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Abstract: We show that the mutual information between two symbols, as a function of the number
of symbols between the two, decays exponentially in any probabilistic regular grammar, but can
decay like a power law for a context-free grammar. This result about formal languages is closely
related to a well-known result in classical statistical mechanics that there are no phase transitions
in dimensions fewer than two. It is also related to the emergence of power law correlations in
turbulence and cosmological inflation through recursive generative processes. We elucidate these
physics connections and comment on potential applications of our results to machine learning tasks
like training artificial recurrent neural networks. Along the way, we introduce a useful quantity,
which we dub the rational mutual information, and discuss generalizations of our claims involving
more complicated Bayesian networks.

Keywords: formal languages; statistical mechanics; criticality

1. Introduction

Critical behavior, where long-range correlations decay as a power law with distance, has many
important physics applications ranging from phase transitions in condensed matter experiments to
turbulence and inflationary fluctuations in our early Universe. It has important applications beyond
the traditional purview of physics, as well [1–5], including applications to music [4,6], genomics [7,8]
and human languages [9–12].

In Figure 1, we plot a statistic that can be applied to all of the above examples: the mutual information
between two symbols as a function of the number of symbols in between the two symbols [9]. As discussed
in previous works [9,11,13], the plot shows that the number of bits of information provided by a symbol
about another drops roughly as a power law (The power law discussed here should not be confused
with another famous power law that occurs in natural languages: Zipf’s law [14]. Zipf’s law implies
power law behavior in one-point statistics (in the histogram of word frequencies), whereas we are
interested in two-point statistics. In the former case, the power law is in the frequency of words; in the
latter case, the power law is in the separation between characters. One can easily cook up sequences
that obey Zipf’s law, but are not critical and do not exhibit a power law in the mutual information.
However, there are models of certain physical systems where Zipf’s law follows from criticality [15,16].)
with distance in sequences (defined as the number of symbols between the two symbols of interest) as
diverse as the human genome, music by Bach and text in English and French. Why is this, when so
many other correlations in nature instead drop exponentially [17]?
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Figure 1. Decay of mutual information with separation. Here, the mutual information in bits per
symbol is shown as a function of separation d(X, Y) = |i− j|, where the symbols X and Y are located
at positions i and j in the sequence in question, and shaded bands correspond to 1− σ error bars.
The statistics were computed using a sliding window using an estimator for the mutual information
detailed in Appendix D. All measured curves are seen to decay roughly as power laws, explaining why
they cannot be accurately modeled as Markov processes, for which the mutual information instead
plummets exponentially (the example shown has I ∝ e−d/6). The measured curves are seen to be
qualitatively similar to that of a famous critical system in physics: a 1D slice through a critical 2D
Ising model, where the slope is −1/2. The human genome data consist of 177,696,512 base pairs
{A, C, T,G} from chromosome 5 from the National Center for Biotechnology Information [18], with
unknown base pairs omitted. The Bach data consist of 5727 notes from Partita No. 2 [19], with all
notes mapped into a 12-symbol alphabet consisting of the 12 half-tones {C, C#, D, D#, E, F, F#, G,
G#, A, A#, B}, with all timing, volume and octave information discarded. The three text corpuses are
100 MB from Wikipedia [20] (206 symbols), the first 114 MB of a French corpus [21] (185 symbols) and
27 MB of English articles from slate.com (143 symbols). The large long-range information appears to be
dominated by poems in the French sample and by html-like syntax in the Wikipedia sample.

Better understanding the statistical properties of natural languages is interesting not only for
geneticists, musicologists and linguists, but also for the machine learning community. Any tasks that
involve natural language processing (e.g., data compression, speech-to-text conversion, auto-correction)
exploit statistical properties of language and can all be further improved if we can better understand
these properties, even in the context of a toy model of these data sequences. Indeed, the difficulty
of automatic natural language processing has been known at least as far back as Turing, whose
eponymous test [22] relies on this fact. A tempting explanation is that natural language is something
uniquely human. However, this is far from a satisfactory one, especially given the recent successes of
machines at performing tasks as complex and as “human” as playing Jeopardy! [23], chess [24], Atari
games [25] and Go [26]. We will show that computer descriptions of language suffer from a much
simpler problem that has involved no talk about meaning or being non-human: they tend to get the
basic statistical properties wrong.

To illustrate this point, consider Markov models of natural language. From a linguistics point
of view, it has been known for decades that such models are fundamentally unsuitable for modeling
human language [27]. However, linguistic arguments typically do not produce an observable that can
be used to quantitatively falsify any Markovian model of language. Instead, these arguments rely on
highly specific knowledge about the data, in this case, an understanding of the language’s grammar.
This knowledge is non-trivial for a human speaker to acquire, much less an artificial neural network.

slate.com
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In contrast, the mutual information is comparatively trivial to observe, requiring no specific knowledge
about the data, and it immediately indicates that natural languages would be poorly approximated by
a Markov/hidden Markov model, as we will demonstrate.

Furthermore, the mutual information decay may offer a partial explanation of the impressive
progress that has been made by using deep neural networks for natural language processing
(see, e.g., [28–32]) (for recent reviews of deep neural networks, see [33,34]), We will see that a key
reason that currently popular recurrent neural networks with long-short-term memory (LSTM) [35] do
much better is that they can replicate critical behavior, but that even they can be further improved,
since they can under-predict long-range mutual information.

While motivated by questions about natural languages and other data sequences, we will explore
the information-theoretic properties of formal languages. For simplicity, we focus on probabilistic
regular grammars and probabilistic context-free grammars (PCFGs). Of course, real-world data sources
like English are likely more complex than a context-free grammar [36], just as a real-world magnet
is more complex than the Ising model. However, these formal languages serve as toy models that
capture some aspects of the real data source, and the theoretical techniques we develop for studying
these toy models might be adapted to more complex formal languages. Of course, independent of
their connection to natural languages, formal languages are also theoretically interesting in their own
right and have connections to, e.g., group theory [37].

This paper is organized as follows. In Section 2, we show how Markov processes exhibit
exponential decay in mutual information with scale; we give a rigorous proof of this and other
results in a series of Appendices. To enable such proofs, we introduce a convenient quantity that
we term rational mutual information, which bounds the mutual information and converges to it in
the near-independence limit. In Section 3, we define a subclass of generative grammars and show
that they exhibit critical behavior with power law decays. We then generalize our discussion using
Bayesian nets and relate our findings to theorems in statistical physics. In Section 4, we discuss our
results and explain how LSTM RNNs can reproduce critical behavior by emulating our generative
grammar model.

2. Markov Implies Exponential Decay

For two discrete random variables X and Y, the following definitions of mutual information are
all equivalent:

I(X, Y) ≡ S(X) + S(Y)− S(X, Y)

= D
(

p(XY)
∣∣∣∣p(X)p(Y)

)
=

〈
logB

P(a, b)
P(a)P(b)

〉
= ∑

ab
P(a, b) logB

P(a, b)
P(a)P(b)

,

(1)

where S ≡ 〈− logB P〉 is the Shannon entropy [38] and D(p(XY)||p(X)p(Y)) is the Kullback–Leibler
divergence [39] between the joint probability distribution and the product of the individual marginals.
If the base of the logarithm is taken to be B = 2, then I(X, Y) is measured in bits. The mutual
information can be interpreted as how much one variable knows about the other: I(X, Y) is the
reduction in the number of bits needed to specify for X once Y is specified. Equivalently, it is the
number of encoding bits saved by using the true joint probability P(X, Y) instead of approximating X
and Y as independent. It is thus a measure of statistical dependencies between X and Y. Although it is
more conventional to measure quantities such as the correlation coefficient ρ in statistics and statistical
physics, the mutual information is more suitable for generic data, since it does not require that the
variables X and Y are numbers or have any algebraic structure, whereas ρ requires that we are able to
multiply X ·Y and average. Whereas it makes sense to multiply numbers, it is meaningless to multiply
or average two characters such as “!” and “?”.



