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instruments in heteroskedastic data. Such settings are common in microecono-
metric applications where many instruments are used to improve efficiency and
allowance for heteroskedasticity is generally important. The solution is a Fuller
(1977) like estimator and standard errors that are robust to heteroskedasticity
and many instruments. We show that the estimator has finite moments and high
asymptotic efficiency in a range of cases. The standard errors are easy to compute,
being like White’s (1982), with additional terms that account for many instru-
ments. They are consistent under standard, many instrument, and many weak in-
strument asymptotics. We find that the estimator is asymptotically as efficient as
the limited-information maximum likelihood (LIML) estimator under many weak
instruments. In Monte Carlo experiments, we find that the estimator performs as
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and dispersion under heteroskedasticity, in nearly all cases considered.

Jerry A. Hausman: jhausman@mit.edu
Whitney K. Newey: wnewey@mit.edu
Tiemen Woutersen: woutersen@email.arizona.edu
John C. Chao: chao@econ.umd.edu
Norman R. Swanson: nswanson@econ.rutgers.edu
The NSF provided financial support for this paper under Grant 0136869. Helpful comments were provided
by A. Chesher and participants in seminars at CalTech, CEMMAP, Harvard, MIT, Pittsburgh, UC Berkeley,
UCL, and USC. Capable research assistance was provided by H. Arriizumi, S. Chang, A. Kowalski, R. Lewis,
N. Lott, and K. Menzel. K. Menzel derived the vectorized form of the variance estimator.

Copyright © 2012 Jerry A. Hausman, Whitney K. Newey, Tiemen Woutersen, John C. Chao, and Norman
R. Swanson. Licensed under the Creative Commons Attribution-NonCommercial License 3.0. Available at
http://www.qeconomics.org.
DOI: 10.3982/QE89

http://www.qeconomics.org/
mailto:jhausman@mit.edu
mailto:wnewey@mit.edu
mailto:woutersen@email.arizona.edu
mailto:chao@econ.umd.edu
mailto:nswanson@econ.rutgers.edu
http://creativecommons.org/licenses/by-nc/3.0/
http://www.qeconomics.org/
http://dx.doi.org/10.3982/QE89


212 Hausman, Newey, Woutersen, Chao, and Swanson Quantitative Economics 3 (2012)

Keywords. Instrumental variables, heteroskedasticity, many instruments, jack-
knife.

JEL classification. C12, C13, C23.

1. Introduction

This paper gives a relatively simple, well behaved solution to the problem of many in-
struments in heteroskedastic data. Such settings are common in microeconometric ap-
plications where many instruments are used to improve efficiency and allowance for
heteroskedasticity is generally important. The solution is a Fuller (1977) like estimator
and standard errors that are robust to heteroskedasticity and many instruments. We
show that the estimator has finite moments and high asymptotic efficiency in a range
of cases. The standard errors are easy to compute, being like White’s (1982), with addi-
tional terms that account for many instruments. They are consistent under standard,
many instrument, and many weak instrument asymptotics. They extend Bekker’s (1994)
standard errors to the heteroskedastic case.

The estimator that we refer to as HFUL is based on a jackknife version of the limited-
information maximum likelihood (LIML) estimator, referred to as HLIM. The name
HFUL is an abbreviation for the heteroskedasticity robust version of the Fuller (1977)
estimator, while HLIM stands for the heteroskedasticity robust version of the LIML es-
timator. We show that HFUL has moments and, in Monte Carlo experiments, has much
lower dispersion than HLIM with weak identification, an advantage analogous to that
of the Fuller (1977) estimator over LIML with homoskedasticity. Hahn, Hausman, and
Kuersteiner (2004) pointed out this problem for LIML and we follow them in referring to
it as the “moments problem,” because large dispersion corresponds to nonexistence of
moments there.

HFUL is robust to heteroskedasticity and many instruments because of its jack-
knife form. Previously proposed jackknife instrumental variable (JIV) estimators are also
known to be robust to heteroskedasticity and many instruments; see Phillips and Hale
(1977), Blomquist and Dahlberg (1999), Angrist, Imbens, and Krueger (1999), Ackerberg
and Deveraux (2003), and Chao and Swanson (2004). HFUL is better than these estima-
tors because it is as efficient as LIML under many weak instruments and homoskedastic-
ity, and so overcomes the efficiency problems for JIV noted in Davidson and MacKinnon
(2006). Thus, HFUL provides a relatively efficient estimator for many instruments with
heteroskedasticity that does not suffer from the moments problem.

Bekker and van der Ploeg (2005) proposed an interesting consistent estimators with
many dummy instrumental variables and group heteroskedasticity, but these results
are restrictive. For high efficiency, it is often important to use instruments that are not
dummy variables. For example, linear instrumental variables can be good first approx-
imations to optimal nonlinear instruments. HFUL allows for general instrumental vari-
ables and unrestricted heteroskedasticity, as does the asymptotics given here.

Newey and Windmeijer (2009) showed that the continuously updated generalized
method of moments estimator and other generalized empirical likelihood estimators are



Quantitative Economics 3 (2012) Instrumental variable estimation 213

robust to heteroskedasticity and many weak instruments, and asymptotically efficient
under that asymptotics relative to JIV. However, this efficiency depends on using a het-
eroskedasticity consistent weighting matrix that can degrade the finite sample perfor-
mance of continuously updated estimators (CUE) with many instruments, as shown in
Monte Carlo experiments here. HFUL continues to have good properties under many in-
strument asymptotics, rather than just many weak instruments. The properties of CUE
are likely to be poor under many instruments asymptotics due to the heteroskedastic-
ity consistent weighting matrix. Also CUE is quite difficult to compute and tends to have
large dispersion under weak identification, which HFUL does not. Thus, relative to CUE,
HFUL provides a computationally simpler solution with better finite sample properties.

The need for HFUL is motivated by the inconsistency of LIML and the Fuller (1977)
estimator under heteroskedasticity and many instruments. The inconsistency of LIML
was pointed out by Bekker and van der Ploeg (2005) and Chao and Swanson (2004) in
special cases. We give a characterization of the inconsistency here, showing the precise
restriction on the heteroskedasticity that would be needed for LIML to be consistent.

The asymptotic theory we consider allows for many instruments as in Kunitomo
(1980) and Bekker (1994) or many weak instruments as in Chao and Swanson (2004,
2005), Stock and Yogo (2005), Han and Phillips (2006), and Andrews and Stock (2007).
The asymptotic variance estimator will be consistent for any of standard, many instru-
ment, or many weak instrument asymptotics. Asymptotic normality is obtained via a
central limit theorem that imposes weak conditions on instrumental variables, given
by Chao, Swanson, Hausman, Newey, and Woutersen (2012b). Although the inference
methods will not be valid under the weak instrument asymptotics of Staiger and Stock
(1997), we do not consider this to be very important. Hansen, Hausman, and Newey’s
(2008) survey of the applied literature suggests that the weak instrument approximation
is not needed very often in microeconomic data, where we focus our attention.

In Section 2, the model is outlined and a practitioner’s guide to the estimator is given.
We give there simple formulae for HFUL and its variance estimator. Section 3 motivates
HLIM and HFUL as jackknife forms of LIML and Fuller (1977) estimators, and discusses
some of their properties. Section 5 presents our Monte Carlo findings, while our con-
clusion is given in Section 6. The Appendix gives a theorem on the existence of mo-
ments of HFUL and also presents proofs of our asymptotic results. The proof of the exis-
tence of moments theorem can be found in a supplementary file on the journal website,
http://qeconomics.org/supp/89/supplement.pdf.

2. The model and HFUL

The model we consider is given by

y
n×1

= X
n×G

δ0
G×1

+ ε
n×1
�

X = Υ +U�
where n is the number of observations, G is the number of right-hand side variables, Υ
is a matrix of observations on the reduced form, and U is the matrix of reduced form
disturbances. For our asymptotic approximations, the elements of Υ will be implicitly

http://qeconomics.org/supp/89/supplement.pdf
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allowed to depend on n, although we suppress dependence of Υ on n for notational con-
venience. Estimation of δ0 will be based on an n×K matrix, Z, of instrumental variable
observations with rank(Z)=K. We will assume that Z is nonrandom and that observa-
tions (εi�Ui) are independent across i and have mean zero. Alternatively, we could allow
Z to be random, but condition on it, as in Chao et al. (2012b).

In this model, some columns of X may be exogenous, with the corresponding
columns of U being zero. Also, this model allows for Υ to be a linear combination of Z,
that is, Υ =Zπ for some K ×Gmatrix π. The model also permits Z to approximate the
reduced form. For example, let X ′

i , Υ
′
i , and Z′

i denote the ith row (observation) of X , Υ ,
and Z, respectively. We could let Υi = f0(wi) be a vector of unknown functions of a vec-
torwi of underlying instruments and letZi = (p1K(wi)� � � � �pKK(wi))

′ be approximating
functions pkK(w), such as power series or splines. In this case, linear combinations of
Zi may approximate the unknown reduced form (e.g., as in Newey (1990)).

To describe HFUL, let

P =Z(Z′Z)−1Z′�

let Pij denote the ijth element of P , and let X̄ = [y�X]. Let X̄ ′
i be a row vector consisting

of the ith row of X̄ and let

α̃ be the smallest eigenvalue of (X̄ ′X̄)−1(X̄ ′PX̄ −∑n
i=1 PiiX̄iX̄

′
i)�

Although this matrix is not symmetric, it has real eigenvalues.1 For a constant C, let

α̂= [α̃− (1 − α̃)C/n]/[1 − (1 − α̃)C/n]�
In the Monte Carlo results given below, we try different values of C and recommend
C = 1.2 HFUL is given by

δ̂=
(
X ′PX −

n∑
i=1

PiiXiX
′
i − α̂X ′X

)−1(
X ′Py −

n∑
i=1

PiiXiyi − α̂X ′y
)
� (1)

Thus, HFUL can be computed by finding the smallest eigenvalue of a matrix and then
using this explicit formula.

To describe the asymptotic variance estimator, let ε̂i = yi − X ′
i δ̂, γ̂ = X ′ε̂/ε̂′ε̂, X̂ =

X − ε̂γ̂′, Ẋ = PX̂ , and Z̃ =Z(Z′Z)−1. Also let

Ĥ =X ′PX −
n∑
i=1

PiiXiX
′
i − α̂X ′X�

1Note that solving det{(X̄ ′X̄)−1(X̄ ′PX̄ − ∑n
i=1 PiiX̄iX̄

′
i) − λI} = 0 is equivalent to solving det{(X̄ ′PX̄ −∑n

i=1 PiiX̄iX̄
′
i)− λ(X̄ ′X̄)} = 0. Moreover, this is equivalent to solving det{(X̄ ′X̄)1/2}det{(X̄ ′X̄)−1/2(X̄ ′PX̄ −∑n

i=1 PiiX̄iX̄
′
i)(X̄

′X̄)−1/2 − λI}det{(X̄ ′X̄)1/2} = 0. As is well know, a sufficient condition for the eigenvalue
to be real is that the matrix is real and symmetric, and this condition is satisfied here almost surely. Thus, λ
is real almost surely.

2Fuller (1977) made a degrees of freedom correction in the choice of C; the existence of finite sample
moments and the large sample properties of the estimator are not affected by this correction.



Quantitative Economics 3 (2012) Instrumental variable estimation 215

Σ̂=
n∑
i=1

(ẊiẊ
′
i − X̂iPiiẊ ′

i − ẊiPiiX̂ ′
i)ε̂

2
i

+
K∑
k=1

K∑
�=1

(
n∑
i=1

Z̃ikZ̃i�X̂iε̂i

)(
n∑
j=1

ZjkZj�X̂jε̂j

)′
�

The formula for Σ̂ is vectorized in such a way that it can easily be computed even when
the sample size, n, is very large. The asymptotic variance estimator is

V̂ = Ĥ−1Σ̂Ĥ−1�

This asymptotic variance estimator will be consistent under standard, many instrument,
and many weak instrument asymptotics.

This asymptotic variance estimator can be used to do large sample inference in the
usual way under the conditions of Section 4. This is done by treating δ̂ as if it were

normally distributed with mean δ0 and variance V̂ . Asymptotic t-ratios δ̂j/
√
V̂jj will be

asymptotically normal. Also, defining qα as the 1−α/2 quantile of aN(0�1) distribution,

an asymptotic 1−α confidence interval for δ0k is given by δ̂k±qα
√
V̂kk. More generally, a

confidence interval for a linear combination c′δ can be formed as c′δ̂±qα
√
c′V̂ c. We find

in the Monte Carlo results that these asymptotic confidence intervals are very accurate
in a range of finite sample settings.

3. Consistency with many instruments and heteroskedasticity

In this section, we explain the HFUL estimator, why it has moments, why it is robust
to heteroskedasticity and many instruments, and why it has high efficiency under ho-
moskedasticity. We also compare it with other estimators and briefly discuss some of
their properties. To do so, it is helpful to consider each estimator as a minimizer of an
objective function. As usual, the limit of the minimizer will be the minimizer of the limit
under appropriate regularity conditions, so estimator consistency can be analyzed us-
ing the limit of the objective function. This amounts to a modern version of method of
moments interpretations of consistency that has now become common in econometrics
(Amemiya (1973, 1984), Newey and McFadden (1994)).

To motivate HFUL, it is helpful to begin with two-stage least squares (2SLS). The
2SLS estimator minimizes

Q̂2SLS(δ)= (y −Xδ)′P(y −Xδ)/n�
The limit of this function will equal the limit of its expectation under general conditions.
With independent observations,

E[Q̂2SLS(δ)] = (δ− δ0)
′An(δ− δ0)+

n∑
i=1

PiiE[(yi −X ′
iδ)

2]/n�

An = Υ ′PΥ/n−
n∑
i=1

PiiΥiΥ
′
i /n�
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The matrix An will be positive definite under conditions given below, so that the first
term (δ − δ0)

′An(δ − δ0) will be minimized at δ0. The second term
∑n
i=1 PiiE[(yi −

X ′
iδ)

2]/n is an expected squared residual that will not be minimized at δ0 due to en-
dogeneity. With many (weak) instruments, Pii does not shrink to zero (relative to the
first term), so that the second term does not vanish asymptotically (relative to the first).
Hence, with many (weak) instruments, 2SLS is not consistent, even under homoskedas-
ticity, as pointed out by Bekker (1994). This objective function calculation for 2SLS is also
given in Han and Phillips (2006), though the following analysis is not.

