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excitation. If the excitatiom is a stochastic process, e.g. s &coustic moise,
‘nen the stress-time respomse is also a stochastic process.

Inherent in the Palmgren-Miner cumulative damage criterion is a
cefinition of fatigue demage. Using this definition we determine means of
essigning fatigue damages to narrow band random stxesa histories. General
Yormulas are derived for the mathematicel expectation and varience of the
ratigue damage in s fixed interval of time. Using a mathematical
cheracterization of S-N fatigue curves » for parrow band Gaussisa stress
histories we then reduce the expectation of the demege to & simple form and
the variance to a form involving the autocorrelation function of the stress
histories. Next we obtain an eéxpression for the variance of the fatigue
damage for Gaussgian stress histories generated by lightly damped, linear
single degree-of-freedonm systems with nominally white poisge excitations. 1Ia
the final section we discuss "equivalent" sinusoidal fatigue stress amplitudes
in the light of the results obtained in the eariliexr sections.
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1. INTRODUCTION

1.1 Review of Fatigue Failure for Deterministic Stress-Time Histories

When an oscillating stress-time history occurs at e point in a structural
member, fatigue damage to +hat member oftea is & result. Frequently, the
structural member is pert cf a vibratory system and the oscillating strese-
tims history may ve considered as the Tresponse of the appropriately defined
system to some excitation. If the excitation is known, e.g. a sinusoid,
and the system is well defined with <yescribed initial conditions then the
oscillating stress-time history can be uniquely determined. In such a case
the problem of Predicting the fatigue life of the member is reduced to
deteranining the fatigue life while rossessing a complete description of the
gtress-time history of the member. I the stress-time history is a sinusoid
with zero mean stress, a large literature of S-§ curves is available to
Predict the number of cycles until fatigue failure. If the mean stress is
not zero additional data is required, e.g. Goodman and related diagrams [;J l,
to predict the fatigue life.

T a stress-time higtory is not s Sinusoid then, without additional
assumptions; its fatigue 1ife cannot be predicted from an S-N curve or
Goodman diagram. Often in practical situations stress-time histories are not;
sinusoids. In some of these cases it is poesible to clearly identify cycles
of stress, even though the amplitude and, or mean stress change ag time
Drogresses cn the stress history. For these cages Palmgren Ee] s and
independently Miner [3] , have suggested a simple method of predicting fatigue
lives from S=N curves Or Goodman diagrams. (oxn iizr the gtress kistory shown
in Fig. 1.1. Individual cycles of stress are easily identifiable even though

differcut amplitudes of stress are represented. For simplicity

1
Numbers in brackets refer to entries in the ilisting of references.

-1-



-y ﬁ —Sq
— S
2
ﬂﬂ M o 3w

KT I

r")?;.cycles 1

Figure 1.1 A stress historv with identifiable 8tress cyclez cof different
amplitudes.

ve have shown the mean stresses to be zero. Thare occurs in the #trege history

n, cycles at stress amplitude Sl’ D, cycles at stress amplitude Sz,

n1 cycles at strass amplitude Si’

In Fig. 1.2 is shown the S-K curve for the material. Nl is the pumber of

cycles until failure at stress amplitude S N_ is the number of cycles until

l}
failure at stress amplitude 82 etc. The method of

E%;“ =7
S+ — — _— =
: 1 |

Figure 1.2 S-N curve for the material of the stress haistory of Flguz= 1.1.
Palmgr=n and Miner, sometimes called the Palmgren -Miner cumilative damage

hypothesis, is that fatigue failure will occur when

(1.2)



Eence, for each n, cycles at stress amplitude S4, tae fraction ni/Ni of
the fhtigue life of the material is "uaea up" , where H, ia the number of
cycles at stress amplitude S1 obtained from the §-§ curve. The
accumilation S (ny/N;) which occurs during a ixed interval of time T
car be thought of as a fatigue damage, DT, incurred during T. Thus

from Eq. 1.1 fatigue failure results when QT = 1.

It has been implied so far that a precise knowledge of the stregs-
time history of & point in a structure, such as shown in Fig. 1.1,
together with the S-§ curve [or the muterial of the structure ensbleg
one to calculate the fatigue life of the structure. In fact, however,
an S5-¥ curve is an "average" drawn through a scatterband of points
Plotted from the failure of individual fatigue specimens. The fatigue
life of a spacimen is semsitive to the surface conditions of the 8pecimen,
©-8. scratches, the distribtution of grain sizes witiin the Specimen,
impurities in the metal, etc. Thus, the "width" of the scatterband of
Pointd through which anm S-N curve is drawn cen be reduced by carefully
controlling the conditions of the fatigue tests but some gcatter will.
always resgult.

Hence, the best that EQ- 1.1 can do 18 to predict an "average"
fatigue life.

In addition to the unavoidable scatter in the fatigue lives of
"identical" fatigue specimens another uncertainty occurs when one wishes
to predict the fatigue life of g structural member of different geometrical
Shape thap that of the test specimens from which the S-N curve for the

material of the gtructure was obtained. Strictly speaking knowledge of
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an S-N curve allows us to predict with confidence only the fatigue liife of
a specimen "idemtical"” to those used in obtaining the S-N curve. When
usiag S-N data obtained from smooth specimens together with the Palmgren-
Miner criterion, Eq. 1.1, to predict the fatigue lives of practical
structures large errors can result |4] .

Cumaletive fatigue damage criteris more complex than the Palmgren-
Miner cxiterionm; BEg. 1.1, have been suggested [S] . However, none of
thege has been more widely accepted for practical calculations than the
Paimgren-Miner criterion.

In the work to follow we rely heavily on the Palmgren-Miner criterion.
We shall always assume that materials obey perfectly their S-N curves and
the Palmgren-Miner criterion. We justify this assumption on the basis that
our primary iaterest is tc determine the veriation in fatigue damage which
resulis from the stochastic nature of the ensembleg of stress histories which
we atudy.

1.2 Extension to Stochastic Stresz-Time Fistories

If the excitation of a reaonant structure is a stochastic process, e.g.
acoustic noise, then the stress-time history at a point in the structure,
comsiderad a3 the rezponse of the structure, is alzo a stochastic processa.

In particular the fatigue damage to the structure, considered as a function
of time, 18 3 stochastic process. In this thesis we ztudy some of the

statistical properties of fatigue damages associated with stochastic stress
nistories.

The mathematical toolz for engineering studies cf stochastic processes are
trimarily tazel oz probability theory and generalized harmonic analysis. These

To0if have been crganized izto a systematic theory for the study of problems



agsoclated with commmications engineering and automaitic control theory, and
are generally called statistical communication theory or randcm poise theory.
A particularly important contribution to this theory has been made by Rice [6] .
Those elements of the theory primarily concerned with the study of the
resporses of structures %o stochastic excitations are usually called rsandom
vibration theory [7] . A brief summary of random vibration theory together
with an extensive bibliography of the pertinment literature has been given by
Crandell in [8] . The reader is assumed to be familiar with the fundamental
notions and techmiques c¢2 this theory as found for example in [9] .

Consider a gtochastic stationary ensemble of stress histories with
zerc mean 3tresses. If examirstion of & typical sample furction obtained
from this ezgemble, e.g. by using an oscilioscope, shows that the number of
3tationary points {maxima plus minima) is approximately equal to the number
of zero crossings then we can speak of "cycles" of strass. We refer to a
cycle of 2tress as that portion of a stresgs sample furnction between two
adjacent zero crossings having the same slope-./- :sgt?m such a stress random
Proces3 to occur at a poimt in a structure. Further supposs that the S-N
curve for the material of the structure is availatle. Then using the
definivion of fatigue damage , Dm’ obtained in connection with the Palmgren-
Mimer damage hypothesis in Section 1.1, for any interval of time T of any
given ztress sample function we can determine a value for D_. Sixzce we are

T
deaiing with erzsembles of such sample functionsz, for a given interval of time

T, DT i3 a random variable.

in Sectiozn 2 we derive a gemeral formula, in the form of an integral, for
the mathematical expectation of Dy, E |[D_ | , for stochastic ztatiomary

enzambiles of shress historisz. In Section 6 we specialize the results of
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Section 3 giving E [QTJ in a simple form for Gaussiap ensembles of stress
bhistories. In Section 4 we derive a general formula, involving triple
integrale, for the variamce of Dm,CTiTe, for stochastic stationary
enzembles of ztresz histories. In Section 7 we specialize the results of
Section 4 giving CT‘DTQ in the form of single integrals for Gaussian
snsembles of stress histories. In Section 8 we further specialize these
results o ensembles of stress histories gererated by linear single degree-
of-freedom systems with white noise excitations, amd perform the last
integrations.

Using e different method Miles [10] has determined results which we
show in Sectiom 9 to be conzistent with, and for all practical purposeé
fquivalent to, our results of Section 5. One of Mile's principal results
iz an expression for an "equivalent fatigue stress." In Section 9 we discuss
sich "equivalent fatigue stresses” in the light of the expresgsions we have
obtaimed for O 2.

The appendices contain materisl which either deviates from the main line
of thought of the text or is of a too detailed nature to be included in the
text. The orde- .- have used in Presenting the materisl has been motivated
primarily by a desire to present each potentially useful result with =

misimam of assumptions.



2. ASSOCIATION OF FATIGUE DAMAGES WITH
STRESS-TIME ENSEMBLE MEMBERS

let Fig. 2.1 represent a typical gample function taken from a stochaatic

ztationary ensemble of 3tress histories. The mean stress is assumed to

5{t)

Figure 2.1 A typicel narrow band stress sample function.

be zero. For each sample function for any period of time long in comparison

to the average itime between zZero crossings we shall assume that the number of

stationary points (maxima plus minima) is approximstely equal to the aumber

of zero crossings. {(Any small wiggles superimposed on top of the relatively

large ozcillations are rot imcluded). We shall refer to & half cycle as that

portion of a zample function between two adjacent zero crossings. With each
1f cycle we zball aszociate one zero crossing, the zero crossing at the

beginring of the half cycle; and shall refer to this as the zero crossing

aszociated with the bhalf cycle. Two half cycles and their associated zero

croszings are illustrated in Fig. 2.1.

With each half cycle of a sample function we associate an increment of

fatigue damage, & D. Each increment of fatigue damage is a non-n2gative real

msmber and 15 agsumed to be incurred irnstantaneously at the time of the zero
crosring associasted with the half cycle. In a prescribed intervel of time,

~

T, The Tstigae damage , D, incurred during T i3 the sum of the damage
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increments, ¢ D, occurring during T. Thus DT is a random variazbie possessing
2 probtability distribution which depends on the value of T chosen. The
increments of fatigue damage 8D are scaled in such a way that Tatigue failure
is assumed to occur when Dp = 1.

Suppose the law for assigning the values of & D is known. Then for any
sample function for which 2 time origin is prescribed there exists a
unique time for which the value of DT becomes unity; i.e., the time elapsed
until fatigue failure for that sample function. This time until fatigue failure
is & random variable. In Appendix A a relationship i3 derived giving the
probability demsity function of the failure times ir terms of the probability
density functions of the damages, DT, 1T these latter density functions
are known for all values of T. Unfortunately, the probsbility density functions
of DT appear to be very difficult to obtain analytically so that at the present
time the material of Apperndix A is only of academic interest.

We shall now discuss the means we have used for associating the damage
increments; A D, with the half cycles of the sample functions. Anticipating
use of & modified form of the Palmgren-Miner cumulative damege criterion;
~deally we would like to make the damage increments, 8D, functions of the
magnitudss of the stresses a% the stationary points of the halif cycies.
Assuming that one sztationary point occurs for each half cycle we could
equivalently associate the damege increments directly with the stationary points,
assuming the increments to be incurred instantaneously at the times of the
stationary points. However, in practically important ceses, mathematical
difficulties can arise if thiz procedure iz used. These difficulties are

discussged in Appendix B.



The procedure we have used is to associate the damage increment, for each

half cycle with the zero crossing occurring at the beginning of the half cycle.

The magnitude of the stress at the stationary point associated with the half
cycle is then “"predicted" from the magnitude of the slope at the zero
crossing. Hence the damage increment & D iz assumed to be a function of
the msgnitude of the slope at the beginning of the half cycle, | §| 1.e.
S5pD=9D (] é! ). The general formlas for the expected fatigue damage
and variance in the fatigue damage derived in Sections 3 and 4 (Eqs. 3.6
and 4.23 respectively) do not depend on any particular functional relation,
§D( I151).

Frequently the stress sample functions will have the appearance of
ginusgoids with slowly and randomly varying amplitude and phase where the
time between zero crossings on the average is independent of the amplitudes
of the helf cycles. The response of a lightly damped linear single degree-
of-freedom system to a wide band Gaussian excitation has this appearance.

In such cases the magnitudes of the stresses at the stationary points can be
"predicted" from the magnitudesof the slopes of the preceding zero crossings
in the following manner. We assume that for the quarter cycle between each
zero crogsing and the following stationary point the sample functions are
sinusoids of frequency, cycles/second, equal to one half of the expected
number of zero crossings per seccnd, ﬁo. An expression for ﬁo fcr
stationery Gaussian processes has been determinsd by Rice DJJ . Thus if
the frequency; rad./sec., of the sinusoid 1wy ; Wy =Trﬁo ; then the

assumption is that the magnitude of the stress at the stationary point, Is_|

2
<
is given T

wmn .

s | = s -

=

&
0
1
=1
o
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'Jhemlél is the magnitude of the slope of the stress at the zero crossing.
This method has been used in the calculations of Sections § ;7 and 8.

In cases where the stresas-time histories are responses of nonlinesxr
sysvems the sssumption Eq. 2.1 mey be poor. In Apperdix C an alternstive
procedure for predicting the megnitudes of the gtationary points from the
alopes of the preceding zero crossings is explsined.

The procedure for using the Palmgren-Miner cumilative damege criterion
to evaluate the damsge increments from the "predicted" wvelues of the
statlonery points, using Eq. 2,1, iz explasined in Section 5.

In order to be &ble to determine the standard deviation {or variance)
cf Dl‘ it i3 necessary to have an snalytical expression for D’l’ for an arbitrery
sample function. This expression must allow us Yo take into accourt both
the statistical veristions in the number of zero crossings (i.e. half
cycles) during the time interval, T, and the statistical variations in
the slopes at the zero crossings (i.e. "predicted” vsiues of stress at
the statlonary points.) This has been done in the following maaner. We
divide the time izservel, 041t ¢ T; into & large number ,M, of equal
intervals 4 t; wheos

MALt = T (2.2)
A % iz teken so smell that we DY a3sume nc more than one zero crogaing vill
occur per intervel. With an ensemble of ztress sample functions we associate
M random variablea,ADi; i= 0; 1,2, . - ., M-1l, each ADi being

the damege increment incurred during the time intervel 1A+ <t < (341 A%

If s zero crossing occurs within the imbterval iA+t ¢ & ¢ ( 4+1)a %
then the rendom variabls A Di takes on the vaine 8D ( lg | }  where S
12 the slope @t the zexo 2ro3sixg. If no zero SXO83ing osours within

She

1]

intarvel then /_\Di takas & velue of zexo. Thus
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the total damage, DT" accumlated by any sample function during +the interval

04t ¢ T is

M-1
DT = A

> £ D, (2.
i=0
where the M values of A Dy refer , of course, to the same sample function. A
technique similar to the one Just explained has been suggested by Rice [12_'] in
connection with the study of the mean square number of zero crossings of a
random process in a fixed interval of time.
In order to determine if a zero crossing occurs within an arbitrary interval

1At £t ¢ (141)2at we make a further assumption restricting the gize of At.

