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Abstract

This thesis describes design, implementation, and performance of a Failure Detector (FD)
for Somersault distributed system. Somersault FD algorithms take a global view of failure
detection in order to increase their accuracy and to distinguish between process and con-
nection failures. The FD is divided into two functional parts. One, Foreground FD, pro-
vides on-demand detection of failures. Another, Background FD, reduces the vulnerability
of Somersault by finding the hidden failures that may accumulate in the system over time.
Foreground and Background FDs differ in their performance trade-offs. Foreground FD
guarantees short detection times at the expense of reduced resolution between process and
connection failures. Background FD provides higher accuracy of failure detection at the
expense of long detection times. Scalability of FD algorithms does not limit the scalability
of Somersault. Foreground FD requires only a smail constant number of messages for
every detection initiated. Background FD requires a quadratic number of messages; how-
ever, even for the largest feasible configurations of Somersault its overhead is acceptably
low.
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Chapter 1
Introduction

1.1 Overview

This thesis describes the requirements, design and implementation of a failure detector for
Somersault, an asynchronous distributed system. The failure detector has a low detection
latency, a low false positive rate and is scalable. These performance characteristics are
achieved without imposing a high overhead on the system.

The majority of research on distributed fault tolerant computing concentrates on issues
involving system availability (e.g. MTTF, number of communication or process failures
that a system can survive), state coherence of the member processes, and scalability. Even
though research in this area deals directly with failures, authors usually concentrate on the
high level design issues, assuming that failure detection mechanisms are readily available
to them. In this thesis we address the problem of building such failure detection mecha-
nisms.

We show that the accuracy of failure detection can be increased by using the global
information collected from different parts of the system. The improvement is not only
quantitative but is qualitative as well. By using global information we can distinguish
between various failure types (e.g. process, link and machine failures).

Our main conclusion is that in order to build an effective Failure Detection (FD) sub-
system that is accurate, has a low overhead and scales well, it is necessary to divide it into
two parts. One part, the Foreground Failure Detector, reacts to the immediate problems
that occur during the system operation. It is designed to reduce the failure detection

latency. The second part of the FD subsystem is the Background Failure Detector. It is



designed to reduce the number of hidden failures, which do not immediately affect the
system’s performance, but may cause a problem in the future. Background Failure Detec-
tion increases the MTTF of large systems by preventing the accumulation of multiple fail-

ures that may lead to a total system crash.

Our work is applicable to any distributed systems where processes are fail-silent. The
greatest benefit of using our Failure Detector will be achieved in systems that maintain
connections between all the processes in the system. This thesis discusses the design of
the Foreground and Background failure detectors, and their implementation in Somer-

sault, a distributed system being developed at HP Labs in Bristol, England.

1.2 Major issues addressed

There are several major difficulties in doing Failure Detection in Distributed systems.
Let us consider some of them. First of all, there is no certainty in distributed systems. If a
process A can not communicate with a process B across the network it may mean a num-
ber of things. For instance:

e Process B is dead

e The connection between A and B is broken

¢ B’s machine is down

 The whole network is down

Deciding among these possible causes requires additional information. This informa-
tion can be derived from looking at other failure indications in the system.

Next, there is a circularity problem involving the Failure Detection and the View man-
agement subsystems. The View Manager is responsible for maintaining a consistent view
of the system, so that all the processes that are in the system agree on who the members

are. The failure detector depends on the view manager to tell it what processes are there in
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the system. The view manager expects the failure detector to tell it about the problems
with any of those processes. As a result, there maybe various undesirable interactions
between the view manager and the failure detector that may lead to the loss of constant
system view. This is a serious problem and it has to be addressed in design of the failure

detector.

Finally, scaleability is crucial for building Failure Detectors. Namely, if the Failure
Detector generates too much traffic, it will slow the system down. As a result, more failure
detections will be initiated, generating even more traffic. As a result, the whole system
may collapse under the increased failure detection load. On another hand, if the failure
detection is performed infrequently, failure detection traffic is not going to be a problem.
However, multiple failures may accumulate in the system, thus increasing its vulnerability
to total failure. Therefore, Failure Detectors have to be carefully designed to meet both
requirements of not overloading the system and conducting the failure detection fre-
quently enough to avoid the accumulation of multiple failures. This task becomes even

more difficult for larger systems.

1.3 Measuring Performance of Failure Detection

Effective failure detection system is essential for obtaining the high levels of system avail-
ability. Here we consider the criteria for evaluating failure detection schemes and deter-

mine the desirable characteristics.

1.3.1 Semantic Guarantees

Failures Detected
Failures in a distributed system can be classified as follows [16]:

« Value failures: The value returned in response to a request for information is incor-
rect.
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» Crash failures: The component just stops working, without bad side-effects, output-
ting nothing.

» Performance failures: The response occurs, but too early or (more usually) too late.
 Omission failures: There is no response to a particular request for service.

» Duplication failures: There are too many responses to a particular request for ser-
vice.

e Ordering failures: Responses are ordered incorrectly.

« Byzantine failures: Unpredictable erroneous behavior.

Failure detection mechanisms are able to cope with certain subsets of these failures,
usually not including the Value and Byzantine failures, because detecting those requites

application level knowledge, which is normally not available to fault tolerant systems.

It is also important that the failure detection is “intelligent” about what it is doing. For
instance in the case of faulty link, it is wrong to declare both processors on the ends of the
link dead; instead, only one should be killed, and one should survive. It is desirable that
the failure detection deals gracefully with LAN glitches and isolated processes. Most
importantly, if failure detection involves selecting a leader, it is important to insure that
there is only one leader selected, otherwise the processes maybe partitioned into separate
groups, and the split-brain syndrome will result without the total network failure. It is
impossible to enumerate all the things that can go wrong with a distributed system, how-
ever, the above examples are the ones that are of biggest concern to us; therefore they will

be addressed in the algorithm analysis in the following chapters.

Consistency and Order
Detecting a failure of a process or a link by means of a time-out is relatively straight-

forward. The difficult part is notifying all the processes in the system about the failure in a
consistent way that presents a system with a coherent membership picture. The most

important parameter which defines the semantics of failure notification is ordering of the
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membership events. There may be no ordering guarantees at all, or there may be a partial,
casual, or total ordering. The stronger consistency is harder to achieve, but it allows for a

simpler overall system design.

1.3.2 Performance Metrics
Apart from the “quality” of service it is important to know what is the overhead of a fail-

ure detection scheme both during normal operation and when there are failures in the sys-
tem. It is important to know wether any additional messages are required or if the failure
detection information is piggybacked onto other messages. If additional messages are
indeed required, it is necessary to know the order of growth of these messages, i.e.
whether the number of messages is linear, quadratic, etc. to the number of the processes in
the system. Finally, knowing how the Failure Detector behaves under different loads may

be important in fine tuning the system.

1.3.3 Service Guarantees
There are several dimensions for classifying failure detection schemes. Ordering by com-

pleteness and accuracy is proposed in [8]. Completeness relates to identifying the faulty
processes. It is said to be strong if “‘every process that crashes is permanently suspected by
every correct process”; it is said to be weak if “every proce.: that crashes is permanently
suspected by some correct process.” Similarly, accuracy is said to be strong if “correct
processes are never suspected” and it is said to be weak if “some correct process is never
suspected” [8].

For the purpose of building a working system, however, a different set of classification
is required. It is critical to be able to find the failed processes fast to avoid long recovery
times. However, because recovery maybe expensive, it is important to not declare correct

processes dead, for such declaration will lead to unnecessary recovery overhead. There-
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fore, for the purpose of our analysis we adopt the following metrics — error detecticn
latency and a false positive rate. The latency characterizes a mean delay required to
detect a failure of a fail-silent process. False positive rate characterizes the percentage of

the processes that were suspected to have failed, but were in fact correct.

Finally, we should be cautious of the system accumulating undetected errors, which,
whien discovered, may lead to a total system failure. Therefore, it is important that all fail-

ures are discovered in a bounded amount of time.

1.3.4 Realistic Failure Detector Requirements

The Ideal Failure detector would provide the ordering of failures, would be accurate,
compl#*:, would have a small overhead and a bounded detection time, and would not have
a single point of failure, would not partition and would not generate the bursts of traffic
when failures are detected.

The ideal failure detector cannot be built, however, because its requirements can not
be implemented in one system. First, let us note that in order for all processes to get a con-
sistent view of failures in the system, it is necessary to perform a broadcast every time a
failure is discovered. Therefore, if we want consistency we must accept having traffic
bursts at failure. Second, we can not guarantee accuracy, that is that only the faulty com-
ponents of the system will be declared dead. Finally, one can derive form the result by Fis-
cher, Lynch and Paterson [14], that there is no way of reliably checking weather a process
is dead or is merely slow. Moreover, same result shows that reaching consensus about the
faulty process is impossible [14].

Taking this into account, we conclude that the closest approximation to the ideal fail-
ure detector would be a failure detector that provides ordering of failures, it may not be

accurate, but will be complete, would have a small overhead and a bounded detection
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time, would not have a single point of failure, and would not partition, however, it may

generate traffic bursts when failures are detected.

1.4 Proposed Failure Detection Algorithms

Here we discuss the Failure detection algorithms that meet the performance requirements

outlined above, and work well within Somersault.

1.4.1 Somersault
Somersault is a distributed fault-tolerant system for supporting telecom services. It pro-

vides fault-tolerance with respect to hardware, software and communication failures. It is
expected to operate continuously for periods as long as 20 years, and support a real-time
processing capability. It is based on a system called Manetho [13], [18]. Somersault runs
on top of UNIX, using TCP/IP stacks on a LAN.

Somersault provides fault-tolerance through the use of active process replication.
Somersault is guarantesd to survive any single link or process failure. However, it may not
be able to survive multiple failures, as some of the state information that is needed for
recovery may be lost.

Somersault consists of processes and links between them. Unlike many other fault-tol-
erant systems, Somersault is connection oriented. Connections are elements of the system,
just like processes are. Every process maintains connections with every other process in
the system. Most of the connections are idle most of the time. However, during failure
recovery, most of connections carry recovery traffic. Broken connections are fixed by kill-
ing off one of the end processes, and then taking a recovery action for that process.
Because process recovery in the extreme cases may involve sending Gigabytes of state

information, it is expensive, both in terms of latency and network resources.
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In order to support the normal operation of Somersault over an extended period of
time, failure detector must find both process and link failures. Regardless of the applica-
tion traffic it must find failures fast enough in order to prevent the system from accumulat-
ing multiple failures and crashing.

In order to support Somersault’s real time processing capabilities, the failure detector
has to have a low latency (under 300ms). With a 300ms failure detection time, it would be
able to detect failures and notify the fault handling mechanisms in time to take a fault-han-
dling action without disrupting the quality of real-time service.

This information is sufficient to justify and understand the failure detector design. A
more comprehensive description of Somersault is provided in Chapter 5, where a detailed
description of Somersault architecture is needed in order to analyze the scalability of the

system.

1.4.2 Design
We solve the FD problem by introducing two classes of Failure Detection Algorithms.

Both use time-outs, and both are not absolutely accurate. The best we can do is to approx-
imate ideal behavior using the assumptions we can make about our system.

Both approaches to failure detection take a global view of the system, in order to
increase their accuracy, and to distinguish between the process and link failures. Both
assume that there exists an independent view management mechanism that insures that all
surviving processes in the system see the failures they discover in the same order (we
describe such a view manager in Section 2.4). Whenever a failure has been discovered by
either detector, it is reported to the view manager which insures that it becomes known to

the rest of the system.
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The Foreground Failure Detection responds to failures that occur when a process tries
to communicate with another process and does not succeed. In this case Foreground FD
attempts to determine the cause of failure accurately and quickly. Foreground Failure
detection is subject to trade-off between the speed and the accuracy of failure detection.
When it is very fast its accuracy is low. In order to increase the accuracy it is necessary to

increase the duration of failure detection.

Background FD addresses the long term viability of the system. Its task is to prevent
the system from accumulating failures that are not encountered during the normal opera-

tion, but may cause a system crash during process recovery.

1.4.3 Foreground (event driven) scheme

When a process can not communicate with another process the immediate objective is
to determine whether the process or the channel to that process are dead. This can be done
by asking some other process to ping the suspect. We call this arbitration, and the process
that is doing the additional pings an arbiter. Arbiters are not special. Any process in the

system can be asked to play the arbiter role at some point

Figure 1.1. Distinguishing between a channel and a process failure. An arbiter C pings B on A’s
behalf. If C is able to communicate with B, then the AB link is broken; otherwise B is dead.

Consider the Figure 1.1. Process A sends a message to process B, but does not receive
an acknowledgment. After a while A begins to suspect that either process B is dead or the

link leading to B is broken. A asks C to be an arbiter and ping B. After pinging B, the arbi-
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ter returns the result of the ping back to A. Now A can decide whether the process B is
dead, or the AB link is broken. If C reports that pinging B was unsuccessful, A decides
that because other processes can not communicate with B as well, B must be dead. Alter-
natively, if C reports that B acknowledged its ping, A decides that it is likely that the AB
link is broken, but B is still up and running. Either way A reports its conclusion to the

view manager which than notifies the remaining processes.

1.4.4 Background FD mechanism
Background failure detection finds failures in components (both links and processes) that

are temporarily idle, and thus are not subject to Foreground Failure detection. Compared
to Foreground, Background Failure Detection operates under much looser time con-
straints, but potentially has many more components to check (if most of the links in a large
system will be idle most of the time). Thus the Background FD algorithms trade the speed
of failure detection for reduced traffic generated by it.

The Background Failure Detection algorithm runs on two types of processes — a
leader process and normal processes. There should be only one leader process in a system,
the rest of the processes are normal. Any normal process can be chosen to become a
leader. The algorithm also defines the maximal period of time after which any failure
should be detected. We call it a self-checking period.

Normal processes in Background FD ping all other processes in the system, spacing
pings to every process randomly within an interval from half to one self-checking period.
Whenever a ping is not acknowledged, a suspicion report is sent to the leader process.

The leader process keeps track of all the suspicion reports it received during the slid-
ing window of one self-checking period. Using a sliding window allows the leader to filter

out transient failures that were caused by variation in communication latency. Whenever a
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Figure 1.2. Background Failure Detection Scenarios. Dotted lines are pings, solid
lines are suspect messages. L is a leader process; A, B and C are the normal
processes. (a) Link failure detection. (b) Process failure detection.

leader gets a report saying that process A suspects process B, and a report that process B
suspects process A within the same window, the leader decides that the link AB is broken.
Alternatively, if two processes report that they suspect a process A during the same win-

dow, leader decides that the process A is dead.

1.5 Thesis Structure

In this chapter we outlined the requirements for failure detection and the algorithms devel-
oped. The following chapters elaborate the description of the failure detection subsystem
presented here. In Chapter 2 we discuss the existing failure-detector designs, and evaluate
their applicability to Somersault. In Chapter 3 we describe the Foreground Failure detec-
tion mechanism in detail. In Chapter 4 we concentrate on Background Failure detection.
Chapter 5 analyzes the relationship between the reliability of components, performance of
the failure detector and scalability of the system. In Chapter 6 we present the experiments
verifying our failure detection algorithms. Finally, in Chapter 7 we discuss the lessons

learned form building the failure detector and suggest the possibilities for future work.
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Chapter 2

Related Work

This chapter analyzes four different approaches to failure detection according to the crite-
ria suggested in Section 1.3 above. Each of these approaches is discussed in turn. For each
method we analyze it’s algorithm, the semantic guarantees it provides, it’s complexity, ser-
vice guarantees and overall rating. The comparison of all these schemes is summarized in

table Table 2.1 at the end of this section.

2.1 A Simple Timeout-Based Approach

A simple minded approach to failure detection was described by Loques and Kramer [25].
Their system detects failures of machines participating in computation by using a timeout

mechanism.

Algorithm Description
A special class of processes, stand-by managers, periodically send messages to the

rest of the processes in the system. If the reply from a particular process does not arrive
within a certain time limit, the stand-by manager decides that the process is dead and

invokes a stand-by copy for that process.

