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Abstract

A vector space is used to represent periodic voltage and current signals in clectrical networks.
This representation is used to derive a periodic steady state impedance calculus, using a
matrix impedance analogous to the complex impedance of sinusoidal steady state circuit
analysis. The calculus provides simple matrix equations to calculate the total non-sinusoidal
periodic response of linear time-invariant circuits and certain non-linear circuits.

The vector representation also provides convenient equations for time average power
quantities, such as average power, apparent power, and inactive power. The vector expres-
sions for power components are used to derive a reactive power vector, which has propertics
analogous to the reactive power in sinusoidal systems. The vector not only obeys conser-
vation, but also has a magnitude equal to the total inactive power. These two propertics
are desirable in any non-sinusoidal generalization of reactive power but both do not hold
for any of the scalar decompositions of reactive power found in the literature. The vector
formulation provides mathematical insight into the nature of the long-standing confusion
over definitions of non-sinusoidal reactive power. While the dimensionality of the reactive
power vector is high, projections of the vector are shown to obey conservation and can be
used as signed, scalar measures of reactive power for specific applications.

The vector space representation is extended to multiport circuits, and specifically, mul-
tiphase circuits. Several waveform decompositions are shown, including a symmetrical com-
ponents decomposition for non-sinusoidal three-phase waveforms. The impedance matrix
calculus is extended to include mixed, three and four wire, delta and wye-connected, three-
phase circuits. The multiphase impedance calculus provides convenient matrix equations
that can be used to solve for the periodic steady state response of multiphase LTI circuits.
The multiphase extension includes a definition for the multiphase non-sinusoidal reactive
power vector, which, using the symmetrical components decomposition, can provide a bal-
anced/unbalanced decomposition of inactive power.
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Chapter 1

Introduction

The work in this thesis is motivated by the need for nower systems analysis tools that
can be used when harmonics are present. In particular, the appropriate definition for
reactive power in the presence of harmonics has been, and continues to be, the subject
of much debate and confusion in engineering journals. At present, the standard IEEE
definitions used in the industry are confusing and problematic, yet no better definitions
have been widely adopted.[1] Increasing levels of harmonics, injected by non-linear and
power electronic switching devices, are making the traditional sinusoidal approximations
less valid and the need for new definitions more vivid.

The theory presented in this thesis revisits the subject using vector and matrix methods
of lincar algebra. The analysis provides some insight into the nature of the reactive power
confusion. With further refinement, the vector approach could yield new analysis tools and
intuition, which would have widespread application to metering, control and power factor

optimization in periodic systems with harmonics.

1.1 History of Nonsinusoidal Reactive Power

Confusion over reactive power for periodic signals with harmonics dates to 1927, when
Budeanu introduced an orthogonal decomposition of apparent power into active, reac-
tive, and distortion power components.[2] While these components were observed to add in
quadrature to equal the apparent power, neither reactive nor distortion power components
could be assigned any physical significance. Furthermore, unlike the active and reactive

components, distortion power disobeys conservation, making it counterintuitive as a time-
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Figure 1-1: Single Port Circuit in Periodic Steady State

average power component.

Noting the limitations of Budeanu’s two-component decomposition, Fryze introduced a
single component definition of reactive power.[3] Fryze’s reactive power is a signcd orthog-
onal component accounting for the difference between apparent and average power. The
definition is useful because if its magnitude is zero, apparent and average power are equal,
corresponding to unity power factor. The sign portion of Fryze's definition, however, is not
consistent and can not be uniquely defined. Furthermore, the definition does not obey con-
servation, meaning that a circuit with positive reactive power does not, in general, provide
compensation for a circuit with negative reactive power.

Many other authors [4]-[12] have proposed alternative definitions of time-average rcac-
tive power quantities, but none have succeeded in defining a decomposition that not only
accounts for the difference between apparent and average power, but also satisfies conser-
vation. The reason for the difficulty becomes apparent when the problem is mapped to a
vector space. As will be shown in this thesis, the inactive component of apparent power
consists of many orthogonal elements, each of which is conserved and has an arbitrary sign
convention. It is not possible to combine these orthogonal components into a single signed

measure of reactive power that both reflects the inactive power and also obeys conservation.

1.2 Problem Statement

The work in this thesis focuses on the periodic, band-limited case, where the voltage and
current waveforms throughout the circuit repeat, exactly, with period T, and contain only
a finite number of harmonics. First single phase, single port circuits are considered, and
then the notation is extended to include multiphase circuits in Chapter 5.

A single port circuit is shown in Figure 1-1. The port voltage and current waveforms



are periodic such that
v(t)=v(t+T) and i(t)=1i(t+7T) (L.1)

With the current defined as positive into the circuit port, the instantancous power, p(t),
into the port is the product of voltage and current. The average, or active power, P, is the

average of the product.

p(t) = v(t)i(t) and P = v(t)i(t) (1.2)

The unit used for power is the Watt or J s7!, reflecting a flow of energy. P is a signed
quantity, with positive corresponding to power into the port.

The apparent power, S, is the product of rms values, or the gcometric mean of averages.

S = Upmsirms = Vv(£)? i(t)? (1.3)

Although S has the same physical units as the Watt, the unit V4 is typically used, because
S does not measure the flow of energy. S is not a signed quantity but a geometric mean, so
one does not refer to the apparent power into the port, but to the apparent power of the
port.

Power factor is a measure of how much of the apparent power results in a net transfer
of energy into the port. Power factor can take the units Watts/V A, although it has no

physical uvnits.

PF = g where PF<1 (1.4)

The component of S that does not reflect active power will be called the total inactive
power, @. @ can be considered orthogonal to P, such that Q = VS2 P2, Like S, Q is
strictly non-negative and has the unit V A, as it does not correspond to a flow of encrgy.
The decomposition of S into orthogonal components P and @ is depicted in the power
triangle in Figure 1-2.

Power factor and inactive power are useful quantities for solving efficiency related op-
timization problems. Unity power factor correspcnds to zero inactive pewer, where all of
the apparent power is associated with useful energy transfer. In general, an increase in

power factor results in improved efficiency, because losses are typically reduced. Such op-
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Figure 1-2: Power Component Decomposition

timization problems are called power factor optimization problems and usually correspond
to solving for the most efficient operating conditions, given a set of constraints. Instead of
a maximization of PF, the optimization could be stated as a mirimization of ]—%‘. If Pis

constrained to be constant, the equivalent optimization is a minimization of Q only.
) P Yy

1.3 Review of Single Frequency Reactive Power

The definition of reactive power in purely sinusoidal systems is widely accepted. When
the voltage and current waveforms throughout a circuit are sinusoidal, share a common
frequency, w, and have no D.C. component, reactive power, R, is a signed scalar quantity
with a magnitude equal to the inactive power, Q. R has both physical significance and
intuitive properties. In fact, the definition of R is based more on the intuition behind
reactive power than on any particular mathematical decomposition of instantancous power
components.

Viewed in the time domain, for example, the appropriate definition for R is not clear.
Using trigonometric identities, the equation for instantancous power, p(t), can be simplified

to three orthogonal terms.
v(t) = Vcos(wt + byv) and i(t) = I cos(wt+0p)
p(t) = v(t)i(t) = VIcos(wt + Oy)cos(wt + ;)
= Ylcos(0y — 0;) + ¥Lcos(2wt + By + 6;)

= Yeos(0y — 07) + YLcos(By — Br)cos(2wt + 1)) + YLsin(0y - 0r)sin(2(wt + 07))
(1.5)



Using an alternate trigonometric simplification yields

p(t) = gcos(Ol —0y)+ -V?Icos(ol — By)cos(2(wt + 6v)) + %sin(ol —0v)sin(2(wt + 6v))
i (1.6)

The first term is the same in both (1.5) and (1.6). This term is a constant equal to the
average power, P. The second and third terms are orthogonal oscillatory components, with
frequency 2w and zero average value. The amplitude of the second term is P in both equa-
tions, but the amplitude of the third term has opposite signs in (1.5) and (1.6). As only the
third term is associated with reactive power, reactive power is not the oscillatory component
of instantancous power, but one of the oscillatory components of instantancous power. The
exact expression for reactive power is not clear from the time-domain expressions.

The definition of inactive power, however, can be seen in Equation (1.6). The amplitude
of the total 2w oscillation is l;—’, which equals the apparent power, S. Because the amplitude
of the first orthogonal 2w component is P, then the amplitude of the sccond orthogonal
component must be the inactive power, Q = V5?2 - P2,

Viewed in the frequency domain, the definition of R is similarly unclear. The Fouricr
transform of the product of two sinusoids is the convolution of two complex-conjugate
impulse pairs. As shown in Figure 1-3, the Fourier transform of p(t) consists of a rcal
impulse at zero frequency and a complex conjugate impulse pair at £2w. The total arca
of the +£2w impulse pair is S, but the phase angle of the impulse depends on the absolute
time reference of the waveforms. Thus reactive power is not the imaginary power.

The most elegant expression for reactive power comes from phasor notation. If the
voltage and current sinusoids are represented using the complex phasors, V and I, then the

time-average power components can be expressed using complex algebra.

u(t) = Re{V e/t and i(t) = Re{lei*t}
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Figure 1-3: Frequency-Domain Power Representation

The phasor expressic~s for orthogonal time-average power components are widely used,
leading to the common use of the terms real and imaginary power for time-average and
reactive power. The # in (1.7) reflects the sign ambiguity inherent in the definition of

reactive power. The choice of YQL- over % is only a matter of convention.

Intuitive Properties of Reactive Power

While the exact mathematical definition is somewhat hidden in abstract notation, the phys-
ical properties of sinusoidal reactive power have led to an intuitive understanding that is
widely held. The intuition is based on the fact that the magnitude of R is equal to the
inactive power, Q. As Q is associated with useless, or inefficient, oscillatory power transfer,
minimizing |R| maximizes efficiency. While this statement is not strictly true in all cases,
it is a very good approximation in most power related applications.

A second property that is important in the intuitive understanding of reactive power
is the conservation property. The total reactive power into a circuit port is the sum of
the reactive powers into all the elements of the circuit. Therefore, in order to reduce the
effective |R| of a circuir, a compensation circuit can be added, cither in series or parallel,
which cancels the reactive power flow and improves efficiency.

The strong intuition behind reactive power conservation has led to the rating of ca-
pacitors directly in units of reactive power, the VAR. According to the most common

sign convention, inductive loads consume reactive power, while capacitors generate reactive
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power. Technicians can provide compensation circuits simply by looking up the reactive
consumption of a particular load and purchasing a similarly rated VAR capacitor. Large
uncompensated reactive power loads are often charged according to reactive power consump-
tion, and the conservation property is important to the valuation of the reactive energy unit.

The two most important properties ¢ f sinusoidal reactive power are conservation and the
relationship to inactive power. The proper extension of the definition to include harmonics

should account for these properties. This extension is the subject of Chapter 3.
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Chapter 2

Vector Representation of Periodic

Signals

2.1 Orthonormal Waveform Decomposition

We begin by considering periodic, real-valued voltage and current waveforms of an arbitrary
single port circuit element. If the voltage and current waveforms are periodic with period
T, such that v(t +T) = v(t) and i(t + T') = i(t), the waveforms can be considered members

of the Ly periodic function space with a scalar product and induced norm given in (2.1).

< z(t),y(t) >= % /0 e ()y(t)dt
% /o 7:):"’(t)dt]%

This function space is convenient for expressing rms and time-average power components

(2.1)
llz(2)|| =<z(t), m(t)>§=

of the circuit port in terms of the voltage and current member functions, v(t) and i(t). The
rms value is the induced norm, while the average power, P, is the scalar product, and the

apparent power, S, is a product of norms.

Vrms = [[v(2)]]
P =v(t) i(t) =< v(t),i(t) > (2.2)

S = Upmy irms = ||V(2)|| lEe)|

The function space is then mapped to an ¢3 vector space, R", by expressing the periodic

13



signals as a linear combination of n orthonormal basis functions, ¢;(t).
n
z(t) = Z:L'j $i(t) (2.3)
i=1

This equation has the form of a linear synthesis transform, where the inverse, or decompo-

sition transform would be

ci=g [ 910 50) (24)

This transform pair can be expressed in vector form by stacking the coefficients, z; into

a constant vector X, and the basis functions, ¢;(t) into a vector of time functions ®(t).
z(t) = XT &(t) (2.5)
where X7 denotes the transpose of X, and

X = 51,- /o T 8(t) a(t) dt (2.6)

The constant vector X, then, fully represents the signal waveform, z(t), in the €, vector
space associated with a particular orthonormal basis ®(2).
The orthonormality of ®(t) is expressed in the Lo function space. The basis functions

are orthogonal in the time-average sense, and normal in the rms sense.

i=j
i#]

< ¢i(t), ¢;(t) >= (2.7)

or in vector notation
T 1 (T T
<®(1),87(t) >= / B(t)dT(t)dt = II (2.8)
0

where II is the identity matrix.
The orthonormal property of ®(t) provides a norm and scalar product equivalence be-

tween the L, function space and the ¢; vector space. Substituting the vector expression

14



(2.5) into (2.1) gives
T
< z(t),y(t) >= % / XTo(t)YTo(t)dt
0

= xT (% /o T(I)(t)th(t)dt) Y (2.9)

=XTY =< X,Y >

The norm equivalence makes makes the vector space similarly convenient for expressing

rms and time-average power quantities, now in terms of the constant vectors for voltage

and current.

Urms = ”V" =VVTV
P=<V,I>=VTI (2.10)

S=|VI | =VvVTVITI

The vector expressions hold for any choice of orthonormal basis, provided that the same
basis is used for both voltage and current, and provided that the basis is sufficiently rich to

decompose, to some desired level of accuracy, the actual waveforms.

2.1.1 Frequency-Domain Representation

One common orthonormal basis for representing periodic signals is the Fourier basis. Here
the basis consists of a constant, or D.C. component, and cosine and sine pairs at multiples

of the fundamental frequency, w = %.

1]
v2cos(wt)
V2sin(wt)
V2cos(2wt)
o = .
i V2sin(2wt) 211)
V2cos(3wt)

V2sin(3wt)

While the length of this basis is infinite, ®;(t) can be truncated to length, n > 2T f,,, + 1,
where fp, is the largest frequency in the band-limited signals. n is constrained to be an odd

number, due to the single D.C. term plus the even number of harmonic components.
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In the Fourier basis, a vector, Xy, fully represents the periodic waveform, z(t). The
clements of Xy are the rms values of the orthogonal frequency components in z(t). Because

the decomposition is orthonormal, the rms of z(t) is the two-norm of the vector, || X/||.

