
MIT Open Access Articles

Output feedback concurrent learning 
model reference adaptive control

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: John F. Quindlen et al. "Output Feedback Concurrent Learning Model Reference 
Adaptive Control", AIAA Guidance, Navigation, and Control Conference, 2015 January 5-9, 
Kissimmee, Florida, USA, American Institute of Aeronautics and Astronautics, 2015 © 2015 
American Institute of Aeronautics and Astronautics

As Published: https://doi.org/10.2514/6.2015-0607

Publisher: American Institute of Aeronautics and Astronautics (AIAA)

Persistent URL: http://hdl.handle.net/1721.1/114289

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/114289
http://creativecommons.org/licenses/by-nc-sa/4.0/


Output Feedback Concurrent Learning Model

Reference Adaptive Control

John F. Quindlen∗

Massachusetts Institute of Technology, Cambridge, MA, 02139

Girish Chowdhary†

Oklahoma State University, Stillwater, OK, 74078

Jonathan P. How‡

Massachusetts Institute of Technology, Cambridge, MA, 02139

Concurrent learning model reference adaptive control has recently been shown to guar-
antee simultaneous state tracking and parameter estimation error convergence to zero with-
out requiring the restrictive persistency of excitation condition of other adaptive methods.
This simultaneous convergence drastically improves the transient performance of the adap-
tive system since the true model is learned, but prior results were limited to systems with
full state feedback. This paper presents an output feedback form of the concurrent learning
controller for a novel extension to partial state feedback systems. The approach modifies a
baseline LQG/LTR adaptive law with a recorded data stack of output and state estimate
vectors. This maintains the guaranteed stability and boundedness of the baseline adaptive
method, while improving output tracking error response. Simulations of flexible aircraft
dynamics demonstrate the improvement of the concurrent learning system over a baseline
output feedback adaptive method.

I. Introduction

Model reference adaptive control (MRAC) methods have been widely used to provably stabilize nonlinear
systems in the presence of potentially destabilizing uncertainties.1–4 These algorithms force the uncertain
system to track reference model dynamics with desirable stability and performance characteristics in order
to guarantee stability of the actual unstable system. The MRAC approach does so by estimating a param-
eterization of the uncertainties in the system using the differences between the reference model and actual
dynamical response. These estimates are then used to select an appropriate control input to suppress the
uncertainties and track the reference model. While MRAC methods do guarantee that the adaptive system
will be stable and the response will converge towards that of the reference model, they do not guarantee
that the estimates will converge to their true values. Only under a certain condition called persistency of
excitation (PE)5,6 will the estimates provably converge to their true values; however, PE is a restrictive
condition and may not be practical in many applications.

The concurrent learning model reference adaptive control (CL-MRAC) approach has been shown to enable
a relaxation of the persistency of excitation condition. This concurrent learning approach has been proven
to guarantee that the weight estimates asymptotically converge to their actual values while maintaining
guaranteed stability without relying upon persistency of excitation.7 Where the standard baseline MRAC
adaptive law solely relies upon instantaneous tracking errors to update the weight estimates, the concurrent
learning approach appends recorded data to the baseline adaptive law. In effect, this history stack adds
memory to the adaptive law and allows the weights to update even when the instantaneous tracking error is
zero. In comparison to a baseline adaptive system, the CL-MRAC system demonstrates improved transient
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tracking error even before the weights have fully converged to their true parameterization as a result of the
memory of the history stack.8,9 The CL-MRAC method has been successfully demonstrated on numerous
experimental and flight test systems with noisy full state measurements.8,10

One important subproblem for adaptive systems is the issue of output feedback, that is partial state
measurements where fewer independent measurements than state variables are available. There are numerous
output feedback approaches that extend MRAC to systems with partial state feedback. The lack of full state
feedback prevents the standard MRAC adaptive law from being employed as the state tracking error is no
longer available. Output tracking approaches11–13 replace the state tracking error in the adaptive law with
output tracking error from the measurements. In effect, the adaptive controller limits itself to the output
response. Instead of neglecting unmeasurable states, state observer methods14–16 add observer dynamics to
estimate the state vector. This maintains a similar structure to the baseline state feedback method, but
introduces state estimate error between the estimate and actual states that affects the adaptive system.
Adaptive LQG/LTR17,18 falls into the latter category, but attempts to address the problems with state
estimate error using a high gain observer. This high gain observer aims to reduce the state estimate error
and recover the desirable properties associated with a state feedback, LQR-controlled system. Just like in
the state feedback case, the output feedback adaptive control methods focus on tracking error convergence.