Semantic Guarantees
Stand-by managers, however, may fail to detect a machine failing and recovering

quickly. If a machine goes down and recovers in between two consecutive messages from
the stand-by manager, the manager would never suspect that the machine has crashed.
This is unacceptable if the stand-by manager has to take some corrective action whenever
a machine crashes. Therefore, this method requires some additional mechanism to insure

that all failures get detected, for example the use of version numbers. Even if a machine
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fails and recovers between the two messages from its manager, the manager will notice
that the machine in question responded with the new version number, and this must have
crashed and subsequently recovered.

More importantly, this method of failure detection does not provide a mechanism to
insure that all the processes in the system have a consistent view of the system. For exam-
ple, processes may receive notifications of other machines failing in different order. Even
worse, this method is subject to a single point of failure. Namely, no one checks on the sta-
tus of stand-by managers. Therefore, if a stand-by manager fails, there is no way to detect

this failure, and consequently any other failure among the processes it was checking on.

Complexity
In its simplest form the algorithm described in [25] hardly incurs any overhead. However,

it has to be extended with a mechanism for consistently informing surviving processes
about the discovered faults. In order to insure a minimal consistency requirement of all
surviving processes knowing about a failure, two-phase commit should be added to this
algorithm. Running a two-phase commit will incur an O(n) messages overhead for every
failure. Providing a stronger consistency of every surviving process observing the failures

in the same order is likely to incur additional costs.

Service Guarantees
Service guarantees of this scheme are as follows. The failure detection latency is pro-

portional to the number of time-outs required on the “ping” messages sent by the stand-by
managers to declare a process dead, and the false positive rate is inversely proportional to
this number. The number of additional “ping” messages is proportional to the number of
process in the system. The time to detect failures is prcportional to the period of the ping

messages.
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Overall rating
The advantage of this algorithm is its simplicity. However, it comes at a cost of poor

semantic guarantees. It would not be acceptable to use this algorithm in Somersault,
because it does not even attempt to provide a consistent view of the system. Modifying it
to suffice the consistency requirements of Somersault will result in building a whole new
voting layer on top of it. Therefore, some of the algorithms considered below maybe better

suited for modification and use in Somersault.

2.2 Kernel-Level Timeout Method

A similar timeout-based failure detector is implemented in the ROSE operating system

[26].

Algorithm Description
In ROSE, the monitoring processes are part of the kernel and can be selectively turned on

and off. They do not, however, make decisions about what to do after the failure is

detected, instead they notify the application processes.

Semantic Guarantees
This may be a more efficient solution because running the monitoring processes in the

kernel minimizes the number of context switches required to perform failure dete tion.
However, this approach does not resolve any of the drawbacks the previous approach had.
In fact, it introduces a new problem. The communication channel which is being tested is
a kernel-to-kernel multicast, and is different from the communication channels used by the
applications. Therefore, it may detect communication faults which do not affect the appli-

cations, or ignore some faults which do not manifest themseives on the kernel level [30].
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Complexity
The number of messages is at worst proportional to the square of the number of physi-

cal machines in the system.

Service Guarantees
Failure detection latency for the Kernel Level Time-outs is similar to the one in the

previous method. However, the false positive rate is worse because even though the meth-
ods are very similar, this method tests the kernel-to-kernel channels that are different from
the ones used by the applications that need the failure detection results. The failure detec-
tion times are unbounded, because some channels are never tested before they have to be

used by the system.

Overall rating
This is probably an efficient practical solution. However, it will not work for Somersault

for two reasons. First it involves altering the kernel, which is out of the scope of this
project. Second, it is little more than a trivial timeout-based failure detector. Therefore, it

does not provide the semantic guarantees required by Somersault.

2.3 A Fully Distributed Symmetric Approach

The algorithms considered above offered little more than local timeout-based failure
detection. In order to find an algorithm with better semantic guarantees, we turn to consid-
ering distributed algorithms which take a more glcbal view of the system. A fully distrib-
uted symmetric protocol is discussed in [7]. The protocol consists of two interacting

protocols: Node Up and Node Down.
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Algorithm Description
The Node Down protocol is decentralized. It is invoked by a process (process A in

Figure 2.1) which can not communicate with some other process (process C) in the sys-
tem. Process A broadcasts C’s identifier (ID) and the version number to every other pro-
cess in the system. Upon receipt of the first Node Down message other processes mark
that process as being down if the version number in the message is greater or equal to the
locally cashed version number. Then the processes also run the Node Down protocol
rebroadcasting the message to all the processes in the system. In the original description of
the algorithm broadcast is implemented as a series of synchronous point-to-point commu-
nications. A process first communicates with his “right neighbor” in a virtual ring, waits
for an acknowledgment; then communicates with the next process, all the way around the
circle until it communicates with and gets reply from its leftmost neighbor. However, there

is no apparent reason why Ethernet broadcast or Internet multicast could not be used.

)\ -
') N
e ¢
(a) Process A time-outs (b) Procass B begins (c) Process D joins
on C and begins notitying executing the NDP for C, in as A and B continue
other nodes that C is down  and process A continues the NDP for C

®
@ e
(d) A Is done :sendingB (e) B is done too, E g) Finally E notifies

NDP messages, but and D carry on of C's failure and
D and E continue NDP is completed

Figure 2.1. Node Down Protocol is highly redundant, and involves every process talking to every
other process in the system
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This scheme ensures that all surviving processes hear about the process failure. When
a process recovers from a crash it runs a Node Up protocol, broadcasting its new version
number to all other processes. Those processes mark the recovering process as being up if
its version number is higher than the locally cashed one. Then they reply with their current
version numbers, thus allowing the recovering process to construct z consistent view of
the system.

Multiple failures can be discovered during the execution of the Node Down Protocol,
when processes fail to reply to Node Down messages. Interactions between the Node
Down and Node Up protocols are resolved by using version numbers. So, for example, if
processor B believes that processor C version 3 is up, then when B gets a Node Down
message for C version 1 or 2 it will take no action; version 3 or greater will cause B to
mazk C as being down.

If a process can not communicate with any other processes in the system it declares
itself isolated and instead of trying to run a Node Down Protocol for every other process it
declares itself isolated. Isolation ends when a process receives a message from another

process in the system.

Semantic Guarantees
This algorithm detects crash failures of processes and communication links. In some

cases, like process isolation, it allows a process to wait until it is reconnected with the rest
of the system. This mechanism allows the system to survive LAN glitches, when all pos-
sessors get disconnected from each other for a short period of time. Moreover, there is no
danger of splitting the processors between several leaders, because the algorithm is fully

symmetric and it has no leaders.

26



There is no notion of process views in this algorithm, instead there are process joins
and crashes. Because different processes may see events in a different order, this algo-
rithm does not provide a consistent view of the system at all the times, and because of that
the images of the system that processes have, can not be ordered. For example, in
Figure 2.1, suppose that D decides that E has failed at the same time as A decided that C
has failed. Then, the order of process crashes as seen by A and D will be different, and

therefore their views of the system will not be consistent and can not be ordered.

Complexity
This algorithm consists of two protocols. The Node Down Protocol requires every proces-

sor to communicate with every other processor in the system and receive a reply. Sc even
if an efficient multicast mechanism is used, the necessity to get replies brings the total
number of messages to O(n?), where n is the number of processes in the systen.

Node up protocol is centralized and requires a processor to communicate with all other
processes in the system once, and get a reply. Again, because the reply is required, the
total number of messages is O(n).

Therefore the total complexity of this algorithm is determined by the number of mes-

sages sent during the Node Down stage, and is o(n?) messages.

Service Guarantees
The Failure Detection Latency is determined by the iumber of retries necessary for timing

a connection out, plus the time it takes to propagace the Node Down messages to all the
processes in the system. Depending on the implementation of the broadcast mechanism
the later may take anywhere from one broadcast to O(n?) messages. Failures may go

unnoticed for a long time, until one failure is found and the whole system is re-checked.
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The False Positive rate is again dependent on the number of retries required for a tiin-

cout, and is slightly improved by a special case handling of a total process isolation case.

Overall rating
The performance of the algorithm can be slightly improved by using an Ethemet-like

multicast mechanism. However, the number of messages required will still be quadratic to
the number of processors. Therefore, this algorithm is not likely to scale well. Failure
detectior: latency maybe long too. In addition, the processor views provided by this proto-
col are inconsistent and may not be ordered. Therefore, this algorithm in its original form
cannot be used by Somersault.

The key to adapting this algorithm to Somersault would be providing a way to make
the view of all joins and leaves consistent across the system. Another aspect that would
need significant improvement is performance. Every process hears about every join or
leave from every other process in the system. There are more economical ways of reliably

distributing the information across the system

2.4 Isis Asymmetric Site View Management
The main drawbacks of the symmetric algorithm described above are the great number of

messages required in order to propagate the view information, and an inconsistent order in
which this information is delivered to processes. An asymmetric approach attempts to
cope with this problem by selecting a leader which coordinates the activity of other pro-
cesses, thus reducing the amount of communication required and introducing more order

to the view change process [4].

Algorithm Description
Processes are ordered according to their unique IDs. A process with the highest ID is said
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to be a leader. Every process maintains a view of the system containing the member pro-
cess IDs and their incarnation numbers. When a system is cold-booted all the cite views
are initiated to a consistent state. Site views change in an ordered sequence V;, Vi1, Vi,2,
etc., and the content of views is consistent across all the processes in the system.

View change is carried out in a form of a two-phase commit protocol. When a process
joins in or fails the leader process is notified. The leader increments his view number and
stops accepting the messages from the processes with lower view numbers. Then the
leader sends out a broadcast message to all other processes requesting a view change and
notifying them of the events included into it.

Upon receipt of a view change request processes stop accepting messages from other
processes not in the proposed view. Processes reply positively to the request if they have
not seen the proposed view before, or the previous view is completely contained in the
new one. Otherwise, the process has seen some event which is not included into the pro-
posed view. In this case the process responds negatively, and includes such events into the
response.

If the responses to the view change request were all positive, the leader commits the
view and sends out a commit message to all the processes in the view. If there are some
negative responses, or any new events had happened, the leader includes them into a pro-
posed view, increments its number and sends out the view change request again.

Finally, if a leader crashes, the process with a next highest ID becomes a leader,
includes the failure of the old leader into a proposed view, and initiates the view update by

sending out the view change request.

Semantic Guarantees
Unless processes keep on continuously joining or leaving the system, a coherent view will
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be achieved across the system. If a leader survives during the voting process, it will even-
tually hear about all the events in the system, and therefore will commit an appropriate
view. If a leader crashes during the voting, a new leader will still be able to obtain all the
necessary information about events in the system and will eventually commit too.

Because the view change process is centralized, the sequence of views will be exactly
the same at all the processes in the system. The leader also can take a more global view on
the failure information coming to it. For instance, it may be able to distinguish between
the link failures and the failures of processes at the endpoints.

Still, there exists a problem with this algorithm. It assumes that the next leader is
always selected uniquely and in order derived from the process IDs. However, it is possi-
ble that two processes will attempt to become the leaders at the same time. This will result
in partitioning of the system, without having an actual system failure. Consider the sce-

nario in Figure 2.2.

(ADC) {BDC} {AD} {BC}
(ADC} {BD.C} {AD) (B.C)

The leader process Once a process had BothAand B BothD and C

A initlates a new received a view which  took notice of accept the

view Vj,; to notify excludes some other D and C rejecting respective V,,»

processes about process, it stops their respective fromA and B

what it perceives accepting messages  messages. Both respectively.

to be B's failure. from that process. A and B introduce The system

At the same time Therefore, in our their new views, is partitioned

B tries to become scenario D will not both numbered Into two halves

a new leader and ccept B's version Vj;2. Now both unaware of

broadcasts a different ol V.1 and C will views Include each other's

Vi1 that excludes A. not accept A's version. two processes. existence

Figure 2.2, Partitioning due to a single communication channel failure: during the view V; a link
between the leader process and the next process to become a leader fails.

This situation can be easily avoided by using an ordered multicast to present the new

system view. In fact, ISIS has such primitive, named GBCAST [4], for group broadcast.
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the problem is that a complicated protocol like GBCAST requires a working failure detec-
tor. Therefore, to avoid circularity it can not be used in Failure Detection.

ISIS gets around this problem by discarding messages form the processes that are not
in the current view and introducing a new message type “you are dead.” This message is
sent in response to a message received from a process not in a current view. When a pro-
cess receives a “you are dead” message it terminates. Here is how this mechanism works
in the competing leaders scenario. A process receives a view from one of the leaders, and
when the other leader sends it a view, the process responds with “you are dead” message,
causing the other leader to die. It may be the case that both leaders will get killed, and then
the next candidate or a set of candidates will try to become a leader. Thus, ISIS avoids par-

titioning, but may Kkill processes, increasing the recovery cost.

Complexity
The algorithm uses a two-phase commit involving two rounds of O(n) messages. Thus

even if multicast is implemented as a sequence of point-to-point communications of the
leader process with the rest of the system, the whole failure detection-notification cycle

will be completed in O(n) time.

Service Guarantees
Failure detection latency of Isis’s Asymmetric Distributed Approach is proportional to

the number of pings required to suspect that the process is dead, plus the cost of two sys-
tem-wide broadcasts. False positive rate is inversely proportional to the number of failed
pings required to suspect a process. Failures may go unnoticed for a long time, because

only the channels forming the logical rings are checked regularly.
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Overall rating

This algorithm offers a relatively low overhead, while providing robustness. Its major

drawback is the possibility of process partitioning, even if the network is operating cor-

rectly. It is a rather unlikely event, but because it will lead to a “split brain” syndrome, it

has to be taken into account.

2.5 Algorithm comparison

Now let us compare the performance of the failure detection strategies we have discussed

above against the optimal failure detection requirements outlined in Section 1.3.4. Recall

that the optimal failure detector should provide the ordering of failures, it may not be

accurate, but should be complete, has a small overhead and a bounded detection time, and

would not have a single point of failure, should not partition, however, it may generate the

bursts of traffic when failures are detected

Sem
anti Service Guarantees
cs Performance
Yy g ] [V
o > @ | EelBgl ~8 -
g8l 8|5 |25 58|92|gy E8
53l § | 2 |9 B2 EE(E5| 58
EC| 2| E | E5|8E|CE TR a8
o |“ -
Simple Timeout @ ® ® \J @) ©) O O
Kemel Level ® ® ® o O O O o
Symmetric o ® @) O Q ] ® e
Isis Asymmetric O L O O o O ® ®
Optimal @) L O O O O -] O

Table 2.1: Comparative evaluation of four failure detection schemes. O = good, @ = bad (for
message order in the last column O = O(n), ® = O(n?). Itis important to notice that while tiere are
various good and bad aspects for every method presented here, none provide an accurate detection.
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If we compare the characteristics of the failure detectors considered above to those of
the Optimal failure detector from Table 2.1, we see that the Isis’s Asymmetric failure
detector provides the best match to the requirements of the Optimal detector. Isis deviates
from the Optimal Failure detector in that it may partition and does not have a bounded
detection time. Other schemes have more drawbacks, most indictably, they do not provide
ordering of failures, which is necessary in our case.

If we could fix the drawbacks of the Isis Failure detector, we would be able to use it in
Somersault. The danger of partitioning arises because the mechanism for determining the
state of the processes is simplistic, and does not take into account the fact that communi-
cation failures may affect the system just as much as process failures. The detection time
is not bounded because the failure detection is event driven. If there are no external inputs
all Isis components may break one by one, and this would not be noticed until the system

is"needed. at which point there maybe too many latent failures in it to run properly.

In the following chapters we consider two algorithms that fix the above problems with
Isis Failure Detection. These algorithms take a globalized approach to failure detection to
distinguish between process and communication failures. Consequently, they improve the
accuracy of Isis Failure Detection and reduce the danger of system partitioning. These
algorithms also guarantee a bounded failure detection time regardless of the traffic pat-
terns in the system. Therefore, they reduce the vulnerability of the system to hidden fail-
ures.