Entropy 2017, 19, 299 4 of 25

The rest of this paper is largely a study of the mutual information between two random variables
that are realizations of a discrete stochastic process, with some separation τ in time. More concretely,
we can think of sequences {X1, X2, X3, · · · } of random variables, where each one might take values
from some finite alphabet. For example, if we model English as a discrete stochastic process and take
τ = 2, X could represent the first character (“F”) in this sentence, whereas Y could represent the third
character (“r”) in this sentence.

In particular, we start by studying the mutual information function of a Markov process, which is
analytically tractable. Let us briefly recapitulate some basic facts about Markov processes (see, e.g., [40]
for a pedagogical review). A Markov process is defined by a matrix M of conditional probabilities
Mab = P(Xt+1 = a|Xt = b). Such Markov matrices (also known as stochastic matrices) thus have the
properties Mab ≥ 0 and ∑a Mab = 1. They fully specify the dynamics of the model:

pt+1 = M pt, (2)

where pt is a vector with components P(Xt = a) that specifies the probability distribution at time t.
Let λi denote the eigenvalues of M, sorted by decreasing magnitude: |λ1| ≥ |λ2| ≥ |λ3|... All Markov
matrices have |λi| ≤ 1, which is why blowup is avoided when Equation (2) is iterated, and λ1 = 1,
with the corresponding eigenvector giving a stationary probability distribution µ satisfying Mµ = µ.

In addition, two mild conditions are usually imposed on Markov matrices: M is irreducible,
meaning that every state is accessible from every other state (otherwise, we could decompose the
Markov process into separate Markov processes). Second, to avoid processes like 1→ 2→ 1→ 2 · · ·
that will never converge, we take the Markov process to be aperiodic. It is easy to show using the
Perron–Frobenius theorem that being irreducible and aperiodic implies |λ2| < 1 and, therefore, that µ

is unique.
This section is devoted to the intuition behind the following theorem, whose full proof is given in

Appendices A and B. The theorem states roughly that for a Markov process, the mutual information
between two points in time t1 and t2 decays exponentially for large separation |t2 − t1|:

Theorem 1. Let M be a Markov matrix that generates a Markov process. If M is irreducible and aperiodic, then
the asymptotic behavior of the mutual information I(t1, t2) is exponential decay toward zero for |t2 − t1| � 1
with decay timescale log 1

|λ2|
, where λ2 is the second largest eigenvalue of M. If M is reducible or periodic,

I can instead decay to a constant; no Markov process whatsoever can produce power law decay. Suppose M
is irreducible and aperiodic so that pt → µ as t → ∞, as mentioned above. This convergence of one-point
statistics, e.g., pt, has been well-studied [40]. However, one can also study higher order statistics such as the joint
probability distribution for two points in time. For succinctness, let us write P(a, b) ≡ P(X = a, Y = b), where
X = Xt1 , Y = Xt2 and τ ≡ |t2 − t1|. We are interested in the asymptotic situation where the Markov process
has converged to its steady state, so the marginal distribution P(a) ≡ ∑b P(a, b) = µa, independently of time.

If the joint probability distribution approximately factorizes as P(a, b) ≈ µaµb for sufficiently large
and well-separated times t1 and t2 (as we will soon prove), the mutual information will be small. We can
therefore Taylor expand the logarithm from Equation (1) around the point P(a, b) = P(a)P(b), giving:

I(X, Y) =
〈

logB

(
P(a, b)

P(a)P(b)

)〉
=

〈
logB

[
1 +

P(a, b)
P(a)P(b)

− 1
]〉

≈
〈

P(a, b)
P(a)P(b)

− 1
〉

1
ln B

=
IR(X, Y)

ln B
,

(3)
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where we have defined the rational mutual information:

IR ≡
〈

P(a, b)
P(a)P(b)

− 1
〉

. (4)

For comparing the rational mutual information with the usual mutual information, it will be
convenient to take e as the base B of the logarithm. We derive useful properties of the rational mutual
information in Appendix A. To mention just one, we note that the rational mutual information is
not just asymptotically equal to the mutual information in the limit of near-independence, but it also
provides a strict upper bound on it: 0 ≤ I ≤ IR.

Let us without loss of generality take t2 > t1. Then, iterating Equation (2) τ times gives
P(b|a) = (Mτ)ba. Since P(a, b) = P(a)P(b|a), we obtain:

IR + 1 =

〈
P(a, b)

P(a)P(b)

〉
= ∑

ab
P(a, b)

P(a, b)
P(a)P(b)

= ∑
ab

P(b|a)2P(a)2

P(a)P(b)
= ∑

ab

µa

µb
[(Mτ)ba]

2.

We will continue the proof by considering the typical case where the eigenvalues of M are all
distinct (non-degenerate), and the Markov matrix is irreducible and aperiodic; we will generalize to
the other cases (which form a set of measure zero) in Appendix B. Since the eigenvalues are distinct,
we can diagonalize M by writing:

M = BDB−1 (5)

for some invertible matrix B and some a diagonal matrix D, whose diagonal elements are the
eigenvalues: Dii = λi. Raising Equation (5) to the power τ gives Mτ = BDτB−1, i.e.,

(Mτ)ba = ∑
c

λτ
c Bbc(B

−1)ca. (6)

Since M is non-degenerate, irreducible and aperiodic, 1 = λ1 > |λ2| > · · · > |λn|, so all terms
except the first in the sum of Equation (6) decay exponentially with τ, at a decay rate that grows with c.
Defining r = λ3/λ2, we have:

(Mτ)ba = Bb1B−1
1a + λτ

2

[
Bb2B−1

2a +O(rτ)
]

= µb + λτ
2 Aba, (7)

where we have made use of the fact that an irreducible and aperiodic Markov process must converge to
its stationary distribution for large τ, and we have defined A as the expression in square brackets above,
satisfying limτ→∞ Aba = Bb2B−1

2a . Note that ∑b Aba = 0 in order for M to be properly normalized.
Substituting Equation (7) into Equation (8) and using the facts that ∑a µa = 1 and ∑b Aba = 0,

we obtain:

IR = ∑
ab

µa

µb
[(Mτ)ba]

2 − 1

= ∑
ab

µa

µb

(
µ2

b + 2µbλτ
2 Aba + λ2τ

2 A2
ba

)
− 1

= ∑
ab

λ2τ
2

(
µ−1

b A2
baµa

)
= Cλ2τ

2 ,

(8)

where the term in the last parentheses is of the form C = C0 +O(rτ).
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In summary, we have shown that an irreducible and aperiodic Markov process with
non-degenerate eigenvalues cannot produce critical behavior, because the mutual information decays
exponentially. In fact, no Markov processes can, as we show in Appendix B.

To hammer the final nail into the coffin of Markov processes as models of critical behavior, we need
to close a final loophole. Their fundamental problem is the lack of long-term memory, which can be
superficially overcome by redefining the state space to include symbols from the past. For example,
if the current state is one of n, and we wish the process to depend on the the last τ symbols, we can
define an expanded state space consisting of the nτ possible sequences of length τ and a corresponding
nτ × nτ Markov matrix (or an nτ × n table of conditional probabilities for the next symbol given the
last τ symbols). Although such a model could fit the curves in Figure 1 in theory, it cannot in practice,
because M requires way more parameters than there are atoms in our observable Universe (∼ 1078):
even for as few as n = 4 symbols and τ = 1000, the Markov process involves over 41000 ∼ 10602

parameters. Scale-invariance aside, we can also see how Markov processes fail simply by considering
the structure of text. To model English well, M would need to correctly close parentheses even if
they were opened more than τ = 100 characters ago, requiring an M-matrix with more than n100

parameters, where n > 26 is the number of characters used.
We can significantly generalize Theorem 1 into a theorem about hidden Markov models (HMM).

