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Abstract

An all-pole model of the speech spectral envelope is used to code the sine-wave am-
plitudes in the Sinusoidal Transform Coder (1, 2, 3]. While line spectral frequencies
(LSFs) are currently used to represent this all-pole model, it is shown that a mixture
of line spectral frequencies and partial correlation (PARCOR) coefficierts [4] can be
used to reduce complexity without a loss in quantization efficiency. The new repre-
sentation is applied in the Sinusoidal Transform Coder to reduce the time required
to compute all-pole model parameters by a factor of four. Objective and subjective
measures of speech quality demonstrate that this does not result in reduced quality.
In addition, the use of split vector quantization is shown to substantially reduce the
number of bits needed to code the all-pole model.
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1 Introduction

Speech coding at low data rates (4800 to 2400 bits per second) has been important
primarily for secure voice transmission. Significant improvements in quality have
made vocoders viable‘for other applications where there is an increasing demand for
bandwidth such as cellular telephone, personal communication systems, and satellite
communications. These applications require low power implementations using a single
digital signal processor unit so the computational complexity of vocoder algorithms
must be kept low. In this thesis it is demonstrated how the computational complexity
of the Sinusoidal Transform Coder (STC) can be reduced by using a mixture of
line spectral frequencies (LSFs) and partial correlation (PARCOR) coefficients to
represent the all-pole model of the sine-wave amplitudes.

The mixed LSF/PARCOR representation was introduced in [4] to increase the
quantization efficiency of 10th order lincar predictive coding. In STC improvements
in quality have been obtained by using model orders much higher than the basic 10th
order system, but this increases the complexity of the implementation due to the dif-
ficulty in computing the LSF parameters. The mixed LSF/PARCOR representation
is used here to code the higher order all-pole model of the sine-wave amplitudes in
STC and decrease the computational complexity of the vocoder. It is demonstrated
that the mixed LSF/PARCOR representation maintains the coding efficiency of the
current LSF system.

The Sinusoidal Transform Coder is introduced in section 2 and the all-pole model
for the sine-wave amplitudes is described. In section 3 the mixed LSF/PARCOR rep-
resentation is presented. The arithmetic accuracy needed for computations involving

LSFs is evaluated and the time required for these computations is determined. Sec-



tion 4 shows that when the parameters are quantized, using the mixed representation
results in no loss in quality as compared to a purely LSF representation for coding
the higher-order all-pole model of the sine-wave amplitudes at 2400 bits per second.
This is demonstrated with both objective and subjective measures of speech quality.
In addition, it is shown that split vector quantization can be used to reduce the num-
ber of bits needed to code the sine-wave amplitudes from 50 to 45. The extra bits
can then be used to code other parameters with more fidelity, thereby increasing the

overall quality of the system.



2 Sinusoidal Transform Coding

The sine-wave model for a short duration segment of speech is given by

s(n) = 3 Ay cos(nkwo + ¢x) (2.1)
k=1

where wg is the fundamental frequency, Ay are the sine-wave amplitudes and ¢ are
the sine-wave phases [3, 5]. In sinusoidal transform coding the parameters wy, Ax and
¢, are estimated, coded and transmitted at a frame rate of 15 to 20 milliseconds. The
receiver then synthesizes each frame of speech using the model in (2.1) and successive
segments are combined with an overlap-add technique. The pitch wp is estimated by
minimizing the mean squared error between the observed and reconstructed speech
[6, 5]. The sine-wave phases ¢ are estimated by sampling the speech spectrum S(w)
at the pitch harmonics kwo where S(w) is the Fourier transform of s(n). The harmonic
eine-wave amplitudes are estimated as in the Spectral Envelope Estimation Vocoder
(SEEVOC) [7].

For good speech reconstruction, directly coding the pitch, the amplitudes and the
phases requires at least 13000 bits per second. Encoding speech at low data rates
(4800 to 1200 bits per second) requires modeling the amplitudes and the phases such
that the parameters of the model can be coded more efficiently than the parameters
themserves. The phase of unvoiced speech is modeled as a uniformly distributed
random variable on the interval [-7 < ¢ < w| where the amount of the speech
spectrum that is unvoiced is determined by the degree to which the harmonic model is
well-fitted to the original set of sine-waves, a parameter that can be transmitted using

from 2 to 4 bits. During voiced speech the phase is modeled as a linear combination



of the phase of the vocal tract transfer function phase and the excitation phase.
A synthetic excitation phase is generated by the synthesizer and a minimum phase
model of the vocal tract transfer function is used, where the magnitude of the transfer
function is estimated by interpolating the sine-wave amplitudes using cubic spline
functions. With this model, an appropriate set of sine-wave phases can be generated at
the receiver from the pitch and the cubic spline envelope of the sine-wave amplitudes
so that the voiced speech phase information does not need to be coded explicitly.
Using the harmonic, minimum-phase model with the harmonic samples of the cubic
spline envelope allows very good quality speech to be synthesized.

Various models have been used to represent the sine-wave amplitudes including
the SEEVOC [7], cepstral [3] and all-pole [1, 2] models. The latter model has proven
to be th» most efficient for coding speech at 2400 bits per second, and it is that model
which will be the focus of this thesis. The form of the model is

H(z)= Ai) (2.2)
where
A(z)=1+ f:a;z_i. (2.3)

i=1

Using the terminology associated with linear prediction, A(z) is the inverse filter,
a; are the predictor coefficients, G is the gain, and M is the model order(8, 9]. In
direct linear predictive analysis of the speech waveform the predictor coefficients are
computed from the autocorrelation coefficients of the time waveform. For a sampling
rate of 8000 Hertz this requires that the model order be limited to about 10. If the
model order is increased beyond 10, the envelope of H(z) can begin to resolve the
harmonics of the underlying speech spectrum during voiced speech, and this results
in poor estimates of the sine-wave amplitudes, particularly when the parameters are
quantized.

The problem of a limited model order is avoided in STC by using an alternate
technique to estimate an all-pole model of the speech spectral envelope. The model

representation can then be made arbitrarily close to the estimated spectral envelope
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Figure 2-1: Example of (a) cubic spline interpolation of sine-wave amplitudes and (b)
22nd order all-pole model of the interpolated envelope.

by increasing the order of the model. The underlying spectral envelope is first esti-
mated by interpolating the logarithm of the sine-wave amplitudes using cubic spline
functions and the all-pole model is then fitted to this estimate of the spectral envelope
[1). In this method the autocorrelation coefficients are found using the inverse cosine
transform of the interpolated sine-wave amplitudes and the predictor coefficients are
then computed using Durbin’s recursion. An all-pole model order of 22 has been
found to be sufficient to reproduce good quality speech. Figure 2-1 shows an example
of the cubic spline interpolation of the sine—wa.\;e amplitudes in comparison with a
22nd order all-pole model of the estimated envelope.