The algorithms described in the following chapters, however, do not replace the Isis
View Manager. They improve on Isis View manager failure detection, but do not provide
the rest of its functionality. Moreover, they reiay on the View Manager’s ability to main-
tain the consistent view of the system and inform the processes in the system about mem-

bership changes.
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Chapter 3
Foreground Failure Detection

3.1 Overview

This chapter presents a Foreground failure detection algorithm that distinguishes between
the process, link, machine, and network failures. The algorithm is based on the assumption
that multiple simultaneous process and link failures are unlikely; and when multiple link
or process failures are present in the system, they are caused by the machine or network
crashes. The inputs to the algorithm are the suspecting and the suspected processes; the
outputs are the state of the suspected process, the state of its link to a suspecting process,
plus possible conclusions about the state of other processes or links as well as machines
and the network as a whole. The algorithm works by asking indepenrdent processes to
judge the status of a process in question by communicating with it.

The algorithm incurs a low overhead cf seven messages per suspected failure, and is
able to detect machine failures quickly, thus reducing the number of failure detection mes-
sages in the system. However, its’ merit is limited by requiring a high network bandwidth
and low latency, and fail-silence of machines and processes. When combined with the Isis
view management algorithms discussed in Section 2.4, our algorithm performs as well as

the Optimal Failure detector described in Table 2.1, on page 32.

3.2 Performance considerations for failure detection.

Doing timely failure detection is important because it decreases the vulnerability of the
system due to multiple components being “‘broken” at the same time. However, fast failure

detection is also key for high performance of Somersault. Suppose the system is working
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on processing a request, and one of the primary processes does not respond to the mes-
sages sent to it. The system has to decide whether that process is dead, the machine it is
running on has crashed or the link connecting to that process is broken. Based on the type
of failure the system has to work out the recovery strategy, and carry it out. All of this has

to happen without distracting normal service provided by the system.

From the external point of view every incoming request has to be processed by the
system within 250 ms. (This is a telecom requirement). The typical actions, which happen
during this time if a component failure is suspected are:

» Identify the type of failure and the faulty component;

« Initiate the recovery of surviving processes in the affected recovery units;

» Bring the recovery units up to date (this does not mean a complete recovery with
replication, but rather having an up to date state in one of the processes);

« Continue servicing the external request.

Most of the time in failure handling is likely to be taken by bringing the state of the
surviving processes up to date. In a Somersault paradigm a secondary process that is try-
ing to catch up with the state of the dead primary has to communicate with every other
recovery unit in the system requesting antecedent information from them. For a system of
a reasonable size sending out all these requests and collecting and processing the replies is
likely to take most of 250 ms. allotted for coping with failures. Therefore, Foreground
failure detection has to be relatively fast, on the order of 10 ms.

In the process of Foreground failure detection there are several possible outcomes we

are looking for. They are
« Process failure
e Link failure
¢ Machine failure

« Total network failure
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Let us consider how we could distinguish between them using a limited number of

messages in a limited amount of time.

3.3 Assumptions
The quality of failure detection strongly depends on the properties of the network and the

protocols running over it. Currently we do not know what they are, however, we can make
several assumptions that are true for the networks and protocols that Somersault is likely
to use.)

o Communication links are lossless FIFO channels

» Network does not delay messages by more than ¢,,,, unless the messages are sent on
a broken link.

» Network does not partition
Using the above assumptions we can build a scheme that satisfies the timing require-

ments stated in the Section 3.2.

3.4 Method

The method presented here extracts the information about the likely nature of failures
in the systern from the communication patterns between processes. It concentrates on dis-
criminating between the process, link and machine failures, but detects total network fail-
ures as well. In order to differentiate between the above failure modes, the method utilizes

communication between processes on different machines.

3.4.1 Cencept
If a process A tries to communicate with a process B and fails to, there could be several

reasons for it. Communication failures could be due to any of the reasons listed in

Section 3.2 above. Process and link failures are the easiest to detect, while classifying
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machine and network fai'ures requires more information. The key in all scenarios is to ask
an independent process to arbiter the state of the system component in question. In our
example (Figure 3.1) of A not communicating with B an additional process C can be
asked to communicate with B. If C is successful, then B is alive and the link between A

and B must be faulty. Otherwise, B is likely to be dead.

Figure 3.1. An arbitration process for classifying process and link failures. When A tries to
communicate with B and fails, C is asked to communicate with B. If C is successful, then B is
OK, and the AB link is broken, otherwise B is dead

3.4.2 Topology
The above arbitration works as long as it is possible to get in touch with a process C.

However, the relative positions of A, B, and C affect the outcome of arbitration. If all three
processes are on the same machine, then there is no possibility of a machine or network
failures interfering. Therefore the conclusions reached using the above method are likely
to be correct. If processes A and B reside on different machines, then there are there
choices for placing C: on A’s machine, on B’s machine, and on the machine that hosts nei-
ther A or B.

« If C is on A’s machine, C’s inability to communicate with B implies one of the
following: B is dead, CB link is broken, B’s machine has crashed, or there is a
global network failure.

« If C is on B’s machine, C’s inability to communicate with B implies that most
likely B is dead.
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« If C is on a machine that hosts neither A or B, then C’s inability to communicate
with B implies on of the following: B is dead, CB link is broken, B’s machine
has crashed, or there is a global network failure.

The above cases point to the fact that for the most definitive results the arbiter process

should reside on B’s machine. However, just picking the arbiter on B’s machine may not

solve the problem. Namely,

« If A can not contact C on B’s machine, this may mean one the following: the
machine hosting B and C is dead, C is dead, AC link is dead, or there is a global
network failure.

This complication suggests that more information is needed in order to distinguish
among the possible causes of failure. This information can be obtained by using an addi-
tional arbiter D on a different machine. When an additional arbiter is used, the following
logic applies. If A cannot contact either of the arbiters C or D, it is likely that there is a net-
work failure. If either of C or D can contact B, then B is running, and consequently B’s
machine is up, but the AB link is broken. Finally, if A cannot contact C, but it can contact
D, and D can not contact B, then it appears that both B and C are dead. Consequently,
there is a suspicion that B’s machine has crashed, because B and C run on the same

machine, and the only common failure mode we consider is machine failure.

3.4.3 Refutation
The scheme described above will work quite well. It uses shorter time-outs than a simple

minded failure detector, because it subdivides the time available for failure detection into
several stages. Instead of just waiting on a link for some time T and then declaring the
process on the other end dead, our failure detector waits for a fraction of T and then
launces an inquiry to find the nature of the failure that caused the timeout. In case the net-
work is heavily loaded using longer time-outs could be essential for providing accurate

detection. Therefore, we propose the following amendment to the above algorithm.
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« In case of a timeout, run the failure detection, but before declaring the suspected
process/link dead. check if during failure detection the missing reply was
received. If yes, disregard the conclusions about the state of the suspected pro-
cess. If no, report the results of the failure detection to the view manager.

The amended algorithm now uses the timeous which are effectively as long as the

time-outs of a simple-minded algorithm, but in case of failure it is able to better determine

its cause.

3.4.4 Algorithm
According to the above observations the arbitration is structured as follows. First A tries

to pick an arbiter C on B’s machine. If successful, C’s conclusions are directly translated
into the results of failure detection. Otherwise, an arbiter D is picked on another machine
in order to distinguish between the link and the process failures for C, and to differentiate

between the machine and network failures (see Figure 3.2).

Wl &

M2

M3

Figure 3.2, Detection mechanism. A tries to communicate with B, but fails to.Then A asks a
process C on B’s machine M2 to arbitrate the failure. If A can communicate with C, then C’s
conclusions are taken to form decisions about the failure of B/AB. If A can not communicate
with C, an additional arbiter D is picked on a machine M3 which hosts neither of the processes in
question. D helps to decide on the status of C, and to distinguish between the failure of machine
M2 and a total network failure

Let us consider the steps that Foreground Failure Detection thread takes on timeout of
a message msg sent by a process A to a process B. Assume that A is running on machine

M1, and B is running on machine M2, and there are more than two machines in the system
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(see Figure 3.2). These following actions are taken by the failure detection thread created

on A to handle the suspected failure:

1. Select an arbiter process C on B’s machine M2. Any process running on M2,
except for B, can be selected to be an arbiter.

2. Select a machine M3 that is different from B’s machine M2, and A’s machine
M1. Randomly select another arbiter process D among the processes running
on M3.

3. Send an arbitration reguest to processes C and D, asking them to ping B.
4. Suspend this failure detection thread on A for the time allocated for arbitration

5. When the arbitration time is over, first check if B has acknowledged the msg
that triggered the start of this failure detection thread. If B has indeed acknowl-
edged during the arbitration, there is no failure. Therefore, terminate failure
detection on B.

6. In case B has not acknowledged the msg, check if C has acknowledged the
arbitration request. If yes, check C’s conclusion:
— If C contacted B successfully, then B is up, but the AB link is broken;
— Else B is dead.

7. If C has not acknowledged the arbitration request, check if D has acknowl-
edged. If D has indeed acknowledged, check D’s conclusion:
— If D contacted B successfully, then B is up, but the AB link is broken.
— Else, suspect that M2 has crashed or is isolated; for immediate purposes
conclude that B is dead.

8. If D has not acknowledged the arbitration request either, we do not have
enough information to make any conclusions about the state of B, except that
the network riight have failed

Table 3.1 presents a summary of decisions and justifications made by the arbitration
algorithm described above. The conclusions in this table are based on the assumption that
multiple process or link failures happening ai the same time are less likely than single fail-
ures, unless they are caused by the machine or network failures. For example consider a
case when A is not able to communicate with C, and D is able to communicate with B but

failed to communicate with C.

First consider B. A was not able to communicate with it, because either B was dead,
the AB link was broken, B’s machine has crashed, or the whole network was down due to

a temporary glitch or a permanent failure. A was able to communicate with D, therefore
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the network is up. D was able to communicate with B, therefore B is alive and B’s

machine has not crashed. This leaves us with the following conclusion: the AB link is

faulty.
A A D| D} Possible causes of | Most likely Decide Sus-
C D|B|C failure cause B/AB pect
1 -{-1-1 (B+AB) - (=B) AB AB is -
broken
1 - |-1-§ (B+AB) - (B+CB) B B isdead | -
0 111|110} (B+AB) - (C+AO) AB-AC AB is AC is bro-
(5B) - (=0 broken ken
0 1|10 (B+AB)-(C+AC) AB-C AB is C is dead
- (=8) - (C+DC) broken
0 101 (B+AB) - (C+AC) B-AC B is dead | Ac is bro-
- (B+DB) - (=C) ken
0 110]0] (B+4B) - (C+AC) B-C Bisdead | B's
- (B+DB) - (C+DC) machine
0 O0|-1-1 (B+4B) - (C+AO (B-C)- (D+AD) | Not network
- (D+AD) +AB-AC-AD cnough failure
info

Table 3.1: An arbitration summary. The first five columns show the outcomes of

communications on the links. “1” is OK, “0” is fail, and “-” stands for the communication that
does not happen, and therefore does not matter. The equations in the cells use boolean
operators: “-” is AND, “+” is OR, and “-" is NOT.

Now consider C. Let us note that C’s status was not essential for Somersault’s normal
operation at the point of suspected failure of the process B. Therefore all decisions about
C’s status are more of recommendation and should be referred to when C is essential for
Somersault’s normal work. A was not able to communicate with C, and we know that the
machine C is on is running, and the network works. Therefore, C is either dead, or has a
broken AC link. D was not able to communicate with C, thus either C is dead or the DC

link is broken. It is more likely that C is dead than that two links leading to it are broken at

the same timc. Therefore, C is likely to be dead.
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When the only communication that is successful is on a link from A to D, it is likely
that B’s machine is dead, because all attempts to communicate with two different pro-
cesses (B,C) on it from two different machines, that can communicate with each other
have failed.

Finally, in an extreme case when no communication is possible, it is likely that there is
a total network failure, and the arbitration should be tried later, preferably choosing D on a

different machine.

3.5 Limitations and system requirements
It is very important that the network used to run Somersault has a sufficient bandwidth.

Otherwise, under high loads the messages will be delayed for long times and result in
many time-outs during the arbitration process that will produce the wrong detection
results.

Another important issue is fail silence. If processes and machines are not fail silent,
there is no guarantee that failure detection will work at all, because any single failure may
flood the network without leaving any chance to do the failure detection with the short

time-outs required to meet the constraints in Section 3.2.

3.6 Special Cases

In this section we will consider a number of special circumstances that require a separate
treatment. We will show how the algorithm described above applies to each particular sit-

uation.

3.6.1 Network Overload and Adaptive Time-outs
In this chapier we have assumed that the network has a sufficient bandwidth and therefore

the absolute majority of the messages are not delayed for more than «,,,. However, there is

43



no way to guarantee this. For instance if a machine crashes and several large processes are
attempting to transfer state to the newly created secondaries, the amount of network traffic
will be high. The network delays are likely to become quite large. The failure detector
than has to either declare very process dead, o1 adjust the time-outs. Increasing the time-
outs may lead to violation of a 250ms performance constraint, but will keep the system

intact.

From the system point of view increasing the time-outs may have some benefit over
trying to rigidly meet a 250ms constraint. If the timeous are not relaxed, more processes
will be declared dead, which will lead to an increased recovery traffic. More traffic will
lead to more time-outs, more false positives and even more traffic from the processes try-
ing to recover. Finally, the system will lose so much volatile state, that it will not be able to

recover at all.

Therefore, we can state two requirements for reducing the false positive rate during the
network overload.

» Use adaptive timeous for failure detection, increasing the time-outs with an
increased network load

« Avoid the network overload. Apart from buying a faster network use a software
mechanism which will reduce the number of messages sent on the network in case
the traffic becomes too heavy.

3.6.2 A Two Machine System
In case Somersault is running on two machines, the failure detector described in

Section 3.4 will work, except it will not be able to detect the difference between the net-
work failure and the machine failure. To obtain the most reliable results the first arbiter
should be placed on B’s machine (see Fignre 3.2), and if the use of the second arbiter is

necessary, it should placed on A’s machine.



3.6.3 A Single Machine System
In case of a machine failure Somersault may end up running on a single machine. This

configuration can not tolerate machine failures anymore, however, failure detection is still
necessary to detect process and link failures. Because machine and network failures are
not a concern anymore, failure detection process is reduced to its basic principle presented

in the Figure 3.1. A single arbiter process is consulted and its decision is final.

In case there are only two processes on a single machine, the failure detection algo-
rithms presented above cannot be used anymore, because of the lack of potential arbiters.
Instead, simple time-outs can be used. Alternatively, information about the process status
can be obtained from the kernel. However, kernel may not have the up-to-date informa-

tion, and asking the kernel violates the end-to-end argument.

3.7 Analysis

The algorithm presented above has a constant cost of seven short messages. It can help
diagnose machine failures, so that the whole machine can be declared dead before every
other process in the system is trying to communicate with the processes on that machine.
Therefore, the algorithm allows to reduce the number of failure detection messages per
machine failure dramatically from O (n%/r) to O(1) (as usual n is the number of pro-
cesses, 7 is the number of machines).

The reliability of the algorithm is heavily dependant on having a sufficient network
bandwidth to guarantee a bounded communication latency and on having fail-silent
machines and processes.

If used as a failure detector for a more complex system like Isis sight view manager
the above algorithm avoids the danger of partitioning due to a single link failure (a link

between primary and secondary view managers), since this link failure will be detected
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and the situation in which the primary and the secondary view manages suspect each other

will be avoided.



Chapter 4

Background Failure Detection

The Background Failure Detector (Background FD) is a preemptive failure detector. Its
purpose is to find failures of links and nodes that are not actively involved in system oper-
ation, but may be needed in the future; for example, during process recovery. By finding
these hidden failures Background FD insures that multiple failures do not accumulate in
the system over long periods of operation, so the system is less vulnerable.

Background FD is implemented as a distributed asynchronous algorithm. It operates
by generating messages independent from application traffic, and analyzing the failure
patterns that are observed on these messages. Background FD algorithm operates on two
classes of processes: leader and normal. There is one leader processes; the rest of the pro-
cesses in the system are normal. All processes generate Background FD traffic messages;
if these messages are not acknowledged, failure suspicions are sent to the leader. The
leader analyzes failure suspicions by comparing their relative timings. It filters out tran-
sient faults and determines the presence and the nature of permanent failures.

Having a centralized algorithm in which all participants generate traffic is suboptimal
from the performance point of view. However, in Chapter 5 we show that without compre-
hensive centralized Background FD, Somersault will not be able to reach the required
availability levels. Additionally, we show that Background FD remains efficient even for
systems with hundreds of nodes in them.

