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Abstract

The 3-dimensional structure of interplanetary shock surfaces are analyzed using ob-
servations from the Wind and ACE spacecraft. Events seen by both spacecraft were
selected from the available data and used to calculate the radius of curvature R, of
the shock surface. The surface structure was examined within the ecliptic plane, and
evidence of large-scale curvature was seen when the spacecraft separation was suffi-
ciently large. A simulation was run to test the effects of small errors in the shock
normal, and showed that these errors could affect R, calculations at small separa-
tion. The radius of curvature was studied as a function of shock strength to look for
evidence of ripples on the shock surface, though no correlation was found.

Thesis Supervisor: Justin C. Kasper
Title: Research Scientist
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1. Introduction

Interplanetary space is filled by the solar wind, a supersonic plasma flowing from

the hot solar corona beyond the planets to approximately 100 AU. The speed of the

solar wind is variable, but typically V ~ 300-600 km/s (Parker, 1960). In addition to

the solar wind, occasional violent eruptions can occur on the Sun's surface, including

solar flares and coronal mass ejections (CMEs). CMEs are the sudden release of

1015 - 1016 g of plasma with a kinetic energy of 1031" ergs from the corona into

interplanetary space (Manchester et al., 2004a). The speeds of these expanding CMEs

can exceed 2000 km/s, leading to the generation of strong shockwaves as the ejecta

plows into the solar wind (Skoug et al., 2004). CMEs have strong magnetic fields

that result in high internal pressure, causing the CME to expand rapidly; at 1 AU, a

CME and the shock in front of it have both grown to be approximately 1 AU across

(see Figure 1 for a discussion). Previous work has shown an association between some

CMEs and interplanetary shocks and found that those CMEs have a similar shape

(Bravo and Nikiforova, 1994). Solar flares are one source of solar energetic particles

(SEPs), as are CME-driven collisionless shocks that accelerate particles (Reames,

1999). We are interested in studying the spatial structure of interplanetary shocks

because it is an important part of understanding CMEs and SEP acceleration. It

has also been shown that CMEs themselves produce geomagnetic disturbances upon

reaching Earth (Gosling, 1993), which provides motivation for their study.

By using observations of spacecraft at 1 AU near Earth, we can study interplane-

tary traveling shocks driven by CMEs. These interplanetary shocks are a unique op-

portunity to conduct in situ observations of shocks and accelerated particles (Reames,

1999). Solar wind data from spacecraft such as the Advanced Composition Explorer

(ACE) and Wind can be used to obtain shock parameters and determine the spatial

structure. ACE was launched on August 25, 1997 and is currently in orbit about the

Li point, 220 Earth radii upstream of Earth toward the Sun (Stone et al., 1998). It

provides real-time solar wind data including solar wind speed, density, proton tem-

perature, interplanetary magnetic field (IMF) direction and magnitude, and a range

of energetic particle intensities (Zwickl et al., 1999). Wind was launched in October
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1994 and collects similar solar wind data (Ogilvie et al., 1995). (See Figure 2 for a

discussion of Wind's trajectory over time.)

1.1 Previous work on shock spatial structure

Determining a shock's spatial structure requires information about the shock's

speed, V, and direction, il. These parameters can be calculated either by multi-

spacecraft timing methods or directly from the plasma data taken at individual space-

craft. The timing method uses shock data from four or more noncoplanar spacecraft

to calculate the shock's speed and direction under the assumption that the shock

is locally planar (Neugebauer and Giacalone, 2005). Alternatively, plasma data can

be used to solve the Rankine-Hugoniot relations, also giving the shock speed and

direction. These calculations are described in the Section 2.1 and in further detail in

Appendix A. Once fz and V, are known, other parameters such as mach numbers and

compression ratios follow.

