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Abstract

Exact consumers surplus and deadweight loss are the most widely used welfare

and economic efficiency measures. These measures can be computed from demand

functions in straightforward ways. Nonparametric estimation can be used to esti-

mate the welfare measures. In doing so it seems important to account correctly for

unobserved heteroeneity given the high degree of unexplained demand variation

often found in applications. This paper surveys work on nonparametric welfare

analysis, focusing on that which allows for general heterogeneity in demand as in

Hausman and Newey (2015).
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1 Introduction

Exact consumers surplus and deadweight loss are the most widely used welfare and

economic efficiency measures in areas of economics such as public finance. These measures

can be computed from demand functions in straightforward ways. This makes welfare

measures very useful for applications where quantities, prices, incomes are available. It

is now possible to use nonparametric or semiparametric estimators of demand functions

to estimate welfare measures, thus avoiding functional form restrictions that used to be

common in empirical demand analysis.

It seems important to account for individual heterogeneity in the estimation of wel-

fare measures. Often r-squareds are found to be low in cross-section and panel demand

data, leaving open the possibility that much variation in demand is due to unobserved

heterogeneity. The potential magnitude of heterogeneity suggests that allowing for het-

erogeneity in applications could have a significant impact.

This paper reviews the work on nonparametric welfare analysis, focusing on recent

work that takes explicit account of unobserved heterogeneity. Most of our attention is

given to demand models with general, multi-dimensional heterogeneity as considered in

Hausman and Newey (2016). These models allow demand functions to vary across in-

dividuals in general ways. For example, it seems reasonable to suppose that price and

income effects are not confined to a one dimensional curve as they vary across individuals,

meaning that heterogeneity is multi-dimensional. Demand might also arise from com-

bined discrete and continuous choice, where heterogeneity has different effects on discrete

and continuous choices. Also whether demand depends monotonically on a scalar het-

erogeneity term is not identified from single or repeated cross-section data, as shown by

Hausman and Newey (2016). Welfare measures are sensitive to assumptions about het-

erogeneity, motivating the focus on general heterogeneity in this paper. We also discuss

recent work on welfare and demand analysis with restrictive forms of heterogeneity.

Unobserved heterogeneity in demand means that surplus will vary over individuals

in unobserved ways. That means we can at best hope to learn something about the
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distribution of welfare effects in the population. The expected value of surplus across

individuals is a common welfare measure. The distribution of surplus may also be of in-

terest. Hausman and Newey (2016) showed that for continuous demand average surplus

is generally not identified and hence neither is the distribution of surplus. Nonidentifi-

cation motivates the bounds approach in Hausman and Newey (2016). They show that

known bounds on income effects can be used to construct bounds on average surplus

in a straightforward way. Those bounds only require the expected value of the demand

function across individuals. With two goods they also show how to construct bounds

on average surplus based only on utility maximization, i.e. that do not require known

bounds on income effects. The approach to general bounds with two goods should also

be extendable to multiple goods.

We emphasize that the bounds average over unobserved hetereogeneity while holding

income and observable characteristics fixed. The variation of bounds over income and

observable characteristics can be used to evaluate policy impacts on different groups of

individuals. Comparisons across groups with observable differences is often relevant for

welfare analysis. In this paper we compare surplus for gasoline demand across differ-

ent income levels using the same data as Hausman and Newey (2016). We find that

deadweight loss is quite flat as a function of income though there is some evidence that

deadweight loss is largest at smaller income values and tends to decline with income. We

find that the equivalent variation tends to increase with income, and hence so do gasoline

taxes.

To apply these result to estimate welfare effects from data something must be as-

sumed about how individual heterogeneity varies with prices and incomes. Most of the

empirical application of nonparametric welfare analysis is based on independence of pref-

erences and budget sets, possibly conditioned on covariates and control functions. Under

independence, average demand is the conditional expectation of quantity, which can be

estimated by nonparametric, or semiparametric methods in cross section data while al-

lowing for measurement error in quantity demanded. The distribution of demand can

be also estimated in analogous ways, though without allowance for measurement error.
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These estimates can be used to estimate surplus bounds.

Independence of preferences and the budget set, possibly conditioned on covariates

and control functions, is an essential assumption with multi dimensional heterogeneity

at this point in the development of nonparametric welfare analysis. Without indepen-

dence it is not known how to do nonparametric welfare analysis with multi-dimensional

heterogeneity. Independence can be tested by comparing results with and without the

use of control functions. This was done informally in Hausman and Newey (2016) where

it was found that using a control function to control for price endogeneity did not have

much effect. A formal Hausman test could also be constructed by statistical comparison

of bounds with and without a control function. When demand is monotonic in scalar

heterogeneity and there is an instrument independent of heterogeneity, nonparametric

instrumental variable estimation as in Chernozhukov, Imbens, and Newey (2007) could

be used to estimate the demand function. Blundell, Horowitz, and Parey (2016) take

this approach while imposing the Slutzky condition on the demand function.

While Hausman and Newey (2016) find a non-point identification result for surplus

with continuous demand, Bhattacharya (2015) demonstrates point identification in the

situation of discrete choice. The result follows because in the special case of discrete choice

the change in the Marshallian (uncompensated) consumer surplus equals the average

Hicksian (compensated) equivalent variation even if income effects are not constant.

Bhattacharya (2015) demonstrates that his result does not hold for ordered discrete

choice where the price remains constant over units. Thus, his results demonstrate how

the special situation of purchasing a single unit of a good allows for point identification

which does not hold if an individual chooses the number of units to purchase.

Turning now to an account of the literature, Hausman (1981) showed how surplus

could be obtained from the demand function and used that insight to solve for surplus

for some widely used parametric specifications. Vartia (1983) gave an ordinary differential

equation for surplus in terms of the demand function and proposed some algorithms for

solving it numerically. Hausman and Newey (1995) suggested solving that equation using

demand estimators based on nonparametric regression and gave asymptotic inference
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results, including functional expansions, for series and kernel estimators. Vanhems (2006)

gives further results on asymptotic properties of kernel estimators.

With heterogeneity in demand one could ask what is being estimated by a nonpara-

metric regression like that in Hausman and Newey (1995). The regression will give a

demand function for a particular consumer under some restrictive conditions discussed

in Hausman and Newey (1995) and reviewed below. However, the literature also explored

implications of more general forms of heterogeneity. Brown and Walker (1989) showed

that the residual generally is heteroskedastic, which is important for inference. Lewbel

(2001) explored the properties of the conditional expectation of demand with general

heterogeneity. He found that the interpretation of elasticity calculation as applying to

the average consumer holds true. However, the interpretation does not hold for utility

and welfare measures unless the unobserved heterogeneity does not affect the marginal

utility of income. Within the context of a random coefficients specification (and more

generally), it will not be the case that this restriction holds. Thus, as in Hausman and

Newey (2016), following from Gorman (1961), only under special conditions on how in-

come enters demand functions in a quasi-homothetic manner and its interaction with

heterogeneity, will estimated demand function be interpretable as arising from utility

maximization, which allows for exact welfare measures to be calculated. However, the

necessary restriction for this outcome are inconsistent with typical finding in applied

econometric estimation. These results suggest the potential importance of allowing for

heterogeneity in nonparametric welfare analysis and in choice analysis more generally.

The previous literature considered some forms of heterogeneity. In their analysis of

labor supply with nonlinear taxes, Burtless and Hausman (1978) allowed the income

effect to vary over individuals. Blomquist and Newey (2002) allowed for nonparametric,

scalar, and monotonic unobserved heterogeneity with nonlinear taxes and their results

turn out to be valid with general heterogeneity, see Blomquist, Kumar, Liang, Newey

(2016). More recently Dette, Hoderlein, and Neumeyer (2016) showed that with general

heterogeneity the quantile of any linear combination of goods must satisfy a Slutzky

condition, implying that the quantile of any one good is a demand function as only the
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price of that good varies.