In an HMM, the observed sequence X1, · · · , Xn is only part of the picture: there are hidden variables
Y1, · · · , Yn that themselves form a Markov chain. We can think of an HMM as follows: imagine
a machine with an internal state space Y that updates itself according to some Markovian dynamics.
The internal dynamics are never observed, but at each time-step, it also produces some output Yi → Xi
that forms the sequence that we can observe. These models are quite general and are used to model
a wealth of empirical data (see, e.g., [41]).

Theorem 2. Let M be a Markov matrix that generates the transitions between hidden states Yi in an HMM.
If M is irreducible and aperiodic, then the asymptotic behavior of the mutual information I(t1, t2) is exponential
decay toward zero for |t2 − t1| � 1 with decay timescale log 1

|λ2|
, where λ2 is the second largest eigenvalue of

M. This theorem is a strict generalization of Theorem 1, since given any Markov processM with corresponding
matrix M, we can construct an HMM that reproduces the exact statistics ofM by usingM as the transition
matrix between the Y’s and generating Xi from Yi by simply setting xi = yi with probability one.

The proof is very similar in spirit to the proof of Theorem 1, so we will just present a sketch here,
leaving a full proof to Appendix B. Let G be the Markov matrix that governs Yi → Xi. To compute the
joint probability between two random variables Xt1 and Xt2 , we simply compute the joint probability
distribution between Yt1 and Yt2 , which again involves a factor of Mτ , and then, we use two factors
of G to convert the joint probability on Yt1 , Yt2 to a joint probability on Xt1 , Xt2 . These additional two
factors of G will not change the fact that there is an exponential decay given by Mτ .

A simple, intuitive bound from information theory (namely the data processing inequality [40])
gives I(Yt1 , Yt2) ≥ I(Yt1 , Xt2) ≥ I(Xt1 , Xt2). However, Theorem 1 implies that I(Yt1 , Yt2) decays
exponentially. Hence, I(Xt1 , Xt2) must also decay at least as fast as exponentially.

There is a well-known correspondence between so-called probabilistic regular grammars [42]
(sometimes referred to as stochastic regular grammars) and HMMs. Given a probabilistic regular
grammar, one can generate an HMM that reproduces all statistics and vice versa. Hence, we can also
state Theorem 2 as follows:

Corollary 1. No probabilistic regular grammar exhibits criticality.

In the next section, we will show that this statement is not true for context-free grammars.
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3. Power Laws from Generative Grammar

If computationally-feasible Markov processes cannot produce critical behavior, then how do such
sequences arise? In this section, we construct a toy model where sequences exhibit criticality. In the
parlance of theoretical linguistics, our language is generated by a stochastic or probabilistic context-free
grammar (PCFG) [43–46]. We will discuss the relationship between our model and a generic PCFG in
Section 3.3.

3.1. A Simple Recursive Grammar Model

We can formalize the above considerations by giving production rules for a toy language L over
an alphabet A. The language is defined by how a native speaker of L produces sentences: first, she/he
draws one of the |A| characters from some probability distribution µ on A. She/he then takes this
character x0 and replaces it with q new symbols, drawn from a probability distribution P(b|a), where
a ∈ A is the first symbol and b ∈ A is any of the second symbols. This is repeated over and over.
After u steps, she/he has a sentence of length qu (This exponential blowup is reminiscent of de Sitter
space in cosmic inflation. There is actually a much deeper mathematical analogy involving conformal
symmetry and p-adic numbers that has been discussed [47]).

One can ask for the character statistics of the sentence at production step u given the statistics of
the sentence at production step u− 1. The character distribution is simply:

Pu(b) = ∑
a

P(b|a)Pu−1(a). (9)

Of course this equation does not imply that the process is a Markov process when the sentences
are read left to right. To characterize the statistics as read from left to right, we really want to compute
the statistical dependencies within a given sequence, e.g., at fixed u.

To see that the mutual information decays like a power law rather than exponentially with
separation, consider two random variables X and Y separated by τ. One can ask how many generations
took place between X and the nearest ancestor of X and Y. Typically, this will be about logq τ

generations. Hence, in the tree graph shown in Figure 2, which illustrates the special case q = 2,
the number of edges ∆ between X and Y is about 2 logq τ. Hence, by the previous result for Markov
processes, we expect an exponential decay of the mutual information in the variable ∆ ∼ 2 logq τ. This
means that I(X, Y) should be of the form:

I(X, Y) ∼ q−γ∆ = q−2γ logq τ = τ−2γ, (10)

where γ is controlled by the second-largest eigenvalue of G, the matrix of conditional probabilities
P(b|a). However, this exponential decay in ∆ is exactly a power law decay in τ! This intuitive argument
is transformed into a rigorous proof in Appendix C.

3.2. Further Generalization: Strongly Correlated Characters in Words

In the model we have been describing so far, all nodes emanating from the same parent can
be freely permuted since they are conditionally independent. In this sense, characters within a
newly-generated word are uncorrelated. We call models with this property weakly correlated. There
are still arbitrarily large correlations between words, but not inside of words. If a weakly correlated
grammar allows a → ab, it must allow for a → ba with the same probability. We now wish to
relax this property to allow for the strongly-correlated case where variables may not be conditionally
independent given the parents. This allows us to take a big step towards modeling realistic languages:
in English, god significantly differs in meaning and usage from dog.
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Figure 2. Both a traditional Markov process (top) and our recursive generative grammar process
(bottom) can be represented as Bayesian networks, where the random variable at each node depends
only on the node pointing to it with an arrow. The numbers show the geodesic distance ∆ to the leftmost
node, defined as the smallest number of edges that must be traversed to get there. Roughly speaking,
our results show that for large ∆, the mutual information decays exponentially with ∆ (see Theorems 1
and 2). Since this geodesic distance ∆ grows only logarithmically with the separation in time in a
hierarchical generative grammar (the hierarchy creates very efficient shortcuts), the exponential kills
the logarithm, and we are left with power law decays of mutual information in such languages.

In the previous computation, the crucial ingredient was the joint probability P(a, b) = P(X = a,
Y = b). Let us start with a seemingly trivial remark. This joint probability can be re-interpreted as
a conditional joint probability. Instead of X and Y being random variables at specified sites t1 and t2,
we can view them as random variables at randomly chosen locations, conditioned on their locations
being t1 and t2. Somewhat pedantically, we write P(a, b) = P(a, b|t1, t2). This clarifies the important
fact that the only way that P(a, b|t1, t2) depends on t1 and t2 is via a dependence on ∆(t1, t2). Hence,

P(a, b|t1, t2) = P(a, b|∆). (11)

This equation is specific to weakly-correlated models and does not hold for generic
strongly-correlated models.

In computing the mutual information as a function of separation, the relevant quantity is the
right-hand side of Equation (7). The reason is that in practical scenarios, we estimate probabilities
by sampling a sequence at fixed separation t1 − t2, corresponding to ∆ ≈ 2 logq |t2 − t1| + O(1),
but varying t1 and t2 (the O(1) term is discussed in Appendix C).