Previous work has suggested that the timing method is less accurate than direct

calculation because of curvature or ripples on the shock surface. Szabo (2005) ex-

amined the August 10, 1998 shock, which was seen at five spacecraft: ACE, Wind,

IMP 8, Geotail, and Interball. That study found that the five sets of V, and h, calcu-

lated from the five combinations of selecting data from four spacecraft, did not have a

consistent solution. Using data calculated with the Rankine-Hugoniot method, Szabo

(2005) also claimed that there is a correlation between deviations in the shock normal

direction and the separation distance between two spacecraft [see Szabo (2005), fig.

2]. Also comparing data seen at mulitple spacecraft, Teresawa et al. (2005) found

that the observed difference in shock arrival times at Geotail and ACE did not agree

with the calculated shock velocity. In both cases, a proposed explanation for the lack

of a consistent solution is that the surface of the shock has curvature or is rippled.

Neugebauer and Giacalone (2005) analyzed 26 shocks seen by at least five space-

craft for evidence of curvature. Using both the timing method and direct calculations,

they concluded that the data were consistent with nonplanar shock surfaces and then

calculated the radius of curvature of the shock front. They used two methods of cal-

culating the radius of curvature: one using the shock normal at one spacecraft and the
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separation distance to another spacecraft [see Neugubauer and Giacalone (2005), fig.

6], and the other using shock normals and positions of two spacecraft [as described

in Lepping et al. (2003), i.e. fig. 2].

Numerical models of CME propagation by Manchester et al. (2004a, 2004b) and

Odstreil (1996) have produced shock fronts with concave-outward curvature. Figure

1 shows the results of some of these simulations and illustrates the three-dimensional

curvature of the shock surface (W. B. Manchester IV, pers. comm., 2006). The upper

part of the figure is a plot of temperature as a function of distance from the Sun. The

x-axis is the ecliptic plane and the y-axis is the sun's spin axis. The shock can be

seen at the transition to high temperature at - 2 50Re, and a circle with R ~ 50RO

shows the curvature of the shock surface out of the ecliptic plane, as produced by the

simulation. The lower panel is a 3-D plot showing regions with density 10 percent

higher than the typical value. We see the same curvature (dimple) as in the top panel,

and a curvature of approximately 1 AU in the ecliptic plane.
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Simulation of CME Propagation
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Figure 1. (Top panel) Temperature as a function of distance from the Sun.

The jump to high temperatures at ~ 250Re shows the location of the

shock, which we see has a curvature out of the ecliptic plane with

R ~ 50R 0 . (Bottom panel) A 3-D plot of regions of higher density,

indicating shocks. Again we see curvature out of the ecliptic plane.

(W. B. Manchester IV, pers. comm., 2006).
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1.2 Goals of this study

This thesis will expand on the above findings and examine the large-scale curvature

of shocks by calculating the radius of curvature, Rc, for shocks seen by ACE and

Wind. It will also look for evidence of 3-D curvature that would support the models

of Manchester et al. (2004a, 2004b) by separately examining curvature parallel and

perpendicular to the ecliptic plane. In this thesis, I analyze trends between R, and

the spacecraft separation distance. These trends can be used to infer both the large-

scale curvature and the presence of small-scale ripples on the shock surface. Section

2 describes the methods used to calculate R, using data from MIT's interplanetary

shock database. Calculated values of R, were plotted against spacecraft separation

and compression ratios, and these results are presented in section 3. Final thoughts

and discussion, as well as suggestions for future work can be found in section 4.
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2. Preparation of Interplanetary Shocks

2.1 Shock data from the Wind and ACE spacecraft

In order to analyze the shock surface, I calculated the radius of curvature of several

shock fronts and looked for correlations with other shock parameters. The radius of

curvature, Rc, is a measure of the curvature of the shock surface. It is calculated using

the vector normal to the shock surface, h, and position of two spacecraft observing the

shock. Each ft is extended backward until the two lines intersect, and R, is defined as

the distance between the intersection point and the spacecraft position. (See Figure

3 for an illustration.)