Following a procedure used by Rice |_'.13J » We choose A+t so small that the vortions

of all but a negligible fraction of the sample functions lying in the interval
iat (< (d+1)At may be regarded as straight lines. Let s (LAt) and S

(1At) be respectively the stress end slope at t= 1 At. Then a Zero crossing
will occur in the interval if and only if S(iAt) and S (1A t) satisfy either

conditions (a) or (b) below.

(a) s (LAt)>0 and -At S (1At) ¢ 8 (1at) ¢ o
{v) 5 (1At)(O and, 0(S (1At) ¢ -pt 8 (1A%)

Hence having chosen a sufficiently small A t; S (iAt) and S ( 1At) determine
if a zero crossing occurs in the interval. Furthermore » Since the sample
functions are assumed to be straight lines within an arbitrary interval s

1At ¢ (1+1) At; if a zero croseing occurs within the interval its 3lope at

the point of crossing is S (iAt). Then given thet g Zero crossing

occurs within the interval ¢ the incremental damage incurred in this interval,
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D ( !é! ). is equivalent to 6D ( [S ( 1 At) | ). Thus for arbitré.ry
intervals int { t ¢ ( 1 + 1)At, each of the random ve,ria'blesADi may be
considered as a function of the random variables S ( 1 At) and S ( 1at)

a3 indicated in Eq. 2.4 below.

. if eithér condition (a)
D { | 8 (£2%)1 )Jor condition (b) is
) ={

AD, (8(1at), 8 ( 1at) lsatisfied

0 otherwise
(2.4)

The random variskleg DT giver by Eq. 2.3 are thus funcitions of the
M random variables S ( 1At ) , S (1 Aat), i=0,1, 2. .. M-1,
M At = T.
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3. DERIVATION OF GENERAL FORMULA FOR
MATHEMATICAL EXPECTATION OF FATIGUE DAMAGE

In this section we derive a formmla for the mathematicel expeetation cf
the fatigue damage, Dy, in terms of the damage incurred du: to a single
ztress zero crossing (i.e. a single helf cycle), §D ( iéi ), and the
Joint probability density function of the stress and its slope taken at the
same time. The ensemble of stress histories is assumed to be a stationary
random process.

In section 2 it vas shown that DT couvld be written as the sum of a
set of random variablesgzxni, vhich are the increments of damage incurred

in the time intervals 1At < t ¢ (1 +1)At, i.e.,

Wi

D = D Vs

P % 4Dy (2.3 repeated)
1=0

Since the mathematical expectation of a sum of ranaom variables is equal to the
sam of the expectationg we have

g o] M-1
D | =
LT_] E [ Z AN Di]
1=0
M-1
- Z E[Ani] (3.1)
1=0

As degcribed in Section 2, Eg. 2.4, each AD, is & function of the stress and
zZope at t= 1 A t. Since the random process is assumed stationary the joint

Drobability demsity function of S {( iAt) and S ( 1At ) is irdependent of
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the time t= 1 At . Hence the velues of E [ADi] are the same for all i,
and using Eg. 2.2,

ELD
T

| S|

-u = [ap]
Z B [8d (8(8), 5 (v) )] (3.2)
At

The arguments t in Eq. 3.2 have been retained to show that the random
variables S and S gare taien at the same instant of time.

The comdition for evalusting E[AD ( 5(t), S (t) )] is given by

Eq. 2.4. The region of the s(t) , S (t) plane for which S(t) end S(t) satisfy

either conditions (&) or (b) of Section 2 is shown in Fig. 3.1. From Eq. 2.4
when the

S

\ ' A : .

g mﬁﬂaﬁe\d R \ \W

£

S(E) = - At S(+)

Figure 3.1 Illustrates region of the S{t), S(t) plane which satisfies
conditioms (a) or (b) of Section 2.

Peir { S (), § (t) } £a11 outeide the shaded aves A D takes s value of zero.

-~

When{s (%), S (t)}fauwﬁthintne shaded area A D 5o (s (&) ).

i}

Hence from the definition of mathematical expectation, .
. 2 . -At S .
E[AD(s(t),s(t))'{= SdéSD(|s|) d.sfe(S,S)

~<c

s

ol

«(as 50 ([8]) (s £, (8,8

4

° J

: (3.3)
-6t S
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where f2 ( 8, 8) is the joint probability denmsity function of S(+) and é(_t)
and At is teken sufficiently smail to satisfy the assumptions of Section 2.
Substituting Eq. 3.3 into Eq. 3.2 2nd sstisfying the(smallness)condition on
& % by letting At > 0 the mathematical expectatiocn of }:T can be written as

E[DT]-_-'E{gdS SD(|S|)[ 3-T:5f(s,s)]

At> 0 At
-~

o . Gm 1 (O© . )
+(ds S D (|s|)[At~>o A—tgds fe(s,s)-]}
-At 8

The operationSwithin the brackets give

-Atg
Livr. 1 . . .
At=> 0 At \ds fQ(S,S) = -8 fe (0,8 )
o
and
Lion, ° . . .
At>0 1(d8 f (s,s) =8 £ (0,8
AL 2 2
~AaES
Hence

E[DT:I= T[gods' §D( |s|) (-s) z ( 0, 8)

o0

o

+gdé5D (1s]) s £, (o,é)]

or

Ei:DT]sTj[SD(IS.I) Is| f2(0,é)dé

- ol

Tkiz is the dezired formila.

(3.4)

(3.5)

(3.6)
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L. DERIVATION OF GENERAL FORMULA
FOR VARIANCE OF FATIGUE DAMAGE

In this section we derive a formula for the variance of the fatigue Gamage
D,!,, in terms of the damage incurred due to a single stress zero crossing (i.e.
a zingle half cycle), 5D ( |é] ) eand the four dimensiocnal probability
density function of the stress and its 8lope taken at two different times.

The ensemble of stress histories is assumed to be a staticnary random process.
The problem is similar to the determination of the mean gquare number

of zero crossings of random signals as considered ;by Steinrerg, et al. [111-]

and Miller and Freund [15] . The technique we use is considerably different,

being similar to one suggested by Rice [16] .

2
From the definition of variance » the variance J_ of D is given by

Dp
o2 =2 [(a-5[5])°]

DT 2 ’ 2
- =[] - [
(k.1)

Sinc2 a general formila for E [DT] was derived im Section 3, Eq. 3.5, we
need to comnsider here oniy E [DTQJ - As pointed out in Sections 2 and 3,
Do can be expressed as
T P M-1

Dp = Z A Dy (2.3 repeated)

i =0

Hence,

- M-l
e{p2] = EL( ZADi ) 2]

i=0
“ M-1 M-1

z A D A Dk]

k=0

= E

g
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— M-1 M-1 :
EI.DT_-I: Z Z E[ AD:L &8
i=0 k=0 (k.2)

2
The M terms in the double summation are represented by the M2 points in the i,k

Plane in Fig. 4.1. At each point (i, k) we amacciste the

et 816

M-lp 2 g °° e

i et

Ve
s/
/7
< Ve
Ve
/s

P 0 o0 o o/

> C 0‘0,0

28 il

o ¢ M-
Figure 4.1 =sch Point represents cne term in the double summation of
Eq. k.2

cortribution of the term E[ADi JAN Dk] to the summation. However, since

1
Ea D, 4D = E[AD & D, |the contribution of an arbitrary point (k,1i)
is identical to the contribution of the point (i,k). Hence s the total
contribution to the summation of the pointe above the dashed diagonal (not
including the points on the diagonal) is identical to the contribution of the

points below the diagoual. Eq. 4.2 can therefore be written as:

E[DTe] = 2 hi‘l jf E[ADi ADk] + Ii-:lir.[(z:.ni)e:|
i=1 =0 1=0 (4.3)

The double summatior in Eq. 4.3 gives the contribution of all points not on
the dashed diagonal and the single summation gives the contribution of the
points on the diagcnal.

Since the ensemble of s<ress hiztories is assumed to be stationary and all

of the time increments, At, correspording to the various random variables AD, ,
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1=0,1,2 . . . M-1, are of identical size, E[aD, AD_] depends only in i-k.

Hence we may write

E[4ap, ap, ] = [ An, Ay ]

This enables us to transform the double sumation in Eq. k.3 into & single
sumnation over (i-k). On each dashed line in Fig. 4.2 1lie all of the points
i-k = constant, the constants being different for different dashed lines. Hence

all points on the same dashed line give identical contributions to the double
sumation in Eq. 4.3.

M-y J- J
p //‘K—- i-K=|
/ a/t/e\ L-KK :a
K s 77 :
/ vl °
/ // o L] :,/°
VS
y S S n/.”m”1=-‘L"P§='F4—El
N i M?-iiL'K:M"

Figure 4.2 The contributions of the individual points on the same dashed
line are identical for stationary stress histories. :

From Fig. 4.2 there ayre M - (1-k) points on each dashed line. Hence from
Eq. 4.3 E [DTz]becomes

E[DT2] 2 Mil [M-(iak)J E[ A D ADi-k]+ lil' E[(AD:L )2]
(i-k ) =1 i=0
M-1

=2 y (M-R) E[ADO ADX} + Mil FJ[(ADi )2]

—

(4.k)
Q=1 1=0

We shall now determine an expression for E ‘-L\_ Dy ADQ\] The procedure
-

is similar to that wused in the determination of = [ AN Di] in Section 3. TFor

arbitrary i, ADi is & fuzction of S (iAt) and S (1 At) es indicated in
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Section 2, Eq. 2.4. Hence the product A Dy ADy is a function of the four random
variables S(0), é (o), s (4 At), s (L At). In order i shorten
the equations to follow we define the new notation.

T= XAt (&.5)

é (0)

= s (0) éo

S
(o]
Sy =5 (4At) S.=8 (Lat) (k.6)

From Eq. 2.4 the product A D, AD, is zero unless either condition (a) or

(b) of Section 2 is satisfied by both sete { S so} and { S,
from the definition of mathematical expectation and Eq- 2.4 we have

. b
3 Sop- f Hence

“((6]) ( l't';’ol ) SD( IS,! ) fll» (So’ S.ox St’ S’t:) d.":".o dS:t dSo dS,c

R
(&.7)
vhere fh is the four dimensional Probability density function of the indicated

variables (with T ={ A t entering ), a8 a parameter) and R is the region of the
four dimensional space in Sys éo, S, s;,c in which both pairs YLSO, sog and

{ S» S.'c} satisfy either conditions (a) or (b) of Section 2. The shaded
areas of Fig. 4.3 illustrate the satisfaction of these conditions. The integral
in Eq. 4.7 can be treated as an 1 terated integral by integrating first over

S, emd S with S Sn

(b) Satic fied (3) Saﬁs-ﬁecl7 (\&’Sa‘ﬂyﬁgd (@ Satisfied
& N 5

So=-At S, Seroat &,

P e
Vs : - Bt
Coviditiong eomwm {.5035;'3 Conditiongs ow i%«;,uﬁ«cg

Figure 4.3 The regien R in Eq. 4.7 1s that region where both{S_ S

1
and{S_, S, jlie in the shaded sreas of theis respecti%e’ ©-
Planes.




the limits prescribed by Fig. 4.3 and then over Sc @@d S,. . The region R

is separated into four parts corresponding to the four quadrants of the

°

So » ST Plane. Hence taking At sufficiently small %o satisfy the
assumptions of Section 2, we have

> o -(A'tso B‘tS,t,
E[ADO AD,Q]. = [gdso dS,t-\, dSo dSr +
[=] b . -Atsa o e il R ° o ., o @ -Ats't
+§ds°§ds,c dsog as.  + {dSOSdSTj as g s s
T S _ el . .
+fdso(ds,c§dso ( dsT] 50 ([8| ) sn( s | ) g (8,0 8,58, 8_ )}
° o -ats) -atd
(4.8)
In order to satisfy the (smallness) condition on A t we shell want to
let At >~ 0. In this operation the summetion over ! in Eq. k.4 passes to
L
& Riemann integral over T s and E[ADOAD,?] enters as A t—> o _L )2 X
2 At
E[ADo A D/d - Hence we shall now deteymine At>0 zi‘ve ElA D, ADd
Consider the first of the four fold integrals in Eq. 4.8. The appropriate
lim:.ting operation on this integral can be written as &S, -At 5 1
o
gd.so( dS $ D ( !s ] )gn(:sz! )[Ai:o 1 . Sds gds g, (so,so,s S)J
- w0 - o0 ( A t) e o (4 9)
The operation within the brackets of Eg: k.S gives
)2 l 'Atso A(ts . . ° - s 'Y
st 0 i S 0 (48,8 (S, 8,5, 5. ) = (-8,) (-5, )£,(0,8,,0,5, )
° (%.10)

Since both S and S are negative everywhere within their domain of integration

(&

in Eq. k.9, =s and - f-~ in Eq. 4.10 can be written as | sol angd ]s

.
Tespectively. Hence the result for the first of the four fold integrals in
Eq. 4.8 can be written as



’ (o] o} -A/‘t5° _Ats‘r . . .

o i A ) - - «

Qt.}o (At)2§ Q-L ds?_ )o oo £ qsa:&”\ [ SQ' )SD( iS,rI ) f,.'. (SD’ uo 2 S’r ’ St) =
o o o .
gSSD(!sol ) D(|s.|)Is,| |8, | £, (0,8, , 0,8, )as_ &

(%.11)

The remuining three of the four fold integrals in Eq. 4.8 are hendled in
an analogous manner. The results can be gathered into a single double integral,

M

. E[{AD, AD -
t >0
A 7 t)a [ (] 2]

=Y

=g {gn(lsuol )Sn(lsa,cl)[soi iéz_] 1), (o, so,o,s'f)dsodsﬂp

o —od

(k.12)
voere 7 ,(Ato To shorten the squations to follow we defipe
1 (T)—)gsn (Iso]) s0([8,) I8 | IS, 2, (0,5, ,0, 5, ) as, a5
—od ~0 (l"‘°l3)
We shall now let A t> 0 and hence ¥ > 0 in the summation over { in
Eq. 4.k. For any gize At the summation can be written as
M-1 )
Z {M-2) E(_Ano AD,] =
{=1
M-1
= > (Mat - gag) (——)2— E[AD, AD . ] At
At
4 =1 (b.1k)