A way to modify the objective function so that it gives a consistent estimator is to
remove the term whose expectation is not minimized at δ0. This leads to an objective
function of the form

Q̂JIV(δ)=
∑
i �=j
(yi −X ′

iδ)
′Pij(yj −X ′

jδ)/n�

The expected value of this objective function is

E[Q̂JIV(δ)] = (δ− δ0)
′An(δ− δ0)�

which is minimized at δ= δ0. Thus, the estimator minimizing Q̂JIV(δ) should be consis-
tent. Solving the first order conditions gives

δ̂JIV =
(∑
i �=j
X ′
iPijXj

)−1 ∑
i �=j
X ′
iPijyj�

This is the JIVE2 estimator of Angrist, Imbens, and Krueger (1999). Since the objective
function for δ̂JIV has expectation minimized at δ0, we expect that δ̂JIV is consistent, as has
already been shown by Ackerberg and Deveraux (2003) and Chao and Swanson (2004).
Other JIV estimators have also been shown to be consistent in these papers.

So far, we have only used the objective function framework to describe previously
known consistency results. We now use it to motivate the form of HFUL (and HLIM).

A problem with JIV estimators, pointed out by Davidson and MacKinnon (2006), is
that they can have low efficiency relative to LIML under homoskedasticity. This problem
can be avoided by using a jackknife version of LIML. The LIML objective function is

Q̂LIML(δ)= (y −Xδ)′P(y −Xδ)
(y −Xδ)′(y −Xδ) �

The numerator of Q̂LIML(δ) is nQ̂2SLS(δ). If we replace this numerator with nQ̂JIV(δ), we
obtain

Q̂HLIM(δ)=

∑
i �=j
(yi −X ′

iδ)
′Pij(yj −X ′

jδ)

(y −Xδ)′(y −Xδ) �

The minimizer of this objective function is the HLIM estimator that we denote by δ̃.
This estimator is consistent with many instruments and heteroskedasticity. It is also as
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efficient asymptotically and performs as well in our Monte Carlo results as LIML under
homoskedasticity, thus overcoming the Davidson and MacKinnon (2006) objection to
JIV.

The use of the JIV objective function in the numerator makes this estimator consis-
tent with heteroskedasticity and many instruments. In large samples, the HLIM objec-
tive function will be close to

E[nQ̂JIV(δ)]
E[(y −Xδ)′(y −Xδ)] = (δ− δ0)

′An(δ− δ0)

E[(y −Xδ)′(y −Xδ)] �

This function is minimized at δ = δ0, even with heteroskedasticity and many instru-
ments, leading to consistency of HLIM.

Computation of HLIM is straightforward. For X̄ = [y�X], the minimized objective
function α̃ = Q̂HLIM(δ̃) is the smallest eigenvalue of (X̄ ′X̄)−1(X̄ ′PX̄ − ∑n

i=1 PiiX̄iX̄
′
i).

Solving the first order conditions gives

δ̃=
(
X ′PX −

n∑
i=1

PiiXiX
′
i − α̃X ′X

)−1(
X ′Py −

n∑
i=1

PiiXiyi − α̃X ′y
)
�

The formula for HLIM is analogous to that of LIML where the own observation terms
have been removed from the double sums involving P . Also, HLIM is invariant to nor-
malization, similarly to LIML, although HFUL is not. The vector d̃ = (1�−δ̃′)′ solves

min
d:d1=1

d′
(
X̄ ′PX̄ −

n∑
i=1

PiiX̄iX̄
′
i

)
d

d′X̄ ′X̄d
�

Because of the ratio form of the objective function, another normalization, such as im-
posing that another d is equal to 1, would produce the same estimator, up to the nor-
malization.

Like LIML, the HLIM estimator suffers from the moments problem, having large dis-
persion with weak instruments, as shown in the Monte Carlo results below. Hahn, Haus-
man, and Kuersteiner (2004) suggested the Fuller (1977) estimator as a solution to this
problem for LIML. We suggest the HFUL as a solution to this potential problem with
HLIM. HFUL is obtained analogously to Fuller (1977) by replacing the eigenvalue α̃ in
the HLIM estimator with α̂= [α̃− (1− α̃)C/n]/[1− (1− α̃)C/n], giving the HFUL estima-
tor of equation (1). We show that this estimator does have moments and low dispersion
with weak instruments, thus providing a solution to the moments problem.

HFUL, HLIM, and JIV are members of a class of estimators of the form

δ̄=
(
X ′PX −

n∑
i=1

PiiXiX
′
i − ᾱX ′X

)−1(
X ′Py −

n∑
i=1

PiiXiyi − ᾱX ′y
)
�

This might be thought of as a type of k-class estimator that is robust to heteroskedas-
ticity and many instruments. HFUL takes this form as in equation (1); HLIM does with
ᾱ= α̃ and JIV does with ᾱ= 0.
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HLIM can also be interpreted as a jackknife version of the continuously updated
GMM estimator, and as an optimal linear combination of forward and reverse JIV esti-
mators, analogously to Hahn and Hausman’s (2002) interpretation of LIML as an optimal
linear combination of forward and reverse bias corrected estimators. For brevity, we do
not give these interpretations here.

HFUL is motivated by the inconsistency of LIML and Fuller (1977) with many instru-
ments and heteroskedasticity. To give precise conditions for LIML inconsistency, note
that in large samples, the LIML objective function will be close to

E[Q̂2SLS(δ)]
E[(y −Xδ)′(y −Xδ)] = (δ− δ0)

′An(δ− δ0)

E[(y −Xδ)′(y −Xδ)] +

n∑
i=1

PiiE[(yi −X ′
iδ)

2]

E[(y −Xδ)′(y −Xδ)] �

The first term following the equality will be minimized at δ0. The second term may not
have a critical value at δ0, so the objective function will not be minimized at δ0. To see
this, let σ2

i = E[ε2
i ], γi = E[Xiεi]/σ2

i , and γ̄ = ∑n
i=1E[Xiεi]/∑n

i=1σ
2
i = ∑

i γiσ
2
i /

∑
i σ

2
i .

Then

∂

∂δ

n∑
i=1

PiiE[(yi −Xiδ)2]
n∑
i=1

E[(yi −Xiδ)2]

∣∣∣∣∣∣∣∣∣∣∣
δ=δ0

= −2
n∑
i=1

σ2
i

[
n∑
i=1

PiiE[Xiεi] −
n∑
i=1

Piiσ
2
i γ̄

]

=
−2

n∑
i=1

Pii(γi − γ̄)σ2
i

n∑
i=1

σ2
i

= −2 ̂Covσ2(Pii� γi)�

where ̂Covσ2(Pii� γi) is the covariance between Pii and γi, for the distribution with prob-
ability weight σ2

i /
∑n
i=1σ

2
i for the ith observation. When

lim
n−→∞

̂Covσ2(Pii� γi) �= 0�

the LIML objective function will not have a zero derivative at δ0 asymptotically, so it is
not minimized at δ0. Bekker and van der Ploeg (2005) and Chao and Swanson (2004)
pointed out that LIML can be inconsistent with heteroskedasticity; the contribution
here is to give the exact condition limn−→∞ ̂Covσ2(Pii� γi)= 0 for consistency of LIML.

Note that ̂Covσ2(Pii� γi) = 0 when either γi or Pii does not depend on i. Thus, it is
variation in γi = E[Xiεi]/σ2

i , the coefficients from the projection of Xi on εi, that leads
to inconsistency of LIML, and not just any heteroskedasticity. Also, the case where Pii is
constant occurs with dummy instruments and equal group sizes. It was pointed out by
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Bekker and van der Ploeg (2005) that LIML is consistent in this case, under heteroskedas-
ticity. Indeed, when Pii is constant,

Q̂LIML(δ)= Q̂HLIM(δ)+

∑
i

Pii(yi −X ′
iδ)

2

(y −Xδ)′(y −Xδ) = Q̂HLIM(δ)+ P11�

so that the LIML objective function equals the HLIM objective function plus a constant,
and hence HLIM equals LIML.

When the instrumental variables are dummy variables, HLIM can be related to the
method of moments (MM) estimator of Bekker and van der Ploeg (2005). Both are mini-
mizers of ratios of quadratic forms. In notes that are available from the authors, we show
that the numerator of the quadratic form for the MM estimator can be interpreted as
an objective function that is minimized by the JIVE1 estimator of Angrist, Imbens, and
Krueger (1999). In this sense, the MM estimator can be thought of as being related to the
JIVE1 estimator, while we use the numerator from the JIVE2 estimator. The denomina-
tor of the MM estimator is different than (y −Xδ)′(y −Xδ), but has a similar effect of
making the MM estimator have properties similar to LIML under homoskedasticity and
Gaussian disturbances.

4. Asymptotic theory

Theoretical justification for the estimators is provided by asymptotic theory where the
number of instruments grows with the sample size. Some regularity conditions are im-
portant for this theory. Let Z′

i, εi, U
′
i , and Υ ′

i denote the ith row of Z, ε, U , and Υ , re-
spectively. Here, we will consider the case where Z is constant, which can be viewed as
conditioning on Z (see, e.g., Chao et al. (2012b)).

Assumption 1. Z includes among its columns a vector of ones, rank(Z)=K, and there
is a constant C such that Pii ≤ C < 1 (i= 1� � � � � n),K −→ ∞.

The restriction that rank(Z) = K is a normalization that requires excluding redun-
dant columns from Z. It can be verified in particular cases. For instance, when wi is a
continuously distributed scalar, Zi = pK(wi), and pkK(w)= wk−1, it can be shown that
Z′Z is nonsingular with probability 1 for K < n.3 The condition Pii ≤ C < 1 implies that
K/n≤C, becauseK/n= ∑n

i=1 Pii/n≤ C.
The next condition specifies that the reduced form Υi is a linear combination of a set

of variables zi having certain properties.

Assumption 2. Υi = Snzi/
√
n, where Sn = S̃diag(μ1n� � � � �μGn) and S̃ is nonsingu-

lar. Also, for each j, either μjn = √
n or μjn/

√
n −→ 0, μn = min1≤j≤Gμjn −→ ∞, and√

K/μ2
n −→ 0. Also, there is C > 0 such that ‖∑n

i=1 ziz
′
i/n‖ ≤ C and λmin(

∑n
i=1 ziz

′
i/n) ≥

1/C for n sufficiently large.

3The observations w1� � � � �wn are distinct with probability 1 and, therefore, by K < n, cannot all be roots
of aKth degree polynomial. It follows that for any nonzero a, there must be some iwith a′Zi = a′pK(wi) �= 0,
implying that a′Z′Za> 0.
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This condition is similar to Assumption 2 of Hansen, Hausman, and Newey (2008). It
accommodates linear models where included instruments (e.g., a constant) have fixed
reduced form coefficients and excluded instruments have coefficients that can shrink as
the sample size grows. A leading example of such a model is a linear structural equation
with one endogenous variable,

yi =Z′
i1δ01 + δ0GXiG + εi� (2)

where Zi1 is a G1 × 1 vector of included instruments (e.g., including a constant) and
XiG is an endogenous variable. Here the number of right-hand side variables is G1 +
1 =G. Let the reduced form be partitioned conformably with δ, as Υi = (Z′

i1�ΥiG)
′ and

Ui = (0�UiG)′. Here the disturbances for the reduced form forZi1 are zero becauseZi1 is
taken to be exogenous. Suppose that the reduced form for XiG depends linearly on the
included instrumental variables Zi1 and on an excluded instrument ziG as in

XiG = ΥiG +UiG� ΥiG = π1Zi1 + (μn/
√
n)ziG�

Here we normalize ziG so that μn determines how strongly δG is identified and absorb
into ziG any other terms, such as unknown coefficients. For Assumption 2, we let zi =
(Z′

i1� ziG)
′ and require that the second moment matrix of zi is bounded and bounded

away from zero. This is the normalization that makes the strength of identification of
δG be determined by μn. For example, if μn = √

n, then the coefficient on ziG does not
shrink, corresponding to strong identification of δG. Ifμn grows slower than

√
n, then δG

will be more weakly identified. Indeed, 1/μn will be the convergence rate for estimators
of δG. We require μn −→ ∞ to avoid the weak instrument setting of Staiger and Stock
(1997), where δG is not asymptotically identified.

For this model, the reduced form is

Υi =
[

Zi1
π1Zi1 + (μn/√n)ziG

]
=

[
I 0
π1 1

][
I 0
0 μn/

√
n

](
Zi1
ziG

)
�

This reduced form is as specified in Assumption 2 with

S̃n =
[
I 0
π1 1

]
� μjn = √

n� 1 ≤ j ≤G1� μGn = μn�

Note how this somewhat complicated specification is needed to accommodate fixed re-
duced form coefficients for included instrumental variables and excluded instruments
with identifying power that depends on n. We have been unable to simplify Assump-
tion 2 while maintaining the generality needed for such important cases.

We will not require that ziG be known, only that it be approximated by a linear com-
bination of the instrumental variables Zi = (Z′

i1�Z
′
i2)

′. Implicitly, it is also allowed to
depend on n, as is Zi1. One important case is where the excluded instrument ziG is an
unknown linear combination of the instrumental variablesZi = (Z′

i1�Z
′
i2)

′. For example,
one of the cases examined in the many weak instrument setting of Chao and Swanson
(2005) is where the reduced form is given by

ΥiG = π1Zi1 + (π2/
√
n)′Zi2
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for a K −G1 dimensional vector Zi2 of excluded instrumental variables. This particular
case can be folded into our framework by specifying that

ziG = π′
2Zi2/

√
K −G1� μn = √

K −G1�

Assumption 2 will then require that∑
i

z2
iG/n= (K −G1)

−1
∑
i

(π ′
2Zi2)

2/n

is bounded and bounded away from zero. Thus, the second moment
∑
i(π

′
2Zi2)

2/n of
the term in the reduced form that identifies δ0G must grow linearly in K, leading to a
convergence rate of 1/

√
K −G1 = 1/μn.

In another important case, the excluded instrument ziG could be an unknown func-
tion that can be approximated by a linear combination of Zi. For instance, suppose that
ziG = f0(wi) for an unknown function f0(wi) of variables wi. In this case, the instrumen-

tal variables could include a vector pK(wi)
def= (p1K(wi)� � � � �pK−G1�K(wi))

′ of approxi-
mating functions, such as polynomials or splines. Here the vector of instrumental vari-
ables would be Zi = (Z′

i1�p
K(wi)

′)′. For μn = √
n, this example is like Newey (1990),

where Zi includes approximating functions for the reduced form but the number of in-
struments can grow as fast as the sample size. Alternatively, if μn/

√
n−→ 0, it is a modi-

fied version where δG is more weakly identified.
Assumption 2 also allows for multiple endogenous variables with a different strength

of identification for each one, leading to different convergence rates. In the above exam-
ple, we maintained the scalar endogenous variable for simplicity.

