capturing the estimation techniques that exist and their under-

lying strength and weaknesses. A full taxonomy of software estimation technique can
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be found in figure 5-1.

5.2.1 Estimation Models

Based on the goals of this thesis, we will be focusing on the following subset of

estimation techniques:

* Statistical Regression Analysis: This estimation technique relies on data from

previous projects at the organization to develop an estimation model for future

projects. Regression coefficients are generated by fitting the regression equation

to the historic data. These coefficients are subsequently used to predict the effort

of future projects.

" Constructive Cost Model (COCOMO): This estimation technique uses data

from software projects across industries to develop a parametric estimation

model. The model accepts project size, scaling factors, and effort drivers as

inputs from an expert in the organization. It subsequently uses that informa-

tion to produce an effort estimate.

" Classification & Regression Trees: This estimation technique allows an organi-

zation to develop a decision tree based on previously delivered software projects.

The nodes in the decision tree constitute decision factors that affect the final

effort estimate. The generated tree can then be used for future estimation.

Example of a constructed tree can be found in figure 5-2.

" Case-Based Reasoning: This estimation technique relies on analogous historic

projects to estimate the effort needed. It assumes that the estimator has a

database of historic projects with varying sizes and complexities. When a

project needs to be estimated, an analogous is identified from the database
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and the estimates are based on the actual effort that were needed to deliver the

historic project.

" Wideband Delphi: This estimation technique relies on several experts providing

their best estimate for a task. After they provide their initial estimates, they

debate them until they reach consensus.

" Planning Poker: This technique is very similar to the Wideband Delphi tech-

nique but is more often used in agile projects. The team debates the complexity

of the task at hand during frequent planning sessions throughout the project.

" Bayesian Belief Networks: This technique uses bayesian networks to provide an

estimation of the project under consideration. The relationships between the

factors affecting the estimation are encoded into a belief network, which is then

used to derive the final estimation. An example of a belief network can be seen

in figure 5-3.

" CoBRA: This is a hybrid estimation technique that aims at generating a model

specific to the organization by combining effort and productivity models with

historic project data. An overview of CoBRA can be found in figure 5-4.

5.3 Selecting Estimation Model

The "Software Project Effort Estimation" (Trendowicz and Jeffery, 2014) book details

a framework for assessing each estimation techniques to aid in the selection process.

We will be following the framework (Figure 5-5) and relying on its 13 decision criteria

(table 5.1) to narrow down the estimation methodology to the one that best suits

the goals of this thesis. Since we don't yet have access to projects that have followed

the reference architecture, we will implement the framework's laid out steps until
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the "Screen Candidate Effort Estimation Methods" step. We expect future work to

extend this thesis to include the subsequent steps in the framework.

5.3.1 Context & Goals

Our intent is to develop an effort model based on the reference architecture we have

created. The end-goal is for an organization to estimate the effort needed to deliver

such a platform by selecting the desired sub-components and inputting values for

the parameters that relate the organization's capabilities. The generated estimate

can then be used to determine the amount of work and related cost. This can be

important early on in the project launch phase when an initial estimate is needed

for stakeholders. Based on this goal we will assign the highest priority to the ability

to take input from experts to tweak the model. This will be critical to make sure

the estimates are linked to the organization's capabilities. The second priority is

the ability to split the estimation over several sub-components and then aggregating

them into a single model. This will ensure that customizing a platform by selecting

a subset of the sub-components does not break the model.

Since this estimation exercise is done with only the reference architecture, we

expect subsequent estimation efforts after the work has been broken down into work

streams, and teams have been allocated.

5.3.2 Decision Criteria

To identify the ideal model based on the 13 criteria (Table 5.1), we define our re-

quirements for each criteria in this section and then match those criteria against the

strengths and weaknesses of each technique (table 5.2).
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Criteria Description

Expert Involvement Criterion used to assess the necessary input needed from
expert resources to deliver the software estimation

Required Data Criterion used to assess the dependency on historical
data to develop the estimation

Robustness Criterion for the sensitivity of the estimation to the qual-
ity of inputs

Flexibility Criterion for the flexibility of the estimation technique
in relation to the inputs and dependencies

Complexity Criterion for the complexity of the underlying theory,
algorithms and inputs

Support Level Criterion for measuring the level of documentation and
number of tools available for the estimation technique