Now, whereas P(a, b|t1, t2) will change when strong correlations are introduced, P(a, b|∆) will
retain a very similar form. This can be seen as follows: knowledge of the geodesic distance corresponds
to knowledge of how high up the closest parent node is in the hierarchy (see Figure 2). Imagine
flowing down from the parent node to the leaves. We start with the stationary distribution µi at the
parent node. At the first layer below the parent node (corresponding to a causal distance ∆− 2), we
get Qrr′ ≡ P(rr′) = ∑i PS(rr′|i)P(i), where the symmetrized probability PS = 1

2 ∑i[P(rr′|i) + P(r′r|i)]
comes into play because knowledge of the fact that r, r′ are separated by ∆− 2 gives no information
about their order. To continue this process to the second stage and beyond, we only need the matrix
Gsr = P(s|r) = ∑s′ PS(ss′|r). The reason is that since we only wish to compute the two-point function
at the bottom of the tree, the only place where a three-point function is ever needed is at the very top
of the tree, where we need to take a single parent into two children nodes. After that, the computation
only involves evolving a child node into a grand-child node, and so forth. Hence, the overall two-point
probability matrix P(ab|∆) is given by the simple equation:

P(∆) =
(

G∆/2−1
)

Q
(

G∆/2−1
)t

. (12)
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As we can see from the above formula, changing to the strongly-correlated case essentially reduces
to the weakly correlated case where:

P(∆) =
(

G∆/2
)

diag(µ)
(

G∆/2
)t

, (13)

except for a perturbation near the top of the tree. We can think of the generalization as equivalent to
the old model except for a different initial condition. We thus expect on intuitive grounds that the
model will still exhibit power law decay. This intuition is correct, as we will prove in Appendix C.
Our result can be summarized by the following theorem:

Theorem 3. There exist probabilistic context-free grammars (PCFGs) such that the mutual information I(A, B)
between two symbols A and B in the terminal strings of the language decay like d−k, where d is the number of
symbols in between A and B.

In Appendix C, we give an explicit formula for k, as well as the normalization of the power law
for a particular class of grammars.

3.3. Further Generalization: Bayesian Networks and Context-Free Grammars

Just how generic is the scaling behavior of our model? What if the length of the words is not
constant? What about more complex dependencies between layers? If we retrace the derivation in the
above arguments, it becomes clear that the only key feature of all of our models considered so far is
that the rational mutual information decays exponentially with the causal distance ∆:

IR ∼ e−γ∆. (14)

This is true for (hidden) Markov processes and the hierarchical grammar models that we have
considered above. So far, we have defined ∆ in terms of quantities specific to these models; for a Markov
process, ∆ is simply the time separation. Can we define ∆ more generically? In order to do so, let us
make a brief aside about Bayesian networks. Formally, a Bayesian net is a directed acyclic graph
(DAG), where the vertices are random variables and conditional dependencies are represented by the
arrows. Now, instead of thinking of X and Y as living at certain times (t1, t2), we can think of them as
living at vertices (i, j) of the graph.

We define ∆(i, j) as follows. Since the Bayesian net is a DAG, it is equipped with a partial order ≤
on vertices. We write k ≤ l iff there is a path from k to l, in which case, we say that k is an ancestor
of l. We define the L(k, l) to be the number of edges on the shortest directed path from k to l. Finally,
we define the causal distance ∆(i, j) to be:

∆(i, j) ≡ min
x≤i,x≤j

L(x, i) + L(x, j). (15)

It is easy to see that this reduces to our previous definition of ∆ for Markov processes and recursive
generative trees (see Figure 2).

Is it true that our exponential decay result from Equation (14) holds even for a generic Bayesian
net? The answer is yes, under a suitable approximation. The approximation is to ignore long paths in
the network when computing the mutual information. In other words, the mutual information tends
to be dominated by the shortest paths via a common ancestor, whose length is ∆. This is generally
a reasonable approximation, because these longer paths will give exponentially weaker correlations,
so unless the number of paths increases exponentially (or faster) with length, the overall scaling will
not change.

With this approximation, we can state a key finding of our theoretical work. Deep models are
important because without the extra “dimension” of depth/abstraction, there is no way to construct
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“shortcuts” between random variables that are separated by large amounts of time with short-range
interactions; 1D models will be doomed to exponential decay. Hence, the ubiquity of power laws may
partially explain the success of applications of deep learning to natural language processing. In fact,
this can be seen as the Bayesian net version of the important result in statistical physics that there are
no phase transitions in 1D [48,49].

One might object that while the requirement of short-ranged interactions is highly motivated in
physical systems, it is unclear why this restriction is necessary in the context of natural languages.
Our response is that allowing for a generic interaction between say k-nearest neighbors will increase
the number of parameters in the model exponentially with k.

There are close analogies between our deep recursive grammar and more conventional physical
systems. For example, according to the emerging standard model of cosmology, there was an early
period of cosmological inflation when density fluctuations were getting added on a fixed scale as
space itself underwent repeated doublings, combining to produce an excellent approximation to a
power law correlation function. This inflationary process is simply a special case of our deep recursive
model (generalized from 1–3 dimensions). In this case, the hidden “depth” dimension in our model
corresponds to cosmic time, and the time parameter that labels the place in the sequence of interest
corresponds to space. A similar physical analogy is turbulence in a fluid, where energy in the form
of vortices cascades from large scales to ever smaller scales through a recursive process where larger
vortices create smaller ones, leading to a scale-invariant power spectrum. There is also a close analogy
to quantum mechanics: Equation (13) expresses the exponential decay of the mutual information with
geodesic distance through the Bayesian network; in quantum mechanics, the correlation function of a
many body system decays exponentially with the geodesic distance defined by the tensor network,
which represents the wavefunction [50].

It is also worth examining our model using techniques from linguistics. A generic PCFG G consists
of three ingredients:

1. An alphabet A = A ∪ T, which consists of non-terminal symbols A and terminal symbols T.
2. A set of production rules of the form a → B, where the left-hand side a ∈ A is always a single

non-terminal character and B is a string consisting of symbols in A.
3. Probabilities associated with each production rule P(a → B), such that for each a ∈ A,

∑B P(a→ B) = 1.

It is a remarkable fact that any stochastic-context free grammars can be put in Chomsky normal
form [27,45]. This means that given G, there exists some other grammar Ḡ, such that all of the
production rules are either of the form a → bc or a → α, where a, b, c ∈ A and α ∈ T and the
corresponding languages L(G) = L(Ḡ). In other words, given some complicated grammar G, we can
always find a grammar Ḡ such that the corresponding statistics of the languages are identical and all
of the production rules replace a symbol by at most two symbols (at the cost of increasing the number
of production rules in Ḡ).

This formalism allows us to strengthen our claims. Our model with a branching factor q = 2 is
precisely the class of all context-free grammars that are generated by the production rules of the form
a→ bc. While this might naively seem like a very small subset of all possible context-free grammars,
the fact that any context-free grammar can be converted into Chomsky normal form shows that our
theory deals with a generic context-free grammar, except for the additional step of producing terminal
symbols from non-terminal symbols. Starting from a single symbol, the deep dynamics of the PCFG
in normal form are given by a strongly-correlated branching process with q = 2, which proceeds for
a characteristic number of productions before terminal symbols are produced. Before most symbols
have been converted to terminal symbols, our theory applies, and power law correlations will exist
amongst the non-terminal symbols. To the extent that the terminal symbols that are then produced
from non-terminal symbols reflect the correlations of the non-terminal symbols, we expect context-free
grammars to be able to produce power law correlations.
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From our corollary to Theorem 2, we know that regular grammars cannot exhibit power law
decays in mutual information. Hence, context-free grammars are the simplest grammars that support
criticality, e.g., they are the lowest in the Chomsky hierarchy that support criticality. Note that our
corollary to Theorem 2 also implies that not all context-free grammars exhibit criticality since regular
grammars are a strict subset of context-free grammars. Whether one can formulate an even sharper
criterion should be the subject of future work.