While CL-MRAC has been extensively demonstrated on physical systems, it has been limited to sys-
tems with full state measurements. This paper presents an output feedback form of the concurrent learning
adaptive control approach for systems with partial state feedback. While the lack of full state measurements
prevents the same convergence properties as full state CL-MRAC, concurrent learning time history stacks im-
prove the transient performance of the adaptive system. The adaptive LQG/LTR method from Lavretsky17

is chosen as the baseline procedure for its desirable convergence properties and to minimize output tracking
error. The concurrent learning controller is shown to maintain the same uniform ultimate boundedness of
the state and weight estimate errors of the baseline adaptive LQG/LTR method, but improves upon the
output tracking convergence. Despite the lack of full state measurements, the output feedback concurrent
learning approach is shown to recover the guaranteed learning property of the state feedback method outside
of a compact set defined by the state estimate and weight estimate errors. Simulations of flexible aircraft
dynamics demonstrate this result.

II. Problem Formulation

Consider a class of uncertain, nonlinear, multiple-input multiple-output (MIMO) dynamical systems. Let
x(t) ∈ Rn be the state vector, which is not fully measurable. Instead, partial state feedback is available with
the measured output is y(t) ∈ Rp, where p < n. The control input is given by u(t) ∈ Rm. The class of
systems considered has at least the same number of output as inputs, p ≥ m. The uncertain dynamics are
described by the following formulation

ẋ(t) = Ax(t) +B(u(t) + ∆(x)) (1)

y(t) = Cx(t)

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n are known. Pairs (A,B) and (A,C) are controllable and
observable.

Assumption 1 The system (A,B,C) is minimum-phase and output controllable with a nonsingular ma-
trix (CB) that satisfies rank(CB) = rank(B) = m.

Assumption 2 The system uncertainties are represented by term ∆(x) ∈ Rm. This vector ∆(x) is the
matched uncertainty in the span of the input matrix and is parameterized by a constant, unknown weighting
matrix W ∗ ∈ Rk×m and a regressor vector φ(x) ∈ Rk.

∆(x) = W ∗Tφ(x) (2)

Matrix W ∗ is unknown, but there exists a known bound on the uncertainty, W ∗max, such that ||W ∗|| ≤W ∗max.

This regressor vector can be either structured or unstructured, but a known structure is assumed throughout
the remainder of the paper for ease of presentation. Unstructured regressor vectors can be directly taken
from the results for the state feedback case.5 The regressor vector is also assumed to be Lipschitz continuous.
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The uncertain system tracks a known reference model chosen for desirable performance criteria. With
reference state xm(t) ∈ Rn, these reference dynamics are given by

ẋm(t) = Amxm(t) +Bmr(t) (3)

ym(t) = Cxm(t)

where both xm and ym are known to the controller. State matrix Am ∈ Rn×n is chosen to be Hurwitz and
matched with pair (A,B) from the system in Eq. (1) such that Am = A − BK with K ∈ Rm×n. Input
matrix Bm ∈ Rn×m2 is given by Bm = BKr with Kr ∈ Rm×m2 . The external reference command r(t) ∈ Rm2

is piecewise continuous and bounded so that the reference system in Eq. (3) is bounded.
While both xm and ym are available from the reference dynamics, only y is measurable from the actual

system. Therefore, the state tracking error e = x− xm is unavailable, but output tracking error ey = Ce =
y− ym is measurable. Instead, a state observer L ∈ Rn×m is used to estimate the states of the system. The
observer dynamics are given as

˙̂x = Amx̂+Bmr + L(y − ŷ) (4)

ŷ = Cx̂

with estimated state x̂(t) ∈ Rn and output ŷ(t) ∈ Rp. This introduces state estimate x̃ = x̂− x and output
estimate ỹ = Cx̃ = ŷ − y errors. Just like with tracking error, only the output estimate error ỹ will be
available for use by the adaptive controller.

The control input u(t) is segmented into three components:

u = urm + upd − uad (5)

a feedforward reference term urm = Krr, a feedback control term upd = −Kx̂, and an adaptive control input
uad. The feedforward and feedback terms attempt to force the system to track the reference model, while
the adaptive control input attempts to cancel the uncertainties.

III. Adaptive Output Feedback Control

Previous CL-MRAC implementations have relied upon systems with full state feedback to achieve stability
and convergence guarantees. In these problems, the concurrent learning stack augments the baseline state
feedback adaptive law. For the output feedback system, the same adaptive law is not possible; instead,
the adaptive LQG/LTR method is used as the baseline adaptive law.17,19 This method applies a high gain
observer to approximately recover Strictly Positive Real (SPR) properties for the system and demonstrates
already desirable stability and convergence properties.

The baseline controller follows the same structure described by Lavretsky.17 The observer L from the
observer dynamics in Eq. (4) is the steady state Kalman gain

L = PCTR−1
υ (6)

that gives Hurwitz matrix Av = A − LC. The symmetric positive definite matrix P satisfies the Algebraic
Riccati Equation.

P (A+ ηI)T + (A+ ηI)P − PCTR−1
υ CP +Qυ = 0 (7)

Positive constant scalar η is used as a robustifying term for the nominal state matrix A. This choice of η will
affect the convergence properties of the system discussed in Section VII.A. Matrices Qv and Rv are formed
using scalar constant v > 0 and matrices Q0 ≥ 0 and R0 > 0.