Specific kinds of nonparametric heterogeneity have recently been considered for wel-

fare analysis. Blundell, Horowitz, and Parey (2016) and Hoderlein and Vanhems (2013)

consider two goods and demand that is monotonic in scalar heterogeneity. Lewbel and

Pendakur (2016) have considered a random coefficients demand model, with some re-

strictions on the distribution of coefficients that make it relatively easy to estimate.

Another strand of the literature is about revealed stochastic preference. This work

can be thought of as demand analysis with unrestricted heterogeneity and possibly multi-

valued demand. McFadden (2005) characterized the restrictions on the distribution of

demand implied by those models. Hoderlein and Stoye (2014) showed how to bound

the proportion of consumers that satisfy the weak axiom of revealed preference. Kita-

mura and Stoye (2012) gave tests of the revealed stochastic preference restrictions. For

two goods Blundell, Kristensen, and Matzkin (2014) developed methods for predicting

the distribution of demand outside the range of the data while imposing the revealed

stochastic preference restrictions, as we explain below. Quite recently, Cosaert and De-

muynck (2014) derived bounds on surplus and demand prediction using the weak axiom

of revealed preference while allowing for general heterogeneity.

In Section 2 of the paper we begin by discussing consumer surplus and deadweight loss

for a single consumer. Section 3 gives an account of nonparametric estimation like that

considered in Hausman and Newey (1995). Section 4 introduces general heterogeneity

in demand. Section 5 discusses some useful results for the case of two goods. Section 6

reviews work on identification of demand and surplus with general heterogeneity. Section

7 explains how bounds for average surplus can be constructed using bounds on income

effects. Section 8 describes recent work on bounds with two goods that does not require

bounds on income effects. Section 9 outlines the assumptions that are important for

applying the theoretical results to data. Section 10 reviews existing work with two goods

and/or restricted forms of heterogeneity. Section 11 gives an empirical application to

gasoline demand, showing how surplus and deadweight loss bounds vary with income

level. Section 12 offers some conclusions.
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2 Welfare Analysis for a Single Consumer

We will first review welfare analysis for a single consumer and then consider heterogeneity.

We begin with describing choice for a consumer. Let  denote the quantity of a vector

of goods,  the quantity of a numeraire good,  the price vector for  relative to , and 

the individual income level relative to the numeraire price. Also let  = (  )  where

throughout we adopt the notational convention that vectors are column vectors. The

demand function () will denote the consumer’s choice of  for given prices and income

. In what follows we will be assuming that we observe the choices of individuals for

given prices and incomes, so we focus on demand functions as the empirically relevant

object. We follow much of the existing welfare analysis literature in this approach.

Demand () will result from maximizing a utility function ( ) that is monotonic

increasing in  and  and strictly increasing in at least one argument, subject to the

budget constraint that expenditure on goods cannot exceed income. That is

() = arg max
≥0≥0

( ) s.t.   +  ≤ 

We will assume throughout that demand is single valued. Strict quasi-concavity of the

utility function is sufficient for single valued demand and is necessary over all positive

prices and incomes.

Utility maximization imposes restrictions on the demand function as a function of

prices and income. Assuming that the demand function is continuously differentiable

and restricting attention to positive prices and incomes utility maximization implies that

()+ ()[()] is symmetric and negative semi-definite, (2.1)

where we adopt the usual Jacobian notation with the  element of () being

(). By Hurwicz and Uzawa (1971), this condition and  () +  =  are also

sufficient for existence of a utility function, with () maximizing the utility function sub-

ject to the budget constraint. In this sense, formulating a model with demand functions

satisfying the Slutzky symmetry and negative definiteness condition in equation (2.1) is

equivalent to formulating a model based on utility maximization. In what follows we
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work with demand functions satisfying the Slutzky condition as the primitive underlying

economic objects that are empirically relevant.

Our goal is to quantify the welfare effects of price changes. We follow standard

practice in using the expenditure function to do so. The expenditure function is given

by

( ) = min
≥0≥0

{  + ,  ( ) ≥ }

Changes in the expenditure function as price changes measure the welfare effects of price

changes. Let 0 denote a vector of initial prices and 1 a vector of final prices. Also let

 = max
≥0≥0

( ) s.t. ()  +  ≤   = 0 1

denote the utility at prices 0 and 1 A money metric for the change in utility between

prices 0 and 1 is given by the equivalent variation

 (0 1 ) = (0 0)− (0 1) =  − (0 1)

Also equivalent variation can be viewed as the effect on expenditure of varying prices

while holding utility fixed at 1, since

 (0 1 ) =  − (0 1) = (1 1)− (0 1)

The corresponding deadweight loss measure is the equivalent variation minus the tax

receipts,

(0 1 ) =  − (0 1)−∆ (1 ) ∆ = 1 − 0

Compensating variation can also be used as a money measure of the welfare effects of

price changes. We focus on equivalent variation because it can be used to compare

welfare across different price changes while compensating variation cannot and because

deadweight loss is more complicated for compensating variation.

The key to empirical welfare analysis is that equivalent variation and deadweight loss

can be computed from the demand functions, allowing us to estimate welfare measures

from individuals’ observed choices. Let {()}1=0 be a continuously differentiable price

[7]



path from (0) = 0 to (1) = 1. Let

() =  − (() 1) (2.2)

be the equivalent variation for a price change from () to 1. Let ( ) denote the

compensated demand, i.e. ( ) = argmin 
  +  s.t. ( ) ≥  Differentiating

equation (2.2) with respect to  applying the chain rule and Shephard’s Lemma, and

using ( ) = ( ( ))

()


= −(() 

1)


= −(() 

1)




()


= −(() 1) ()


(2.3)

= −(() (() 1)) ()


= −(()  − ())
()




where the last equality follows by the definition of (). Notice how () compensates

income so that the individual remains on the same indifference curve as  varies. The

resulting equation is an ordinary, nonlinear differential equation with final condition

(1) = 0; see Vartia (1983). The solution (0) to this differential equation at  = 0 is the

equivalent variation for a price change from 0 to 1.

The solution to this differential equation will not depend on the particular path

{()}1=0 as long as the matrix () + ()[()] is symmetric. By the inte-

grability arguments in Hurwicz and Uzawa (1971) this symmetry condition implies that

there exists a function ̃() such that

−(()  − ())
()


=

̃(())




It then follows from (0) = 0 and (1) = 1 that (0) = ̃(1) − ̃(0) which does not

depend on the path. Given this invariance of equivalent variation to the price path we are

free to pick whatever path is convenient. One convenient path is the convex combination

of 0 and 1 where () = 1+(1−)0 = 0+∆ for ∆ = 1−0 The key differential
equation then becomes

()


= −(0 + ∆  − ())∆ (1) = 0 (2.4)

Computation of equivalent variation from this differential equation is straightforward.

Given a demand function ( ) any of a variety of numerical methods can be used.
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Vartia (1983) discussed some methods. There are many fast methods that are available

in modern software packages.

When only the price of one good is changing the surplus will depend only on the

demand function of that good. To see this suppose that only the price 1 of the first

good is changing and that the prices of the other goods are fixed at ̄2. Then we can

take the price path to be () = (01+ ∆1 ̄2) so that ∆ = (∆1 0
 )  The differential

equation then becomes

()


= −1(01 + ∆1 ̄2  − ())∆1 (1) = 0 (2.5)

which depends only on the demand function for the first good. This result can be thought

of as an implication of path independence of the surplus, and hence of symmetry, that

allows us to pick a path where the differential equation only depends on the first good.

It was shown by Hausman (1981).