The first step in obtaining the radii of curvature was to pair up interplanetary

shock data from Wind and ACE and compile a list of shocks seen at both space-

craft. Plasma data was obtained from MIT's Interplanetary Shock Database1 , which

includes 148 fast-forward shocks seen by ACE between 1998 and 2002, and 240 fast-

forward shocks seen by Wind between 1995 and 2004. Of the 240 shocks seen by

Wind, 172 occurred between 1998 and 2002, the time period for which ACE data was

available. The shock parameters in MIT's shock database come from direct spacecraft

measurements and calculations as described in Szabo (1994). Szabo uses the mag-

netohydrodynamic conservation equations to calculate the shock speed and normal

from the plasma density, temperature, and velocity. See Appendix A for a description

of the analysis with the MHD conservation equations.

Figure 2 is a series of plots of the Wind spacecraft trajectories as a function of time.

This thesis will use data from the final period, when Wind used a series of gravitational

encounters with the Moon, at 60 RD, to send the spacecraft 300RD from the Earth.

Analysis of this new data, at a greater Ay, provides a deeper understanding of the

shock surface structure, as will be shown in this thesis.

'Available online at http://space.mit.edu/home/jck/shockdb/shockdb.htm
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Wind Spacecraft Trajectory

July, 1995 Through October, 1997 Through Au ust, 2000 Through
May, 1996 July, 1998 September, 2001

300 .... ..I. . . .I. . . I. . . ......... ........ . .

(a) (b) (C)
200

100-

-100

Orbital
Motion

-200
Towards
Sun

200 150 100 50 0 -50 200 150 100 50 0 -50 200 150 100 50 0 -50
X= [Re]

Figure 2. Wind spacecraft trajectories as a function of time. The red
dashed line represents the orbit of the Moon, and the solid blue line is
the trajectory of Wind, with the diamonds representing the final
location of the spacecraft for the given time period. The data used in
this thesis comes from the time interval shown in the far right section
of the figure. Data provided by the Satellite Situation Center of the
National Space Science Data Center (NSSDC).

2.2 Matching shocks at Wind and ACE

Each shock seen by Wind was matched to a shock seen by ACE by calculating

the difference in arrival times between the Wind shock and each of the 148 ACE

shocks. If the smallest difference in arrival time was less than 200 minutes, the shock

was considered to be the same shock that was seen at both spacecraft. Additionally,
events where the next smallest timing difference was less than 600 minutes were not

considered to ensure that the Wind/ACE shock pairing was unique and to avoid

consideration of interaction between two shocks. This process yielded 99 unique

shocks seen by both Wind and ACE, with an average difference in arrival times of 32

minutes.

After pairing shocks at Wind and ACE, radii of curvature in the xy, xz, and xy

planes2 were calculated for each shock. This was done using the shock normals h
21n GSE (Geocentric Solar Ecliptic) coordinates, with - pointed from the Earth to the Sun, Y
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and spacecraft position, similar to the method used in Lepping et al. (2003). The

shock normal directions and spacecraft positions provided two points from which to

form a line for each spacecraft, then I calculated the intersection point between the

two lines. Figure 3 illustrates how the positions of the two spacecraft in the xy plane

(simplified) and the shock normal ni were used to determine the radius of curvature.

Method Used to Calculate
Radius of Curvature

ACE

----- ' n ( , y)

Figure 3. Example of the orientation of Wind and ACE,

the shock normal ft, and the shock's calculated radius of

curvature R,.

The radius of curvature was then calculated (defined as the distance between the

intersection point and Wind's location), under the assumption [as in Lepping et al.

(2003), see fig. 2] that the separation between the two spacecraft in the direction

of shock propagation is much smaller than the radius of curvature. By making this

assumption, it did not matter which spacecraft position was used to infer the shock's

radius of curvature. In fact, R, was calculated using the distance from the intersection

point to each spacecraft individually, but it was determined that the difference in the

calculations was very small.

pointed away from the Earth's motion, and north out of the ecliptic plane.
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3. Results
Once the radii of curvature, RC, had been calculated, I looked for correlations with

other shock parameters, especially with those that would give insight into the shock's

surface structure. A correlation with spacecraft separation distance was of particular

interest to discern between the large-scale curvature of the shock and small surface

ripples. Hints of this were suggested by Szabo (2005), but we will look with more

data at larger separation distances.