Recalling that T is the time interval during which the damuges DT are incurred
204 hence is indepemdent of the size of At, and that T = MAt ( Eq. 2.2),
then 25 [\t >0, M — o¢ in such a way that M A t remains constant. Hence

ssEaming I, (T ) = A’{: '__)"’ o _IA;:)Q E[aD, AD 2] to be contimiocus



iu the interval O0( T & T, and using T = /At as the variable of
integration, a8 At —= O the summation, Eg.h.1h defines & Riemann
integral between the limit® T =0 and "= T - At. The sassumed

contimuity (and heance boundedness) of Ig (T ) allows us to replace

the upper limit by T= T. Hence we have

M-1 T
Ll (4-2) E[AD_ AD)] = S (- T)1_ (T) aT
At>0 P . ° 3

(4.15)
vwhere 13 (7T) is givem by Eq. %.13.
We shall now consider the summetion over i in Eq. 4.h. It is desirable
%o express this summetion as a function of 5D ( ]SI ) and the joint
probability density function of the stress and its slope taker st the same

instant of time, £, ( S; S ). The treatment is a streightforward

extension of the argumeate between Eqs. 3.1 and 3.6 in Section 3 and we shall
not bother to repeat them. The result is

=]

M-1

S e{(a0p®] = v (80° ([3]) (5] 2, (0,9) a8 (k.16)
i=0 e

“here
8% (sl ) = [s001s1) ] : (1.17)

¥We sball now combine the resuits obtained in Section 3 and this section
ioto a single expression for the variance of DT given by Eq. 4.1. First we
meke the definitions

'/c

I, = -532{ {s] ) !él £ (0, 8) a8 (4.18)
2 2

1, = (s (18] ) |8 £, (0, §) as (k.19

- a0

m.
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’_\8

£D( sg)gb(|sr])|s§|s|f (o,s,o,s ) dS as

oQ

L

e (¥.13 repeated)
Substituting Eq. 4.18 into Eq. k.16, this result and Eq. %.15 into Eq. 4.4

and this result together with Eqs. 4.19 and 3.6 into Eg. %.1 gives ths variance

Of Dim, -
- 2 2_2
GDT g2§(T-’L‘)I3 (t) ax + 71, -1°1, (k.20)
(o]
However, -
22 . 2 g (T-7T) a~t (k.21)
20
Hence J p_ Can alazo be written as
T T
2
O 2. o1 - - k.
By T"1+2S(T ) [13 (T) -1, Jax (k.22)

or

6‘32 =T-{11+2 ST [13,(7:) -122]6.7:}-2 ST'L"[I?, (7) —]fae]d’t'

T
(4.23)
Eq. 4.23 13 the principal result of thiz section.
The reason for grouping the terms [I3 (r) - I22 ] in Eqe. 4.22 and
4.23 i now given. For most ergodic 2nsembles ags 7> oo
f)". ( 09 So ? 0, ét ) N fe ( O’SO ) fe (O,St) (h-el“)

that is, for large T the Process at t=Tis stetistically independent of the

pProcess at t=0. In such cases as 7"—= e

I (7:;~(st’ 1851 Yen(iep IS o181 2, ( 0,8) £, (0,8,) as, as

“;w[iwsb(; S7) 8] £, (0,8 ) as :]

“Z=—00

= 122 ()4'-25)



Hence, for these cases 83 7T >oa
2
[13 (r) - I, ] ~ 0 (4.26)

2 i
If [IQ (r)y - 12 ] dies out sufficiently fast, then as T oo,

™

([T (r) -=I2 4% ~ a coastant, say C
(o]

and T

2
-
f 'Z’LI3 (Tr) - 12 ] dZ ~ another constant, say C2 R
o
vhezre cl and c2 are ipdependent of T, and from Eq. L.23, as T—> oo
2
o—%»v {Il + 2 C } - 20, (k.27)

Hence, for ergodic ersembles and large times, T, we might expect the variance
of the damage incurred during 0 ¢ t < T to be approximately proportional

%t T. 1In addition, from Eqs. 3.6 and 4.27 as T = oo we expect the ratio

U—DT /B [DT] to approach zero.
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5. EVALUATION OF DAMAGE INCREMENTS éSD(léI )
AND CHOICE OF MATHEMATICAL MODEL
FOR S-N CURVES

5.1 Evaluation of Damage Increments sn(gé] ) from S-N Curves

In Section 2 it was explained that with each half cycle and associated
Zero crossing of a stress sample fumction a damage increment 6D(|E‘;l) is
88sumed to be incurred, the damage increment being & function of the slope
8t the zero crogsing. In the work comtained in Sections 6, 7 and 8, we
agsume the stress histories to be sample functions cbtained from Gaussian
engembles. Narrow bapd response® vwhich are algo Gaussian usualiy have the
appearance of simisoids with slowly amd randomly varying amp;.itude and
Phase wheres the time between zero crossings on the average is independent
Of the amplitudes of the half cycles. Hence, in Section® 6, 7 and 8 we
shall aseume the amplitudes of the half cycles (the magnitudss of the
Stresges at the statiomary poimts), | 8g| 5 to be well predicted from the
#lopeg a% their associsted zexro crossings by the assumptior that the

intervening quarter cycles are sinusoids as explained in Section 2. That

13 what v shalli use

sl = BL

- (2.1 repeated)
Ir No

%o "predict” values of |S gl from the magnitudes of the slopes at the zero
crossings )Sj , where N is the expected number of zero croesings per unit
time of the stress sample functions. An altermative proucedure for "predicting”

Sﬁi from jS} is outlined im Apperndix C.
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We shell now explain how we evaluate the dameage increments $ D(Ié] ) from
S-N curves by usimg Eq. 2.1 and a modified form of the Palmgrean-Miner cr:!.teriqn.
Az was mentioned in Section 2 the dsmage increments ED(IéI ) are scaled so
that fatigue failure will occur when the Sum of these imcrements sccumulates
to unity. The Palmgren-Miner criterion s Eq. 1.1 predicts fatigue failure
to occur when the total number of (wholz) stiress cycles, % n, is such
that

Z‘ By =1 (1.1 repeated)
¢ Ny

where N, = N(Si) is the number of (whole) simusoidal stress cycles obtaimed
from an S-N curve at the stress level S i» Which is the stress amplitude of
the o, cycles. Hence if a fatigue damage of 1/N(Si) 18 associated with each
{Whole) stress cycle of amplitude S; then Eq. 1.1 predicts fatigue failure
to occur when the sum of these damages accumilates %o unity. An obviocus
extension of this to half cycles of stress of amplitudes ‘Sgl is to
asgociate a damage imcremesmt of 1/av(|ss| ) with each half cycle. This is
the method we use. Using Eq. 2.1 to "predict" the amplitudes of the half
cycles from their associated zero crogsings gives us the damage increments,

- : : = l
spiist) (5| /rrR,) (5.1)

where N(S) is the pumber of (whole) cycles at stress amplitude S obtained from

the appropriate I=-N curve.



5.2 Choice of Mathematical Model for S-N Curves

Since N appears in Eq. 5.1, in order to be able to analytically evaluate
the formulas derived in Sections 3 amd 4 it is necessary to have & mathematical
repregentatioa of 5-N curves. S-N data are usually plotted on semi-log
paper. However, whem the S-N dafte for a large mumber of metals are
plotted on fulil log coordinetes the resultaant curves are well approximated by
straight lines over a large range of S. Fig. 5.1 repregenis such a plot for a

high strength saluminum alloy. The straight portion oFf the curve

“.cg Sl‘\
<X L eq.5.2

(€3]

Log

N

N1 tog N

Figure 5.1 Logarithmic plot of S-R data for & high strength aluminum
alloy and mathematical approximation, Eq. 5.2.

can be represented by the formmls

ol
N(S) = (_S_'-‘;) (5.2)
5

where 5, and o( are constants.
Taking the logarithms of both sides of Eq. 5.2 and rearranging gives
1
log S=1lgS, - 3 log¥ (5.3)

Thus the slope of the straight portion of the curve in Fig. 5.1 is -

&l



——— N

A typical velue of A i G. Sl cam be interpreted as the siress amplitude at
woich Eq. 5.2 predicts fatigue failure after onme cycle. Howvever, due i‘.o the
curvature of (full log) S-N curves for large values of S , &8 shown im Fig. 5.1
valzeg of S, are gemerally comsiderably larger than the ultimate strengths of
their materials.

The representation giver by Eq. 5.2 may be used if the amplitudes in
the stiess sample fumctioms are such that most will fsll omn the straight
portion of the logarithmic plot of S-N data. This repregentation has been used
by Miles [17] , and we shall use it ia the work of Sectioms 6,7 sud 8.

Substituting Eq. 5.2 into Eq. 5.1 we have

o

El )

D8] ) = 3 (—=
s, N, T (5

Eq. 5.4 gives the damage increments s# a functiom of the slopeg at the zero

croesings, S s ¥Where 'ﬁo is8 a property of the emsemble of stress historys

axd S¢ and & are constamts which characterize the fatigue properties of the
material.
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6. EVALUATION OF EXPECTED FATIGUE DAMAGE

FCR STATIONARY NARROW BAND

GAUSSIAN STRESS HISTORIES

In thi® section we determine & formuls for the methematical sxpectation
of the fatigue damage iacurred durimg & Tixed time T for statiomary narrow
band Caussisn stress histories. In Section 3 & generel formula, Eq. 3.6,

was derived for the expected fatigue damage.

ol
E[DT]s T gsmlél ) |sl £, (0,5) as (3.6 repeated)
For Gausgsian ensem‘;;;s of stress histories the joint probability deansity
function of S(t) and S{t) » fa (s ,é) is a two dimensional mormal distribution
[18] . For stationary emsembles of stxess histories E [S(t) é(t)] = 0.
Hence f’e(O,S‘) iz Eq. 3.6 is o
S

€ =203

2

(6.1)

oy et (s [51) 7] AT
o, Ak (G-=[s] ) égé[é 7] (6.2)

since the mean stres$ i& assumed to be zero. If 17”1‘ is the autocorrelation

4

function of S(t), that iz,

W= ey =E [s(t) s(e+7) ] (6.3)

/

%
=]

- 1/
G = ¥ /2
& o

(6.4)
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agd from [19}

1l/2
T ey (6.5)
whare 5
d. ]
LA " (6.6)
2
aT
Z=0
is a negative number.
An expression for 5D(|S|) has beem obtaimed in Section 5, Eq. 5.k,
PR I .3 o
on{|sf ) = s ) (5.4 repeated)
Sy NO’FT
where the expected number of gzexo cro@sings per unit time for a stationary
Gaussiam process is &iven [20] by
- 1 - 4 1/2
K = 3 —{Uo :, ,(6'7)
%
Combinming Eqs. 3.6, 6.1, 6.4, 6.5, 5.k, and 6.7 gives -g2
7 o . ( [s1 ‘% 1/2\ e EX C-EM 3
BE [D'I’J =T g = | Sl _-PII ) 2,“.-([,1/2( ‘7/”)72
-2 . : o
d=1 -
g o« +1
= P ; e 7T .
¥, 2 - 1 i$] e %7 as
27 8, % - ka 2 B
Cw &
&K1 - - 2
= T-% 2 R 1 - .
s “T e Ty as
) s X 5 (4L
2 1 [_--L//JIJ 2 5
g (6.8)

Evaluating {21] the imtegral im Eq. 6
expected damage becomes
7 l/ 2 2 U i
r - ! / 4 2 X )
2 1+ X
Ein]e= QW’:-——QJ (—é_ ) 11 2+ X

7 s, (6.9)

-8 in terms of the gamma function, the



or using Eq. 6.7

&
- N, 2 Y - ol .
E l_D'I] = 7 —;h— ( -5;2—) 2 r(l"' 5 ) (6.10)

which is the principal result of this section. In Section 9§ this result is
showr to be comsisztent with the results of Miles [22] - Notice that since
eackh "cycle" contains two zero crossings, the quantity T ﬁo /2 in Eq. 6.10
i# the methematical expectation of the number of "cycles" in theinterval

X
0<{t< T . Hence the expected damage per "cycle" is (2 ‘;g/s’e ) /2 /
oo ).

n
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7. IRTRODUCTION OF GAUSSIAN ASSUMPTION INTO
FORMULA FOR VARIANCE OF FATIGUE DAMAGE

If we agssume that the stationary ensembles of stress histories are
Gaussian random processes then the integrails I, 12, and I3 (T), Egs.
.18, k.19 amd 4.13 respectively, can be evaluated in terms of the auto-
correlation function of the stresses, "V, and the parameters characterizing
the S-N curve, Sl and X . The only remainimg steps in the determinmation
of Tp, ? are the integretione over 2 indicated by Eq. 4.23. Assumption
cf a specific form of '\/{Z :I.s' necesgary before these can be carried out.

Comparing Eqs. 3.6, 4.19 and 6.10 we find I, has already been evalusted

in Section 6.
I = 1 E [D ]
2 T T

= Ng ( 2y )

2
2 Sl

I\)IR

(7.1)

[ s %)
where ﬁo ig giver by Eq. 6.7.

The evaluation of Il is implicity contained in the evalustion of I2. The
Parameter o i3 coctained in the integrand of 12 ( Eq. 4.19) only a8 en
axXponent in SD(S} ) given by 2q. 5.4. Hence from Eq. 5.4 squaring SD(ié] )
iz Eq. %.18 is equivalent to multiplying Eq. 4.19 by 1/2 and replacing

< by 2. We thus obtain I, immediately from I, Eq. 7-1 as

o= Mo (2T T e (7.2)
1 S
L 1
We shalil now evaluate 13 (T), Eq. &.13.