4. Discussion

By introducing a quantity we term rational mutual information, we have proven that hidden
Markov processes generically exhibit exponential decay, whereas PCFGs can exhibit power law decays
thanks to the “extra dimension” in the network. To the extent that natural languages and other
empirical data sources are generated by processes more similar to PCFGs than Markov processes, this
explains why they can exhibit power law decays.

We will draw on these lessons to give a semi-heuristic explanation for the success of deep recurrent
neural networks widely used for natural language processing and discuss how mutual information
can be used as a tool for validating machine learning algorithms.

4.1. Connection to Recurrent Neural Networks

While the generative grammar model is appealing from a linguistic perspective, it may appear to
have little to do with machine learning algorithms that are implemented in practice. However, as we
will now see, this model can in fact be viewed as an idealized version of a long-short term memory
(LSTM) recurrent neural network (RNN) that is generating (“hallucinating”) a sequence.

Figure 3 shows that an LSTM RNN can reproduce critical behavior. In this example, we trained
an RNN (consisting of three hidden LSTM layers of size 256 as described in [29]) to predict the
next character in the 100-MB Wikipedia sample known as enwik8 [20]. We then used the LSTM to
hallucinate 1 MB of text and measured the mutual information as a function of distance. Figure 3
shows that not only is the resulting mutual information function a rough power law, but it also has a
slope that is relatively similar to the original.

We can understand this success by considering a simplified model that is less powerful and
complex than a full LSTM, but retains some of its core features; such an approach to studying deep
neural nets has proven fruitful in the past (e.g., [51]).

The usual implementation of LSTMs consists of multiple cells stacked one on top of each other.
Each cell of the LSTM (depicted as a yellow circle in Figure 4) has a state that is characterized by
a matrix of numbers Ct and is updated according to the following rule:

Ct = ft ◦Ct−1 + it ◦Dt, (16)

where ◦ denotes element-wise multiplication, and Dt = Dt(Ct−1, xt) is some function of the input xt

from the cell from the layer above (denoted by downward arrows in Figure 4), the details of which do
not concern us. Generically, a graph of this picture would look like a rectangular lattice, with each
node having an arrow to its right (corresponding to the first term in the above equation) and an arrow
from above (corresponding to the second term in the equation). However, if the forget weights f decay
rapidly with depth (e.g., as we go from the bottom cell to the towards the top) so that the timescales
for forgetting grow exponentially, we will show that a reasonable approximation to the dynamics is
given by Figure 4.

If we neglect the dependency of Dt on Ct−1, the forget gate ft leads to exponential decay of
Ct−1 e.g., Ct = ft ◦ C0; this is how LSTM’s forget their past. Note that all operations including
exponentiation are performed element-wise in this section only.
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Figure 3. Diagnosing different models by hallucinating text and then measuring the mutual information
as a function of separation. The red line is the mutual information of enwik8, a 100-MB sample of
English Wikipedia. In shaded blue is the mutual information of hallucinated Wikipedia from a trained
LSTM with three layers of size 256. We plot in solid black the mutual information of a Markov process
on single characters, which we compute exactly (this would correspond to the mutual information of
hallucinations in the limit where the length of the hallucinations goes to infinity). This curve shows a
sharp exponential decay after a distance of ∼10, in agreement with our theoretical predictions. We also
measured the mutual information for hallucinated text on a Markov process for bigrams, which still
underperforms the LSTMs in long-range correlations, despite having ∼103 more parameters.
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Figure 4. Our deep generative grammar model can be viewed as an idealization of a long-short
term memory (LSTM) recurrent neural net, where the “forget weights” drop with depth so that the
forget timescales grow exponentially with depth. The graph drawn here is clearly isomorphic to the
graph drawn in Figure 1. For each cell, we approximate the usual incremental updating rule by either
perfectly remembering the previous state (horizontal arrows) or by ignoring the previous state and
determining the cell state by a random rule depending on the node above (vertical arrows).
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In general, a cell will smoothly forget its past over a timescale of ∼ log(1/ f ) ≡ τf . On timescales
& τf , the cells are weakly correlated; on timescales . τf , the cells are strongly correlated. Hence,
a discrete approximation to this above equation is the following:

Ct = Ct−1, for τf time steps

= Dt(xt), on every τf + 1 time step.
(17)

This simple approximation leads us right back to the hierarchical grammar. The first line of
the above equation is labeled “remember” in Figure 2, and the second line is what we refer to as
“Markov”, since the next state depends only on the previous. Since each cell perfectly remembers its
previous state for τf time steps, the tree can be reorganized so that it is exactly of the form shown
in Figure 4, by omitting nodes that simply copy the previous state. Now, supposing that τf grows
exponentially with depth τf (layer i) ∝ q τf (layer i + 1), we see that the successive layers become
exponentially sparse, which is exactly what happens in our deep grammar model, identifying the
parameter q, governing the growth of the forget timescale, with the branching parameter in the deep
grammar model (compare Figures 2 and 4).

4.2. A New Diagnostic for Machine Learning

How can one tell whether a neural network can be further improved? For example, an LSTM
RNN similar to the one we used in Figure 4 can predict Wikipedia text with a residual entropy
∼1.4 bits/character [29], which is very close to the performance of current state of the art custom
compression software, which achieves ∼1.3 bits/character [52]. Is that essentially the best compression
possible or can significant improvements be made?

Our results provide a powerful diagnostic for shedding further light on this question: measuring
the mutual information as a function of separation between symbols is a computationally-efficient
way of extracting much more meaningful information about the performance of a model than simply
evaluating the loss function, usually given by the conditional entropy H(Xt|Xt−1, Xt−2, . . . ).

Figure 4 shows that even with just three layers, the LSTM-RNN is able to learn long-range
correlations; the slope of the mutual information of hallucinated text is comparable to that of the
training set. However, the figure also shows that the predictions of our LSTM-RNN are far from optimal.
Interestingly, the hallucinated text shows about the same mutual information for distances ∼ O(1),
but significantly less mutual information at large separation. Without requiring any knowledge about
the true entropy of the input text (which is famously NP-hard to compute), this figure immediately
shows that the LSTM-RNN we trained is performing sub-optimally; it is not able to capture all of the
long-term dependencies found in the training data.

As a comparison, we also calculated the bigram transition matrix P(X3X4|X1X2) from the data
and used it to hallucinate 1 MB of text. Despite the fact that this higher order Markov model needs
∼103 more parameters than our LSTM-RNN, it captures less than a fifth of the mutual information
captured by the LSTM-RNN even at modest separations &5. This phenomenon is related to a classic
result in the theory of formal languages: a context-free grammar

In summary, Figure 4 shows both the successes and shortcomings of machine learning. On the
one hand, LSTM-RNN’s can capture long-range correlations much more efficiently than Markovian
models; on the other hand, they cannot match the two point functions of training data, never mind
higher order statistics!

One might wonder how the lack of mutual information at large scales for the bigram Markov
model is manifested in the hallucinated text. Below, we give a line from the Markov hallucinations:

[[computhourgist, Flagesernmenserved whirequotes
or thand dy excommentaligmaktophy as
its:Fran at ||\&lt;If ISBN 088;\&ampategor
and on of to [[Prefung]]’ and at them rector>
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This can be compared with an example from the LSTM RNN:

Proudknow pop groups at Oxford
- [http://ccw.com/faqsisdaler/cardiffstwander
--helgar.jpg] and Cape Normans’s first
attacks Cup rigid (AM).

Despite using many fewer parameters, the LSTM manages to produce a realistic-looking URL
and is able to close brackets correctly [53], something with which the Markov model struggles.