Very good quality speech can the synthesized by using the spine envelope itself to
represent the sine-wave amplitudes but when an all-pole model is used to represent the
amplitudes a high model order is needed to maintain this good quality. When using
a model order greater than 10, good quality cannot be achieved with time domain
linear predictive analysis. Figure 2-2 shows that rather than fitting the spectral

envelope more closely as the model order is increased, time domain linear predictive
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analysis begins to resolve the pitch harmonics and the estimated spectral envelope
develops sharp peaks. This contrasts the all-pole fit to the spline interpolation of the
sine-wave amplitudes which fits the underlying spectral envelope more closely as the
model order is increased.

It was found that warping the interpolated spectral envelop on a perceptual scale
prior to fitting the all-pole model allows a reduction in model order from 22 to 14
while maintaining good quality in the reconstructed speech [2]. The warping function

used is

W(w) = alog(l + fw) (2.4)

where the parameters o and § allow flexibility in designing a coder at multiple bit
rates. Values of & = 170 and 8 = 0.554 are found to be adequate for coding at rates
of 2400 to 4800 bits per second. Figure 2-3 demonstrates how the 14th order spectral
fit can be improved using perceptual warping. In the low frequency region where the
ear is sensitive to narrower bandwidth distortions, the fit to the estimated spectrum
is better than in the high frequency region where the ear is less sensitive to a similar
distortion. This contrasts the all-pole model of the unwarped spectrum in which the

distortion is more uniform with respect to frequency.
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Figure 2-2: Comparison of time domain linear predictive analysis (LPC) and all-pole
fit to interpolated sine-wave amplitudes (STC).
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3 All-Pole Model Parameter Computation

The all-pole model can be characterized by the predictor coefficients, as shown
in equation (2.3). However, these parameters are known to have poor quantization
properties and hence are not used for speech coding. Their dynamic range is relatively
large and the stability of the filter H(z) cannot be guaranteed when they are quantized
[10]. Instead the predictor coefficients are transforined to an alternate representation
which is more suitable for coding such as partial correlation (PARCOR) coefficients
or line spectral frequencies (LSFs). A third representation introduced recently in [4]
uses a mixture of LSFs and PARCOR coeflicients to represent the all-pole model.
There are a number of methods for transforming from the predictor coefficients to
these parameter sets and for transforming back to the predictor coefficients. In this
thesis the numerical accuracy required for these transformations is determined as well

as their computational complexity.

3.1 All-Pole Model Representations

The inverse filter A(z) can be implemented as a lattice filter (assuming H(z) is stable)
where the partial correlation coefficients k; in the lattice are then uniquely related to
the predictor coefficients [8]. These PARCOR coefficients are very useful for coding.
They have limited dynamic range (—1 < k; < 1), the stability of the reconstruction
filter H(z) can be guaranteed when they are quantized, and they are efficiently com-
puted from the autocorrelation coefficients using Durbin’s recursion. The PARCOR

coefficients can also be computed using an algorithm that minimizes the forward and
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backward prediction error in the lattice filter implementation of A(z) [11]. This sec-
ond method has the advantage that each PARCOR coefficient k,, can be computed
based on the quantized values of the previous coefficients k; through fen—1 (where
k,, represents the quantized value of k,,.) This possibly compensates for some of the
quantization effects.

A more efficient parameter set for coding the all-pole model is the line spectral
frequencies. This is the representation currently used in STC to represent the all-pole
model of the sine-wave amplitudes for coding at 4800 to 2400 bits per second. The
LSFs for an Mth order all-pole model are defined as follows. Two artificial polyno-

mials of order M + 1 are created from the Mth order inverse filter A(z) according

to

P(z) = A(2)+ 2" MA(™) (3.1)
Q) = A(s)— 2~ MHAG), (32)

The line spectral frequencies f; correspond to the roots of P(z) and Q(z) which are
on the unit circle (i.e. at z = /™), where the trivial roots that always occur at
f = 3 and f = 0 are ignored. Substantial research has shown that the LSFs can
be coded efficiently and the stability of the synthesis filter can be guaranteed when
they are quantized. This parameter set has the advantage of better quantization and
interpolation properties than the corresponding PARCOR coefficients [12]. However
it has the disadvantage that solving for the roots of P(z) and ((z) can be more
computationally intensive than computing the PARCOR coeflicients.

The all-pole model can also be represented using a mixture of LSFs and PARCOR
coeficients as in [4]. In this representation the Mth order all-pole model is specified
by N LSFs, f; through fy (where N < M), and by PARCOR coefficients, kn41
through kjs. The predictor coefficients for this all-pole model can then be obtained
as in Figure 3-1. The Nth order LSFs are converted to predictor coefficients which
are then converted to PARCOR coefficients k; through ky. These are combined with

kn41 through kps and the Mth order predictor coefficients are computed from the M
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Figure 3-1: System for computing predictor coefficients from mixed LSF/PARCOR
representation.

PARCOR coefficients.

3.2 Parameter Transformations

Several methods can be used to solve for the roots of P(z) and @(z) to determine the

LSFs. To find these roots e?“ is substituted for z in (3.1) and (3.2) and the following
functions with equivalent (non-trivial) roots are formed
P'(w) = cos(Lw) + p1cos((L — 1)w) + pacos((L —2)w) + ... + % (3.3)
Q'(w) = cos(Lw)+ §icos((L —1)w) + gzcos({L —2)w) + ...+ %L (3.4)

where L = ¥ and p; and §; are determined as in Appendix A [13]. Using the
appropriate trigonometric substitutions, P/(w) and @'(w) can be converted to Lth
order polynomials in cos(w). Since polynomials of order 4 and less can be solved in
closed form, the Lth order polynomial can then be used to efficiently compute the
LSFs when the all-pole model order is 8 or less. When the model order is greater than
8 a closed form solution is not known as polynomials of order 5 and greater cannot
be solved in closed form [14]. For these higher model orders the roots of P’(w) and
Q'(w) are found numerically with root solving techniques. One method described in
(13] directly searches for roots of (3.3) and (3.4). A second method expresses (3.3)

and (3.4) as series expansions in Chebyshev polynomials and thereby significantly
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reduces the computational burden for finding the roots [15].
The inverse transformation from LSFs back to predictor coefficients is computed

directly from

A(z) = {P() + Q(2)] (3.5)
using
M2
P(z) = (1+=7Y ]_:'_]1: [1 —2cos(2m fP)z7! + 272) (3.6)
M
Q(z) = (1—2"Y) ][ =2cos(2rfi)z"" +272) (3.7

=1

where fP are the LSFs corresponding to the roots of P(z) and f! are the LSFs
corresponding to the roots of @(z). The computation for this transformation can
be reduced by a factor of 4 by applying the method described in [15] using series
expansions in Chebyshev polynornials.