If an ensemble of stress histories is Gaussian then the probability density

function, £ (So, Sy Sx s S, ), is a four dimensionel normal distribution
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(23] . Hence £y (0, S_, 0, 8, ) can be written as

7

- 1 s 2 A, SS +A g2
- — (A22 +20,, 8.5, +A)) 8.%)

(o]

(7.3)
The evalustion of the "/ parameters" in terms of the autocorrelation function
¥y 18 in the readily svailable litersture [24] and we shall 1ist only the
results here '

I
2 2
l_{\_i =.('!{Jo -w’tf )( «%//2_%//2 )'*‘21,/,{:, 2(%%.« _%‘%Il) +-%)r/
t; 2
Boa =-%TmE - B -y ()
I 2
Agh = (TR -wB) Ly v
Ay = A
where
Fe=W(T) = E [ s(t) s(t+7 )]
AR
-%Z:I’Z:o
! Y
e o
YUls aw
avr
°”= A:HI (7.5)
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Substituting Eq. 7.3 and the expression for the damage increments, Eq. 5.4, into

13 (T), Eq. 4.13, gives

- V Y “
RN = T 72 X )
16T (s g7 F,) Al (1.6
=0 /w 2
© X+l | .
( 8 | + I'Sz!d+l - iAI-_(Azgse +2A21‘_SOS +_/\ _
J l © — dsC as.,
-0 - O
We define the new variables
/2
W o= (‘A'—————22 ) Sy
o 2 IAI
1l/2 .
/X"r = ( A___.._22 ) / S,Z
; 2 | N (7.1
Taking the square root in the change of variables; Eq. 7.7 causes no trouble.
This follows from the fact |Al / A can be interpreted as a certain
conditional variance [25] and hence is neg.esu.rily non-negative. Writimg
Eq. 7.6 in terms of X, apd ’)(,,Z gives
A |o( +3/2
1 [~ 4
I, (T) = 5= ( 2 —) X
3 LT Slz,n.a ﬁod Nyp XH2
X 2 -2 2
( ( \X \o(+l 'Xo ﬁah' Xo 'X,E"'/X%
E X . c 22 ax (a%y
-0 ey
(7-.8)

If we restrict (X + 1) to be en even integer then the absolute value signe
can be removed from the integrand in Eq. 7.8. We shall make this assumption

in all of the work that fcllows, i.e.,

Assume X = an odd integer (7-9)
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The resulting integral has been evaluated by Rice [26] in terms of the
hypergeometric function,

i 4 2 =4
o+l oL+1 - KXo -2 X coq o =%
< k ,x‘ ,X'-*’ P ° °'% <P 't' d/\ 4% =
\' J o - o SNE
- o —oo]_?
= l+°( 2 - 2
p B +3 F ( _«-}-l X +1 _l_' cog P)
X+l = even, O eAT
(7.10)
Since - th /A op 8D be considered as the correlation coefficient of a
certain two dimensional normel distribution [27] it follows that |A o/ Dol €
Hence the integral im Eq. 7.8 carn be considered of the same form as Eq. 7.10.
Before uging Eq. 7.10 we shall transform it into a more convenieat form.
Since sin P) O for 0{ %l the right hand side of Eq. 7.10 can also
be written as
2
2 F{_x+1 X+l c 1 rcos b )
I (e ) 2 2 )3 '
2
I:l- cose?] X +3/2
(7.13)
Using the transformation [28]
c-a-b
Fla b ¢’ = 1-2 F (c-a c-b’' ¢!
(a v c'2Z) = (1-2) (c-a o-bj ' 2 )
(7.12)
(7.11) becomes
2
—
] (l+"o'<") F(J.-i"o—(' 1+ 0_5_1- UENeYeY ] % )
2 2 <4 2 4 \ ‘

3 (7.23)
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Hence, an alternative form for Eq. 7.10 is

f‘°° -2 -2 XK, cosp - ’)Cg
| g 7S Xg= € %, AX,=
w S -
=rQ (1+ X ) p (1+ = 14 o S c092<p)
2 2 ) 2 42
K+l= even, 0< < v, (7.14)

The form given by Eq. 7:10 hes an advantage over that given by Eq. 7.1t since

the hypergeometric series of Eq. 7.10 termimates after (1+ °<2"'l ) terms.

j6ing the form given by Eq. 7.14 for the integral in I3( T), Eq. 7.8

we have
Ig (W)= 1 ( 2 )'x ]_'2 1+ « ) X
4 AT s, ﬁo 2
2 F(l+ I+ & ‘1 - Agu )
Aso X +2 2 ) 2 12 |

(7.15)

K = odd integer
'\.\rherell\l)Aé2 and A ol 8F® glven in terms of the autocorrelation function
by Eq. 7.4, and N, by Eq. 6.7.
In section & in letting A<>0 & summation was replaced by a Riemann
integral, this operation being indicated by Eq. 4.15. In performing this
operation 13(1) was assumed contimuocus in the interval O £z { T- For stationary

ensemblesV mist be an even function of ¥ and hence

Y= __d W ’ =0 (7.16)
°© d T=0
Using Eq. 7.16, examination of Eqs. 7.4 and 7.5 shows that for stationary engembles
LAl | eg= 0
N2l % 0
A 2&‘ =0 (7°17>
.t,o
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; X +3/2 / A+2
Thus, the ratios | _A_\ A— * and [\ ol / / X appearing
in Eq. 7.15 are indeterminate et 2‘= O amnd hence 1 (0) ie undefined In

ocrder to satisfy the contimiity assumption it is necesgsary that ,)_,,’&’"&_ I, (7T)
exizy, where the limit iz the conventional right hsand limit. In Appendix D

mlemes delreamd acead

WS 840w that under faizxly general conditions

At 4 (‘) = o (7.18)
T-o4+ 3

Hence we define
13 (o) =0 (7-.19)

thereby satisfying the contimuity requirement at Z= 0. For autocorrelation

functionz arising from Physical problems we do not anticipate contimuity problems
‘n the remainder of the interval, 0 ¢ z { .
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8. EVALUATION OF VARIANCE OF FATIGUE DAMAGE
FOR STRESS HISTORIES GENERATED BY SINGLE
DEGREE-OF~FREEDOM SYSTEMS

In this section we evaluateCTiT2 for stationary Gaussian ensembles of
gtress histories whisch m2y be considered as responses of lightly damped linear
Ssingle degree-of-freedom systems to white noise excitations. That is s We
azgume the sample functions,s(t) are stationary Gaussian responses of
systems described by the differential equation

S 42l S+ 8e F(t) (8.1)

where a)n is the natural frequency, rad./sec., of the undamped systenm, $is
the (small) system demping and F(t) is & nominally white noise excitation.
BY & nominally white noige excitation we mean one whose spectral density is a
constant over the range of frequencies which contribute significantly to the
Dean square response resulting from a true vhite noise excitation.

The evaluation of the autocorreletion function, ‘t//za E [ s(t)s(t+ ¢ )j 1
of the response of the system described by Eq. 8.1 is straightforward ard in
the easily accessible literature [29] .

-3Un’z _‘5 A\ o
=¥ e (cosq/:-g’-‘u)n‘c+AW SIN V-V Wt ) , £20 (8-2)

S 37 W50 4

=4/_ii—//% C CO.S(I\’/;'-SL Wn T “'(f&> ) '\ﬁ>/0 (8.3)
a2 £

Vi-s*

. < tan
where ‘eg
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Using Eqe. 6.6, 6.7 and 8.2 we find

N = Y (8.4)
° ™

1
The functiona depending om I in 13 (‘) Eq. 7.15, are eveluated using

Eqs. 7.4, 7.5 and 8.2. After considerable manipulation we find

v b
INl= wy A (5 0.1 (8.5)
N W WE oA (& waT) (8.6)
;22 = o n 2 , u’t .
A 3.2 4 (e X (8.7)
oh =TV, n B8 wWne) o

where for T2 O

-250 T 2
2 - _e2
A LW = 1. S5 € B° (1-5% cos 241- ¢ W)+
+ e T (8.8)
A 2 2 280, T o2 T
= {1-5"'3““)“"7)’_ ——-l-*-%— e sin N 1-5 W T {8.9)
\\ l"S
) e-Zng 't"—
Ay 5,0.T) =1 -Cu s S o (2VIFER W, T - € )] (8.10)
] -2sW,T [ 25D S
Ay (g W,T) =1-¢€ - T e (:Z.eq/—\,_g; WO T + \ (8.11)
& =22 W, T
+W Sim VI-

From the factSthat the existence of E [sg] implies the existence of ¥ ", that
for any stationary pmcessw' 0, and that the operation d on the right

hand side of Eq. 8.2 gives zero, it can be shown that if l’ﬂ = g {sajexists
e overation d" 2 l or the right haprd side of Egq. 8.2 gives the true wvalue
T v =0

of ¥, " even though Eq. 8.2 gives T4, only for T 0
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e M . ~2eo\T
A, (& W T ) z*[T-EZ _Cos( T ONT + e )€ cos(«/_"‘;-gv.u,,'r-@:l(s.la)

- - -2%W, T -
o (s =€ 1€ P o ymEm 0 - 5 (14 7259 (8.13)
£ -e=
Y K S YTTERWL T
Furthermore, we ghall uge the abbreviation
2 2
Apy =8y (S)WOT) = A, ( & 0,7 ) (8.14)

Ap? B3 { &,W.T)

Substituting Eq. 8.4 into Eqe. 7.1 and 7.2 gives

wn 2%, Y2 [ 3 8.15
= 2n (g2 (1+3) (8.15)
X
; - Wn ( 2% ) ]—‘(1...0() 8.16)
S ‘

1

vhile substituting Eqs. 8.4, 8.5, 8.6 and 8.14 into Eq. T.15 gives

2 ,
u.)n 2% X 2 i, X
Y ece—— + — ) X
(T = o (572=) | (3+ —
K+é , X ° °
Ay 2 (0 S,WaT ) F( %1 l+-; s le-,A3 (é)wn’t) )

AR qwetT )
A = odd integer } TS O, (8.17)

Substituting Eqs. 8.15, 8.16 and 8.17 into Eq. 4.23 and performing the
integrations over L will give an exact expression for g D‘i’2 in terms of the
time during which damage s incurred, T, the mean square stress; |/ , the
pazameters characterizing the system,W, and S and the parameters
sharacterizing the S-N curve, Sy and & . Explicit dependence of the results

o2y can be eliminated by defining a dimensionless time + = @n %t with the

dimensionless varisble of integration becoming

2
T= W, T (8.18)
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and the dimensionless period during which damage is incurred

T = (,On T . (8.19)

/
Thus, substituting Eqs. 8.15, 8.16 and 8.17 into Eq. 4.23 and using ‘T
!
as the new variable of integration and T as the dimensionless period

during which damage is incurred we have for the variance of Dy

2 1 (2% Ve T TCw) +
O—i)T'= aTs | By° ) {2]—.
i °(+%
2 [7$ ' 4
T NS T e S d A (ST ”"'}‘T}
+
o A2 ggl/ﬂ)
!
2 o T A0(+"é
17 a3 )g’f'[ 1 (s F (e 2 10 & '_{_-As(g/t'))-l}at
P J d
X = odd integer
(8.20)
Furthermore, from Eqs. 7.1, 8.15 and 8.19
/ x
~ T 2 Y, y & 1e X (8.01
2 o] - = (% [T —) (8.21)

1l

Hence the ratio O"DT' / B [DTJ is independent of ¥, and S., and depende

1
explicitly only on T‘)o( and $ .

Examipation of the expressions for Ay A2 and Ah—’ Egs. 8.8 to 8.13, makes
the poseibility of performing exactly the integrations in Eq. 8.20 appear
discouraging. However in orxder to be abie to use S-N fatigue date to
evaluste the fatigue damage increments it has been necesggary to restrict the

admizaible ensembles of stress histories to those displaying the usual narrow
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T = (,L_)n T ) (8.19)

/
Thus, substituting Eqs. 8.15, 8.16 and 8.1i7 into Eq. 4.23 and using T
/
a8 the new variable of integration and T sas the dimensionless period

during which damnge is incurred we have for the variance of D)

Y SR g‘z/o )y T‘{_ﬂgl_]?l-i—o() +
2T L -

+]_‘2(l+_)§ 1(3 /\L’,)F(l+—-——l+ > J%)‘A3(g)’ti))‘l}aﬁ:'}

X +2

Ay (i’g)
2 TI K+ =
I A )
| il o't K % ) F (1 )i A 1A (s, T ) -1t
XN +2 i . 2 J -
° Ay (§¢7)
X = 0dd integer

(8.20)

Furthermore, from Eqs. 7.1, 8.15 and 8.19

z/ 2% 2 T

s = 2 —) 1 x ) (8.21)
E EDT] pp 812 ( 1+ 5 ( .

Hemce the ratio O"DT! / E [DT'J is independent of ¥/ and S

explicitly only on ‘I‘)o< apd S

14 and depends

Examipation of the expressions for Ay, A end Ah’ Eqs. 8.8 to 8.13, makes
“he poeeibility of performing exactly the integrations in Eq. 8.20 appear
discouraging. However in orxder to be able to use S-KN fatigue data to
svaluste the fatigue damage increments it has been necessgary to restrict the

admissible ensembles of stresa hisztories to those dispieying the usual narrow
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band charecteristics. For stress bhistories generated by 8ingie degree-
of-freedom systems this restriction is satisfied by requiring the system
dampings, S to be small, say § ¢ .03. Tmms there is no loss in generality
i€ by aasuminé;;; can obtain adequate approximations to the integrations.
Assuming € <¢ 1 we have been able to approximate, analytically, the
integrations iz Eq. £.20. In this 2ection we mexcly state the small §
aprroxXimations for Al’ A 5 and Ay, and then carry through with the

iztegrations without muck discussion of theerrors involved. A fairly detailed
discussion of the approximations is given in Appendix E. In addition, for

% typical set of parameters, o= 9 and §= 1/60, we carryout there a

pumerical integration using the exact expressionsfor A s Ae and A , and

1 b4
sompaxe the results with the amalytical results obtained by assuming << 1i.
The agreement 23 very good.

From Egs. 8.5, 8.11 and 8.13 obvious small £ approximations exist

Y

[%

2% A., A, aod Al; except near W T =T = O. The approximations we make

n
are
AL 3 T) = {3 C'egfi)e (8.22)
A, (3,2 =1 .g 28F (8.23)
»
A USE ) 2T (22272 os 2 (8.24)

all for % << 1, ’t’),.g_
We 3581l give separate compsideration to the interval o ~T "\< -‘5'— ‘

I3ing Eq. 8.14 these approximations give

(8.

a+3 (RN :

A 2 () Flz 2,1+ %01 A (& T ) -1 o
Ta.-?_ S A N 2 2 A 3 )

T tzerixsn . -28% o,
~ { 1€ ) Fi{ls X, I+ « i e cos” Ty -1

= 2 < 2 J
~ T
for ¢ <K 1 & /\/—;

ns

(2]

s
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The bypergeometric function can be defined asg

ab

Fla, 6 b;22)=l+ = 2 + a{a+l)b(b+d) 22+ ... {8.26)
N 1 J

it celc+l) 21

Thus the hypergsometric €ummction in the right hand side of Eq. 8.25 has the

genperal appearance given in Fig. 8.1.

-2%
c

AN LJK /t7\,
4 s d 4
7 N I R — T ] 7
e A T N o ‘»777’ mm??' (m*e)"r T~
Figure 8.1 Sketch of the bypergeometric function appearing im the right
band side of Eq. 8.25.