Qυ = Q0 +
υ + 1

υ
B̄B̄T (8)

Rυ =
υ

υ + 1
R0 (9)

Matrix B̄ =
[
B B2

]
is the squared-up form of the input matrix B with ficticious input matrix B2. This B2

matrix is chosen from the squaring up procedure described by Lavretsky17 to give a minimum phase system
with triple (A, B̄, C).
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With the inverse of P , P̃ = P−1, Eq. (7) can be rewritten as the Lyapunov equation.

ATυ P̃ + P̃Aυ = −CTR−1
υ C − P̃QυP̃ − 2ηP̃ < 0 (10)

The output feedback relation CTR
− 1

2
0 ω approximates the matrix P̃ B̄ from the state feedback adaptive law

P̃ B̄ = CTR
− 1

2
0 ω +O(υ) (11)

with error O(υ). Since there are more outputs that inputs, Eq. (11) can also be written with the actual

input matrix B and matrix S =
[
I 0

]
.

P̃B = CTR
− 1

2
0 ωST +O(υ) (12)

The matrix ω is created from unitary matrices U and V

ω = (UV )T (13)

which are obtained from singular value decomposition with B̄.

UΣV = svd(B̄TCTR
− 1

2
0 ) (14)

A. Concurrent Learning Adaptive Law

The baseline adaptive law is modified with a concurrent learning stack of uncertainty estimates. The uncer-
tainty lies in the column space spanned by the input matrix B. In a state feedback approach, the uncertainty
can be directly measured from the system response by

∆ = B†(ẋ−Ax−Bu) (15)

where B† is the pseudo-inverse B† = (BTB)−1BT .
For the output feedback problem, the state vector and its derivative are not available; therefore, the

uncertainty measurement from Eq. (15) is not possible. Instead, only the output response and the state
estimate vector are available. This fundamentally handicaps the convergence of estimates of uncertainties in
the system since information will be lost due to the lack of full state measurements. While Eq. (15) and thus
perfect measurement of the uncertainty is infeasible, the available measurements can be used to estimate
the uncertainty. The state response of ẋ is replaced by the output response ẏ, the closest measurement to ẋ
available. Because the output is a lower-dimensional projection of the state vector, the terms are multiplied
by the output matrix C to reflect the reduction in dimension. This estimate of the uncertainty maintains a
similar structure to Eq. (15) with

∆̂ = (CB)†(ẏ − CAx̂− CBu) (16)

where (CB)† is the pseudo-inverse (CB)† = (BTCTCB)−1BTCT . This pseudo-inverse is guaranteed to
exist from Assumption 1. The uncertainty estimate also has to replace the state vector x with its estimate
x̂ since x isn’t measurable. In effect, ∆̂ is the difference between the observed output response ẏ and the
estimated response. Ultimately, the partial state feedback leaves the uncertainty estimate susceptible to the
state estimate error and Eq. (16) can be simplified down to the true uncertainty ∆ corrupted by the state
estimate error.

∆̂ = ∆− (CB)†CAx̃ (17)

This estimation of the uncertainty from the output response assumes the derivative of the output vector
ẏ is measurable. For the state feedback case, it was shown in proofs, flight tests, and experimental demon-
strations that a fixed point smoother can be used to obtain estimates of ẋ without loss of generality.5,8, 10

These results will also apply to the output feedback problem and a fixed point smoother can be used to
obtain ẏ, although that will not be further discussed in this paper.

The adaptive control input uad attempts to cancel the true uncertainty ∆(x) using estimates of the weight
parameterization Ŵ and the structured regressor vector. Due to the lack of full state feedback, both the
weighting matrix W ∗ and its corresponding regressor vector φ(x) are unknown. Instead, the regressor φ(x)
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is replaced with a new vector φ(x̂) made up of state estimates in place of the actual state since the structure
of the regressor vector is known even if φ(x) is not.

uad = ŴTφ(x̂) (18)

The weight estimates are then updated according to the following adaptive laws. The baseline adaptive
LQG/LTR law of Lavretsky is given by

˙̂
W = proj(Ŵ ,−Γφ(x̂)ỹTR

− 1
2

0 ωST ,W ∗max) (19)

while the modified concurrent learning adaptive law includes a recorded time history stack.

˙̂
W = proj(Ŵ ,−Γφ(x̂)ỹTR

− 1
2

0 ωST −WcΓc

p∑
i=1

φ(x̂i)ε
T
i ,W

∗
max) (20)

Here Γ > 0 is the diagonal, baseline gain matrix and Γc > 0 is the diagonal, concurrent learning gain matrix.
The projection operator in Eqs. (19) and (20) bounds the weight estimates within a ball of radius W ∗max
centered at the origin. Recall that this upper limit W ∗max is known from Assumption 2. The concurrent
learning time history stack improves the convergence of the system by storing regressor vectors and uncer-
tainty estimates for p data points. The modeling error εi at each data point i gives the error between the
adaptive control input and the estimated uncertainty.