2.1.2 Time-Domain Representation

Another useful vector representation decomposes the waveform into n time samples, evenly
spaced over the period, T. The decomposition represents the periodic waveform not with
frequency components, but with orthogonal rms time components. As with the Fourier
basis, n must be odd.

The basis functions for this vector space are time-delayed periodic sync functions. !

¥(t)
¥(t —T/n)

Oy(t) = P(t — 2T /n) (2.12)

| Y(t— (n—1)T/n) |

where
sin(5t)

= vn sin(%t)

This basis is orthogonal in the time-average sense, and normalized in the rmns sense. For

(2.13)

large n, the basis approximates a set of delayed periodic impulses, with period T, height
V1, approximate width 1/n, and unity rms value.

Using this basis, a time waveform z(t) is represented by the n-vector, X;, where the
kP element of X; is equal to % sampled at t = Lk—_;l)z The vector, then, is a discrete
representation of the periodic waveform normalized by \/n. The normalization preserves
the rms character of the vector, such that each element reflects the rms of each sample,
not the value of cach sample. Because the samples are orthogonal, the 7ms of the waveform
is again the norm of the vector, || X;||.

The time-domain basis is closely related to the Fourier basis, through an orthonormal

transformation equivalent to the Discrete Fourier Transform. The transformation to discrete

'The periodic sync function is the basis obtained by combining the Discrete Fourier Transform analy-
sis equation with the Discrete Fourier Series synthesis equation. Sece [13] for more information on these
transforms.
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time from the frequency domain can be expressed as multiplication by an n x n orthonormal
transformation matrix, M;;, where AJUMZ; = II. The rows of M;; consist of discrete

samples of the Fourier basis functions with sampling frequency n/T.

37(0)
. o (%)
My=—=1 o7(2]) (2.14)

L Q}‘(T_ %) i

This transformation provides a convenient notation for transforming between the time do-

main and the frequency domain.

Dy(t) = My ®s(t) Xi(t) = My Xy
(I’J(t) = Alfgfl’g(t) Xp(t) = Mp X,

(2.15)

where My = Mf} provid.s the transformation to frequency from the time domain.

The constraint that n is odd applies to both the time and frequency domain repre-
sentations and reflects the fact that there is an odd number of degrees of freedom in a
band-limited periodic waveform. The truncation of the Fourier basis to length n is equiv-
alent to setting the time-domain sampling frequency to %. If the frequency basis can be
truncated to length n without loss of information, then the waveform can be sampled at
# without aliasing. This statement is equivalent to the Nyquist Sampling Theorem, which
states that there will be no aliasing if f; < % fs, where fp, is the maximum frequency in
the continuous waveform, and f, is the sampling frequency. The maximum frequency in
an n-length Fourier basis is "2—.‘1.1, so 7 is the lowest synchronous sampling rate above the

Nyquist rate.

2.2 Periodic Steady State Circuit Analysis

Using vector representation of signals with a specific basis, it is possible to extend sinusoidal
steady (SSS) analysis techniques for linear time invariant (LTI) circuits to the more gencral
periodic steady state case. In SSS analysis the complex impedance, Z, is used to relate the

complex steady state voltage and current phasors of a branch of the circuit, V = Zf and

17



I= lz‘l' Series connections add impedances, Z = Z; + Z, while parallel connections add

inverse impedance, ¢ = %1—‘ + -Z-l;

Using the impedance relationships, the SSS network solution is found using Kirchhofl’s
voltage and current laws (KVL and KCL), which apply not only to the instantancous
voltage and current, but also to the complex steady state phasors, V and . Short hand
relationships such as Thevenin equivalent sources and the voltage and current divider laws

make hand calculation of the steady state solution an elementary protlem.

2.2.1 Analizing LTI Circuits Using the Fourier Basis

In band-limited periodic steady state, an LTI network solution contains a finite number
of sinusoidal frequency components. Each frequency satisfies the SSS relationships, and
the total response can be obtained by superposition. Instead of solving each frequency
scparately, however, the total periodic steady state solution can be found by stacking the
SSS constraints for each frequency into a matrix equation that relates the voltage and
current vectors in the Fourier basis.

Analogous to the complex impedance, the vector relationship between the periodic
steady state voltage and current of a circuit branch is an n x n impedance matrix, Z,
such that V = ZI and I = Z~!'V. Here it is assumed that V and I are Fourier basis vec-
tors, although the ; subscript has been dropped for convenience. As cach frequency in an
LTI network satisfies the network constraints independently, it is not possible for different
frequencies to cross-couple in the steady state response of a linear circuit. The Z matrix,
then, is block diagonal, where each 2 x 2 block represents the voltage-current relationship
of one harmonic. The single top-left entry in Z relates the zero-frequency, or D.C. voltage
and current.

The form of the Z matrix for passive single port LTI elements, resistors, inductors, and
capacitors, is found by transforming the time-domain constituent relation to the Fourier

vector space, using the transform given in Equation (2.6). For LTI resistors,

o(t) = Ri(t) 51,- /0 " 0oyt = % /0 "o, Ri(t) (2.16)

Substituting V' and I, the voltage and current vectors in the Fourier basis, the equation

18



becomes

Vi=RIf=2Zrl where Zrp=RI (2.17)

The impedance matrix for linear resistors, then, is proportional to the identity matrix, II.

The impedance matrix for an inductor is similarly found by using the Fourier transform,
oty = i) — X / o ()t = L / To,00L Liyar (2.18)
Tt Th 7 TTh TV -
Substituting V and I gives
v=r|& / "o, LTt 1 (2.19)
U Th T e '

The time derivative of the Fourier basis may be expressed as the basis itself multiplied by

the transpose of a special matrix called the J,, matrix.
d T
Et-fl)(t) = J, ®(t) (2.20)

Ju is the n x n block diagonal, skew-symmetric matrix.

00 0 0 0 0 O
00w 0 0 0 0
0 ~-w 0 0 0 0 O
00 0 0 2w 0 0
Jy = (2.21)
00 0 —20 0 0 0
00 0 0 0 0 3w
00 0 0 0 —3w 0

: 2
where w is the fundamental frequency, 7.
Substituting (2.20) into (2.19) gives the impedance relationship for an ideal inductor,

which is proportional to J,,.
V=LJ,I =211 where Z;=LJ, (2.22)

The current-voltage relationship for a capacitor, i(t) = Ca"zv(t), is the dual of the

19



inductor relationship, so the impedance matrix for a capacitor is proportional to the inverse
of J,.
I1=CJ,V =23V where Zc=(CJ,)™" (2.23)

The problem with (2.22) and (2.23) is that the J, matrix is singular due to the zero
frequency entry in the top left. The singularity exists because it is not possible to determine
the steady state D.C. voltage across an ideal capacitor from the D.C. current. In fact, there
is no steady state capacitor voltage if the D.C. current is non-zero. Likewise, there is no
steady state inductor current if the D.C. inductor voltage is non-zero. The singularity
reflects actual physical properties of the inductor and capacitor, which are important to
include in the periodic steady state analysis.

Numerical problems due to the singularity in J, can be solved by defining J, in the

limit. X .
p 0 0 O 0
0 0 w O 0
) 0 —w 0 0 0
Ju = lim (2.24)
000 0 0 0 2w
0 0 0 -2w O
Using the limit, JJ 1 exists and becomes,
- -
. 0 0 0 O
0 0 5 0 0
0 -1 0 0 o
Jol = lim w 1 (2.25)
P 0 0 0 0 4
0 0 0 5 0

With J, defined in the limit, the basic impedance relationships relating the periodic

steady state voltage and current vectors for a particular circuit branch are

V=2ZI and I=2Z"'V (2.26)

Impedance matrices for LTI resistors, inductors, and capacitors are shown in Figure 2-1
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Figure 2-1: Periodic Steady State Impedance Representation

and are expressed in terms of the identity matrix, II, and the J,, matrix defined in the limit.
Zp = RIL Zy, = lim LJ, Z¢ = lim (CJ,)™! (2.27)
p—0 p—0

As in the SSS, the impedance matrix of a series connection is the sum of the individual
impedance matrices, while the impedance matrix of a parallel connection is the inverse of

the sum of inverses.
VA =lim Z + Z Z, = lim (Z ! + VA l) ' (2 28)
ser p—30 1 2 par p—30 1 2 .

Using (2.28), the equivalent steady state impedance matrix of a complicated LTI single
port network is easily computed. The limit serves only to determine the top left element
of Z, which gives the steady state D.C. voltage across the port as a linear function of D.C.
current into the port. If the D.C. operating point is well determined, the D.C. element of
the Z matrix will approach a finite value in the limit. If the network has a series capacitor
or parallel inductor, the limit will approach oo or 0, as expected.

In any LTI network, the Z matrix has a block diagonal structure, where each 2 x 2
block corresponds to a particular harmonic frequency. Each block has skew-symmetric off-

diagonal entries and identical diagonal entries; these two degrees of freedom are the SSS
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(A) (B)

Figure 2-2: Voltage and Current Divider Laws

reactance and resistance of the circuit evaluated at the harmonic frequency. If the circuit
happens to have a high Q resonance at one of the harmonic frequencies, the corresponding
block would approach zero or infinity, depending on the nature of the resonance. As with
the D.C. singularity, the singularity caused by resonance properly reflects the indeterminate
nature of the periodic steady state response.

Short hand constituent relations for periodic steady state can be derived from LTI SSS
methods. For example, the Thevenin equivalent voltage source of a port is the periodic open
circuit voltage of the port. The Thevenin equivalent impedance is the effective impedance
matrix seen looking into the port with all independent sources set to zero. As the special
structure of LTI Z matrix has only n degrees of freedom, the Thevenin impedance matrix can
be determined by measurements of open circuit voltage and short circuit current, provided
there is excitation at every harmonic frequency.

For the circuit shown in Figure 2-2(A), an analogous voltage divider law can be used to
determine the voltage, V), across Z; when the series connection of Z; and Z» is subject to
the excitation voltage V. Here I = (Z) + Z3)~'V, and V} = Z,1, so the voltage divider law

for the periodic steady state can be written.
— 1 -1
i = })l_l;% Z( D+ 2Zy)" V (2.29)

Similarly, for Figure 2-2(B), the current divider law specifies that if a parallel co..nection of

Z, and Z; is subject to the total current, I, then Iy, the current through Z, is
. - - —-1\! . -1
I = lim Z;" (zit+2z') 1= lim (21 + 2,) ™" 21 (2.30)
The lim,—¢ is subsequently dropped for notational simplicity. The limit is implied in
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the Z matrix definition, and is only needed to solve the matrix inversion.

2.2.2 Analyzing LTI Circuits in the Time Domain

The preceding development of LTI periodic steady state analysis techniques used the Fourier
basis, which decomposes the periodic veltage and current waveforms into vectors of orthogo-
nal frequency components. In fact, any orthonormal decomposition could be used, although
the simple block diagonal structure of the impedance matrix is unique to the Fouricr basis.
The time-domain basis, described in Section 2.1.2, provides another useful decomposition,
where the Z matrix has a different simple structure.

To map the periodic steady state impedance relationships to the time domain, we use
the orthonormal transformation matrix, My, and its inverse, My, We can re-write the

basic periodic steady state impedance relationship in (2.26) as follows.

Vi =241y
My Vy = My ZgI; = My Zg My Mg Iy (2.31)
Vi= My ZiMpdy = Zy1,

The Z, = M;;Z; My, transformation gives the time-domai. impedance matrix from the
block diagonal frequency-domain impedance. The inverse impcdance matrix is transformed
the same way. Z; ! = (MUZJMﬂ)'l = Aft!Zf‘lAlft

Bearing in mind that V; and I; contain discrete samples of the waveforms over one
period, and that V; = Z,1,, the first column in Z; must be the discrete periodic voltage
resulting from a discrete periodic current impulse at ¢ = 0. The special structure of the
time-domain Z matrix, then, is that the columns are the discrete periodic impulse response
relating current to voltage in the time domain. As the circuit is time invariant, the sccond
column in Z; must be the same, but shifted down circularly by one. Thus the time-domain
LTI impedance matrix also has only n degrees of freedom.

Examples of periodic steady state circuit analysis can be found in Chapter 4, with
applications of the reactive power definitions of Chapter 3. The circuit analysis techniques
arc extended to include multiphase circuits in Chapter 5. The next section provides an

extension to include certain switching circuits.
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2.2.3 Steady State Analysis of Periodic Switching Circuits

The method of periodic steady state analysis using the impedance matrix can be extended
to include certain classes of non-linear and time varying circuits. While detailed study of
non-linear circuit analysis is beyond the scope of this thesis, the extension to include certain
types of switching circuits is straightforward. These circuits consist of only LTI elements
and ideal switches, where the switching intervals are known and periodic with period T'.

The ideal switches change the circuit topology between the different intervals of the
period. During each interval, however, the circuit topology is lincar and time invariant.
When the switching intervals are known, the constituent relationships for the different in-
tervals can be written in matrix form and then added to get the total periodic response,
This method does not reflect the transient behavior of the circuit but solves for the peri-
odic steady state response. This analysis technique is not possible using traditional SSS
methods, because the switching elements provide a cross-coupling between harmonics and
superposition no longer holds.

The analysis method can be applied to many different switching inverter topologies, and
cach topology takes a different matrix form. In this thesis, the method will be illustrated
in a single example. Figure 2-3 shows the example switching circuit, which has a sinusoidal
source intermittently connected to a parallel R-L-C load through an ideal switch. The
switch is on during the intervals [t;,t2] and [t3,%4], and off for the rest of the period. The
switching pattern repeats with the same period, T, as the sinusoidal source. The switching
pattern can be represented by a binary signal, sw(t), where

y HSt<ty or t3<t<ty

sw(t) = (2.32)

0 ; otherwise

During the on interval, the load voltage is equal to the source voltage less the R,i(t) drop
in the source resistance. During the off interval, the current is zero, and the load voltage
rings at the resonant frequency of the R-L-C circuit. Even though the ring frequency docs
not necessarily coincide with a Fourier basis harmonic frequency, the periodic steady state
load voltage repeats, exactly, with period T, and can therefore be represented with a Fourier
basis vector.

