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Revenue Management in Last-Mile Delivery:

State-of-the-Art and Future Research Directions

Andre Snoeck, Daniel Merchan, Matthias Winkenbach

MIT Center for Transportation and Logistics. 1 Amherst Street, Building E90-9,
Cambridge, MA 02142, USA

Abstract

This paper explores future avenues of research for revenue management in
last-mile delivery. First, we review earlier efforts in this field, which have
focused primarily on the problem of attended home deliveries (AHD) of gro-
ceries. Second, based on a topological classification of last-mile delivery
characteristics, we identify relevant extensions inspired in current industry
trends. Finally, we outline how existing models should be extended for these
new problems and discuss promising streams of future research.

Keywords: Revenue management, Last-mile delivery, dynamic pricing,
urban logistics

1. Introduction

Internet retailing (e-retailing) has become an essential part of customer
shopping behavior over the past 15 years. Incumbents such as Amazon in
the USA, and Lojas Americanas (through the acquisition of B2W Digital)
in Brazil are trying to adapt their business model to compete with new en-
trants such as Jet.com, CNova and Flipkart (India). Although home delivery
is convenient for the customer, the last-mile of delivery service poses signif-
icant logistical challenges for companies. Marketing, operational and urban
context considerations add layers of complexity to an inherently difficult
planning and routing problem.

Email addresses: asnoeck@mit.edu (Andre Snoeck), dmerchan@mit.edu (Daniel
Merchan), mwinkenb@mit.edu (Matthias Winkenbach)
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Nevertheless, new opportunities arise to design profitable last-mile deliv-
ery strategies [2]. In particular, companies can influence customer behavior
by choosing the lead-times or time-slots that are offered (capacity controls)
and as well as their associated fees (pricing controls). These decisions ulti-
mately seek to balance the capacity utilization and increase the profitability
of the delivery operation. Not surprisingly, revenue management (RM) for
last-mile delivery (LMD) receives increasing attention in both literature and
industry. However, to the best of our knowledge, the available literature on
last-mile delivery revenue management (LMD-RM) strategies focuses on only
one subsection of deliveries: the attended home delivery (AHD) of groceries.

Recent industry trends unveil potential research extensions and new prob-
lems in this field. For instance, e-grocers such as Amazon now offer unat-
tended grocery deliveries. Moreover, in contrast with grocery delivery options
that are defined on a time-slot basis, delivery options and prices for dry-goods
are usually defined on a lead-time basis (e.g. same-day, or 2-day). As e-
retailers continue to offer shorter lead-times, the associated pricing, capacity
and inventory management decisions could benefit from a revenue manage-
ment framework. Similarly, several e-retailers now offer order pick-ups at
designated locations. These options that significantly impact delivery capac-
ity, cost and customer choices. Furthermore, the expansion of crowd-sourced
delivery services provides e-retailers an alternative to increase delivery ca-
pacity on-demand.

In this paper, we aim to explore opportunities to extend the scope of
LMD-RM. After a survey of the existing body of literature, our first contri-
bution, building on the work of Winkenbach and Janjevic [16], is to provide
a topology of last-mile delivery characteristics that influence capacity and
pricing decisions. In particular, we elaborate on extensions to LMD-RM
driven by product exchange location, customer service, distribution and or-
der preparation. The suggested extension of scope also requires an extension
of methods. The second contribution of this paper is to assess the strengths
and limitations of the existing literature in light of the extended scope, out-
line modeling extensions, and suggest promising avenues of future research.

The rest of the paper is structured as follows. In Section 2, we provide an
overview of the currently available literature. Next, we focus our attention on
a subset of the most recent contributions. Our discussion of model extensions
in section 4 builds on these state-of-the-art papers.
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2. Literature Review

In this section, we first discuss the fundamentals of RM and compare how
its application differs from traditional RM problems in the airline industry.
Next, we present a survey the literature in RM-LMD.