An all-pole model order of at least 14 is needed to to synthesize good quality speech
but the numerical root solving techniques used to find the LSFs are computationally
expensive. An advantage of the mixed LSF/PARCOR representation is that the LSF
order can be limited to N = 8 so that the efficient closed form solution can be used
to compute the LSFs. Two different methods are then used to compute the mixed
representation. The first, shown in Figure 3-2, uses Durbin’s recursion to compute

the predictor and PARCOR coefficients. This recursion is given by

E, = R(0) (3.8)
i-1

ki = —|RG)+ S a™MRGE —j)| [ Eies (3.9)
J=1

= K (3.10)

o) = kel 1<j<i-1 (3.11)

E; = (1-k)E_, (3.12)

where R(z) are the autocorrelation coefficients and equations (3.9)-(3.12) are solved

17
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Figure 3-2: System for computing mixed LSF/PARCOR representation using
Durbin’s recursion.

recursively for i = 1,2,..., N to determine the predictor coefficients a ;V corresponding
to an Nth order all-pole model. The LSFs f; through fy are computed from af’ using
the closed form solution described in Appendix A. Then PARCOR coeflicients &k n41
through kys are computed by continuing Durbin’s recursion from the Nth iteration.
The LSFs and PARCOR coefficients are then quantized independently.

A second method for computing the mixed representation is shown in Figure 3-3
where the LSFs and PARCOR coefficients are not quantized independently. Instead,
PARCOR coeflicients kn4; through kpr are computed using a lattice formulation so
that the quantization of the LSFs can be taken into account [4]. To begin, the Nth
order predictor coefficients a;-v are computed from Durbin’s recursion and the Nth
order LSFs f; through fy are computed from aﬁ-" in closed form. The LSFs are
quantized and these quantized values ( fi through fN) are transformed to predictor

coefficients &Y. This is done using either the direct computation in equations (3.6)

and (3.7) or by using the series expansion in Chebyshev polynomials. Next, PARCOR

N

coefficients k, through ken are computed from a;' using the backward recursion

ki

Il

af!) (3.13)
. () _ 4®g0)
o) = “Jl__akzh 1<j<i—1 (3.14)

where the index ¢ takes on the values NN —1,...,1 in that order. Initially agN) =

18
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Figure 3-3: System for computing mixed LSF/PARCOR representation using the
autocorrelation-lattice method.

&;-V , 1 < j < N. Finally, the autocorrelation coefficients and k; through kp are used in
the autocorrelation-lattice method [11] to compute ky 1 through kas. In [4] these last
PARCOR coeflicients were quantized with vector quantization after all M — N of them
had been computed. When scalar quantization is used these PARCOR coefficients
can be quantized within the autocorrelation-lattice computation.

To convert the mixed LSF/PARCOR representation back to predictor coefficients
(Figure 3-1) the quantized LSFs are first transformed to Nth order predictor coeffi-
cients using either the direct form or the expansion in Cliebyshev polynomials. These
predictor coefficients are transformed to ey through ky, and combined with IAcN.H
through kp; which have been transmitted directly to provide the PARCOR represen-
tation of the Mth order system.

3.3 Arithmetic Accuracy Requirements

It has been observed that numerical accuracy problems can occur in computations
involving LSFs when the model order is 14 or greater. These problems are avoided
in workstation-based implementations by using double precision arithmetic, but for
real-time DSP implementations such as on the TMS320C30, double precision arith-

metic must be performed in software causing a substantial increase in computational
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complexity. The various methods for computing LSFs from predictor coefficients and
the corresponding inverse transformations are closely examined below to determine
which transformations require double precision so that the use of higher precision
arithmetic can be avoided when unnecessary.

A number of differences must be accounted for when comparing the accuracy of
the workstation implementation with the accuracy of the DSP implementation. The
numerical output of the two implementations will in general differ because even single
precision arithmetic is implemented differently on the two processors. The compilers
are also different and some arithmetic operations are likely to be performed in a
different order causing further differences in roundoff error. Another problem is that
when observing differences in the values of LSFs it is not readily apparent how much
of a difference is significant. A small error in an LSF can lead to a large error in the
corresponding spectral envelope when two LSFs are close together [16].

Instead of comparing LSFs directly, the LSFs are converted back to predictor
coefficients and the corresponding spectral envelopes are compared. These envelopes
are computed in the workstation using double precision arithmetic. The various
methods for transforming to and from LSFs were first tested on the workstation using
a double precision implementation. A reference spectral envelope computed from the
original predictor coefficients for a given all-pole model was compared to the spectral
envelope computed from the predictor coefficients which had been transformed to
LSFs and back as in Figure 3-4. Over 4500 frames of speech from 6 different speakers
(3 male and 3 female) were tested and the largest difference between the envelopes at
any point for any frame was less than 1 thousandth of a dB regardless of the method
used for the transformations. The double precision workstation implementation was
judged to have negligible numerical error associated with it.

To observe the accuracy of the DSP transformation from predictor coefficients to
LSFs, those transformations were performed on the DSP while the inverse transforma-
tion from LSFs back to predictor coefficients was performed on the host workstation
using double precision arithmetic. The reference spectral envelope was compared to

the spectral envelope corresponding to the predictor coefficients that were computed
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on the DSP. The inverse transformations from LSFs back to predictor coefficients
were tested in a similar manner where the forward transformation was computed on
the workstation using double precision arithmetic and the inverse transformation was
computed on the DSP.