The periodic steady state solution is found by defining a switching matrix, Son, which
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Figure 2-3: Example Switching Circuit

picks out the intervals when the switch is on. Using the time-domain basis, Son; V; gives
the time-domain vector representation of sw(t) v(t). In the Fourier basis, Sons Vy is
the Fourier vector representation of sw(t) v(t). Because a time-domain vector consists of
normalized samples of the corresponding waveform, Son. is simply a diagonal matrix with
diagonal entries equal to one for samples that fall in the on interval and zero for samples

that fall in the off interval. For example,

(1000 0 1w ]
01000 Vs
00000 Vi
SonitVi = (2.33)
00010 Vi
0000 O Vi

The frequency-domain switching matrix is found by Fourier transforming sw(t) v(t).

1 (T 1
SongVy = T/(‘) ®(t)sw(t)v(t)dt = SonsVy = T (o) ()T (t)dt vV
mE (2.34)
1
SoNf == O()DT () dt
N =T Ji gy PO Y

Except for the effects of aliasing, Son; and Son; are related by the orthonormal time-
frequency transformation, Son; = My SonysM;y,. Aliasing, however, can be significant,

because the switching waveform is a square wave and contains high frequency components.



The effects of aliasing can be reduced by using a large n and low-pass filtering the switching
waveform below the Nyquist frequency. For the purposes of this example, Sony is used
without anti-alias filtering.

Son: and Son; are singular matrices, because it is not possible to reconstruct the
entire unswitched waveform from the switched waveform. The complementary switching
matrix, Sorr, picks out the intervals when the switch is off, (1 — sw(t))v(t) « SorrV,in
cither basis. The complementary switching matrix is simply the identity matrix minus the

switching matrix.
Sorr =M - Son or Son + Sorr =11 (2.35)

Given Son and Sorr, it is possible to write the circuit analysis equations for the on
and off intervals separately, and then add the two equations to get the total response. First

the load voltage, V, is expressed in terms of the source voltage, V5, and the current, 1.

ON: SonV = Son(Vs — ZgsI)
OFF . SorrV = SorrZLI (2.306)

TOTAL: V = SonVs — SonZRrsI + SorrZi1

where Zps and Zj, are the equivalent impedance matrices for the series source resistance
and the parallel connected load. Next, the current vector is expressed in terms of V and
substituted into (2.36).

ON . Son = SONZL'IV

OFF . Sorrl =0 (2.37)

TOTAL: I=SonZ['V

V = SonVs — SonZrsSonZL 'V + SorrZLSon 2LV (2.38)

Finally, solving for V yields a single matrix equation for the periodic steady state load

voltage of the circuit.
-1
V= (II + SonZrsSon 2y — SOFFZLSONZI_,l) SonVs (2.39)

The cquation can be simplified to a form resembling the matrix form of the voltage divider
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Figure 2-4: Switching Circuit Waveforms
law.
V = Z1(Z1, + SonZrsSon — SorrZ1Son) " SonVs (2.40)

Using the component values shown in the circuit and a 1Hz. sinusoidal source, the circuit
response is calculated using the Fourier basis. The resulting waveforms are then transformed
to the time-domain, using the My, transformation matrix, and plotted in Figure 2-4. The
top plot is the load voltage and the source voltage. The bottom plot is the switched
current waveform and the switching waveform, sw(t). The high-frequency ripple in the
current waveform is due to the aliasing of the high frequency components of the switching
waveform.

The form of (2.40) applies to the specific circuit topology of this example. Similar ma-
trix equations can be found for other switching topologies, such as boost or buck converters.
Given a particular circuit topology, however, the matrix equation provides a simple means
of calculating the periodic steady state circuit response in a single computation. Further re-
search on this method is needed to determine the effects of aliasing and investigate methods

of reducing aliasing by low-pass filtering the switching waveform.
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Chapter 3

Vector Decomposition of Power

Components

The vector representation in any orthonormal basis provides a convenient notation for

expressing time-average power components in terms of the constant vectors V and I.

P=<V,I>=VT]

(3.1)
S= VI Ml =VvVTVITI

Here the average power, P, is a signed scalar quantity, not a vector, representing the average
energy flow in the waveforms. The apparent power, S, is also a scalar but is non-negative
and does not reflect any particular physical phenomenon.

The power factor is the ratio of time-average power to apparent power, which is equal

to the cosine of the small angle between the voltage and current vectors,

P vTI
PF = § = W_V—-—IT—I = COS(OV]) (3.2)

The expression identifies active power, P = Scos(fyy), as the base of a power triangle
that is identical to the single frequency power triangle shown in Figure 1-2. The obvious
orthogonal, inactive component of apparent power is @ = S sin(fy;), just as in the single
frequency case. However, the sign of @ is not defined for the multifrequency case, because
v is an angle in n-space, which can not have a sign convention. The cosine is not sensitive

to the sign of its argument, but the sine is. @, then, is defined as the positive absolute
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value, which is unique but only reflects the magnitude of the inactive power component.

P = Scos(byy)
Q = S|sin(6vy)|

(3.3)

3.1 Vector Expressions for Reactive Power

With P and S defined in (3.1), we can write an algebraic expression for inactive power

using the Pythagorean theorem.

Q=VS - P2=\[VTVITI- (VT I) (3.4)

Q is a non-negative scalar, equal to the length of the apparent power component that is
orthogonal to time-average power. As in the definition of single frequency reactive power,
Q can be viewed as a measure of the magnitude of reactive power.

In the Fourier basis, (3.4) expresses @ in terms of the rms values of cosine and sine
frequency components of v(t) and i(t). The expression is general, however, and holds for
any orthonormal decomposition. Further simplification can help illustrate the nature of the

terms that contribute to Q.

Q=\VT(VIT-IVT)I

(3.5)
=/VT(VIT - (VIT)T)I

Expanding (3.5) gives a scalar equation for @ in terms of the elements of V' and I. After

grouping terms, this scalar equation becomes

n

@ =3 3 Vil-Wl? (3.5)
J=1 k=j+1
where V; and I; are the #** elements of the vectors V and I.

While it is not immediately obvious, (3.6) suggests that @Q is the norm of a vector of
orthogonal components that contribute to the total inactive power. The equation shows
that Q? is the sum of squared terms, and that each term has the form of a cross product
resembling the classical definition of reactive power in the sinusoidal case. As there are

m = %n(n — 1) terms in (3.6), there is a fundamental dimensionality of the reactive power
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Figure 3-1: Voltage and Current Vector Parallelogram

decomposition that is related to, but not equal to, the dimensionality of the vector basis.
As the notion that reactive power is composed of m orthogonal components is a central
result of this thesis, the formation of the reactive power vector, denoted R, will be viewed
from several perspectives. First, R is shown to be the vector product, or cioss product, of
the voltage and current vectors. Next, the the grouping of frequency components into the
m squared terms in (3.6) will be shown as a polynomial. Finally, R is shown to have a

matrix equivalent, R, with a convenient mathematical form.

3.1.1 Rcactive Power as a Vector Product

Q = |V| |I] |sin(6vr)| is the area of the parallelogram shown in Figure 3-1. In three
dimensions, the parallelogram area would be the magnitude of the vector cross-product,
V x I, but in n dimensions, the cross-product operator is not clearly defined.

The class of such n-dimensional vector products is called a 2-form, the exterior product
of two 1-forms, as discussed in detail in [14], but an in-depth analysis of such theory is
beyond the scope of this thesis. For the purposes of this thesis, the cross product can be
defined as the m-vector with elements given by (VjIx — ViI;), which equals the projected
area of the parallelogram (V,I) on the plane of the coordinate axis pair, 7, k~) There are
m = %n(n — 1) clements in the cross-product vector, corresponding to the permutations of
J#k

As shown in Figure 3-2, the vector cross product is formed by directing each projected
area in a unique orthogonal direction, [, and taking the vector sum of the m directed areas.

There are two important things to see from this picture. First, because m # n, the cross-
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Figure 3-2: Parallelogram Projected to the j-k Plane

product vector does not exist in the same space as the voltage and current vectors. Instead,
the principal directions of the cross product are associated with a pair of directions in V
and I, and the pairing is arbitrary.

Second, when directing a projected area in the direction i: the sign is chosen according

to an arbitrary convention!.

I=jixk=-kxj (3.7)
As there are essentially m orthogonal sign conventions implied in the vector product, there
can not be one overall consistent sign definition associated with Q.

With the cross product in n dimensions defined, we can now write an equation for the
reactive power vector using the x operator. However, the operator is defined in principle
only. There is no simple linear algebraic expression that implements the cross product, due
to the arbitrary ordering and sign convention. Therefore, the cross product is left as an
operator, which takes two n-vectors and yields an m-vector related to the exterior product.

Thus the reactive power vector is expressed as

R=VxI and Q = ||R| (3.8)

'The equivalent convention commonly used for three dimensions is the right-hand rule.
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Figure 3-3: Frequency Components of the Voltage and Current Waveforms

3.1.2 Grouping of Reactive Power Terms

The formation of the m orthogonal reactive power components can also be shown as a
polynomial. Equation (3.6) indicates that Q2 is the sum of squared terms, so how do
these squares arise from the difference S — P2 ? Figure 3-3 shows a frequency-domain
representation of a voltage and current waveform consisting of a D.C. component and four
harmonics. The D.C. component yields a real impulse in the frequency domain, and each
harmonic gives a complex conjugate impulse pair, for a total of n = 9 degrees of frecdom.
For this example, we would expect m = %n(n — 1) = 36 squared terms in Q.

With the rms-normalized coefficients for the voltage and current impulses denoted by
(ap...ag) and (bo...bg), Parseval’s relation implies that the the total mean-squared energy in

the waveforms is given by
Vims = (ag +at +..a§)  and I = (0 + 07 +..05) (3.9)

52 is the product of the two polynomials in (3.9), while P? is the overlap integral of v(f)
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and i(f), squared.

S? = (a2 + a? + ...ad) (b3 + b} + ...b3)
0 1 8/\Y0 1 8 (3.10)

P? = (agbo + a1by + ...asbg)2
Expanding (3.10) shows that S has 81 terms, while P has 45 terms, and 81 — 45 = 36 =
m, but how do the the 81 + 45 = 126 terms in the difference combine? As shown in
Equation (3.11), the 2n terms of the form :i:a?b,2 cancel by subtraction, leaving 108 terms.

These terms, in groups of three, form perfect squares, which are the 36 terms in Q2.

Q® = §? - P? = a3} + a3b? + a6} + a3b? + ...

—(aobo)? — 2agboarby - (a11)? - ... (3.11)

= (agby — arbo)? + ()2 + ... m = 36 Terms.

The m elements of @ do not reflect frequency components of the instantaneous power
waveform, p(t) + p(f), which would be given by the convolution, v(t)i(t) < v(f) *i(f).
Convolving the impulses in Figure 3-3 shows that p(f) consists of 17 impulses, one real, and
16 in complex conjugate pairs. p(f), then, has only 2n — 1 orthogonal components, while
Q has %n(n -1).

The elements in @ simply correspond to cross terms between orthogonal V' and I com-
ponents, which contribute to S but not to P. These cross terms do not reflect physical
power quantities or a decomposition of the flow of energy. While each component of Q
is signed, according to an arbitrary convention, ¢} cannot have a single sign convention,

because there are m orthogonal conventions.

3.1.3 Matrix Form of the Reactive Power Vector

The vector expression for Q2 given in Section 3.1 is the product of the V and I vectors with

a matrix, which will be called the reactive power matrix, denoted in bold-face, R.

Q?=VT(VIT - IvT)] = VTRI
(3.12)
R=VIT - vT

R is the skew-symmetric part of the outer product of V' and I, with zeros on the main

diagonal, and the negative of the upper triangle appearing in the lower triangle. The 5%
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clement of R is given by

[R]jk = Vil = Vilj (3.13)

which indicates that the upper triangle contains the m clements of the reactive power vector,
R. While the vector R = V x I has no convenient algebraic form, the matrix R = VIT-1v7
is casily expressed in terms of outer products. Therefore, it is sometimes more convenient
to use the matrix form in algebraic expressions involving reactive power. Both R and R
will be used subsequently, depending on which is more convenient.

Q is the root mean square of the m orthogonal clements of R, and can, thercfore, be
expressed as the two-norm of R. Q can also be expressed as a norm of the matrix R.

2

Specifically, the Frobenius® norm normalized by 7‘5

Q=|Rl = :}Eunnf (3.14)

3.2 Properties of the Reactive Power Vector

The theoretical development of a reactive power vector has been shown in the previous
section, but the theory provides nothing more than a definition. For the definition to be
of practical use, the properties must be shown. For the vector to be considered a measure
of reactive power, the properties of the vector should resemble those of classical reactive

power defined in the sinusoidal steady state.

3.2.1 Relationship to Sinusoidal Reactive Power

For the special case of sinusoidal steady state signals, the voltage and current sinusoids are

typically represented as complex phasors.
V=V+iV such that v(t) = Re{Vel*'} = V,cos(wt) — V;sin(wt)  (3.15)

The complex number is a convenient mathematical form for expressing two-dimensional
quantitics as scalars; there are equivalent expressions wherein voltage and current are left
as two-dimensional vectors of 7ms frequency components. With the ordering convention of

the Fourier basis defined in Equation (2.11), the vectors for voltage and current would be

2The Frobenius norm of a matrix, A, is the root mean square of the elements of A. ||All; = Z,' PO A]’-k.
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given by

1| W 1 | Ir
V=— and I=— 3.16
V2| _v, V2 ~I (3.16)

The vector space has n = 2, som = %n(n — 1) = 1, and the reactive power vector reduces
to a single, signed scalar. This scalar is cqual to the sinusoidal reactive power as classically

defined.

R=WVI - VI, = %(V,-I, -V I) = %Im{f/f‘} (3.17)

Note that the sign convention of the scalar R matches %Im{Vf *}, because the arbitrary
order of the Fourier basis was chosen accordingly. Such a single sign convention is only

possible when m = 1 and is not possible when harmonics or a D.C. component are present.