Reusability Criterion for the ease of portability of the developed
model for other contexts beyond the initial estimation
effort

Predictive Power Criterion for assessing how close the estimates typically
are to the actual project efforts

Informative Power Criterion for assessing if the estimation method provides
additional information beyond the effort estimation

Handling Uncertainty Criterion for determining the estimation technique's
ability to handle uncertainty in inputs and outputs

Comprehensiveness Criterion refers to the estimation technique's ability to
estimate various project activities at varying levels of
abstraction

Availability Criterion to assess the degree the estimation technique
can be used for various stages of the software develop-
ment cycle

Empirical Evidence Criterion for the amount of evidence available from pre-
vious projects

Table 5.1: Software Estimation Model Decision Criteria
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Expert Involvement

Since the only information available is the reference architecture, an organization will

need to input data into the model to provide information about the organization's

ability to deliver such a platform. Therefore, any estimation technique we select needs

to accept input from an expert in the organization to perform correct estimation.

Required Data

The estimation technique we choose must not depend only on historic data from

an organization. It can rely on industry data, but we will be assuming that an

organization either does not have historic data or the data does not apply to this

type of project.

Robustness

We expect the model we choose to be somewhat robust to errors in data input. We

assume that the value to be supplied to the model might not be of highest quality. We

still expect the model to provide adequate estimates. Especially since the estimation

effort will be done early on in the project kick off process, where high quality data

might not be available.

Flexibility

The model we select should enable users to be flexible with the required parameters.

Some of the parameters will not be available, and the user should be able to either

fallback to default value, or be able to omit these entirely. We do expect the quality

of estimation to drop in these cases, but the model should still provide some useful

estimate.
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Complexity

Since the estimation process will be done with minimal information, we expect the

estimation technique to take simple parameters and not rely on heavy upfront anal-

ysis.

Support Level

We expect the estimation technique to have a high level of support. We should be

able to understand how it works to calibrate and generate the final model. It should

not be a black box and it should lend itself to customization.

Reusability

The final model we will develop will be heavily coupled to the reference architecture

we have developed. We do not expect it to be used for any other context. Therefore

the underlying estimation model does not have to support reusability.

Predictive Power

It is expected that the accuracy of the model will not be high since the estimation

process is being done early on in the project lifecycle. That said, we expect the

methodology to generate useful estimates that will be as close to the actual value as

needed to make sure the decisions that will be taken are well founded.

Informative Power

The estimation model used should provide a good estimation of effort. Any additional

information that the model can offer beyond that will be useful for the project but

not a must.
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Handling Uncertainty

The methodology we will select has to gracefully handle uncertain inputs. As men-

tioned in previous criteria, the lack of information early on in the estimation process

will create uncertainty around inputs and information. The estimation technique

should still deliver useful outputs.

Comprehensiveness

We do not expect the model to be used outside of estimating the software delivery

process. Therefore the underlying estimation methodology does not have to sup-

port non-technical efforts. Nor should it support varying level of granularity. If a

methodology does achieve the above two, that would be considered a plus.

Availability

We expect the model we will develop to be used during the initial stages of the project

lifecycle. Once the teams have formed and the work streams have been identified,

we expect the project to shift to another estimation technique. That technique will

use a finer level of estimation and would rely on more concrete data from the active

development efforts.

Empirical Evidence

The underlying estimation methodology we will leverage should be proven to produce

good enough estimates at the this early level in the project lifecycle.

88



5.3.3 Compare Estimation Techniques

To compare the estimation techniques, we will score them based on each decision

criteria. Each criteria will be scored from 1 to 5 - the score will represent how closely

the estimation method fulfills the requirements for the criteria requirement laid out

in previous section, with a score of 5 indicating the requirement is met perfectly.
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Statistical COCOMO Classification Case Wideband Planning Bayesian CoBRA