The workstation used was a Sun Microsystems SPARCstation 10 and the DSP
was a Texas Instruments TMS320C30. To avoid a loss in accuracy when transferring
data between the SPARCstation and the TMS320C30, all data was transferred in
IEEE single precision binary format. Although the SPARCstation uses the IEEE
format to represent floating point numbers the TMS320C30 used its own floating point
representation. A format conversion between the IEEE format to the TMS320C30
floating point format is performed in software by the TMS320C30. This format
conversion is exact except for “soft” zeros (denormalized members) [17].

The worst case spectral error was measured for the transformation from predictor
coefficients to LSFs using three methods: the closed form solution (8th order model
only), direct root solving, and by using expansions in Chebyshev polynomials. The
direct root solving was implement=d using code from the current real-time version of
STC where the resolution of the search for roots was adjusted to provide sufficient
accuracy while minimizing computation time. For the method using expansions in
Chebyshev polynomials, the initial search resolution was adjusted such that the al-
gorithm would require the same computation time as the direct root solving method.

Table 3.1 shows the largest magnitude error in the spectral envelope (for the 4500

21



Root Solving All-pole Model Order
Method 8 | 14 | 22
Closed Form 0.006 | — —

Direct Root Solving 0.156 | 0.230 | 0.337

Polynomial Expansion | 0.005 | 0.010 | 0.036

Table 3.1: Spectral error (in dB) when computing LSFs from predictor coefficients
using single length arithmetic.

frames) when LSFs are computed from predictor coefficients using the DSP. This er-
ror is on the order of a few hundredths of a dB for the transformation from predictor
coefficients to LSFs using the series expansion in Chebyshev polynomials. The direct
root solving method has an error which is roughly an order of magnitude greater. It
was also observed that significantly increasing the initial search resolution for the se-
ries expansion in Chebyshev polynomials in order to further increase accuracy would
cause the algorithm to fail when using single precision arithmetic for model orders of
14 and greater.

The conversion of LSFs back to predictor coefficients requires greater arithmetic
precision than the forward transformation. The worst case spectral error for both
the direct computation of predictor coefficients and computation using the series
expansion in Chebyshev polynomials is over 40 dB for 18tk and 22th order systems.
Figure 3-5 shows an example of error in the spectral envelope caused by transforming
22nd order LSFs to predictor coefficients using single precision arithmetic on the
DSP. Table 3.2 shows that for systems of order 8 and 10 the worst case error is less
than 1 tenth of a dB which is acceptable. For the 14th order system the worst case
error shown in the table is about 1 dB. This should not seriously degrade quality
but the measurement was made using a limited amount of speech (4500 frames.)
Listening tests performed over a larger database revealed that using single precision
arithmetic for a 14th order system occasionally results in speech frames with poorly
reconstructed envelopes.

The dynamic range of floating point numbers on the DSP can be increased from

about 6 decimal digits using single length arithmetic to more than 13 decimal digits
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Figure 3-5: Comparison of reference spectral envelope: with test spectral envelope
where the test envelope has distortion caused by roundoff error in single precision
arithmetic.

Transformation All-pole Model Order
Method 8 10 14 18 22
Direct Computation 0.023 | 0.092 | 1.108 | 43.63 | 72.58
Polynomial Expansion | 0.020 | 0.060 | 0.898 | 55.87 | 81.12

Table 3.2: Spectral error (in dB) when computing predictor coefficients from LSFs
using single length arithmetic.
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Transformation All-pole Model Order
Method 8 10 14 18 22
Direct Computation 0.001 | 0.001 | 0.001 | 0.001 | 0.002
Polynomial Expansion | 0.001 | 0.001 | 0.001 | 0.001 | 0.001

Table 3.3: Spectral error (in dB) when computing predictor coefficients from LSFs
using double length arithmetic.

using double length arithmetic [17]. However using double length arithmetic substan-
tially increases computation time. Single precision addition and multiplication each
require only one instruction cycle on the TMS320C30 but double length addition re-
quires 25 instruction cycles and double length multiplication requires 35 instruction
cycles. A sofiware implementation of double precision IEEE floating point requires
even more computation time than double length arithmetic. Table 3.3 shows that the
worst case error for the conversion from LSFs to predictor coeflicients using double
length arithmetic is only two thousands of a dB. But use of double length arithmetic
increases the computation time for this transformation by a factor of from 5 to 10.
Single precision arithmetic is adequate for computing PARCOR coefficients but
the mixed LSF/PARCOR representation requires computations involving LSFs. If
the order for the LSFs is restricted to N = 8 then it can be seen from Tables 3.1 and
3.2 that single precision arithmetic is adequate for computing the transformations to
and from the mixed representation. This allows the use of computationally expensive

double length arithmetic to be avoided.

3.4 Computational Complexity

The computational complexity of various transformations was determined by measur-
ing the time taken to perform the requisite computations on the TMS320C30. This
was measured by using the internal TMS320C30 timer to periodically increment a
counter and observing the average count cbtained during the execution of the subrou-
tine. The average count is multiplied by the timer period to determine the average

time used by the routine. The timer pericd chosen must be short enough to have ad-
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All-Pole Transformation All-pole Time
Representation Method Model Order | in ms
LSF Direct Root Solving 14 1.19
LSF Polynomial Expansion 14 1.16
LSF/PARCOR | Autocorrelation-Lattice 14 1.13
LSF/PARCOR | Durbin’s Recursion 14 0.35
LSF Direct Root Solving 22 1.71
LSF Polynomial Expansion 22 1.84
LSF/PARCOR | Autocorrelation-Lattice 22 2.42
LSF/PARCOR | Durbin’s Recursion 22 0.47

Table 3.4: Time needed to compute all-pole model parameters.

equate resolution but not so short that the timer interrupts occur too frequently and
thereby account for a significant amount of processor time. A timer counter period
of 0.1 milliseconds was used and in practice it was found that this method for timing
gave a resolution of about 0.01 milliseconds (it is assumed that the subroutine always
begins execution with a random delay from the previous counter increment.)

The time needed to compute the all-pole representation from the autocorrelation
coefficients is shown in Table 3.4. This demonstrates that for a 14¢h order system the
mixed LSF/PARCOR representation using Durbin’s recursion is about three times
faster than the other three methods. Direct root solving, the polynomial expan-
sion, and the mixed LSF/PARCOR representation using the autocorrelation-lattice
method all require roughly the same amount of time. For a 22nd order system the
mixed LSF/PARCOR representation using Durbin’s recursion is again over three
times faster than direct root solving or the polynomial expansion method, while
computing the mixed LSF/PARCOR representation using the autocorrelation-lattice
method requires more time than any of the other methods.