3.2.2 Conservation of the Reactive Power Vector

One of the strongest or most intuitive properties of sinusoidal reactive power is that it is
conserved. The total reactive power entering the port of a circuit is the sum of the reactive
power dissipated in all the elements of the circuit. To compensate a circuit that consumes
reactive power, one adds an element, in series or in parallel, that generates reactive power.
Even though reactive power doesn’t correspond to a net flow of energy, the conservation
property allows us to form an intuition similar to that of conservation of energy.

For any general measure of power, reactive, time-average, or otherwise, conservation

property implies that the sum of the power into all elements and ports of a network is zero.

S =0 (3.18)

k

where p* is some generalized measure power at element or port k.
Conservation of energy guarantees that instantaneous power is conserved at cach instant
. JaN . . 1. .

of time, so (3.18) holds for p = p(t). As the time-average operator is lincar, it commutes

with the summation in (3.18), so average power is also conserved.
Yo PE=3"pHt) =) pk(t) =0 (3.19)
k k k

Other power definitions, however, may not obey conservation. S and @, for example, are

non-negative by definition and cannot, therefore, sum to zero unless all are zero.
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Tellegen's theorem can be used to prove conservation for a set of power definitions called
generalized powers. As shown in [15, 16), a particular power is a generalized power and will

obey conservation if it can be expressed in the following form.
P = Ay(vF) Ai(¥) (3.20)

where v*, and i¥, are the voltage and current at the kth circuit element, and A, and
A; are lincar operators, or more generally, Kirchhoff voltage and current operators. The
proof of (3.20) requires proving conservation for only two types of circuit connection, series
and parallel. As any circuit can be constructed as a number of nested series and parai'el
connections, proof of overall conservation requires only proving series conservation and
parallel conservation.

In a series connection, the current is identical in each series element, and the series
voltage is the sum of the element voltages. The Kirchhoff voltage operator is defined as an
operator that preserves KVL, such that 3 A,(v*) for the series elements equals A, (32 vk).
As the current, and therefore A;(i), is identical for all elements, the total power for the
series connection is p = Ay(X v¥)A;(i), which equals the sum of the power for each series
element, 3 A, (vF)A;(i), so p is conserved.

Similarly, in a parallel connection, all elements see the same voltage, while the total
parallel current is the sum of the element currents. As Kirchhoff current operator preserves
KCL, S Ai(i¥) = Ai(X i¥) for all parallel elements. The totai power is p = Ay(v)Ai(T i*) =
Y Ay(v)A;i(s%), so p is again conserved.

The form of conserved generalized powers in (3.20) can be further extended by applying a
linear operator, 3, as shown in [17]. As did the time-average operator in (3.19), # commutes
with the summation, preserving the conservation property. The more general form for

generalized powers is

o = B (Ao(v*) Ai(i*)) (3.21)

The definition for vector definition for @ cannot be written in the form (3.21) and,
in fact, does not obey conservation. Each of the elements in the reactive power vector,
however, do have the required form, because the elements of the vectors V and I are lincar
transforms of the voltage and current waveforms, as shown in Equation (2.6). The elements

of R have the form VjIy — ViI;, which is a linear combination of products of transformed
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voltage and current, satisfying (3.21).
As the components of R are generalized powers and are conserved, the vector itsclf is

conserved, and (3.18) can then be written in vector form or matrix form.
Y RF=0  and Y RF=0 (3.22)
k k

where 0 and 0 are the zero m-vector and n xn zero matrix. This classification is independent

of the specific decomposition of voltage and current, and will hold for any orthonormal basis,

B(t).

3.2.3 The Local Property

A defined electrical quantity such as a power can be said to be local if its definition only
requires local information.[18] Calculating the average power in a circuit branch, for exam-
ple, requires only the voltage and current measurements of the circuit branch. No other
information about the circuit is necessary. The local property is desirable for any measured
quantity, because a detailed analysis of the whole circuit is not always possible.

All of the power quantities defined so far are local. S, P, Q, and R, as well as the
generalized powers in (3.21), are all expressed in terms of the local voltage and current.
Certain power measures yet to be defined are, in fact, not local, but are useful when in-
formation about the whole circuit is known. It is important to consider the local property
when assessing the merits of a particular power definition.

The reactive power vector has been shown to have the desirable properties for a measure
of reactive power. It is conserved, local, and has a magnitude equal to the total inactive
power, v/S% — P2, While a formal proof is beyond the scope of this thesis, a conjecture of
this work is that the reactive power vector is the only such definition for reactive power. The
R vector is not unique - it depends not only on the orthonormal basis used to decompose
voltage and current, but also on the arbitrary ordering convention in the definition of the
cross product — but the m = %n(n — 1) dimensions in R are fundamental. Any conserved,
local measurement of total inactive power must reflect these m orthogonal components and,

therefore, have a form equivalent to an R vector.
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3.3 Scalar Measures of Reactive Power

The reactive power vector has been defined and shown to have useful properties as a measure
. T e | . . . . . . ey . . - l .

of reactive power in periodic signals with harmonics. However, the dimension, m = sn(n —

1), grows as n? for highly distorted signals. Such a quantity is of little practical use except

in symbolic form. The following section shows how the information in the reactive power

vector can be reduced to a scalar, with the subsequent loss of desirable propertics.

3.3.1 Norms of the Reactive Power Vector

The dimensionality of reactive power can be reduced by considering the norm of R, or the
norm of certain clements of R, as a measure of reactive power. The conservation property is
lost when elements are combined with a norm, because the orthogonal sign conventions of
cach element can not be reflected in the combined quantity. Norms can be useful, however,
because the total magnitude contribution from several dimensions is reflected in a single
quantity.

Q = ||R|| is such a norm, and does reflect the total magnitude of all the m components
of R. Other norms could be used for certain applications; for example, an infinity norm
would reflect the largest component in R, although the infinity norm would no longer reflect
the total inactive power, /5% — P2,

Sub-norms, or norms of certain elements of R, might be used to subdivide and measure
different types of reactive power. In the Fourier basis, for example, the norm of the even
elements of the first upper diagonal in the R matrix would reflect the magnitude contri-
bution from the sinusoidal reactive powers taken at each harmonic frequency. The norm
of all other upper triangle elements would reflect the remaining the reactive power. The
two norms would add, in quadrature, to equal the total inactive power. Neither Q; nor
Q2 would be conserved, but such a two-component quadrature decomposition could still be

useful for particular metering or optimization problems.

3.3.2 Projections of the Reactive Power Vector

Scalar measures of reactive power can also be defined as projections of the reactive power
vector. Projections are formed as linear combinations of the clements of R, and therefore

hold the conservation property. Projections, however, only reflect one of the m dimensions
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in R, and do not reduce the dimensionality.
Projections are formed as the dot product of R and a unit vector. If the unit vector is

to point in the direction of some reference reactive power vector Ryeys, then the normalized

unit vector is Ru! = %, and the projection, g, is
RT
g=RTL (3.23)
Qre f

As the vector R has no simple algebraic form in terms of the vectors V and I, the matrix
form for R and R,y will be used. In matrix form, the projection is expressed using the

linear trace operator.

1 Roref 1 T
= str¢RT = ir{R 3.24
7=3 { QM} 2t {R7Reer} (3.24)
Substituting R = VIT — IVT and using the fact that R,y = —R7, [ leads to the following

simplification.

a= g tr {(VIT - V) Rpey |
it {IVTRyer} — sotr {VITReer}
= sg—tr {VTRees I} - it {7 ReesV )
= s tr (VT Ryes1} - gitr {VPRE, 1}
= g V" (Rrer ~RE) T

_ T Ree
q—V Q_qu

(3.25)

Equation (3.25) is the general form of a projection in the direction of the reference
reactive power matrix. The equation applies whether R,y specifies a fixed direction or a
direction that depends on a voltage and current pair in a circuit. One useful fixed projection
is the projection of R in the direction of the sinusoidal reactive power of the fundamental.
In the Fourier basis, the corresponding %—r'ff is a zero matrix, except for the elements (2,3)
and (3,2), which are 1.

One potential variable projection is the projection of R in the direction of . Here %:—:;-
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is equal to %, and the projection reduces to ||R|| = @, as expected.

R, _ vT(vIT - 1vT)I

g=VT
@ \JVT(VIT - IvT)I

= \/VT(VIT -V =Q (3.26)

Q, however, is not conserved, as the R reference direction is different at cach element of a
circuit. Only projections in a particular direction obey conservation.
A more useful variable projection, which does obey conservation and can be used for
ingl ircuit lysis, is th jecti k. of circuit el t k, in the directi ftl
single port circuit analysis, is the projection, g%, of circuit element &, in the direction of the

reactive power vector of the circuit port. The projection can be stated both ways, q* is both

ort :

RE.

port k
R 1= vpo"TEk. Jport (3.27)

Qe Q

The conservation property guarantees that 3, g* over all circuit elements is equal to gP™,

qk = VkT

defined into the port. P is equal to the the total port iractive power, QP%. ¥, then, is
a signed scalar measure of the contribution of element k to the port reactive power. If ¢~ is
positive, then element k is increasing QP°™, or consuming reactive power. If q* is negative,
then element k is decreasing QP°™ by compensating or generating reactive power.

The ¢* measure of reactive power does not have the local property. In order to calculate
q*, the voltage and current of both element k and the port must be known. In general, q*
could be useful in assessing the main contributors to the reactive power at an interconnect,

but the non-local nature of g* imposes practical considerations.

3.4 Coordinate Rotation

While the form of the reactive power vector applies to any orthonormal basis, the values of
the elements of R do depend on the specific basis used to decompose the voltage and current
waveforms. The transformation from one basis to another can be seen as an orthonormal
rotation of the vector space. The transformation takes the form of multiplication by an
orthonormal matrix, M, as shown in Section 2.1.2. Using the matrix expression R =

VIT — IVT, the reactive power in one basis, Rq, can be expressed in terms of the reactive
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power in another basis, Ry, and the transformation matrix, Mgp.

R, = Vo IT — VT = My Vi(MapIp)T — MapIn(Map V)T (3.28)

R, = MabRsz; = MgpRpyMpa

3.4.1 Time-Frequency Transformation

As was shown in Section 2.1.2, the transformation from n frequency components to n evenly
spaced, rms normalized, discrete samples is orthonormal for odd n. The transformation
matrix, M;s defined in Equation (2.14) is orthonormal, such that Mt‘fl = Mf} = My, so
no information is lost during the transformation.

The vector expressions for the reactive power vector are independent of basis, so R vector
can be calculated using either time or frequency samples, and transformation between the
domains is a simple matrix operation. Similarly, the vector expressions for projections of
the reactive power matrix can be implemented using time samples. For example, gF in

(3.27) can be calculated using a time domain algorithm.

T R port
qk =Vk gW' Ik

vkTyport rportT rk —vkT pporty portT [k
- \/Vport?Vportlport?‘lport_(Vportylporl)ﬁ

_ (Zaver) (So i) - (S i) (So v

. 2 t3 t 2
V(S (o) (Sr i)

(3.29)

If the sampling rate, %, is too low, aliasing occurs. The aliasing in time is equivalent
to the truncation to n components in the frequency domain. The aliased samples can
be transformed to the frequency domain, however, the resulting frequency components
are erroneous. Similarly, a truncated frequency representation can be transformed to the
time domain, but the time-domain representation will not match the sampled waveform.
Therefore, accurately determining the R vector from time-domain samples requires the use

of anti-aliasing filters.

3.4.2 Shift Invariance

The clements of the voltage and current vectors depend on the choice of orthonormal basis,

which requires the choice of a time origin. A shift of time origin is a coordinate rotation,
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which causes the elements of V and I to circulate.3 The norms ||V, ||I|| and ||R]|, and
therefore S, P, and Q, are not affected by the rotation and are shif! invariant. The elements
of R, however, circulate as V and I rotate. As the frequency-domain rotation is proportional
to harmonic frequency, the frequency-domain reactive power vector for large n is very
sensitive to time origin.

The calculation of R from samples of the voltage and current waveforms requires a
precise sampling frequency, which must be integer multiple of the 1/T. A slight error in the
sampling frequency will cause the elements of R to circulate slowly over time. As precise
synchronous sampling is often not practical, the shift invariance property must be considered
when designing a particular measure of reactive power. Appropriately designed norms, for
example, could be shift invariant, as could a projection where the reference direction rotates

synchronously witl. R. ¢¥, defined in (3.27), is an example of a shift invariant projection.

3.5 Comparison with Other Reactive Power Definitions

The reactive power vector described in this thesis is a decomposition of total inactive power,
Q = V57— P2, into m orthogonal elements, where m = in(n —1). The reactive power
vector is fundamentally a time-average quantity as it is derived from the time-average
quantities S and P. As does the vector decomposition of voltage and current, the reactive
nower vector depends on the choice of basis functions. The dimensionality, m, however, is
fundamental to the cross product.

Many time-average reactive power decompositions have been suggested, some of which
will be reviewed here, Instantaneous reactive power quantities, such as Akagi's generalized
instantaneous reactive power for multiphase systems, [19], are not reviewed. This instan-
taneous definition is based on a two-dimensional vector representation of the instantancous
voltage and current of a multiphase system. The vectors themselves are instantancous quan-
tities and are not specifically oriented to periodic signals. As the instantaneous definition
is not defined for single phase waveforms, comparison to the time-average reactive power
vector is difficult.

In most cases, proposed time-average definitions can be interpreted as norms or projec-

“The clements of the time-domain vectors shift circularly, while the frequency-domain cosine/sine pairs
rotate proportional to the harmonic frequency
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ticns of the R vector. Often the definitions suffer the loss of some useful properties, because
they attempt to represent m orthogonal conserved power components with fewer than m
scalar quantities. Those definitions that are projections consist of linear combinations of
the elements of R and obey conservation, but each projection can only account for only one
of the m dimensions in R. The other m — 1 dimensions, if non-zero, must be accounted for,
if the decomposition is to reflect the total inactive power. Those definitions that are norms
combine orthogonal projections of R in quadrature, thus representing the magnitude con-
tribution from several dimensions. The sign convention, however, is lost when components
are combined, and the resulting definition is not conserved.