2.1. Revenue Management

RM refers to the set of strategies and tactics that companies can use to
scientifically manage demand for their products and services [15]. Its ori-
gin can be found in the airline industry following the Airline Deregulation
Act of 1978. American Airlines tried to compete with low-cost airlines to
retain leisure travelers without losing the higher margins on their less price
sensitive business customers. They started offering different categories of
tickets, where discounts came with purchase restrictions. Furthermore, they
dynamically controlled the capacity of tickets sold for the different categories,
to make sure that the low margin customers would not cannibalize on the
highly profitable business customers. In other words, American Airlines ap-
plied price controls and quantity controls to manage demand and match it
with the available supply. van Ryzin and Talluri [15] provide a comprehensive
overview of classical methods and problems in RM.

Agatz et al. [3] compare airline revenue management with e-retailing. The
main conditions for revenue management hold for e-retailing. The retailer
faces a heterogeneous market with limited short-term flexibility regarding
capacity. Furthermore, it is able to change prices and product availability
to specific customers easily. However, the authors note two significant dif-
ferences compared to traditional revenue management. First, e-retailers sell
both a physical product and a delivery service. This is important when mak-
ing decisions regarding order acceptance. High profit product orders should
get priority and product with different sizes influence the capacity of the de-
livery service differently. Second, the location of a customer, as well as the
locations of other customers in the same delivery route, influences the cost of
delivery [5]. This is different in, for example, an airplane, where the opera-
tional cost are fixed before orders start flowing in and independent of exactly
which customer buys. Consequentially, demand management in e-retailing
refers to profit management rather than revenue management [3].

Third, the data acquired to calibrate customer choice models for last-mile
delivery is generally of high quality. If customers purchase certain products
online, it is only at the end of their visit that they are directed to the page
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where they choose a delivery option. This means that they already com-
mitted to buy. If they don’t buy, it is highly likely that this is caused by
the price or availability of the available delivery options. This is different
in, for example, the case of airlines, where customers often check multiple
prices at different websites before returning to the flight of their preference.
So many customers that look at a flight, but do not buy it, might just be
in this exploration step, without actual commitment to buy. This leads to
noise in the data that is almost non-existent in last-mile delivery.

2.2. Current literature in LMD-RM

The available literature that studies the AHD problem, which spans
nearly 12 years, can be split according to four criteria: control policy, deci-
sion time-frame, routing model and customer choice model (Table 1). We
note that all case studies relate to grocery deliveries in the European market

4



Table 1: Overview of LMD Revenue Management Literature

Control Time-frame Routing
Campbell and Savelsbergh [5] Quantity Dynamic VRP Heuristics
Campbell and Savelsbergh [6] Price Dynamic VRP Heuristics
Asdemir et al. [4] Price Dynamic -
Agatz et al. [1] Quantity Static Continuous approximation
Hernandez et al. [11] Quantity Static VRP Heuristics
Ehmke and Campbell [9] Quantity Dynamic VRP Heuristics
Cleophas and Ehmke [7] Quantity Dynamic VRP Heuristics
Klein et al. [13] Price Static Seed-based approximation
Yang et al. [18] Price Dynamic VRP Heuristics
Klein et al. [12] Price Dynamic Seed-based approximation
Yang and Strauss [17] Price Dynamic Continuous approximation

Customer choice Case study
Campbell and Savelsbergh [5] Exogenous probability -
Campbell and Savelsbergh [6] Exogenous probability -
Asdemir et al. [4] Multinomial logit -
Agatz et al. [1] Take whatever available Albert.nl, Nijmegen
Hernandez et al. [11] Exogenous probability -
Ehmke and Campbell [9] Exogenous probability Stuttgart
Cleophas and Ehmke [7] Exogenous probability Stuttgart
Klein et al. [13] Non-parametric rank-based -
Yang et al. [18] Multinomial logit UK grocer, London
Klein et al. [12] Multinomial logit -
Yang and Strauss [17] Multinomial logit UK grocer, London
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Control policy and time-frame have been the two primary criteria to frame
AHD problems in the literature. First, price controls entail the definitions of
price points for a given time-slot, whereas quantity controls determine which
time-slots to offer to a given set of customers. Second, static decisions are
of a tactical nature and do not depend on online data, whereas dynamic
decisions are of an operational nature and based on online data. We outline
the state-of-the-art literature in greater detail below.