The μ2
n can be thought of as a version of the concentration parameter, determining

the convergence rate of estimators of δ0G, just as the concentration parameter does in
other settings. For μ2

n = n, the convergence rate will be
√
n, where Assumptions 1 and 2

permitK to grow as fast as the sample size, corresponding to a many instrument asymp-
totic approximation like Kunitomo (1980), Morimune (1983), and Bekker (1994). For μ2

n

growing slower than n, the convergence rate will be slower than 1/
√
n, leading to an

asymptotic approximation like that of Chao and Swanson (2005).

Assumption 3. There is a constant C > 0 such that (ε1�U1)� � � � � (εn�Un) are indepen-
dent, with E[εi] = 0, E[Ui] = 0, E[ε2

i ]<C, E[‖Ui‖2] ≤ C, Var((εi�U ′
i )

′)= diag(Ω∗
i �0), and

λmin(
∑n
i=1Ω

∗
i /n)≥ 1/C.

This assumption requires the second conditional moments of disturbances to be
bounded. It also imposes uniform nonsingularity of the variance of the reduced form
disturbances, which is useful in the consistency proof, to help the denominator of the
objective function stay away from zero.

Assumption 4. There is a πKn such that
∑n
i=1 ‖zi −πKnZi‖2/n−→ 0.
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This condition and Pii ≤ C < 1 will imply that for a large enough sample,

An = Υ ′PΥ/n−
n∑
i=1

PiiΥiΥ
′
i /n=

n∑
i=1

(1 − Pii)ΥiΥ ′
i /n−Υ ′(I − P)Υ/n

=
n∑
i=1

(1 − Pii)ΥiΥ ′
i /n+ o(1)≥ (1 −C)

n∑
i=1

ΥiΥ
′
i /n�

so that An is positive definite in large enough samples. Also, Assumption 4 is not very
restrictive, because flexibility is allowed in the specification of Υi. If we simply make Υi
the expectation of Xi given the instrumental variables, then Assumption 4 holds auto-
matically.

These conditions imply estimator consistency:

Theorem 1. If Assumptions 1–4 are satisfied and either (i) δ̂ is HLIM, (ii) δ̂ is HFUL, or

(iii) α̂= op(μ2
n/n), then μ−1

n S
′
n(δ̂− δ0)

p−→0 and δ̂
p−→δ0.

This result gives convergence rates for linear combinations of δ̂. For instance, in the
above example, it implies that δ̂1 is consistent and that π ′

11δ̂
1 + δ̂2 = op(μn/√n).

For asymptotic normality, it is helpful to strengthen the conditions on moments.

Assumption 5. There is a constant, C > 0, such that with probability 1,
∑n
i=1 ‖zi‖4/

n2 −→ 0, E[ε4
i ] ≤ C, and E[‖Ui‖4] ≤C.

To state a limiting distribution result, it is helpful to also assume that certain ob-
jects converge and to allow for two cases of growth rates of K relative to μ2

n. Also, the
asymptotic variance of the estimator will depend on the growth rate of K relative to μ2

n.
Let σ2

i = E[ε2
i ] and γn = ∑n

i=1E[Uiεi]/∑n
i=1σ

2
i , Ũ =U − εγ′

n, having ith row Ũ ′
i ; and let

Ω̃i =E[ŨiŨ ′
i ].

Assumption 6. μnS−1
n −→ S0 and either of the following cases holds:

Case I.K/μ2
n −→ α for finite α.

Case II.K/μ2
n −→ ∞.

Also HP = limn−→∞
∑n
i=1(1 − Pii)ziz

′
i/n, ΣP = limn−→∞

∑n
i=1(1 − Pii)

2ziz
′
iσ

2
i /n, and

Ψ = limn−→∞
∑
i �=j P2

ij(σ
2
i E[ŨjŨ ′

j] +E[Ũiεi]E[εjŨ ′
j])/K exist.

This convergence condition can be replaced by an assumption that certain matrices
are uniformly positive definite without affecting the limiting distribution result for t-
ratios given in Theorem 3 below (see Chao et al. (2012b)).

We can now state the asymptotic normality results. In Case I, we have that

S′
n(δ̂− δ0)

d−→N(0�ΛI)� (3)

where

ΛI =H−1
P ΣPH

−1
P + αH−1

P S0ΨS
′
0H

−1
P �
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In Case II, we have that

(μn/
√
K)S′

n(δ̂− δ0)
d−→N(0�ΛII)� (4)

where

ΛII =H−1
P S0ΨS

′
0H

−1
P �

The asymptotic variance expressions allow for the many instrument sequence of Kunit-
omo (1980) and Bekker (1994), and the many weak instrument sequence of Chao and
Swanson (2004, 2005). In Case I, the first term in the asymptotic variance, ΛI, corre-
sponds to the usual asymptotic variance, and the second term is an adjustment for the
presence of many instruments. In Case II, the asymptotic variance, ΛII, only contains
the adjustment for many instruments. This is because K is growing faster than μ2

n. Also,
ΛII will be singular when included exogenous variables are present.

We can now state an asymptotic normality result.

Theorem 2. If Assumptions 1–6 are satisfied and α̂= α̃+Op(1/n) or δ̂ is HLIM or HFUL,
then in Case I, equation (3) is satisfied, and in Case II, equation (4) is satisfied.

It is interesting to compare the asymptotic variance of the HFUL estimator with that
of LIML when the disturbances are homoskedastic. First, note that the disturbances are
not restricted to be Gaussian and that the asymptotic variance does not depend on third
or fourth moments of the disturbances. In contrast, the asymptotic variance of LIML
does depend on third and fourth moment terms for non-Gaussian disturbances; see
Bekker and van der Ploeg (2005), Hansen, Hausman, and Newey (2008), and van Has-
selt (2010). This makes estimation of the asymptotic variance simpler for HFUL than for
LIML. It appears that the jackknife form of the numerator has this effect on HFUL. Delet-
ing the own observation terms in effect removes moment conditions that are based on
squared residuals. Bekker and van der Ploeg (2005) also found that the limiting distri-
bution of their MM estimator for dummy instruments and group heteroskedasticity did
not depend on third and fourth moments.

Under homoskedasticity, the variance of (εi�U ′
i ) will not depend on i (e.g., so that

σ2
i = σ2). Then γn =E[Xiεi]/σ2 = γ and E[Ũiεi] =E[Uiεi] − γσ2 = 0, so that

ΣP = σ2H̃P� H̃P = lim
n−→∞

n∑
i=1

(1 − Pii)2ziz′
i/n�

Ψ = σ2E[ŨjŨ ′
j]
(

1 − lim
n−→∞

n∑
i=1

P2
ii/K

)
�

Focusing on Case I, letting Γ = ασ2S0E[ŨiŨ ′
i ]S′

0, the asymptotic variance of HLIM is

V = σ2H−1
P H̃PH

−1
P + lim

n−→∞

(
1 −

n∑
i=1

P2
ii/K

)
H−1
p Γ H−1

P �
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For the variance of LIML, assume that third and fourth moments obey the same restric-
tions that they do under normality. Then from Hansen, Hausman, and Newey (2008), for
H = limn−→∞

∑n
i=1 ziz

′
i/n and τ = limn−→∞K/n, the asymptotic variance of LIML is

V ∗ = σ2H−1 + (1 − τ)−1H−1ΓH−1�

With many weak instruments, where τ = 0 and maxi≤n Pii −→ 0, we will have HP =
H̃P = H and limn−→∞

∑
i P

2
ii/K −→ 0, so that the asymptotic variances of HLIM and

LIML are the same and are equal to σ2H−1 +H−1ΓH−1. This case is most important
in practical applications, where K is usually very small relative to n. In such cases, we
would expect from the asymptotic approximation to find that the variances of LIML and
HLIM are very similar.

In the many instruments case, where K and μ2
n grow as fast as n, it turns out

that we cannot rank the asymptotic variances of LIML and HLIM. To show this, con-
sider an example where p = 1, zi alternates between −z̄ and z̄ for z̄ �= 0, Sn = √

n (so
that Υi = zi), and zi is included among the elements of Zi. Then, for Ω̃ = E[Ũ2

i ] and
κ= limn−→∞

∑n
i=1 P

2
ii/K, we find that

V − V ∗ = σ2

z̄2(1 − τ)2 (τκ− τ2)

(
1 − Ω̃

z̄2

)
�

Since τκ− τ2 is the limit of the sample variance of Pii, which we assume to be positive,
V ≥ V ∗ if and only if z̄2 ≥ Ω̃. Here, z̄2 is the limit of the sample variance of zi. Thus,
the asymptotic variance ranking can go either way, depending on whether the sample
variance of zi is greater than the variance of Ũi. In applications where the sample size is
large relative to the number of instruments, these efficiency differences will tend to be
quite small, because Pii is small.

With many instruments and homoskedasticity, HLIM is asymptotically efficient rel-
ative to JIV. As shown in Chao et al. (2012b), the asymptotic variance of JIV is

VJIV = σ2H−1
P H̃PH

−1
P

+ lim
n−→∞

(
1 −

n∑
i=1

P2
ii/K

)
H−1
p (Γ + 2αS0E[Uiεi]E[εiU ′

i ]S′
0)H

−1
P �

which is greater than the asymptotic variance of HLIM because E[Uiεi]E[εiU ′
i ] is posi-

tive semidefinite.
It remains to establish the consistency of the asymptotic variance estimator and to

show that confidence intervals can be formed for linear combinations of the coefficients
in the usual way. The following theorem accomplishes this under additional conditions
on zi.

Theorem 3. If Assumptions 1–6 are satisfied, and α̂ = α̃ + Op(1/n) or δ̂ is HLIM or
HFUL, there exists a C with ‖zi‖ ≤ C for all i, and there exists a πn such that maxi≤n ‖zi −
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πnZi‖ −→ 0, then in Case I, S′
nV̂ Sn

p−→ΛI and in Case II, μ2
nS

′
nV̂ Sn/K

p−→ΛII. Also, if
c′S′

0ΛIS0c �= 0 in Case I or c′S′
0ΛIIS0c �= 0 in Case II, then

c′(δ̂− δ0)√
c′V̂ c

d−→N(0�1)�

This result allows us to form confidence intervals and test statistics for a single linear
combination of parameters in the usual way. To show how the conditions of this result
can be checked, we return to the previous example with one right-hand side endoge-
nous variable. The following result gives primitive conditions in that example for the
last conclusion of Theorem 3, that is, for asymptotic normality of a t-ratio.

Corollary 1. If equation (2) holds, Assumptions 1–6 are satisfied for zi = (Z′
i1� zi2), α̂=

α̃ + Op(1/n) or δ̂ is HLIM or HFUL, there exists a C with ‖zi‖ ≤ C for all i, and there
exists a πn such that maxi≤n ‖zi −πnZi‖ −→ 0, infi σ2

i ≥ C and either (a) c �= 0 and μ2
n = n,

(b)K/μ2
n is bounded and (−π1�1)c �= 0, or (c)K/μ2

n −→ ∞, (−π1�1)c �= 0, infi E[Ũ2
iG]> 0,

and the sign of E[εiŨiG] is constant, then

c′(δ̂− δ0)√
c′V̂ c

d−→N(0�1)�

The conditions of Corollary 1 are quite primitive. We have previously described how
Assumption 2 is satisfied in the model of equation (2). Assumptions 1 and 3–6 are also
quite primitive.

This result can be applied to show that t-ratios are asymptotically correct when the
many instrument robust variance estimator is used. For the coefficient δ2 of the en-
dogenous variable, note that c = eG (the G × 1 unit vector with 1 in the last position)
so that (−π1�1)c = 1 �= 0. Therefore, if E[U2

iG] is bounded away from zero and the sign of
E[εiUiG] is constant, it follows from Corollary 1 that

δ̂G − δ0G√
V̂GG

d−→N(0�1)�

Thus the t-ratio for the coefficient of the endogenous variable is asymptotically correct
across a wide range of different growth rates for μn and K. The analogous result holds
for each coefficient δj , j ≤G1, of an included instrument as long as π1j �= 0 is not zero.
If π1j = 0, then the asymptotics is more complicated. For brevity we will not discuss this
unusual case here.

5. Monte Carlo results

In this Monte Carlo simulation, we provide evidence concerning the finite sample be-
havior of HLIM and HFUL. The model that we consider is

yi = δ10 + δ20x2i + εi� x2i = πz1i +U2i�
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where zi1 ∼N(0�1) and U2i ∼N(0�1). The ith instrument observation is

Z′
i = (1� z1i� z

2
1i� z

3
1i� z

4
1i� z1iDi1� � � � � z1iDi�K−5)�

where Dik ∈ {0�1}, Pr(Dik = 1)= 1/2, and zi1 ∼N(0�1). Thus, the instruments consist of
powers of a standard normal up to the fourth power plus interactions with dummy vari-
ables. Only z1 affects the reduced form, so that adding the other instruments does not
improve asymptotic efficiency of HFUL, though the powers of zi1 do help with asymp-
totic efficiency of the CUE.

The structural disturbance, ε, is allowed to be heteroskedastic, being given by

ε= ρU2 +
√

1 − ρ2

φ2 + (0�86)4
(φv1 + 0�86v2)� v1 ∼N(0� z2

1)� v2 ∼N(0� (0�86)2)�

where v1 and v2 are independent of U2. This is a design that will lead to LIML being
inconsistent with many instruments. Here, E[Xiεi] is constant and σ2

i is quadratic in
zi1, so that γi = (C1 +C2zi1 +C3z

2
i1)

−1A for a constant vectorA and constants C1, C2, C3.
In this case, Pii will be correlated with γi =E[Xiεi]/σ2

i so that LIML is not consistent.
We report properties of estimators and t-ratios for δ2. We set n = 800 and ρ = 0�3

throughout and let the number of instrumental variables be K = 2, 30. For K = 2, the
instruments are (1� zi). We choose π so that the concentration parameter is nπ2 = μ2 =
8, 32. We also ran experiments with K = 10 and μ2 = 16. We also choose φ so that the
R-squared for the regression of ε2 on the instruments is 0, 0.1, or 0.2.

In Tables 1–6, we report results on median bias, the range between the 0.05 and 0.95
quantiles, and the nominal 0.05 rejection frequencies for a Wald test on δ2 for LIML,
HLIM, Fuller (1977), HFUL (C = 1), JIVE, and CUE. Interquartile range results were sim-
ilar. We find that under homoskedasticity, HFUL is much less dispersed than LIML but
slightly more biased. Under heteroskedasticity, HFUL is much less biased and also much
less dispersed than LIML. Thus, we find that heteroskedasticity can bias LIML. We also
find that the dispersion of LIML is substantially larger than HFUL. Thus we find a lower
bias for HFUL under heteroskedasticity and many instruments, as predicted by the the-
ory, as well as substantially lower dispersion, which, though not predicted by the theory,
may be important in practice.