Regression & Regres- Based Delphi Poker Belief
sion Trees Reasoning Network

Expert Involve- 2 4 3 3 1 1 3 3

ment

Required Data 1 5 1 1 5 4 2 1

Robustness 1 3 5 3 1 2 1 1

Flexibility 3 4 4 2 3 4 3 1

Complexity 5 5 2 2 3 4 2 4

Support Level 5 5 5 5 3 4 4 4

Reusability 3 3 3 3 3 2 3 3

Predictive Power 5 4 3 2 3 2 2 4

Informative Power 2 4 3 4 2 3 3 3

Handling Uncer- 4 3 2 2 4 2 3 4

tainty
Comprehensiveness 3 4 3 4 4 3 3 4

Availability 4 4 4 1 4 4 4 3

Empirical Evidence 5 5 5 5 3 1 1 4

Total 43 53 43 37 39 36 34 39

Table 5.2: Software Estimation Model Decision Criteria



5.3.4 Selected Effort Estimation Method: COCOMO

Based on the analysis shown in table 5.2, Constructive Cost model (COCOMO)

emerges as the best underlying estimation method for our model. Specifically, we

will be using COCOMO II. COCOMO is a data driven, parametric estimation model

that was developed by Barry Boehm in 1981 (Trendowicz and Jeffery, 2014). It was

developed using statistical regression on data from multiple organizations. COCOMO

II - which was released in 2000 - is a calibrated version of COCOMO. COCOMO

accepts two sets of parameters based on the stage of estimation: if the estimation

done is post-architecture, 17 effort drivers are used, if pre-design, a reduced set of 7

effort drivers are used instead.

5.4 COCOMO II For Reference Architecture

COCOMO II lends itself excellently to developing our model. Since COCOMO takes

the scale factors and the effort drivers as input from the user - and since those factors

are organization specific - we simply have to assume that each sub-component will

be estimated using the COCOMO model, and the aggregated estimate is the sum

of efforts of the sub-components. Since the ideal way to build the sub-components

is by breaking them into independent projects that interact via a contract, we will

ignore the cost of integrating the components together. Moreover, taking into account

that we will estimating during the early stages of project, we will be leveraging the

pre-design version of the model:

7

Ef fort =A x Size E x fEM, (5-1)
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Where:

Effort : Total project effort in person-months

A : Development productivity. Initially A = 2.94

Size : Volume of software product measured in lines of code

E : Effect of scale. Detailed in eq. 5.2

EM : Early design effort drivers listed in table 5.3

5

E = B + 0.01 x SF (5.2)
j=1

Where:

B : Constant initially set to 0.91

SF : Factors that impact the scaling of the project. Detailed in table 5.4
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Name Abbreviation Description

Personnel capability PERS Measurement of the overall
capability of the personnel
involved in the project

Product reliability and com- RCPX Measurement of the overall
plexity complexity of the solution

Platform difficulty PDIF Measurement of the com-
plexity of storage and plat-
form volatility

Personnel experience PREX Measurement of the overall
experience of the personnel
and their familiarity with
the tools needed to deliver
the solution

Facilities FCIL Measurement representing
the complexity of working
across geographically dis-
parate sites

Developed for reusability RUSE Measurement representing
whether the solution to be
developed will be reused in
future projects

Required development SCED Measurement of the con-
schedule straints on the expected

schedule for delivering the
solution

Table 5.3: Early Design Effort Drivers
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Table 5.4: Scaling Factors

94

Name Abbreviation Description

Precedentedness PREC Measurement representing
the organization's familiar-
ity with developing similar
projects

Development flexibility FLEX Measurement of the flexibil-
ity afforded to the develop-
ment team

Architecture/ risk resolution RESL Measurement of the risk as-
sociated with the solution
and any mitigations in place

Team cohesion TEAM Measurement of the level
of cohesion between the
stakeholders, developers
and platform end-users

Process maturity PMAT Measurement of the process
maturity of the organization
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Thus, the overall effort model of the reference architecture is :

TotalEf fort = SCE, + IC
j=1

(5.3)

Where:

TotalEf fort : The total effort for building the platform in person-months

n The total number of components to be built

SCE : The effort of building the sub components based on eq. 5.1

IC : The effort of the mandatory infrastructure sub-components (eq. 5.4)

IC = S +.M + DR + MDR + SEC

Estimates

Estimates

Estimates

Estimates

Estimates

for

for

for

for

for

(5.4)

building the servers and networking using eq. 5.1

building the message broker using eq. 5.1

building disaster recovery using eq. 5.1

building the reporting infrastructure using eq. 5.1

developing the security infrastructure using eq. 5.1

5.5 Estimation Process

The model listed in section 5.4 should provide the information needed for an expert

in an organization to estimate the effort - and subsequently the cost - needed to

develop the components they select from the reference architecture. The expert will
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have to execute the following steps:

1. Component Selection: During this phase, the estimators would select the com-

ponents from the reference architecture that best matches the requirements they

have. If any added components is added to the reference architecture, the above

model can be easily extended to include them.