The differential equation becomes linear, with an explicit solution, when there are

constant income effects over the range of (()  −())  In fact if only the price of one
good is changing then there is an explicit solution when only the income effect for that

good is constant. Suppose that 1(
0
1 + ∆1 ̄2  − ()) =  for each  ∈ [0 1]

Then the differential equation becomes

()


= −1(01 + ∆1 ̄2 )∆1 + ∆1() (1) = 0 (2.6)

This linear differential equation has an explicit solution

(0) = ∆1

Z 1

0

1(
0
1+∆1 ̄2 ) exp(−∆1) =

Z 11

01

1(1 ̄2 ̄ ) exp(−(1−01))1

We discuss this result because it is useful for identification and bounds when there is

unobserved heterogeneity. Beyond that it may not have much interest because constant

income effects seems a strong assumption for practice and the numerical calculation of

surplus from equation (2.4) is straightforward without an explicit solution.

Marshallian surplus solves equation (2.5) while replacing () in the demand function

with zero, i.e. while not compensating income to remain on the same indifference curve.
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Marshallian surplus  is given by

 =

Z 1

0

(0 + ∆ )∆

This surplus measure ignores income effects. Ignoring income effects can lead to a poor

approximation to deadweight loss, see Hausman (1981). For this reason we focus on

exact surplus in our analysis, though as known from Willig (1976), Marshallian surplus

provides a useful upper bound for equivalent variation for a normal good.

3 Nonparametric Estimation for a Single Demand

Function

Nonparametric estimation of surplus for a single demand function is straightforward.

The idea is to replace the true demand function with a nonparametric estimator and

then solve the differential equation for surplus numerically. Let ̂() be a nonparametric

estimator of the demand function. Plugging this estimator in the differential equation

(2.5) leads to an estimator ̂ = ̂(0) obtained as the solution at  = 0 to

̂()


= −̂(0 + ∆  − ())∆ ̂(1) = 0

The estimators of equivalent variation and deadweight loss are then given by

d = ̂\ = ̂− ̂(1 )∆

Computation of ̂ is straightforward using a variety of ordinary differential equation

solvers found in various computer packages. That computation will just require calculat-

ing the nonparametric estimator ̂( ) at various values of  and  That calculation is

simple to do using a variety of possible nonparametric estimators of the demand function,

such as series, locally linear, or kernel estimators. One could also use partially linear or

index specifications that allow for covariates, and then fix those covariates at specific

values when calculating ̂( ). Allowing for covariates amounts to allowing for observed

heterogeneity in the demand function. For brevity we will not catalog the various possi-

ble estimators one could use. We emphasize that all that is needed is calculation of the

estimator ̂( ) at various values of  and 

[10]



Confidence intervals for the true  and  may be obtained using the bootstrap.

For cross-section data 1   with mutually independent observations , a bootstrap

sample could be constructed by sampling  observations with replacement from the orig-

inal data. That is, if the data are  independent observations 1   then a bootstrap

sample 1  

 could be constructed by drawing   ( = 1  ) independently from

the distribution which puts probability weight 1 on each  Let ̂
() be the demand

estimator obtained from the bootstrap sample and (d ) and (\) be computed

from ̂() Multiple simulated estimates can then be constructed by repeating this pro-

cedure  times to get (d )1  (d ). A confidence interval can then be formed in the
usual way using the standard deviation of these bootstrap draws as the standard error.

Large sample confidence intervals can also be constructed using analytical standard

errors rather than bootstrap ones. For series estimators these can be obtained by treating

the series estimator as if it were least squares for a correctly specified model and applying

the delta method, see Newey (1997). For kernel estimators the delta method of Newey

(1994) can be used. It should be straightforward to extend that approach to locally

linear estimators. Hausman and Newey (1995) show how to construct analytical standard

errors for surplus and deadweight loss for series and kernel estimators. Constructing such

analytical standard errors does require extensive derivations and calculation of various

derivatives. The bootstrap avoids all that and so is attractive in substituting computing

time for researcher’s time.

Series estimators of the demand function may be computationally convenient because

of the many times ̂( ) needs to be computed for estimation and bootstrap inference.

For a series estimate calculation of ̂( ) only requires calculating a linear combination of

relatively few approximating functions while locally linear and kernel estimators requires

summing across all observations in the data set. Of course if computational time is not

a concern then the savings from using a series estimate will not be important.

As an example we consider the partially linear model series estimator from Hausman

and Newey (1995). Let () = (1() ())
 denote approximating functions

such as powers or splines of the log of components of  and  and let  denote a vector
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covariates Let ̂ and ̂ be the coefficients obtained from regressing ln  on () and

covariate observations . Let ̄ be some chosen value for the covariates. The estimator

of Hausman and Newey (1995) is

̂() = exp(() ̂ + ̄ ̂)

One could apply the methods we have described to estimate the equivalent variation for

this function. Hausman and Newey (1995) do so for gasoline demand.

In this example the function () being estimated by ̂() corresponds to a partially

linear specification where

() = exp([ln | =  = ̄]) [ln | ] = 0() + 
 0

Treating () as a demand function ignores the residual  =  − [ln | ]. Much

of applied welfare analysis had followed the same practice until recently. One can ignore

the residual if it is all measurement error but not if it contains individual heterogeneity.

When  contains heterogeneity, it may still be possible to interpret () as the demand

function of a consumer. Suppose that  = (  ) for some function ( )

of prices, income, covariates, and a vector  of taste variables that is independent of

prices, income, and covariates. In general ( ) will depend on  and , as shown by

Brown and Walker (1989). Nevertheless, if ( ) is identically zero for some value

of  then () can be interpreted as the demand function for that value of . As an

example suppose the conditional mean [ln | =  = ] also equals the conditional

median. Considering the conditional mean of ln  rather than  makes this seem more

plausible because the log transformation can help make the distribution of demand more

symmetric. Then if  is scalar and ( ) is monotonic increasing in  we will have

( ) = 0 at the median of , as further discussed below.

In general one would not expect that one could interpret () as the demand function

for an individual, see Lewbel (2001). Also, even if () is the demand function for

an individual one might want to consider surplus measures that account for individual

heterogeneity. In the following Sections we do so.

[12]



4 Unobserved Individual Heterogeneity

We will allow for unobserved individual heterogeneity by letting the demand function

depend on a vector of unobserved disturbances  of unknown dimension. One might

think of each value of  as corresponding to a consumer though we do allow  to be

continuously distributed. Similarly as before we are implicitly assuming that the utility

function is strictly quasi-concave, only now we are making that assumption for each

individual. Also, the Slutzky restrictions on the demand function are now assumed to

hold for each individual. We summarize these restrictions in the following condition

For each  the function ( ) is continuously differentiable in  at all  (4.7)

with strictly positive prices and income, ( )+ ( )[( )]

is symmetric and negative semi-definite for all  in  and  ( ) + ( ) = 

The set  is the set of prices and income over which the Slutzky condition is assumed to

hold. It may be larger than the set of data on prices and income in order to use utility

maximization to make predictions outside the range of data. In what follows we take

demand functions satisfying this condition as primitive elements of the model. We also

need technical conditions in order to make probability statements using these demand

functions. These technical conditions are found in McFadden (2005) and the Appendix

to Hausman and Newey (2016).

We follow the existing literature in modeling heterogeneity as corresponding to a

distribution of demand for given prices and income . Here we do this by letting  have

a CDF  Let  denote a possible value of quantity demanded. The CDF  (| ) of
quantity when prices and income equal  for all individuals is given by

 (| ) =
Z
1(( ) ≤ )() (4.8)

The model we consider is one with a CDF for this form for ( ) satisfying equation

(4.7) and some distribution  of .

This model is a random utility model (RUM) of the kind considered by McFadden

(2005, see also McFadden and Richter, 1991). The model here specializes the RUM to
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single valued demands that are smooth in prices and income. Single valued, smooth

demand specifications are often used in applications. In particular, smoothness has often

proven useful in applications of nonparametric models and we expect it will here. We

consider identification and estimation of surplus and deadweight loss in this RUM.