The rest of this chapter is structured as follows. It begins by presenting the assump-
tions under which Background FD operates. Then it examines the architecture of Back-

ground FD, considers how it filters out transient failures, and the mechanisms used to
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distinguish between link and node failures. This chapter concludes by describing the algo-

rithm used by the Background FD leader, and analyzing its performance.

4.1 Assumptions

Background FD solves the same problem as the Foreground FD: finding of and distin-
guishing between process and link failures. However, where Foreground FD sacrifices
accuracy for real time performance, Background FD makes a different trade-off. Back-
ground FD) does not have to detect failures in real time; in fact, detection on the order of
tens of seconds or even minutes is sufficient. Background FD must have an extremely low
false positive rate, since finding non-existent failures will lead to killing off useful pro-
cesses, and will easily override all the benefits of preemptive failure detection. Thus,
Background FD trades timeliness for accuracy.

In particular, it is important that transient failures that arise during the normal system
operation are not mistaken for permanent ones. In order to filter out the transient failures
and to find all the permanent ones, Background FD requires multiple suspicions before

declaring a failure.

4.2 Background Failure Detection Architecture

Background FD algorithm tests every link and every process in the system in order to
detect failures. The difficulty arises making these tests accurate while minimizing the
communication overhead of these tests. In this section we describe how the tests are gen-

erated, and how results of these tests are processed.

Generating Test Messages
In order to make Background Failure Detection work, there has to be a method for

generating the test messages. It has to test every link in the system on a regular basis. It
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also has to avoid a situation in when a single process gets periodically overloaded by such
testing. For example, a situation in which there is a stable pattern where every process first
sends a test message to process A, then sends a test message to process B, etc. is undesir-
able. Instead the test-message load should be uniformly distributed throughout the system.
Also, generating this load should require only a minimal amount of coordination, so that it

would stay uniform regardless of the failures present in the system.

We achieve the goal of balancing the Background FD test traffic by using a random-
ized round-robin approach. We introduce a notion of a self-checking cycle or period. The
self-checking cycle is the maximum interval between two consecutive times any link is
checked.

Every process keeps a priority queue of timers ordered by expiration time, where each
timer corresponds to a particular neighbor of that process. Initially all timers are assigned
random values between the current time and the current time plus the self-checking

period. Whenever a timer expires:

1.Test message is sent to the neighbor prccess corresponding to that timer:;

2.The timer is reset to its current value plus a random number in the range form half to
a full self-checking period

3.The timer is reinserted into the appropriat;a slot in the priority queue

4.This process is repeated every time a timer expires.

The method presented above tests every ink in the system with a period varying from
half to a full self-checking cycle. The interval between the two successive tests of a link is
randomized within this period, and tests of different links are independent of each other.
Therefore, every process generally receives a balanced load of test messages from its

links. It is highly unlikely that any process will get flooded by the test messages arriving at
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its links at the same time. It is even less likely that any process will get flooded periodi-

cally.

Distinguishing Between Process and Link Failures

Now that we know how the test messages are generated, let us consider how to use
them in order to find failures in the system. We begin by considering scenarios where link
or node failures are present in the system. For those scenarios we analyze failure suspi-
cions generated due to time-outs of Background FD test messages. Then we determine
how to use these suspicions in order to accurately diagnose link and node failures.

When a link is faulty, its two end-processes find that test messages thev send to each
other are not being acknowledged. Therefore both processes will send their suspicions
about the other process to the background FD leader (see Figure 4.1.a).

When a process is faulty, all other processes in the system will find that their test mes-
sages sent to that process are not acknowledged. Consequently, all other processes will

send their suspicions about that process to the leader process (see Figure 4.1.b).

Figure 4.1. Background Failure Detection Scenarios. Dotted lines are pings, solid lines are
suspect messages. L is a leader process; A, B and C are the normal processes. (a) Link failure
detection. (b) Process failuie detection.

Therefore, we employ the following method for distinguishing between the link and the

process failures:
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« If two processes repeatedly suspect each other, then the link between those twe pro-
cesses is broken.

« If multiple processes suspect the same process, then the suspected process is dead.

DPiscarding Transient Failures

In the previous section we outlined a method for detecting of and distinguishing between
process and link failures. This method, however, is sensitive to transient failures. For
instance, consider a link between two processes that is fully functional, but occasionally
delays messages. Over a long period of time this link will delay enough background test
messages, and thus generate enough suspicions, to convince the leader process that it is
broken.

The main difference between transient and permanent failures from the Background
FD point of view is that suspicions about transient failures are infrequent, while perma-
nent failures are reported during every self-checking cycle.

In order to eliminate the influence of transient performance failures, Background FD
leader considers only the failure suspicions that are present in the sliding window

(Figure 4.2), and to declare a failure it requires multiple suspicions.

W T

Figure 4.2. A sliding window filtering of the relevant evenis. Only the failure detection
messages arrived during the most recent self-checking cycle are considered. The size of the
sliding window W should be large enough to cover one system checking period and to allow for
the decision making and network delays.
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If there really is a failure, the leader will receive a number of failure indications within
one window, and will deciare a component dead. If there is only a performance glitch, it
will receive only one suspicion, which will not be sufficient to declare a component dead.
A notable exception is the case of a “persistent” performance glitch caused by an overload
of a machine where the suspected process is running. However, under the telecom require-
ment of components being loaded at no more than 40% of their capacity during normal
operation [20], we assume that machine overload is not going to happen often enough to
justify changing this algorithm.

To make this approach work we need to make a sliding window as small as possible,
so that the leader gets the smallest number of transient failures per window. However, we
need to make the window large enough, so that the leader collects enough suspicions to
reach an accurate conclusion. Let us consider the minimal number of suspicions a leader
needs to observe in order to distinguish between the node and the link failures.

In order to accurately diagnose a link failure, leader needs to observe at least two mes-
sages from the processes on the ends of the link. The interval between these messages is
not going to exceed one self-checking cycle. To diagnose a process failure, the leader
needs at least two suspicions about the same process coming from different processes.

These suspicions will also be sent no more than a self-checking cycle apart.

Assuming that performance glitches are infrequent and the transmission times are
small compared to the self-checking cycle, a sliding window spanning two self-checking
cycles should be sufficient for filtering out performance glitches and detecting the real

failures.

4.3 The Leader Algorithm

Here we describe the algorithm that implements the heuristics described above. We look at
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inputs, outputs and the side-effects of the algorithm and analyze its behavior. The algo-
rithm is run every time the Background FD leader receives a suspicion. A sliding window
is used to allow the leader to filter out transient failures that were caused by variation in
communication latency. Whenever a leader gets a report saying that process A suspects
process B, and a report that process B suspects process A within the same window, the
leader decides that the link AB is broken. Alternatively, if two processes report that they

suspect a process A during the same window, the leader decides that the process A is dead.

Data Structures

The Background FD leader keeps a sliding window containing the suspicions that are
valid during the curreiit windowing period. Each suspicion contains two elements: a sus-
pected node and a suspected link. The content of the sliding window is updated with the

flow of time. The new suspicions are added in and the out-of-date ones are deleted.

The leader also keeps the list of previously detected failures. This list allows the leader
to discard suspicions about the dead processes and links without altering its internal state

and without effecting its conclusions about the status of other components.

Inputs

« A sliding window (sliding-window) containing the previously reported suspicions.
The algorithm uses one sliding-window to keep suspicions about ali components.

« A process that sent a suspicion message (suspecter);
« A process indicated in the suspicion message (suspecied);
« A list of previously discovered process and link failures (already-detected).

Output

« Failure status: Link-Failure, Process-Failure or OK.

Side-effects

« sliding-window is updated with respect to current time, suspicions received and fail-
ures detected;
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» already-detected is updated to reflect any new failures discovered.
Actions
The following steps are taken every time a suspicion message is received by the leader

process:

1.If the suspecter node, the suspected node, or the link connecting the two is found in

the already-detected list, then there is no new failure in the system. Therefore return
OK.

2. Otherwise, advance the sliding-window in accordance with the current-time.
3.Put suspicion {node(suspectee), link(suspector, suspected)} into the sliding-window.

4.1f the number of (suspecter, suspected) links (the order in which the endpoints are
listed does not matter here), is equal to 2, there is a link failure;
- Insert link(suspector, suspected) into the aiready-detected list;
- Delete all the suspicions that contain the link(suspector, suspected) from the slid-

ing-window;

- return Link-Failure.

5.Else if the count of nodes named suspected in the sliding-window is equal to 2, there
is a process failure;
- Insert node suspected into the already-detected list;

- Delete all the suspicions that contain the link(suspector, suspected) from the slid-
ing-window;
- return Process-Failure.

6.Else return OK.

4.4 Analysis

Under the assumptions that we made in this chapter: namely, that Background Failure
Detection can take a long time in order to increase accuracy of detections, and that the net-
work transmission times are bounded and in fact are small compared to the self-checking
cycle, we can make the following conclusion. The algorithm presented here has the fol-
lowing useful properties:

e Once a component has been declared dead, it is not considered in any more failure
calculations.

 Because links are checked once a system self-checking cycle, and processes are
checked more frequently, every process failure will be reported several times before
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the same link will be suspected twice. Therefore, if a link and a process were sus-
pected and, a cycle later, no one else suspected the process, but the same link is sus-
pected again, the process is OK, but the link is broken.

« By the same argument if two links leading to the same process are suspected, then
the links are OK, but the process is dead.

o If two processes on the ends of the same link suspect each other, the link wiil be
declared dead, and the decision as to which end process to kill will be left to the view
manager.
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Chapter S
Effects of Failure Detection on System Scalability

5.1 Overview

Scalability of distributed systems is a key factor in determining their success. Usually
scalability implies the ability of a system to maintain a certain level of performance as the
number or the size of its components increase. However, for fault tolerant systems there is
another important aspect of scalability. It is concerned with the changes in availability of
the system as the number of its components changes.

In this chapter we consider the scalability of Somersault with respect to fault toler-
ance. We conclude that reliable communication is key to scalability of Somersault. In the
absence of perfect communication, Somersault needs a failure detector that distinguishes
between the process and the link failures, and is guaranteed to find them in a bounded
amount of time. Given a high reliability of the network and a high speed of failure detec-
tion, Somersault can scale up to tens, possibly hundreds of processes, and is expected to
meet the telecom requirement of 99.9994% availability. In addition, fault tolerance of
Somersault can be increased by putting a smaller number of processes on each machine,
organizing the machines in a logical ring and using a faster network to connect them.

This chapter is structured in the following way. First we discuss the architectural
aspects of Somersault that affect its reliability. Then we propose a probability model that
allows to quantize the reliability of the system. Using this model we analyze the possible
causes of a total Somersault system failure. Having seen the causes of Somersault’s total
failure, we suggest a machine configuration and recovery unit layout that minimizes the

probability of total system failure and allows the system to withstand multiple machine
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failures without loosing much reliability. Once we establish the optimal system layout we
analyze the acceptable number of processes and speed of failure detection required for a
typical Somersault system with availability required by telecoms. We conclude by reiterat-

ing the requirements for the increased availability of Somersault.

5.2 Architecture of Somersault

In this section we discuss the aspects of Somersault’s architecture that are relevant to
understanding its scalability. The design of Somersault is based on Manetho, a distributed
fault tolerant system that uses a sender-based message logging algorithm [13]. We first
introduce the fundamental architecture of Manetho, and then discuss modifications made

to it in Somersault.

Manetho processes log the messages they send onto stable storage. This approach is
different form the one taken in traditional “log and replay” systems (see [2], [5], [22] and
[28]) that log the messages they receive. Another important feature of Manetho is that
when recovering after crash, processes roll forward from their latest checkpoint, as

opposed to rolling back the rest of the processes in other systems.

The central idea of Manetho is very simple: if the system is entirely message based,
and the state of processes is entirely determined by the messages they receive, then it is
possible to reconstruct the state of a crashed process by replaying to it the messages it
received. Using this idea, process recovery is done by rolling a process forward from its
latest checkpoint. This roll-forward is driven by the recovering process asking the rest of
the processes in the system to replay the messages they sent to it during the original execu-
tion [13].

In order to allow asynchronous logging to stable storage, processes append informa-

tion about their uncheckpointed state onto the outgoing messages. When recovering, a
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process retrieves its uncheckpointed state along with the messages that was sent to it from

the rest of the processes in the system (see Figure S. 1).

During the normal In case a precess falls During the recovery
operation uncheckpointed ts state is stili retained uncheckpointed state is

state is plggybacked by other processes in collected by the recovering
onto the application the system. process from other processes
messages and Is that had recelved messages
stored in the receiving from it

process.

Figure 5. 1. One of the key ideas of the Manetho algorithm is to allow asynchronous logging by
distributing the uncheckpointed state across the processes in the system, and by piggybacking the
volatile state information onto the application messages.

During failure free operation, Manetho’s overhead is low, checkpoints are inexpensive
and have the benefits of optimistic logging. Recovery, however, is complicated and
involves a large amount of communication. Normally, a crashed process would have to
communicate with every other process in the system, thus making the amount of commu-
nication required linear to the number of processes. In the worst case if all the processes
crash and are trying to recover, every process has to talk to every other process, thus the
amount of communication is quadratic to the number of processes. Therefore, Manetho is
not likely to scale well. However, catastrophic failures that occur when all the processes
crash at the same time should be rare in a well designed system.

A serious problem with Manetho is its handling of non-determinism. Manetho is a
roll-forward system, so all non-deterministic choices like time, or order of message receipt
have to be recreated during process recovery exactly the same way as they happened dur-

ing the initial execution. Therefore, all non-deterministic cheices have to be logged. This
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limitation introduces additional complexity into the system and requires an increased
amount of information to be passed around in order to insure the consistent state of the

system after crashes.

5.2.1 Active Replication
Somersault replaces the stable storage, used in Manetho, with a secondary process

[18]. A primary process together with its secondary forms a Recovery Unit (RU). Somer-
sault can recover from any combination of process failures, granted that at least one pro-

cess from every RU survives.

v 1
‘A) Normal opera- wzwl’rlmnry crash. (C) Secondary
fon. Primary asyn- n a primary recovary. Second-
chronousl rocess crashes, ary brings its stale
checkpoints Its state state of its sec- up to date by col-
to the secondary and ondanrx may lag lecting its uricheck-
appends uncheck- behi inted state from
nted state onto he rest of the pro-
application messages cesses
Lo O : :<Q : .«-Q
v v
D) Secondary pro- E) RU restore- Nermal opera-
#nc)nlon. Wha?lge ‘Io)n. The new pri- “:))n. When th%oluzzy
state of the second- mary resumes checkpoint Is com-
ary Is updated, it normal operation pleted, the RU recov-
becomes & new pri- while doing a fuzzy ery Is finished. RU is
mary, and immedi- checkpoint to the back to normal opera-
ately creates a new new secondary tion.
secondary.

Legend: Primary Secondary Recovery Unit Nomnal Message  Repair Message
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Figure 5. 2. fail-over of a Somersault Recovery Unit (RU). Each recovery unit consists of a

primary and a secondary process (A). When a primary crashes (B), the secondary process

updates its state (C), becomes a new primary and creates a new secondary process. Finally, the
new primary transfers its state to the new secondary (E), and the RU is back to its normal state




In failure-free mode primary process asynchronously checkpoints its state to the sec-
ondary, just as it would to a disk [24]. In case a primary fails, its secondary process col-
lects the state that the primary piggybacked onto application messages since the last
checkpoint. When the secondary reconstructs the state of the primary before the crash, it
becomes a primary, and a new secondary is created (see Figure 5. 2). This algorithm bene-
fits from switchover recovery, where instead of reconstructing all the state of a failed pro-
cess from the disk, execution is instantaneously switched to a secondary process.
However, until the new primary collects its state information from the rest of the system
and completes the state transfer to the new secondary, the system remains vulnerable to a

single failure of the new primary.

5.3 Assumptions and the Model
In this chapter, we concentrate on considering MTTF instead of availability of the sys-
tem, because it is easier to work with and the latter can be easily derived from it.