3.1 Radius of curvature versus spacecraft separation

Figure 4 shows a plot of the shock's calculated radius of curvature versus the

separation between ACE and Wind. Asterisks represent shocks for which R, was

smaller than the spacecraft separation. These values are suspicious because our earlier

assumption that R, is much greater than the spacecraft separation distance is no

longer valid. There is a clear increase in R, with increasing spacecraft separation.

The calculated radii of curvature were found to be smallest at times when the distance

Ay between spacecraft in Q was less than 50 Earth radii (RD), and especially when

the radii of curvature was smaller than the spacecraft separation.

18



R, vs. Separation Distance

Radius in XY Plane vs. Y Separation

0.0

00

0.001 -

-400 -200 0 200

Space-craft separ-atfon (Re)

Figure 4. Plot of the radius of curvature vs. spacecraft separation
distance (in Rq) along the y-axis (using GSE coordinates). Radii of

curvature generally increase with increasing spacecraft separation

distance. Blue and red diamonds signify concave and convex shock
surfaces respectively, and black asterisks represent times when the

calculated radius of curvature is smaller than the spacecraft

separation.

The relation between the minimum R, values and small Ay is intriguing because the

shock is not aware of the spacecraft separation, and so we would not expect to see

any sort of correlation between R, and Ay. Therefore the downward spike we see at

small Ay in Figure 4 above must be produced by something in our data analysis.

We believe an error in determining h could produce the result seen at small Ay

in Figure 4. Because R, was determined using the shock normal fi, small errors can

affect the calculated R, value and the results discussed above. I created a simulation

to assess the effects of small errors and global curvature on the calculated R, values.

The free parameters of the simulation were a base R, and cr.. It then calculated

what ii should be at each spacecraft for Ay values between -400 and 200 R,@. Each

ft was then rotated by randomly-generated angles <D with a standard deviation crD,

and R, was recalculated using the new ft values and the given Ay. Because the

rotation was random, the simulation did not necessarily introduce the same error at

each spacecraft. The results of this simulation, with an initial R, = 0.1 AU and

I' < UD < 100*, are shown in Figure 5, which plots the simulated radius of curvature
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(recalculated after introducing the small errors in f) as a function of the spacecraft

separation.

The simulation produced a correlation between R, and y separation similar to

that in Figure 4. Again, the smallest values for the radius of curvature are found at

small spacecraft separations, usually less than 50RD. The simulated R, calculations

show similar trends to the actual shock data, suggesting that the general correlation

between R, and the spacecraft y separation could be the result of small errors in ft.

The effect on the shocks with "small" spacecraft separations appears to increase with

increasing values of a, as seen in the bottom panel of Figure 5. There, we see that

the "spike" of decreasing R, values corresponding to decreasing spacecraft separation

spreads with increasing errors. However, even with that widening effect, the general

shape of the simulated data still shows a correlation between R, and the spacecraft

y separation that closely resembles the available data. Figure 6 shows the simulation

results plotted with the spacecraft data, and we see that the data match the model

for values of o-, ~ 100. From the widening effect we see at the bottom of Figure

5, we can conclude that small errors in h have the greatest effect on R, when the

spacecraft are close together, and as a result, R, can only be accurately calculated

for sufficiently large Ay (> 50RD).

20



Simulation of R, vs. Spacecraft Separation
Radius vs. Y separation (Simulation)

++ ++ + ++ 0

+++ + + + +-

+ + + ' * ++ ++ +++4 + + ++ ++
+ + ++ + + + +

++++ + ++ + + ++ + + + +4 : ~+ +4 #j4:7 +++j ++ ++

4+ :F + '. + + + , .+ + + 4 ++ 44j!- ++44W

4+* -AM++

++
I I ,,,,,,, I,..