εi = ŴTφ(x̂i)− ∆̂i (21)

Since the lack of full state feedback prevents the use of true uncertainty, the concurrent learning adaptive
law has to rely upon these estimated modeling errors to improve performance. This further highlights the
importance of minimizing state estimate error as large estimation errors will cause large deviations from the
true uncertainty.

As time progresses, more data points are added to the time history stack; however, after some time this
history stack will become unwieldy and impractical. Instead, the number of stored data points is capped at
pmax so that after reaching pmax points, the size of the data point stack remains fixed. Rather than freezing
the history stack when pmax has been reached, the time history stack is updated according to the singular
value maximizing approach20 given in Algorithm 1. The goal is to only replace older data points with new
data points if these new points will increase the value of the information stored in the stack, where the value
of the information stored in the stack is quantified by Condition 1.

Condition 1 The data stack at every time t will have at least as many linearly independent regressor

vectors as the dimension of the vectors. The rank of the history stack Zt =
[
φ(x̂1), . . . , φ(x̂p)

]
will then be

k, so that,
rank(Zt) = dim(φ(x̂)) = k.

The singular value maximizing approach of Algorithm 1 ensures Condition 1 is met and guarantees the
matrix (ZtZ

T
t ) is positive definite. As new data points replace the least-valued older points, the minimum

singular value of (ZtZ
T
t ) increases, which improves the convergence of the tracking and weight error.

Lastly, the term Wc ∈ R1 is a binary scalar used to enable or disable the concurrent learning portion of
the adaptive law based upon output estimate error ỹ. Since the uncertainty estimate ∆̂ is corrupted by state
estimation error, this can adversely affect the adaptation of the weight estimates. Additionally, since the out-
put measurement is a lower-dimensional projection of the state vector, state estimate errors can accumulate
outside this projection without check. Instead, the Wc term prevents weight estimates from inadvertently
diverging by using the available information, here ỹ, to stop adapting the weight parameterization when the
output estimate error has fallen below some user-specified bound, εc. This simple binary measure is given
by Algorithm 2.

Even though the concurrent learning portion of the adaptive law is disabled after ỹ < εc, the improvement
in the output estimate and tracking error is clearly shown in the following section. Stability and convergence
analysis for both Lavretsky’s baseline adaptive law and the concurrent learning portion when it’s enabled is
shown in the appendix. By using the strengths of both approaches, the concurrent learning adaptive system
is able to improve transient tracking error while still maintaining stability.
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Algorithm 1 Singular value maximizing algorithm

1: if ||φ(x̂)−φ(x̂i)||2
||φ(x̂)|| ≥ ε or rank([Zt, φ(x̂)]) > rank(Zt) then

2: if p < pmax then
3: p = p+ 1
4: Zt(:, p) = φ(x̂) and ∆t(:, p) = ∆̂
5: else
6: T = Zt
7: Sold = min SVD(ZTt )
8: for j = 1 to pmax do
9: Zt(:, j) = φ(x̂)

10: S(j) = min SVD(ZTt )
11: Zt = T
12: end for
13: find max S and corresponding column index i
14: if max S > Sold then
15: Zt(:, i) = φ(x̂) and ∆(:, i) = ∆̂
16: end if
17: end if
18: end if

Algorithm 2 Output error threshold for Wc

1: if ||ỹ|| ≤ εc then
2: Wc = 0
3: else
4: Wc = 1
5: end if

IV. Numerical Simulations

In this section, the output feedback concurrent learning adaptive control algorithm is demonstrated
through a simulation of a transport aircraft with additional flexible dynamics. This model is a reduced form
of the full longitudinal model used by McLean21 and Lavretsky17 limited to the short period dynamics and
a single wing bending mode. The short period dynamics are also modified to be unstable. This leaves four
state variables, where α is the angle of attack (radians), q is the pitch rate (radians/sec), λ1 is the wing
deflection (ft), and λ̇1 is the rate of deflection (ft/sec). Two inputs are present in the system with elevator
deflection δe and canard deflection δc, both in radians. There are only three output measurements in the
system: angle of attack α, pitch rate q, and a normalized acceleration measurement az.

x =
[
α q λ1 λ̇1

]T
u =

[
δe δc

]T
y =

[
α q az

]T
Since there more outputs than inputs, the squaring-up procedure must be used.

The nominal model dynamics are given by triple (A,B,C). This linear model is stable and a controller
(K,Kr) gives the desired reference model (Aref , Bref ) with reference elevator commands r. Instead, the
actual state matrix is given by Ap. This uncertainty destabilizes the short period dynamics of the system.
These matrices are listed below.