We shal. trsat the first integral appearing in Eq. 8.20 first. The small

s approximation of the integreamd is given by the right hand side of Eq. 8.25

PUPIE -ESI" K+l
Tor ‘T2 3z . For $<<| <4he variations of ( 1- ) and the
. &« -28T 5

eavelope of Fll+ = , I+ -5 . % 4 e cos ’t)) over any interwval
2,:__ <"r" 4 'Z&"‘l'ﬁ T A ) 4

= 8T & ~ ) 2=l,2,3 . . . are small in comparison to the variastion

= -4

) K 3 -2 ¢’ : /
°of F (il+ —37, ot .3, e ar c052 T ) over the same intervsl

ge2 Tig. 8.1). The techmique of approximate integration we use is the
folioving. The integration is performed im two s8teps8. In the first step
-2 47! {(n+l) T
VB as3s3ume vhe ®uriation of £ s in any interval aT ¢ ¢ “_"l—
"2—‘_ N T$ 2
T=i;2,3 . > ., L2 D2gligill:. With this essumpsior we perform the integration

o+ IT
2 - 2

E4

over ‘T  between the Limiis U=

, &0y n=1,2,3 . .
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Tais would give us an approximation of the contribution to the integral

(n+l -2’
for the interval nm (e ) D if € (assumed constant) were
2 2
evaiuated by assigning to it some value of T within the same interval
o (B+1) T
32‘ (i 2 - Dividing this approximation of the

interyal nﬂ.’ L% 2 In this manner for each D=1,2,3 . . . an

a'opﬂoximtion to *he ave*’age value of the integrand over the intervaisg

a "* v ¢ n+l) " can be obtained. However, instead of aggigning

8 :r?a,lue to '\2‘3 2g for each intervsl corresponding to the values

°f B=l,2,3 . . . , we bave left € ° er "free." The approximstion to

e average value of the integrand for eack intervel n;"' M §n+;) T then

H {
*2n be considered as a function of T’ {the 'f'a.ppearmg in e "25 ' ) over
thiz Iaterwel, For cach of the intervals corregponding “o n=1,2,3 . . . thiz
fiZetion has the same form. Thus we obtain a gingle function which givesg

2 coutimioua approximation +o the average value of the integrand for ali

[N
7 >

c 2 T /2, Integrating <hig appmximation between the iimits T:T/2 and
visn? then gives the smaly 32 Spproximation we have obtaimed for the firat
=tegrsl sppeariag i Eq. 8.20 over the range T /2 ( 1 ¢ T Cur motivation

for tbis procadure 2z gimple. It can be carried out amalytically with reasopable

sffoxt amd gives answepg 4 convenient form wkich agree very weil (at least

i

for the typizal case ¥ =9, 32:1/60 Jwith numerical integrations using the
hegrand ,

SX2CT expredsion for thse

Y’j“

We 20w proceed wE=h

ot

“he integratiops. Define
-28%

4

B = (8°27>



From Egz. 8.2, 8.2

25, 8.27 axd the above discussion the approximate average

value of the first integrandi in Eq. 8.20 is given by

(ZH'J.Q"-T
2 o+

I (BY= 2 \ (1 B)
)

2 n=1,2,3 . . .

Flis e &

B cos? ’t'
J 2 J

% 1, )-l]dt'
2 2

?1

where B i3 held constanmt in the integration. If we define

then I; (B) is given by
R ' ®+1
Ih(B}s 2 (1-B) IS(B)-

le) o ()
Since T avpears in the integrand of Ea. §.29 only in coaa’f which is

periodis vith period 17, it is necessary to consider Is(B) only over a gingle

paziod, 3aF T

2 {
=l and 2. Furthermore since cos "=

/e K 3T d.e.
L S e

12 an even function about ¢'= 7T ; the integrand of Eq. 8.29 is aliso even

atousT =7 and
— LT'EAT
Hence from the pexiocdicity

IR/B" nae the same form for the intervals o
/*

-A T e J
- Noad . - ~ ~,
A

= -

0B o

u=l and 2 regpectively,

(8.28)

(8.29)

(8.30)

of o8 T it frllowe %

evaluste I
S
e

Thexn

_{B) for z=l.

Zaweoduce the change of variabie

2t
X = oos=)

X

N

+ 1_{(B) bhas the same form for &il m=l,
5

L'

2,3 .« 5 . We

(8.32)



Hence, from Eq. 8.29 IS(B) becomes

2l
i X X .1,

15(B)=l‘ F(1+ > | 1+ 24 34 B x)
\ dx (8.33)
\‘ 2’)(1'/2(1-::) /2
-
o

This expression can be integrated [30] giving
ﬂT - 9< . ' 3
IS(B)S =l Flie &—, 1 v; , 1.B : (8.39)

Substituting this into Eq. 8.30 and now comsidering B as a function of "E') Eq.8.27,

gives us Ih’ the approximate aversge value of the first integrand in Eq. 8.20

for AL/’>/ T
2
set’ 4l -28%/ _
I=(1-27%%7 V7T pae _x X e )-1  (8.2%)
= 5

U=sing the transformation, Eq. 7.12, ILL can be written as

- Pie X o L €-egn:‘ L
‘4 = 1= 5 J = = J J ) -

(8.36)

Hence from the comments preceding Eq. 8.27 the small & approximation of the

first integral in Eq. 8.20 over the range iy {rtl .-“-\‘
2 b

i® givExix by
'{.! =~ A “.’-3/2’
‘..“.t ; A:\;*}e { J F(l-!-_oi__, 1+ X, l_J A3(§JT‘)) -l} AT =
SomalT g 2 =3
e T
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The integral om the right hand side of Eq. 8.37 could be evaluated in a

oWer limit were zero. For £4C 1 apd 0K Y (

~2k~
e :r/ is approximately unity so that
Ve
r~_- !
[ r , ., =2%7
VIF(-x__ - =2 "1'¢ )~1]JT'
J 2 ) 2 3 J
o %
.'/ a
A | [F(-O( - & "1 1) -:ld't‘ (8.38)
J 2 3 2 ) 3
9]
But

F(- & - '1‘1)=R1+oc)

if X > -1

J Jd J
2 2 172 )
2 (839
30 from Eq. 8.38
Tz
{ )
| =2 57T
UFeo - ‘e”")-l] ‘w1 r(1+0<) -1]
e 4T g |
5 1—' (1+-=-—) |
2
£ (8.%0)
Iease, using Eq. 8.40 to add and subtract the value of the integral for the
aterval O ¢ ¢ %r_ to the right hand side of Eq. 8.37, we have
X~-F
oA T ) .
R F(1+ X 1+ < -_.}'A(gs't')} -ttt ~
I . 2 ) T2 u2) 03
-+ =~A ( S, C)
i 2
f"TJ I
r ' L 287 ‘ ]—' -
= | F(- X - X 1e )-1]3’1: - 10 (e X ) o
Jo = = ’ 2 r2(1+ & ) ]

(8.433
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We shall now consider the contribution to the first integral in Eq. 8.0
for the imtervel O S ﬁ - It is recalled that no satisfactory small

% approximations for Ay Ae and A , Eqs. 8.8 to 8.13, were found for the region

Ll"
1
near U= 0. From Eqs. 8.17 and 8.18 the first integral appearing in Eq. 8.20

can pe written asg
i

A+ 3/2 '
[A (5,7 F (1+ « I+ X 1 - 3(3 T ) J b=
x+3 : 3 ) 213 :
o LA™ g | (8.42)
| T
w2 . x -1 !
- [__2_:; (ma wn_,) T2 (1 ) ] g 14T - ’
.Dl 2
o

and the contribution for the interval O T 'E' a

17
(/ZA x+3/2 ¢ o
1 ( y b F(l+ X 1+ o< , l" . (e T )) "l] JNI:-
2 1 K
j AQ“*‘ (\K)t-:) 2 2 4 2 4
D
2 -1
&)n i
= (% )T(_wa) IodT' — T
Lame 3 2 (8.43)
l o
Using physical argumects we show in Appendix F that
e
'3 13 4t~ 0o for X<< 1 (8.kk)

(o}
which is meaningful in the senge that itz contribution is neglibible in

comparigon with the corresponding integral over the remainder of the interval

g

1

AN i.e.

g
H el

d’T.'

Ve (8.45)
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for the case(=9, €= 1/60. Substituting Eq. 8.44 into Eq. 8.43 and adding

the resulting equation to Eq. 8.41 gives

l/‘ X+3/2 i l
\ Ay T ) F(1l+ X }l+ % 17 A3( 3)'}:‘)) -1] 4T =
X+e i 2 232 4
j Ay U5, ) (8.44)
o ,T,/ ‘
-2 5! , »
~ [ - nE )-1]de'- MR EFLS e
2/ - J
o I

Using Eq. 8.26 we now integrate the right hand side of Eq. S.46 term
by term. The resulting series converges sufficiently fast for conveaient

oamerical evalustion.

\/T‘l o -2 ftl 1] \
‘L - -1 - v=1 =
\EFK =, 5. c AT
JOTJ
SN,
2 - ! 2 1
= | ° BT cx ) (- X ay s
\ (1t )2 2 2 e e
J ) <
o = (2!
e G )2( - X +41) (- & +n-1) i
5 - -2 3T |
s oo 4T
(nl)
{s- X )2 -0 eT’ _ 2- 2
= 1 lr -z (1-¢ 5 ) ( f_(e_)( °2< +1) BN
Eg 1(}‘)2 (l"e )+ aa 0
L ’ 2 (21)2
X V3 L X \2 <
R A oy (1-e@3Th
a(n! )?

(8.57)
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For values of T’ lazger than sayTr/ < the values of the exponentisie g the
SbOve serizg are negligible ( & -2T. -002); =2d the effective value of

T/ in Eq. 8.47 can be taken ag infinity. This result is in agreement with
the comments at the =nd of Section k. Simee ' © T and from Eq. 8.4 the
¢Xpected mumber of cycles per second is L%/a'IT, the condition T’ >/ /¢

i3 equivalent to specifying that the expected pumber of cycles occurring
during T be greater than 1/2%. This condition should easily be satisfied

in all practical applications. Hence if we define

. 2
§q(°< )=(ﬂ—‘§——=)2 (- < )%. x_ +1)
+

3 2

“-—E + ?
1(11) 2 (21)2
2 2
,0,4.(-%_)2(@ X +1) R - N
2
n(nl)<
(8.48)
then . ™
lr;_ < o -23r' y
PF(s ——— - - 2 -1
WS B TE L Ty s )des (8.49)
D00
— . < - £ . -257! v
* R 5 , =—,1, ¢ ) -1]41: 2 3 ()
J Y !
o)

27 integration we uge 18 very similar to that used for the first integral. The
Inegrands of the first and zecond integrals in Eq. 8.20 are identical except

for the T mutipliier in the second. We use the sams small & approximations

TE AL AL and 4, Eqs. 8.22 to 8.2 for 4he fmterval T (¢ 1.



=51~

ovtaining the "approximate uverage value of the integrand," amalogous to

Eq. 8.28 for the first integral, we assums that the T mltiplier is constant
1

in sddition to the assumptiom that C -287.‘15 congstant. Hence it followe

immediately from Egs. 8.20 and 8.36 or 8.37 that our small £ approximation

of the second integral appearing im Eq. 8.20 for the interval = ¢ T'{ T

2
18 given by
T!
x+3/2 \
A v B
,Z,Jf’l (S, : F(l‘l-—a-(— 1+0( 'l'A(kt' }) -1 dﬁ:lg
L e SR PR
T, 2 ! ,
"2 - {8.50)
— [ o< o .. -2k
~ (T'[F(' 2y Tt € -] 4! , Sk
J.
/!/a

At first glance the assumption that the ! maltiplier ~ constant in

ohtaining the integrand in the right hand side of the above equation would
-2’
appear Yo lead to considerably more error tham the C ¢ =~ constant

aggumption. However, using the small X approximations for Al, A and Ah
¥e show in Appendix G that a8 {-—> O the results given by our approximate

method of integration approach the exact answers for cach interval
m=l/2) T L T (meR/2) W , B=l;2,3 .

Following the techmique used for the first integral im Eq. 8.20, for

- < azs < tﬂ'\( ,21:' C’th;z-, { ) $0 that
f'f/z_ ;
! - = 2 ¢!
\ At , - ,
; ol Xl L X - P} - ~
j R ) AR
o)
~z

s - < .
=OITIF- s = 141)-;&&' :
- - : N - J (8.51)
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But F{ - X = - X R oo )
2 T 22 =) if « »-1

(8.39 repeated) .

20 from Eq. 8.51
, 7z

e

B ) 4
L (e —‘;—j- 21 e TE ] ar' ’IT l‘uwo
] N ] 2 3 Ty J r -4

o
g <. (8.

Using Eq. 8.52 to add and subtract the integral for the interval O v '¢ gl: )

%0 the right hand side of Eq. 8.50,we have

pT X+3/2 '
(‘*C‘r Ay (£,7T) (20 2 o« .1 o ! ,
T F (e & a3 2 AL e T "l]df =~
LAgaue( ¢ T ) 207 T2 a3 403
o o
{

= (”:’EF(- 5. &1 e Jar- o2 [(1ex) -1

| ] 2 1 J ) 2 N

4 I (1'5"9(2‘)

= ]

§<Ll

(8.
From Eqg. 8.17, 8.4k apd the fact that 13 is always non-negative (see appendix
F, Eq. F.1 sad the discussion ¢hat follows) it follows that

wt

! bl F of | I
T — Fll+ — 1+ < - 1 °A T o)) -] d7T =

.
‘ .
C —
4 8 &’ <l (8.
/O ) -
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Finally, adding Egs. 8.53 and 8.54 gives

Tl
f /r‘AlG’ﬁ,J/.z( kv'\‘:‘ ) i !
l\'t! 3 F(l+ X 1+ X l‘A3( _?J'g )) -1](,\'\6’&:'
J T ha (&) 20 T3y 34
o :]:r’
T

'E“(- %—J ’%_‘l' SRR )-1] ay! - TE [ (et

L
§ecl. (8.55)
Using Eq. 8.47 we write the integrand appearing in the right hand side
of Eq. 8.55 in series form and then integrate term by term.
e l)

i , -2 ¢
(,t [F(‘j . %51 ¢ )-l] az' =
‘é N
5( (- ?)2 , ., -2sr! (-%—)— (.&=+l)2 Ry
o * 2 re ol
Jlane (21)°
(]
(- )%= % 41)° ...~ = +n-1)2 —en !
+ > —-2—4-)2 ( +n-1) /‘Z/ e dn&"ﬁ‘h“ o
- (nl) .
= 1 --g— 2 - [] - < - 2 -ll-é'[‘"
P e SR PG Pluecry] « & F) 5 Dhee
L2 z22(2)?
(1 &2y + ...
2 2
2 (0 %%+ (- - +n-1) / ; i
* 2 z — [— fj'm” (L+2m& T ):]+ }
woe) (8.56)
For values of T’ larger than 1T /%

/
the effective value of T in Eq. 8.56 can
2gain te taken 38 infinity although the approximation here is not quite as

200d a8 in Eq. 8 47 ( & -2'71‘@_4_21.(}% .01). Hence if we define
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- . X 32 2 2
+ /:\/\ = 2 ) + (- 5—-) (- & +l) . i =ﬁ_\el an VS VAN
- A - NN 2 i 2 7 A= == ) eei= ...2.".‘._ &7
1 (il) 3 3 ‘d =
2 (21) n- (o)
+
(8.57)
then T
i Y] o< Y s -2 S"\C"
[ TP e
[Va)
or (
-2 %7
~ (- X - oL . ° - ] /a
J/’Z‘ ‘-.i.‘( 2, > 3 lJ c ) 1 aT _L‘Q EZCMB
© (8.58)
if the expected number of cycles during T 3 _1
28
We now combine these results to get our approximation ofO_ ? Substituting
T
8.49 and 8.58 into Eqs. 8.46 and 8.55 respectively and the results into
Eg. 8.20 gives usG— 2,
T
O 2 a0 (2 Wy V% 2 & can
DT' l;—-:;dg \ 5 () ) ]_‘ (1+ ) ) X (8’:9;
A
i: T B () - 2 () . ’\T?' [aee)
L =X ! ) _(‘; 2 r2(l+ )
and from Eg. 8.21
O—DT’
T 5,0~ T ]
E (D] Vf—“' E‘ST[ ar(h_
T
(8.60)
Tq

- 8.59 and 8.60 applying if <,

ramber of cycles in T 1 . If in sddition &T 5> 1, then C—DT’ /E [DTE]
2%

{ =an odd integer and the expected
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becomes

—

T (B
£ [D'J‘;’j N;_ &x’

16Kz, €T") 1, adx = am odd integer, vhere T'= CQT. Eqe. 8.59, 8.60

(8.61)

and 8.61 are the principal rezults of Section 8 and may be considered the
mizeipal "practical” results of this thesis. Table 8.1 lists values

of §*(o() and %Z {X) which have been computed from the series Eq. 8.48 and
8,57 respectively, and values of'n'r(l+o<) /]_'2 (1+ %5 ) computed from

tne relation rt(lﬂz} = n! and the duplication formula [31} ,]—‘(1/2} r( ) =
?.m-l ﬁn) r(ml/‘z} .