Although great challenges remain to accurately model natural languages, our results at least allow
us to improve on some earlier answers to key questions we sought to address:

1. Why is natural language so hard? The old answer was that language is uniquely human. Our new
answer is that at least part of the difficulty is that natural language is a critical system, with
long-range correlations that are difficult for machines to learn.

2. Why are machines bad at natural languages, and why are they good? The old answer is that
Markov models are simply not brain/human-like, whereas neural nets are more brain-like and,
hence, better. Our new answer is that Markov models or other one-dimensional models cannot
exhibit critical behavior, whereas neural nets and other deep models (where an extra hidden
dimension is formed by the layers of the network) are able to exhibit critical behavior.

3. How can we know when machines are bad or good? The old answer is to compute the loss function.
Our new answer is to also compute the mutual information as a function of separation, which can
immediately show how well the model is doing at capturing correlations on different scales.

Future studies could include generalizing our theorems to more complex formal languages, such
as merge grammars.
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Appendix A. Properties of Rational Mutual Information

In this Appendix, we prove the following elementary properties of rational mutual information:

1. Symmetry: for any two random variables X and Y, IR(X, Y) = IR(Y, X). The proof is
straightforward:

IR(X, Y) =∑
ab

P(X = a, Y = b)2

P(X = a)P(Y = b)
− 1

=∑
ba

P(Y = b, X = a)2

P(Y = b)P(X = a)
− 1 = IR(Y, X).

(A1)

2. Upper bound to mutual information: The logarithm function satisfies ln(1 + x) ≤ x with equality
if and only if (iff) x = 0. Therefore, setting x = P(a,b)

P(a)P(b) − 1 gives:

I(X, Y) =
〈

logB
P(a, b)

P(a)P(b)

〉
=

1
ln B

〈
ln
[

1 +
(

P(a, b)
P(a)P(b)

− 1
)]〉

≤ 1
ln B

〈
P(a, b)

P(a)P(b)
− 1
〉

=
IR(X, Y)

ln B
.

(A2)

http://fqxi.org
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Hence, the rational mutual information IR ≥ I ln B with equality iff I = 0 (or simply, IR ≥ I, if we
use the natural logarithm base B = e).

3. Non-negativity: It follows from the above inequality that IR(X, Y) ≥ 0 with equality iff P(a, b) =
P(a)P(b), since IR = I = 0 iff P(a, b) = P(a)P(b). Note that this short proof is only possible
because of the information inequality I ≥ 0. From the definition of IR, it is only obvious that
IR ≥ −1; information theory gives a much tighter bound. Our Findings 1–3 can be summarized
as follows:

IR(X, Y) = IR(Y, X) ≥ I(X, Y) ≥ 0, (A3)

where both equalities occur iff p(X, Y) = p(X)p(Y). It is impossible for one of the last
two relations to be an equality while the other is an inequality.

4. Generalization: Note that if we view the mutual information as the divergence between two joint
probability distributions, we can generalize the notion of rational mutual information to that of
rational divergence:

DR(p||q) =
〈

p
q

〉
− 1, (A4)

where the expectation value is taken with respect to the “true” probability distribution p. This is
a special case of what is known in the literature as α-divergence [54].

The α-divergence is itself a special case of so-called f -divergences [55–57]:

D f (p||q) = ∑ pi f (qi/pi), (A5)

where DR(p||q) corresponds to f (x) = 1
x − 1.

Note that as it is written, p could be any probability measure on either a discrete or continuous
space. The above results can be trivially modified to show that DR(p||q) ≥ DKL(p||q) and, hence,
DR(p||q) ≥ 0, with equality iff p = q.

Appendix B. General Proof for Markov Processes

In this Appendix, we drop the assumptions of non-degeneracy, irreducibility and non-periodicity
made in the main body of the paper where we proved that Markov processes lead to exponential decay.

Appendix B.1. The Degenerate Case

First, we consider the case where the Markov matrix M has degenerate eigenvalues. In this case,
we cannot guarantee that M can be diagonalized. However, any complex matrix can be put into Jordan
normal form. In Jordan normal form, a matrix is block diagonal, with each d× d block corresponding
to an eigenvalue with degeneracy d. These blocks have a particularly simple form, with block i having
λi on the diagonal and ones right above the diagonal. For example, if there are only three distinct
eigenvalues and λ2 is three-fold degenerate, the the Jordan form of M would be:

B−1MB =


1 0 0 0 0
0 λ2 1 0 0
0 0 λ2 1 0
0 0 0 λ2 0
0 0 0 0 λ3

 . (A6)
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Note that the largest eigenvalue is unique and equal to one for all irreducible and aperiodic M.
In this example, the matrix power Mτ is:

B−1MτB =


1 0 0 0 0
0 λτ

2 (τ
1)λ

τ−1
2 (τ

2)λ
τ−2
2 0

0 0 λτ
2 (τ

1)λ
τ−1
2 0

0 0 0 λτ
2 0

0 0 0 0 λτ
3

 . (A7)

In the general case, raising a matrix to an arbitrary power will yield a matrix that is still block
diagonal, with each block being an upper triangular matrix. The important point is that in block i, every
entry scales ∝ λτ

i , up to a combinatorial factor. Each combinatorial factor grows only polynomially with
τ, with the degree of the polynomials in the i-th block bounded by the multiplicity of λi, minus one.

Using this Jordan decomposition, we can replicate Equation (7) and write:

Mτ
ij = µi + λτ

2 Aij. (A8)

There are two cases, depending on whether the second eigenvalue λ2 is degenerate or not. If not,
then the equation:

lim
τ→∞

Aij = Bi2B−1
2j (A9)

still holds, since for i ≥ 3, (λi/λ2)
τ decays faster than any polynomial of finite degree. On the other

hand, if the second eigenvalue is degenerate with multiplicity m2, we instead define A with the
combinatorial factor removed:

Mτ
ij = µi +

(
τ

m2

)
λτ

2 Aij. (A10)

If m2 = 1, this definition simply reduces to the previous definition of A. With this definition,

lim
τ→∞

Aij = λ−m2
2 Bi2B−1

(2+m2)j, (A11)

Hence, in the most general case, the mutual information decays like a polynomial P(τ)e−γτ ,
where γ = 2 ln 1

λ2
. The polynomial is non-constant if and only if the second largest eigenvalue is

degenerate. Note that even in this case, the mutual information decays exponentially in the sense that
it is possible to bound the mutual information by an exponential.

Appendix B.2. The Reducible Case

Now, let us generalize to the case where the Markov process is reducible. A general Markov state
space can be partitioned into m subsets,

S =
m⋃

i=1

Si, (A12)

where elements in the same partition communicate with each other: it is possible to transition from
i→ j and j→ i for i, j ∈ Si.

In general, the set of partitions will be a finite directed acyclic graph (DAG), where the arrows of
the DAG are inherited from the Markov chain. Since the DAG is finite, after some finite amount of
time, almost all of the probability will be concentrated in the “final” partitions that have no outgoing
arrows, and almost no probability will be in the “transient” partitions. Since the statistics of the chain
that we are interested in are determined by running the chain for infinite time, they are insensitive
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to transient behavior, and hence, we can ignore all but the final partitions (the mutual information at
fixed separation is still determined by averaging over all (infinite) time steps).

Consider the case where the initial probability distribution only has support on one of the Si. Since
states in Sj 6= Si will never be accessed, the Markov process (with this initial condition) is identical
to an irreducible Markov process on Si. Our previous results imply that the mutual information will
exponentially decay to zero.