-400 -300 -200 -100 0
Spacecraft separation (Re)

Radius vs. Y separation (Simulation)

100 200

-400 -300 -200 -100 0
Spacecraft separation (Re)

Figure 5. Simulated radii of curvature vs. spacecraft separation. Setting

Rc = 0.1 AU and a range of separation values, f was calculated and random

errors were introduced. This plot shows the recalculated Rc values
(found using the new shock normal). The top is a scatter plot of the

simulation results using oD = 10'. The bottom plot shows the

simulation results for og = 10 (blue), 5* (green) and 10* (red). The
similarities between this figure and Figure 4 suggest that the relation

between minimum R, values and small Ay could be the result

of small errors in ft.
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Simulation Results and Spacecraft Data

1.000

0.100

0.0 10

0.00 1

Radius in XY Plane vs. Y Separation

-

-400 200-200 0
Spacecraft separation (Re)

Figure 6. Simulated Rc values plotted with the values calculated from

ACE and Wind data. The simulation results are plotted in color for

a-p = 5* (blue), 10* (green), and 150 (red). The black asterisks are an

average of the Rc values calculated using ACE and Wind data. The

simulations with errors between 5' and 100 appear to best fit the data.
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3.1.1 Analysis of 3-D structure

I also plotted the calculated radius of curvature in the xz plane versus the space-

craft z separation in to look for three-dimensional curvature. These plots, shown in

Figure 7, did not exhibit the same correlation as seen in Figures 4 and 5.

Rc in the xz plane vs. Az

Radius in XZ Plane vs. Z Separation
1.000

00

0.100 0
0 0 0

00 00

.0

o 0

0 0 10 0 100
D 0 0 0 0

0
.00 00 0 00 :P 0 0

00
0 0 0 0

0 0 0 0 0

-20 -10 0 10 20
Spacecraft separation (Re)

Figure 7. Plot of the radius of curvature in the xz plane vs. spacecraft

z separation distance (in Re). There is no obvious correlation

between R, and z separation, as was seen in Figure 4.

Simulations by Manchester et al. (2004a, 2004b) and Odstreil (1996) have predicted

shock surfaces with 3-D curvature. As a result, we would expect to see a correlation

between Rc and the spacecraft z separationsimilar to what was shown in Figure 4,

which would represent curvature in both the xy and xz planes. The data used in this

study, as shown in Figure 7, do not show evidence of 3-D curvature in the xz plane.

However, these data only include small z separation ( 30Re), which is probably

too small to discern large-scale curvature in the xz plane. In fact, the smallest y

separations (< 50Re) produced the smallest values for Rc in the xy plane. These

small values were not representative of the large-scale curvature, which was seen at

higher separation, where the calculated R, - 0.1 AU. This further highlights the

value of looking at R parallel and perpendicular to the ecliptic plane separately.
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3.2 Discerning ripples from n error

The results of the simulation described above suggest that aD is responsible for

the dip in R, values we see at small spacecraft separation. However, the source of

that r-D remains to be determined. It could be the product of small errors in n, as in

the simulation, or the result of ripples on the shock surface. These ripples represent

the small-scale structure of the shock surface and could affect the calculation of R.

Previous work has shown that these surface ripples could be a function of the shock

strength (Neugebauer and Giacalone, 2005). Therefore, a correlation between shock

strength and Rc, particularly at small Ay, could be evidence of surface ripples.

Figures 8 through 11 on the following four pages show R, in the xy plane as

a function of the compression ratio and fast Mach number for varying ranges of

spacecraft separation. Both the compression ratio and the fast Mach number can

be used as indicators of shock strength. Of particular interest are the bottom of

Figures 8 and 10, which show R, versus the compression ratio and fast Mach number,

respectively, for Ay < 50R®. If small-scale surface structure such as ripples are

responsible for the behavior of R, at small Ay, we would expect to see a correlation

between R, and shock strength at these Ay values. However, we do not observe any

such correlation in the bottom of Figures 8 or 10. Additionally, none of the other

graphs in Figures 8 through 11 shows any significant trends in R, as a function of

compression ratio or fast Mach number. Therefore we cannot conclusively ascertain

the source of the oa errors.
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R, vs. Compression Ratio
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Figure 8. Radius of curvature vs. compresison ratio. The top plot

includes times when the spacecraft separation was smaller than R0,

and the bottom plot includes shocks with Ay < 50Re.
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R, vs. Compression Ratio
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Figure 9. Radius of curvature vs. compression ratio. The top plot

includes shocks where 50Re Ay:5 150Re, while the bottom plot

includes shocks with Ay ;> 150R,pus.