2. Size Estimation: For every selected component, the estimators would provide

an estimate of the size of the component in kLOC (thousands of line of code).

This maps to the "Size" parameter in equation 5.1.

3. Input Effort Driver and Scaling Factor: For each components, the estimators

will then enter their subjective value estimate for the scaling factors (Table 5.4)

in equation 5.2 and the design effort drivers (Table 5.3) into equation 5.1.

5.5.1 Estimating Effort Drivers and Scaling Factors

The scaling factors and the effort drivers are subjective values that an expert estimator

inputs for each component. The design drivers and scaling factors that affect our

model are listed in Table 5.3 and Table 5.4 respectively. The estimator will have to

enter a rating that represents the significance of the driver or factor under question

in relation to the component. The ratings for design effort drivers range from "Extra

Low" to "Extra High". Whereas the ratings for the scaling factors range from "Very

Low" to "Very High". The numeric values for these ratings can extracted from tables

5.5 and 5.6.
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Table 5.5: Effort Drivers Ratings. Source: (Baik, 2000)

-4

Table 5.6: Scaling Factor Ratings. Source: (Baik, 2000)

mm-

Extra Low Very Low Low Nominal High Very High Extra High

PERS 2.12 1.62 1.26 1.00 0.83 0.63 0.50
RCPX 0.49 0.60 0.83 1.00 1.33 1.91 2.72
PDIF - - 0.87 1.00 1.29 1.81 2.61
PREX 1.59 1.33 1.22 1.00 0.87 0.74 0.62
FCIL 1.43 1.30 1.10 1.0 0.87 0.73 0.62
RUSE - 0.81 0.91 1.00 1.11 1.23 -
SCED 1.43 1.14 1.00 1.00 1.00 1.00 -

Very Low Low Nominal High Very High

PREC 6.20 4.96 3.72 2.48 1.24
FLEX 5.07 4.05 3.04 2.03 1.01
RESL 7.07 5.65 4.24 2.83 1.41
TEAM 5.48 4.38 3.29 2.19 1.10
PMAT 7.80 6.24 4.68 3.12 1.56



5.6 Conclusion

To select an estimation model to base our cost model on, we identified 13 criteria

that the estimation technique should satisfy. Based on those criteria, COCOMO II

emerged as the ideal estimation model. We then developed the cost model by applying

the COCOMO II over the components in the reference architecture. We identified

the scaling factors and design effort drivers that will impact the estimation process,

and listed the values needed during estimation. With the information listed here,

an estimator can develop an initial cost estimate for the architecture they wish to

develop.
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Chapter 6

Conclusions

In this thesis we have developed a reference architecture that can be used to build

intelligent platforms. These platforms can enable use cases that leverage Machine

Learning and Artificial Intelligence. We have also selected the most adequate software

estimation methodology for performing a cost estimate for the platform early in the

project kick-off process. This work should enable an organization looking into building

an intelligent platform to understand the components that it needs to build and their

respective cost estimates. However, we believe more work can be done in this area :

" Work is needed to validate the cost model. This can be achieved by tracking

a build of an intelligent platform from early estimation to delivery, followed by

validating the estimates against the actual values. This has the potential to

expand the model to include any estimation factors that were missed.

" We have leveraged the COCOMO II model to build our cost model. COCOMO

was built before projects relied heavily on Machine Learning and Al models for

execution. Building these models is a complex undertaking that is cost and time

intensive. Training this models is often more of an art than a science, as the

data scientists experiment with tweaking their models for weeks at a time before
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attaining acceptable accuracies. Further work needs to be done to understand

if COCOMO estimates empirically hold for projects that depend heavily on this

type of model development.

* The reference architecture does not detail the latency of data processing needed.

Depending on use cases, some platforms have strict real-time data processing

requirements that mandate a certain architectural decisions to achieve the time

constraints. Further work can expand the architecture to measure the latency

of data processing based on the sub-components configuration, and detail opti-

mization techniques.
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