Availability = MTTE,ys (5.1)
MTTF,  +MTTR,

Assuming no need for hardware or network replacement (see Section 5.3.10), mean

time to repair for the whole Somersault system (MTTR,,,) is likely to be on the order of

sys
an hour. This includes time for rebooting the machines and rebuilding the state of applica-
tions from stable storage. Then in order to meet the goal of 99.9994% availability,
MTTF,, should be at least 20 years long. We will use this number to benchmark our fur-

ther calculations.

5.3.1 The Probability Model

Mean time to failure offers an accurate estimate of the availability of the system. It

will be the target of our calculations. However, computing the MTTF

sys

of the system
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from the MTTF

comp

of its components is cumbersome. Instead, it is easier to use the
inverse of MTTF,,,— probability P_,. of a component failing during a unit time inter-

comp

val.

MTTF = - (5.2)

~l—

This will only work if the unit time used to define the MTTF is small enough, other-
wise we may end up with failure probabilities greater than one. Moreover, if we assume
that the MTTF,,,, are large enough, then the P,,,, is very small. Then, for a system com-
posed of n components, the binomial probability of at least one component failing
1-(1-P,,,)" can be approximated as n x P ,mp. Thus, from the above approximation
and from Equation 5.2 we can calculate the P, , of n components as

1

Ppyy(n) = nxP . = nX mer— Fromy (5.3)
By Equation 5.2 we can now calculate the MTTF, ,:
1 1 MTTF .,
MTTF,  (n) = P = l = ~ (5.4)

X MTTF

comp
Similarly, under the same assumptions, for a system with two components c1 and ¢2

with an independent failure mode, the probability of failure of at least one component can

be approximated as
p ) ’, 1 1 MTTF | + MTTF , 56
s (e e2) = Poy+Per = 5rTF * MTTF., = MTTF., xMTTF,, ©8)

Thus, the MTTF,, (cl, c2) can be easily found according to the Equation 5.2:

WITE. el e2 | MTTF, xMTTF,,
i€l € = 51053y = MTTF,, + MTTF,,

sy.t

(5.6)

We will make an extensive use of the probability model presented above in the deriva-

tions and analysis of MTTF, , for Somersault.
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5.3.2 General Assumptions
This section presents the basic notions used in this chapter for analyzing the components

of distributed fault tolerant systems. First, we consider the types of the components in the

system, then their failure modes and finally their life-cycles.

It is important to remember that no single fault can crash the Somersault system. In
fact, most of the double failures will not crash the system either. That is why we have to
carefully consider the failure modes of each type of a component to determine the combi-

nations and probabilities of failures that will bring the whole system down

5.3.3 Components
For the purpose of our analysis we will assume that Somersault operates in a non-mali-

cious environment and we do not have to woniy about the physical network being
destroyed or damaged. Therefore, the failure of the system could be caused by a combina-
tion of failures of the following component types:

« Process

e Process-to-process Communication Link

e Machine
5.3.4 Failure Modes
In this chapter we do not consider Byzantine failures of components and assume that all
components are fail-silent. For now we also assume that the failure detector is perfect and
will not produce any false positive results.

A process death can be caused by a process executing an illegal instruction, a process
being killed by an external source, or by that process going into an infinite loop. A dead
process manifests itself by not responding to or attempting to communicate with an exter-

nal world.
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A link death can be caused either by either communication software or hardware failure. It
manifests itself by dropping or delaying messages for an unacceptably long time.

A machine death can be caused either by a hardware or a software failure, and leads to the
termination of all the processes running on that machine. It is manifested by a simultaneous death

of all the processes running on that machine.

5.3.5 Life Cycles
Every component we consider here goes through the same cycle of fault free operation, fail-

ure, detection and recovery (see Figure 5. 3).

Normal —’-» Und!sovered h‘.'-b' Recovery ""
MTTF=F, MTTD¢e=D, MTTRc=R.

[ Finish
Recovery

Figure 5. 3. A lifecycle of a Somersault component. The main events in the life of a component
are the creation, when the component first becomes operational; Failure, when the component
stops working, but the system does not know about it yet; failure Discovery, when the
component recovery is initiated; and finally the completion of recovery when the component is
operational again. A Somersault component repeatedly goes through a cycle of three states —
Normal operation, Undiscovered failure, and of failure Recovery.

The time a component C spends on average in the normal state is denoted as a mean time to
failure MTTF,, or simply F_. Similarly, the average time spent in the Undiscovered failure state is
denoted as a mean time to discover, MTTD,, or simply D,; and the average time spent in the

recovery state is denoted as MTTR_ or simply R.. The subscripts used to identify the types of



components are 1, p and m for a link, process, and machine respectively. So F,, is a process

mean time to failure, and Dy, is the mean time it takes to discover a machine failure.

In Somersault the first two stages of the component lifecycle may differ in their dura-
tion for different components, but they are similar otherwise. A component works cor-
rectly, and after a while it breaks. For a while this failure goes undetected, but then it is
discovered. Once the failure is discovered, the recovery is started. This is where the differ-
ence between various components shows. The following paragraphs describe how various
components can be recovered. For all component types we will assume that
MTTF » MTTD and MTTF » MTTR.

Recovery for a process is conducted according to the Somersault algorithm. If a pro-
cess that has failed was a secondary, then a new secondary is created and a primary trans-
fers its state to the new secondary. If a process that has failed is a primary, then the
remaining secondary is promoted to a primary, it collects uncheckpointed state, sent by the
crashed primary, from the rest of the system; then a new secondary is created, and the state
of the new primary is transferred to it. The second recovery scenario will take a longer
time than the first one. In our derivations, however, we will use an overall average value
for recovering both the primary and the secondary processes.

Recovery for a link consists of the simplest, but not the most efficient action. When a
link failure is discovered, Somersault decides which end process to kill. The decision pro-
cess uses a simple algorithm which helps to avoid an accidental killing of both members
of a recovery unit. Later, Somersauli takes care of recovering that process and rebuilding

all the links to it, including the one which was initially broken.

Recovery for a machine is equivalent to the recovery of Somersault processes that
were running on that machine prior to its failure. The physical machine that crashed does

not have to be introduced back into the system right away. Instead, the processes that ran
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Recover_Link (Process End1, End2) {
it (alive (RU_Mate (End1))) {
il_Process (End1E;
Recover_Process (End1);
}else {
Kill_rrocess (End2);
Recover_rrocess (End2);

}
}

Figure 5. 4. A recovery unit with one member process can still recover, but if both member
processes are killed, then the whole system will crash. Therefore, before killing a process
Somersault checks if the other process in its recovery unit is alive.

on it may be restarted elsewhere in the system. Meanwhile, the faulty machine will be
rebooted, or perhaps replaced; when it joins the system some of the existing processes will

be migrated onto it.

5.3.6 Fault Scenarios
Being a fault tolerant system, Somersault can withstand any single failure, and in fact a

variety of multiple failures as well. Here we consider what combinations of failures of
components discussed above do cause failures of the whole system. Of course, there is an
infinite number of possible combinations. Our goal, however, is to estimate the MTTF of
the system, thus we will limit the scope of failures considered here to failures of the sec-
ond order, where two components are broken at the same time. Again, we assume inde-
pendence of failures.

We have three component types: a link, a process, and a machine. Thus, we will have
nine second order scenarios to examine, taking into account the algorithms and the recov-
ery procedures described above. The common scheme for all scenarios will be as follows.
As an example consider what happens when a process P breaks and, while its failure is
discovered and repaired, the system is left vulnerable to other failures which may kill the

other process @ in P’s RU. The system will fail if Q is killed before P has restored its state



to the pre-crash state completely. Possible failure scenarios caused by two component fail-

ures are classified in the Table 5.1.

—
first state follow.'mg link following process failure following machine failure
fault failure I
Link || Undis | When the 1st link failure is || When the link failure is A machine that hosts both
cov- 1 discovered its recovery discovered, it's recovery mates of the processes on
ered | algorithm will not kiil an || algorithm will not kill the || the ends of the broken link.
unreplicated process. mate of the dead process.
Reco | The 2nd link’s recovery The end process that was || A machine that hosts the
:’"‘ algorithm will not kill the || not killed after the failure || end process that was not
M@ | mate of the process killed | of the link was detected. || killed after link failure was
during the recovery of the detected.
1st link.
Pro- || Undis | Link’s recovery algorithm PrmesscsTmam. A machine that hosts the
cess | cov- § will attempt to communi- processes mate
ered | cate with the process and
discover that it’s dead
Reco | Link’s recovery algorithm || (Same as above) (Same as above)
;""' will not kill the mate of a
ne dead process.
—H= .
Mach || Undis § A link between two pro- Process mated with one of || A machine that has pro-
ine °°"; cesses whose mates the processes on a crashed || cesses mated with pro-
ere resided oa the crashed machine cesses on a crashed
machine. machine
Reco | (Same as above) (Same as above) (Same as above)
ver-
Ing

Table 5.1: Summary of the second order system failure causes. Each cell lists the system elements
that can cause the critical second failure (grey fill), or explains why there are no critical failures
(white).

When making an estimate of the failure probability we will use the following metrics:

« ¢, : number of components of type x that may break in the system

« v, : vulnerability period for that component, (i.e. proportion of time during which a
second failure may crash the system)

« p,: probability that one of the components of type y that may crash the system dur-
ing the vulnerability period caused by the failure of x will actually break during that
period
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The overall probability of system failure caused by the consecutive failures of compo-
nents of types xand y, assuming independence of failures:

ny = XV Xp, (5.7)

According to the assumptions about the small probabilities of failure of each compo-
nent (see Section 5.3.1), the probability P,, is proportional to the number of components
of type x in the system. For our calculations, let us use

e n: the number of processes in the system

e nX (n-1) /2 links between its full interconnected processes

e r: the number of machines

e n/r processes running on each machine

The goal of this analysis is to get a realistic lower bound on the reliability of Somer-
sault. Therefore, we will make conservative estimates of failure probabilities, trying to be

as accurate as possible.

5.3.7 Link induced failures
Let us start by considering the system failure scenarios in which a link is a first compo-

nent to break. After a failure, a link is recovered by killing one of its end processes and let-
ting Somersault to do all the work on rebuilding both the processes and the links. There is
a choice of which end-process to kill, and this choice is always made to avoid killing a sin-
gle-process RU. Before the link failure is discovered, the choice of a process to kill has not
been made yet. Thus, if one of the processes in the RUs at the ends of the link is killed
while the link is in the undiscovered state, the Recover_Link algorithm will later choose
to kill the end process in the RU which was not affected by the second failure (see

Figure 5. 5).
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Figure 5. 5. While a link failure is undiscovered the system is not vulnerable to an additional
process or link failure. First, a link failure occurs (A), but is not discovered yet. Then another
failure leading to a death of one of the processes in the end-RUs happens (B), and is discovered.
Later, a broken link is discovered (C). According to the Recover_Link algorithm, the link
recovery is conducted via killing one of the end processes. However, if Somersault iries to kill
the end-process in the lower RU, it will discover that the process is not duplicated, and thus will
kill the process in the upper RU (C again). Then the recovery proceeds to restore both RUs and
the links between them to the original state (D).

A system with undiscovered link failures is, however, vulnerable to machine failures
(see Figure 5. 6). This happens because multiple processes die when a machine crashes.
Thus, several processes can become unreplicated at once. They all need to communicate
with each other during recovery, and if any of the links between them are damaged, the

whole system will crash.

Figure 5. 6. While there is an undiscovered link failure in the system (A), a machine failure may
lead to making the processes on both ends unreplicated (B), and when the link failure is
discovered a complete RU is destroyed, thus the system can not recover(C).
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During the link Recovery state, another link failure cannot crash the system, because
the Recover_Link will notice that one of its end RUs is being repaired, and will choose to

kill the process in another end-RU.

L e o TS —=
Normal Undisovered Recovery [
N == \\—————
N

Machine : ros
Fallure Fallure

Figure 5. 7. The vulnerability period for Link-induced failures depends on both the link
detection and recovery times. Some machine or process failures during the recovery time may
cause the system to crash. However, due to the Recover_Link algorithm presented in Figure 5. 4
an additional link or process failure can not crash the system. A separate contribution comes
from the vulnerability to machine failures while the link failure is undiscovered.

Now, let us examine the probability of the total system failuie due to a link-induced
failures. We will separately estimate the contribution of undetected link failures (all vari-
ables that relate to undiscovered failures are susperscripted with under), and the contribu-
tion of recovering links (variables superscripted with rec). Calculations presented below

assume that all failures in the system are independent.

First let us consider the contribution to the probability of system failures by recovering

links. There are approximately n’/2 links in the system, thus

"2
= 5 (5.8)

rec
<

As we have discussed above, the system is vulnerable to both machine and process
failures during the recovery of a broken link. Thus, the propoition of the time during

which such second failure is dangerous is

R R
rec _ ___l___g_l
“"' TF+D,+R,"F, 69
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Finally, the system will crash, if the one remaining end-process will be killed. As we
have mentioned above, this will happen either if that process fails, or if the machine on
which it is running crashes. The probability of a process failure is 1/F,, and the probabil-
ity of a machine failure is 1/F,, . Thus, the probability of the second end-process dying is

rec

P (6.10)

1,1
—_— —
F,"F,
Therefore, the overall probability of a system crash during link recovery is according

to Equation 5.7:

~

rec rec rec rec R

1 1
Pl = ey e o _.(_+_) (5.11)
Ix [ ] ] 2 Fp Fm

— .

Now let us consider the system failures that may happen while the link failures are
undiscovered. Every machine has n/r processes on it. Therefore, in case a machine
crashes, there will be n/r unreplicated processes in the system. They have n’/ (2r2)
links between them. Because there are r machines in the system, the total number of

potentially undetected failed links is

~

= (5.12)
Every one of these links is vulnerable while it’s failure is undetected, thus
undet _ Dl Dl
Vl = m = -’?‘ (5.13)
Finally, the probability of a second critical machine failure occurring is
pinee = Fl (5.14)

Therefore, the probability of the system failure while one of the link failures in unde-

tected is

2
undet undet undet undet n Dl 1

pundet _ cundet undet jundet _m 1 1 (5.15)
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Now we can find the overall probability of the system failure due to link failures, as
the sum of probabilities of failures during the undiscovered and repair periods by combin-

ing the two together.

(5.16)

x Ix

p o pinder, pree _nt D 1 Rl(l 1)
= L 1

5.3.8 Process induced failures

The main difference between the process-induced failure mode and the link-induced fail-
ure mode considered above is that the vulnerability period for all failure modes covers the
Undiscovered state as well. This is because while the link is undiscovered, Somersault
can still change its mind about which end to kill. With a process failure, however, there is
no way of shifting the location of the fault in order to avoid simultaneous death of both

processes within a RU. Link failures that follow the process failures still do not crash the
system, again due to the Recover_Link algorithm of Figure 5. 4.

|y

Normal Undisovered Recovery

\ el e —/
( Machlnos Process
Fallure Fallure

Figure 5. 8. The vulnerability period for Process-induced failures is proportional to the sum of
process discovery and recovery times. Some machine or process failures during this vulnerability
period may cause the system to crash. However, due to the Recover_Link algorithm presented in
Figure 5. 4 an additional link failure can not crash the system.

There are n processes in the system, therefore

cp=n (5.17)

The vulnerability period for a process-induced failure is

, D,+R, D +R,

4 Fp+Dp+Rp Fp

(5.18)
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Finally, the probability of the second critical failure occurring in the system is the

same as for the link-induced failures

Pp= gt Fl (5.19)
P m
Therefore the probability of a process-induced failure is
D +R
pr=cvapxPp=n-—%p—z-(%P+F%l) (5.20)

5.3.9 Machine induced failures
The difference between the machine-induced failures and the failure modes considered

above is that the machine-induced failures are common-mode failures. Several processes
are killed at once, thus making a system vulnerable to a large number of additional fauits
that may crash it. For instance, in case of link and process induced failure modes, the sec-
ond failure that crashes the system could never be a link failure. However, in the case of
machine-induced failures, certain links are critical to survival of the system. These are the
links are between processes in RUs that lost one of their members during the machine
crash. These processes need to communicate with each other to bring their state up to date.