Table 1. Median bias: R2
ε2|z2

1
= 0.a

μ2 K LIML HLIM FULL1 HFUL JIVE CUE

8 2 0�005 0�005 0�042 0�043 −0�034 0�005
8 10 0�024 0�023 0�057 0�057 0�053 0�025
8 30 0�065 0�065 0�086 0�091 0�164 0�071

32 2 0�002 0�002 0�011 0�011 −0�018 0�002
32 10 0�002 0�001 0�011 0�011 −0�019 0�002
32 30 0�003 0�002 0�013 0�013 −0�014 0�006

aResults based on 20,000 simulations.
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Table 2. Nine decile range: 0.05 to 0.95 R2
ε2|z2

1
= 0.a

μ2 K LIML HLIM FULL1 HFUL JIVE CUE

8 2 1�470 1�466 1�072 1�073 3�114 1�470
8 10 2�852 2�934 1�657 1�644 5�098 3�101
8 30 5�036 5�179 2�421 2�364 6�787 6�336

32 2 0�616 0�616 0�590 0�589 0�679 0�616
32 10 0�715 0�716 0�679 0�680 0�816 0�770
32 30 0�961 0�985 0�901 0�913 1�200 1�156

aResults based on 20,000 simulations.

Table 3. 0.05 rejection frequencies: R2
ε2|z2

1
= 0.a

μ2 K LIML HLIM FULL1 HFUL JIVE CUE

8 2 0�025 0�026 0�021 0�034 0�051 0�012
8 10 0�035 0�037 0�029 0�044 0�063 0�027
8 30 0�045 0�049 0�040 0�054 0�068 0�051

32 2 0�041 0�042 0�037 0�044 0�038 0�030
32 10 0�041 0�042 0�038 0�044 0�046 0�041
32 30 0�042 0�047 0�039 0�050 0�057 0�062

aResults based on 20,000 simulations.

Table 4. Median bias: R2
ε2|z2

1
= 0�2.a

μ2 K LIML HLIM FULL1 HFUL JIVE CUE

8 2 −0�001 0�050 0�041 0�078 −0�031 −0�001
8 10 −0�623 0�094 −0�349 0�113 0�039 0�003
8 30 −1�871 0�134 −0�937 0�146 0�148 −0�034

32 2 −0�001 0�011 0�008 0�020 −0�021 −0�001
32 10 −0�220 0�015 −0�192 0�024 −0�021 0�000
32 30 −1�038 0�016 −0�846 0�027 −0�016 −0�017

aResults based on 20,000 simulations.

Table 5. Nine decile range: 0.05 to 0.95 R2
ε2|z2

1
= 0�2.a

μ2 K LIML HLIM FULL1 HFUL JIVE CUE

8 2 2�219 1�868 1�675 1�494 4�381 2�219
8 10 26�169 5�611 4�776 2�664 7�781 16�218
8 30 60�512 8�191 7�145 3�332 9�975 1�5E+012

32 2 0�941 0�901 0�903 0�868 1�029 0�941
32 10 3�365 1�226 2�429 1�134 1�206 1�011
32 30 18�357 1�815 5�424 1�571 1�678 3�563

aResults based on 20,000 simulations.
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Table 6. 0.05 rejection frequencies: R2
ε2|z2

1
= 0�2.a

μ2 K LIML HLIM FULL1 HFUL JIVE CUE

8 2 0�097 0�019 0�075 0�023 0�026 0�008
8 10 0�065 0�037 0�080 0�041 0�036 0�043
8 30 0�059 0�051 0�118 0�055 0�046 0�094

32 2 0�177 0�040 0�162 0�040 0�039 0�024
32 10 0�146 0�042 0�120 0�044 0�033 0�030
32 30 0�128 0�049 0�107 0�051 0�039 0�073

aResults based on 20,000 simulations.

In addition, in Tables 3 and 6 we find that the rejection frequencies for HFUL are
quite close to their nominal values, being closer than all the rest throughout much of the
tables. Thus, the standard errors we have given work very well in accounting for many
instruments and heteroskedasticity.

6. Conclusion

We have considered the situation of many instruments with heteroskedastic data. In this
situation, both 2SLS and LIML are inconsistent. We have proposed two new estimators,
HLIM and HFUL, that are consistent in this situation. We derive the asymptotic normal
distributions for both estimators with many instruments and many weak instrument
sequences. We find that the variances of the asymptotic distributions take a convenient
form, which are straightforward to estimate consistently. A problem with the HLIM (and
LIML) estimator is the wide dispersion caused by the “moments problem.” We demon-
strate that HFUL has finite sample moments so that the moments problem does not
exist.

In Monte Carlo experiments, we find these properties hold. With heteroskedastic-
ity and many instruments we find that both LIML and Fuller have significant median
bias (Table 4). We find that HLIM, HFUL, JIVE, and CUE do not have this median bias.
However, HLIM, JIVE, and CUE all suffer from very large dispersions arising from the
moments problem (Table 5). Indeed, the nine decile range for CUE exceeds 1012! The
dispersion of the HFUL estimate is much less than these alternative consistent estima-
tors. Thus, we recommend that HFUL be used in the many instruments situation when
heteroskedasticity is present, which is the common situation in microeconometrics.

Appendix A

This appendix is divided into two parts. In the first part, we discuss the existence of mo-
ments of HFUL. In the second part, we give proofs for the theorems stated in the body
of the paper as well as state and prove some preliminary lemmas.
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A.1 Existence of moments of HFUL

Here, we give a formal result that shows the existence of moments of the HFUL esti-
mator. Some additional assumptions must be specified for this result, and we introduce
these conditions below.

Assumption 7. (a) K = O(na) for some real constant a such that 0 ≤ a ≤ 1; if a = 1,
then n − K → ∞ as n → ∞; and for all n sufficiently large, there exists a positive con-
stant CP such that Pii ≤ CP(K/n) < 1 (i = 1� � � � � n). (b) μ2

n ∼ nb for some real constant b
such that a/2< b≤ 1. (c) IfK is fixed, then zi = πZi. (d) δ0 ∈ D ⊂ RG, where D is bounded.
(e) λmax(S̃

′S̃) is bounded.

Next, let x∨ y = max(x� y) and x∧ y = min(x� y), and define

ϕ(a�b)= a∨ (1 − 4ψ1(a�b))/2
ψ1(a�b)

I

{
a

2
< b≤ 1

2

}
+ a

ψ2(a�b)
I

{
1
2
< b≤ 1

}
� (5)

where ψ1(a�b) = 2b − a ∧ b, ψ2(a�b) = 2b − a ∧ 1
2 , and a and b are as specified in As-

sumption 7. Also, we take the (restricted) reduced form of the instrumental variable (IV)
regression model to be

X = ΥΔ+ V �

whereX = [y X]�Δ= [δ0 IG], and V = [v U].

Assumption 8. (i) Let p be a positive integer, let η be a positive constant, and define

q= (1 +η)[2(G+ 1)+ϕ(a�b)]�

There is C̃ > 0 such thatE[‖V i‖2pq] ≤ C̃ and
∑n
i=1 ‖zi‖2pq/n≤ C̃, where V

′
i denotes the ith

row of V . (ii) λmin(
1
n

∑n
i=1E[V iV ′

i]) is bounded away from zero for n sufficiently large.

Assumption 8 specifies the moment condition on the error process {V i} as depen-
dent on the number of endogenous regressors G, instrument weakness as parameter-
ized by b, and an upper bound on the rate at which the number of instruments grows,
as parameterized by a. Although the function ϕ(a�b) that enters into the moment con-
dition seems complicated, it actually depends on a and b in an intuitive way, so that ev-
erything else being equal, more stringent moment conditions are needed in cases with
weaker instruments and/or faster growing K. More stringent moment conditions are
also needed in situations with a larger number of endogenous regressors.

To get more intuition about Assumption 8, consider the following two special cases.
First, consider the conventional case where the instruments are strong and the number
of instruments is fixed, so that a= 0 and b= 1. In this case, it is easy to see that ϕ(a�b)=
ϕ(0�1)= 0, and Assumption 8 requires finite moments up to the order

2pq= 4p(G+ 1)(1 +η)�
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If we further consider the case with one endogenous regressor (G= 1) and where η can
be taken to be small, then Assumption 8 requires a bit more than an 8th order moment
condition (on the errors) for the existence of the first moment of HFUL and a bit more
than a 16th order moment condition for the existence of the second moment.

Next, consider the many weak instrument case where a = 1/2 and a/2 = 1/4 < b ≤
1/2. In this case, note that since 2b− a≤ b, we have

ψ1(a�b)=ψ1(1/2� b)= 2b− 1/2

and

ϕ(a�b)= ϕ(1/2� b)= 1
4b− 1

for b ∈ (1/4�1/2]�

so that 1 ≤ ϕ(1/2� b) < ∞ and ϕ(1/2� b) is a decreasing function of b. In particular,
note that the required strength of the moment condition grows without bound as b ap-
proaches 1/4.

Proving the existence of moments of HFUL requires showing the existence of certain
inverse moments of det[S∗�n], where S∗�n = X ′∗MX∗/(n − K) and X∗ = [ε X]. We shall
explicitly assume the existence of such inverse moments below.

Assumption 9. There exists a positive constant C and a positive integerN such that

E
[
(det[S∗�n])−2p(1+η)/η] ≤ C <∞ (6)

for all n≥N , where η> 0 is as specified in Assumption 8.

In Chao, Hausman, Newey, Swanson, and Woutersen (2012a), we gave an example
of a probability density function for which inverse moments of the form (6) do not ex-
ist and, hence, some condition such as Assumption 9 is needed to rule out pathologi-
cal cases. On the other hand, Assumption 9 is also not vacuous. In particular, it can be
verified, as we do in Theorem 4 below, that this assumption holds for an IV regression
model with heteroskedastic, Gaussian error distributions. However, it should be noted
that normality is not necessary for Assumption 9 to hold, as has been discussed in Chao
et al. (2012a).

Theorem 4. Suppose that Assumptions 1, 2, and 4 hold. In addition, suppose that the
IV regression model has heteroskedastic, Gaussian errors, that is, {Ui} ≡ i�n�i�d�N(0�Ω∗

i ),
where Ui is the ith row of U = [ε U], and suppose that there exists a constant C > 0 such
that λ∗ = mini λmin(Ω

∗
i )≥ C. Then Assumption 9 holds.

A proof of this theorem is given in Appendix A.2.
We now state our existence of moments result.

Theorem 5. Suppose that Assumptions 1–4 and 7 hold. In addition, suppose that As-
sumptions 8 and 9 are satisfied for some positive p. Then there exists a positive constant
C such that

E[‖δ̂HFUL‖p] ≤ C <∞
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for n sufficiently large.

A proof of this theorem can be found in a supplementary file on the journal website.

A.2 Proofs of consistency and asymptotic distributional results

Throughout, let C denote a generic positive constant that may be different in differ-
ent uses and let “Markov inequality” denote the conditional Markov inequality. The first
lemma is Lemma A0 from Hansen, Hausman, and Newey (2008).

Lemma A0. If Assumption 2 is satisfied and ‖S′
n(δ̂ − δ0)/μn‖2/(1 + ‖δ̂‖2)

p−→0, then

‖S′
n(δ̂− δ0)/μn‖ p−→0.

We next give a result from Chao et al. (2012b) that is used in the proof of consistency.

Lemma A1 (Special Case of Lemma A1 of Chao et al. (2012b)). If (Wi�Yi) (i = 1� � � � � n)
are independent, Wi and Yi are scalars, and P is symmetric, idempotent of rankK,
then for w̄ = E[(W1� � � � �Wn)

′], ȳ = E[(Y1� � � � �Yn)
′], σ̄W n = maxi≤nVar(Wi)1/2, σ̄Yn =

maxi≤nVar(Yi)1/2,

E

[(∑
i �=j
PijWiYj −

∑
i �=j
Pijw̄iȳj

)2]
≤ C(Kσ̄2

Wn
σ̄2
Yn

+ σ̄2
Wn
ȳ ′ȳ + σ̄2

Yn
w̄′w̄)�

For the next result, let S̄n = diag(μn�Sn), X̃ = [ε�X]S̄−1′
n , and Hn = ∑n

i=1(1 −
Pii)ziz

′
i/n.

Lemma A2. If Assumptions 1–4 are satisfied and
√
K/μ2

n −→ 0, then∑
i �=j
X̃iPijX̃

′
j = diag(0�Hn)+ op(1)�

Proof. Note that

X̃i =
(
μ−1
n εi

S−1
n Xi

)
=

(
0

zi/
√
n

)
+

(
μ−1
n εi

S−1
n Ui

)
�

Since ‖S−1
n ‖ ≤ Cμ−1

n , we have Var(X̃ik)≤ Cμ−2
n for any element X̃ik of X̃i. Then applying

Lemma A1 to each element of
∑
i �=j X̃iPijX̃ ′

j gives

∑
i �=j
X̃iPijX̃

′
j = diag

(
0�

∑
i �=j
ziPijz

′
j/n

)
+Op

(
K1/2/μ2

n +μ−1
n

(∑
i

‖zi‖2/n

)1/2)

= diag
(

0�
∑
i �=j
ziPijz

′
j/n

)
+ op(1)�
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Also note that

Hn −
∑
i �=j
ziPijz

′
j/n =

∑
i

ziz
′
i/n−

∑
i

Piiziz
′
i/n−

∑
i �=j
ziPijz

′
j/n= z′(I − P)z/n

= (z−Zπ ′
Kn)

′(I − P)(z−Zπ ′
Kn)/n

≤ (z−Zπ ′
Kn)

′(z−Zπ ′
Kn)/n

≤ IG
∑
i

‖zi −πKnZi‖2/n−→ 0�

where the third equality follows by PZ =Z, the first inequality follows by I −P idempo-
tent, and the last inequality follows by A ≤ tr(A)I for any positive semidefinite (p.s.d.)
matrix A. Since this equation shows that Hn − ∑

i �=j ziPijz′
j/n is p.s.d. and is less than

or equal to another p.s.d. matrix that converges to zero, it follows that
∑
i �=j ziPijz′

j/n =
Hn + op(1). The conclusion follows by the triangle inequality. �

In what follows, it is useful to prove directly that the HLIM estimator δ̃ satisfies S′
n(δ̃−

δ0)/μn
p−→0.