Viewing demand as a stochastic process indexed by  helps explain identification

and other aspects of demand analysis with heterogeneity. Here ( ) is a function

of  for each  that varies stochastically with , i.e. ( ) is a stochastic process.

In this way the pair () can be thought of as a demand process. In the language of

stochastic processes the distribution of ( ) for fixed  is a marginal distribution, while

the distribution of ((1 )  (  )) for some set {1  } of prices and income
is a joint distribution. In our notation the marginal CDF of this stochastic process is

 (| ). Thus, the thing being modeled in this paper is the marginal distribution
of the demand process. We focus on the marginal distribution because that is what is

identified in cross-section data where  is independent of 

With individual heterogeneity there will be a distribution of surplus and deadweight

loss that corresponds to the distribution of demand functions. For a price change from

0 to 1 and income at ̄ let () denote the equivalent variation corresponding to the

demand function ( ) and() = ()−(1 ̄ )∆ the associated deadweight loss.

As previously discussed () is the solution (0 ) at  = 0 to the ordinary differential

equation
( )


= −(0 + ∆ ̄ − ( ) )∆ (1 ) = 0 (4.9)

The distribution of surplus and deadweight loss we consider will be the distribution of

() and () that are implied by 

Objects that we will focus on and that are of common interest are the average surplus

̄ and deadweight loss ̄ across individuals, given by

̄ =

Z
()() ̄ =

Z
()()

As is known from Hicks (1939), when ̄ is positive it is possible to redistribute income so

that individuals are better off under 0 than under 1. Also, weighted averages of ̄ over
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different ̄ values can provide measures of social welfare when income and heterogeneity

are independent in the population. We illustrate this use of average surplus in the gasoline

demand application to follow.

Average surplus depends only on average demand ̄( ) =
R
( )() when

income effects are constant across individuals, prices, and income. When the price of

only one good is changing and the income effect of that good is constant then average

surplus depends only on the average demand for that good. To see this result consider

a price change of just the first good. Suppose that the income effect for that good is

constant with 1(1 ̄2  ) =  over 1 ∈ [01 11]  ∈ [̄ − () ̄] and . Then

() is the solution at  = 0 to

( )


= −[1(01 + ∆1 ̄2 ̄ )− ( )]∆1  (1 ) = 0 (4.10)

This is a linear differential equation with explicit solution

() = ∆1

Z 1

0

1(
0
1+∆1 ̄2 ̄ ) exp(−∆1) =

Z 11

01

1(1 ̄2 ̄ ) exp(−(1−01))1

Taking expectations under the integral gives

̄ =

Z 11

01

̄1(1 ̄2 ̄) exp(−(1 − 01))1

This can also be represented as the solution at  = 0 to

̄()


= −̄(0 + ∆ ̄ − ̄() )∆ ̄(1) = 0 (4.11)

Comparing equation (4.11) with (4.9) we see that, if only the price of one good is chang-

ing and the income effect that good is constant then, average surplus solves the same

differential equation as individual surplus, with average demand replacing individual de-

mand. This result generalizes to multiple price changes where the income effects are

constant for all goods with changing prices.

Obtaining average surplus from average demand is consistent with the well known

aggregation results of Gorman (1961), who showed that constant income effects are nec-

essary and sufficient for demand aggregation. The preceding discussion is a demonstration
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of a partial dual result, that when the price of one good is changing and the income effect

is constant for that good then surplus for average demand is the average of surplus. Mc-

Fadden (2004) derived and used this result in the case where income effects are constant

for all goods. Hausman and Newey (2016) showed that it is sufficient that the income

effect only be constant for the goods with prices that vary between 0 and 1.

5 Heterogenous Demand with Two Goods

The case with two goods has some special features that are important. One feature is that

there are simple, intuitive restrictions on the distribution of demand that are equivalent

to utility maximization with general heterogeneity. In addition there are a number of

recent papers about modeling and estimating heterogenous demand for two goods. For

these reasons it seems appropriate to devote some attention to the two good case.

Much of the revealed stochastic preference literature is concerned with deriving re-

strictions on  (| ) as a function of  and  that are necessary and sufficient for a

RUM. McFadden (2005) provides a set of inequalities that are necessary and sufficient

for the RUM with continuous demands. With two goods there is a simple, alternative

characterization in terms of quantiles that is useful in the identification analysis to fol-

low. The characterization is that each quantile is a demand function, or equivalently

for smooth demands that each quantile satisfies the Slutzky condition that compensated

demand is downward sloping. With two goods the Slutzky condition and the budget

constraint are necessary and sufficient for a function to be a demand function.

To see why a demand model implies that the quantiles satisfy the budget constraint

and Slutzky condition, let ( |) = inf{ :  (| ) ≥ } denote the   conditional
quantile corresponding to  (| ), where 0    1 and we drop dependence of 

on  and  for notational convenience. Note that ( |) is the   quantile of ( ) so
that the budget constraint ( |) ≤  is satisfied by ( ) ≤  for all  Hoderlein

and Mammen (2007) gave a useful result on the derivatives of the quantile that can be

used to show the Slutzky condition. The Hoderlein and Mammen (2007) result has been
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used and verified by Chernozhukov, Fernandez-Val, Hoderlein, and Newey (2015) and

others. This characterization says that under certain regularity conditions

( |)


= [
( )


|( ) = ( |)]

It then follows that

( |)


+( |)( |)


= [
( )


|( ) = ( |)] +( |)[( )


|( ) = ( |)]

= [
( )


+ ( )

( )


|( ) = ( |)] ≤ 0

where the inequality follows from the Slutzky condition for the demand function ( )

That is, the quantile satisfies the Slutzky condition

( |)


+( |)( |)


≤ 0

Thus each quantile is a demand function. This result was shown by Dette, Hoderlein,

and Neumeyer (2016), who have made it the basis of testing the negative definiteness

part of the Slutzky conditions. Some regularity conditions are required for this result,

e.g. as given in Assumption A2 of Hausman and Newey (2016).

To see why a quantile satisfying the Slutzky condition and budget constraint ( |) ≤
 is sufficient for a demand model, let ̃ denote a scalar random variable that is indepen-

dent of  and consider

̃( ̃) = (̃|) ̃ ∼ (0 1)

This is a demand model because ̃( ̃) satisfies the Slutzky condition and budget con-

straint for all ̃ ∈ (0 1) Furthermore, it is well known that when the  argument in the
quantile is replaced by a (0 1) random variable the resulting random variable has the

distribution corresponding to that quantile function. Then, for  (| ) the distrib-
ution from which the quantile is obtained,Z 1

0

1((̃|) ≤ )̃ =  (| )

Thus when the quantile satisfies the Slutzky condition and the budget constraint there

is a demand model with scalar (uniform) heterogeneity that gives the same conditional
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distribution of quantity given  as the quantile. We refer to this model where the quantile

is the demand function as quantile demand. This result is pointed out in Hausman and

Newey (2016). Thus we see that for two goods and single valued smooth demands the

revealed, stochastic preference conditions are that each quantile is a demand function.

Even though each quantile is a demand function it is not, in general, the demand

function for particular consumers. That would only be correct if demand is monotonic in

scalar heterogeneity. With multidimensonal heterogeneity we do not necessarily follow

the same consumers as we change prices and income. The derivatives of the quantile are

averages of derivatives of demand over those individuals at the quantile. The individuals

at the quantile generally change with price and income. Furthermore, in cross section

data we are not able to distinguish scalar heterogeneity from multivariate heterogeneity,

as discussed below. Thus there is no way to tell from cross section data whether a quantile

function can be interpreted as a demand function for particular consumers.

The conditional CDF of  given  also satisfies a Slutzky like condition. By the inverse

function theorem, the quantile satisfies the Slutzky condition if and only if

 (| )


+ 
 (| )


≥ 0

As with the quantile, the CDF satisfying this Slutzky condition is necessary and sufficient

for a demand model, under the regularity conditions for existence of derivatives and for

the inverse function theorem. This result is pointed out in Blomquist, Kumar, Liang,

and Newey (2015).