However, if the links are broken they are unable to do so (see Figure 5. 9).
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Figure 5. 9. During the machine-induced failures, links between the surviving processes in the
damaged RUs are critical. When a machine M1 crashes (A), the recovery of the system as a
whole depends on the reliability of the communication channels left is between the damaged RUs

(B).
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Therefore, all types of components contribute to critical second failures. The vulnera-

bility period of a broken machine spans the detection and recovery time for its processes a

Finish
\ Recovery

described in Section 5.3.2. It is illustrated in Figure 5. 10.

P = - ™ — = e = =,
Normal —-—‘;b Undisovered Recovery y

Machine
Fallure Failure

Figure 5. 10. The vulnerability period for Machine-induced failures is proportional to the time it
takes to discover the failure of its processes and to repair them. Some machine, process or even
link failures during this vulnerability period may cause the system to crash.

There are r machines in the system, therefore

c_=r (5.21)

The vulnerability period for a machine is a sum of the time it takes to detect the fail-
ures of its processes, and then to repair those processes, usually on some other machines.
There n/r processes running on each machine, but because the detection is occurring in
parallel, the time to detect n/r failures should be approximately equal to the time to
detect one failure. Repair, however, is a lot more expansive. Every process that is being
repaired has to receive the antecedents information from every RU in the system. Later,
every recovering process has to transfer state to the newly created secondary process.
Considering that the workstations are reasonably fast and the processes are likely to have
Megabytes of state to transfer, the recovery information for a single process should satu-
rate the network bandwidth. Thus, if several processes are trying to recover simulta-
neously, the recovery takes the time proportional to the number of recovering processes.

Thus, a vulnerability period for a machine-induced failure is
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v_ = —n— (5.22)
FM+DP+;-R m

Now let us consider the probability of the second critical failure occurring after a
machine has crashed. First consider the link failures. After a machine death there are n/r
unreplicated processes in the system. They have n’/2r° links between them. Failure of
any of those links will cause a death of an unreplicated process, and therefore a crash of
the whole system. The probability of a link failure is 1/F,, therefore the total link contri-
bution is n*/( 277 - F,).

Now consider the contribution of the process failures. After a machine crash there are
n/r unreplicated processes. Failure of either of them will crash the system. The probabil-

ity of a process failure is 1/F,, therefore processor failure contribution is n/ (r - F,) .

5.3.10 Machine Level system configuration
Finally, consider the contribution of additional machine failures. The original Somer-

sault algorithms insure that a system can survive most of the possible simultaneous inde-
pendent failures. However, as machine failures cause a death of a large number of
processes, they can not be classified as an independent failure mode. If caused by hard-
ware, machine failures may take a long time to fix, and increase the vulnerability of the
system. Therefore, if the special care is not taken to arrange the RUs between the
machines in a most protective way, machine failures may become the major weakness for
Somersault:

» The basic assumption for all the deductions presented here is that the RU member
processes reside on different machines, so that a machine failure does not destroy
complete RUs.

After a machine failure, a death of any of the remaining machines containing one or

more of unreplicated processes will lead to a crash of the system. If n/r unreplicated pro-
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cesses are spread throughout the system, then chances are that every machine has at least
one unreplicated process. However, if all the RU members are shared between the pairs of
machines, then there is only one machine whose failure is critical (see Figure 5. 11).

M1 ':-d \1 M2

,’@l O

(A

Figure 5. 11. Spreading the RU members across the system decreases the reliability of the
system, while localizing the RU members minimizes the chances of total system failure. When a
machine M4 crashes, in a system with a highly dispersed RUs (A) two machines M1 and M3 are
critical to the survival of the system. In a system where the RUs are localized to the pairs of
machines (B), only one machine M3 is critical to systems survival.

Obviously, the paired machines offer a much higher reliability. However, we have to
consider the maintainability of this system as well. After a machine dies, the machine that
carries the mates of the dead RU members has to choose where to restore the complete

RUs. The two extreme choices are to pair up with some other machine or shear its RUs

with many other machines (see Figure 5. 12). If it pairs up with only one machine that is

ABCD ApBCD AB,.CD AB,.CD

[HX
CHO OO COH] H]

A',B’, A B C D
(A) c.\D (B) (C)

Figure 5. 12, Rebuilding the processes killed during a machine crash (A). (B) -rebuilding on a
single machine requires extra processing capacity which is not normally used; (C) - rebuilding on
several machines across the system increases the vulnerability to machine induced failures.
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already paired up with someone else, it is essential to have enough processing and mem-
ory capacity on any machine to carry a double amount of processes. Alternatively, if the
surviving machine chooses to spread its RUs across the system, it will increase the vulner-
ability of the surviving system to machine induced failures. Also, in this case as the sys-
tem is subjected to additional machine failures, more and more RUs will be shared
throughout the system, thus increasing the interdependence between machines and reduc-
ing the overall system reliability.

Neither of the above scenarios is completely satisfying. Let us consider how we could
improve the fault tolerance of the system in case of machine failures. First let us consider

the use of a spare machine to host the recovering processes (see Figure 5. 13).

] (HX [H
CH CH CH1 CH ]
(A)

(B)

Figure 5. 13. In case of a machine failure (A) a spare machine s is used to host the repaired
processes (B).

This approach resolves the problem of overloading the surviving machines, or corrupt-
ing the paired-machines structure across the system. However, it has several drawbacks.
First of all, it requires the use of an additional machine. More importantly, if the spare
machine crashes, its likely to be due to hardware faults, and thus repairs may take days,
leaving the system exposed to machine induced failures. The proportion of time during
which a system will be vulnerable to machine failures due to the failure of the spare will
be on the order of R,,,4are” Fraraware (Vulnerability is a dimensionless quantity). Given the

typical values of R,,, ...~ 1 day and F, =2 years, the vulnerability of such system

ardware

will be on the order of 107 . This is an order of magnitude lot higher than in a system that

77



does not depend on spares and for the same components has vulnerability of
r-R,/F, =10minutes/2month=10.

A combined approach that allows a system using a spare machine, in case of addi-
tional failures, to spread the RUs along the remaining machines would solve the problem.
However, it is likely to make the system more complex. Instead, let us consider an
approach which trades a slight reduction in the initial reliability of the system for simplic-
ity and ability to tolerate multiple machine faults. To be precise, two machine failures in
this case may still crash the system, but the vuinerability window is on the order of a pro-
cess recovery time, not a physical machine repair time.

Machines are arranged in a logical ring, so that each machine shares its RUs only with
its neighbors. When a machine crashes, its neighbors take over the recovering processes
and pass some of them to their surviving neighbors (see Figure 5. 14). During the recovery
there are only two machines that are critical, but the vulnerability period is small, and the

dependency level between the surviving machines does not change.
AB ABCD AB'D
C',D' B CI'DI' A
(A) B
Figure 5. 14. Closure of the ring of machines under failure. When a failure of a machine carrying
processes A,B,C and D occurs, some of these processes are recovered on the neighbor machines

(processes A and D), the rest are resettled on the neighbors (processes B and C). The system con-
figuration has the same structure as before the failure.

The only problem left to resolve now is how to reintroduce machines back into the
ring after they are rebooted/repaired. The best place for them to be put in is where the old
machines used to be before failure. Placing the machines in their original place and

migrating the original processes back onto them will solve the problem of load balancing.
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5.3.11 Process Migration
Process migration is closely related to introducing new machines into the system. Cur-

rently, the process migration is implemented by killing off a secondary process and then
rebuilding it on another machine. However, this increases the vulnerability of the system
by adding more unreplicated processes during migration. Instead, Somersault should be
able to create an additional secondary process on another machine, while the original sec-
ondary is still up and running (see Figure 5. 15). Then, when the state of the new second-
ary is up to date with the state of the primary, the original secondary can be killed, and the

RU will still be operational, and the secondary will be running on a different machine.

M1 M2 M1 M2 M1 M2
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Figure 5. 15. Migrating the secondary to a different machine. A RU consisting of a primary P and
a secondary S1 resides on machines M0 and M1 respectively (A). To migrate the secondary onto
machine M2 a new secondary S2 is created on M2 (B). When S2's state is up to date, S1 is killed,
and the completely functional RU is established on machines MO-M2 (C). The system is never
vulnerable to a single failure during the whole procedure.

It seems that while moving secondaries from machine to machine is relatively easy.
However primaries appear to be immobile. There is a simple solution to this problem.
Synchronize the states of the primary and the secondary process within a RU, then swap

their roles, so that the primary becomes a secondary and can be moved around.

From the above reasoning we shall assume that the machines are organized in a logical

ring. Then, the only two machines that are critical to the system’s survival after a machine
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crash occurs are its two neighbors. Thus, the contribution from the second machine failure

is 2/F,,. The total probability of a second critical failure therefore is:

n n
P = o+
rFP

2
T (5.23)
FM

2
]
M

The overall probability of the machine-induced failure is

DP+;.RP n2 n 2
Pm=cmxvm><p,,,=r- F .(zrz-F,.'."Fp+EJ (5.24)

5.3.12 Relationship between Variables and Simplification
Finally, we have all the contributions to the system failure defined. The probability of

system failure from all possible causes is (from Equations 5.11, 5.20 and 5.24) is:

Pre = P+P +P (5.25)

D +R
*("JF—B(FL*FL))
p 4 m
n
s (Dp+;-Rp ( n? L, +1J
Fm 2r2-Fl r'Fp Fm

To make sense of this result for the probability of Somersault’s failure we have to simplify
it. We begin by examining specific values and relationships between the variables, and
then try to eliminate the parts of the equation whose contribution is negligible compared to

the contributions of the other parts.

5.3.13 Specific Values
From industrial practice we know that when both hardware and software faults are taken

into account [20]

FP = F_ = 2month (5.26)
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Also, assuming that an average size of an application state is several Megabytes and
the throughput of the network is 10 Megabits/sec we get

R, = 10 seconds (5.27)

Because the links are repaired by killing off one of the end processes (see
Recover_Link algorithm in Figure 5. 4), link recovery time is the same as for a process

R, = RP = 10 seconds (5.28)

5.3.14 Relationships between variables
Now let us examine the remaining variables in the Equation 5.25. Consider n (the number

of processes), and r (the number of machines) as free variables, at least for now. As it was
mentioned earlier
n2r (5.29)

F, varies a lot depending on the type of underlying network and the communication
protocol. We will examine how different orders of its values affect the failure probability
later.

The failure detection mechanism does the job of detecting failures in different parts of
the system in parallel. Moreover, it judges the symptoms of failure and then decides what
kind of failure it is. Because the number of possible failure types is small (process, link
and machine), if it is not one kind of failure, than it is one of the other. Therefore, the
detection times are approximately equal for the different types of failures

D;~D,~D,_ (5.30)

Now, let us rewrite the equation for the total probability of the system failure taking
into account the relationships we have just discussed. Let us use the process variables as

the common basis for simplification.
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sys

2
F—D; +"2F—LRF +2nDP+RP+rDP; "R”[ . 2 ) (5.31)
rEFy 1p F r \27°F, "Fp Fp)

[

p

5.4 Analysis

In this section we will attempt to build the model of reliability of the system which would
give us an estimate of the optimal values for the system parameters that we can vary: the
number of machines r, and the detection times D, given the reliability of the system com-
ponents, the desired number of processes n, and the desired MTTF, .

Our analysis is reliability driven; we do not consider the performance implications
here. An important criteria we take into account is the number of machines used to run the
system. It has to be as low as possible in order to make the system economical. Finally we
want the detection time to be as large as possible, so that the failure detection overhead is
kept as low as possible.

From the Equation 5.31 we see that the probability of system failure is proportional to
the weighted sum of the link detection (D,), process detection (D, ) and process recovery
(R,) times. We can not change the contribution intreduced by the recovery time, but we
can make sure that the contribution of the detection time does not outweigh it. For sim-
plicity, let us say that we will be satisfied with the contribution of each of the detection

times being equal to the contribution of the recovery time. Shortly, we shell find the maxi-

mum acceptable detection times in the form
D™ = fy(Ry,n, 1) D':" = f,(R,n,r) (5.32)
Knowing that while the contribution of detection times to the overall probability of the
system failure is equal to the contribution of the recovery times, we can rewrite the

Equation 5.31 by eliminating the detection time contributions and multiplying the recov-

ery contribution by three:
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P = (nz-i_ﬁ-%m-iﬂ-%a,#-( ;' +-lp-+%]] (5.33)
1 Tp p e Tp \2F5F T

Now observe that the overall probability of system failure is inversely proportional to
the number of machines r used in the system. Therefore, for an optimal reliability we
would have to run one process per machine. However, we only need to obtain a certain
level of reliability. In the Equation 5.33 r and n are the only free variables. For any given
n we can find what is its minimal acceptable value of r which gives the required system
reliability.

™ = 8Py F oo Reomp) (5.34)

comp Reomp
Finally, when we know the function for r™” we can find out the link aud process
detection times corresponding to it. To do this, substitute the value of r™" into the
Equation 5.32 for computing D/ and D, .
In order to simplify our analysis, and to better see the trends, we will evaluate the sys-
tem performance for three different ranges of link reliabilities - F,» F,, F,;=~F, and
F, « F,. They roughly correspond to using highly reliable dual LANS, using an isolated

network and running across a WAN respectively.

5.4.1 Highly reliable links
If F,» F,, then considering Equation 5.31 we can eliminate all the terms containing

F, in the denominator, thus reducing it to

P'Fi’” P P.(" 2) (5.35)

The contribution of the detection times is equal to the contribution of the recovery
times when

p™* = n(4r+n)

P~ TP r(3n+2r) 5.36)

83



Considering that we are looking for a safe upper bound on the detection time and that

number of machines r can not exceed the number of processes n we can approximate

max _ . _Il
D" =R, (0.8 + Sr) (5.37)

Link detection time D]'** can be anything, as long as it is much smaller than F,, which
is very large in this case.

Now let us find the minimal number of machines required to run the system at a given
reliability level. Considering that reliability of links in this case is a ot higher than reli-

ability of processes, we can rewrite the Equation 5.33 for probability of system failure as

S SN . O B N AL
Pm-F——3[n FPF+F (r-F+E) (5.38)

S (5.39)
A
o 12an
sys

Now, knowing the equation for maximum detection time and the minimal number of
machines for a given system size we can find the specific values D, for any given n.

Here are some examples which illustrate the relationship between the variables dis-
cussed above and the size of the system. In all the following cases we consider a system
with MTTF,,, = 20 years, F, » = 2 month and r, = 10 seconds .

From the graph for the number of machines vs. number of processes used in the sys-
tem (Figure 5. 16) we see that the cystem with highly reliable links will scale up to almost
300 processes, with the low minimal number of machines required for the systems with up

to about 100 processes. The number of processes per machine is illustrated in Figure 5. 17.
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Number of machines(r)
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Number of processes (n)

Figure 5. 16. A range of acceptable number of machines in the system. The top bound is shown
here because the number of machines can not exceed the number of processes. It is important that
there is an upper bound on the size of the system when the minimal number of machines required
is equal to the number of processes.

40

10

Number of processes per machine (rvr)

n'r

Total number of processes (n)

Figure 5. 17. A range of acceptable number of processes per machine. Even though for small
numbers of processes our equations show that a very large number of processes can run on each
machine, not more than half of the total number of processes can run on each computer.

The best processes per machine ratio is obtained at the system size ol about 60 pro-

cesses, and the values are quite reasonable for the system of up to about 150 processes

(see Figure 5. 17).
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Figure 5. 18. Process detection time. For small n the detection time is limited by the minimal
number of machines in the system equal to 2.
The most economical process failure detection time is obtained for the systems con-
taining about 60 processes, however, the detection times are quite reasonable even for the

large systems (Figure 5. 18).

Overall, from the graphs considered above, we conclude that if communication links
are highly reliable, the system under constraints specified above will scale well up to
about 150 processes. For larger systems, the number of machines required will be prohibi-

tively high.

5.4.2 Links as reliable as processes

If F,= F,then we can substitute F, for every occurrence of F, in the Equation 531

1

.lys= Fz

P

2 2
2
P (;—’_D,+n R,+2n(D,+R,) + (1D, +an)(;—’2 +’-r’ + 2)] (5.40)

Let us find the detection times under which the contribution of failure detection will

not exceed the contribution of process recovery. Link detection time

2 r

2
D =k 2 [ neas Tt | o (2r40) (5:41)
P n 2r T P
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can be really long under two extremes. When there are very few machines, machine fail-
ures are unlikely; therefore links do not contribute to the overall probability of system fail-
ure. Alternatively, when there are so many machines that they run only a few processes
each, the number of dangerous links is small.