Let us define the random variable Z = f (X), where f (x ∈ Si) = Si. For a general initial condition,
the total probability within each set Si is independent of time. This means that the entropy H(Z) is
independent of time. Using the fact that H(Z|X) = H(Y|X) = 0, one can show that:

I(X, Y) = I(X, Y|Z) + H(Z), (A13)

where I(X, Y|Z) = H(X|Z)− H(Y|X, Z) is the conditional mutual information. Our previous results
then imply that the conditional mutual information decays exponentially, whereas the second term
H(Z) ≤ log m is constant. In the language of statistical physics, this is an example of topological
order, which leads to constant terms in the correlation functions; here, the Markov graph of M is
disconnected, so there are m degenerate equilibrium states.

Appendix B.3. The Periodic Case

If a Markov process is periodic, one can further decompose each final partition. It is easy to check
that the period of each element in a partition must be constant throughout the partition. It follows that
each final partition Si can be decomposed into cyclic classes Si1, Si2, · · · , Sid, where d is the period of
the elements in the partition in Si. The arguments in the previous section with f (x ∈ Sik) = Sik then
show that the mutual information again has two terms, one of which exponentially decays, the other
of which is constant.

Appendix B.4. The n > 1 Case

The following proof holds only for order n = 1 Markov processes, but we can easily extend the
results for arbitrary n. Any n = 2 Markov process can be converted into an n = 1 Markov process
on pairs of letters X1X2. Hence, our proof shows that I(X1X2, Y1Y2) decays exponentially. However,
for any random variables X, Y, the data processing inequality [40] states that I(X, g(Y)) ≤ I(X, Y),
where g is an arbitrary function of Y. Letting g(Y1Y2) = Y1 and then permuting and applying
g(X1, X2) = X1 give:

I(X1X2, Y1Y2) ≥ I(X1X2, Y1) ≥ I(X1, Y1). (A14)

Hence, we see that I(X1, Y1) must exponentially decay. The preceding remarks can be easily
formalized into a proof for an arbitrary Markov process by induction on n.

Appendix B.5. The Detailed Balance Case

This asymptotic relation can be strengthened for a subclass of Markov processes that obey
a condition known as detailed balance. This subclass arises naturally in the study of statistical
physics [58]. For our purposes, this simply means that there exist some real numbers Km and
a symmetric matrix Sab = Sba, such that:

Mab = eKa/2Sabe−Kb/2. (A15)
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Let us note the following facts. (1) The matrix power is simply (Mτ)ab = eKa/2 (Sτ)ab e−Kb/2.
(2) By the spectral theorem, we can diagonalize S into an orthonormal basis of eigenvectors, which we
label as v (or sometimes w), e.g., Sv = λiv and v · w = δvw. Notice that:

∑
n

MabeKn/2vn = ∑
n

eKm/2Smnvn = λieKm/2vm.

Hence, we have found an eigenvector of M for every eigenvector of S. Conversely, the set of
eigenvectors of S forms a basis, so there cannot be any more eigenvectors of M. This implies that all
of the eigenvalues of M are given by Pv

m = eKm/2vm, and the eigenvalues of Pv are λi. In other words,
M and S share the same eigenvalues.

(3) µa =
1
Z eKa is an eigenvector with eigenvalue one and, hence, is the stationary state:

∑
b

Mabµb =
1
Z ∑

b
e(Ka+Kb)/2Sab

=
1
Z

eKa ∑
b

eKb/2Sbae−Ka/2 = µa ∑
b

Mba = µa.
(A16)

The previous facts then let us finish the calculation:〈
P(a, b)

P(a)P(b)

〉
= ∑

ab

(
eKa (Sτ)2

ab e−Kb
) (

eKb−Ka
)

= ∑
ab

(
eKa (Sτ)2

ab e−Kb
) (

eKb−Ka
)

= ∑
ab

(Sτ)2
ab = ||Sτ ||2.

(A17)

Now, using the fact that ||A||2 = tr
(

AT A
)

and is therefore invariant under an orthogonal change
of basis, we find that: 〈

P(a, b)
P(a)P(b)

〉
= ∑

i
|λi|2τ . (A18)

Since the λi’s are both the eigenvalues of M and S and since M is irreducible and aperiodic, there
is exactly one eigenvalue λ1 = 1, and all other eigenvalues are less than one. Altogether,

IR(t1, t2) =

〈
P(a, b)

P(a)P(b)

〉
− 1 = ∑

i=2
|λi|2τ . (A19)

Hence, one can easily estimate the asymptotic behavior of the mutual information if one
has knowledge of the spectrum of M. We see that the mutual information exponentially decays,
with a decay time-scale given by the second largest eigenvalue λ2:

τ−1
decay = 2 log

1
λ2

. (A20)

Appendix B.6. Hidden Markov Model

In this subsection, we generalize our findings to hidden Markov models and present a proof of
Theorem 2. Based on the considerations in the main body of the text, the joint probability distribution
between two visible states Xt1 , Xt2 is given by:

P(a, b) = ∑
cd

Gbd [(Mτ)dc µc] Gac, (A21)
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where the term in brackets would have been there in an ordinary Markov model, and the two new
factors of G are the result of the generalization. Note that as before, µ is the stationary state
corresponding to M. We will only consider the typical case where M is aperiodic, irreducible and
non-degenerate; once we have this case, the other cases can be easily treated by mimicking our above
proof for or ordinary Markov processes. Using Equation (7) and defining g = Mµ gives:

P(a, b) = ∑
cd

Gbd [(Mτ)dc µc] Gac

= gagb + λτ
2 ∑

cd
(Gbd AdcµcGac) .

(A22)

Plugging this into our definition of rational mutual information gives:

IR + 1 = ∑
ab

P(a, b)2

gagb

= ∑
ab

(
gagb + λτ

2 ∑
cd

Gbd AdcµcGac

)
+ λ2τ

2 C
= 1 + λτ

2 ∑
cd

Adcµc + λ2τ
2 C

= 1 + λ2τ
2 C,

(A23)

where we have used the facts that ∑i Gij = 1, ∑i Aij = 0, and as before, C is asymptotically constant.
This shows that IR ∝ λ2τ

2 exponentially decays.

Appendix C. Power Laws for Generative Grammars

In this Appendix, we prove that the rational mutual information decays like a power law for
a sub-class of generative grammars. We proceed by mimicking the strategy employed in the above
appendix. Let G be the linear operator associated with the matrix Pb|a, the probability that a node
takes the value b given that the parent node has value b. We will assume that G is irreducible and
aperiodic, with no degeneracies. From the above discussion, we see that removing the degeneracy
assumption does not qualitatively change things; one simply replaces the procedure of diagonalizing
G with putting G in Jordan normal form.

Let us start with the weakly-correlated case. In this case,

P(a, b) = ∑
r

µr

(
G∆/2

)
ar

(
G∆/2

)
br

, (A24)

since as we have discussed in the main text, the parent node has the stationary distribution µ and
G∆/2 give the conditional probabilities from transitioning from the parent node to the nodes at the
bottom of the tree in which we are interested. We now employ our favorite trick of diagonalizing G
and then writing:

(G∆/2)ij = µi + λ∆/2
2 Aij, (A25)

which gives:

P(a, b) = ∑
r

µr

(
µa + λ∆/2

2 Aar

) (
µb + λ∆/2

2 Abr

)
,

= ∑
r

µr

(
µaµb + µaεAbr + µbεAar + ε2 Aar Abr

) (A26)
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where we have defined ε = λ∆/2
2 . Now, note that ∑r Aarµr = 0, since µ is an eigenvector with

eigenvalue one of G∆/2. Hence, this simplifies the above to just:

P(a, b) = µaµb + ε2 ∑
r

µr Aar Abr. (A27)

From the definition of rational mutual information and employing the fact that ∑i Aij = 0 give:

IR + 1 ≈∑
ab

(
µaµb + ε2 ∑r µr Aar Abr

)2

µaµb

= ∑
ab

[
µaµb + ε4N2

ab

]
,

= 1 + ε4||N||2,

(A28)

where Nab ≡ (µaµb)
−1/2 ∑r µr Aar Abr is a symmetric matrix and || · || denotes the Frobenius norm.