These characterizations have important empirical and theoretical implications. In ap-

plications where we are estimating the demand for one of two goods, imposing the Slutzky

condition and budget constraint on the quantiles imposes all the restrictions of utility

maximization. Thus, empirical analysis based on such quantile or distribution estimates

uses all those restrictions. Blundell, Kristensen and Matzkin (2014) is an example of this

approach. In addition one can construct estimates of the conditional mean of demand

that impose all the restrictions of utility maximization using the Slutzky condition for

the CDF. Blomquist et. al. (2015) show how to do this. A theoretical implication of
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quantile demand with two goods is that the quantile demand model is observationally

equivalent to the true model. This implication is useful in the identification analysis for

consumer surplus.

6 Identification

We consider identification of objects of interest when we know the marginal CDF  (| )
of the demand process over a set ̄ of prices and income. This corresponds to cross sec-

tion data, where we only observe one price and income for each individual. If more than

one value of  were observed for each individual, as in panel data, then one could identify

some joint distributions of demand at different values of . We touch on this topic below.

We adapt a standard framework to our setting, as in Hsiao (1983), by specifying that

a structure is a demand function and heterogeneity distribution pair () where for

notational convenience we suppress the arguments of  and 

Definition 1: () and (̃ ̃) are observationally equivalent if and only if for all

 and  ∈ ̄,

 (| ) =  (| ̃ ̃)

The set ̄ will correspond to the set of  that is observed. We allow ̄ to differ from

the  where the Slutzky conditions are imposed in order to allow the Slutzky conditions

to be imposed outside the range of the data. We consider identification of an object

() that is a function of the structure (). Here () is a map from the demand

function and the distribution of heterogeneity into some set. The identified set for  we

consider will be the set of values of this function for all structures that are observationally

equivalent.

Definition 2: The identified set for  corresponding to (0 0) is Λ(0 0) =

{(̃ ̃) : (0 0) and (̃ ̃) are observationally equivalent}.

The (0 0) in this definition can be thought of as the true values of the demand

function and heterogeneity distribution. The identified set Λ(0 0) is the set of  that
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is consistent with the distribution of demand  (| 0 0) implied by the true values.

The set Λ(0 0) is nonempty since it always includes the true value (0 0). The set

Λ(0 0) is sharp, given only knowledge of  (| 0 0) because it consists exactly of

those  that correspond to some (̃ ̃) that generates the same distribution of demand as

the true values. In other words, sharpness of Λ(0 0) holds automatically here because

we are explicitly formulating the identified set in terms of all the restrictions on the

distribution of demand that are implied by the model, and we are assuming that the

distribution of demand is all we know.

The view of demand as a stochastic process indexed by  helps explain identification.

As previously noted the marginal CDF of this stochastic process is  (| ) in our
notation. Thus, two demand processes will be observationally equivalent if and only if

they have the same marginal distribution.

One interesting and useful result is that objects () that depend only on the

marginal distribution of the demand process are point identified, because they are the

same for all observationally equivalent structures. For example, average demand ̄() =R
( )() =

R
 (| ) is identified, as are functionals of it, such as the bounds

below.

Joint distributions of the demand process, such as the joint distribution of ((̃ ) (̄ ))

for two different values of , will not be identified. We will show this result for certain

demand processes below and the intuition is straightforward. Intuitively, joint distribu-

tions are not identified from marginal distributions. Because joint distributions are not

identified, distributions and averages of objects that depend on varying  for given 

will not be identified. As was shown rigorously by Hausman and Newey (2016), such

nonidentified objects will include average surplus, which depends on varying both price

and income for a given .

It will generally be impossible to identify demand functions for individuals from the

marginal distribution of demand. Again the intuition is straightforward, with individual

demands not identified because we only observe one price and income for each indi-

vidual. More formally, we can think of the ability to identify individual demands as
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0(̃ ) being perfectly predictable for each ̃ if we know 0(̄ ) for some ̄, i.e. as

 (̃0(̃ ̃)|̃0(̄ ̃)) = 0 for any (̃ ̃) that is observationally equivalent to the truth.
This is a property of the joint distribution of the demand process, and so is not identified

from the marginal distribution of the demand process.

For two goods the quantile demand characterization of utility maximization provides

a key to the proof of nonidentification of average surplus. As discussed in the previous

section ( |) will be a demand function and (̃|) for ̃ ∼ (0 1) gives the same

conditional distribution of quantity as true demand. Thus the quantile demand is obser-

vationally equivalent to true demand. The joint distribution of the quantile process can

differ from the true one. For example, the true demand may have  ((̃ )|(̄ ))  0
but (̃|) will be one-to-one in ̃ for each  so  ((̃|̃)|(̃|̄)) = 0.
Some intuition for the nonidentification of average surplus is provided by a demand

specification that is a random coefficients linear model, where

0( ) = 1 + 2+ 3

and 3 varies across individuals. This demand process is a familiar specification. Quantile

demand will be observationally equivalent to this true demand. Thus, there is no way to

distinguish nonparametrically this true, linear, varying coefficients process from quantile

demand. Also, true average surplus will generally be different than average surplus for

quantile demand. Intuitively, the true demand is linear in income  but quantile demand

will generally be nonlinear in  because of varying 3 The nonlinearities in income of

quantile demand lead to average surplus for quantile demand being different than average

surplus for the true demand. This is the basis of the nonidentification result for average

surplus shown in Hausman and Newey (2016).

In panel data we could have multiple observations for a single individual. In that case

it should be possible to test for whether ( ) is monotonic in scalar . Also, panel data

could be used to tighten the bounds for surplus. In the limit as the number of observations

per individual gets large it should be possible to identify individual surplus. Note though

that panel data will only be helpful in these ways if there are some restrictions on how the
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demand function varies over time for a given individual, e.g. that the demand function is

the same in each time period. One might want to let demand functions differ over time

for a given individual to better fit the data. If the demand function in each time period

is allowed to be completely different then panel data does not help identify more than

the marginal distribution of the demand process.

7 Income Effect Bounds

Known bounds on income effects can be used to bound average surplus and deadweight

loss using average demand. The idea is to extend the result that constant income effects

allow computation of average surplus from average demand, to identify bounds on surplus

from average demand. To describe the result, for any constant  let

̄ =

Z 1

0

[̄(0 + ∆ ̄)∆]− (7.12)

be the solution ̄() at  = 0 to the linear differential equation

̄()


= −̄(0 + ∆ ̄)∆+̄() ̄(1) = 0 (7.13)

From Section 2 we see that ̄ would be the average surplus if just the price of the

first good were changing and the demand for the first good had a constant income effect

1(()  ) = ∆1

If i) (() ̄ −  )∆ ≥ 0 for  ∈ [0 ()] ii) there are constants  and  such

that  ≤ [( )] ∆ ≤  for all  ∈ ; iii) all prices in () are bounded away

from zero then

̄ ≤ ̄ ≤ ̄ ̄ − ̄(1 ̄)∆ ≤ ̄ ≤ ̄ − ̄(1 ̄)∆

Condition i) is a restriction on the price path that is automatically satisfied when only

the price of the first good is changing and 11  01. Also, the bounds in the conclusion

are satisfied under weaker conditions than bounded income effects, as discussed in the

Appendix to Hausman and Newey (2016).
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The key ingredient for these average surplus bounds are bounds on the income effect

[( )]

∆. Economics can deliver such bounds. Consider again, and for the

rest of this Section, a price change in the first good, where  and  are bounds on

∆11( ) and∆1  0 If 1 is a normal good then the income effect is nonnegative,

so we can take  = 0. Then an upper bound for average equivalent variation and

deadweight loss can be obtained from Marshallian surplus for average demand, that is

̄ ≤ ̄ =

Z 1

0

£
̄(0 + ∆ ̄)∆

¤
 ̄ ≤ ̄ − ̄(1 ̄)∆

The upper bound on average deadweight loss could be useful for policy purposes, e.g. to

proceed with a tax if average public benefits (e.g. environmental benefits) exceed average

deadweight loss and the appropriate separability conditions are satisfied.