Now let us find the process detection times whose contribution does not exceed the
contribution of process recovery. From Equation 5.40 we find that process detection time
is limited by

D™ =R - g (5.42)

Now if we use the detection times found above, we can approximate the system failure

probability as
3R n 2 3R n 2
P, = == _P_(..+4+"_z+ﬂ]=—”(zn+£5] (5.43)
F,, p: 2 T F: 2r

Therefore, we can find the minimal acceptable number of machines

3nR F
rmln =n P~ sys (5.44)

Again, by substituting r™" into Equation 5.41 and Equation 5.42 we get the maximal
acceptable detection times as a function of number of processes. Here are the illustrations
for a typical system.

A system whose link reliability is about the same as its process reliability scales an
order of magnitude worse than the system with highly reliable links. The number of
machines required stays small for systems with up to about 25 processes (Figure 5. 19).

The maximal number of processes per machine in a system with moderately reliable
links under the above constraints can not exceed 8. This perhaps is not enough to keep the

machines completely loaded, but may allow for use of cheaper machines. The load on

87



-1 r
30
s
20
b H

10

Number of machines (r)

13 20 25
Number of processes (n)

Figure 5. 19. Minimal acceptable number of machines for a system with links as reliable as
processes.

Number of processes per machine (n/r)

Number of processes (n)

Figure 5. 20. Maximal acceptable number of processes per machine for a system with links as
reliable as processes.

machines will stay reasonable only for small systems with up to about 20 processes
(Figure 5. 20).
Process failure detection times are never too small, except for the systems with the

number of processes close to maximum (see Figure 5. 21). However, systems with the
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Figure 5. 21. Maximal ac. :ptable process failure detection time for a system with links as
reliable as processes.

maximal possible number of processes are not likely to be built because they will require

using 1 machine per 1 process, and thus will be too expensive (see Figure 5. 20).

Link failure detection times are always quite large, so they should never become the

limiting consideration for the size of the system (Figure 5. 22)

Link failure dstection time (D))

250

200

iso

D

] 15 20 25
Number of processes (n)

Figure 5. 22. Maximal acceptable link failure detection time for a system with ! ks as reliable as

processes.
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From the graphs ([5. 19], [S. 20), [5. 21] and [S. 22]) we conclude that systems with
the best operational parameters have from 10 to 20 processes, and run on a few machines,
with process detection time of about 50 seconds and link detection time of about 100 sec-

onds.

5.4.3 Unreliable Links
Finally when F, « F,, we can eliminate all terms that do not contain F, in the denomi-

nator from Equation 5.31:

2 rD_ +nR
=2 _.
P, = FF (2rD‘+RP+—2—rz—B] (5.45)

Again, find the expression for the detection times that give the contribution to system

failure probability approximately equal to that of process recovery. We get:

DI = R -(l +L) (5.46)
!
P \2r 4r3
max _ n
D} = RP(2r+ r) (5.47)

When the detection times are less or equal to the ones specified above in Equation 5.46

and Equation 5.47 the probability of system failure can be approximated as

1 n
= e— — o
P, A ——BF‘ = ( 1+ ) (5.48)

Thus, we can find the minimal appropriate value for the number of machines in the

system:
3R F
P I p_ts (5.49)
N2 FiF -n"RF,,)

Now we can find the actual vales for the detection times by substituting r™" , found

above, into Equation 5.46 and Equation 5.47.



For the following graphs we use our usual timing estimates of MTTF, , = 20 years,

F, = 2 month and r, = 10 seconds , and estimate link reliability to be F, = 1 day.

Number of machines (r)

2 3 4
Number of processes (n)

Figure 5. 23. Acceptable number of machines for a system with unreliable links

Under these constraints systems with unreliable links do not scale well at all. From the
above Figure 5. 23 we see that the biggest number of processes such system can maintain
is 4.

The maximal process detection time (Figure 5. 24) is dominated by the contribution of
a two-machine system; process detection times are quite high, especially considering the
very small size of the system.

The link detection times are very low, but still practical, considering a small size of the
system. Again, the contribution of the two-machine system dominates the picture
(Figure 5. 25).

Overall, it seems impractical to build systems with unreliable network connections.
Still, one could imagine simple applications which need to be robust and run over WANS,

for implementing which Somersault could be helpful.
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Figure 5. 24. Acceptable process failure detection times for a system with unreliable links
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Figure 5. 25. Acceptable link detection times for a system with unreliable links

5.5 Important trends

This section summarizes some important observations that follow from the above analy-
sis. Our conclusions, however, are optimistic. There are several caveats suggesting why in
practice Somersault’s availability and limits of scalability may be lower than indicated
above. In the preceding calculations we made many simplifications and generalizations,

plus we assumed that:
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» Component failures are independent from each other. However, it maybe the
case that real systems are subject to multiple simultaneous failures

e For all component types MTTF » MTTD and MTTF » MTTR . However, this may
not hold in some systems

» Machines are organized in a logical ring with respect to recovery units. This con-
figuration is optimal for providing fault-tolerance, but may be impractical for
performance reasons. Therefore, we can not expect Somersault to always operate
in this optimal configuration.

« Finally, we used specific numbers in the later derivations. However, these values
are only estimates, accurate to an order of magnitude

Thus, the following conclusions should be interpreted as estimates, rather than strict
requirements. Even though they are not precise, we believe that they are useful because

they reflect general trends rather than specific values.

5.5.1 Minimal Number of Machines

It may seem surprising that the minimal number of machines required to reach a certain
level of reliability increases faster than the size of the system. Indeed, the more machines
there are in the system, the more things there are to break. However, when the number of
machine is large, there are fewer processes to run on each machine. Thus, when a machine
crashes there are fewer unreplicated processes and critical links between those processes.
A linear increase in the number of machines in the system leads to a quadratic decrease in
the number of links between unreplicated processes that are critical to a survival of the
system after a machine crash. That is why the minimal number of machines required to

run large systems is so high.

5.5.2 Process Size

An important implication of the analysis presented here is tha: Somersault will not deliver
the required fault tolerance, if the processes that run on it are too large. The reason is that

the probability of system failure is proportional to the weighted sum of a process and link
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detection times and a process recovery time. If the contribution of any one component is
too big, there is no point in minimizing the others. We can control the time it takes to
detect failures, however, we have no control over the process recovery time. In the above
examples we assumed that the process size was on the order of several Mbytes and recov-
ery times of ten seconds. However, if the processes were to become a lot bigger, then pro-
cess recovery time would go up too, increasing the system vulnerability to additional
failures. Thus, the probability of a total system failure would go up as well. As mentioned

earlier, there is no way to reduce it significantly by using faster failure detection.

The only chance for running Somersault with large processes is on a Gbyte network
using very fast machines. Then the process recovery, even for very large processes, will
still take only tens of seconds, and the probability of the system failure will not change

compared to the smaller processes on Mbit networks used in our analysis.

5.6 Ways to Increase Fault Tolerance of Somersault

The caveats related to assumptions of independence of failures, machine configuration,
simplification, and imprecise data used for analysis are all applicable here as well. How-
ever, until we have a better model, the conclusions presented here are still important as

they indicate the principle ways in which reliability of Somersault can be increased.

5.6.1 Component requirements
From the previous section we can conclude that in order to achieve a required availability

of 99.9994% in a Somersault system consisting of tens of processes, the reliability of the
underlying network and protocols should be comparable to or greater than the reliability

of Somersault processes, which are currently rated at mean time to failure of 2 month.
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In Section 5.4 and Section 5.5.2 we mentioned that smaller recovery times lead to
lower vuinerability periods for the components, and thus reduce the probability of the
overall system failure. We also mentioned that the process recovery time is dominated by
the state transfer. Therefore, to reduce the probability of system failure we have to make

the state transfers faster. In other words, we need to use faster networks.

5.6.2 System Configuration
In order to reduce the probability of rotal system failure the recovery units have to locate

their member processes on different machines. The machines should be organized into a
logical ring, so that every machine shares its RUs only with its two neighbors. This way
the vulnerability of the system to multiple machine failures is reduced, while the reliabil-
ity of the system does not change much after multiple failures and repairs.

When it is necessary to migrate an RU member process from one machine onto
another, a three-process recovery unit should be created temporarily. It should include the
old primary and secondary processes, plus a third process on the target machine. When the
state of the third process is synchronized with the state of the primary, the old secondary
process can be killed, and the newly created process on the target machine takes over its
role. Therefore, the whole migration is completed without ever having a single unrepli-

cated process.

5.6.3 Failure Detector Functionality
For highly reliable networks, the latency of link failure detection does not matter

much. Somersault built on such a network probably does not require a special mechanism
to do link failure detection, instead it can use the facilities provided by the point-to-point

communication software. For instance TCP’s failure detection mechanism guarantees to
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detect any link failures within 10 minutes. This is certainly good enough for links that

have a mean time to failure on the order of several month.

For the networks were link failures occur on the order of a single month the situation is
quite different. Systems built on such system without a special link failure detection mech-

anism will never reach the required availability level.

There is however, an even more important reason to have a separate link failure detec-
tor. In the Table 5.1 we are able to eliminate about one third of all causes of total system
failures, by distinguishing between the process and link failures, and applying an appro-
priate algorithm (see Figure 5. 4) to treat link failures separately. If we do not distinguish
between the link and the process failures we will find that the reliability of the system
decreases dramatically. For example, if we treat all failures as process failures, then
because processes on both ends of a broken link declare each other dead, we would kill

both of them, possibly completely destroying a whole RU.

Therefore, in order to be on the safe side, failure detection service in our system must

have the following characteristics:

» When a failure is suspected, we have to be able to determine weather its a pro-
cess or a link failure, and treat it appropriately.

« No failure should go undetected for an indefinite amount of time, for it increases
the vulnerability of the system. Therefore all process and link failures should be
detected under some predefined period of time. (The recommended values can be
found in the previous sections of this chapter).
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Chapter 6

Experiments
The goal of building the experimental system is two-fold. First, is to verify the correctness

of the algorithms proposed above. Second, is to measure their performance.

The target availability rates imply that the MTTF of the whole Somersault system
should be on the order of 20 years. One annot wait this long to see if the system is work-
ing correctly. It is hard to assemble enough systems together to see if any failures occur in
a shorter period of time. However, there are several options available to evaluate the FD
algorithms presented in this thesis. We can test the FD algorithms under a wide range of
circumstances and simulate different patterns of failure within a system to evaluate their
performance. Some examples of such experiments are the following:

» Measure the time it takes to perform failure detection

« Measure the accuracy of failure detection (evaluate the percentage of false positive
results produced by the failure detector)

« Evaluate the critical parameters that effect the performance of failure detection

» Check for undesirable interactions between the Foreground FD, Background FD and
the view manager.

In this chapter we present the system that was built to run the types of experiments

outlined above and report the obtained results.

6.1 Experimental Setup

The experiments were conducted using a distributed system that allowed us to simu-
late different failure modes that would occur in a real system. Failures were injected into
the system from a special console process, which also collected information on accuracy

and latency of fail ire detection we have implemented. The main benefit of this approach
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was in observing the behavior of the failure detector in its “native” environment, while
having a complete control over the failures occurring in the system. Needless to say that
the ability to create failures on demand drastically reduced the time required for testing.
Using this approach also allowed us to make repeated measurements of system perfor-

mance in a large number of varied scenarios.

Figure 6.1. Experimental system setup. Dotted boxes are machines, circles are processes. Thick
circles are primary processes, thin cnes are secondary processes. Grey lines are connections.
Three machines M1-M3 ran a prinary and a secondary process from different recovery units
each, and the forth machine M4 ran a control console process

The experiments were run on a minimal system configuration, which allowed us to test
the correctness of algorithms and evaluate their performance. The system usually con-
sisted of six processes, simulating the traffic between and within three Somersault Recov-
ery Units, plus a console process that was used to run the test scripts and inject control
messages into the system. The whole system was run on four HP-735s on a bridged-off

FDDI ring. The experiments were run at night when the system activity was minimal.
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However, there was still some traffic on FDDI ring, most notably generated by NFS. The

process and machine configuration used in experiments is presented in Figure 6.1.

Three machines hosted two processes each, a primary and a secondary process from
different RUs. All six of these processes were completely interconnected using TCP links.
Primary processes ran Poisson traffic generators that sent between fifty and hundred mes-
sages per second to any other primary processes, and fifteen to thirty messages per second
to their specific secondary process.

The fourth machine ran the console process. The console process was also connected
to every process in the system, allowing it to send control messages to and receive reports
from any process in the system. The console process executed a battery of test scripts that
generated control messages. These messages caused the rest of the processes in the system
to simulate various failures. Then the failure detector detected these failures them and
reported its results back to the consoie process. The console process collected the results
of the failure detection, measured the system’s response time, and evaluated the correct-

ness of failure detection results.

6.1.1 Process Structure and Control

The processes in the system has a layered structure, allowing for easy experimentation and
development (see Figure 6.2). The lowest levels of the system, Naming and Process, pro-
vide means for the connection setup and naming. They also provide the low level messag-
ing functionality in the form of get and send. All communication is asynchronous and is
implemented in the Process level using the UNIX select call.

The Message_Citrl level implements the failure-injection mechanism, and is critical for

the experiment. Message_Ctrl provides the ability to block and unblock channels leading
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to other processes on receipt of control messages, and allows dropping messages from the

blocked channels.

Environment level hosts the View_Manager and the Failure Detectors. It provides
Somersault system level abstractions like primary and secondary processe-. The Applica-

tion layer simulates the traffic that would be generated by a Somersault processes.

{ Application > Traffic generation

Environment Somersault system view

View ¢ Background'\ { \
Manager, FD . 4
_ Message_Ctrl Block/Unblock channels

Process Get/Send and Startup

Failure detection and
notification

C Naming ) Abstraction for iP/Scckets

Figure 6.2. The layered structure of processes in the experimental system. We simulate failures
by disabling communication channels within the Message_Ctrl layer. These disabled channels
appear as failures to the Failure Detectors in the higher levels of the system.

The Message_Ctrl layer is the most interesting from the point of view of experiment
design. This layer and the layers beneath it see all the processes in the system, including
the console process. Layers above the Message_Control layer see only the other Somer-
sault processes, but not the console. Thus Message_Control hides the console from Appli-
cation, View Manager and Failure detectors.

Moreover, Message_Control maintains the state information about the channels of the
process. Channels are either blocked or unblocked. If a channel is blocked, it looses all
the messages going to and from it. If the channel is unblocked, it simply passes messages

to the upper and lower levels of the system.
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The state of the channel can be altered upon receipt of a Control message from the
console. A control message specifies whether to block or unblock a channel or a set of
channels. Because the console is invisible to the Failure Detectors, they treat a blocked
channel as a communication failure in the system, and thus initiate the failure detection

session.

Using this mechanism we can simulate various system failures. For instance, to simu-
late a link failure, we block one channel of a process. To simulate a process failure, we
block all channels of that process. To simulate more complex conditions, like multiple
communications failures we can inject the system with a combination of such control mes-

sages.

6.1.2 Messaging Mechanisms

The experimental system supported a large number of message classes implementing the
Application traffic, View Management, Background and Foreground Failure detection,
process Control and reporting (see Figure 6.3) Messages were represented as objects
within both the sending and the receiving process. The methods of most message classes
acted on the level of Environment, only the Ctrl_Messages acted on the Message_Citrl
level. Each message class implemented the following methods:

« Send/Receive: providing marshalling/unmarshalling and timer setup/cancellation

« Action: dispatching an incoming message to Failure Detector, View Manager, or
Application

« Timeout: an action to be taken if the message has not been acknowledged after the
timer has expired. Results in initiation of Failure Detection for Trigger Messages,
and helps Failure Detection reach its conclusions.

 Elimination: an action to be taken if a message has been acknowledged. Important
for Failure Detector making conclusions.
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Figure 6.3. Message class hierarchy. The two main groups were the First_Class messages that
generated Acknowledgments, and the Second_Class messages that did not. First_Class messages
were further divided according to the use of Acknowledgments into subclasses that Triggered
failure detection if acknowledgments were late, and the classes that implemented the FD
algorithms using acknowledgments.