The original Budeanu definition of reactive power is given in [2].
Qs = Y Elisin(6;) (3.30)
i

where E;, I;, and 6; are the rms voltage and current and the phase angle difference of the
ith harmonic. In the Fourier basis, each harmonic is represented with a cosine/sine pair,
and each term in (3.30) represents the interaction of the cosine and sine components at a
particular frequency. These terms appear as every other entry in the first upper diagonal
in the reactive power matrix of the Fourier basis, Ry. In Equation (3.30) these terms are
added linearly, while all other components are ignored. Budeanu’s definition, then, is a
projection of R in a fixed direction.

Budeanu’s definition is conserved, local, and shift invariant, but the direction of the
projection has no particularly useful interpretation. As Qp only reflects one of the m
dimensions of reactive power, Qp is not useful as a measure of power factor or inactive
power.

In order to account for the other reactive components, Budeanu introduced Distortion

Dy = /82 - P2 — Q2 (3.31)

Dy, then, is the norm of m — 1 orthogonal projections of R, which are also orthogonal to

Power.

the @Qp projection. As D, adds components in quadrature, the definition does not obey
conservation. Because the direction of the Qp projection is arbitrary, the D, component
has no generally usef.:! interpretation.

Perhaps Budeanu intended that Qp reflect the individual interactions of the n/2 fre-
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quencies, and that Dj represent the cross terms between different frequencies. If so, Qv
would have been more properly defined as the norm of the n/2 components in the first
upper diagonal of Ry, and D, would then have been the norm of all the other elements.
The resulting two-element orthogonal decomposition would have properly decomposed the
total inactive power, but neither of the norm quantitics would have been conserved.

Fryze, in [3], defined a single signed measure of reactive power.
Qr=+VS5%?-P? (3.32)

The magnitude of Q; is the norm of all the elements of R, which is potentially useful because
minimizing ||Qy|| minimizes S, maximizing power factor. The sign definition, however, is
misleading in that the definition is a norm and is not conserved. Presumably, the sign
was added to reflect the sign of fundamental reactive power component, which would be
dominant in the nearly sinusoidal case. If the intention was to obtain a single conserved
quantity to represent V52 = P2 at a particular circuit port, the definition would more
properly have been the projection of R in the direction of Rpore, which is the definition of
q* given in this thesis.

Many authors have provided discussion on specific drawbacks and advantages of the
Budeanu and Fryze definitions. While the debate is very much ongoing, most current re-
search focuses on the magnitude portion of Qy, referred to in this thesis as inactive power,
as the more useful quantity for optimization of power transfer. Several authors provide
orthogonal decompositions of Qs into components which have a specific interpretation in
optimization of power factor. Ofori, for example, combining the work of Czarnecki and
Emanuel, defines the magnitude component that could be compensated by a parallel con-
nected ladder network of lossless LTI clements.[12] Such components are norms of projec-
tions of R, which do not obey conservation but can provide a uscful summary of reactive
power information for metering purposes. In active compensation of loads, however, such
quantitics are of limited use, because important sign information is lost in the norm.

Emanuel, in 7], encourages the decomposition of reactive power into two components,
Q: and Qp. @ is the signed sinusoidal reactive power of the fundamental component of
voltage and current, and Qy is norm of the remaining components such that Q% =Q?+Q7%.

Q is Vi I —I1 V5, which is one of the elements of R in the Fourier basis. For nearly sinusoidal
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signals, this element is the dominant orthogonal term in inactive power, and maintaining the
sign information for this term allows the dominant portion of reactive power to be conserved
and have an associated direction of flow. Qp, however, retains no sign information and is
not conserved.

Page, in [8], defined capacitive reactive power and inductive reactive power, Qc and
QL, as the two non-orthogonal components of Q that could be compensated by a parallel
capacitor and inductor. These powers are, in fact, projections of the R vector in the direc-
tions of Rc and Ry, the reactive power vectors of a pure capacitance and pure inductance
subject to the same voltage, V. Page correctly noted that these quantities can have a sign
and are corserved in a parallel circuit where the voltage is common. Therefore, a negative
Qc can be compensated by adding a capacitor in parallel. Page also noticed that the Q¢
and Qy, are not generally orthogonal or parallel, and introduced a refinement to account for
the cross terms.

Page’s projections did not account for the other m — 2 orthogonal components of R,
which must be considered if the decomposition is to account for the total inactive power.
His projections can help solve for the best parallel compensation capacitor or inductor but
do not help with other compensation topologies, such as a series compensator or a more
complicated compensation network. As shown in an example in Section 4.3, single element
parallel compensation does not always provide substantial power factor improvement.

Wyatt and 1li¢, in [11], discusses the merits of an instantaneous reactive power.

Preacta(t) = 0(0) () = i(8) 500 (3.39)

The time average of this quantity can also be interpreted as a measure of reactive power,
and can be expressed in vector notation. In the Fourier basis, %@(t) = JT®(t), where J,
is the block diagonal, anti-symmetric matrix given in Section 2.2.1. The time average in

(3.33) is simplified by taking the constants outside the integral.

1 T
T/ Prcact,2(t)dt = VTJwI - VTJZ‘I
0 (3.34)

=2vTy,I

While (3.34) is not normalized, it has the form of a fixed projection of R. Like Budcanu’s

Qs, the projection contains only interactions between the sine and cosine components at
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the same frequency. Unlike @, each component is scaled by its frequency.
In linear sinusoidal systems, reactive power can also be interpreted in terms of average

stored electric and magnetic energy.

Q= 2w (Wa(3) - W) (3.35)

Because Wyy(t) and Wg(t) both oscillate as cos(2wt) but are 180° out of phase, (3.35) can

also be written in terms of the total stored energy, W(t) = Wy(t) + Wg(t).

Q =rms {% (W(t))} (3.36)

This expression has the nice interpretation that @, in the sinusoidal case, is an rms measure
of the oscillatory transfer of stored energy. This fact, however, is a result of the 180° phase
difference between Wjys(t) and Wg(t), and no such relationship holds when harmonics are

present or when nonlinear circuits are considered.
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Chapter 4

Single Port Circuit Examples

The following Chapter combines the periodic steady state analysis techniques of Section 2.2
with the vector expressions for reactive power in to several circuit examples. The examples
are drawn from power electronics and power systems, with examples of both metering and

power factor optimization.

4.1 Power Electronics Metering Example

Figure 4-1 shows a one-port circuit example consisting of a linear R-L-C circuit in parallel
with a switched resistive load. The triac switch is self commutating with a 90° firing angle,
so it is on for the latter half of each half-cycle. The voltage source at the circuit port
contains a 1 Hertz fundamental component as well as small components of the third and
fifth harmonics. The port current contains these harmonics as well as additional harmonics
introduced by the switching discontinuity.

The port voltage is shown in Figure 4-2, along with the total port current, and the
current in the R-L-C and switched resistor loads. The current is found using the periodic
steady state analysis methods of Section 2.2.1. The R-L-C load current is found using the

impedance matrix of Ry, L;, and C}.

-1
Zric = (26 + (Zr + Z11) 7 and  Ippo=ZploV (4.1)

To calculate the current in the switched resistive load, the vector for the R2 voltage is

calculated using the Fourier transform of Equation (2.6). As the triac is switched on at
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Figure 4-2: Example Circuit Waveforms

48




t= %‘ andt = % and turnsoffat t = -723 and t = T, the Fourier transform can be calculated

in terms of the port voltage vector, V.

1 T
Vr2 = 7 / ®(t)vro(t)dt
0
=1 / T apd + L /T B(t)v(t)dt
=7y 20l + 7 [ e (42
1 (% ronnl [T T

= (T /% B(t)87 (t)dt: /;41 o(t)aT(t)dt | V

The vector for the switch resistor current is then calculated from
Iy = ZEQIVI& (4.3)

Because the LTI Z matrix is block diagonal, the linear load current contains only those
frequencies that appear in the port voltage. The switched load current, however, contains
additional frequencies generated by the switching discontinuity. These harmonics are re-
flected in Equation (4.2) by the non-block-diagonal matrix inside the parentheses. The
vector representation of the voltage and current waveforms are given in Table 4.1. As there
are no even harmonics or D.C. components in any of the waveforms, only the odd harmonics
are given. For this example, the Fourier basis was truncated after the 19"* harmonic.

For the n = 39 basis used here, the reactive power vector has length m = 190 corre-
sponding to all possible cross product terms between the voltage and current. Although
many of the elements in the port reactive power vector are zero due to the sparseness in
V, there are far to many elements to interpret individually. Instead, the projection of Ry
in the direction of Rpor¢ is used to measure the contribution of the kt* element to the total
port inactive power. This projection is the defined as q in Section 3.3.2.

Table 4.2 summarizes the power components for the circuit example, listing P, S, Q,
and g, for each element in the circuit and for the port. Average power is dissipated in the
resistive elements, with a small dissipation in the switch introduced by aliasing associated
with the truncation of the Fourier basis. Unlike S and @, P is conserved, so the average
power into the port equals the total dissipation in the circuit. As shown in the data, q is
also conserved, because it is a projection of the reactive power vector.

q provides a measure of the contribution of the circuit element to the @ secn at the
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#(t) 4 Ipte | Isw I
v2cos(wt) | 0.0000 | 0.4853 | -0.3491 | 0.1363
V2sin(wt) | 1.0000 | 0.4551 | 0.4982 | 0.9533
V2cos(3wt) | 0.0000 | 0.1635 | 0.3109 | 0.4744
V2sin(3wt) | 0.1000 | 0.0265 | 0.0518 | 0.0783
V2cos(5wt) | 0.0000 | -0.0292 | -0.0736 | -0.1028
V2sin(5wt) | -0.0100 | -0.0014 | -0.0068 | -0.0082
V2cos(7wt) | 0.0000 | 0.0000 | 0.0965 | 0.0965
V2sin(7wt) | 0.0000 | 0.0000 | 0.0018 | 0.0018
v2cos(9wt) | 0.0000 | 0.0000 | -0.0526 | -0.0526
V2sin(9wt) | 0.0000 | 0.0000 | -0.0018 | -0.0018
V2cos(11wt) | 0.0000 | 0.0000 | 0.0580 | 0.0580
v2sin(11wt) | 0.0000 | 0.0000 | 0.0018 | 0.0018
V2cos(13wt) | 0.0000 | 0.0000 | -0.0387 | -0.0387
V2sin(13wt) | 0.0000 | 0.0000 | -0.0018 | -0.0018
V2cos(15wt) | 0.0000 | 0.0000 | 0.0413 | 0.0413
V2sin(15wt) | 0.0000 | 0.0000 | 0.0018 | 0.0018
v2cos(17wt) | 0.0000 | 0.0000 | -0.0305 | -0.0305
V2sin(17wt) | 0.0000 | 0.0000 | -0.0018 | -0.0018
v2cos(19wt) | 0.0000 | 0.0000 | 0.0320 | 0.0320
v2sin(19wt) | 0.0000 | 0.0000 | 0.0018 | 0.0018

Table 4.1: Vector Representation of Voltage and Current.

P S Q q

CI | 0.0000 | 0.6600 | 0.6600 | 0.3416
L1 | 0.0000 | 0.1471 | 0.1471 | -0.0598
R1 | 0.4577 | 0.4577 | 0.0000 | 0.0000
T1 | 0.0080 | 0.4971 | 0.4970 | 0.2454
R2 | 0.4955 | 0.4955 | 0.0000 | 0.0000
Total | 0.9612 | 2.2575 | 1.3042 | 0.5272
Port | 0.9612 | 1.0963 | 0.5272 | 0.5272

Table 4.2: Average, Apparent and Inactive Power, and the Projection, q.
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port. For this example, the capacitor is contributing to the port reactive power, while the
inductor is providing compensation. While the resistive elements do not contribute reactive
power, the triac switch does. Even though the switch is not an energy storage device, it
generates reactive power, because the nonlinear switching characteristic generates current

harmonics.

4.2 Power System Metering Example

The projection q can also be used as a measure in power systems. Figure 4-3 shows a sinu-
soidal source, V, supplying power to an intermediate bus, V;, through an effective impedance
Z,. Two loads draw power from the bus through the transmission line impedances Z; and
Z3. The first load draws a non-sinusoidal current, I, which induces harmonic distortion in
the circuit. The second load is an LTI impedance, Z3, which would draw sinusoidal current

if the voltage waveform were not distorted.

71 Vi 11

Zs

= 2 v

Z2 73

Figure 4-3: Example Power System

As the source voltage is sinusoidal and the transmission line impedances are linear, the
distorted current load is the only source of harmonics in the system. The metering problem
of this example is to design a scalar measure of reactive power that could be used to penalize
the two loads according to the waveforms seen at the intermediate bus. With knowledge of
the transmission line impedances, Z; and Z;, and measurements taken at the intermediate
bus, V;, I1, and I, the contribution of each load to the total inactive power, @5, can be

calculated. The contribution of element k is gk, the projection of Ry in the direction of I2,.

T 1 yT
o = Vi (—————-——V'I’ ) LYy ) I (4.4)
S

For this example, V is a 1V, s, 1Hz. source, and the distorted current, I, contains
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Figure 4-4: Bus Voltage and Current Waveforms

both a lagging fundamental and a strong 3™ harmonic. Using the Fourier basis defined in

(2.11), the vectors for these sources are

- - - -

and I,

o © ©o © © = o
O v © © o ©

- - - -

The three transmission line impedances are identical, consisting of a 0.0112 resistor in scries
with a .05H inductor. The load impedance, Z3, is a parallel R-L-C circuit with @ = 14,
L = .5H, and C = 0.05F.

Zs =2y = Zy = 0011 + 0.056J,
(4.6)
Zy = ((1L.OI)~! + (1.0J,)! + (0.05J,))"
Given the measurements V,, I;, and I, the periodic steady state voltages, V; and V3
are calculated from the impedance relationships, Vi = Vs — Z;I; and V, = Vs - Z515.

The waveforms are shown in Figure 4-4. (4.4) is then used to calculate the reactive power
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P q
Load 1 | 0.406 | 0.177
Load 2 | 0.508 | -0.012
Line Z1 | 0.005 | 0.102
Line Z2 | 0.005 | 0.150
Total | 0.924 | 0.417
Port 0.924 | 0.417

Table 4.3: Average Power and the Projection, q~.

projections of the two loads and the two transmission lines, q1,q:, gz1 and gz;. Due to the
conservation property, the total inactive power at the intermediate bus is equal to the sum
of these reactive power projections.