A =


−1.6 1 −1.1811 −0.1181

2 −2.446 −1.813 1.1805

0 0 0 1

−7.196 −0.445 −56.82 −5.53

 Ap =


−1.6 1 −1.1811 −0.1181

6.57 −2.446 −1.813 1.1805

0 0 0 1

−6.79 −0.751 −50.21 −4.87
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B =


−0.07 −0.006

3.726 −0.28

0 0

0.572 0.019

 C =

 1 0 0 0

0 1 0 0

−0.49499 −0.4251 0.75696 0.03593


The uncertainty in the system is then represented by

W ∗ =


0.86135 −4.8604

−0.35917 −4.7778

7.7586 103.2069

0.77469 10.3051

 φ(x) =


α

q

λ1

λ̇1


The simulation is run over a period of 150 seconds with bounded ±5◦, ±10◦, +15◦, and +20◦ elevator step
commands spaced throughout the time period. The adaptive gains are set to Γ = 4I4×4 and Γc = 0.6I4×4

with terms η = 0.2 and v = 0.1. For the squaring-up procedure, the new zero is set to s = −0.75 to make
the system minimum phase.

The same simulation is performed for both the baseline adaptive law Eq. (19) and concurrent learning
adaptive law Eq. (20). Figure 1 depicts the output response of system with both adaptive laws. In the
figure, the adaptive controllers manage to successfully track the desired output response; however, the
improvement in output tracking error using the concurrent learning adaptive law is readily visible. The
actual and estimated outputs converge very rapidly to the desired response and stay there due to the
recorded data stack. The state response of the also shows this improved convergence, even though it is
unavailable in practice. The baseline system in Figure 2 has slightly worse state tracking error than the
concurrent learning system. These state responses also illustrate the state estimate error between the actual
and estimated dynamics resulting from the state observer and partial state measurements.

Figure 3 compares the adaptive control input to the estimated and actual uncertainty for the adaptive
controllers. Because the baseline method only considers instantaneous data, there is no equivalent estimated
uncertainty term in the baseline adaptive controller. From Figure 3, the two adaptive control inputs suc-
cessfully track the system uncertainties, while the baseline controller has more difficulty. Ideally in a full
state feedback system, the estimated and actual uncertainties would be the same and the adaptive control
inputs would converge to them. Since only partial state feedback is available and therefore a state estimate
error exists, there is a slight discrepancy between the estimated and actual uncertainty. Despite this, the im-
provement in tracking response with the concurrent learning controller over the baseline adaptive controller
is readily apparent.

V. Conclusion

This paper presents an output feedback form of the concurrent learning model reference adaptive control
law for uncertain systems with partial state feedback. This approach replaces the state feedback adaptive law
with an adaptive LQG/LTR algorithm. This baseline adaptive law is then modified with recorded data from
the output response and state estimates. Demonstrations of the approach on aircraft dynamics highlights
the performance of the concurrent learning approach over the baseline method.
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The green and magenta lines are taken from the system with the baseline adaptive law Eq. (19). The blue and
red lines are taken from the system with the concurrent learning adaptive law Eq. (20). Notice the decrease
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VII. Appendix

A. Stability Analysis

The following section proves the stability and boundedness of the output feedback concurrent learning
approach. Note that this stability analysis can be broken into two separate parts owing to Algorithm 2,
when the learning portion is active (Wc = 1) and when it is not (Wc = 0). For the latter case when Wc = 0,
the approach reverts base to the baseline adaptive control method in Eq. (19). This case was comprehensively
proven by Lavretsky and Wise in their original work.17 Using this adaptive law, the state estimate error x̃
and weight estimate error W̃ will converge to either the origin or a compact set. The stability of the state
estimate error can then be used to show the subsequent state tracking error e = x−xm will also be uniformly
ultimately bounded. This establishes the stability and boundedness of the system when concurrent learning
is not enabled (Wc = 0).

The concurrent learning portion when Wc = 1 builds upon the results of the baseline method. The
inclusion of the time history stack in Eq. (20) introduces additional terms that further complicate analysis of
the adaptive system. The remainder of Appendix A will be devoted to proving the stability and boundedness
of the system when concurrent learning is active (Wc = 1).

Before starting, consider the following definitions and relations:

φ(x̃) = φ(x̂)− φ(x)

||φ(x̃)|| ≤ Kφ||x̃||
||φ(x̂)|| ≤ K1 +K2||x̃||

KΓ = Γ−1Γc > 0

ACB = ||ATCT (CB)†||

where Kφ, K1, and K2 are positive, constant scalar terms. Γ and Γc were defined in Section III to be
diagonal, positive definite matrices.