Agatz et al. [1] explore the tactical problem of defining time-slot schedule
to be offered in a given zip-code, considering its demand potential, service
requirements (i.e. time-slot options) and delivery efficiency, in the context of
grocery delivery operations. They obtain a cost-optimal schedule for each zip-
code, using routing cost approximations and efficient improvement heuristics.
Their results indicate savings of up to 10% in delivery costs due to this
regional differentiation in delivery time slots. Similarly, they note an increase
of up to 25 % in delivery costs as a result of narrower time-slots. Klein et al.
[13] extend this problem to account for differentiated pricing for each time-
slot offering. They model customer preferences using a non-parametric rank
model, which is instrumental to anticipate future operational routing costs,
as a result of demand responses to different prices.

Yang et al. [18] develop a dynamic slot pricing policy to manage demand
over a finite booking horizon prior to the actual delivery, i.e. all demand is
booked when delivery starts. Customers select a (one hour) time slot and
this can be influenced by pricing. Their policy relies on a a stochastic dy-
namic program, which currently serves as the de facto standard for dynamic
pricing problems and we will introduce this model in greater detail in section
4. Klein et al. [12] build on this model by improving the approximation of
the opportunity cost. Simultaneously, Yang and Strauss [17] build on this
standard framework by focusing on finding a methodology that is suitable
for industry scale optimization. Our work adds to this by suggesting oppor-
tunities to adapt this framework to allow for different operational last-mile
delivery networks.

Building on the two criteria, previous works classify AHD problems based
in four categories: differentiate slotting, differentiated pricing, dynamic slot-
ting and dynamic pricing (See Table 2) [3, 18, 13].

The goal in differentiated slotting is to find which time windows to offer
in which delivery area. For example, the Dutch grocery store AH.nl only
makes certain time slots available to suburban towns, while typically every
time-slot is available in city centers. Differentiated pricing aims to find the
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Table 2: Classification of revenue management in AHD [3, 18, 13]

Time slot allocation Time slot pricing
Static (off-line) Differentiated slotting Differentiated pricing

[1], [11] [13]
Dynamic (online) Dynamic slotting Dynamic Pricing

[5], [7], [9] [6], [4], [18], [12], [17]

optimal static price selection for each delivery time slot for each delivery area.
Event though differentiated pricing might result in additional revenues, its
main goal is to influence customer choices to balance delivery capacity and
reduce delivery costs [13].

Dynamic decisions are made while an order is placed and are based on
the opportunity cost associated to the order. Dynamic slotting entails that
with every incoming request, a decision is made either to accept the order
or to reject it and save capacity for a more profitable order in the future.
This means that, in practice, the offered time slots could be different for
two customers ordering different products in the same neighborhood. Lastly,
dynamic pricing evaluates the price offered for each time-slot for a particular
order.

A second major categorization of literature in the field of AHD entails
the inclusion of routing cost. This aspect is particularly defining for rev-
enue management in (last-mile) logistics operations. Two major approaches
can be distinguished (see Table 1). Most papers include explicit routing
decisions into their models, following the seminal paper of Campbell and
Savelsbergh [5] [6, 11, 9, 7, 18]. Nonetheless, given the complexity of vehicle
routing problems with time-windows (VRPTW), most researchers build on
heuristics rather than exact methodologies to build routes. In [1] and [17],
authors use routing cost approximations building on the work of Daganzo
[8]. Alternatively, Klein et al. [12] and Klein et al. [13], build on seed-based
approximations first introduced by Fisher and Jaikumar [10].