As shown in the table, q; provides a conserved measure of the port inactive power. q is
large and positive, as Load 1 is the primary source of both distortion and lagging current.
Load 2 is credited with providing compensation, as Z3 is nearly perfectly compensated at
the fundamental frequency, and the impedance helps to smooth the harmonics injected by
Load 1. Both the transmission lines are a significant source of reactive power as they contain

large inductances without compensating capacitors.

4.3 Power Factor Optimization Example

The next example shows how a projection of the reactive power vector can be used to
solve a simple power factor optimization problem in closed form. The circuit example of
Section 4.1 is used as a load, and a parallel compensation element is added to optimize the
power factor at the circuit port. The circuit is shown in Figure 4-5.

As shown by the positive go; and negative qr; in Table 4.2, the parallel capacitor
is contributing to the port reactive power, while the inductor is providing compensation.
Therefore, to provide additional compensation, a parallel inductance, Le, is used in this
example. The problem is to find the best value for Le such that the power factor of the
port is maximized. This example is a constrained optimization in that compensation with

a single inductor can improve the power factor but cannot achieve unity power factor.

P _

The power factor is the average power divided by the apparent power, PF = 5 =

77’{752' When P is positive, maximizing power factor is equivalent to minimizing f—,g =

<

2 . C e
1+ -015-;. Thus the value of L¢ that maximizes power factor also minimizes % Because the
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Figure 4-5: Example Compensation Circuit

compensator is lossless and the voltage source is constant, P is not affected by compensation
and is a constant. Maximizing the power factor, then, corresponds to minimizing Q at the

port.
Lg = argmazx {PF(LC)} = argmin {Q(Lc)} (4.7)

Q is not a generalized power and does not obey conservation, so the port Q is not simply
the sum of load reactive power, @, and compensator reactive power, Q¢c. The reactive
power vector, however, is a generalized power, so the port R vector is the sum of Ry and

Re, and the port @ is the norm of this vector sum.

Q=|R. + Rc| (4.8)

Because ( is a non-negative quantity, the minimum Q coincides with the minimum Q? as

well, and Q? can be expressed as an inner product.

Q?* = (R, + Rc)T(RL + Re)
= RTR, +2RTRc + RLRc (4.9)
=Q} + 2RI Rc + Q%

where @ is the inactive power of the load, Q¢ is the inactive power of the compensator.
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The inner product of the middle term can be expressed as a projection of R¢ in the direction

of Ry, times Q. Using the matrix notation for the reactive power projection, (4.9) becomes
Q* = Q% + 2V TRy Ic + Q% (4.10)

As the compensator is lossless, Pc = 0, so Q% = S% = VTVILIc, yielding
Q*>=Q% +2VvTRIc + VTVIEIC (4.11)

Both Q1 and R are constant, because neither V nor I are affected by compensation.
Their values can be calculated using the voltage and current vectors derived in the example
in Section 4.1. (4.11) can be used to find the optimum value of L¢ in closed form. Using the
impedance matrix for the compensator, Ic can be expressed in terms of V/, parameterized
by Lc. As the impedance matrix is proportional to Lc, I¢ is proportional to the inverse

of Le.
L

-1
o'V (4.12)

Ic=2;V=

Substituting this expression into (4.11) yields a scalar quadratic equation in ZIE

Q*=Q} +2VTRLJ;'V =

r (4.13)
+VTyvvTi;gs IVZ':';!’
Inserting the values for the example circuit gives.
0 1 1
Q* = 0.0256+5 — 0.0490— + 0.2779 (4.14)

This equation has a single minimum, at Lo = 1.05H, where @ = 0.505. Figure 4-6 shows

the port reactive power and power factor as a function of L¢ in the vicinity of this minimum.

The compensated power factor is 0.885, improved from 0.877 by L¢. Due to the extreme
harmonic content of the waveforms, the power factor can not be improved beyond 0.885
without a more complicated compensator designed to better match harmonics in current to
those in voltage. The third and fifth harmonics, which exist in the voltage, could be adjusted

by a linear network of tuned circuits. Nulling the higher harmonics. in current would require
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Figure 4-6: Optimum Compensation

a nonlinear or active compensator capable of generating current harmonics where none
exist in voltage. In the more complicated optimization, Equation (4.13) would no longer
be quadratic, and finding the global minimum in closed form would be difficult. Still, for a
small number of control parameters, the global minimum could be found numerically using
the techniques presented in this example.

Also, in this example the circuit port is connected to a2n ideal, zero-impedance voltage
source. In minimizing power factor, the source voltage does not change, and the load current
remains constant. In a more realistic example, a small source impedance would make the
port voltage and load current slightly sensitive to the compensator inductance. The closed
form minimization equation would then lose its sin.ple quadratic form, again raaking a

numerical solution more practical. The next example shows such a minimization.

4.4 Numerical Power Factor Optimization Example

In the sample circuit in Figure 4-7, an approximate steady state induction motor model
has harmonic current injection from saturation modeled as a constant current source. The
matrix equation for power factor has a more complicated form than in the previous example,
because the source impedance is non-zero. Still, the optimum compensation can be found
numerically by plotting the power factor for a range of compensation capacitance anc
looking for the global maximum.

The source voltage, V, is purely sinusoidal, with a 1Hz. fundamental, while the current
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Figure 4-7: Compensation Circuit with Non-Zero Source Impedance

injection, I, introduces a small portion of 1% and 374 harmonics to reflect core saturation.

In the Fourier basis, the vectors for these sources are

3
o
)

and I, (4.15)

.05
.05

o O O O O O = O O
o

| ¢ [
The distorted load voltage is found using matrix impedance relationships.

-1 -1 -
v=(z+2) " (2+ (5 + 2) JLERCARTARY D -

I= (27 4271+ 27Y) (Vs = V)

where Z;, Z; and Z;, are the equivalent impedance matrices for the load, compensator, and

source.
Zg = Rsn + Ls Jw
-1
2= Lo+ ((LnJw)™ + (BT + LiJu)™) (4.17)

Z, = (Cc Jw)—l
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Figure 4-8: Uncompensated Voltage and Current Waveforms

With no compensation, C, = 0, and the load voltage and current waveforms are shown
in Figure 4-8. The small injection of 3"¢ harmonic produces a slight distortion in the voltage
waveform, but the distortion is slight, because the source impedance is small.

The power factor, g, can be calculated either for the load-plus-compensator, or for the
internal voltage source, V5. Due to the source impedance, the load and source voltages are

different, and the power factor of the load is not the same as the power factor seen by Vj.

ﬁ = ————VTI and
S VVTVITT

JVIVITI

Figure 4-9 shows the compensated load power factor for a range of compensation ca-

PF = Pﬂ=%= (4.18)
S

pacitance. The global maximum occurs at C, = 0.12F, while there is a local maximum
C. = .18F due to the harmonic distortion. Figure 4-10 shows the load plus compensator
current with optimal compensation, C; = .12F. The harmonic distortion is more noticeable
in the compensated voltage waveform, and the maximum power factor is approximately .9.
No further power factor improvement is possible with a single parallel capacitor.

The power factor seen at the source is not the same as the power factor of the com-
pensated load. Furthermore, as shown in Figure 4-11, the maximum source power factor
does not occur at the same value of compensation capacitance. As for which maximum
is optimal, it depends on the exact definition of optimal. If percentage resistive losses in

the source impedance are to be minimized, then PF; should be maximized. Because Vj is
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Figure 4-10: Compensated Voltage and Current Waveforms

constant, minimizing % minimizes !Lg*. In general, care must be taken to specify precisely

what is to be optimized.
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Chapter 5

Multiphase Systems

Multiport waveforms can also be represented as vectors given an appropriate set of basis
functions. By combining the vectors representing voltage and current in each circuit port
into collective vectors, the entire set of periodic waveforms can be represented as two con-
stant vectors, V and I. These vectors can then be used to express time-average power
components just as in the single phase case. While the results could be generalized to

multiport and polyphase circuits, this analysis will focus on the three-phase case.

5.1 Vector Representation of Three-Phase Signals

Figure 5-1 shows a three-phase one-port, which has either three or four wires depending on
whether a neutral wire exists. The set of voltage waveforms refers to the voltage of cach

phase v1(t), v2(t) and v3(t), measured relative to a common reference. The set of current

. il(t) —
11(0 . i2(t) — Three-Phase
v .
A i3(t) — :
V200 ; Single Port
| 2O neutral_

Figure 5-1: Three-Phase Single Port Connection
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waveforms refers to the currents flowing in each phase, ;(t), i2(t) and i3(t). These waveform

sets can be assembled into row vectors, and expressed in terms of a constant vector times

an orthonormal basis, ®(t).

a(t) va() wa(t)] = | Vo | &() = VT2

[i1(t) 42(t) i3(t)] = | L | &) = IT@()
I3

- 4

Here V and I are constant vectors of length 3n, composed of the sub-vectors Vi, V,, Va,
and I, I, I, which are the vector representation of the single phase waveforms. ®(t) is a

3n x 3 matrix of time functions, forming an orthonormal basis such that
1 (T T
7 [ 02T =1 (5.2)
0

A special note is needed regarding three-wire versus four-wire systems. In a three-wire
system, there is no neutral connection, and the three currents waveforms must sum to zcro.
With this constraint, the current is overspecified and could be represented with only two of
the waveforms. We chose to keep the extra current waveform to maintain consistency with
the four-wire representation, as if the neutral exists but happens to be carrying no current.

Similarly, the voltage waveforms in a three-wire system are often taken as line-te-line.
Each phase voltage is taken relative to that of the previous phase. As the sum of these
waveforms must always equal zero, the three-phase voltage is also overspecified. To maintain
consistency with the four-wire case, the voltage is instead represented relative to a common
reference, which is equal to the average of the instantancous voltages of cach phase. Thus
voltages are measured line-to-neutral, or in the absence of a neutral, line-to-average.

The set of line-to-average voltages, vy,, can be scen as a transformation of the line-to-line

voltages, vy, although the transformation is not orthonormal.

[o11a(8) va1a(t) (0] = [oru(® van(t)] | 7> TP T (5.3)
1/3 1/3 ~2/3
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5.1.1 The Uniform Basis

There are many choices for the orthonormal matrix of basis functions, ®(t). In general,
each different basis provides a different decomposition of the multiphase waveforms, and
certain decompositions can be more convenient for different applications. One obvious
choice decomposes each individual phase waveform using an identical vector basis, ®(t), as

in the single phase case.

o) 0 0
@,()=| 0 &) 0 (5.4)
0 0 &)

Where &(t) is an n-vector single phase basis, and 0 is an n-vector of zeros. Although ®,,(t)

is a rectangular matrix, the basis is stiil orthonormal.
1 (T T
= /0 &,(1)8T(t)dt = (5.5)

This basis is called a uniform basis, because the sub-vectors represent each phase waveform
in a common vector basis. For sufficiently rich vector basis, such as the Fourier basis, the
uniform basis is sufficient to represent any multiphase waveform set. However, the vector
representation does not reflect the specific inter-phase relationship inherent in multiphase
systems. For example, three-phase systems are designed so that each phase waveform
resembles that of the previous phase delayed in time by +7/3. The + corresponds to
positive and negative sequence waveforms. This time-relationship can be reflected in the

basis as shown in the next section.

5.1.2 The Balanced Basis

To reflect the time delayed relationship between multiphase waveforms, the columns of ®(t)
are delayed according to the appropriate phase sequence (positive or negative.) This basis is
called a balanced basis, because a balanced set of waveforms results in identical sub-vectors,

Vi, Vo and V3.

d(t) 0 0
B(t)=| 0 &¢t-7T) 0 (5.6)
] 0 ou-%) |

For a sufficiently rich vector basis, ®, such as the Fourier basis, the time delay can be
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represented as an orthonormal coordinate rotation, or multiplication by an n x n matrix D,

which is orthonormal, such that DTD =1, D? = DT and D =D =11

B(t—T) = Da(t)
o(t — &) = D?®(t) (5.7)
ot — L) = D3d(t) = 9(t)

For the Fourier vector basis, the rotation matrix, D, preserves the D.C. component and
rotates the cosine-sine pair of the kt* harmonic by &gﬁradians. If the 2 x 2 rotation matrix

for each frequency pair is 6%, then

_ cos(¥) —sin(F) P cos(4F) —sin(%) 5= 10 (5:8)
sin(gsl) cos(%’l) sin(‘T” cos(ﬂal) 01
(1 00 00 00 |
0 4 00 00
0 00 00O
0 00 , 00
D= 5 (5.9)
0 00 00
0 00 P
0 00 00O
| iy

Using the delay rotation matrix, D, the balanced matrix basis, ®,(t), can be represented

as an orthonormal rotation of the uniform basis ®,,(t).

®(t) 0 0 D 0o 0O o) 0 0
0 ot-1) 0 =| 0 D' 0O 06 o) 0
- oT ) . 4 (5.10)
0 0 o(t- 7 0 0 D 0 0 @

®,(t) = Mpy gu(t)

where 0 is an n x n matrix of zeros, and D? is the n X n identity matrix. Here the 3n x 3n
block-diagonal rotation matrix, My, is also orthonormal, and the resulting rotated basis

is also orthonormal.
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This rotated basis is convenient for representing a set of multiphase waveforms, because
in the resulting vector space, the sub-vectors Vi, V3, and V3 are cqual under balanced
conditions. Other orthonormal transformations can be used to decompose waveforms into

balanced and unbalanced components, as shown in the next section.

5.1.3 The Basis of Symmetrical Rotating Components

The symmetrical components decomposition widely used for single frequency multiphase
systems decomposes a three-phase set of waveforms into three balanced waveforms, one
rotating with positive sequence, one with negative sequence, and one non-rotating, zero
sequence.[20] For the Fourier basis, such a decomposition could be constructed for the

multifrequency case by considering the non-block-diagonal rotation matrix M.

®,(t) = Mau®,(t) (5.11)
where
D° D! D?
Msu='1— D D? D! (5.12)

V3
DY po po

In the resulting vector space, the vector V would be composed of sub-vectors V;, V4, and

Vs, for the positive, negative and zero sequence waveforms.

