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Machine Learning for Efficient Sampling-based

Algorithms in Robust Multi-Agent Planning under

Uncertainty

John F. Quindlen∗

Massachusetts Institute of Technology, Cambridge, MA, 02139

Jonathan P. How†

Massachusetts Institute of Technology, Cambridge, MA, 02139

Robust multi-agent planning algorithms have been developed to assign tasks to cooper-
ative teams of robots operating under various uncertainties. Often, it is difficult to evaluate
the robustness of potential task assignments analytically, so sampling-based approximations
are used instead. In many applications, not only are sampling-based approximations the
only solution, but these samples are computationally-burdensome to obtain. This paper
presents a machine learning procedure for sampling-based approximations that actively
selects samples in order to maximize the accuracy of the approximation with a limited
number of samples. Gaussian process regression models are constructed from a small set
of training samples and used to approximate the robustness evaluation. Active learning is
then used to iteratively select samples that most improve this evaluation. Three example
problems demonstrate that the new procedure achieves a similar level of accuracy as the
existing sample-inefficient procedures, but with a significant reduction in the number of
samples.

I. Introduction

Robotic vehicles such as unmanned aerial vehicles (UAVs) are currently used to complete dull, dirty, or
dangerous tasks and will be increasingly relied upon to conduct complex missions with little-to-no human
supervision. This has spurred the development of autonomous task allocation and planning algorithms to
coordinate teams of cooperative robotic vehicles. In order to more effectively pair available agents (i.e. robots,
UAVs) with uncompleted tasks (mission objectives), these task planning approaches are often formulated
as combinatorial optimization problems.1–3 The agents are each assigned an ordered sequence of tasks to
complete within a specified time window and are “rewarded” for successful completion of each task in that
window. The optimization problem then attempts to maximize the cumulative reward through different
allocations of tasks to the agents.

In real-life scenarios, the execution of the task assignments from the task allocation method is com-
plicated by the presence of numerous uncertainties. For instance, teams of autonomous robots typically
operate in dynamic and poorly-modeled environments. In many applications, these uncertainties in the true
environment can be captured as parametric uncertainties in the underlying system models. The parametric
uncertainties can affect various portions of the planning model such as the vehicle dynamics, task execution
times, or the rewards for completing tasks and therefore must be carefully examined to identify their impact.
For example, uncertain wind speed and direction can drastically affect UAV travel time, fuel burn rate, and
duration of surveillance tasks when coordinating teams with UAVs. In the worst case, a particular task
allocation strategy may become completely infeasible for certain parameter settings. The issue with plan-
ning under parametric uncertainties is that the exact values of the parameters during real-world execution is
unknown; therefore, the realized planning performance score after execution can take any number of values.
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Thus, the potential impact on the mission performance motivates the need for robust planning algorithms
that account for these uncertainties.

Robust planning algorithms were developed to select the best task assignment in order to minimize the
effect of uncertainties on the final mission score. While standard task allocation methods will produce a
single task assignment optimized for a single vector of assumed values of the parameters, robust algorithms
must return a single task assignment that works over a range of possible parameter values. Robust score
metrics1,4, 5 such as the expectation of the score or chance-constraints are used to quantify the effect of uncer-
tainties upon the realized scores of a particular task assignment. Robust planning methods then determine
an appropriate task allocation from these robust scores given the uncertainties likely to be encountered.
An issue that arises in many applications, is the difficulty required to analytically compute these robust
scores.6 The underlying mapping from uncertain parameters to score is usually unknown and can be highly
nonlinear. In those cases, approximate scores can be more easily computed using sampling-based procedures
that obtain the weighted score from various realizations of the uncertain parameters. While they lack the
exactness of analytical solutions, these statistical scores are more tractable and can become arbitrarily close
to the correct, analytical ones after as the number of samples increases.

The work in this paper focuses on robust planning problems where it is computationally-intensive to
obtain even a single sample of the score. The high associated with each sample limits the utility of sampling-
based procedures, even if they are the only available method, because of the large numbers of samples
required to produce a solution. In particular, one motivating example is an aerial forest firefighting mission
where UAVs are assigned to complete specific fire monitoring tasks related to the spread of the forest fire.
As the spread of the forest fire is affected by uncertain parameters like wind speed, wind direction, and
vegetation type, these parameters will affect the completion of firefighting tasks and must be incorporated
into the planning stage. Fire simulation models7,8 can be used to accurately predict the fire spread given
a set of these uncertain parameters; however these simulators are typically resource-intensive. For instance,
a simplified Matlab-based simulator derived from these models can take 50 seconds to complete a single
sample on a quad-cored Ubuntu machine with 8GB of RAM. Therefore, it is desirable to limit the number
of fire simulations required to compute the robust task assignment. Similar example problems can be seen
across a wide variety of sampling-dependent applications.