We also observe an evolution in the approaches to model customer behav-
ior: while earlier (and some more recent) works use simple probabilistic mod-
els [5, 6, 7, 9, 11]; latest works leverage more advanced techniques, namely
multinomial logit or non-parametric rank-based models [4, 12, 13, 17, 18].
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3. A Topology of Last-Mile Delivery Models

As discussed in section 2, most research on LMD-RM has focused on ADH
in the context of online grocery services. Nevertheless, over the past decade,
new delivery models have emerged driven by raising customer expectations
in service quality, speed and product availability, and by overall new mar-
ket opportunities for online retailers and last-mile delivery service providers.
These delivery models have been tailored to serve different product segment
and services needs. For instance, Amazon operates different delivery models
for its grocery business (Amazon Fresh) and its dry-goods retail business,
with specific pricing strategies for each model.

In this section, we build on a topology of variables that define delivery
models, to present extensions to the AHD problem. Our discussion is sup-
ported by examples from logistics practice. In section 4 we explore how
analytical frameworks in RM should be extended to model these extensions.

3.1. Topological characterization of LMD models

Winkenbach and Janjevic [16] introduce a classification of LMD models
in e-retail based upon five key variables: order lead time, place of order
preparation, distribution, intermediary transshipment and product exchange
point. We build on this classification to explore extensions to the classical
AHD problem used in existing literature in LMD-RM (see Table 3).

Table 3: A topological analysis of AHD and extensions (adapted from [16])

Variables Assumptions in AHD Relevant Extensions
Product exchange Home or office Designated pickup locations

Attended delivery Unattended Delivery
Customer service Time-slot driven choice Lead-time driven choice
Distribution Homogeneous fleet Heterogeneous fleet

Fixed short-term capacity Crowd-sourced capacity
Order preparation Unrestricted product availability Inventory delays

3.1.1. Product exchange

Regardless of the product type, delivery models have usually operated
under a home-delivery paradigm. Nevertheless, over the past few years, des-
ignated pick-up locations have emerged as an alternative that offers conve-
nience to both e-retailers and consumers. This delivery option entails spec-
ified locations where customers can pick up the goods. Examples include
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Walmart’s and B2W’s in-store pickups, and the Amazon lockers. Overall,
designated pick-up locations increase the efficiency of the delivery tour by
consolidating multiple orders in a single stop. For customers, designated
pick-up locations provide more service flexibility but requires them to travel
to the designated locations.

A pick-up service has important capacity and pricing implications. Since
it frees up delivery capacity and/or increases routing efficiency at the expense
of customer travel, proper incentives need to be defined, usually in the form
of price discounts. At the tactical (static) level, retailers might need to deter-
mine the type and location of pick-up services. At the dynamic, operational
(dynamic) level, retailers would need to define price levels based on available
capacity and order forecasts. As customer segments might have different
preferences for different pick-up services, choice models will also need to be
extended.

Paradigms on product exchange modes, i.e. attended or unattended,
have also changed. e-Grocers have traditionally operated attended deliveries,
while dry-goods delivery services have been usually unattended; a division
that has influenced past research efforts. Nevertheless, industry practice pro-
vides many counter-examples. For instance, Amazon now offers unattended
grocery deliveries, while B2W operates an attended service for its dry-goods
due to safety concerns. Future LMD-RM research should consider the variety
of (interrelated) factors that influence the choice of product exchange mode

3.1.2. Customer service

Grocery deliveries generally operate under daily time-slots, which need
not to be fixed in duration and may overlap. For instance, Walmart offers
two-hour overlapping time-slots respectively, whereas Peapod offers time-
slots ranging from two to six hours. The delivery lead-time (i.e. the number
of days from purchase to delivery) ranges from one day to several weeks.
Generally, time-slots drive the pricing decision. On the other hand, dry-goods
usually operate under a delivery lead-time logic, with differentiated pricing.
For instance, B2W offers three delivery lead-time options at different price
levels: same-day, up-to three days and up-to five days.