T
1A D pt D@t O O
1 ~ -
[vi(t) va(t) va(®)]=| Vi, | —= | D° D? D! 0 o1 0 (5.13)
\/5 - -
V. DY Db DO 0 0 @)

However, the matrix Mgy is not orthonormal due to the presence of the D.C. term and
harmonics at multiples of three times the fundamental frequency. These terms are not
affected by the rotation matrix D and lead to a rank deficiency in Mgy, Simply stated, the
positive, negative, and zero sequence components at D.C. and multiples of 3 harmonics are
identical, in-phase, and balanced. The singularity reflects the fact that it is not possible
to decompose an unbalanced waveform into three balanced time-delayed waveforms. Thus,
strictly speaking, it is not possible to represent multifrequency waveforms using the single

frequency dcfinition of symmetrical components.
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One approach to defining a more general symmetrical components decomposition for the
multifrequency case is to specifically address the frequency components causing the rank
deficiency in the rotation matrix. To allow for imbalances at D.C. and at multiples of three
harmonics, Mgy can be orthogonalized such that imbalances are represented in V, and V,
as either positive or negative sequence imbalances, while the balanced component shows up

in the zero sequence vector V;. The corresponding rotation matrix can be written as

DY A\D!' A,D?
1
Msy = % DY A,D? A\D! (5.14)
D® Do D°

where D is defined as in (5.9) and

a; 00 00 0 0 00O

010000 O0O0O

0 01000 O0O0OO

0 001O0O0O0O0OCO
A= 0 0001 O0O0O0OO

0 000O0 a 0 00O (5.15)

0 000O0O a 00O

0 000O0OOOTI1IO

0 00O0O0OO0O0TO0OT1

L N

where a) = —3%1"—1- ap = 3@

With this correction, Mg, becomes orthonormal, so the basis ®,(t) = Mgu®,(t) is
orthonormal. The sub-vectors Vj, V3, and V;, then, are a decomposition of the multiphase
voltage waveforms into positive, negative and zero sequence parts. The vector of symmet-
rical components can be expressed in terms of the sub-vectors, Vi, Vo, and V3, representing

the three individual waveforms in the uniform basis.

Vo Wi |4 Vo
Vo | =Msu | W and Vo | =Mus | V, (5.10)
|2 V3 Vs V:
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where Mys is the inverse rotation matrix, Y,

The positive sequence part of the decomposition includes a balanced, positively rotating
component for harmonics 1, 2, 4, 5, 7, etc., and a purely unbalanced, non-rotating compo-
nent for harmonics 0, 3, 6, etc. The negative sequencz part includes a balanced, negatively
rotating component for harmonics 1, 2, 4, 5, 7, etc., and a purely unbalanced, orthogo-
nal, non-rotating component for harmonics 0, 3, 6, etc. The zero sequence part includes a
balanced non-rotating component for all frequencies.

This decomposition provides a convenient representation for multiphase waveforms in
that a balanced multiphase set of waveforms with either a positive or negative sequence
relationship yields only V}, or V;; non-zero. However, the presence of balanced harmonics 0,
3, 6, etc., are reflected in V,, while imbalances are reflected in V;, and V;, depending on the
orientation of the imbalance.

In three wire systems, zero sequence components can not exist, so the symmetrical
components formulation is sound. However, in four wire systems, the decomposition can
be confusing. For the single frequency case, there is no D.C. component and only two basis
functions, and this multifrequency formulation is identical to the single frequency definition
of symmetrical components. In the next section, an alternate decomposition is developed

to provide a more consistent definition for waveforms with a specific phase sequence.

5.1.4 The Basis of Phase Symmetrical Components

When the phase sequence of the multiphase waveforms is defined as positive, the balanced,
or in-phase component can be defined as the component which appears identically in cach
phase with the appropriate time delay. This component will be represented by the n-vector
V5. The unbalanced part can be decomposed into two balanced components, one where
the phase angle of each frequency in vy(t) leads those of va(t), which lead those of v3(t),
by 120°. The second unbalanced component has a lagging 120° phase relationship. These

unbalanced components are represented by the n-vectors Vi and V_,

T
Ve

[vi(2) va(t) va(t)] = | V4 | @p(t) where D,(f) = Mpu®,(t) (6.17)
V_
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The unbalanced decomposition again bears the exception of the D.C. component, which
is a scalar and has no phase angle. i.e. it is not possible to decompose a D.C. imbalance
into multiple balanced D.C. components. The inconsistency is solved by making the D.C.
components of V;, V; and V_ represent a specific orthonormal decomposition of the D.C.

values of the three waveforms.

Vinc . 1 1 1 Vibe
Vipe | = 7 1 _;/;f_32 1 )C_32—‘ Vape (5.18)
Vopc R e al R

Here V, properly reflects the balanced component, while V. and V_ contain a somewhat
arbitrary decomposition of the unbalanced D.C. part. Unlike the symmetrical components
formulation, the harmonics at multiples of 3 times the fundamental [requency do not require
an unbalanced decomposition. The orthonormal rotation matrix for the phase symmetrical

components basis then becomes

D* D! D?
Mpu= | D® A,D' A,D? (5.19)
DY A,D!' A\D?

where ] .
-3 00 00 00
0 00
)
0 00 00
0 00 00
A = § (5.20)

0 0 00

0 00 00
)

0 00 00
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and

(¥l g0 00 00 ]
o 00 00
6—1
0 00 o°¢C
0 00 00
Ay = 51 (5.21)
0 00 00
0 0 00
6—1
0 ¢O0
5= cos(2F) —sin(%F) and 6_1___62:'-008(%") —sin(igl) (5.22)
sin(%)  cos(%) sin(§) - cos(§)

With the correction for the D.C. components, the rotation is orthonormal, so the decom-
position can fully represent any positive sequence multiphase waveform. The sub-vectors of
symmetrical components, V,, V4 and V_, can be expressed in terms of the sub-vecters for

the three individual waveforms in the unifor:n basis, V;, V2, and V3.

Vb Vi £ |7
V_ Vs Vs V_

where Myp is the inverse rotation matrix, MpuT.

In the phase symmetrical components decomposition, the sub-vector V, represents the
balanced positive sequence component at all frequencies, while the vectors ; and V_ rep-
resent a leading and lagging phase angle decomposition of the unbalanced component. For
the single frequency case, where there is no D.C. component and only two basis functions,
this decomposition is equivalent to that of symmetrical components, with V3, V4 and V_

corresponding to the positive, negative and zero sequence components, respectively.

5.2 Multiphase Periodic Steady State Circuit Analysis

The periodic steady state circuit analysis tools outlined in Section 2.2.1 can be extended

to include multiphase systems by stacking the impedance relationships of the individual
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phases into a multiphase impedance relationship. For four-wire, wye-connected circuits,
the extension is simple, because the phases are completely decoupled. In a delta-connected
or three-wire system, however, the sum of the phase currents must always be zero, and this
constraint leads to a singularity in the conductance matrix. Problems due to the singularity
can be solved in the limit, leading to a notationally compact LTI circuit analysis method

for multiphase systems.

5.2.1 Wye-Connected Four-Wire Systems

A four wire, wye-connacted, multiphase electrical network can be characterized by three
basic types of circuit connection; a single element termination to neutral, a series connection
of elements, and a paraliel connection of elements. As shown in Figure 5-2, there are no
coupling impedances between phases, only to ncutral. The neuiral wire is considered an
integral part of the element, because the existence of the neutral is important in setting up
the algebraic solution.

The periodic steady state impedance relationships for the three phases in the single
clement terraination are completely decoupled. The three impedance equations can be

stacked into a single block-diagonal matrix equation.

Vi =21, W Z, 0 0 I
Vo =221 = Val=]0 2, 0 I (5.24)
Va = Z313 | Va| [0 0 Z |||

The impedance matrix relates the voltage and current vectors of the uniform basis, ®,(t),
and will be denoted in bold, Z. The inverse impedance is the conductance matrix, G = Z7},

which is also block diagonal.
V=2I and I=GV (5.25)

The impedance is casily transformed from the uniform basis to any other orthonormal
basis using a rotation matrix. As derived for the time to frequency transformar on in
Section 2.2.2, the uniform basis impedance matrix is transformed to the phase symmetrical

basis using Mpy. The transformed matrix is no longer block diagonal but represents a
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Figure 5-2: Wye-Connected Four-Wire Three-Phase Circuit Connections
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balanced/unbalanced decomposition of the circuit impedance.

ZP = L‘puZuMup (5.26)

The multiphase impedances of the series and parallel connections shown in Figure 5-
2 combine in the same manner as the single phase impedances. Serics connections add
impedances, while parallel connections add conductances. Thus complicated wye-connected
circuits can be modeled as a collection of nested series and parallel connections. One
important difference between the single and multiphase analysis is that the multiphase
voltage reference must be the neutral node, and there can be only one neutral node in a
wye-connected circuit. A floating neutral node can be modeled as a three-wire system, as

described in the next section.

5.2.2 Wye-Connected Three-Wire Elements

In a wye-connected, three-wire circuit, the neutral wire does not exist, so in the single
clement termination, the center node is floating. As there is no fourth current path, the
current vectors for the three phases must always sum to zero. The three rows of blocks in
the uniform basis conductance matrix must, therefore, sum to zcro, leading to a singularity.
The impedance matrix, which calculates the multiphase voltage vector from the current
vector, is infinite in the direction of current imbalances.

The multiphase impedance matrix is developed starting from the per-phase impedance

or conductance relationships.

N=2Z1L1+V, L=Gi(W-W)
Vo= ZoI + Vy or I =Gy(V2 - V) (5.27)
Va=2Z33 +V, Iy =G3(Vz - V,)

where V,, is the voltage vector for the floating node. For the wye-connected clement, it
is more convenient to start with the impedance relationships. As shown in Figure 5-3,
the floating neutral singularity is eliminated by cornecting a resistance, Ry, between the
floating node and the global neutral wire. The effects of the added resistance are made

arbitrarily small by taking the limit R, — oo.
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Figure 5-3: Three-Wire Wye-Connected Termination Approximation

The added resistance provides an additional equation for V3 in (5.27).

Va=Ra() + I + I3) (5.28)

Combining (5.27) and (5.28) into one matrix equation yields

14 Z, 0 0 I I I I
Va{=]|]l0 2 o0 |+R:| T I I I (5.29)
Va 0 0 2 I I X I

Thus the impedance matrix, Z, for the a three-wire wye-connected single element termi-
nation is the equivalent block-diagonal four-wire impedance of the element plus a non-block-
diagonal termination impedance proportional to R,. As Z is invertible, the conductance

matrix also exists.

Z, 0 0 oI oI I
Z=|0 2Z 0 |+R, |0 I X (5.30)
0 0 2Z I I I

As shown in Figure 5-3, the three-wire termination is represented in schematic form as a
single connection element, with no ground connection.
Three-Wire, Delta-Connected Terminations

The conductance matrix for a delta-connected load is similarly singular must be defined
in the limit. As shown in Figure 5-4, the delta connection contains no floating node, but

has only inter-phase impedances. The singular conductance relationship can be written in
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Figure 5-4: Three-Wire Delta-Connected Termination Approximation

matrix form starting with the per-phase conductance relationship.

I = Go(Vi — Vo) + G13a(Vi — Vi)
Iy = Go1(Va — V1) + Gaa(Va — V3)
I3 = G31(V3 — V1) + Gaa(Va — V)

(5.31)
I (G2 + Gha) -Gz -G Vi
I | = -G (Ga1 + G23) —Ga3 V2
I -Gy -G (G31 + G32) Va

where Gij = Gji by reciprocity. The G matrix is singular because its columns sum to
zero. The singularity is solved by adding a multiphase, wye-connected, four-wire resistive
termination, R,, in parallel, and taking the limit as R, — oo. The parallel connection
adds a diagonal conductance matrix, proportional to RL" Thus for a single element delta-

connected termination, the conductance matrix becomes

(G2 + G13) -G12 -G13 , I 0o 0
G= lim | -Gy (Gu+Gun) —Gun |+p-|0 T 0 (5.32)
-G —Ga (Ga + G32) 0 01

5.2.3 Multiphase Circuit Analysis Example

With the modification for the three-wire single clement delta and wye terminations, mul-

tiphase periodic steady state circuit models with mixed three and four wire elements can
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Figure 5-5: Multiphase Thevenin Equivalent Circuit

be constructed. The circuit is specified as a collection of four-wire series and parallel con-
nections, and each termination is specified as either a four-wire wye, three-wire wye, or
four-wire delta connection.

An example circuit is shown in Figure 5-5. A three-phase voltage source, or infinite
bus, provides power to a parallel resistor-inductor load through a network resembling a
transmission line. Transmission line capacitors C) and Cs are delta connected, three-wire
terminations, while the load terminations are four-wire, wye-connections, The transmission
line inductor and resistor are series elements, not terminations, and so are modeled as
four-wire elements.

As an example of multiphase circuit modeling, the multiphase thevenin equivalent for
the infinite bus and transmission line can be easily calculated in terms of the uniform basis
impedance matrices of the circuit elements. Cj is in parallel with the voltage source and
does not effect the thevenin equivalents, Vy, and Zy,. C,, however, loads the transmission

line thereby changing the open circuit voltage according to the voltage divider law.
Vin = Zgz (Zry + Zra + wc2) ™' Ve (5.33)
The thevenin equivalent impedance is the parallel combination of Cy and the series line
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impedance.
-1

Zeh = ((Z1 + Zra) ™' +Zc2 ") (5.34)

The equivalent impedarnce of the load, Zy,, is the parallel combination of Ly and Ry. The
nniform basis voitage and current vectors, V and I, are then expressed in terms of Zyy, and
Zy,.

2y = (Zr271+2R2 1)

V =2y (Zen + Z1) ™' Vi (5.35)
= (Zey+2ZL)"" Vin

This example is analyzed for typical component values in Section 5.4.