Table 8.1 Functions occurring in Eqs. 8.60 and 8.61.

', /

. 2, () B0 Tl )T 80 5

1 . 260 .255 ' pn

3 2.32 2.29 10.67

5 8.04 T-14 34,13

7 23.4 17.6 117.0

9 67.1 ko.9 hi6.1
i3 198.1 97.1 1,513
23 603 oh2 55587
%5 1,9%0 640 20,860
by 4 6,350 1,790 78,520
bL 21,300 5,220 297,600
21 | 72,500 tg,aoo 1,134,000
23 253,000 400 L 337,000
25 | 889,000 158,000 16,660 ,000

Using the relation

&J = 277 {expected number of cycles occurring during T)
(8.62)

st+ained from T'swn T and Eq. 8.4+ we have plotted in Fig. 8.2 the resultz given
r
*y Eq. 8.61 forfq / E| DT] = .20. The expected number of cycles iz used &3
T -
ordinate rather than T because it i3 more convezient to think in terms of

syelss when dealing with fatigue. For the ranges of the parametersused in

(

tting Fig. 8.2 the errors involved in using Eq. 3.61 as ar approximatisn of
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9. OR "EQUIVALERT" SINUSOIDAL STRESS HISTORIES

In this section some aspects of "equivalent" zinmusoidal stress amplitudes
are discussed in connection with the "probable equivalent stress” introduced
by Miles 1—32] . We begin by defining an "equivalent" sirusoidal stress

amplitude, S e,.foz::’ a s3ingle stregs sample function which is amalogous te

the "probable equivalent stress" of Milez. The'probable equivalent stress"
Sn, may be considered as & definition of an "equivalent” simusoidal stress
amplitnde for an ensemble of 3tress histories.

Eince each "cycle" of a sample function contains two zZero crossings, the
mathematical expectation of the mumber of "cycles” in a time interval T, is
T Wo/2. Furthermore, with each siress aample function of length T there
L2 associated a fatigue damage, DT Hence, for each stress sampile function
of lemgth T of a statiopary narrow band rapdom process we define sn
"equivalent” sinusoidal stress amplitude, Se?as that stress ampliitude which
¥2i1 produce the same fatigue damage, Dy, after T 'ﬁo/e cycles. A3 described
ia Section S.l1 a damage increment of l/N(Se) is associated with each cycle
T ampliitude Se(oz a damage increment of 1/zv(se) with esch half cycle).

Thuz using the model for S-N curves expiained in Section 5.2 {Eq. 5.2), the

~eiation defining S © is

Dp= T N ( S
2 v Sy
v /
Heace the random variable S, iz 2 function of the random varisble Dp- If

e
=

(9-1)

she probadility demsity functilon of Dy were avallable (ve have determined

s2pre3g@ions cnly for the variance of ]:\I.) then the density functions of S e
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sould be obitained, using Eq. 9.1, from the density function of Do

We now zomsider the "probable equivalent stress" S., introduced by

Miles. The "equivalence" of Sr ig btased on the mathematical expectation of

e

my E I_DT » ¥hich 18 a rmumber characterizing the ensemble of stress

A

sample functions. Thas i3, using arguements anslogous to those used in

defring Ses the"probable equivalent stress,” Sr i3 defined by

&

E [Dg] = .'r H; < :;,) (9.2)

Thus T ﬁo /2 simusoidal '@'sress cycles of amplitude S will produce the
mathematical expectation of the fatigue damage incurred in a time interval

of length T. Since E ':DT] is proportionmel to T (Eq. 3.6), Sr is independent

of T, Our method wsed in defining S, i8 somewhat different thsn that of Miles.
To show that the two Aefin’iions are equivalent (at least for statiopary aarrow
band Gaussian ensembles of stress histories) we equate the right band sides

of Eg. 6.10 and 9.2 snd solve for Sy

E
S, = 2%)1/2L'T‘21+ 2 }1/o¢

(9.3)
voisk sgrees with the results of Miles  [33] .
We ghall now discuss some properties of Se and Sr' From the defiaitior

of 3 Eq. 2.2 %the dammge produced during & time interval of lemgth T by a

sizmugoiial. stmess of amplitude Sr and frequency ﬁo /2 iz E ! D;;lo At the

_— =

s2d of Section 4 and in particular in Eq. 8.59 we have shown that ag T — o0
“he variance of Dr,_, increases without limit. From this it follows that the

sxpa2ted dsviation between the damage produced by an arbitrarily chosen stress
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sample fupetlon amd tkhe damage produced by the simmsoiial stress of amplitude
2. 2nd frequenmcy N, /2 ‘toth during & +ime interval of isngth T, increases
slsbout limih a8 T > ca@ By. Eq. 9.1 we bave dsfined for ssach sample
function az "equivalent" simusoidal stress amplitude se which at a2 fregquency
of N, /2 will produce ivring = time interval of i=ngth T, the same fatigue
damage a8 that produced by the sample function from which Se 18 defined.
1% them follows that the expected deviation between the damnge produced by
4 23iDus0idal shrews Se (determined from an arbitrarily chosen stress sample
funetion) and the damage produced by the simusoidal stress Syps both &t the
frequency No/2 for a time interval of length T, increasez without limit
&8 T — cc ,

It iz also of interees to note that for finite time intervals T the
mathematical expectation of Se i# in general not equal to S:a Taking the

mathematical expesiation of both #iles of Bg. 9.1 gives

%l

[

JLSEEE S | (.0
1

323 €qudting the right hand sides of EqQs. 9.2 and 9.4 we have
B{ 8] = 5 (5.5)
However, in general E [S"‘q :4"]3 Ms ﬂ~c{a.nd kence in general E ‘PS ]"‘ S .
e = €17 L] | Pe )™ 52

A Fpesial caze of Liapouncoff's inequality I:31+] gives
ﬂE_S—JO( { B g%’ for « > 1 (9.6)
TELFe) [ Pe ] - e

# twa% from Eq. 9.5

7
Ei8e | & 8, (9.7
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However, we shall next prove that a8 T — o4 if —» O then the

.
=

DT ]

Trobabiliity depsity fumction of Se approachesd the Dirac delta function

el

5 (8. -8). We them mave
[ r

o))
e
L

td

oq
/m [ I\ - B
T B8, ] = (se 5 (8, - 8.) ds,

0C

= Sr (9.8)

80 that the equality in Eq. 9.7 is satisfied a8 T — od.

We shall pow show that a8 T —> o if C____DE_ —>- 0 then the probability
density fumnction of S, approaches the Dizac® [DT] jelts, function Q(Se -Sr) .
The practical consequences of this are that for sufficiently large values of
Ty the value of the "equivalsnt”" stress, Ses OoUtained from a sample functiom
skt en 2t rapdom will be approximately equal to Syr. If this conditiom were
wot satisfied any mesningful practicel application of the "probabdle equivalent
stresa” Sys of Miles would be impossidle. The plausibility of the condition
;;:.,LQ_T_ —~0 a8 T —> ¢ hag been shown &t the end of Sectior 4 for general ergodic
B,
mi‘fm%% baad ensembles of stress histories. In particular, we have showan th®
ondition to be satisfied for the ensembles of stress histories of Section 8 wiaich
ire generated by single degree-of-fresdom systems (Eq. 8.61).

Equivalent to the statement that a&s T -« the probatility density function of

S‘.e approaches the Dirac delta furztion & (Se = Sr) is8 the condition

Fawm o N
a0 Fr { 1Se = 8x; € =0 (9.9)
Zor wny< 0. We now sbow Ea. 9.9 to be satisfied if 4m ST . =0, The Biepayme-

T t—\_«l-/m_l

Tchebycheff inequality '55] applied to the raxdom variable Dp gives

P:"; D’r" Dp| > K V‘D,“_J

'J

9 L} _-\.] A.E

b



for K > O vhere

D_QUI
R
o}

—

HU

| —

Eg. 9.10 implies

Prﬂ__;i_‘ -1’ S K O, J\( L

T Dep K
From Eq®. 9.1 aad 9.2
Dy, s .
R e
DT va

apd substituting this into Eq. 9.12 gives

Pl b

But for x ) |jand Se N O (vhich are alvays satisfied)
- '’

S
T
S S &
e A
| <] =2 -1
S, | 8
Hemee Eq. 9.1b implies
[ | 0o
P’:U =il > F = } -
DT K
or ”" Ot 7
P__,%— |Se=S.|> Ksy ~Dp 1< 2
B - &
Let us choose _
K = = £>0

(9.13)

{9.12)

(9.13)

{9.14)

(9.15)

(9.16)

{(9.17)

(9.18)
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then 2 5
1l
2 0= s, ( do, ) (9.19)
K 2
= -
Dy
and Eq. 9.17 is equivalent to
2
S
P (‘S =8 >E < r OST (9.20)
r L e i~ AN ) o
€ Dy
for any ¢ >0. We recall that Sr is independent of T. Then the condition
MO—BT = 0 lies that sub he choi. £ >0 77>O
T o = implies Y subsequent to ¢ ce of any < and anj
5T
there exists a number Tl such that for al1 T > Tl
2
5. 0D, |2
c? ( = ) <7
- Dy

vhich complete# the proof of Eq. 9.9.

From Eq. 9.14 using the values ofO_D'T / B EDT] we have obtained, one
cordd find very coaservative bounds on the probabilities of Se - Sr
exceeding specified values. However, these bounds would be much too
congervative to be comsidered as estimates of the actual probabilities. In
order to obtain such estimaies ome could guegs & form for the probability
dengity function of Dy depending orly on the persmeters E {DI,:] andO;T
values of which we bave obtained. From this and Eqs. 9.1 and 9.2 it is then

Posaible %o obtain estimates of the probabilities of |Se=Sy.| exceeding

specified values.



APPENDTX
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A. REIATIORSAIP BETWEEN THE PROBABILITY DERSITY FUNCTION
OF THE TIME UKNTIL FATIGUE FAILURE AND THE
AND THE PROBABILITY DENSITY FURCTIONS OF THE FATIGUE

Let Dp be the fatigue damage accumlated in the time interval 0O< < T,

+the sccumilation being stochastic. Fatigue failure occurs at the time

when Dy accumulctes to & value of umity. Let ¥y (DT, T) designate the

Probebility distribution function of - T appears as s parsmeter in F_.

D
Then the probability demsity fumction of Dy, f) (Dr, T) is givea by

gp = _ O Fp(Dp,?)
Oy
Let TF desigpate the time of occurreasce of fatigue failure, and
?E._(TF) designate the probability distribution fumction of T,. Then the

probability densgity function of Tp i8 given by

fF = _d.__ FF(TF)
dTp

_ Thnen by the definitiom of the probability distribution fumction

’ -
Fo(1, m)=p, [nr< 1]

as ]
=P [T > 7]
= 1-P[T < T
But
r =
P L%(T] Foo (T)
hence
F?(’EF) = l-F? (l)TF)
- (e -
tey 5 (D0, T )

Q

(:Pr[fatigtu failure occurz at + > T
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and from Eq. A.2

fo = = _4d (Iﬁn (Dp,T) Dy (A.3)

Aam
d

F

vhdch determimes the probability demsity functiom of the time until fatigue
failure from the probability density functions of the fatigue dsmage DT 2
given for all T.
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B. DIFFICUIZTES IN ASSOCIJATING FATIGUE DAMAGE INCREMENTS
WITH TEE STATIORARY POINTS OF STOCHASTIC STRESS HISTORIFS

It vas memtioned im Section 2 that it would be desirable to associate the
fatigue damage increment of each half cycle of a stochastic statiomary
BATTOW band stress history directly with the stationary point (i.e. the maxima
or minima) of the b&lf cycle. Implicit in this statement is the s@samption
that only ome stationary poimt occurs per half cycle. When narrow band noise is
viewed om am ogcilloscope this imdeed appesars to be the cuse. In practically
importaat cases however (e.g. the stress histories of Sectiom 8 which are
gemerited by single degree-of-freedom systems) msthematical analysis of the
#57e88 histories predicts the occurrence of a large number of stationary poimts
for each half cycle. Physical arguments lead us to believe that &t least for
Ske narrow bend stress histories gemerated by lightly damped linear eingle
legree-of-freedom systems all of the stationary poimts aszociated with each
2817 cyzle are grouped iz a small cluster about the apparent ginglie statiomery
Loint per half cycle ome views om am oscilloscope. Thus ia oxder to be able
o associate the fatigue damage increment of each half cycle with the appareat
single statiomary poimt per half cycle it would be uecessary to fiad a means
of mathematically cheracterizing the event which 18 the occurrence of Fuch
& cluster of statiomary points. Charscterizing this event would consist in
letermining a value of 3tress to associate with the cluster amd in being &ble

0 count such & cluster sz 4 single appers=nt statioaary point for the murgoses of



fatigue damage. We have not been able to find a meaningful convenient way
of mathematically characterizieg such & cluster amd thus we have resorted to
2380ciating the damsge iacrements with the zero crossiags, "predicting” the
applitades of the apparent statiomary points from the slopes of the zero
croesings .
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C. ON "PREDICTION" OF MAGNITUDES OF STATIONARY POINTS
FROM SLOPES AY PRECEDIRG ZERO CROSSINGS

The resulis of Sectioms 6,7 and 8 depend on the assumption thet the
meguitudes of the staiionary points sre well "predicted” from the slopes
at their preceding zexro crossings by essuming that for the quarter cycle
tetween each zero crossimg amd the followimg statiomary poimt the sample
functions are simusoids of frequency, cycles/second yequal to one half of_thc
expected number of zerc croszizgs rer secondcg io‘ For the stress sample
functions studied in Section 8 which are genersted by lightly damped linear
single degree-of-freedom systems it was foumd that io mo)n/'ﬂ' (Bq. 8.4)
vhere L’"n is the natural frequency of the undsmped system. Thus for
these sample functions s» sssumptiocn equivalent to the above i# that for
the gusrter cyclie betumen each zerco crossing and the following statiomary
point the (stress) response of the system is assumed to be the respomse of
the undamped system with mo excitation;, the initial comditions beimg specified
oy the state of the system at the zero crossimgs. This interpretation
rossesses the advantage of haviag an obvious extension to caseg of stress
sample functiomns which are generated by lightly demped nonlinear single
degreé-o&freedom systems. In the nonlinear cage, however, the elapsed time

between & zero crossing and the "predicted" stationary poimt will, im gemeral,

depend on the siope &t the zero crossing.