While the allocation and pricing of time-slots has been well studied in
the literature, lead-time driven problems have received scant attention. Cer-
tainly, time-slot decisions constitute richer problems for analysis, given their
strong implications for route planning and executions. Nevertheless, as de-
livery lead-times become shorter (e.g. 2-hours, 4-hours or, more generally,
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same-day delivery), the impact of related pricing and capacity decisions will
have a greater effect on the overall efficiency of the last-mile operation.

3.1.3. Distribution

Fleet ownership options range from fully-owned to fully outsourced, al-
though hybrid approaches are commonly observed in practice. For instance,
Amazon delivers through both, third-party service provide such as UPS and
through its own vehicle fleet. More recently, crowd-sourced models have
emerged. Two examples include Instacart and Walmart’s pilots for LMD
using ride-sharing services such as Uber and Lyft. The ownership of the fleet
has important capacity and cost implications.

Current models assume that a fixed fleet with fixed capacity is available
and that the cost associated to owning this fleet is sunk. However, the
opportunity to use ride-sharing services relaxes this assumption. This has
important implications for the computation of opportunity cost in dynamic
pricing models. Since capacity is not fixed, a grocer might want to use more
of its own fixed capacity, even when it is expecting higher value customers
later on.

3.1.4. Order preparation - inventory delays

e-Retailers are increasingly competing in terms of speed of service to the
customer. Companies design their inventory network to provide this service
by having inventory of most fast-moving products close to big customer hubs
(e.g. Amazon has a warehouse for these fast-movers in Boston) while the
slow-movers are stored in large warehouses in areas with lower cost. However,
while an order can consist of a combination of slow- and fast-movers, the
lead-time for the total order is equal to the maximum lead-time of any of
the products. This is unsatisfactory to some customers, who might decide
to drop the order completely and to buy the product at a competitor. To
ensure maximal customer service and avoid lost product sales, a company
can offer to ship both products separately. Amazon is one of the companies
providing this service.

The main decision to make while splitting an order in multiple deliveries
is related to the rules of splitting the order. From a marketing and com-
munication perspective, it does not seem to be ideal to offer an individual
delivery option and associated fee for, for example, five products and their
combinations. However, it is reasonable to assume two categories of products,
slow-movers and fast-movers.
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4. Model extensions and new problems

In this section, we discuss extensions to existing research contributions
and new research avenues in the broader LDM context. We divide this dis-
cussion in two major parts. First, we review extensions to the existing body
of literature in AHD of groceries. For instance, current contributions gener-
ally assume a homogeneous vehicle fleets with fixed capacity (owned fleet)
(e.g. [13], [12]). Thus, we explore how models should be extended to account
for fleet heterogeneity and flexible capacity. Second, we define new problems
and discuss potential modeling approaches. For example, we introduce the
problem of differentiated lead-time pricing for UHD .

We concentrate our discussion in dynamic models. Certainly, interesting
extensions can also be introduced for static problems. Nonetheless, dynamics
models offer a much richer set of modeling extensions from a revenue man-
agement standpoint. Furthermore, the static problems discussed in section
2 can be framed as extensions of more general logistics network design prob-
lems. Thus, in the remainder of this paper we focus on dynamic decisions
and leave static problems for future work.

4.1. Dynamic model and extensions

We believe an understanding of the de-facto framework for dynamic pric-
ing in last-mile delivery operations is paramount for understanding possible
extensions, even though we do not aim to extend the model in this paper. The
stochastic dynamic framework developed by Yang et al. [18] and extended
by Yang and Strauss [17] and Klein et al. [12] is presented in Equation 1.

Vt(x) = max
g
{λt

∑
s∈S(x)

Ps,S(x)(g)[r + gs + Vt+1(x+1s)]

+ [1− λt
∑

s∈S(x)

Ps,S(x)(g)]Vt+1(x)}
(1)

with the boundary conditions

VT+1(x) = −C(x),∀x ∈ X (2)

Where
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x = Vector of accepted orders for time slot s

X = all x that denote feasible delivery schedule,

C(x) = Minimum delivery cost at time T given x,

Ps,S(x)(g) = Probability that a customer chooses delivery slot s ∈ S(a) if

it is offered prices g,

S(x) = Available time slots given x,

g = Price vector offered to a customer for time slot s,

λt = Probability of an order arrival in period t,

r = Revenue of an order before distribution.