For the inverse transformation shown in Table 3.5, the time needed to compute
the predictor coefficients from the mixed LSF/PARCOR representation is much less
than the time needed to compute them from a 14th order LSF representation. This

is in part because the transformation of 14th order LSFs to predictor coefficients

must be performed with double length arithmetic while for the mixed LSF/PARCOR
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All-Pole Transformation All-pole Time
Representation Method Model Order | in ms
LSF Direct Computation 14 3.59
LSF Polynomial Expansion 14 1.14
LSF/PARCOR | Polynomial Expansion 14 0.21
LSF Direct Computation 22 8.39
LSF Polynomial Expansion 22 2.42
LSF/PARCOR | Polynomial Expansion 22 0.27

Table 3.5: Time needed to compute predictor coefficients from all-pole model param-
eters.

representation where the order of the LSFs is limited to 8, this transformation can

be done with single precision arithmetic.

3.5 Discussion

The above analysis shows that for a 14th order LSF system, the fastest and most
accurate method for computing LSFs from predictor coefficients and for the inverse
transformation from LSFs to predictor coefficients is the method using a series ex-
pansion in Chebyshev polynomials. The inverse transformation was found to require
double length arithmetic when the all-pole model order is 14 or greater. Table 3.6
compares the computation time for this method to the computation time for the
mixed LSF/PARCOR representation using the autocorrelation-lattice method and
using Durbin’s recursion. The mixed representation requires substantially less compu-
tation than a 14th order LSF representation and if the autocorrelation-lattice method
is not used there is an additional substantial savings in computation. The worst case

error in the spectral envelope is comparable for all three methods.
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All-Pole Transformation All-pole Time
Representation Method Model Order | in ms
LSF Polynomial Expansion 14 2.31
LSF/PARCOR | Autocorrelation-Lattice 14 1.34
LSF/PARCOR | Durbin’s Recursion 14 0.56
LSF Polynomial Expansion 22 4.26
LSF/PARCOR | Autocorrelation-Lattice 22 2.50
LSF/PARCOR | Durbin’s Recursion 22 0.73

Table 3.6: Total time needed to compute all-pole model parameters and then trans-
form coded parameters to predictor coefficients.
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4 Parameter Coding

In the previous section it was shown that the mixed LSF/PARCOR representa-
tion requires substantially less computation time than a purely LSF representation.
In this section the coding properties of the mixed LSF/PARCOR representation are
examined using both scalar and vector quantization to determine if there is a cost
in quantization efficiency associated with using the mixed LSF/PARCOR represen-
tation. While in [4] the mixed LSF/PARCOR representation was used to improve
quantization efficiency for a 10tk order LPC system, the mixed representation is ap-
plied here to a 14th order all-pole model of the sine-wave amplitudes in STC. The
quantization efficiency of the mixed LSF/PARCOR representation is compared to
that of the 14th order LSF representation currently used in STC for speech coding
at 2400 bits per second. The quality of the speech synthesized from both systems is
evaluated using a perceptually weighted spectral distortion measure and using blind
AB listening tests.

An objective measure for speech quality which has been used extensively is the L,
norm of the log spectral distance [18, 19, 20]. If the L, norm is weighted with respect
to frequency, the correlation of the distortion measure with subjective measures of
speech quality increases significantly [21]. The weighted spectral distortion measure
is

1 = . 1/2
SD(i) = [; [ W (w)[101ogy0 Pi(w) — 101ogso P,-(w)]zdw] (4.1)
where P;(w) is the power spectrum of the all-pole model on frame ¢, Is,(w) is the
power spectrum of the quantized all-pole model on frame i and W(w) is a perceptually

based weighting function described in Appendix B. Averaging this weighted spectral

distortion is a measure of speech quality. Another useful measure of quality is to
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examine the percentage of frames for which the weighted distortion exceeds specified
thresholds, typically 2 dB and 4 dB, because a few frames with large distortion can

result in poor quality even though the average distortion is small [19, 20].

4.1 Scalar Quantization

The current version of STC codes a 14th order all-pole model of the sine-wave am-
plitudes with an LSF representation using 50 bits. The LSFs are differentially coded
using a scalar quantizer designed as in (22]. For comparison, a 14th order mixed
LSF/PARCOR representation (with N = 8) was also scalar quantized with 50 bits.
In low-rate STC coding frame-fill techniques are used to encode the all-pole model
on alternate subframes, however frame-fill techniques for the mixed LSF/PARCOR
representation have not been studied. In the comparisons below, every subframe is
quantized.

Properties of the PARCOR coefficients can give some insight into the coding
properties of the mixed LSF/PARCOR representation. The spectral envelope of
the all-pole model is increasingly sensitive to quantization error in any one of the
PARCOR coefficients as the magnitude of that coefficient value approaches a value
of 1. An estimate of the sensitivity function (after [10]) is shown in Figure 4-1.
The PARCOR coefficients for a 14th order model of the sine-wave amplitudes were
collected from 790,000 frames of speech in the TIMIT database [23] and histograms
were generated. The histograms in Figures 4-2 and 4-3 are scaled as samples of the
probability density functions of the PARCOR coefficients and are compared with
Gaussian distributions having means and variances corresponding to those of the
PARCOR coefficients. These figures show that kg through ki4 are all concentrated
between -0.4 and +0.4 where their spectral sensitivity is nearly uniform. To minimize
the expected coding distortion when using scalar quantization for kg through k4 a
Lloyd-Max quantizer designed for Gaussian random variables was used [24]. The 8
LSFs in the mixed representation are quantized as in [22].

The quantization efficiency of the mixed representation was evaluated using the
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Figure 4-1: Relative spectral sensitivity of PARCOR coefficients.

autocorrelation-lattice method to compute each PARCOR. coefficient based on the
quantized values of the previously computed PARCOR coefficients. Quantization
efficiency of the mixed representation was also tested using Durbin’s recursion to
compute all of the PARCOR coefficients as when the 8 LSFs and 6 PARCOR coefhi-
cients are quantized simultaneously.