Lemma A3. If Assumptions 1–4 are satisfied, then S′
n(δ̃− δ0)/μn

p−→0.

Proof. Let Ῡ = [0�Υ ], Ū = [ε�U], and X̄ = [y�X], so that X̄ = (Ῡ + Ū)D for

D=
[

1 0
δ0 I

]
�

Let B̂= X̄ ′X̄/n. Note that ‖Sn/√n‖ ≤ C and, by standard calculations, z′U/n p−→0. Then

‖Ῡ ′Ū/n‖ = ‖(Sn/
√
n)z′U/n‖ ≤ C‖z′U/n‖ p−→0�

Let Ω̄n = ∑n
i=1E[ŪiŪ ′

i ]/n = diag(
∑n
i=1Ω

∗
i /n�0) ≥ C diag(IG2+1�0) by Assumption 3,

where G2 + 1 is the dimension of the number of included endogenous variables. By

the Markov inequality, we have Ū ′Ū/n− Ω̄n p−→0, so it follows that with probability ap-
proaching 1 (w.p.a.1),

B̂= (Ū ′Ū + Ῡ ′Ū + Ū ′Ῡ + Ῡ ′Ῡ )/n= Ω̄n + Ῡ ′Ῡ /n+ op(1)≥ C diag
(
IG−G2+1�0

)
�

Since Ω̄n + Ῡ ′Ῡ /n is bounded, it follows that w.p.a.1,

C ≤ (1�−δ′)B̂(1�−δ′)′ = (y −Xδ)′(y −Xδ)/n≤ C‖(1�−δ′)‖2 = C(1 + ‖δ‖2)�

Next, as defined preceding Lemma A2, let S̄n = diag(μn�Sn) and X̃ = [ε�X]S̄−1′
n .

Note that by Pii ≤ C < 1 and uniform nonsingularity of
∑n
i=1 ziz

′
i/n, we have Hn ≥

(1 −C)∑n
i=1 ziz

′
i/n≥ CIG. Then by Lemma A2, w.p.a.1,

Â
def=

∑
i �=j
PijX̃iX̃

′
j ≥ C diag(0� IG)�
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Note that S̄′
nD(1�−δ′)′ = (μn� (δ0 − δ)′Sn)′ and X̄i =D′S̄nX̃i. Then w.p.a.1 for all δ,

μ−2
n

∑
i �=j
Pij(yi −X ′

iδ)(yj −X ′
jδ)

= μ−2
n (1�−δ′)

(∑
i �=j
PijX̄iX̄

′
j

)
(1�−δ′)′

= μ−2
n (1�−δ′)D′S̄nÂS̄′

nD(1�−δ′)′ ≥C‖S′
n(δ− δ0)/μn‖2�

Let Q̂(δ)= (n/μ2
n)

∑
i �=j(yi−X ′

iδ)Pij(yj−X ′
jδ)/(y−Xδ)′(y−Xδ). Then by the upper-

left element of the conclusion of Lemma A2, μ−2
n

∑
i �=j εiPijεj

p−→0. Then w.p.a.1,

|Q̂(δ0)| =
∣∣∣∣∣μ−2
n

∑
i �=j
εiPijεj

/ n∑
i=1

ε2
i /n

∣∣∣∣∣ p−→0�

Since δ̂ = arg minδ Q̂(δ), we have Q̂(δ̂) ≤ Q̂(δ0). Therefore, w.p.a.1, by (y − Xδ)′(y −
Xδ)/n≤ C(1 + ‖δ‖2), it follows that

0 ≤ ‖S′
n(δ̂− δ0)/μn‖2

1 + ‖δ̂‖2
≤ CQ̂(δ̂)≤ CQ̂(δ0)

p−→0�

implying ‖S′
n(δ̂− δ0)/μn‖2/(1 + ‖δ̂‖2)

p−→0. Lemma A0 gives the conclusion. �

Lemma A4. If Assumptions 1–4 are satisfied, α̂= op(μ2
n/n), and S′

n(δ̂−δ0)/μn
p−→0, then

forHn = ∑n
i=1(1 − Pii)ziz′

i/n,

S−1
n

(∑
i �=j
XiPijX

′
j − α̂X ′X

)
S−1′
n =Hn + op(1)�

S−1
n

(∑
i �=j
XiPijε̂j − α̂X ′ε̂

)/
μn

p−→0�

Proof. By the Markov inequality and standard arguments, X ′X = Op(n) and X ′ε̂ =
Op(n). Therefore, by ‖S−1

n ‖ =O(μ−1
n ),

α̂S−1
n X ′XS−1′

n = op(μ2
n/n)Op(n/μ

2
n)

p−→0�

α̂S−1
n X ′ε̂/μn = op(μ2

n/n)Op(n/μ
2
n)

p−→0�

Lemma A2 (lower right-hand block) and the triangle inequality then give the first con-

clusion. By Lemma A2 (off diagonal), we have S−1
n

∑
i �=j XiPijεj/μn

p−→0, so that

S−1
n

∑
i �=j
XiPijε̂j/μn = op(1)−

(
S−1
n

∑
i �=j
XiPijX

′
jS

−1′
n

)
S′
n(δ̂− δ0)/μn

p−→0�
�
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Lemma A5. If Assumptions 1–4 are satisfied and S′
n(δ̂− δ0)/μn

p−→0, then
∑
i �=j ε̂iPijε̂j/

ε̂′ε̂= op(μ2
n/n).

Proof. Let β̂ = S′
n(δ̂ − δ0)/μn and ᾰ = ∑

i �=j εiPijεj/ε′ε = op(μ
2
n/n). Note that σ̂2

ε =
ε̂′ε̂/n satisfies 1/σ̂2

ε = Op(1) by the Markov inequality. By Lemma A4 with α̂ = ᾰ,
we have H̃n = S−1

n (
∑
i �=j XiPijX ′

j − ᾰX ′X)S−1′
n = Op(1) and Wn = S−1

n (
∑
i �=j XiPijεj −

ᾰX ′ε)/μn
p−→0, so∑

i �=j
ε̂iPijε̂j

ε̂′ε̂
− ᾰ = 1

ε̂′ε̂

(∑
i �=j
ε̂iPijε̂j −

∑
i �=j
εiPijεj − ᾰ(ε̂′ε̂− ε′ε)

)

= μ2
n

n

1
σ̂2
ε

(β̂′H̃nβ̂− 2β̂′Wn)= op(μ2
n/n)�

so the conclusion follows by the triangle inequality. �

Proof of Theorem 1. First note that if S′
n(δ̂ − δ0)/μn

p−→0, then by λmin(SnS
′
n/μ

2
n) ≥

λmin(S̃S̃
′) > 0, we have

‖S′
n(δ̂− δ0)/μn‖ ≥ λmin(SnS

′
n/μ

2
n)

1/2‖δ̂− δ0‖ ≥ C‖δ̂− δ0‖�

implying δ̂
p−→δ0. Therefore, it suffices to show that S′

n(δ̂− δ0)/μn
p−→0. For HLIM, this

follows from Lemma A3. For HFUL, note that α̃= Q̂(δ̃)= ∑
i �=j ε̃iPijε̃j/ε̃′ε̃= op(μ2

n/n) by

Lemma A5, so by the formula for HFUL, α̂ = α̃+ Op(1/n) = op(μ
2
n/n). Thus, the result

for HFUL will follow from the most general result for any α̂ with α̂= op(μ
2
n/n). For any

such α̂, by Lemma A4 we have

S′
n(δ̂− δ0)/μn

= S′
n

(∑
i �=j
XiPijX

′
j − α̂X ′X

)−1 ∑
i �=j
(XiPijεj − α̂X ′ε)/μn

=
[
S−1
n

(∑
i �=j
XiPijX

′
j − α̂X ′X

)
S−1′
n

]−1

S−1
n

∑
i �=j
(XiPijεj − α̂X ′ε)/μn

= (Hn + op(1))−1op(1)
p−→0� �

Now we move on to asymptotic normality results. The next result is a central limit
theorem that was proven in Chao et al. (2012b).

Lemma A6 (Lemma A2 of Chao et al. (2012b)). If (i) P is a symmetric, idempotent ma-
trix with rank(P) = K, Pii ≤ C < 1, (ii) (W1n�U1� ε1)� � � � � (Wnn�Un�εn) are independent
and Dn = ∑n

i=1E[WinW ′
in] is bounded, (iii) E[W ′

in] = 0, E[Ui] = 0, E[εi] = 0, and there
exists a constant C such that E[‖Ui‖4] ≤ C, E[ε4

i ] ≤ C, (iv)
∑n
i=1E[‖Win‖4] −→ 0, and
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(v) K −→ ∞, then for Σ̄n
def= ∑

i �=j P2
ij(E[UiU ′

i ]E[ε2
j ] + E[Uiεi]E[εjU ′

j])/K and for any se-

quence of bounded nonzero vectors c1n and c2n such that Ξn = c′1nDnc1n + c′2nΣ̄nc2n > C,
it follows that

Yn =Ξ−1/2
n

(
n∑
i=1

c′1nWin + c′2n
∑
i �=j
UiPijεj/

√
K

)
d−→N(0�1)�

Let α̃(δ)= ∑
i �=j εi(δ)Pijεj(δ)/ε(δ)′ε(δ) and

D̂(δ) = −
[
ε(δ)′ε(δ)

2

]
∂

∂δ

[∑
i �=j
εi(δ)Pijεj(δ)

ε(δ)′ε(δ)

]

=
∑
i �=j
XiPijεj(δ)− α̃(δ)X ′ε(δ)�

A couple of other intermediate results are also useful.

Lemma A7. If Assumptions 1–4 are satisfied and S′
n(δ̄− δ0)/μn

p−→0, then

−S−1
n [∂D̂(δ̄)/∂δ]S−1′

n =Hn + op(1)�

Proof. Let ε̄= ε(δ̄)= y −Xδ̄, γ̄ =X ′ε̄/ε̄′ε̄, and ᾱ= α̃(δ̄). Then differentiating gives

−∂D̂
∂δ
(δ̄) =

∑
i �=j
XiPijX

′
j − ᾱX ′X − γ̄

∑
i �=j
ε̄iPijX

′
j −

∑
i �=j
XiPijε̄jγ̄

′ + 2(ε̄′ε̄)ᾱγ̄γ̄′

=
∑
i �=j
XiPijX

′
j − ᾱX ′X + γ̄D̂(δ̄)′ + D̂(δ̄)γ̄′�

where the second equality follows by D̂(δ̄) = ∑
i �=j XiPijε̄j − (ε̄′ε̄)ᾱγ̄. By Lemma A5, we

have ᾱ = op(μ
2
n/n). By standard arguments, γ̄ = Op(1) so that S−1

n γ̄ = Op(1/μn). Then
by Lemma A4 and D̂(δ̄)= ∑

i �=j XiPijε̄j − ᾱX ′ε̄,

S−1
n

(∑
i �=j
XiPijX

′
j − ᾱX ′X

)
S−1′
n =Hn + op(1)� S−1

n D̂(δ̄)γ̄′S−1′
n

p−→0�

The conclusion then follows by the triangle inequality. �

Lemma A8. If Assumptions 1–4 are satisfied, then for γn = ∑
i E[Uiεi]/∑i E[ε2

i ] and Ũi =
Ui − γnεi,

S−1
n D̂(δ0)=

n∑
i=1

(1 − Pii)ziεi/
√
n+ S−1

n

∑
i �=j
ŨiPijεj + op(1)�
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Proof. Note that forW = z′(P−I)ε/√n, by I−P idempotent andE[εε′] ≤ CIn, we have

E[WW ′] ≤ Cz′(I − P)z/n= C(z−Zπ ′
Kn)

′(I − P)(z−Zπ ′
Kn)/n

≤ CIG
n∑
i=1

‖zi −πKnZi‖2/n−→ 0�

so z′(P − I)ε/√n= op(1). Also, by the Markov inequality,

X ′ε/n=
n∑
i=1

E[Xiεi]/n+Op(1/
√
n)� ε′ε/n=

n∑
i=1

σ2
i /n+Op(1/

√
n)�

Also, by Assumption 3,
∑n
i=1σ

2
i /n ≥ C > 0. The delta method then gives γ̃ =X ′ε/ε′ε =

γn+Op(1/√n). Therefore, it follows by Lemma A1 and D̂(δ0)= ∑
i �=j XiPijεj −ε′εα̃(δ0)γ̃

that

S−1
n D̂(δ0) =

∑
i �=j
ziPijεj/

√
n+ S−1

n

∑
i �=j
ŨiPijεi − S−1

n (γ̃− γn)ε′εα̃(δ0)

= z′Pε/
√
n−

∑
i

Piiziεi/
√
n+ S−1

n

∑
i �=j
ŨiPijεj

+Op(1/(
√
nμn))op(μ

2
n/n)

=
n∑
i=1

(1 − Pii)ziεi/
√
n+ S−1

n

∑
i �=j
ŨiPijεj + op(1)�

�

Proof of Theorem 2. Consider first the case where δ̂ is HLIM. Then by Theorem 1,

δ̂
p−→δ0. First order conditions for LIML are D̂(δ̂)= 0. Expanding gives

0 = D̂(δ0)+ ∂D̂

∂δ
(δ̄)(δ̂− δ0)�

where δ̄ lies on the line joining δ̂ and δ0, and hence β̄ = μ−1
n S

′
n(δ̄ − δ0)

p−→0. Then by
Lemma A7, H̄n = S−1

n [∂D̂(δ̄)/∂δ]S−1′
n =HP+op(1). Then ∂D̂(δ̄)/∂δ is nonsingular w.p.a.1

and solving gives

S′
n(δ̂− δ)= −S′

n[∂D̂(δ̄)/∂δ]−1D̂(δ0)= −H̄−1
n S−1

n D̂(δ0)�

Next, apply Lemma A6 with Ui = Ũi and

Win = (1 − Pii)ziεi/
√
n�

By εi having bounded fourth moment and for Pii ≤ 1,

n∑
i=1

E[‖Win‖4] ≤ C
n∑
i=1

‖zi‖4/n2 −→ 0�
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By Assumption 6, we have
∑n
i=1E[WinW ′

in] −→ ΣP . Let Γ = diag(ΣP�Ψ) and

An =

⎛⎜⎜⎜⎝
n∑
i=1

Win∑
i �=j
ŨiPijεj/

√
K

⎞⎟⎟⎟⎠ �

Consider c such that c′Γ c > 0. Then by the conclusion of Lemma A6, we have c′An
d−→

N(0� c′Γ c). Also, if c′Γ c = 0, then it is straightforward to show that c′An
p−→0. Then it

follows by the Cramer–Wold device that

An =

⎛⎜⎜⎜⎝
n∑
i=1

Win∑
i �=j
ŨiPijεj/

√
K

⎞⎟⎟⎟⎠ d−→N(0� Γ )� Γ = diag(ΣP�Ψ)�

Next, we consider the two cases. Case I has K/μ2
n bounded. In this case,

√
KS−1

n −→ S0,
so that

Fn
def= [I�√KS−1

n ] −→ F0 = [I�√αS0]� F0Γ F
′
0 = ΣP + αS0ΨS

′
0�

Then by Lemma A8,

S−1
n D̂(δ0)= FnAn + op(1) d−→N(0�ΣP + αS0ΨS

′
0)�

S′
n(δ̂− δ0)= −H̄−1

n S−1
n D̂(δ0)

d−→N(0�ΛI)�

In Case II, we have K/μ2
n −→ ∞. Here

(μn/
√
K)Fn −→ F̄0 = [0� S0]� F̄0Γ F̄

′
0 = S0ΨS

′
0

and (μn/
√
K)op(1)= op(1). Then by Lemma A8,

(μn/
√
K)S−1

n D̂(δ0)= (μn/
√
K)FnAn + op(1) d−→N(0� S0ΨS

′
0)�

(μn/
√
K)S′

n(δ̂− δ0)= −H̄−1
n (μn/

√
K)S−1

n D̂(δ0)
d−→N(0�ΛII)� �

The next two results are useful for the proof of consistency of the variance estimator,
and these results are taken from Chao et al. (2012b). Let μ̄W n = maxi≤n |E[Wi]| and μ̄Yn =
maxi≤n |E[Yi]|.