The model aims to find the profit optimal price vector g to offer to a
particular customer that arrives in period t. We assume that the periods
are small enough, so that maximum one customer arrives with probability
λt. Customer preferences are captured by defining probabilities Ps,S(x)(g),
based on a multinomial logit model. For a more in depth introduction of this
model we refer to Yang et al. [18]. We can see that the revenue we gain if
the customer choses a delivery window captures both the price charged for
that particular time-slot, gs, as well as the revenue of the order, r. If the
customer decides to buy, we update our state-space x, which captures all the
currently excepted orders. Naturally, after the cut-off time T , the remaining
value is just the cost of delivering all accepted orders.

The price vector that maximizes Vt(x) in Equation 1 is given by

g∗ = arg max
g

∑
s∈S(x)

Ps,S(x)(g)[r + gs − (Vt+1(x)− Vt+1(x+1s)Oxts], (3)

with

Oxts = Vt+1(x)− Vt+1(x+1s) (4)

being the opportunity cost of a customer request for time-slot s in period
t. Klein et al. [13] argue that Oxts cannot be determined exactly given the
large state-space. Furthermore, for an exact definition of the opportunity
cost, we would need to solve the VRPTW problem, which is known to be
NP-complete [14]. Therefore, an approximation of Ṽt+1(x) is required to
approximate Õxts. The approaches of Yang et al. [18], Yang and Strauss [17]
and Klein et al. [12] differ, as can be seen in Table 1.
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4.2. Distribution - Flexible crowd sourced fleet

Relaxing the assumption of an homogeneous fixed fleet does not influence
the formulation the dynamic pricing framework of Equation (1). Decision
variables g still need to be found for every time slot. However, the option
to flexibly operate crowd-sourced capacity affects the approximation of Oxts

in two ways. First, if a prospective order is located in isolated areas it
might be cheaper to send an on-demand vehicle towards that order instead
of requiring one of our delivery trucks to make a large detour. This situation
will lead to a decrease in Ṽt(x) and we are able to charge a lower delivery fee
and increase the probability that the order will be placed, leading to higher
profits. Second, we don’t run out of capacity since we always have the option
to use the on-demand service. Consequently, the opportunity cost associated
to accepting a current order and thereby losing a potential big future order
decrease. Both components drive an increase in Ṽt(x) and a decrease in some
of the components of g.

4.3. Product exchange - Pick-up

Currently, most Internet retailing websites provide the option to choose
between delivery and pick-up before time-window specific prices are shown.
This means that when customers make the decision to go for delivery, they are
not aware of the pick-up prices and therefore are highly unlikely to revert their
decision. From a company perspective, it might be worthwhile to influence
customers to go for a pick-up option using discounts, if this significantly
reduces the cost of accepting the order.

The main challenge of including pick-ups lies at the tactical planning level,
including integrating determining the location of the pick-up locations. The
influence on the dynamic pricing framework is less invasive, but it requires a
slight adaption of the framework, as well as an extension to the approximation
of Ṽt(x) and the customer choice model.

Currently g includes a delivery charge for each time slot. This should be
extended by providing delivery charges for pick-up options. In the original
framework, g captured a price for each time slot s, but in the situation with
pick-ups it should also provide a price for every pick-up time slot p. Note that
these time-windows do not have to be the same. In practice, time-windows
on pick-ups are wider (in the range of one or more days) than for delivery
(in the range of hours). The pick-up option also has to be included in the
calculation of the opportunity cost. Similar to flexible crowd-sourced fleets,
we always have an option to accept customer orders. This is a bit more
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restrictive, since customers should be willing to go for a pick-up. Similarly,
we might be able to convince customers that are located at inconvenient
delivery locations to choose for pick-up, customers that otherwise would have
been lost. Both factors drive an increase in Ṽt(x). Naturally, if no customer
chooses pick-up, we remain with similar values as in the original problem.
Lastly, a major practical contribution is required in updating the customer
choice model with the appropriate utilities for pick-up. Currently, this is not
captured by existing contributions.