The bit allocation for the 14th order LSF system was determined from extensive
listening tests and is listed in Table 4.1. Aun appropriate bit allocation was needed for
the mixed LSF/PARCOR representation. With 14 parameters and 50 bits to assign,
some method was required to limit the number of combinations to be evaluated. The
method used was as follows. Starting with a given bit allocation, the increase in
mean distortion was observed when one of the parameters was quantized with one
fewer bits. This was repeated for each of the parameters and a new bit allocation
was formed by decreasing by one the number of bits assigned to the parameter which
showed the least change in mean distortion and increasing by one the number of
bits assigned to the parameter that showed the greatest change in mean distortion.
This process was repeated until the new bit allocation no longer had a lower mean

distortion than the previous allocation had. In this procedure the mean distortion

30



PARCOR Coefficlent 1

Probability

o v -~ N O W

-1

-0.5 0 0.5
Coefficient Value

PARCOR Cosfficient 3

Probability
th = N W

-1

-0.5 0 0.5
Coefficlent Value

PARCOR Cosfficlent 5

Probability
-t N

o h !
O v~ N U W

1
-

-0.5 0 0.5
Coefficient Value

PARCOR Coefficient 7

Probability

-1

-0.5 0 0.5
Coefficient Value

PARCOR Coefficlent 2
3
25
1
015
a 1 -
057 \\\L
0 B

-1 -0.5 0 0.5 1
Coefficlent Value

PARCOR Coefficient 4

-1 -0.5 0 0.5 1

Coefficlent Value
PARCOR Coesfficient 6
3
ga.s
E 2
015 /,
&y
0.5
0
-1 -0.5 0 0.5 1
Coefficient Value
PARCOR Cosfficlent 8
3
§2.5
E 2
2156
e 1
0.5
0

-1 -0.5 0 0.5 1
Coefficlent Value

Figure 4-2: Probability density estimates for PARCOR coeficients k; through ks
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14th order LSF Bit Allocation
Parameter | fi | fo [ fa|l fal fs | fo fr | fsl fol fro| fun | frz | f13 ] fus
#ofBits (4[4 ]|4[4]4|4]|4]4]3] 3 3 3
Mixed LSF/PARCOR Bit Allocation
Parameter | fi [ o | fa | fa | fs [ fo | fr | fo | ko | kro [k [ iz | Kag | Fua
#ofBits | 54| 4[4]|5[5]4]4]3]3 3 2 2 2

Table 4.1: Bit allocations for scalar quantization of pure LSF and mixed
LSF/PARCOR all-pole model parameters using 50 bits.

Coded Mean SD, | % SD, | % SD,,
Parameters in dB >2dB | >4dB
Pure LSF 0.69 0.79 0.00
LSF/PARCOR (Lattice) 0.74 1.18 0.02
LSF/PARCOR (Durbin) 0.73 0.82 0.00

Table 4.2: Weighted spectral distortion in dB caused by scalar quantization with 50
bits.

was measured over 1000 frames of speech from 2 male and 2 female speakers. As a
starting point for the process, the bit allocation in Table 4.1 for the 14th order LSF
representation was used for the mixed representation where the bit allocations for fg
through fi4 for the 14th order LSF representation correspond to the bit allocations
for kg through k4 for the mixed representation and the bit allocations for f; through
fs have a direct correspondence between the two representations.

Using the bit allocations in Table 4.1 the distortion was measured for the three
coding conditions: the current 14th order LSF, the mixed LSF/PARCOR represen-
tation with quantization of PARCOR coefficients within the autocorrelation-lattice
computation, and the mixed LSF/PARCOR representation computed with Durbin’s
recursion. These measurements were made using a database of 6 speakers (3 male
and 3 female) with 10 sentences per speaker. The results shown in Table 4.2 demon-
strate that both forms of the mixed representation perform about as well as the 14th
order LSF system. The mean distortion differs by only 0.05 dB between the three

conditions tested.
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Preference for | Likelihood Assuming
Listener | Current LSF no Preference
for Current LSF
A 15/24 0.27
B 12/24 0.73
C 12/24 0.73
D 10/24 0.92
E 10/24 0.92

Table 4.3: Listening test comparing scalar quantization of the current 14th order LSF
representation with scalar quantization the mixed LSF/PARCOR representation.

A listening test was used to verify that the performance of the mixed LSF/PARCOR
system using Durbin’s recursion is as good as the 14th order LSF system. A two-
alternative forced-choice experiment was performed using 24 sentences from the same
speech database used in the distortion measurements (4 sentences each from 3 male
and 3 female speakers). The experience level of the listeners ranged from none to
extensive. Table 4.3 lists the number of times out of 24 that each listener preferred
the current STC 14th order LSF system. The table also shows the likelihood that this
score would occur if the listener could not tell the difference between the two condi-
tions (i.e. the listener is choosing randomly). The likelihood function is described in
more detail in Appendix C. These results show that there is no significant preference
for the current 14th order LSF system over the mixed LSF/PARCOR system using
Durbin’s recursion. Most listeners reported that for a few sentences there was an
apparent difference between the two systems but that for most sentences there was

no noticeable difference.

4.2 Vector Quantization

Vector quantization has the potential to decrease the number of bits needed to code
the ali-pole model since it can take advantage of the correlation between elements in
a vector. In addition, vector quantization allows for a fractional bit allocation which

can lead to a more efficient allocation of bits than in scalar quantization.
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The correlation between the LSFs of a 14th order all-pole model was measured
over 138,000 frames of speech from the TIMIT database. Correlations were also mea-
sured between the LSFs of an 8th order all-pole model and between the PARCOR
coefficients of a 14th order all-pole model. Figure 4-4 shows plots of the correla-
tion between parameters where the horizontal axes correspond to the elements of the
vector and the vertical axis is the correlation coefficient between the corresponding
vector elements. In Figure 4-5 the correlation coefficient between the 6th vector ele-
ment and each of the other vector elements is plotted for 14tk order LSFs, 8th order
LSFs, and 14th order PARCOR coefficients. The plots show that 14th order LSFs
are more correlated than 8th order LSFs, and that 14¢th order PARCOR coefficients
are less correlated still. For 14th order LSFs the correlation between adjacent LSFs is
about 0.8 and for 8th order LSFs the correlation is about 0.65. For 14th order PAR-
COR coefficients this correlation is around 0.2. This significant amount of correlation
suggests that a substantial coding gain can be achieved by using vector quantization
instead of scalar quantization.

Vector quantization tables were trained using the LBG algorithm [25] with 190,000
14th order LSF vectors and 190,000 mixed LSF/PARCOR vectors. The vectors were
generated from the TIMIT database and the input speech was equally divided between
males and females using 163 speakers from all eight dialect regions in the database.
Split vector quantization was performed [20] where the 14th order LSF vector was
split into groups of 3, 3, 4 and 4, and the mixed LSF/PARCOR vector was split into
groups of 4, 4, 3 and 3. Bit allocations, shown in Table 4.4, for the two representations
were determined in the same manner described above for scalar quantization of the
mixed LSF/PARCOR representation.