The uncertainty estimates ∆̂ stored in the time history stack are potentially adversely affected by state
estimation error x̃. In Eq. (17), it was shown that each measurement ∆̂ estimates the true uncertainty ∆
from the output response, but ∆̂ is also corrupted by the state estimation error x̃. Each data point stored
in the history stack will therefore be affected by the estimation error at the time it was taken. However,
nothing can be done about it since the state estimation error is unmeasurable. While the singular value
maximizing algorithm ensures matrix (ZtZ

T
t ) is positive definite, the sign and magnitude of x̃ are unknown

and therefore it is unclear if matrix (φ(x̂)φ(x̃)T ) is positive semidefinite. Reducing the number of data points
only slows down the rate of convergence and reduces the improvement over the baseline method. As the
weight estimation errors improve, the state estimation error will decrease, although it is not guaranteed to
converge to zero.

In order to quantify the effect of the station estimation error on the time history stack, the following
assumption allows a bound to be placed on x̃. This is a very conservative estimate, but unfortunately it has
not been relaxed. This is an ongoing aim of the research.

Assumption 3 The state estimation errors within the time history stack are upper bounded by a con-
stant x̃max: ||x̃i|| ≤ x̃max. With this upper bound on x̃, a conservative estimate of the effect the state
estimate errors in the time history stack can be computed.

||
p∑
i=1

φ(x̂i)φ(x̃i)
T || ≤ K1p

2Kφx̃max +K2p
2Kφx̃

2
max (22)

||
p∑
i=1

φ(x̂i)x̃
T
i || ≤ K1p

2x̃max +K2p
2x̃2
max (23)

This highlights the important of employing a method with good state estimation error. For this reason,
Lavretsky and Wise’s approach is particularly well suited.17
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Remark 1 A number of steps can be followed to ensure Assumption 3 is feasible. First, the time history
stack does not need to be updated when the concurrent learning portion of Eq. (20) is activated (Wc = 1).
In fact, when the adaptive law has reverted back to the baseline method (Wc = 0), the state estimation error
x̃ was proven to be bounded. If the resulting time history stack is only updated when learning is disabled,
then Assumption 3 is valid.

The following theorem considers the stability of the state estimate and weight estimate errors. Once the
state estimation error x̃ is proven to be bounded, then the tracking error e can also be proven to be bounded.

Theorem 1 Consider the uncertain output feedback system in Eq. (1). When the history stack is
updated according to the singular value maximizing algorithm, Algorithm 1, the state estimate error x̃ and
weight estimate error W̃ are uniformly ultimately bounded around the origin (x̃, W̃ ) = 0.

Let V be the following Lyapunov function candidate for the stability of x̃ and W̃ .

V =
1

2
x̃T P̃ x̃+

1

2
trace(W̃TΓ−1W̃ ) (24)

Consider the time derivative of V

V̇ =
1

2
x̃T (ATυ P̃ + P̃Aυ)x̃+ x̃T P̃BW̃Tφ(x̂)

+ x̃T P̃BW ∗Tφ(x̃) + trace(W̃TΓ−1 ˙̃W )

(25)

After applying the concurrent learning adaptive law Eq. (20) and relation (12), the time derivative
reduces to

V̇ =
1

2
x̃T (ATυ P̃ + P̃Aυ)x̃+ x̃T P̃BW ∗Tφ(x̃)

+ x̃TO(υ)W̃Tφ(x̂)−KΓtrace(W̃T

p∑
i=1

φ(x̂i)ε
T
i )

(26)

From the Lyapunov equation for ATv P̃ + P̃Av in Eq. (10), V̇ is equivalent to the expression

V̇ = −1

2
x̃T (CTR−1

υ C + P̃QυP̃ + 2ηP̃ )x̃+ x̃T P̃BW ∗Tφ(x̃)

+ x̃TO(υ)W̃Tφ(x̂)−KΓtrace(W̃T

p∑
i=1

φ(x̂i)ε
T
i )

(27)

The concurrent learning data stack appears as the last term in the expression and V̇ can be upper bounded
according to

V̇ ≤ −1

2
(1 +

1

v
)λmin(R−1

0 )||ỹ||2 − 1

2
λmin(Q0)λ2

min(P̃ )||x̃||2

− 1

2
(1 +

1

v
)||BT P̃ x̃||2 − ηλmin(P̃ )||x̃||2

+W ∗max||BT P̃ x̃||||φ(x̃)||+ υ||x̃||K3||W̃ || ||φ(x̂)||

−KΓtrace(W̃T

p∑
i=1

φ(x̂i)ε
T
i )

(28)

where K3 is a positive, constant scalar.
The concurrent learning recorded data stack can be expanded to

W̃T

p∑
i=1

φ(x̂i)ε
T
i = (W̃T

p∑
i=1

φ(x̂i)φ(x̂i)
T W̃ )

+ (W̃T

p∑
i=1

φ(x̂i)φ(x̃i)
TW ∗) + (W̃T

p∑
i=1

φ(x̂i)x̃
T
i A

TCT (CB)†)

(29)

12 of 15

American Institute of Aeronautics and Astronautics



From this expansion, the full term in Eq. (28) is then upper bounded according to the following inequality