« Control: a block/unblock action taken on a channel or a set of channels at the
Message_Ctrl level. This action is enabled only for Ctrl_Messages. Implements the
fault simulation in the system as described in Section 6.1.1.

Here is an example of how messages are used in the system (see Figuce 6.4). Assume

that process P1 is the System View Manager.

(A) Console sends a Control message to a secondary process S2 telling it to block the
channel connecting S2 with its primary P2, upon the receipt of this message S2
will start dropping all the messages going to/from P2.

(B) Then, P2 sends an Application message to S2 and it is not Acknowledged.

(C) After a certain time threshold, the P2 starts failure detection by Requesting process
P3 to arbitrate the possible failure of S2.

(D) P3 sends a message asking S2 to Respond if it is up and running. S2 Acknowledges
this message, because only its channel leading to P2 is down. Consequently P3
sends a Conclusion “S2 is alive” back to P2.
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Figure 6.4. A typical experiment. (A) Console sends a control message to process S2 that causes
S2 to block it's connection to P2. (B) P2 sends a message to S2 and does not get an
acknowledgment. (C) P2 initiates Foreground Failure Detection by asking P3 to arbitrate. (D) P3
pings S2 and reports that S2 is up back to P2. (E) P2 concludes that S2 is up, but the P2-S2 link is
broken and reports the failure to the view manager leader process P1. (F) P1 reports the failure to
the console.

(E) At this point P2 knows that it can not communicate with S2, but P3, running on the
same machine as S2, can. Therefore, concludes P2, the P2-S2 link is broken. Then
P2 Reports this result to the View Manager process P1.

(F) Upon the receipt of this message P1 initiates the system view update by sending a
View_Change message to all the Somersault processes in the system. Plus, Pl
sends a Final message to the Console, to notify it of the detected link failure.

The Console then measures the time it took to get a response form the leader process
and compares the detected failure with the one that was injected in the system, saving both

timing and correctness results for later processing.

6.2 Experiments

This section describes the experiments conducted using the system described above and
the resuits of these experiments. We first measure the distribution of message round trip

times, then verify the correctness of Background Failure detection algorithms and then
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concentrate on evaluating the performance of Foreground Failure Detection.

6.2.1 Round Trip Time Estimation
All the algorithms presented in the previous chapters are based on the assumption that the

Round Trip Time of TCP packets is bounded, moreover, that it is small enough to permit
the Failure Detection within the given timing constraints. We assume that even if the RTT
is not uniform, the number of packets with a given RTT decreases as an inverse exponent

of RTT. Using our system we ran an experiment to verify our hypothesis.

log10
Log Histogram of PDDI RTT

Log of number of messages

x10

2 4 6 [] 10 12 14
Double RTT of a message (milliseconds)

Figure 6.5. A logarithmic plot of number of TCP packets with a given RTT vs. the double of
Round Trip Time in milliseconds

The above plot confirms our assumptions. However, some TCP packets made a double
round-trip at around 150 ms. This implies that in order to be accurate, a multi-step failure
detection will take close to or mere than 300 milliseconds, thus leaving no time for recov-
ery under the telecom requirements. Therefore, a faster network software should be used,
or access to TCP acks should be provided, in order to avoid doubling the transmission

times. Alternatively, we can measure the accuracy of Failure Detection with Total Dura-
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tion under 300 ms. The rest of the experiments evaluate the accuracy and performance of

FD algorithms under the varying timings.

6.2.2 Testing the Background Failure Detection

When testing the Background failure detection, our main objective was to check that the
failures of the links and processes that do not communicate with the rest of the system are
detected correctly. We ran a series of experiments in which we disabled the Foreground
Failure detection, and then injected the node and link failures into the system. All the fail-
ures were detected correctly in as little time as 1.5 seconds. In order to make sure that the
interaction between the Foreground and the Background failure deiectors does not have a
negative impact on the performance of the Background failure detector, we ran both fail-
ure detectors while injecting the failures into the links that did not carry any traffic. Again

all these failures were detected correctly in 1.5 seconds.

6.2.3 Measuring the Performance of Foreground Failure Detection

According to the experiment described in Section 6.2.1, packet RTT is on the order of
hundreds of milliseconds. This RTT is rather slow compared to the telecom requirement of
250 millisecond detection and recovery time. Therefore, it is important to understand how
fast the Foreground Detection can run, and how its timings affect its correctness and per-
formance.

Let us define some terms for describing the timings of Foreground Failure Detection
algorithms. The important parameters are (see Figure 6.6):

« Fire Threshold: how long to wait before starting arbitration.

« Arbitration Span: how long to wait before examining the outcome of arbitration

« Total Duration: equals Fire Threshold plus Arbitration Span
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Figure 6.6. The timing parameters of Foreground Failure Detection. Total Duration = Fire
Threshold + Arbitration Span.

The following experimenrts describe the effect each of these parameters has on the per-

formance of Foreground Failure dctection.

Fire Threshold

First let us examine the effect of varying the Fire Threshold. In this experiment we
measured the number of Arbitration requests (Req_Messages) issued by a single process
over the period of about 8 minutes while the system was injected with a total of 150 pro-
cess and link failures. Failures were introduced one or two at a time. After detecting those
failures, system was reset to its original state, and the next single or double failure was
injected. During one minute the system ran without having any failures injected into it. We
ran the experiment for a range of Fire Thresholds varying from 10 ms. to 280 ms.

Knowing that the message RTT distribution is the approximately the inverse exponent
of the RTT, we expected to see that the number of failure detections initiated is very high
for small Fire Thresholds. As the Fire Threshold is increased, the number of detections
initiated should drop rapidly to approximately the number of failures injected into the sys-

tem.

As expected (see Figure 6.7), the number of detections initiated declines rapidly, but

never actually goes all the way down to the number of failures injected into the system,
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Figure 6.7. Number of initiated Failure Detections as a function of duration of Fire Threshold.

even for the very large fire thresholds. This happens because there are always packets that
take a very long time to go through the network. Due to this “noise,” increasing the Fire
Threshold does not yield a significant reduction in the number of detections initiated past

100 ms.

The value of the Fire Threshold determines the overhead inposed by failure detection.
If the Fire Threshold is low, too many failure detections are initiated, thus there is too
much failure detection traffic. In the worst case scenario, there wjll be so much failure
detection traffic that ,the application messages will start getting delayed in the system, thus

initiating even more failure detections. Consequently, that system may come to a grinding

halt under the load of failure detection traffic.

Therefore, a 100 ms value for Fire threshold is the best one, because it is the minimal

latency that provides the highest available accuracy of Failure Detection initiation.
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Total Duration

Now that we know the optimal value for Fire Threshold, let us consider the effect Total
Duration has on the false positive rate of Failure Detection. In the following experiment
we measure the percentage of failures detected as we keep the Fire Threshold at 100 ms.
and vary the Total Duration from 110 ms to 330 ms. The system we run in this experiment
is identical to the one we ran earlier. Over the period of about 8 minutes, it injects 150 pro-
cess and link failures into the system and resets the system after each failure is detected.
If an acknowledgment is received before the end of Total Duration of failure detection,
the node and the link in question are cleared of any suspicions, otherwise they are declared
dead. Therefore when the Total Duration is low, we expect to get a high False positive

rate.
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Figure 6.8. Percentage of Failures detected as a function of Total Duration, with Fire threshold
set to 100 ms.

From the experiment we find that the false positive rate (node and link combined)

found in the system is very high for Total Durations under 200 ms. The total false positive
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rate goes down almost to zero for total durations over 260ms. However, this measurement

does not differentiate between the node and the link failures.

Arbitration Span

The parameter that affects the accuracy of distinction between the node and the link
failures is Arbitration Span. When Arbitration Span is small, the number of link failures
interpreted as node failures is high. This happens because the process that initiaies failure
detection makes a decision about the nature of failure before it receives the results of arbi-
tration. In that case, it defaults to a more conservative conclusion that the process in ques-
tion, rather thaa the link to that process, is dead.

In the following experiment we run our usual system with a very large Fire Threshold

(750ms) to insure that failure detection is initiated only when there really is a failure in the

found
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Figure 6.9. Accuracy of link failure detection as a function of Arbitration Span.

system.Therefore, if we vary Arbitration Span under these conditions, it will effect the

accuracy of distinction between node and link failures and will have no effect on false
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positive rate. As usual, we run the system on the battery of standard tests injecting 150

node and link failures into the system.

As expected, larger arbitration spans provide a better accuracy of link vs. node failure
differentiations. The distinction becomes accurate at about 200 ms. Considering that the
message round trip time in our system maybe as high as 140ms, this is a very good result
for a protocol requiring three synchronous messages.

One reason why this is the case is that the majority of massages have RTT of about
10ms, rather than a 100ms. More importantly, we can show that when the message RTT
may increase on a TCP connecting between two processes, it is likely that the other chan-
nels at the system will not slow down at the same time. This point is illustrated by the
comparing the traces of message RTTs on two different connections during one of the test

runs (Figure 6.10). One explanation is that when a number of TCP connections share the

rimarpl-prinaryld. rtt primarp2-primarpd. rtt
150 4 ’ 250 L “?
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RTT (milliseconds)
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Figure 6.10. Scatter plots of message RTTs on two different connections in the same
experiment.Peak latencies do not happen at the same time.

same physical link, exponential back-off on one of the TCP connections frees the physical

bandwidth that can be used by the other TCP connections. Consequently, other connec-
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tions are able to send more data contained in their mbufs, actualiy reducing their end-to-

end RTT [21].

Performance with limited Total Duration

Finally, let us analyze the behavior of failure detection algorithms in a setting close to
the constraints imposed by telecoms. From the previous experiments we know that if fail-
ure detection runs for longer than 200ms, the overall false positive rate is quite small.
Additionally, accurate differentiation between the node and the link failures requires a
Total Duration of 300ms. This is greater than the telecom requirement of 250 ms. How-
ever, in this study we are interested in examining the feasibility of the proposed algo-
rithms, rather than building a production solution. We know that if the algorithms work
well at 300ms, their performance can be scaled to meet the telecom timing requirements
by using better network software (see Section 6.2.1). Let us assume an optimistic scenario
that failure detection takes 300ms and that process recovery happens instantaneously.

In this last experiment we set the total duration of failure detection to be 300ms and
vary the values of Fire Threshold and Arbitration Span.

When the Arbitration Span is small, there is not enough time to make the decision
about the nature of the failure, thus the node failure is assumed. Therefore, at low arbitra-
tion spans failure detection is very inefficient at distinguishing between the link and the
node failures. When the Arbitration span is large, say more than 250ms, in this experiment
Fire Threshold is less than 50ms. This leads to a large number of failure detections being
initiated. They generate a lot of traffic that overloads the system and increases the commu-
nication latency. As a result, there are marny false positives and arbitration requires much
more time than normal. Consequently, at high Arbitration Spans, differentiation between

the noce and the link failures is poor.
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Figure 6.  Percentage of link failures detected as a function of Arbitration Span varying from
10ms. to 270ms., while keeping the Total Duration constant at 300ms.

The optimal performance of foreground failure detection under the telco requirements
is observed at an Arbitration Span of about 200ms, and a Fire threshold of 100ms. At this
point the false positive rate is low and differentiation between the node and the link fail-

ures is almost 100% accurate.

6.3 Summary

This chapter presented an experimental system implementing the Foreground and the
Background FD algorithms, and the tests performed using this system. The experimental
data collected during the tests shows the following. Background FD works correctly, and
Foreground FD has an acceptably low false positive rate and reliably distinguishes
between the node and the link failures when it runs with Fire Threshold of 100 ms, and
Total Duration of 300ms. These timings exceed the telecom requirement of detecting of

and recovering from failures in 250ms. However, with an improved network software, or
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by simply providing the FD system with access to the TCP acks, the timings of Fore-

ground FD can be brought in line with the telecom requirements.
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Chapter 7

Discussion

We have built a failure detector for Somersault distributed system. This failure detec-
tor is complete [8], moreover it guarantees a bounded failure detection latency; it is not
accurate, but according to the result by Fischer, Lynch and Paterson [14], no failure detec-
tor can be accurate. Still, in our experiments, we demonstrated that this failure detector
has a low false positive rate and is able to distinguish between the node and link failures in
real time.

The contributions of this thesis are twofold. First, we employ a globalized approach to
failure detection. It uses multiple failure indications collected from the different parts of
the system to increase its’ accuracy. Second, we separate failure detector into two func-
tional parts: (1) a Foreground Failure Detector, which is responsible for quick, on-demand
failure detection; (2) a Background Failure Detector, which is responsible for finding fail-
ures that do not immediately affect the system. Background Failure Detector significantly
reduces the probability of multiple failures accumulating in the system, thus decreasing
the probability of a total system failure, and increasing its MTTF. Separating failure detec-
tion into two distinct mechanisms allows us to address both tasks of doing fast fai'ure

detection and increasing long-term the availability of system, with minimal overhead.

Globalized approach is cmployed in both the Background and the Foreground failure
detectors. Multiple failure indications from different sources are used to determine the
cause of a failure. Background FD uses temporal distribution of failure suspicions to filter
out transient failures and spatial distribution to distinguish between process and link fail-

ures. Foreground FD runs under much tighter timing constraints. Thus, it can not exploit
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temporal distribution. However, it forces multiple tests to be performed simultaneously
throughout the system in order to determine the nature of a suspected failure.

To verify correctness and evaluate performance of failure detection algorithms pre-
sented in this thesis, we constructed a distributed test-bed. It allowed us to inject failures
into the system and observe the accuracy and latency of their detection. Our measurements
showed that Background FD was correct, and accurately found the failures we injected.
Experiments showed that Foreground FD was also correct. However, under the strict tele-
com timing requirements, it did not have enough time to make an accurate decision.
Namely, Foreground FD always found a cause of failure, but occasionally it misinter-
preted link failures as node faults. Fortunately, under the timing requirements relaxed by
only 20% the accuracy of Foreground FD was close to 100%. We believe that the telecom
timing requirements can be met by simply improving the performance of underlying pro-
tocols.

The ultimate goal of building Somersault’s failure detector was to insure system’s
MTTF of approximately 20 years. Testing for the fulfillment of this requirement is beyond
our capabilities. However, in order to explore the effects of failure detection performance
on MTTF, we built a mathematical model of availability of Somersault. It assumed inde-
pendence of failures and an optimal machine configuration. Our model showed that with
Background FD in place, performance of components and their reliability dominate reli-
ability of Somersault. In particular, improving network throughput was identified as the
key factor for increasing availability of Somersauit.

Scalability is an important factor of success of distributed systems. In this thesis, we
paid particular attention to scalability of Somersault failure detection. Because Fore-
ground FD requires only a small constant number of messages for each failure suspicion,

it scales well. Background FD messaging overhead, however, grows quadratically with
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the number of processes in the system. From reliability analysis we know that systems
with several hundreds of processes, large enough to make Background FD overhead pro-
hibitively high, can not be built due to component reliability constraints. Therefore, within

the domain of realistic Somersault configurations, Background FD is also scalable.

7.1 Future work

The next logical step is replacing TCP that our system uses with some other reliable
protocol. TCP in its current implementation seems to introduce a lot of delay into the sys-
tem. For instance, on the FDDI ring we were using the Estimated Token Rotation Time
was well under 8ms. However, it was not uncommon to see massage round trip times of
over 100ms. Also, the variance of round trip times that reduced the accuracy of Fore-
ground FD was very high. These behaviors are highly undesirable from the point of FD
algorithms. Much of this undesirable behavior can be explained by interactions of TCP
back-offs on different connections [21], and by inefficient interactions between the UNIX
kernel and TCP [9]. So, an immediate way of improving accuracy and speed of failure
detection would be using a different protocol or a different operating system. Perhaps,
even a version of TCP without the slow start could improve performance of failure detec-
tion in the well controlled LAN environment of our system.

As stated above, using raore reliable, faster, higher throughput networks may signifi-
cantly improve scalability and reliability of Somersault. Implementing highly-available
systems using such network technology, for instance ATM, is another promising topic for
future research.

Finally, building a more accurate mathematical model of Somersault’s reliability will
produce more realistic availability estimates and will rectify the scalability limits of the

system and performance requirements for failure detection.
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