Lemma A9 (Lemma A3 of Chao et al. (2012b)). If (Wi�Yi) (i= 1� � � � � n) are independent,
andWi and Yi are scalars, then

∑
i �=j
P2
ijWiYj =E

[∑
i �=j
P2
ijWiYj

]
+Op(

√
K(σ̄W nσ̄Yn + σ̄W nμ̄Yn + μ̄W nσ̄Yn))�
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Lemma A10 (Lemma A4 of Chao et al. (2012b)). IfWi, Yi, and ηi, are independent across
i with E[Wi] = ai/

√
n, E[Yi] = bi/

√
n, |ai| ≤ C, |bi| ≤ C, E[η2

i ] ≤ C, Var(Wi) ≤ Cμ−2
n , and

Var(Yi)≤ Cμ−2
n , there existsπn such that maxi≤n |ai−Z′

iπn| −→ 0, and
√
K/μ2

n −→ 0, then

An =E
[ ∑
i �=j �=k

WiPikηkPkjYj

]
=O(1)�

∑
i �=j �=k

WiPikηkPkjYj −An p−→0�

Next, recall that ε̂i = Yi −X ′
i δ̂, γ̂ =X ′ε̂/ε̂′ε̂, and γn = ∑

i E[Xiεi]/∑i σ
2
i , and let

X̆i = S−1
n (Xi − γ̂ε̂i)= S−1

n X̂i� Ẋi = S−1
n (Xi − γnεi)�

Σ̆1 =
∑
i �=j �=k

X̆iPikε̂
2
kPkjX̆

′
j� Σ̆2 =

∑
i �=j
P2
ij(X̆iX̆

′
i ε̂

2
j + X̆iε̂iε̂jX̆ ′

j)�

Σ̇1 =
∑
i �=j �=k

ẊiPikε
2
kPkjẊ

′
j� Σ̇2 =

∑
i �=j
P2
ij(ẊiẊ

′
iε

2
j + ẊiεiεjẊ ′

j)�

Note that for Δ̂= S′
n(δ̂− δ0), we have

ε̂i − εi = −X ′
i(δ̂− δ0)= −X ′

iS
−1′
n Δ̂�

ε̂2
i − ε2

i = −2εiX ′
i(δ̂− δ0)+ [X ′

i(δ̂− δ0)]2�

X̆i − Ẋi = −S−1
n γ̂(ε̂i − εi)− S−1

n (γ̂− γn)εi
= S−1

n γ̂X ′
iS

−1′
n Δ̂− S−1

n μn(γ̂− γn)(εi/μn)�
X̆iε̂i − Ẋiεi =Xiε̂i − γ̂ε̂2

i −Xiεi + γnε2
i

= −XiX ′
i(δ̂− δ0)− γ̂{−2εiX ′

i(δ̂− δ0)+ [X ′
i(δ̂− δ0)

2]}
− (γ̂− γn)ε2

i �

‖X̆iX̆ ′
i − ẊiẊ ′

i‖ ≤ ‖X̆i − Ẋi‖2 + 2‖Ẋi‖‖X̆i − Ẋi‖�

Lemma A11. If the hypotheses of Theorem 3 are satisfied, then Σ̆2 − Σ̇2 = op(K/μ2
n).

Proof. Note first that Sn/
√
n is bounded, so by the Cauchy–Schwarz inequality, ‖Υi‖ =

‖Snzi/√n‖ ≤ C. Let di = C + |εi| + ‖Ui‖. Note that γ̂ − γn
p−→0 by standard arguments.

Then for Â= (1 + ‖γ̂‖)(1 + ‖δ̂‖)=Op(1) and B̂= ‖γ̂− γn‖ + ‖δ̂− δ0‖ p−→0, we have

‖Xi‖ ≤ C + ‖Ui‖ ≤ di� |ε̂i| ≤ |X ′
i(δ0 − δ̂)+ εi| ≤ CdiÂ�

‖Ẋi‖ = ‖S−1
n (Xi − γnεi)‖ ≤Cμ−1

n di�

‖X̆i‖ = ‖S−1
n (Xi − γ̂ε̂i)‖ ≤Cμ−1

n diÂ�

‖X̆iX̆ ′
i − ẊiẊ ′

i‖ ≤ (‖X̆i‖ + ‖Ẋi‖)‖X̆i − Ẋi‖
≤ Cμ−2

n diÂ‖γ̂‖‖ε̂i − εi‖ + ‖γ̂− γn‖|εi|
≤ Cμ−2

n d
2
i Â

2B̂�
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|ε̂2
i − ε2

i | ≤ (|εi| + |ε̂i|)|ε̂i − εi| ≤ Cd2
i ÂB̂�

‖X̆iε̂i − Ẋiεi‖ = ‖S−1
n (Xiε̂i − γ̂ε̂2

i −Xiεi + γnε2
i )‖

≤ Cμ−1
n (‖Xi‖|ε̂i − εi| + ‖γ̂‖|ε̂2

i − ε2
i | + |ε2

i |‖γ̂− γn‖)
≤ Cμ−1

n d
2
i (B̂+ Â2B̂+ B̂)≤ Cd2

i Â
2B̂�

‖X̆iε̂i‖ ≤ Cμ−1
n d

2
i Â

2� ‖Ẋiεi‖ ≤ Cμ−1
n d

2
i �

Also note that

E

[∑
i �=j
P2
ijd

2
i d

2
j μ

−2
n

]
≤ Cμ−2

n

∑
i�j

P2
ij = Cμ−2

n

∑
i

Pii = Cμ−2
n K�

so that
∑
i �=j P2

ijd
2
i d

2
j μ

−2
n =Op(K/μ2

n) by the Markov inequality. Then it follows that∥∥∥∥∑
i �=j
P2
ij(X̆iX̆

′
i ε̂

2
j − ẊiẊ ′

iε
2
j )

∥∥∥∥ ≤
∑
i �=j
P2
ij(|ε̂2

j |‖X̆iX̆ ′
i − ẊiẊ ′

i‖ + ‖Ẋi‖2|ε̂2
j − ε2

j |)

≤ Cμ−2
n

∑
i �=j
P2
ijd

2
i d

2
j (Â

4B̂+ ÂB̂)= op(K/μ2
n)�

We also have∥∥∥∥∑
i �=j
P2
ij(X̆iε̂iε̂jX̆

′
j − ẊiεiεjẊj)

∥∥∥∥
≤

∑
i �=j
P2
ij(‖X̆iε̂i‖‖X̆jε̂j − Ẋjεj‖ + ‖Ẋjεj‖‖X̆iε̂i − Ẋiεi‖)

≤Cμ−2
n

∑
i �=j
P2
ijd

2
i d

2
j (1 + Â2)Â2B̂= op

(
K

μ2
n

)
�

The conclusion then follows by the triangle inequality. �

Lemma A12. If the hypotheses of Theorem 3 are satisfied, then Σ̆1 − Σ̇1 = op(K/μ2
n).

Proof. Note first that

ε̂i − εi = −X ′
i(δ̂− δ0)= −X ′

iS
−1′
n S′

n(δ̂− δ0)= −(zi/
√
n+ S−1

n Ui)
′Δ̂= −D′

iΔ̂�

whereDi = zi/√n+ S−1
n Ui and Δ̂= S′

n(δ̂− δ0). Also

ε̂2
i − ε2

i = −2εiX ′
i(δ̂− δ0)+ [X ′

i(δ̂− δ0)]2�

X̆i − Ẋi = −γ̂ε̂i + γnεi = S−1
n γ̂D′

iΔ̂− S−1
n μn(γ̂− γn)εi/μn�

We now have Σ̆1 − Σ̇1 = ∑7
r=1 Tr , where

T1 =
∑
i �=j �=k

(X̆i − Ẋi)Pik(ε̂2
k − ε2

k)Pkj(X̆j − Ẋj)′�
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T2 =
∑
i �=j �=k

ẊiPik(ε̂
2
k − ε2

k)Pkj(X̆j − Ẋj)′�

T3 =
∑
i �=j �=k

(X̆i − Ẋi)Pikε2
kPkj(X̆j − Ẋj)′� T4 = T ′

2�

T5 =
∑
i �=j �=k

(X̆i − Ẋi)Pikε2
kPkjẊ

′
j�

T6 =
∑
i �=j �=k

ẊiPik(ε̂
2
k − ε2

k)PkjẊ
′
j� T7 = T ′

5�

From the above expression for ε̂2
i − ε2

i , we see that T6 is a sum of terms of the form

B̂
∑
i �=j �=k ẊiPikηiPkjẊ ′

j , where B̂
p−→0 and ηi is a component either of −2εiXi or of

XiX
′
i . By Lemma A10, we have

∑
i �=j �=k ẊiPikηiPkjẊ ′

j =Op(1), so by the triangle inequal-

ity, T6
p−→0. Also, note that

T5 = S−1
n γ̂Δ̂′ ∑

i �=j �=k
DiPikε

2
kPkjẊ

′
j + S−1

n μn(γ̂− γn)
∑
i �=j �=k

(εi/μn)Pikε
2
kPkjẊ

′
j �

Note that S−1
n γ̂Δ̂′ p−→0, E[Di] = zi/

√
n, Var(Di)=O(μ−2

n ), E[Ẋi] = zi/
√
n, and Var(Ẋ)=

O(μ−2
n ). Then by Lemma A10, it follows that

∑
i �=j �=kDiPikε2

kPkjẊ
′
j = Op(1), so that

S−1
n γ̂Δ̂′ ∑

i �=j �=kDiPikε2
kPkjẊ

′
j

p−→0. A similar argument applied to the second term and

the triangle inequality then give T5
p−→0. Also T7 = T ′

5
p−→0.

Next, analogous arguments apply to T2 and T3, except that there are four terms in
each of them rather than two, and also apply to T1, except there are eight terms in T1.
For brevity we omit the details. �

Lemma A13. If the hypotheses of Theorem 3 are satisfied, then

Σ̇2 =
∑
i �=j
P2
ijziz

′
iσ

2
j /n+ S−1

n

∑
i �=j
P2
ij(E[ŨiŨ ′

i ]σ2
j +E[Ũiεi]E[εjŨ ′

j])S−1′
n

+ op(K/μ2
n)�

Proof. Note that Var(ε2
i )≤ C and μ2

n ≤Cn, so that for uki = e′kS−1
n Ui,

E[(ẊikẊi�)2] ≤ CE[Ẋ4
ik + Ẋ4

i�] ≤ C{z4
ik/n

2 +E[u4
k] + z4

i�/n
2 +E[u4

�]} ≤ Cμ−4
n �

E[(Ẋikεi)2] ≤CE[(z2
ikε

2
i /n+ u2

kiε
2
i )] ≤ Cn−1 +Cμ−2

n ≤ Cμ−2
n �

Also, we have, for Ω̃i =E[ŨiŨ ′
i ],

E[ẊiẊ ′
i] = ziz′

i/n+ S−1
n Ω̃iS

−1′
n � E[Ẋiεi] = S−1

n E[Ũiεi]�
Next letWi be e′jẊiẊ

′
iek for some j and k, so that

E[Wi] = e′jS−1
n E[ŨiŨ ′

i ]S−1′
n ek + zijzik/n� |E[Wi]| ≤ Cμ−2

n �
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Var(Wi)= Var{(e′jS−1
n Ui + zij/

√
n)(e′kS

−1
n Ui + zik/

√
n)}

≤ C/μ4
n +C/nμ2

n ≤ C/μ4
n�

Also let Yi = ε2
i . Then

√
K(σ̄W nσ̄Yn + σ̄W nμ̄Yn + μ̄W nσ̄Yn) ≤ CK1/2/μ2

n, so applying
Lemma A9 for thisWi and Yi gives∑

i �=j
P2
ijẊiẊ

′
iε

2
j =

∑
i �=j
P2
ij(ziz

′
i/n+ S−1

n Ω̃iS
−1′
n )σ2

j +Op(
√
K/μ2

n)�

It follows similarly from Lemma A9 withWi and Yi equal to elements of Ẋiεi that∑
i �=j
P2
ijẊiεiεjẊ