5.3 Multiphase Power Components

5.3.1 Average Power

The total instantaneous power in a multiphase system is the sum of instantancous power
in cach phase. With the voltages taken with respect to a common reference, i.c. line-to-
neutral or line-to-average as defined in Section 5.1, the total power can be written as an
inner product.
ir(t)
p(t) = [o1(t) va(®) va()] | ia(t) | =(®)i" (1) (5.36)
i3(t)

Substituting the vector expressions for voltage and current using any orthonormal basis,
p(t) = V7T (1) 2T (1) 1 (5.37)

Because @ is orthonormal, the time-average total power simplifies to a single scalar product,

as in the single phase case.
1 (T
P=z / Vi@l (1)Idt = V1T (5.38)
0

Therefore, the expression for P is independent of the choice of basis. The only terms

contributing to average power are the products of identical voltage and current components.
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5.3.2 Apparent Power

In a multiphase system, the apparent power is the multiphase rms voltage times the mul-
tiphase rms current. Carefully defined, the multiphase rms is not the sum of the rms of

each phase, but the square-root of the sum of the squares of rms valucs.
Utrms = Zvigms # E'Uirms (5.39)
i i

This definition reflects the fact that the waveforms are physically orthogonal, i.e. exist in
different wires. Again, the definition assumes that the voltages are measured line-to-neutral,
if the neutral wire exists, or line-to-average, in the absence of a neutral.

Substituting the vector expressions for voltage and current using any orthonormal basis,
the multiphase 7ms becomes the square root of the inner product of the vector with itself.
As in the single phase case, the multiphase rms is the vector two-norm, and S is the product
of the norms of V and I. The expression for S, then, is also independent of the choice of

basis.

S=VVTVVITT = V| || (5.40)

5.3.3 Total Reactive Power and the Reactive Power Vector

Because the definitions for multiphase P and S are identical to the single phase case, the
multiphase definition of @ has the same form and dimensionality as before. Both S and
P arc independeut of basis, so the value of the scalar @ does not depend on the specific

decomposition of the voltage and current waveforms.

Q=VS?-P2=\VTVIT] - VTIVT] (5.41)

Q can be viewed as the norm of a vector, R, but because the voltage and current vectors
arc now length 3n, the reactive power vector is length %311(311 — 1), or roughly nine times
larger than in the single phase case. The clements of R do depend on the choice of basis
but, for a particular basis, obey conservation and can be used to define scalar projections
of reactive power.

The reactive power matrix, R, is defined as before and is again skew-symmetric with
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zeros on the main diagonal.

R=vIT - vT

(5.42)

With V and I represented as sub-vectors for each phase, the R matrix has a partitioned

structure representing the interactions of the different phases.

(VIT = nvh (WIf -nvy) (i - nvy)
R=| (WIT - LVT) (WBIT - LVE) (VIT - LV (5.43)
(WBIT = V) (BI = BYY) (BIT - IV)

When the sub-vectors correspond to a symmetrical or balanced/unbalanced decomposition,

the partitions of the rcactive power matrix are n X n matrices representing the interactions

of the different components. This component-wise partitioning allows the contributions to

reactive power to be classified as balanced reactive power, unbalanced reactive power, and

cross terms. If waveforms are nearly balanced, the unbalanced blocks may be unimportant,

leaving only the n x n balanced reactive power matrix and perhaps the cross terms.

5.4 Multiphase Reactive Power Examples

Sinusoidal Reactive Power in a Balanced Network

The first example of multiphase reactive power involves a purely sinusoidal, balanced net-

work. The circuit in Figure 5-5 will be used with the following component values.

Vs = 1V rms,60H z,ba'anced.

C, = Cy = 100 F

Ly =1mH

Ry =0.01Q
Lo =10mH
Ry =2Q

As there is only one frequency present, the underlying basis functions are the cosine/sine

pair at 60H z. The rms source voltage is 1V rms, so the source voltage vector, Vy, is unit

length. As the impedance relationships in Section 5.2 use the uniform basis, the balanced
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voltage source is expressed using My, the balanced to unbalanced transformation given in

Equation (5.10).

1
0

1
310
1
..O_

The uniform basis multiphase impedance matrices of the four-wire elements, Ll, Ry, L,

and Rj, are found from

J, 0 0 I o0 0
Zp,=L| 0 J, O and ZR=R| 0 I O (5.46)
0 O JUJ 0 0 I

The impedance of the three-wire delta-connected capacitors is found by first writing the

conductance matrix as in Equation (5.32).

Ge=limp,50C | =J, 20, —J, |+7 |0 I O (
5.47

Zc=Gc™!

As there are only two basis functions for the sinusoidal case, II is the 2 x 2 identity matrix

and

Jo=2m (5.48)

Using the thevenin equivalent and solution equations for this circuit given in (5.35), the

voltage and current vectors for the load bus are calculated. The average, apparent, and
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inactive powers, and the reactive power matrix are then calculated from V and /.

[ 0.588 | [ 0.287 ]
~0.026 ~0.169
L | o - [ | 0200
—0.497 —0.164
~0.272 0.003
| 0522 | | 0333 |
P = 0.520W S = 0.589V A Q = 0.276V AR (5.49)
[ 0 —0.092 —0.080 0.046 0.080 0.046 |
0092 0  —0046 —0.080 —0.046 0.080
L | 0080 0046 0 0002 -0080 0046
—0.046 0080 0092 0  —0.046 —0.080
~0.080 0046 0080 0046 0  —0.092
| —0.046 —0.080 -0.046 0080 0092 0

Because the circuit is exactly balanced, there is a symmetrical structure to the V, I and R,

but because the uniform basis does not properly reflect the multiphase symmetry, the struc-

ture of the vectors is not obvious. Mapping the vectors to the basis of phase symmetrical

components, using Mpy defined in Equation (5.19), brings out the symmetry. The one re-

maining non-zero clement in the upper triangle of R is the signed component corresponding

to balanced sinusoidal reactive pover.

Mpuv =

1.019
—0.044

and

0
0
0
0
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Figure 5-6: Unbalanced Three-Phase Resistive Network

[ 0 —0276 0 0 0 0
0276 0 00 0 0
0 0 0000
MpuRMup= (5.51)
0 0 0000
0 0 0000
o 0 0000

Unbalanced Reactive Power Example

The next example demonstrates how multiphase reactive power can arise from an phasc
imbalance even if each phase has no reactive power. The circuit is shown in Figure 5-6.
The two voltage sources are sinusoidal, in phase, and balanced. All the impedances are
resistive and, with the exception of Zs, balanced. The bus voltages Vg, Vo and V4, have an
imbalance introduced by Zs, but are otherwise in phase with the two voltage sources. The

following component values are used:
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P S Q q
Vi | 0.431 ] 0.435 | 0.U57 | -0.057
Z, |0.034]0034| 0 0
Z, |0.054|0054| 0O 0
Z; | 0.040 | 0.040 | © 0
Zy |0.539]0539| 0 0
Zs | 0.456 | 0.475 | 0.134 | 0.134
Total | 1.554 | 1.577 | 0.101 | 0.077
V, |1.554 | 1.556 | 0.076 | 0.077

Table 5.1: Power components for the Multiphase Example.

Vs = 1V rms,60H z, balanced

Vi1 =0.75 Vs

0.1QI

Zs=7y=23=123=

[ 1on
Z4 = 0
0

[ 3qu
Z5 = 0
0

L

0
101
0

0
101
0

0
1QI

-

0
0
101

0

0

0 0.100I 0

0

0

0.101

—~—~
o
[3;]
1\

~

Using the samz basis as the previous example, the voliage and current vectors for each bus

can be calculated. The power components for the three loads are calculated from (V1,1}),

(Va,Iy), and (V3,13) and are shown in Table 5.1. Also shown is gk, the reactive power

projection of clement k in the direction of the reactive power of the common bus, V.

As shown in the data, the conserved projection q provides a measure of the contribution

of cach clement to the inactive power at the common bus. ¢ is zero for cach balanced

resistive element, because the voltage and current vectors are exactly proportional. ¢ for

the unbalanced resistance Zs is large and positive, because Zs is the only source of imbalance

in the circuit. The voltage source V] is credited with providing compensating, or helping to

balance the common bus voltage. The impedance load Z; does not provide compensation

as the resistances of each phase are decoupled.
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The common bus voltage and current imbalance can be easily seen by transforming the

vectors to the basis of symmetrical phase components.

[ 0.807 | [ 1025 |
0 0
W I
0.005 —0.054
0 0
a I
0.005 —0.054
L 0 . L O .
(5.53)

The directional infcrmation contained in the reactive power vector can also be scen by

looking at the R matrix in the symmetrical basis.

[ 0 0 —0054 0 —0.054 0
0 0 0 0 0 O
Mpa(Val? — LV M= | %04 0 0 000 (5.54)
0 0 0 0 0 0
0054 0 0 0 0 0
| 00 0o 0 0o 0]
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Chapter 6

Ccnclusions

There are three primary resulis in this thesis. These results will be summarized in the

following sections.

6.1 Periodic Steady State Circuit Analysis

In exploring the use of orthonormal decompositions of periodic signals, the methods of
sinusoidal steady-state (SSS) linear time invariant (LTI) circuit analysis are generalized to
the periodic steady-state. The extension to include harmonics is based on the definition of
an impedance matvix, which plays the role o the comnlex impedance used in SSS methods.
The periodic steady state response is calculatea in the frequency domain, using a block
diagona! uapedance matrix, or directly in the discrete sampled time domain, using a periodic
impulse response matrix. The frequency and time-domain vector spaces are related by a
simple orthonormal transformation, or mutrix mwultiplication, which is derived from the
Discrete Fonrier Transform.

A matrix singuiarity results from an ill-defined D.C. operating point or the unstable
excitat’on of a resonant mode in an LTI circuit. The singularity reflocts the fact vhat there
is no stead+-state solution for these cases. Numerical problems due to the singulaiity are
casily solved ir practice by adding « very large parall- 1esistance, which then gives a nunique,
finite, steady state solution.

The relationships of Kirchlioff voltage and current laws, series and parallel cffective
impedance. Thevenin equivalents, ard voltage and current divider laws, are a'l easily ex-

preseed in matrix form f-r the peiiodic steady state. The generalized methods provide a
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convenient means of finding the total periodic response of LTI circuits in one computa-
tional step, i.e. without solving for the SSS response at every frequency. The method can
I'e extended to include certain time varying and non-lincar circuits, such as the periodic
switching circuit shown in Section 2.2.3. While the underlying computational complexity
of the matrix expressions is large, the simple notation is casily implemented using matrix

manipulation software.

Future Work

The special structure of the n x n impedance matrix for LTI circuits has only n degrees
of freedom. Analysis of certain types of time-varying and non-lincar systems can result
in a matrix with a full structure. In the frequency domain, the full matrix can rvelate the
coupling between frequencices, solving a more general problem than is possible with single
frequency SSS methods. A detailed study is necded to classify the different types of circuits
that can be analyzed in this manner.

Additional work is also required to quantify the cffects of aliasing. For odd n, the
DFT mapping from frequency to the discrete time domain is lossless. Choosing n both
truncates the frequency basis and specifies the discrete sampling frequency. In general, n
can be chosen sufficiently large that aliasing is negligible, but an error analysis is needed to
provide a toicrance bound related to the amount or aliasing.

Finally, the periodic steady state analysis tools could be implemented as a set of routines
implemented with a matrix analysis package, such as Matlab. The resulting circuit design
environment would provide an intermediate level of detail, between hand calculation, and

full simulation,

6.2 The Reactive Power Vector

The second result given given in this thesis is the definition or a reactive power vector.
Using the expressions for time-average and apparent power in terms of the n-vectors for
voltage and current, the total iractive power is shown to be the rms of m = %n(n -1)
terms. The form and properties of these terms strongly resemble the classical definition of
reactive power for sinusoidal systems.

Interpreting the m terms as orthogonal components, an m vector for reactive powcr,
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R, can be constructed. Inactive power is then the norm, ||[R||. R can be expressed as
a cross-product of V and I, but there is no convenient linear algebra expression for the
n-dimensional cross product. R can, however, be expressed in a matrix form, denoted R,
which is the anti-symmetric part of the exterior product of VV and I.

While the theoretical definition of R is important, the dimensionality, m, grows with
n?, which can make R impractical as a measure of reactive power. However, sub-norms and
projections of R can be designed for specific applications providing scalar measures to reflect
the desired information. Such measures can then be used in solving metering and power
factor compensation problems. One such useful measure is q*, defined in Section 3.3.2,
which is the projection of the reactive power of element k in a circuit, in the direction of
the reactive power of the circuit port. ¢¥ provides a simple conserved indicator of where in

the circuit the port reactive power ‘flows.’

Future Work

As harmonic effects in the power system are of increasing concern, there is a strong need for
a consistent and useful definition of reactive power for non-sinusoidal systems. While the
dimension of R is preventively large, the definition is consistent, and the method of analysis
using norms and projections of R is useful. With refinement, the definitions herein could
provide the needed framework for reactive power analysis.

The time and frequency-domain vector expressions for reactive power have many poten-
tial applications, including metering, control and optimization of power systems and power
clectronic devices. The design of specific norms and projections of R should be studied for
specific applications. Combined with the periodic steady state analysis methods of Sec-
tion 2.2, the new reactive power definitions could provide a new optimization methodology.

While only the time-domain and frequency-domain basis were used in this thesis, any
decomposition can be used, including one that is designed specifically for a certain circuit
topology or operating condition. For example, for a given excitation, the periodic voltage
and current waveforms of a circuit with p ports and e energy storage and non-lincar devices
can be decomposed with a minimum of n = p + e basis functions. The resulting reactive
power vector, for small circuit models, has modest dimension, and might provide a practical
measure. A network theoretic study of the reactive power vector could provide a better

understanding of the degrees of freedom in the problem.
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6.3 Symmetrical Decomposition of Multiphase Waveforms

The final result of this thesis is the definition of the symmetrical components definition
for multiphase signals with harmonics. Section 5.1.3 shows how the single frequency three-
phase symmetrical components can be extended, with exception of D.C. and multiples of
three harmonics. A non-symmetrical orthogonal decomposition can be used to deal with
the exceptions. Scction 5.1.4 shows a more consistent decomposition into phase-leading
and phasc-lagging components, where only the D.C. components require a non-symmetrical
decomposition.

The periodic steady state analysis methods are extended to multiport, and more specifi-
cally, multiphase systems. The method defines a collective impedance matrix for multiphase
circuit elements. The matrix takes a different form for four-wire clements, three-wire wye-
connected elements, and three-wire delta-connected elements. The general method allows

the periodic steady state solution for balanced or unbalanced, mixed three and four-wire

CITCUl

single phase expressions derived carlier.

Additional study is required to complete the definition. Analysis problems traditionally
solved using single frequency symmetrical components should be attempted using the non-
sinusoidal definition. If the decomposition proves useful, a more formal development of the

theory would be beneficial.
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