The test results are shown in Table 4.5 demonstrating that with 45 bits using
vector quantization the 14th order LSF and the mixed LSF/PARCOR representations
have similar performance to scalar quantization using 50 bits. A listening test was
performed to compare 45 bit vector quantization of the mixed LSF/PARCOR system
using Durbin’s recursion to the current 14th order LSF scalar quantized system (50

bits). The results are shown in Table 4.6 and demonstrate that there is no significant
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Figure 4-4: Correlation of 14th order LSFs (top), 8th order LSFs (middle) and 14th
order PARCOR coeflicients (bottom).
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Figure 4-5: Correlation of the 6th vector element.

14th order LSF Bit Allocation
Parameter Vector | fi, f2, fa far fs, fo | frs fay foy f10 | f11, f12, fas, fra
# of Bits 11 10 12 12
Mixed LSF/PARCOR Bit Allocation

Parameter Vector f11f2a f3) f4 f51 fﬁa f7af8 k9ak101 kv k12’k13’k14
# of Bits 15 15 8 7

Table 4.4: Bit allocations for vector quantization of pure LSF and mixed
LSF/PARCOR all-pole model parameters using 45 bits.
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Coded Bits | Mean SD,, | % SD,, | % SD,,
Parameters in dB >2dB | >4dB
LSF Scalar 50 0.69 0.79 0.00
LSF Vector 45 0.76 0.62 0.00
LSF/PARCOR Vector (lattice) | 45 0.80 1.68 0.05
LSF/PARCOR Vector (Durbin) | 45 0.79 1.33 0.03

Table 4.5: Weighted spectral distortion caused by scalar and vector quantization.

Preference for | Likelihood Assuming
Listener | Current LSF no Preference
for Current LSF
A 14/24 0.41
B 10/24 0.92
C 12/24 0.72
D 12/24 0.72
E 12/24 0.72

Table 4.6: Listening test comparing the current scalar LSF quantization (50 bits)
with vector quantization of the mixed LSF/PARCOR representation (45 bits).

difference between the two systems.

4.3 Discussion

The results of the above experiments show that scalar quantization of the mixed
LSF/PARCOR representation performs as well as the current 14th order LSF scalar
quantization. Furthermore, it has been shown that the number of bits needed to code
the all-pole model of the sine-wave amplitudes can be decreased from 50 to 45 by
using split vector quantization. This is true for the 14th order LSF representation as
well as for the mixed LSF/PARCOR representation. It was also found that the objec-
tive evaluation of speech quality using the perceptually weighted spectral distortion
measure correlates well with the results of the listening tests.

It is noteworthy that using the autocorrelation-lattice method to compute the

PARCOR coefficients from quantized parameter values does not improve quantiza-
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Coded Mean SD,, | % SD,, | % SD.,
Parameters in dB >2dB | >4dB
PARCOR (Lattice) 0.94 4.88 1.62
PARCOR (Durbin) 1.02 5.60 2.79

Table 4.7: Weighted spectral distortion in dB caused by scalar quantization of 14th
order PARCOR representation with 50 bits.

tion efficiency of the mixed representation. A likely explanation for this is that the
expected spectral sensitivity to quantization of PARCOR coefficients kg through ki4
is low compared to that of the first few coeflicients. When coding a purely PARCOR
representation there is a significant coding gain obtained by using the autocorrelation-
lattice method and quantizing the PARCOR coefficients within the recursion. An
objective measure of this observation is shown in Table 4.7 which demonstrates that
although the mean distortion for the two coding methods is very close, there are ai
least 1.0% fewer outlier frames with distortion > 4 dB when quantization is done
within the autocorrelation-lattice computation. An informal listening test confirmed
that there is significant improvement in speech quality when quantization is done

within the lattice structure.
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5 Summary

The computational complexity of sine-wave amplitude coding for STC has been
reduced by representing the all-pole model in terms of a mixture of LSFs and PAR-
COR coefficients. Using objective and subjective measures of performance, it has
been shown that this was accomplished without a reduction in speech quality. In ad-
dition, it has been demonstrated that the use of split vector quantization can reduce
the number of bits needed to code the spectrum from 50 to 45.

There are two reasons for the reduction in complexity associated with the mixed
LSF/PARCOR representation. First, the need for computationally expensive root
solving is avoided because the order of the LSFs can be limited to 8 so that a closed
form solution can be used. Second, it was shown that the transformation from LSFs
to predictor coefficients requires double length arithmetic, substantially increasing
the computation time when a model order of 14 or higher is used. With the mixed
representation, the order of the LSFs can be limited to 8, avoiding the use of double
length arithmetic, while the overall model order can still be 14 or greater.

In [4] the lattice structure was used to compute the PARCOR coefficients after
the LSFs had been quantized but it was found here that for the higher-order all-
pole model in STC, computing the PARCOR coefficients based on the quantized
LSFs does not improve quantization performance. The PARCOR coefficients can
instead be computed using Durbin’s recursion resulting in a substantial savings in
computation time.

In future work, the frame-fill properties of the mixed LSF/PARCOR represen-
tation will be investigated as well as computationally efficient methods for vector

quantization.
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Appendix A
Closed Form Solution for 8th Order LSF's

The following is a closed form solution for computing th.e LSFs of an 8th order
all-pole model from the predictor coeflicients. This derivation is originally due to [13].

The predictor polynomial is

A(z)=1+ f: arz* (A.1)

k=1

where m is the model order and a; are the predictor coefficients. The LSFs f; are the

frequencies corresponding to of the the roots of the polynomials
P(z) = A(z) + 2z~ (Mt A(271) (A.2)

Q) = A(z) — 2~ A("Y) (A3)

which are on the unit circle (i.e. at z = e7%"/.) Substituting the predictor polynomial

in (A.2) and (A.3) gives

P(z) = 1+ (a1+am)z™" + (a2 +am-1)272... (A.4)
+(am—l + a2)z—(m—1) + (am + al)z'"‘ + 7z~ (m+1)
Q(z) = 14 (a1—an)z™ '+ (a2 —am-1)z"2... (A.5)

+(am-1 - az)z—(m—l) + (am - al)z‘m + z—(m+1)
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which can be rewritten as

P(z)=1+4+pz +ppz ...+ paz= M g™ 4 o= (M) (A.6)
Qz) =1+ @z + gz2... — gz ™™V — gyz7™ — z=(m+1) (A.7)
where
m
Pr=ar + am_p1 for k=1,2... 0 (A.8)
m
qr = ar — Qm-k41  Tor k=1,2... 5 (A.9)
It is easily seen that P(z) is a symmetric polynomial with a rost at z = —1 and Q(2)

is an antisymmetric polynomial with a root at z = 1. These two roots are fixed and
have no information about A(z), so without loss of information the polynomials P(z)

and Q(z) can be reduced from order m + 1 to order m by removing these roots.