-68-

D. EVALUATION OF 4~ T _ (T) FOR CAUSSIAN ENSEMBLES
To+ 3
OF STRESS HISTORIES (Eq. 7.15)

In thiz appendix we show that for stationary Geussiam ensembles of
stress histories for which E [sa] = - " exists
i
I = 0 7.18 repeated
if the autocorrelation function, ' (r) can be expressed as a power

e €>0,
series in 7 valid in some interval O £ T € ‘that is,

~I!2 n A
W)= W Bt ) ——

and if C3 F 0. These conditions are satisfied for the ensembles of stress
histories considered in Section 8.

From Eg. 7.15, 13 (T) 1is given by

- 2 “T2., &
L0T) =_1 ( T2 =2 )T_‘(l+2')X

Wi 5y m o
“+3Z 2
_\'..[.\_"_/_ F(1+ , 1+ & i Ag&;
A A2 2 v2, )
l&zz /\. 2
gy (7.15 repeated)

K = odd integer
where f_/\!‘ A_ - and[\éh are given in terms of the autocorrelation function

by Eg. 7.4 and ﬁo by Eq. 6.7. Hence if the limit
F (1+ =

Taos- 3 2

2 A_22

(D.1)

(D.2)
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ig finite and if

o +3/2
L e =0 (D.3)
T>o+ N

o)

them Eq. 7.18 iz sahigfied.

We first show that the 1imit indicated by Eq. D.2 is finite. Since ihke

2 2
hypergeometric fumction in Eq. D.2 converges for all (Azh / N 29 ) 1

ip order that the 1imit, Eq. D.2, be finite it is sufficient that

2
——Q—- -~

(D. 14}
Toor Moy
We shall nowv show that
3‘”’" Dar | 1 (D.5)
C>0+ [\22 2
vherety satisfying the condition on the hypergeometric function. Expresaions
for [\, and "A"f)h in terms of V(¥)and its derivatives are given im Eq. T.h.
iincme‘%é 0 for stationary processes (as indicated im Eq. D.1) repeated
1ifferentiation ofl 5, and [, (as given by Eq. 7.4) yielde
. 4/& 2 .
< . a A_ :
N | = 22| = 2 | -0 (D.6)
TR L 2
oy a T | reo a'T O
i alzh a2 v )
Do - — \ N Aeg | =0 +D-7)
= M=o aT c=0 a7 ip=o
a
Tos derivasivezs & ¥ ! which occur in the determination of Eqs. D.6 aad
a T o ‘|/7"= vl

©,7 are to be interpreted as the coefficientad cn in Eq. D.1. Differentiation
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of AQQ and ‘A'oh- once more gives

3
d ‘(‘\‘ > 1 i
~322 \' - R, u/o//'
a - T=0
- s Hy" c, (D.8)
and 3
a A
eh - /IR
K] = - 2K % %
a’™ el
e« -2¥Y" ey (p.9)

Heance repeated use of L'Hogpital’s rule gives

2 24 :
Roudid A________. « 1 if c3;zé o (D.1C)
L0+ ./\ 22 2

vhe .imit in Eq. D.10 is indicatzd az a right hand limit im view of the

n

aterpretation of the derivatives d z/) as the coefficients cn in the
d’t'n t=D .

ss=igg smepresenmtation of W(T) (Bq. D.l) wvhich is asgumed to represext Vi)

<
PR

ozsy in the positive iaterwal 0 { T L & €Y0.
Je s3ball now show Bg. D.3 to 2e gatisfied. From the expresgsions for
o s 304 iAlin terms of ¥ ('C ) end its derivatives given in Bq. 7.4 end the

sasumption of the exlgtencs of the series representation of"-,‘/ (’Zf ) given by

fg. D.1 1% follows that /i aod Al may also be expreasged ag power series

gl ar ey, -
Wl Wiliabdds

& same interml O LY (€ as Eg. D.1 , 38y

2
A = o o
o T

< \ 20

- nq (D°ll)
B=0 )
ENai A {i ® 2
A - a n. T T.i2)
o a |
a= :

G



for 0 (T LE . From Eqs. 7.4 and D.1 the coefficients a and b,

could be expressed in terms of Y, 74/ '' and the coefficiemts C_ however

+his will not be necessary here. From Eqs. D.6; D.8 and D.1l it follows .zat

for smail ‘L >,O).[L2‘2 i@ given by

3 L .
- - o D.
A5 2y W' ey 0o (T (2.13)
3 Tyo.
Using 'Wo's 0, repeated differentiation of (A ! (28 given by Eq. 7.1) ylelds

Ct ' ; 31N
| da inl azinl a . o |
\Lz\i = a = d"l:'z ! = 3 hf,j \‘N o] (D.1b)
T=0 A “r=o ==0

aind b i o

a’ Al ‘ . - B WY

a /f T=0

= - 87 "fo”c; (D.15)

vhere a8 before the derivatives d.n"V

n
a’T T=o0
of Egs. D.1% and D.15 are to be imterpreted as the coefficients C_ in Eq. D.1l.

occurzing in the determinstion

Them from Eqe. D.12, D.1% sad D.15 it follows that for small T2 O, {Al

i8
Ziven by
. 2 L
RN = “l‘L,U '!7U‘]G r + O(ts)
o 3 7o To 3 (D.16)
T 0, :
This mesult can also be obtained using the relstion {36]
L2 2
| AQ‘) = -A.- 25-3-
Nz —=

(D.37)
17T

-
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Hence, from Eqs. D.13 and D.16 we have

X+3/2 - . & +3/2
AN *3/ ) L%'WT/{,CQ ok 0 (2?)
X +2 X 2
—/\-22 !-23 001103 /7:3 *‘O(ﬁh) i
i - a1 oK+3/2
o cLwwe, o ]
=:{ 3 = X+ 2
c, 0
L -gwwes o @ ]
- X T3z
"Ly wie +0 (%) ]
= " X +2
CE WY c33 +olT) ]

(n.18)

and hexnce
Low  N[XH2

A
C>0% X +2
N,

i# 0= 0. Thuz for the comditions specified Eq. 7.18 is satisfied.



-73-

BE.

DISCUSSION OF APPROXIMATIONS USED IN SECTION 8
AND COMPARISON OF A NUMERICAL INTEGRATION
WITH TJE CORRESPONDIRG

APFROXIMATE ANALYTICAL INTEGRATION

First we shall briefly discuss the smell s approximations, Eqs. 8.22,

8.23 and 8.2k, of A, (&%) A& 2') and A, (¢ ') Eqs. 8.8 to 8.13
vhere ¥ udnfﬁfe

The exact expression for A, ( g)q;') can be written as

2
~ / 2 )'“ 3
Al &) = (1-€7B ST

-2 & 2\/—2‘4,,
—_— sio \f1- & &
-5

wrile the approximation we have used in Section & is

=

(8.9 repeated)
A, (&, 7)) = (2- e2 ¥y 2

P
Lo

(8.22 repeated)
/
Sl apnd T YT /2. If we define the error £ 1 in the approximation,
Eq. 8.22 a2

~— A -

= 1 approx. 1 exact
s & " e "2 s singﬁv 1- &2 ?ﬁl
e ¢

(2.2)

then Sue following observaticns can be mede about the exror & . (a) From
she sketch of the hypergeometric function, Fig. 8.1, substantial comtributions

to “he integrals appearing i Eq. 8.20 occur only in the neighborhoods of T =
2 ] 317-'3 2 e

. Since 3im T =0,

i
3

nﬁl,e’3 e ° ‘s fOI’ an 3) \:__ i
reduces ~iodically pear the regions of T  where there are substantial
soztributions wo the integrals. (b)

For small T’
-2’ P .2 ;2 ) 3
{1 = ) = bl 4 +0 (7)) (E.2)
2DDTOX .



and ) .2 3
2, =4 82T Lo (47 (E.3)
hence :
o €, .1 (E.1)
T o A3 =pprox.
ané the approximation , Eq. 8.22, is poor nea.r/z/so. () For small & amd
lavge (2 87), A, approx. ) €, and
Lo €0 L (E.5)
T=od Ay appTox.
Therefore, iz addition to the periodic reduction of € , Dear ’t”"=’§1; 2137, - o,

the approximation, Eq. &.22, improvesz asymptotically with increasing ’ﬁ/° Thug
“he approximation, Eq. 80'2:2]15 poorest for small values of "%’

The exact expression for AQ( &.’K/) can be written asz

. =2 e~’ -2 ! 7 Y. 2 0 B ..
AL S ) =1=cax~c- & c sz (8in 2\1—&2’Z+ essm%v’l-s A

Al-G2 Yi-gv
{8.11 repeated).
The approximation of A (% %') we bave used in Section 8 is
-2 87"’
ALYy )™mi-e (8.23 repeated)

for </ lapd T 3 /2, If we define the error, < p,in the approximstion,

-
e,
~—

2= 82 epprox. A2 exmet

e AL AP LTS CL I SN PUE- SR )
Vo Vo ex
s l-¥ .
(E.6)

=kez the following observations can be mde about €.,. (a) In the neighborkools
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Of T = T 2, 34T , ... yhere there age substantial contributions to

the integrals appsaxing im Eq. 8.20)é o 28 a periodic reduction for b,
. )

(%) For small’r

{ .
-2 er a ! /e
A2 approx. = € =28% +o(z') ‘

angd ’ /
r
CEEQST +0 (') (
bence ,
A/m, 62 =4 /
'?:/—)o A

2 APPTOX.
aud the approximatiom, Eq. 8.23 igm Poor near T '=0. {c) For smmil S apa
lazge (2 sﬂzf, AEappmx. >>€2 s and

/
- S .
Tt
- AE ATRTOX .
Taerefore, in addition o the periodic redmction of &, meax 'afT, par 30

Lo approximation, Eq. §.23 improves agymptotically with inoreasing e,
Thres the approximation, Eq. 8.23, is poorest for small values of %' .
The exacy expression for Ay §i7;") can be written as

At
=

(R

rv,;
-2 g

<, ' S S AT —
e ) cos41- 5277 - (1+ €725 ) gun g

g

Ah.(‘ J!'Z’ ! )E 6

[y
)
78

(8.13 repeated)
¥hilz the approximetion we have used in Section 8 ig
o N -5z -2 5% .
Mgl ™ e ™27 (1.2 )cog ¢
(8.2 repeated)

, f———
- &~ /2. Neglecting the 4/3. I 7 iz the argumernt of +he coaine
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vhe error, € ) ia the approximation, Eq. 8.2k, is

—
A = A
t“ﬂ'g 4 approX. 4 exact

po o -5
< = (1+ 6'237’”) sin N1-¢° T ’ (E.11)

AN
/\haj\-, 2

whe following observations can be made about € L (a) 1In the neighborhoods
of 7 =T ,24T, 31r..., wWhere there are substantisl contributionz to the

integrals appearing in Eq. S,EO\Q L has & periodic reductiom For S« 1.

-

{p} For small T’

_ -7 -2k’ / ) ,2 |
wappox.” © (12 & ) cosT = 28%040(27 ) (E.12)
c=~24v +o(A;’2) (B.13)
78
benge
‘ S
oy - ~1 (E.14)
T >0 Ay approx.

ar? the approximation, Eq. 8.28, is poor near e 0. (e¢) Both the

spp-oximation, Eq. 8.24, and €, approach zero as 2’ —» oSbut compering
9 ? I

-2 . =2eT!

L= ) with {i+ € ) from Eqs. 8.24% end E.11 shows that &

szvmptotizally becomes relatively less as 't’ increages. Thus the 2pprox imation

1=

5. 8.2%, i3 poorest zear T =0. The above considerations have shown that in

’

hree zmall < approximations, Eqs. 8.22, 8.23 and 8.24, the largest

et

231l

srmor oemIre near Y = 0,



In obtaining the "approximate average value of the firgt integrand

_ {
in Eq. 8.20", I,, given by Eq. 8.28, C 23y wvag treated as a comstant
&

, . (n+l)77
144 the arbitrary interval T < ! 7, nmly2,3 2s. o The change
~ N Ie)
_2ev? 2

, 2 - ; - & T
127 as T increases from n¥  to (m+dhr 49 - €275 = B

3 3
Hepce for fized £ the largest variation in € -2 7' occurs in the

izterval corresponding to n~=l. Here, ag in the case of the amell \(5
approximations, 1% appears that the largest error occurs near 04 ' 0.