Economics can also deliver upper bounds on income effects. If no more than a fraction

 of additional income is spent on 1 then

1( ) ≤ 1 ≤ 01

so that ̄ = ∆1
0
1 = (11

0
1 − 1) is an upper bound on [( )] ∆. For

example, in the gasoline demand application below we are quite certain that only a small

fraction of any increase in income is spent on gasoline, making our choice of ̄ very

credible. The Slutzky condition also can limit the size of income effects relative to price

effects. In the next Section we consider bounds based on the Slutzky condition.

The quantiles of the demand distribution are informative about income effects. Let

1( |) denote the conditional quantile of the first good, where we continue to suppress
dependence on  and . By Hoderlein and Mammen (2007),


1
( |)


= [
1( )


|1( ) = 

1
( |)]

where  is a random variable with distribution  Note that constancy of the income

effect will also imply constancy of 
1
( |) as  varies. Thus, if 

1
( |) varies

with  the income effect for the first good is heterogenous. Also, a necessary condition

for  and  to bound ∆11( ) is  ≤ ∆11
( |) ≤  This result can
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be used to guide the choice of bounds on income effects. For example, one might choose

an upper bound that is much larger than derivatives of many quantiles, as we do in the

gasoline application to follow. Note though that this approach does not serve to identify

the bounds, because we cannot tell from the quantile derivative how the income effect

varies over  with 1( ) = 1( |)
The conditional quantile is also informative about the surplus bounds. Let  be the

exact surplus obtained by treating 1( |) as if it were a demand function, obtained as
the solution (0) at  = 0 to the differential equation

()


= −1( |01 + ∆1 ̄2 ̄ −  ())∆1  (1) = 0

With two goods and scalar heterogeneity, the average surplus would be
R 1
0
 . It turns

out that
R 1
0
 is between the surplus bounds in general. Hausman and Newey (2016)

showed that

̄ ≤
Z 1

0

 ≤ ̄

Surplus bounds are relatively insensitive to income effect bounds when a small pro-

portion of income is spent on the good. This result is related to the Hotelling (1938)

result that when expenditure is small approximate consumer surplus is typically close to

actual consumer surplus. Differentiate equation (7.12) with respect to  to obtain

̄−1
̄


= −̄−1

Z 1

0

[̄1(
0
1 + ∆1 ̄2 ̄)∆1]

−

= −
Z 11

01

[̄1(1 ̄2 ̄)1̄](
1− 011

∆1
) exp(−1 − 01

∆1
)1

In this way the bounds are less sensitive to  when share ̄1(1 ̄2 ̄)1̄ of income spent

on the first good is smaller.

The role of average demand in these bounds has implication for econometric practice.

Average demand is the expectation of quantity demanded and not log-quantity or some

other function of quantity. Thus, for estimating the bounds we need to estimate the

conditional expectation of quantity. In practice it has often been the case that the some

nonlinear function of quantity has been used in the specification in an effort to fit the
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data, e.g. Hausman and Newey (1995). What we find here is that quantity itself should be

used for estimating the bounds. Share equations have also been used in the specification

of demand models. That is alright because shares are linear in quantity.

8 General Bounds with Two Goods

The surplus and deadweights loss bounds based on income effects are computationally

straightforward but depend on knowing bounds on income effects. We can also bound

surplus using just utility maximization, i.e. using only the Slutzky condition and the

budget constraint. The goal here is to estimate the largest and smallest surplus that are

consistent with the Slutzky condition and with the distribution of the data. Hausman and

Newey (2016) suggested doing this for two goods by using a discrete mixture expansion

around quantile demand.

That approach uses a flexible demand specification that is a series expansion with

random coefficients around quantile demand. To describe this specification let (),

 = 1   be approximating functions such as power series or splines and  () =

(1() ())
 . Let ̆ = (̆1  ̆)

 be random coefficients for these approximating

functions. We will assume that the vector ̆ is discretely distributed with  points of

support {̆1  ̆} Let ̃ be a scalar and ( |) be the conditional quantile of quantity
given . Consider a demand specification where  = (̃ ̆ ) , ̃ ∼ (0 1) ̆ has a

discrete distribution conditional on ̃ with points of support in {̆1  ̆} and

̃( ) = (̃|) exp(() ̆)

This will be a demand model of the kind are considering as long as the function ̃( ̃ ̆)

satisfies the budget constraint and the Slutzky condition for all  ∈  ̃ ∈ (0 1), and
̆ ∈ {̆1  ̆} For computation purposes we impose these conditions on a grid of 
values that lie in  We do this by drawing candidates for support points ̆ randomly

from a distribution and then only keeping those such that ( ̃ ̆) satisfy the budget

and Slutzky conditions for  in this grid and ̃ on a grid of values in (0 1)
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We also let the mixture probabilities for ̆ vary with ̃ in a flexible way. We do this by

taking those mixture probabilities to be convex combinations of fixed probabilities where

the convex combination varies with ̃ in a flexible way. To describe this approach let

κ(̃) (κ = 1 Υ) be a partition of unity, satisfying κ(̃) ≥ 0 and
PΥ

κ=1 κ(̃) = 1

For example, we could choose κ(̃) to be B-splines. Let 
κ
 ≥ 0 be probabilities satisfyingP

=1 
κ
 = 1. We take the conditional distribution of ̆ given ̃ to be Pr(̆ = ̆|̃) =PΥ

κ=1 κ(̃)
κ
 . This is a flexible specification of the discrete distribution of ̆ conditional

on ̃.

As  grows so that any function of  can be approximated, as  grows and the support

{̆1  ̆} becomes richer, and as Υ grows so the distribution of ̆ given ̃ becomes more
flexible this demand specification should be able to approximate any demand process.

Consequently the maximum and minimum surplus for this demand specification should

be close to bounds for surplus over all demand processes.

This demand process is computationally convenient for imposing the constraints im-

plied by the data distribution, because the CDF for this process is linear in the proba-

bilities of the points of support for ̆. Let  (|) = −1(|) be the CDF corresponding
to the quantile ( |) that we assume to be invertible in  Define

Ψκ ( ) =

Z  (·exp(−() ̆)|)

0

κ(̃)̃

Integrating over ̃ gives

 (| ̃ ̃) = Pr(̃( ) ≤ ) = [[1(̃( ) ≤ )|̃ ]|]
= [[1((̃|) ≤  exp(−() ̆))|̃ ]|]
= [[1(̃ ≤  ( exp(−() ̆)|)|̃ ]|]

= [

X
=1

ΥX
κ=1

κ(̃)
κ
 1(̃ ≤  ( exp(−() ̆)|)|] =

X
=1

ΥX
κ=1

κ Ψ
κ
 ( )

Here we see that the demand distribution for the model we have specified is linear in the

probabilities κ .

An important feature of this demand model is that it includes the quantile demand

as long as 0 is one of the elements of the support set {̆1  ̆}. In that case this model
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will equal quantile demand when Pr(̆ = 0) = 1 Thus this model can be thought of as

allowing multiplicative variations around quantile demand through the term () ̆.

The distribution implied by the true model imposes constraints on the probabilities

κ . For computational purposes we consider imposing a subset of these constraints

on a grid of  values for quantity prices and income, ( ) ( = 1 ) Let

Γ = {(1 1)  (  )} denote the grid points. The constraints take the form

 (|) =
X
=1

ΥX
κ=1

κ Ψ
κ
 ( ) ( ) ∈ Γ κ ≥ 0

X
=1

κ = 1

As grows with   andΥ the constraints will approximately impose all the restrictions

of the data distribution. A convenient feature of these constraints for computation is that

they are linear in the probabilities κ .