4.4. Order reparation - Inventory delays

Building on the discussion in section 3 about thee implications of fast-
and slow-moving inventory for demand management, if an order consists of
all slow-movers or fast-movers, no changes are required in the dynamic pric-
ing model. However, for a mixed order, we see changes in the framework,
the computation of the opportunity cost and the calibration of the customer
choice model. For a mixed order, we should define two different sets of avail-
able time windows S(x). The set of available time-windows for the combined
order as well as for the slow-movers separately will be smaller than the set
for the fast-movers, i.e. the latter includes time-window options that are
closer to the order time since the lead-time is lower. At the same time, we
also need to extend g. It should provide a delivery charge for ordering all
orders together for the available time-windows and it should provide a price
for letting fast-movers and slow-movers being delivered separately.

However, the impact on the computation of the opportunity cost is minor.
The structure of the model does not have to change, but we need to compute
the cost associated to delivering together or separately simultaneously and
communicate those two options trough the price vector.

Since we provide new options to the customer, new data is required to cal-
ibrate the the customer choice model to approximate the utilities associated
to each of the options.

4.5. Customer-service: Lead-time

The available literature focuses on the pricing of time-windows, how-
ever in practice most online purchases of dry-goods promise delivery within
a certain lead-time. Of the four proposed extensions, the redefinition of
this assumption leads to the biggest changes of the dynamic pricing model.
We outline the complications of using the current framework for lead-time
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customer-service promises, but redefining the current framework is beyond
the scope of this paper.

The main benefit of offering lead-times from a last-mile delivery company
perspective is also its major challenge to the current pricing framework. With
a certain lead-time, companies have the flexibility to deliver orders earlier
than the promised lead-time (e.g. if you promise delivery within two days,
it is fine if you deliver the same day). Especially in neighborhoods with
lower demand density, you want use this flexibility to avoid visiting certain
areas of the city a couple of days in a row for a low number of orders.
This consolidation provides the option to provide discounts shorter lead-
times. For example, if you know you are going to visit a certain area today,
it might be worthwhile to provide a discount to same-day delivery in that
area. However, these consolidation opportunities provide themselves on a
continuous scale and the decision to actually start the route is more flexible
compared to time-windows. With time-windows, there is limited flexibility
in consolidating orders. One of the advantages of this property is that each
time-window (or group of overlapping time-windows) can be considered as
a separate problem regarding capacity. There is a hard cut-off time T for
choosing a specific time-window, after which no orders are accepted because
the route has to start to deliver all customers in that time-window. When we
look at lead-times however, we are essentially looking at a rolling horizon,
so such a cut-off does not exists in the same way with lead-times, since
ordering later also implies delivering later (if the same lead-time option is
chosen). However, something similar could be constructed combining orders
with different lead-time orders, but with the same ’deadline’, e.g. a four day
lead-time ordered four days ago and a same-day delivery ordered today both
need to be delivered today.

Naturally, the flexibility of delivering an order earlier than required also
influences the structure of the opportunity cost approximation. Furthermore,
it is important to extend these cost by a penalty for early delivery. If cus-
tomers know that there product is generally delivered within two days, even
if they chose a lead-time option of five days, there is no incentive for them
to switch to the more expensive two day lead-time option.

However, the main decisions remain similar to delivery in the case of time-
windows. We need to decide what prices to offer for which lead-time options
to which customers. It is therefore also important to update the customer
choice model accordingly.
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5. Conclusion

In this review paper, we discuss relevant extensions to modeling frame-
works in RM-LMD. Based upon the state-of-the-art literature and current
trends in the field, we present several future research directions with par-
ticular interest in dynamic problem settings. We also outline many relevant
extensions to revenue management models, beyond the classical attended
home delivery problem.
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