26

< 0.

0
010



R, vs. Fast Mach Number

1 .00

0

01

0.001

1.0OC

0.100

0.010

a

. 1
0.00 1

Rc < Spacecraft Separation

0 0
'0

0 ---

0 ' ' --

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Fast Mach Number

ISeparationi < 50 Re

0

'0'

'0 0 00 '0
'0 ~ 0 '00

'0 '0

'0
0

'0
'0

1.0 1.5 2.0 2.5 3.0
Fast Mach Number

3.5 4.0

Figure 10. Radius of curvature vs. fast Mach number. The top plot

includes times when the spacecraft separation was smaller than Rc,

and the bottom plot includes shocks with Ay < 50Re.
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R, vs. Fast Mach Number
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Figure 11. Radius of curvature vs. fast Mach number. The top plot

includes shocks where 50Re ; Ay:< 150Re, while the bottom plot

includes shocks with Ay ;> 150Re.
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4. Conclusions
This thesis has shown that two spacecraft can be used to determine the large-

scale surface structure of interplanetary shocks provided that the distance between

the spacecraft is sufficiently large (Ay > 50RG). I have plotted R, versus spacecraft

separation in the xy and xz planes and examined the large-scale structure of the

shock in the xy plane. It was shown that the separation Az was not large enough to

sufficiently analyze the shock surface structure in the xz plane. In the xy plane, how-

ever, R, calculations at large Ay showed a curved shock surface that was consistent

with the results of previous work.

The simulations created for this thesis show that small errors in ii which are intro-

duced in the analysis of the shock data can affect the inferred shock surface structure.

The simulation also shows qualitatively how these fi errors affect R, calculations, and

that they have a larger effect at small spacecraft separations. I also examined R, as

a function of compression and fast Mach number but found no correlation between

surface structure and shock strength. Future work will hopefully provide more con-

clusive evidence to the presence of small surface ripples, which could also affect R,

calculations, especially at small separation.
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Appendix A

Derivation of Rankine-Hugoniot

Relations

In this appendix I have reproduced a derivation of the Rankine-Hugoniot relations,

as provided by my thesis supervisor Justin Kasper.

First we assume that single fluid MHD is a valid way to describe the discontinuity

and we can neglect the details of how protons and ions (and possibly minor ions)

individually respond to the shock. If additionally the fluid is isotropic then the MHD

equations written in a conservative form are,

at = -V-pU

Momentum balance

(A.1)

(A.2)

8W 1pU2 +/ +1B2) _U -B _- x

at 2 Y - 1 po A A0 I

t= x (U X B - rj) Faraday + Ohm

Energy (A.3)

(A.4)
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0 =- Maxwell (A.5)

where U is the bulk velocity, p is the isotropic pressure, B is the magnetic field, p is

the mass density, q is the resistivity, and under the assumption that the plasma is an

ideal gas with -y _ C,/C , the total energy W is given by, W - jpU 2 + P + 1 -B 2

Now assume that the shock is in a steady state such that none of these quantities

are changing with time (in the frame of the shock),

0 =- -pU (A.6)

V=i pUU+ p+B2I- B (A.7)
2po Po

O=-V - -p2 + B U B -JxB (A.8)
2 7-1 Po Po IyO

O=Vx(UxB-p) (A.9)

0 = V .B. (A.10)

Now we neglect the precise action at the shock and consider only the asymp-

totic values of the plasma parameters. In addition, assume that the shock is a one-

dimensional, planar structure, and use the equations of ideal MHD, i.e. electric fields

are due solely to -U x B (and not e.g. electron pressure gradients) and that 7 = 0

(perfect conductor).