′
j = S−1

n

∑
i �=j
P2
ijE[Ũiεi]E[εjŨ ′

j]S−1′
n +Op(

√
K/μ2

n)�

Also, byK −→ ∞, we have Op(
√
K/μ2

n)= op(K/μ2
n). The conclusion then follows by the

triangle inequality. �

Lemma A14. If the hypotheses of Theorem 3 are satisfied, then

Σ̇1 =
∑
i �=j �=k

ziPikσ
2
kPkjz

′
j/n+ op(1)�

Proof. Apply Lemma A10 with Wi equal to an element of Ẋi, Yj equal to an element of
Ẋj , and ηk equal to ε2

k. �

Proof of Theorem 3. Note that X̄i = ∑n
j=1 PijX̂j ,

n∑
i=1

(X̄iX̄
′
i − X̂iPiiX̄ ′

i − X̄iPiiX̂ ′
i)ε̂

2
i

=
n∑

i�j�k=1

X̂iPikε̂
2
kPkjX̂

′
j −

n∑
i�j=1

X̂iPiiε̂
2
i PijX̂

′
j −

n∑
i�j=1

X̂iPijε̂
2
j PjjX̂

′
j

=
n∑

i�j�k=1

X̂iPikε̂
2
kPkjX̂

′
j −

∑
i �=j
X̂iPiiε̂

2
i PijX̂

′
j

−
∑
i �=j
X̂iPijε̂

2
j PjjX̂

′
j − 2

n∑
i=1

X̂iP
2
iiε̂

2
i X̂

′
i

=
n∑

i�j�k/∈{i�j}
X̂iPikε̂

2
kPkjX̂

′
j −

n∑
i=1

X̂iP
2
iiε̂

2
i X̂

′
i

=
n∑

i �=j �=k
X̂iPikε̂

2
kPkjX̂

′
j +

n∑
i �=j
P2
ijX̂iX̂iε̂

2
j −

n∑
i=1

X̂iP
2
iiε̂

2
i X̂

′
i �
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Also, for Z′
i and Z̃′

i equal to the ith row of Z and Z̃ =Z(Z′Z)−1, we have

K∑
k=1

K∑
�=1

(
n∑
i=1

Z̃ikZ̃i�X̂iε̂i

)(
n∑
j=1

ZjkZj�X̂jε̂j

)′

=
n∑

i�j=1

(
K∑
k=1

K∑
�=1

Z̃ikZjkZ̃i�Zj�

)
X̂iε̂iε̂jX̂

′
j =

n∑
i�j=1

(
K∑
k=1

Z̃ikZjk

)2

X̂iε̂iε̂jX̂
′
j

=
n∑

i�j=1

(Z̃′
iZj)

2X̂iε̂iε̂jX̂
′
j =

n∑
i�j=1

P2
ijX̂iε̂iε̂jX̂

′
j �

Adding this equation to the previous one then gives

Σ̂ =
∑
i �=j �=k

X̂iPikε̂
2
kPkjX̂

′
j +

∑
i �=j
P2
ijX̂iX̂

′
i ε̂

2
j −

n∑
i=1

X̂iP
2
iiε̂

2
i X̂

′
i +

n∑
i�j=1

P2
ijX̂iε̂iε̂jX̂

′
j

=
∑
i �=j �=k

X̂iPikε̂
2
kPkjX̂

′
j +

∑
i �=j
P2
ij(X̂iX̂

′
i ε̂

2
j + X̂iε̂iε̂jX̂ ′

j)�

It then follows that S−1
n Σ̂S−1′

n = Σ̆1 + Σ̆2, so that

S′
nV̂ Sn = (S−1

n ĤS−1′
n )−1S−1

n Σ̂S−1′
n (S−1

n ĤS−1′
n )−1

= (S−1
n ĤS−1′

n )−1(Σ̆1 + Σ̆2)(S
−1
n ĤS−1′

n )−1�

By Lemma A4 we have S−1
n ĤS−1′

n

p−→HP . Also, note that for z̄i = ∑
j Pijzi = e′iPz,

∑
i �=j �=k

ziPikσ
2
kPkjz

′
j/n

=
∑
i

∑
j �=i

∑
k/∈{i�j}

ziPikσ
2
kPkjz

′
j/n

=
∑
i

∑
j �=i

(∑
k

ziPikσ
2
kPkjz

′
j − ziPiiσ2

i Pijz
′
j − ziPijσ2

j Pjjz
′
j

)/
n

=
(∑

k

z̄kσ
2
kz̄

′
k −

∑
i�k

P2
ikziz

′
iσ

2
k −

∑
i

ziPiiσ
2
i z̄

′
i +

∑
i

ziPiiσ
2
i Piiz

′
i

−
∑
j

z̄jσ
2
j Pjjz

′
j +

∑
i

zjPjjσ
2
j Pjjz

′
j

)/
n

=
∑
i

σ2
i (z̄iz̄

′
i − Piiziz̄′

i − Piiz̄iz′
i + P2

iiziz
′
i)/n−

∑
i �=j
P2
ijziz

′
iσ

2
j /n�
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Also, it follows similarly to the proof of Lemma A8 that
∑
i ‖zi − z̄i‖2/n ≤ z′(I − P)z/

n−→ 0 . Then by σ2
i and Pii bounded, we have∥∥∥∥∑

i

σ2
i (z̄iz̄

′
i − ziz′

i)/n

∥∥∥∥
≤

∑
i

σ2
i (2‖zi‖‖zi − z̄i‖ + ‖zi − z̄i‖2)/n

≤C
(∑

i

‖zi‖2/n

)1/2(∑
i

‖zi − z̄i‖2/n

)1/2

+C
∑
i

‖zi − z̄i‖2/n

−→ 0�∥∥∥∥∑
i

σ2
i Pii(ziz̄

′
i − ziz′

i)/n

∥∥∥∥ ≤
(∑

i

σ4
i P

2
ii‖zi‖2/n

)1/2(∑
i

‖zi − z̄i‖2/n

)1/2

−→ 0�

It follows that∑
i �=j �=k

ziPikσ
2
kPkjz

′
j/n =

∑
i

σ2
i (1 − Pii)2ziz′

i/n+ o(1)−
∑
i �=j
P2
ijziz

′
iσ

2
j /n

= ΣP −
∑
i �=j
P2
ijziz

′
iσ

2
j /n+ o(1)�

It then follows by Lemmas A10–A14 and the triangle inequality that

Σ̆1 + Σ̆2 =
∑
i �=j �=k

ziPikσ
2
kPkjz

′
j/n+

∑
i �=j
P2
ijziz

′
iσ

2
j /n

+ S−1
n

∑
i �=j
P2
ij(E[ŨiŨ ′

i ]σ2
j +E[Ũiεi]E[εjŨ ′

j])S−1′
n + op(1)+ op(K/μ2

n)

= ΣP +KS−1
n (Ψ + o(1))S−1′

n + op(1)+ op(K/μ2
n)

= ΣP +KS−1
n ΨS−1′

n + op(1)+ op(K/μ2
n)�

Then in Case I, we have op(K/μ2
n)= op(1), so that

S′
nV̂ Sn =H−1(ΣP +KS−1

n ΨS−1′
n )H−1 + op(1)=ΛI + op(1)�

In Case II, we have (μ2
n/K)op(1)

p−→0, so that

(μ2
n/K)S

′
nV̂ Sn =H−1((μ2

n/K)ΣP +μ2
nS

−1
n ΨS−1′

n )H−1 + op(1)=ΛII + op(1)�

Next, consider Case I and note that S′
n(δ̂ − δ0)

d−→Y ∼ N(0�ΛI), S′
nV̂ Sn

p−→ΛI,
c′μnS−1′

n → c′S′
0, and c′S′

0ΛIS0c �= 0. Then by the continuous mapping and Slutzky the-
orems,

c′(δ̂− δ0)√
c′V̂ c

= c′μnS−1′
n S′

n(δ̂− δ0)√
c′μnS−1′

n S′
nV̂ SnS

−1
n μnc

d−→ c′S′
0Y√

c′S′
0ΛIS0c

∼N(0�1)�
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For Case II, (μn/
√
K)S′

n(δ̂ − δ0)
d−→ Ȳ ∼ N(0�ΛII) and (μ2

n/K)S
′
nV̂ Sn

p−→ΛII. Then by
c′S′

0ΛIIS0c �= 0,

c′(δ̂− δ0)√
c′V̂ c

= c′S−1′
n (μn/

√
K)S′

n(δ̂− δ0)√
c′S−1′

n (μ2
n/K)S

′
nV̂ SnS

−1
n c

= c′μnS−1′
n (μn/

√
K)S′

n(δ̂− δ0)√
c′μnS−1′

n (μ2
n/K)S

′
nV̂ SnS

−1
n μnc

d−→ c′S′
0Ȳ√

c′S′
0ΛIIS0c

∼N(0�1)�
�

Proof of Corollary 1. Note first that in this example, μn = μGn, so that

μnS
−1
n = diag(μn/

√
n� � � � �μn/

√
n�1)S̃−1� S̃−1 =

[
I 0

−π1 1

]
�

By Assumption 2, γ = limn−→∞(μ2
n/n) exists and is either 0 or 1. By σ2

i ≥ C > 0,
H−1
P ΣPH

−1
P is positive definite (p.d.). Also Ψ = limn−→∞E[(∑i �=j PijŨiεj)(

∑
i �=j PijŨi ×

εj)
′]/K is positive semidefinite, implying ΛI is p.d.
If (a) μn = n, then we have Case I and S0 = S̃−1, which is nonsingular so that S0c �= 0.

Hence

c′S′
0ΛIS0c �= 0

and the conclusion follows from Theorem 3.
Next let b = (−π1�1)′, so b′c �= 0 under (b) and (c). Note that if μn �= n, then by As-

sumption 2, it follows that S0 = diag(0� � � � �0�1)S̃−1 = eGb
′ for the Gth unit vector eg.

Then under (b), whereK/μ2
n is bounded,

S0c = eGb′c �= 0�

Therefore, c′S′
0ΛIS0c �= 0 and the conclusion follows from Theorem 3.

Finally, if (c) holds and μ2
n/n−→ 0, note that because E[εiŨiG] has the same sign for

all i, that E[εiŨiG]E[εjŨjG] ≥ 0 for all i and j, and hence∑
i �=j
P2
ij(σ

2
i E[Ũ2

jG] +E[εiŨiG]E[εjŨjG])/K

≥
∑
i �=j
P2
ijσ

2
i E[Ũ2

jG]/K ≥ C
∑
i �=j
P2
ij/K ≥C

(
1 −

∑
i

P2
ii/K

)
≥ C�

Then Ψ ≥ CeGe′G in the positive semidefinite sense, and hence by b′eG = 1,

ΛII ≥ CH−1
P S0eGe

′
GS

′
0H

−1
P = CH−1

P eGb
′eGe′Gbe

′
GH

−1
P =CH−1

P eGe
′
GH

−1
P �

It then follows that

c′S′
0ΛIIS0c = c′be′GΛIIeGb

′c ≥C(c′b)2(e′GH−1
P eG)

2 �= 0�
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so the conclusion follows from Theorem 3. �

Proof of Theorem 4. It suffices for us to show that for all n sufficiently large and for
any fixed positive real number ρ, there exists a constant C such that

E

[
det

(
X ′∗MX∗
n−K

)]−ρ
≤ C <∞�

To proceed, note that it is convenient here to change variables in the following way:
define HZ =Z(Z′Z)−1/2 ∈ VK�n (where VK�n denotes the Stiefel manifold, i.e., the set (or
space) of n×K matrices such thatX ′X = IK) and partition

HZ =
(
Z1·(Z′Z)−1/2

Z2·(Z′Z)−1/2

)
=

⎛⎝ HZ�1
K×K
HZ�2

(n−K)×K

⎞⎠ (say)�

Now define

H⊥
Z =

[−(H ′
Z�1)

−1H ′
Z�2

In−K

]
[In−K +HZ�2(H ′

Z�1HZ�1)
−1H ′

Z�2]−1/2

=
[−(Z′

1·)
−1Z′

2·
In−K

]
[In−K +Z2·(Z′

1·Z1·)−1Z′
2·]−1/2 ∈ Vn−K�n�

Note that the implicit assumption thatHZ�1 is nonsingular is really without loss of gener-
ality since rank(Z)=K by Assumption 1; hence, the invertibility of Z1 (and, thus, HZ�1)
can always be achieved, if necessary, by a repermutation of the rows ofZ. Note also that,
by construction,

P =HZH ′
Z� M =H⊥

ZH
⊥′
Z � and (HZ H⊥

Z ) ∈ O(n)�

where O(n) denotes the orthogonal group of n× n orthogonal matrices. Next, define

Wn = 1√
n−KH

⊥′
Z [ε X] = 1√

n−KH
⊥′
Z X∗�

so that

W ′
nWn = X ′∗H⊥

ZH
⊥′
Z X∗

n−K = X ′∗MX∗
n−K �

Under the Gaussian heteroskedastic error assumption, the probability density func-
tion ofWn has the representation

fn(Wn) = (2π)−(n−K)L/2(det[ΞW ])−1/2(n−K)(n−K)L/2

× exp
{
−(n−K)

2
(vec(Wn)−ϕn)′Ξ−1

W (vec(Wn)−ϕn)
}
�

where

ΞW = (IL ⊗H⊥′
Z )K

′
nLDΩ∗KnL(IL ⊗H⊥

Z )�



246 Hausman, Newey, Woutersen, Chao, and Swanson Quantitative Economics 3 (2012)

DΩ∗ =

⎛⎜⎜⎜⎜⎝
Ω∗

1 0 · · · 0

0 Ω∗
2

� � �
���

���
� � �

� � � 0
0 · · · 0 Ω∗

n

⎞⎟⎟⎟⎟⎠ � Ω∗
i =E[UiU ′

i] for i= 1� � � � � n�

ϕn = vec(Φn)� and Φn =
(

0(n−K)×1
1√

n(n−K)H
⊥′
Z zDμS̃

′
n

(n−K)×G

)
�

with KnL being the nL× nL commutation matrix and L=G+ 1. Note that

λmin(ΞW ) = (IL ⊗H⊥′
Z )K

′
nLKnL(IL ⊗H⊥

Z )λmin(DΩ∗)

= λmin(DΩ∗) (sinceH⊥′
Z H

⊥
Z = In−K andK′

nLKnL = InL)

= min
i
λmin(Ω

∗
i )

= λ∗�

Hence, we can bound fn(Wn) from above as

fn(Wn)

≤ λ−(n−K)L/2∗ (2π)−(n−K)L/2(n−K)(n−K)L/2

× exp
{
−(n−K)

2λ∗
(vec(Wn)−ϕn)′(vec(Wn)−ϕn)

}
≤ λ−(n−K)L/2∗ (2π)−(n−K)L/2(n−K)(n−K)L/2

× exp
{
−(n−K)

2λ∗
tr[(Wn −Φn)′(Wn −Φn)]

}
= f ∗

n (W ) (say)�

It follows that to complete the proof, we need to show that there exists constant C
such that for all n sufficiently large and for fixed ρ > 0,∫

R(n−K)L
[det(W ′

nWn)]−ρf ∗
n (Wn)(dWn)≤ C <∞�

Write

f ∗
n (Wn)= λ−(n−K)L/2∗ (2π)−(n−K)L/2(n−K)(n−K)L/2

× exp
{
−(n−K)