Bounds on the average and the distribution of surplus can be constructed by maximiz-

ing and minimizing over all the mixture probabilities κ that satisfy the constraints. Let

̃(̃) be the surplus for ̃( ̃ ̆) and ̄κ =
R 1
0
κ(̃)̃

(̃)̃We can get an approximate

upper bound for average surplus by solving the linear program

max
κ


ΥX
κ=1

X
=1

κ ̄
κ
 s.t.  (|) =

X
=1

ΥX
κ=1

κ Ψ
κ
 ( ) ( ) ∈ Γ κ ≥ 0

X
=1

κ = 1

This is a linear program so computation is straightforward. For the CDF of surplus let

κ() =
R 1
0
1(̃(̃) ≤ )κ(̃)̃ An upper bound on the CDF of surplus is

max
κ


ΥX
κ=1

X
=1

κ 
κ
() s.t.  (|) =

X
=1

ΥX
κ=1

κ Ψ
κ
 ( ) ( ) ∈ Γ κ ≥ 0

X
=1

κ = 1

This is also a linear program where computation is straightforward.

As for other estimators of partially identified objects (e.g. Manski and Tamer, 2002),

it may be important for consistent estimation to include some slackness in the constraints.

For average surplus this could be accomplished using the quadratic program,

max
κ


ΥX
κ=1

X
=1

κ ̄
κ
 s.t.

X
()∈Γ

[ (|)−
X
=1

ΥX
κ=1

κ Ψ
κ
 ( )]

2 ≤  κ ≥ 0
X
=1

κ = 1

Here the constraints are allowed to depart from zero by some small amount   0. This

quadratic program can be solved quite easily using standard software.

[27]



This approach provides approximate surplus bounds using series approximation to

the set of all demand processes that are consistent with the conditional CDF  (|).
Approximation to the true bounds depends on large   Υ, and  The choice of these

tuning parameters and the corresponding approximation and inference theory are beyond

the scope of this paper. Note though that these bounds are even of interest for some

fixed  ,  and Υ As long as ̆ = 0 for some  the average quantile surplus will be

between the bounds computed using this procedure. Thus the general bounds described

here give a measure of how much surplus can vary away from the quantile surplus for

other random utility specifications consistent with the data. Also, increasing  , , or

Υ only leads to wider bounds, so the results will give a lower bound on how wide the

identified interval for surplus might be.

This series approximation approach provides a way of empirically implementing the

RUM, i.e. of finding identified sets for objects of interest under revealed stochastic

preference conditions. This approach differs from Kitamura and Stoye (2012) where

revealed stochastic preference inequalities are imposed. Here we impose the Slutzky

conditions on a grid and then interpolate between points using a series approximation.

This approach relies on and exploits smoothness in underlying demand functions.

9 Empirical Application

The previous results are based on the average and distribution of demand for fixed

price and income. These objects are identified when prices and income in the data are

independent of preferences, i.e. when the data are ( ) ( = 1  ) with  = 0( )

and  and  are statistically independent. In that case

[| = ] = ̄0()Pr( ≤ | = ) =  (| 0 0)

Here average demand is the conditional expectation of quantity given prices and income

in the data, and similarly for the distribution of demand. The conditional expectation

of quantity, and not some other function of quantity, such as the log, is special because

it equals the average demand which is used in bounds based on income effects. Average
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demand could also be recovered from the conditional expectation of the share of income

spent on 

The conditional expectation [| = ] could be estimated by nonparametric re-

gression, as we do in the gasoline demand application below. Alternatively, if there are

many goods, so that nonparametric estimation is affected by the curse of dimensionality,

a semiparametric or parametric estimate of the conditional expectation of quantity could

be used. Those estimators could have functional form misspecification but are useful

with high dimensional regressors.

Independence of  and  encompasses a statistical version of a fundamental hypoth-

esis of consumer demand, that preferences do not vary with prices. It is also based on

the individual being small relative to the market of observation, as would hold when

different observations come from different markets. The independence of income from

preferences has been a concern in some demand specifications where allowance is made

for dynamic consumption, but is an important starting point and is commonly imposed

in the gasoline demand application we consider.

Independence of  and  could be relaxed to allow for covariates. Consider an index

specification where there are covariates  with possible value  and it is assumed that

there is a vector of functions ( ) that affect utility such that  and (

  


 )

 are

independent. These covariates might be demographic variables that represent observed

components of the utility. For example, one could use a single, linear index ( ) =

1+

2 , with the usual scale and location normalization imposed. The demand function

0( ( 0) ) would then depend on the index ( 0) as would the average demand

̄0( ( 0)) =

Z
0( ( 0) )() = [| =  ( 0) = ]

Here average demand is equal to a partial index regression of quantity  on  and ( )

Similar approaches to conditioning on covariates are common in demand analysis.

Endogeneity can be accounted for if there is an estimable control variable  such that

 and  are independent conditional on  and the conditional support of  given 

equals the marginal support of  In that case it follows as in Blundell and Powell (2003)
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and Imbens and Newey (2009) thatZ
[| =   = ]() = ̄0()

Z
Pr( ≤ | =   = )() =  (| 0 0)

where () is the CDF of . Although conditions for existence of a control variable are

quite strong (see Blundell and Matzkin, 2014), this approach does provide a way to allow

for some forms of endogeneity.

Bounds on average surplus based on average demand are robust to measurement error

in the observed quantity that preserves conditional expectations. For example if  =

∗ + where 
∗
 is true demand and  is measurement error satisfying [|  ] = 0

then the bounds based on income effects are still valid. This is not true for the general

bounds that make used of the distribution of demand.

10 Applications with Two Goods or Restricted Het-

erogeneity

Recently a number of papers have considered welfare analysis with two goods and scalar

heterogeneity. The demand specification they have used is one where  = ( ) for

( ) monotonic in the scalar  and  = ( ) for a scalar . Under independence of

 and  the conditional quantiles of quantity will be demands for quantiles of . To

see this result note that by equivariance of quantiles to monotonic transformations the

conditional quantile of  given  =  will be (()) where () is the 
 quantile

of the distribution of , i.e.

(()) = ( |)

Thus the demand function at the   quantile of  is equal to the   conditional quantile

of quantity given  in the data.

If the scalar heterogeneity specification is really correct then one can estimate de-

mand functions by estimating conditional quantile functions. A nonparametric estimator

̂( |) of the conditional quantile of quantity conditional on price and income  (and
possibly covariates) will estimate the demand function ( ) at  = () The corre-

sponding surplus can then then be estimated as the numerical solution ̂() = ̂(0 ) to
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the ordinary differential equation

̂( )


= −̂( |0 + ∆  − ̂( ))∆ ̂(1 ) = 0

Standard errors can be formed by the bootstrap as discussed earlier or by analytical

methods. Average surplus and the distribution of surplus can be estimated by integrating

over  . One can generalize this model to allow for endogeneity by using the control

function approach sketched above. Alternatively one could assume that an instrument

is independent of  and estimate (()) using quantile nonparametric instrumental

variables estimation as in Chernozhukov and Hansen (2005) and Chernozhukov, Imbens,

and Newey (2007). Blundell Horowitz, and Parey (2016) use this approach.

Blundell, Horowitz, and Parey (2016), Hoderlein and Vanhems (2013), and Blundell,

Kristensen, and Matzkin (2014) consider two goods and scalar heterogeneity. Hoder-

lein and Vanhems (2013) propose unrestricted conditional quantile estimation, using a

control function to account for endogeneity. Their application is to gasoline demand

with the distance from the Gulf of Mexico as an instrument, as suggested by Blundell,

Horowitz, and Parey (2012). Blundell, Horowitz and Parey (2016) propose quantile IV

estimation assuming that the instrument is independent of . They find in their gaso-

line demand application that imposing the Slutzky condition smooths out the demand

estimates substantially.