P(z) = P(z)/(1+2z7Y) (A.10)

= 14pz7 +poz 2. hoz (D) 4 (1) 4 o

Q(z) = Q(z)/(1 -2 (A11)
= 14§z 4+ g2 Goz™ D 4 Gizm(mD) g pm,

The reduced polynomials are now both symmetric and the coefficients are

B (4 T (A12)
G = 1+§:Pk' (A.13)

Since the roots of P(z) and Q(z) lie on the unit circle, P(z) and Q(z) can be be
evaluated at z = /. Making this substitution, factoring out e~7%, and grouping

terms with like coefficients yields
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P(z)lz=ef”

Q(z)|2=dw

B (&34 4 eBY) 4 py (87T 4 eI (AL4)
Po(e T + eITE) L e
Cm m . m—2
2e777Y [cos (Ew) + Py cos < 5 w) +
A m—4 ﬁm/2
pgcos( 2 w) +...+ ) ]

2e~3% P'(w)

=3 (/3% 4 T 4 (T + I (ALD)
(T 4 eI 4L+ ém/z]
9e—iBw [COS (Ew) + Gy cos (m - 2w) +

2 2

—4 5
o cOs (m w) +...+q—m/—2-]

2 2
2e7I29 Q" (w).

The equations for P'(w) and Q'(w) can be solved in general for order m by sub-

stituting z = cosw and forming a Chebyshev series as in [15]. However, for m <=8

a closed form solution can be formulated. For the particular case m =8

P'(w)

Q'(w)

cos4u.)+;z“)1cos3w-{-132cos2<.‘.v-{-1‘)3cosw+I;—4 (A.16)
cos 4w + G cos 3w + G cos 2w + §3 cosw + %. (A.17)

These equations are converted to polynomials in cosw as follows. The third term

in (A.16) and (A.17) is reduced by applying the trigonometric identity cos2w =

2cos?w — 1, and the first term is reduced by multiple applications of the identity.

The second term is reduced as
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cosdw = ¢0s2w cosw — sin 2w sinw (A.18)
= (2cos’w — 1) cosw — 2sinw cos wsinw
= 2cos®w — cosw — 2sin® w cosw
= 2cos’w — cosw — 2(1 — cos’ w) cosw

= 4cos?w — 3 cosw.

With P/(w) and Q'(w) written in terms of cosw and like terms collected, the resulting

polynomials are
P'(w) = 8 cos* w+4p; cos® w + (2P, — 8) cos® w+ (3 — 3p1) cosw + 1 +%‘1 —p2 (A.19)

Q'(w) = 8 cos* w+44; cos® w + (2§ — 8) cos® w + (§s — 3g1) cosw+ 1 + % —§z. (A.20)

The roots are found in closed form by substituting z = cosw and using Ferrari’s

method [26] to solve for . The LSFs are
fi=5- (A.21)

where w; are the zeros of P'(w) and Q'(w). The coefficients p; are computed from

(A.8) and (A.12) and the coefficients i are computed from (A.9) and (A.13).
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Appendix B

Perceptually Weighted Spectral Distortion

It was found in [21] that perceptually weighting the L, norm of the log spectral dis-
tance significantly increases the correlation of the distortion measure with subjective

measures of speech quality. The weighted spectral distortion measure is
1 ks N 1/2 )
SDy (i) = [; /0 W (w)[10log,, Pi(w) — 10logy P,-(w)]2dw] (B.1)

where P;(w) is the power spectrum of the all-pole model on frame ¢, P, (w) is the power
spectrum of the quantized all-pole model on frame ¢ and W(w) is the perceptually
based weighting function. In [21] the spectral envelope was divided into 6 bands
ranging from 200 to 3400 Hertz using the frequencies in Table B.1. The speech
bandwidth of STC is approximately 80 to 3800 Hertz and an appropriate weighting
function for this bandwidth is needed.

A set of Bark scale critical band filters (after [27]) was used to divide the spectrum

Band | Bandwidth
in Hertz
200-400
400-800
800-1300

1300-1900

1900-2600

6 2600-3400

|| —

Table B.1: Frequency bands used to perceptually weight the log spectral distance
measure in [21].
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Figure B-1: Bark scale critical band filters.
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Figure B-2: Perceptually based spectral weighting function.

into 15 perceptually spaced bands. The band edge frequencies correspond to the
intersections of adjacent filters which occur at their 3 dB points (Figure B-1.) The
weighting function W (w) is constant within each band (Figure B-2), and the average
distortion in each band is weighted equally with respect to the other bands (i.e the
area under W (w) is the same for each band.) The exception to this is the first band
which is derived from a filter centered at 0 Hz. This band has less than half the
bandwidth of any other band so in this band W (w) is arbitrarily set to be the same

as in the adjacent band.
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Appendix C

Significance Testing

A significance test is needed to evaluate the results of the two-alternative forced-
choice listening tests. One measure of the significance of a test result is to determine
the likelihood of the particular test outcome under the hypothesis Hg that the listener
cannot tell the difference between system A and system B (i.e. the probability of
responding A on any given trial is .) This likelihood is the probability of the listener
responding at least n times in favor of system A out of N trials given that hypothesis
H, is true [28]. The probability of exactly m responses in favor of system A given Ho

is

p(m|Ho) = (T]: )(%)m(l—é)mm (1)

m!(NN'—i m)! (’;')N ’ (C2)

The probability of at least n responses in favor of system A given Hp is then

N N! 1 N
p(m 2 n|Ho) = é‘m() : (C.3)

The likelihood of n responses out of 24 in favor of system A given Hy is plotted
in Figure C-1. This shows that there must be at least 18 responses in favor of system
A before there is less than 0.05 probability of observing that score by chance (i.e. if

the listener does not prefer system A).
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Figure C-1: Likelihood of n responses out of 24 in favor of system A given Hy.
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