Tz order to obtdin am esgtimate of the errors caused by the small
approximations, Egs. 8.22, 9.23 and 8.24, and the errors caused by
treating .‘j=2 sz a8 & constant in our approximete analyticel evaluation
of vhe first integral in Eg. 8.20, we bave performed a mumerical imtegration
uging exact expressions Tor Ay, A?. and A) in the first integrand im Eq. 8.20.
Since, &3 indicated in the sbove discussions, we anticipate the maximmm
exTor® in our approximations to occur near ¥ "»-0 , We have performed the
americal integration only bemen’z;o and ’L’ls 39T/2 (see Fig. 8.1). The

valzes, ¥= 9 and €= 1/60 were chosen az typical values for which to perform

the mumerizal integration. Afcer preliminary calculations it waa found that
raines of
x+3/2
A, (8§70 . : A
‘ Fe S & 1 A0 g Y )
x+2 . C 2 .3 3 !
Al (&) 3

(forX=9, 2= 1/60) were negligible except in the immediate neighborhood of
.tr ‘I o~

2 21T, Thiz i3 mot susprising in view of Fig. 8.1. Thus using values of

4., &, azd Ay otiainel from the exact equations, Eqs. 8.8 %0 8.13, we have
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mEmsreitasly evaluated the integral

3.4436
- Cr A‘x*s/" (ex’ SRR R
Cexast i\\ [ — Flle Z— 1+ 25 oAz -rl o
L, (_ﬁ,’z') 13 -
2.8416
(E.15)

foroes= 9 2= 1/60. The imtegrand of Eq. E.15 is shown by the s01id line

in Fig, 2.1 . Using Sixpson’s zule it wvas found that

Tegmey = 332 (E.16)

Using the small$ approRimations of A s A, and Ay, Egs. 8.22, 8,23
and 8.2k, values of the integrand of Eq. E.L5 vere also computed for the
same interval 2.8416 {/L'(3.4416. These values are shown by the dashed
Loe in Fig. BE.2. For the reglon closest to'z'!sf‘r the computed difference
retween the approximete apnd exact integrands became of the zame order as
sne antlaipated srror involved im the mmerical calcwlationsz, this
8 Pfasanss belag too smail $o0 be conveniently showe iw Fig. E.l. Using
Fimpson s rule and the Ixlyes of the integrand of Eg. E.15 computed from

“oa emell Sapproximatlons of A, A

= y { a ‘3
Ia.m—ax . 329 LE.173

Por *he imsesval 2.8806 1 T ¢ 3.4436.

2 and Ah- it was foumd that

To ~hzsk the method of iztegration used im Sacticm 8, axd in particular
o ¥
vhe assumpison of sreatiag £ - as a constant in obtairing the
‘approximate average veloe of the first integrand iz Eq. 8.20," as msntlomed

siove, we pave alzo evalnated the invegral using the method of Section 8.
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Das to the "emoothing effect” of the method the limits here m&t e takep u3

T /2 amd 37 /2, The corrmspe Lug imtegral of Ssction 8 (see Eq. 8.47) is
3.

7z
- J
- o< . o< | o a=2 e
[_F(_ 2 . 3 :_)C s ) -l_]d'f' =
T 5 5 .
= prg
-1 | - ~z) © e =257/2 0-233«\-/2 ( - _:;_) (- =X 47
B = L= i < )+ = 2
=X 5 =4
- 2 (21)
Sher/a - 4% 34T/2
f:— ! = + 9o
2, 2
sooe (= X d e X +1) L. (= o +n=1)
2 2 . 2 ( o-mél2 _2PE 3T 2
z (m!) B
(E.28)
Al Ir¥= 9 and I= 1/60, evaluation of the above series gives
T3ec. 8 = 328 (E.19)
Siase *he exret valvnes of
o =372
Al Ce) ,
= N ' - - ' { Z R
Fls - L+ X "1 A 5T 0
X +2 SRV = “ 2 J2y 3 '
A?. Cr

o2 erffectively zero for the portion of the interval
&7 L 37/2 outsiie of 2.8416 (i "\( 3.4416, due to the mimus ome im
nia integrand of Eq. E.15 we should subtract 2.5416 A 3 from the value of
Texamee 2. E.16, to compare with I-‘Seco gs BEq. E.i9. Thus the approximate

a.yelsal method of Ses. 8 gives a value of 228 (Eq. E.19) to be comparer

-~

itk a2 valne of 339 (Eg. E.0f  with 3 subtracted) obbained mumers &Ly using
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She exact expressions for Ay, A, and A, both for the intervals,(T/z <z’ 317/2.
The approximatior: we have used in Section 8 are clearly adequate for
sngineering purposes.

In obtaizfiag the numerical values of the integrand of Eq. E.15 using
ooth the exact and approximete expreszions for A., A

17 72
geometric functiom of Bg. E.15 was “ransformed using Eq. 7.12, i.e.,

and A, the hyper-

1+ pENY
[ o> + 1 F(- - 1 A
P+ 35—, + -3 sB.4) = 2 ) T2 42y 3)

(1- A3) K+3/2
(E.20)
For odd integral values of X the geries representation of the hypergeometxic
fanstiom on the right hand side of Eq. E.20 converges after { b
In orxder to facilitate the rumerical evaluations this b.ypergeonftric series

+1 ) terms.

a8 written in the following form. s
-4
X ) s 1+ 2n 1'.\! (&) o
\

lo3o5 .-o(al“’l) X'

F{ 2y~

1
B
N=1

vhere a=a positive integer and

.m) _ al
(n. ) !

(2-n)! a!

=2 the bpinomial coefficients vhich have been tabulated.



DEMONSTRATION OF EQUATION 8.4k

{8.4h repeated)

s SDY

3T
Z

FO
Eq. 8.k
2
14T & 0 fi 1
g 3 or ¢ <
S
is made meaningful within the context of its uszage by the statement
f‘Ti/Z )
'\' I3 d.’r
J
0 ’
, <LK 1
/T’
,\ Iar for €< 1,
3
v
75

vhere
given by Eq. 3.17. From Egs. 4.12 apd 4,13
E [ AD_ AD = (at)2 1 F.1
- Q2 /2 * 3 ,
s Lt 18 Yaksen small ezough to satisfy the agsumptions of Section 2. Siuce
e ismage increments A D are alwayc non-pegative it follows from Eq. F.1l that
I; 25 &iways pon-negative and +hat itz integral over any poeitive intezval
a ¢ % i8 also non-negative. Hepnce satisfaction of the condition
r 7z
‘x..: I’ i Z/ ;
= 3: ({1 for 2<< | ‘F.
F S
AT
“ e 3
In oxder to simplifv *he

the satisfaction of Eq. 8.435.

13 Fifficsiant to suixe
ITFA@LRTE 1o follow we changs the dimsrsiopless time variable 7= L":a. =

(8.45 repeated)

Ior the susembles of stress histories considered in Section 8, I3 is

[ inEq, 7,

A\
/

n

-
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back into real time. Hence satisfaction of
T

7 e
° (<< 1 for & K1 (F.3)
3

(zww

\Lr I3 e

Sy,

implies Eq. 8.44. "In crder to show that Eq. F.3 is satisfied for the
ensembles of stress histories considered in Section 8 we shall use
physical arguments utilizing thke interpretation of I3 given by Eq. F.l.
Recalling that the integrals over 2% in Eq. 8.20 occurred as the
Tesult of limiting process in which At —> O (Section & ; in particular

Eq. h.lS)]using Egs. 4.5 and F.1 we can write the two integrals in F.3

e
asg 2——:b ns 0w
I(Z)ar =~ I(LAt)At = N\ _1 E{AD, AD
3 3 ZM |ADy AD, | (F.4)
O:Tr N
smd T Ty 5T
\ Q:- 2t
I r)ar ~ I.( (At)at= 1 & [AD AD ]
J 3 Z. 73 T o L
iy . 4
1= =(p 0T (F.
SLE +2w‘urt : “‘zw At 2
L&Jv{, n

The arguments to be used become more understandable if the expectations

appearing in Eqs. F.4 and F.S5 are conditioned on the event that a stress zero crossing
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oscurs im the imtervel 0 t< At. We denote this event by Yo . Then

E !:ADO S ] Y, —] 18 the matkematicel expectation of the product of ths
damage increments &Do andAD, , incurred in the time intervals o {8 A %
andfAt ¢ t ¢ (2+1)A % respectively given that a stress zero croszing
otcurs in the inverval 0 ¢ t< A +. If we denote the Probability of the
event Y, by Py A % (for smell At the Probability of this event is
Pxoportional to A t) then

I4 \
[AD Axag] = P At E[L\D AD, [N, ] ‘F.6)
2ince EELD AD |\{° ] = O where \r’ iz the complement of the event Yo .
Sudstituting Eq. F.6 into F.4 ang F.5 and the result into Eq. F.3 transfers

“ke condition F.3 to

T
2WnATL |
SooElar, ang | vy, ]
L
1 <
= Kl for g
SWEy AE -
2_ lAD_AD ] YoJ F.T,
Iefae
A
and ince the éxpectation and summation oPerations may be :Lntemh&:sged, Eg.
F.T7T i3 equivalient to
— B
i ,fzw,,m: \L
E9< PR A
[l g= J ' N ,
. for = 1
T \ hn &<< l = <<
Jf E@Zt { i
Ei AD \'D F.8
e AL
=14 T ~
A= 14 aw“_ At _}

¥Lich then implies Eq. 8.uk,
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We shall now give physical interpretations of the numerator and depomimstor
appearing in Eq. F.8. It is recalled that for €< 1 the stress sample functions
of the ensembles considered in Secticn & have the usual narrow band characteristics
4.e. the appeerance of zimusoilds with slowly and randomly verying amplitude
and phase). From Eq. 8.4 the average time between succesgive s%Ie38 Z&T0
crossings is 1/ Wy =TT /@ seconds. Hence, for any sample function ,
given that a zero crossing occurs withim the intexval O { % (At , L&,
event Yo , we can be fairly sure that the deviation from f / W of the time
intil the next zero crossing will be small in comperison to ™/ (A)n. (An
exception to this might be found in cases where the slope at the event Yo is

yery small in comparisom with the average siope encountered at zexo crossings).

In

particular, for any stress sample function satisfying condition Yo »

we can be almost certaizn that the time between event Y, and the pext

zero crossing will be between SN and 3 AT provided the
— 2w, T 24
zlope at event Yo 18 not exceptionslly small. Oa the basis of this

swatement Bq. F.8 follows. Consider the mumerstor appeaving in Eg. F.8. In

\

srder for a sample ction satisfying condition Y, to contritate a non-

z&ro increment 4o Z A D, A D it is necessary that a zero crossing
AT
221l within at least one intervai /At ¢ ¢ ( L +1) At for L (Jf{——
20, F
cr given that \‘/o occure apother zero crossing mist fall within the interTal

IA
b

AT
Lt ( o +A% ). However the above underlined statement
SR s
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indizates that the rosabilidsy of this haprening i3 vary TEXY SmEmAl unless tha
£lope at event \‘/c i3 exseptionally small, Howevar, if this 3lope iz

small, the damege incrememt DD ehich iz associated with evems ¥ o FiLL
.30 e exceptionally sma.l, and frix the narrow-band charactar of the

sample functions 30 will ha the damage increment associated with the

28Xt Z&YXO Cros85ing. Eeme BO8% Sampls fumctions satizfying \‘/o will give

v At
20 comtribution o AD, AD ¢ and for tiose “hat 4o the somtrivubing

2=
Droducsts AD. oD ¥illi be exceptionally mimute. Thus the mathemasical,
° 2

sxpactation of this sumpation, the nmumeragor appearing in Eq. F.8 is indesd
very small. Now zomsider the dgﬁ;i_OIn:hz:».a:&:,c12:’° Given that event Yo oCcours

20 AT
S2ére 138 a comtribution to T ADO AD}Qif 4 zZe&xYo crosziag occurs
<

A'-'-!f' T
ar Snat
sitkin ( D,'\ +At) <t ¢ (w2T_ +At). From the above underlined
LA awn

3vatement we ere almost csxtain that every sample functiom wil™ comdribute to
sEilz sumpation. Hence tha mathematical expecation of this saummation given

1 tne dsnominator of Eq. F.8 i3 at least an order of magpitude larger

~B& she pumsTator apnd the plauzinility of the Inequality is sstarlished.

124

G. F.8 automatleslly impliecs Bq. 8.4k
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G. OF THE ASSUMPTIONS USED IN ORTAINIFNG EQ. 3.50

o this appendix we show, using the small < approximations for A

— l’
A, and A), Eqs. 8.22, 8.23 and 8.24 that ag ¢ — 0
e SVt
a x+3/2
l Al ( :,/t ) 0( Ao ! J
T e S R ] e
(- 2T
M yar
{ J & -2 gf' /
~ ~ - - [»'¢ . . . _
\)/,[F( 7, =, , & ) ]dt
(o~ 5T G.1)
foxr 7 a 192g3 P B

Using the mmall epproximations for Al A, and A from Eq. 3.25 the
iutegrand in the lert hand side of Eq. G.1l is

v {- =D« / 0(+l . | ’_\-2 3‘t -
- 27 ST F(l+ — Ww 'L e Ty Ly
R C 2 s2 4 ]
{re »\
ez
, ‘ o257 PN i
48 =0 the change in & over any iaterval (m- 1 )47 <T & (m+l) 1T
2 2
appToaches zexn. Hence lat
I
p“e i’t . .
_ = B ‘_l:l‘rcj)

7here B 12 a congtant less than unity. The integrand (G.2) then becom=z

‘ X+l :
>~ Ta- Pl 5 o 2 3'2- 3 cos® 2 ) -1

~

(1]
x
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2
x+1 o

’- S X . § i ! -
The quantity [\143) F{3+ 3 )li- __,2__4% 4 B cos T ) 1] iz an

7
even function about?Z = m AT .

Hence, we have
v )

: . A+l |
bard Tial X S 2y -1 ar
E L“lB) F(l+ -5 ¥ 5 24Bczoe r ) |
R A+ T {(G.5)
:"fh-?)ﬂ'
X +1 . 2 / .
| e gy e ]
J

{m - 2\AT

However from Secticn 8 (see the work from Egs. 8.27 to 8.36) it follows that

W+ )T
A~
L1 (1-B)  F(ls & X L 'pecos” ¥ )-1}@7: =
l: ) ( 5 ) 1+ 524 B4
o
cm- )T
r o
=T - = [~S . -1
‘G’oé‘)
and nence from Eq. G.5
’M-J-é\/'\‘
- 1 N
LT (1-B) F(l-g-—é-—‘}_... A 1 Beos T )aljdp =
- - 2 Jd 2l
”)/——:—_,\',"”'
= mea E R S B)-l]

J
Jn tke other hand, tresting 6,‘237’/ az a constant, B, in the right hand side
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of Eg. §.1 gives
z. ) nr
Lmj‘zlw
|
bast . Ky ] i
lN @
“é,!-F(-QJ 2\)1_‘ B)olddt =
L ) ,
" m+s )7r
\_W"ﬁ:)’ﬁ" =4
~ O( o< ) . i ‘
E{F(w—?_’d 5, 1y 3).,3_‘{ V’i’ aT
~ /
(M- YT
2 , . ,
=W P (- 2= B m-q
' /e QN
LT ey

Somperison of Eqs. ¢.7 and G.8 shows that the left and right band ailes

2T Eq. G.1 are equal when using the small 3 approximations for Al’ A2
. -2 5!
ani Ay and letting &

= B, a constant, whilch effectively happens
23 X —30.
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