−KΓtrace(W̃T

p∑
i=1

φ(x̂i)ε
T
i ) ≤ −KΓλmin(ZtZ

T
t )||W̃ ||2

+KΓ||W̃ || ||
p∑
i=1

φ(x̂i)φ(x̃i)
T || ||W ∗||+KΓ||W̃ || ||

p∑
i=1

φ(x̂i)x̃
T
i ||ACB

(30)

The first term in Eq. (30) is negative definite for all W̃ 6= 0 since matrix (ZtZ
T
t ) is updated according to the

singular value maximizing algorithm. The remaining two terms are dependent upon the unknown estimation
error x̃i for each saved data point. Since the state estimation errors are bounded according to Assumption
3, the preceding statement can be written as

−KΓtrace(W̃T

p∑
i=1

φ(x̂i)ε
T
i ) ≤ −KΓλmin(ZtZ

T
t )||W̃ ||2 +Kx̃||W̃ || (31)

where Kx̃ and Kφ are positive, constant scalars.

Kx̃ = KΓW
∗
max(K1p

2Kφx̃max +K2p
2Kφx̃

2
max) +KΓACB(K1p

2x̃max +K2p
2x̃2
max) (32)

The derivative of the Lyapunov function can then be written as

V̇ ≤ −1

2
(1 +

1

υ
)λmin(R−1

0 )||ỹ||2 − 1

2
λmin(Q0)λ2

min(P̃ )||x̃||2

− 1

2
(1 +

1

υ
)||BT P̃ x̃||2 − ηλmin(P̃ )||x̃||2

+W ∗max||BT P̃ x̃||||φ(x̃)||+ υ||x̃||K3||W̃ || ||φ(x̂)||
−KΓλmin(Ω)||W̃ ||2 +Kx̃||W̃ ||

(33)

For ease of analysis, the derivative of the Lyapunov candidate in Eq. (33) is broken up into two cases: 1)
weight error bounded by W1 and 2) state estimate error bounded by x2. Each case can then be examined
independently. The system will then converge to the intersection of the two resulting compact sets for x̃ and
W̃ .

1. State estimate error convergence

First, for this section consider the case when the weight error is bounded: ||W̃ || ≤ W1. The derivative in
Eq. (33) then becomes

V̇ ≤ −1

2
(1 +

1

υ
)λmin(R−1

0 )||ỹ||2 − 1

2
λmin(Q0)λ2

min(P̃ )||x̃||2

− 1

2
(1 +

1

υ
)||BT P̃ x̃||2 − ηλmin(P̃ )||x̃||2

+W ∗max||BT P̃ x̃||||φ(x̃)||+ υ||x̃||K3W1 ||φ(x̂)||
−KΓλmin(Ω)W 2

1 +Kx̃W1

(34)

As used before in,17 this expression can be simplified to the combination of two negative definite terms of ỹ
and x̃ and a quadratic function ϕ′(x̃, w) with w = ||BT P̃ x̃||.

V̇ ≤ −1

2
c3λmin(R−1

0 )||ỹ||2 − ηλmin(P̃ )||x̃||2 − 1

2
ϕ′(x̃, w) (35)

Here the quadratic function ϕ′(x̃, w) = ζTCζ − 2ζT b+ f is written as

ϕ′(x̃, w) =
[
||x̃|| w

] [
c1 −c2
−c2 c3

][
||x̃||
w

]
− 2

[
||x̃|| w

] [
c4

0

]
+ 2KΓλmin(ZtZ

T
t )W 2

1 − 2Kx̃W1

(36)
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C =

[
c1 −c2
−c2 c3

]

b =
[
c4 0

]T
f = 2KΓλmin(ZtZ

T
t )W 2

1 − 2Kx̃W1

The coefficients are defined as follows:

c1 = λmin(Q0)λ2
min(P̃0)− 2υK3W1K2

c2 = W ∗maxKφ

c3 = 1 +
1

υ

c4 = υK3W̃1 K1

The goal is to show Eq. (36) is negative definite and thus V converges towards the origin. If ϕ′(x̃, w) ≥ 0,
then V̇ < 0 and V converges to the origin. But if ϕ′(x̃, w) < 0, then V̇ < 0 only outside a compact set and
thus the state estimation error x̃ provably converges to that set. To minimize this compact set, |ϕ′(x̃, w)|
must be minimized.

Two conditions must be met for |ϕ′(x̃, w)| to have a minimum: First, matrix C must be positive definite.
This means term c1 > 0 and c1c3 − c22 > 0. Second, ϕ̇′ = 0 at the minimum, meaning ζ = C−1b at the
minimum.