2λ∗
tr[(Wn −Φn)′(Wn −Φn)]

}
= λ−(n−K)L/2∗ (2π)−(n−K)L/2(n−K)(n−K)L/2

× exp
{
−(n−K)

2λ∗
tr[W ′

nWn]
}

exp
{
−(n−K)

2λ∗
tr[Φ′

nΦn]
}

× exp
{
(n−K)
λ∗

tr[ΦnWn]
}
�
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Next, we consider the change of variables

Wn =Q1Tn�

where Q1 ∈ VL�n−K so that Q′
1Q1 = IL and Tn is a L × L upper-triangular matrix with

positive diagonal elements. From Theorem 2.1.13 of Muirhead (1982), we obtain the Ja-

cobian of the transformationWn → (Q1�Tn) as

(dWn)=
L∏
g=1

t
(n−K−g)
gg (dTn)(dQ1)�

where tgg is the gth diagonal element of Tn, so that∫
R(n−K)L

[det(W ′
nWn)]−ρf ∗

n (Wn)(dWn)

= λ−(n−K)L/2∗ (2π)−(n−K)L/2(n−K)(n−K)L/2

× exp
{
−(n−K)

2λ∗
tr[Φ′

nΦn]
}

×
∫

· · ·
∫

tij

[∫
VL�n−K

exp
{
(n−K)
λ∗

tr[ΦnQ1Tn]
}
(dQ1)

]

× exp
{
−(n−K)

2λ∗
tr(T ′

nTn)

}
[det(T ′

nTn)]−ρ
L∏
g=1

t
(n−K−g)
gg (dTn)

= λ−(n−K)L/2∗ (2π)−(n−K)L/2(n−K)(n−K)L/2 exp
{
−(n−K)

2λ∗
tr[Φ′

nΦn]
}

(7)

×
∫

· · ·
∫

tij

[∫
VL�n−K

exp
{
(n−K)
λ∗

tr[ΦnQ1Tn]
}
(dQ1)

]

× exp
{
−(n−K)

2λ∗
tr(T ′

nTn)

}
[det(Tn)]−2ρ

L∏
g=1

t
(n−K−g)
gg (dTn)

= λ−(n−K)L/2∗ (2π)−(n−K)L/2(n−K)(n−K)L/2

× exp
{
−(n−K)

2λ∗
tr[Φ′

nΦn]
}

×
∫

· · ·
∫

tij

[∫
VL�n−K

exp
{
(n−K)
λ∗

tr[ΦnQ1Tn]
}
(dQ1)

]

× exp
{
−(n−K)

2λ∗
tr(T ′

nTn)

} L∏
g=1

t
(n−K−2ρ−g)
gg (dTn)�
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Consider first the integral with respect to the invariant measure defined by the dif-
ferential (dQ1). In this case, applying Lemma 9.5.3 of Muirhead (1982), we have∫

Q1∈VL�n−K
exp

{
(n−K)
λ∗

tr[ΦnQ1Tn]
}
(dQ1)

=
Γn−K−L

[
1
2
(n−K −L)

]
2(n−K−L)π(n−K−L)2/2

×
∫
Q1∈VL�n−K

∫
H∈O(n−K−L)

exp
{
(n−K)
λ∗

tr[ΦnQ1Tn]
}
(dH)(dQ1)

(8)

= 2Lπ(n−K)L/2

ΓL

[
1
2
(n−K)

] ∫
Q∈O(n−K)

exp
{
(n−K)
λ∗

tr[ΦnQ1Tn]
}
[dQ]

= 2Lπ(n−K)L/2

ΓL

[
1
2
(n−K)

] 0F1

(
1
2
(n−K); 1

4

(
n−K
λ∗

)2

TnΦ
′
nΦnT

′
n

)

= 2Lπ(n−K)L/2

ΓL

[
1
2
(n−K)

] 0F1

(
1
2
(n−K); 1

4

(
n−K
λ∗

)2

Φ′
nΦnRn

)
�

where Rn = T ′
nTn = W ′

nWn and where 0F1(
1
2(n−K); 1

4(
n−K
λ∗ )

2Φ′
nΦnRn) denotes a hyper-

geometric function with matrix argument. (See Muirhead (1982, Chapter 7.3) for defini-
tion and discussion on the hypergeometric function with matrix argument.) Now, from
Theorem 2.1.9 of Muirhead (1982), we have that

(dRn)= 2L
L∏
g=1

t
(L+1−g)
gg (dTn)�

so that the Jacobian of the transformation Tn →Rn is given by

(dTn)= 2−L
L∏
g=1

t
(−L−1+g)
gg (dRn)� (9)

Making the change of variables Tn →Rn and substituting (9) and (8) into (7), we get∫
R(n−K)L

[det(W ′
nWn)]−ρf ∗

n (Wn)(dWn)

= 2−Lλ−(n−K)L/2∗ (2π)−(n−K)L/2(n−K)(n−K)L/2

× exp
{
−(n−K)

2λ∗
tr[Φ′

nΦn]
}

2Lπ(n−K)L/2

ΓL

[
1
2
(n−K)

] (10)
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×
∫
Rn>0

0F1

(
1
2
(n−K); 1

4

(
n−K
λ∗

)2

Φ′
nΦnRn

)
× (detRn)(n−K−2ρ−L−1)/2 exp

{
−(n−K)

2λ∗
tr(Rn)

}
(dRn)

(using the fact that
∏L
g=1 tgg = (detT ′

nTn)
1/2 = (detRn)1/2)

= λ−(n−K)L/2∗ (2π)−(n−K)L/2(n−K)(n−K)L/2

× exp
{
−(n−K)

2λ∗
tr[Φ′

nΦn]
}

π(n−K)L/2

ΓL

[
1
2
(n−K)

]
×

∫
Rn>0

exp
{
−(n−K)

2λ∗
tr(Rn)

}
(detRn)(n−K−2ρ−L−1)/2

× 0F1

(
1
2
(n−K); 1

4

(
n−K
λ∗

)2

Φ′
nΦnRn

)
(dRn)�

where the integral converges for all n such that n−K > 2ρ+L− 1.
To evaluate the integral with respect to Rn, we make use of the well known fact

that the hypergeometric function 0F1(·) has an infinite series representation in terms
of zonal polynomials, namely

0F1

(
1
2
(n−K); (n−K)2AnRn

)
(11)

=
∞∑
k=0

∑
κ

1
((n−K)/2)κ

Cκ((n−K)2AnRn)
k! �

where, in the definition above, we let

An =
(

1
2λ∗

)2

Φ′
nΦn�

Here,
∑
κ denotes summation over all partitions κ= (k1� � � � �kL) of k such that k1 ≥ ··· ≥

kL ≥ 0 and
∑L
g=1 kg = k,Cκ((n−K)2AnRn) is the zonal polynomial of (n−K)2AnRn cor-

responding to κ, and the generalized hypergeometric coefficient ((n−K)/2)κ is defined
by (

n−K
2

)
κ

=
L∏
g=1

(
n−K − g+ 1

2

)
kg

with (n−K−i+1
2 )kg being Pocchammer’s symbol or forward factorial, so that(
n−K − g+ 1

2

)
kg

=
(
n−K − g+ 1

2

)(
n−K − g+ 2

2

)
× · · ·

×
(
n−K − g+ 2kg − 1

2

)
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and (n−K−g+1
2 )0 = 1. Making use of the infinite series representation (11), we apply The-

orem 7.2.7 of Muirhead (1982) to integrate term-by-term to obtain, for all n sufficiently

large such that n−K > 2ρ+L− 1,

∫
Rn>0

0F1

(
1
2
(n−K); (n−K)2AnRn

)
(detRn)(n−K−2ρ−L−1)/2

× exp
{
−(n−K)

2λ∗
tr(Rn)

}
(dRn)

=
∞∑
k=0

∑
κ

1
((n−K)/2)κ

×
∫
Rn>0

Cκ((n−K)2AnRn)
k! (detRn)(n−K−2ρ)/2−(L+1)/2

× exp
{
−(n−K)

2λ∗
tr(Rn)

}
(dRn)

= ΓL
(
n−K − 2ρ

2

)(
det

{
(n−K)

2λ∗
· IL

})−(n−K−2ρ)/2

×
∞∑
k=0

∑
κ

([n−K − 2ρ]/2)κ
([n−K]/2)κ

Cκ(2λ∗(n−K)An)
k!

= ΓL
(
n−K − 2ρ

2

)(
n−K

2λ∗

)−(n−K−2ρ)L/2

× 1F1

(
n−K − 2ρ

2
; n−K

2
;
(
n−K

2λ∗

)
Φ′
nΦn

)
�

Next, we analyze the asymptotic behavior of the hypergeometric function

1F1(
n−K−2ρ

2 ; n−K2 ; (n−K2λ∗ )Φ
′
nΦn). Using (generalized) Kummer’s relation, we can write

1F1

(
n−K − 2ρ

2
; n−K

2
;
(
n−K

2λ∗

)
Φ′
nΦn

)
= exp

(
tr
[(
n−K

2λ∗

)
Φ′
nΦn

])
1F1

(
ρ; n−K

2
;−

(
n−K

2λ∗

)
Φ′
nΦn

)
�

Now, using (A.6.17) of Chikuse (2003), we obtain

1F1

(
ρ; n−K

2
;−

(
n−K

2λ∗

)
Φ′
nΦn

)

=
[

det
(
IL + Φ′

nΦn

λ∗

)]−ρ
(1 +O(n−1))

=O(1)�
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It follows that∫
Rn>0

0F1

(
1
2
(n−K); (n−K)2AnRn

)
(detRn)(n−K−2ρ−L−1)/2

× exp
{
−(n−K)

2λ∗
tr(Rn)

}
(dRn)

(12)

= ΓL
(
n−K − 2ρ

2

)(
n−K

2λ∗

)−(n−K−2ρ)L/2

exp
(

tr
[(
n−K

2λ∗

)
Φ′
nΦn

])

×
[

det
(
IL + Φ′

nΦn

λ∗

)]−ρ
(1 +O(n−1))�

Substituting (12) into (10), we have∫
R(n−K)L

[det(W ′
nWn)]−ρf ∗

n (Wn)(dWn)

= λ−(n−K)L/2∗ (2π)−(n−K)L/2(n−K)(n−K)L/2

× exp
{
−(n−K)

2λ∗
tr[Φ′

nΦn]
}

π(n−K)L/2

ΓL

[
1
2
(n−K)

]
(13)

× ΓL
(
n−K − 2ρ

2

)(
n−K

2λ∗

)−(n−K−2ρ)L/2

exp
(

tr
[(
n−K

2λ∗

)
Φ′
nΦn

])

×
[

det
(
IL + Φ′

nΦn

λ∗

)]−ρ
(1 +O(n−1))

=
ΓL

[
1
2
(n−K − 2ρ)

]
ΓL

[
1
2
(n−K)

] (n−K)ρL(2λ∗)−ρL
[

det
(
IL + Φ′

nΦn

λ∗

)]−ρ
(1 +O(n−1))�

Now, multivariate gamma function can be written as a product of ordinary gamma func-
tions as

ΓL

[
1
2
(n−K − 2ρ)

]
= πL(L−1)/4

L∏
g=1

Γ

[
n−K − 2ρ− g+ 1

2

]
�

(See, for example, Muirhead (1982, Theorem 2.1.12).) Using the Stirling approximation,
we have, for g= 1� � � � �L,

Γ

[
n−K − 2ρ− g+ 1

2

]

=
(

4π
n−K − 2ρ− g+ 1

)1/2(
n−K − 2ρ− g+ 1

2e

)(n−K−2ρ−g+1)/2

(1 +O(n−1))

= (4π)1/2(2e)−(n−K−2ρ−g+1)/2(n−K − 2ρ− g+ 1)(n−K−2ρ−g)/2(1 +O(n−1))
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= (4π)1/2(2e)−(n−K−2ρ−g+1)/2(n−K)(n−K−2ρ−g)/2

×
(

1 − 2ρ+ g− 1
n−K

)(n−K)/2
(1 +O(n−1))

= (4π)1/2(2e)−(n−K−2ρ−g+1)/2(n−K)(n−K−2ρ−g)/2e−(2ρ+g−1)/2(1 +O(n−1))

= √
π2g/2(n−K)−g/22−(n−K−2ρ−1)/2e−(n−K)/2(n−K)(n−K−2ρ)/2(1 +O(n−1))�

so that

ΓL

[
1
2
(n−K − 2ρ)

]

= πL(L−1)/4
L∏
g=1

Γ

[
n−K − 2ρ− g+ 1

2

]

= πL(L−1)/4
L∏
g=1

√
π2g/2(n−K)−g/22−(n−K−2ρ−1)/2

× e−(n−K)/2(n−K)(n−K−2ρ)/2(1 +O(n−1))
(14)

= (2π)L(L+1)/4(n−K)−L(L+1)/42−(n−K−2ρ−1)L/2

× e−(n−K)L/2(n−K)(n−K−2ρ)L/2(1 +O(n−1))

= (2π)L(L+1)/42−(n−K−2ρ−1)L/2

× e−(n−K)L/2(n−K)L[n−K−2ρ−(L+1)/2]/2(1 +O(n−1))�

Similarly, we have

ΓL

[
1
2
(n−K)

]
= πL(L−1)/4

L∏
g=1

Γ

[
n−K − g+ 1

2

]
= (2π)L(L+1)/42−(n−K−1)L/2e−(n−K)L/2 (15)

× (n−K)L[n−K−(L+1)/2]/2(1 +O(n−1))�

Applying (14) and (15) to (13), we obtain∫
R(n−K)L

[det(W ′
nWn)]−ρf ∗

n (Wn)(dWn)

=
ΓL

[
1
2
(n−K − 2ρ)

]
ΓL

[
1
2
(n−K)

] (n−K)ρL(2λ∗)−ρL
[

det
(
IL + Φ′

nΦn

2λ∗

)]−ρ
(1 +O(n−1))

= (2π)L(L+1)/42−(n−K−2ρ−1)L/2e−(n−K)L/2

× (n−K)L[n−K−2ρ−(L+1)/2]/2(2π)−L(L+1)/42(n−K−1)L/2
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× e(n−K)L/2(n−K)−L[n−K−(L+1)/2]/2(n−K)ρL

× (2λ∗)−ρL
[

det
(
IL + Φ′

nΦn

2λ∗

)]−ρ
(1 +O(n−1))

= λ−ρL∗
[

det
(
IL + Φ′

nΦn

2λ∗

)]−ρ
(1 +O(n−1))

≤ λ−ρL∗ (1 +O(n−1))

=O(1)� �
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