We are left the the Rankine-Hugoniot conditions for an ideal, isotropic, single

fluid, perfectly conducting MHD discontinuity,

0 = n - [pU] (A.11)
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0 = ii- [p_] + + - . [BB] (A.12)

0= 1u2 + ! + B 2 p0]- [(I n)B] (A.13)
PC2 ( -1) pop [o

0 = x [U x B] (A.14)

0 = h - [B], (A.15)

where the square brackets [ denote the difference between the upstream u and

downstream d asymptotic values of each of the variables. It can be shown that the

shock-normal may be solved for independently of other shock parameters. The com-

plete set of conservation equations over-constrains the shock-normal, so a preferred

method is to discard the energy balance equation. This is optimal because the energy

equation contains the most approximations about the solar wind plasma. We use a

method which takes advantage of this reduced set of equations to solve directly for the

shock normal (Vifias and Scudder, 1986). We label this reduced Rankine-Hugoniot

method RHi. A version of the analysis which included the energy balance equation

and is useful for eliminating extraneous solution was developed by Szabo (1994) and

we label the full Rankine-Hugoniot method RH2. In both of these methods one solves

for the 11 variables 6, #, Vs, Gn, Bn, St, Et, Pu, Pd, where 0 is the elevation angle of the

shock normal (increasing northwards), q is the azimuthal angle of the normal in the

ecliptic plane (zero along = -gse and increasing towards = ygse), V, is the speed of the

shock, Gn is the normal mass flux, Bn is the normal component of B, St is the tan-

gential stress, Et is the transverse component of E, and pu and Pd are the upstream

and downstream mass densities.

Determination of Shock Normals
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Rankine Methods (RH1, RH2)

An advantage of the Viias and Scudder and Szabo methods is that the shock normal

(0, #) is determined separately and then the other free parameters such as the shock

speed V are calculated. Upstream and downstream intervals of data are selected.

Every combination of upstream and downstream pairs are combined to produce a list

of measurement vectors ' = (Uui, Was, pui, Ud, Wdi, Pd). For each pair i we evaluate

the vector C(Yi, 0, #) of conservation equations, each component of which should

vanish. The correct shock front normal is the direction which produces the minimum

value of x2, where

L( 4) = RH1,RH2 (A.16)
C7 2

and di is the vector of uncertainties of each of the calculated values of C. Note

that since the non-linear fit to the Wind/SWE Faraday Cup ion spectra produces

both best-fit parameters and their uncertainties, we can directly propagate them to

determine the 9-, resulting in the first real determination of x 2 with the Rankine-

Hugoniot shock normal technique.

Magnetic Coplanarity (MC)

Using the static version of Faraday's law,

V x.E = (A.17)
at'

and the "frozen-in" or ideal Ohm's law,

E=-U x B, (A.18)

we arrive at a single constraint on the shock normal [UnBt - BnUt] = 0 which is only

a function of the magnetic field. This magnetic coplanarity relation may be expressed

as, [Colburn and Sonett, 19661,
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AB x (Bd x Bu)
MC B- - _ , MC (A.19)

JAB x (Bd x B,,)J

Velocity Coplanarity (VC)

For perpendicular or parallel shocks, or oblique shocks with high mass flux, the contri-

bution of the magnetic field to the transverse momentum Rankine-Hugoniot relation

may be neglected and the normal may be approximated with just the velocity mea-

surements,

Od - OufvC = + - ),d , VC (A.20)
|Ud - Uu|

Mixed Methods (MX1,MX2,MX3)

Several "mixed method" approximations to the Rankine-Hugoniot equations were

developed by Abraham-Schrauner (1972) which use combinations of particle and field

measurements.

AB x (B, - , MX1 (A.21)
|AB x (Bu x AU)I

Mx2 A (Bd xAU) MX2 (A.22)
JAB x (Bd x AU)I

AB x(AB x AU)
hMx3 = MX3 (A.23)

AB x (AB x AU)I
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