An appropriate υ can be chosen to satisfy the first condition. For c1 > 0, there exists a υc1 > υ > 0.
Likewise, for c1c3 − c22 > 0, there also exists a υc3 > υ > 0 Selecting υ < min(υc1 , υc3) will ensure C > 0.
This result is the same as the baseline adaptive case from Lavretsky.17

The second condition highlights the change in convergence of the concurrent learning law over the baseline
adaptive law. With ζ = C−1b at the minimum,

ϕ′min = − c3c
2
4

c1c3 − c22
+ f (37)

where f is the same scalar term defined earlier. If f > 0, then ϕ′min becomes less negative or even positive
and the concurrent learning algorithm has improved the convergence of the state estimate errors. However,
f can also be negative. While this will hurt state estimate error convergence, a number of factors restricts
this. First, as the weights converge, W1 → 0 which causes f → 0. Additionally, when the time history
stack is updated according to the singular value maximizing algorithm, λmin(ZtZ

T
t ) will be increased, thus

increasing f .
Substituting in for φmin, the derivative of the Lyapunov function becomes

V̇ ≤ −1

2
c3λmin(R−1

0 )||ỹ||2 − ηλmin(P̃ )||x̃||2

− 1

2
ϕ′min

(38)

If ϕ′min ≥ 0 then V converges to the origin. Since f will decrease as weight estimate error improves, this is
less likely. When ϕ′min < 0, V̇ < 0 outside the compact set given by

Ωx̃ = x̃ : ||x̃||2 ≤ |ϕ
′
min(v0)|

2ηλmin(P̃ )
(39)

2. Weight error convergence

Now consider the second case when state estimate error is bounded by ||x̃|| ≤ x2 and therefore a second
expression w2 = ||BT P̃ x̃||. For this case, the projection operator in the adaptive law, Eq. (20), already
ensured the weight error is bounded by ||W̃ || ≤ 2W ∗max in the worst case. However, the weight estimate error
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with the concurrent learning adaptive law can still tend to a smaller compact set than the bound proven by
the projection operator alone, but will do no worse. The time derivative in Eq. (33) becomes

V̇ ≤ −1

2
(1 +

1

υ
)λmin(R−1

0 )||ỹ||2 − 1

2
λmin(Q0)λ2

min(P̃ )x2
2

− 1

2
(1 +

1

υ
)w2

2 − ηλmin(P̃ )x2
2

+W ∗maxw2||φ(x̃)||+ υx2K3||W̃ || ||φ(x̂)||
−KΓλmin(Ω)||W̃ ||2 +Kx̃||W̃ ||

(40)

which can be written compactly with quadratic function ϑ(W̃ )

V̇ ≤ −1

2
(1 +

1

υ
)λmin(R−1

0 )||ỹ||2 − ϑ(W̃ ) (41)

This quadratic function is written as

ϑ(W̃ ) = aw||W̃ ||2 + bw||W̃ ||+ cw (42)

with coefficients

aw = KΓλmin(ZtZ
T
t )

bw = −Kx̃ − υK3(K1 +K2x2)x2

cw =
1

2
λmin(Q0)λ2

min(P̃ )x2
2 +

1

2
(1 +

1

υ
)w2

2

+ ηλmin(P̃ )x2
2 − w2x2KφW

∗
max

The derivative of the Lyapunov function will be negative definite for nonnegative values of ϑ(W̃ ). From
Condition 1, it is known that aw > 0 and increases as new points are added to the data stack. While aw > 0,
bw < 0, and the sign of cw can be either positive or negative, V̇ in Eq. (42) will be strictly negative for
sufficiently large weight errors. That is the weight errors will converge as long as

aw||W̃ ||2 > −bw||W̃ || − cw (43)

Notice that as υ → 0, bw = −Kx̃ and cw ≈ 1
2 (1 + 1

υ )w2
2 > 0. Additionally, as the state estimate errors

improve and x2 decreases, cw → 0 and bw = −Kx̃. This means the recorded data stack terms in aw and
bw will dominate as the error decreases. Ultimately, Eq. (43) defines a compact set ΩW̃1

the weight error

converges with ϑ(W̃ ); however, the weight estimate errors are still bounded by the projection operator in
the adaptive law Eq. (20). The compact set for the weight error convergence ΩW̃ will then be the smaller
of ΩW̃1

or the projection operator.
The Lyapunov function derivative in Eq. (33) describing the convergence of the system will be negative

definite outside the compact set formed by the intersection of the compact sets: Ω = Ωx̃ ×ΩW̃ . The system
will then converge to this intersection.

Remark 2 Since the state estimate error x̃ is uniformly ultimately bounded (UUB), the tracking error
e between the actual and reference systems is also ultimately bounded. The state tracking error is bounded
according to the triangle inequality where

||x− xm|| ≤ ||x− x̂||+ ||x̂− xm|| (44)

The state estimate error x̃ = x̂ − x was shown to be UUB in Theorem 1 so its norm ||x − x̂|| is bounded.
The reference state xm is also bounded by definition. Lastly, the observer dynamics in (4) were a function
of the reference input r and x̃, both of which are bounded. Therefore, ||x̂− xm|| is bounded. The resulting
tracking error e = xm − x is bounded since it is bounded below the summation of two bounded signals.
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