Hence:

IR = λ2∆
2 ||S||2. (A29)

Let us now generalize to the strongly correlated case. As discussed in the text, the joint probability
is modified to:

P(a, b) = ∑
rs

Qrs

(
G∆/2−1

)
ar

(
G∆/2−1

)
bs

, (A30)

where Q is some symmetric matrix that satisfies ∑r Qrs = µs. We now employ our favorite trick of
diagonalizing G and then writing:

(G∆/2)ij = µi + εAij, (A31)

where ε ≡ λ∆/2−1
2 . This gives:

P(a, b) = ∑
rs

Qrs (µa + εAar) (µb + εAbs) ,

= µaµb + ∑
rs

Qrs

(
µaεAbs + µbεAar + ε2 Aar Abs

)
.

= µaµb + ∑
s

µaεAbsµs + ∑
r

µbεAarµr

+ ε2 ∑
rs

Qrs Aar Abs

= µaµb + ε2 ∑
rs

Qrs Aar Abs.

(A32)

Now, defining the symmetric matrices Rab ≡ ∑rs Qrs Aar Abs ≡ (µaµb)
1/2 Nab and noting that

∑a Rab = 0, we have:

IR + 1 = ∑
ab

(
µaµb + ε2Rab

)2

µaµb

= ∑
ab

[
µaµb + ε4N2

ab

]
,

= 1 + ε4||N||2,

(A33)
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which gives:

IR = λ2∆−4
2 ||N||2. (A34)

In either the strongly- or the weakly-correlated case, note that N is asymptotically constant.
We can write the second largest eigenvalue |λ2|2 = q−k2/2, where q is the branching factor,

IR ∝ q−∆k2/2
∼∝ q−k2 logq |i−j| = C|i− j|−k2 . (A35)

Behold the glorious power law! We note that the normalization C must be a function of the form
C = m2 f (λ2, q), where m2 is the multiplicity of the eigenvalue λ2. We evaluate this normalization in
the next section.

As before, this result can be sharpened if we assume that G satisfies detailed balance
Gmn = eKm/2Smne−Kn/2 where S is a symmetric matrix and Kn are just numbers. Let us only consider
the weakly correlated case. By the spectral theorem, we diagonalize S into an orthonormal basis of
eigenvectors v. As before, G and S share the same eigenvalues. Proceeding,

P(a, b) =
1
Z ∑

v
λ∆

v vavbe(Ka+Kb)/2, (A36)

where Z is a constant that ensures that P is properly normalized. Let us move full steam ahead to
compute the rational mutual information:

∑
ab

P(a, b)2

P(a)P(b)
= ∑

ab
e−(Ka+Kb)

(
∑
v

λ∆
v vavbe(Ka+Kb)/2

)2

= ∑
ab

(
∑
v

λ∆
v vavb

)2

.

(A37)

This is just the Frobenius norm of the symmetric matrix H ≡ ∑v λ∆
v vavb! The eigenvalues of the

matrix can be read off, so we have:

IR(a, b) = ∑
i=2
|λi|2∆. (A38)

Hence, we have computed the rational mutual information exactly as a function of ∆. In the next
section, we use this result to compute the mutual information as a function of separation |i− j|, which
will lead to a precise evaluation of the normalization constant C in the equation:

I(a, b) ≈ C|i− j|−k2 . (A39)

Appendix C.1. Detailed Evaluation of the Normalization

For simplicity, we specialize to the case q = 2, although our results can surely be extended to
q > 2. Define δ = ∆/2 and d = |i− j|. We wish to compute the expected value of IR conditioned on
knowledge of d. By Bayes rule, p(δ|d) ∝ p(d|δ)p(δ). Now, p(d|δ) is given by a triangle distribution
with mean 2δ−1 and compact support (0, 2δ). On the other hand, p(δ) ∝ 2δ for δ ≤ δmax and p(δ) = 0
for δ ≤ 0 or δ > δmax. This new constant δmax serves two purposes. First, it can be thought of as a way
to regulate the probability distribution p(δ) so that it is normalizable; at the end of the calculation, we
formally take δmax → ∞ without obstruction. Second, if we are interested in empirically sampling the
mutual information, we cannot generate an infinite string, so setting δmax to a finite value accounts for
the fact that our generated string may be finite.
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We now assume d� 1, so that we can swap discrete sums with integrals. We can then compute
the conditional expectation value of 2−k2δ. This yields:

IR ≈
∫ ∞

0
2−k2δP(d|δ)dδ =

(
1− 2−k2

)
d−k2

k2(k2 + 1) log(2)
, (A40)

or equivalently,

Cq=2 =
1− |λ2|4

k2(k2 + 1)
1

log 2
. (A41)

It turns out that it is also possible to compute the answer without making any approximations
with integrals:

IR =
2−(k2+1)dlog2(d)e

((
2k2+1 − 1

)
2dlog2(d)e − 2d

(
2k2 − 1

))
2k2+1 − 1

. (A42)

The resulting predictions are compared in Figure A1.
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Figure A1. Decay of rational mutual information with separation for a binary sequence from a
numerical simulation with probabilities p(0|0) = p(1|1) = 0.9 and a branching factor q = 2. The blue
curve is not a fit to the simulated data, but rather an analytic calculation. The smooth power law
displayed on the left is what is predicted by our “continuum” approximation. The very small
discrepancies (right) are not random, but are fully accounted for by more involved exact calculations
with discrete sums.
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Appendix D. Estimating (Rational) Mutual Information from Empirical Data

Estimating mutual information or rational mutual information from empirical data is fraught
with subtleties.

It is well known that a naive estimate of the Shannon entropy obtained Ŝ = −∑K
i=1

Ni
N log Ni

N
is biased, generally underestimating the true entropy from finite samples. For example, We use the
estimator advocated by Grassberger [59]:

Ŝ = log N − 1
N

K

∑
i=1

Niψ(Ni), (A43)

where ψ(x) is the digamma function, N = ∑ Ni, and K is the number of characters in the alphabet.
The mutual information estimator can then be estimated by Î(X, Y) = Ŝ(X) + Ŝ(Y) − Ŝ(X, Y).
The variance of this estimator is then the sum of the variances:

var( Î) = varEnt(X) + varEnt(Y) + varEnt(X, Y), (A44)

where the varEntropy is defined as:

varEnt(X) = var (− log p(X), ) (A45)

where we can again replace logarithms with the digamma function ψ. The uncertainty after N

measurements is then ≈
√

var( Î)/N.
To compare our theoretical results with the experiment in Figure 3, we must measure the rational

mutual information for a binary sequence from (simulated) data. For a binary sequence with covariance
coefficient ρ(X, Y) = P(1, 1)− P(1)2, the rational mutual information is:

IR(X, Y) =
(

ρ(X, Y)
P(0)P(1)

)2

. (A46)

This was essentially calculated in [60] by considering the limit where the covariance coefficient
is small ρ � 1. In their paper, there is an erroneous factor of two. To estimate covariance ρ(d) as a
function of d (sometimes confusingly referred to as the correlation function), we use the unbiased
estimator for a data sequence {x1, x2, · · · xn}:

ρ̂(d) =
1

n− d− 1

n−d

∑
i=1

(xi − x̄) (xi+d − x̄) . (A47)

However, it is important to note that estimating the covariance function ρ by averaging and
then squaring will generically yield a biased estimate; we circumvent this by simply estimating
IR(X, Y)1/2 ∝ ρ(X, Y).
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