The results of Blundell, Horowitz, and Parey (2016) and Hoderlein and Vanhems

(2013) depend on the assumption of scalar heterogeneity. As discussed in Section 6. the

question of whether heterogeneity is scalar cannot be answered from cross-section data. If

heterogeneity is not scalar then it is not clear how we should interpret surplus estimated

at various quantiles. We do know that when income effects are bounded the average of

the quantile surplus across quantiles will be between the bounds on average surplus in

the Hoderlein and Vanhems (2013) setting, as discussed in Section 7. The width of the

bounds on average surplus thus provide a partial sensitivity check on how the assumption

of scalar heterogeneity affects the estimate of average surplus. A corresponding check

for quantile estimates is not available. Indeed we do not know how to interpret such
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estimates when there is general heterogeneity. In the instrumental variables setting of

Blundell, Horowitz, and Parey (2016) we do not know of any sensitivity check even for the

average surplus. We know very little about what is identified or about bounds for welfare

analysis in a model with an instrument that is independent of general heterogeneity.

Lewbel and Pendakur (2016) estimate surplus using a demand model that is pos-

sibly nonlinear and nonparametric in random coefficients. They give a straightforward

approach to identification and estimation when the coefficients are independent of one

another. Random coefficient specifications are an important approach to heterogeneity

and indeed is the way we approached the problem in the general two good model of

Section 8.

Blundell, Kristensen, and Matzkin (2014) use the model with scalar heterogeneity for

a different purpose, to use revealed preference bounds to predict demand outside the range

of the data. This work is robust to the presence of general heterogeneity. As discussed

in Section 5, the Slutzky condition is satisfied for each quantile if and only if there is

a demand model generating the data. For two goods revealed preference conditions are

equivalent to the Slutzky condition, so imposing the revealed preference bounds on the

quantiles is equivalent to imposing the Slutzky condition. Thus what is done in this

approach can be viewed as imposing restrictions on the quantile sufficient for it to be a

demand function. The goal can then be viewed as predicting quantile demand outside

the range of the data. Since quantile demand can also be interpreted as the quantile of

the true demand process, this work can be thought of as predicting the quantiles of a

general demand process outside the range of the data, while imposing all the restrictions

implied by utility maximization. In an application to British expenditure data they find

quite tight bounds on demand over a range of income and prices.

Blomquist, Kumar, Liang, and Newey (2015) make choice predictions subject to all

the restrictions imposed by utility maximization with general heterogeneity. Their goal

is to predict the effect of tax changes on the expected value of taxable income when

taxes are nonlinear. They give a way of estimating the conditional mean of taxable

income conditional on nonlinear budget constraints that imposes utility maximization.
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Their approach allows for measurement error in taxable income, unlike quantile based

methods. In an application to data from Sweden they obtain accurate predictions of the

effect of tax reforms.

11 Estimation and Welfare Analysis of Gasoline De-

mand

In this section we investigate how estimates of average consumer surplus and deadweight

loss for gasoline taxes in the US vary with income. We use data from the 2001 U.S.

National Household Transportation Survey (NHTS) from Hausman and Newey (2016).

This survey is conducted every 5-8 years by the Federal Highway Administration. The

survey is designed to be a nationally representative cross section which captures 24-

hour travel behavior of randomly-selected households. Data collected includes detailed

trip data and household characteristics such as income, age, and number of drivers. We

restrict our estimation sample to households with either one or two gasoline-powered cars,

vans, SUVs and pickup trucks. We exclude Alaska and Hawaii. We use daily gasoline

consumption, monthly state gasoline prices, and annual household income. The data we

use consists of 8,908 observations.

To estimate average gasoline demand we estimate up to a 4th degree polynomial with

interaction and predetermined variables along with price and income for household :

\̄() =
3X

=1

̂(ln )
(ln )(( ̂)) (11.14)

We estimate equation (11.14) allowing for the gasoline price to be jointly endogenous

using state tax rates as instruments and also distance of the state from the Gulf of Mexico,

as in Blundell, Horowitz and Parey (2012). Here we take a control function approach

where in the first stage we use the instruments , along with household income, and the

predetermined variables . We then take the estimated residuals from this first stage ̂

and use them as a control function in equation (11.14), constructing

\[| ] =
3X

=1

̃(ln )
(ln )(0)(̂) (11.15)
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where ̃ are the coefficients from the regression of  on log price, income, the

covariates index, and the first stage residual. The average demand is then estimated by

averaging over the estimated residuals ̂ holding , , and  fixed. We used a 3rd degree

polynomial after finding high standard errors with a 4th degree polynomial.

To set bounds on income effects we assume that gasoline is a normal good and so

choose the lower bound  to be 00. To set the upper bound we estimate a local linear

quantile regression of log of gasoline demand on log price and log income and evaluate

the income derivative of the gasoline quantile at median price and income. We find that

this income effect is increasing in the quantile  . We take the upper bound on the income

effect to be 0197, which is 20 times the quantile derivative at  = 9. This income effect

is very large, corresponding to more than two cents of every additional dollar of income

being spent on gasoline. We are confident that no one would have such a large income

effect for gasoline, as further discussed in Hausman and Newey (2105).

We estimate bounds on average equivalent variation and deadweight loss at each of

the deciles of the income distribution in our data. These bounds are based on income

effect bounds given in the previous paragraph. We form 95 % confidence intervals for

the identified set via Beresteanu and Molinari (2008) method, using an estimator of the

joint asymptotic variance of the upper and lower bounds obtained via bootstrapping the

estimates of the bounds, including all steps used in estimation. In Figures 1-4 we plot

the bounds for surplus and deadweight loss as a function of income, where we evaluate

at the .1, ..., .9 deciles of the income distribution in our sample. In Figures 1 and 2

we graph the bounds on the deadweight loss and the associated confidence intervals.

Figure 1 gives the results for a price change from 1.2 to 1.3 while Figure 2 gives the

corresponding graphs for a price change from 1.2 to 1.4. We find that the deadweight

loss is quite flat as a function of income though there is some evidence that deadweight

loss is largest at smaller income values and tends to decline with income. Figures 3 and

4 plot equivalent variation for a price change from 1.2 to 1.3 and 1.2 to 1.4 respectively,

along with confidence intervals. We find that the equivalent variation tends to increase

with income. When combined with the deadweight loss results this result implies that
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tax receipts will tend to increase with income.

We have used our bounds approach to estimate household gasoline demand functions

allowing for unrestricted heterogeneity. While the welfare measures are not point iden-

tified, we find that the lower and upper bound estimates are close to each other and

provide precise information about exact surplus with general heterogeneity.

12 Conclusion

Nonparametric welfare analysis with general heterogeneity is now straightforward. Bounds

on income effects lead to simple bounds on welfare. Bounds can also be constructed using

only the Slutzky condition. Average demand or share estimates can be used to construct

measures of welfare that average over general heterogeneity but vary with income and

covariates. Variation of the bounds with income and covariates allow us to assess how

average welfare effects vary across different groups, as important for evaluating policies.

All of this analysis can be accomplished while allowing for general heterogeneity.

An important open question is how the independence of budget sets and preferences

can be relaxed. As we have seen independence can be dropped where there is an estimable

control function where budget sets and preferences are independent conditional on the

control function. It would also be good to explore the power for identifying welfare

effects of instruments that are independent of multi dimensional heterogeneity. Other

open questions include how to do welfare analysis for many goods while only imposing

the Slutzky condition on demand, how to estimate bounds for the distribution of welfare

effects, and how to extend existing results to other settings such as those with nonlinear

budget sets. Ways to do welfare analysis with general heterogeneity are now available

but there remain many topics to be explored.
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