Machine learning approaches offer the potential to more efficiently sample the uncertainty space with
fewer number of samples, but simultaneously minimize the impact on the accuracy of the robust score
metrics associated with fewer samples. Bayesian nonparametric modeling techniques9 have been used to
form accurate approximations of complex functions using a small number of samples and the resulting
models can also be used to predict the function behavior over unobserved regions of the feasible space.
In particular, Gaussian process (GP) regression models9 return mean and covariance functions that both
predict the unknown true function’s response and quantify the confidence in those predictions. Another
machine learning technique, active learning,10,11 can be used alongside regression models to actively select
informative samples. Since the number of samples will be limited, it is desirable to pick the “best” samples to
achieve the most accurate approximation. Here, “best” refers to the samples which have the greatest impact
on the approximation error. Active learning has also been proven to improve score-like approximations in
similar applications.12–14 Consequently, GP prediction models coupled with active learning offers a potential
solution to accurately approximate the robustness metrics using limited computational resources.

This paper draws upon machine learning techniques to develop a new sampling-based procedure for
robust multi-agent planning algorithms. In particular, this new procedure is used to replace existing sampling
procedures in the robust consensus-based bundle algorithm (CBBA) architecture,5,6, 15 a distributed planning
framework for networked multi-agent teams. The technique will also apply to other centralized planning
architectures with little modifications, but they are not explicitly addressed in this paper. The new sampling
procedure combines GP regression models with active learning in order to effectively compute the robust
score with a limited number of samples. These samples are chosen in order to minimize the entropy of the
expected score, which consequently improves the accuracy of the robust score approximation. The entire
process is demonstrated on multiple planning under uncertainty problems, including the aforementioned
aerial firefighting example. These examples show the new procedure has similar performance to the existing,
more computationally-intensive procedures, but with significantly fewer samples.
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II. Problem Description

The following section describes the multi-agent task planning problem for systems subject to parametric
uncertainties. A more-detailed description of the robust multi-agent planning problem can be found in these
previous works.5,6

A. Problem Formulation

Given Na number of agents and Nt number of tasks to complete, the multi-agent task allocation problem
attempts to maximize the mission performance. This mission performance is defined by a global objective
function that captures the costs or rewards associated with the assignment of agents to tasks. In many
applications, these tasks can only be completed by one agent at a time. This paper also makes that standard
assumption and therefore the global objective function can be rewritten as the sum of local objective functions
defined by each agent and their assigned task(s). As a result, the global task allocation problem can be written
as a mixed-integer nonlinear optimization program

max
x

Na∑
i=1

Nt∑
j=1

cij(x,θ)xij (1)

s.t. G(x,θ) ≤ b

x ∈ X

where design vector x ∈ X is the assignment of all agent-task pairings, with xij denoting whether agent i is
assigned to task j, i.e. X = {0, 1}Na×Nt . Vector θ consists of the planning parameters that may influence
the objective cost cij . This cost function maps the cost or reward obtained by agent i for completing task
j to the set of global task assignments x and planning parameters θ. In order to capture vehicle dynamics
and other limitations, the nonlinear constraints G and b are placed on the optimization problem.

Additionally, in many real-world problems of interest, the rewards for completing tasks vary explicitly
with time. For instance, time-varying rewards enable the possibility of time windows within which the
task can only be performed or time-critical tasks that should be performed sooner rather than later. For
example, firefighting UAVs must consider the movement of a fire front over time during the assignment of
fire monitoring tasks. The agent would not receive any reward for completing a fire-related task either before
or after the fire front has moved through the area. In short, it is important to consider not only if a task is
assigned to a particular agent, but also when that agent completes the task. The mixed-integer problem in
Eq. 1 can be reformulated to include task service times in addition to task assignments

max
x,τ

Na∑
i=1

Nt∑
j=1

cij(x, τ ,θ)xij (2)

s.t. G(x, τ ,θ) ≤ b

x ∈ X
τ ∈ T

where decision variable τ ∈ T is the execution sequence. Scalar term τij denotes the time when agent i will
execute the assigned task j or τij = ∅ if task j is not assigned to agent i. As a result, the costs cij and
constraints G are functions of the task assignment x, execution sequence τ , and planning parameters θ.

B. Planning under Uncertainty

As mentioned earlier, one important issue that can arise during the planning and execution stages is uncer-
tainty in the underlying system model. The planning algorithm might utilize one realization of the system
model while the true system model is different. As the discrepancies between models increase, the mission
performance typically degrades as the tasks are no longer optimally assigned. In particular, this work ad-
dresses parametric uncertainties where the system model correctly captures the coupling of the planning
parameters θ to the objective and constraint functions, but the exact value of the true θ is unknown. While
the true value of θ is unknown, it is assumed that a likelihood model of the uncertainty is known ahead
of time. This model consists of the complete set of feasible parameter values Θ, where all θ ∈ Θ, and a
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probability distribution over set Θ, labeled as P(θ). For instance, wind direction is typically an uncertain
model parameter with known upper and lower bounds. During actual real-world implementation, rough
estimates of wind direction can be obtained from noisy meteorological sensors, resulting in a distribution
over likely wind directions. This knowledge can then be incorporated into the planning algorithm in order
to improve the mission score.

While the likelihood model of the uncertainty should be incorporated into the planning approach, it
is difficult to predict the impact of the parametric uncertainties upon the total mission score due to the
nonlinearities, coupling, and interdependencies between x, τ , and θ in functions cij and G from Eq. 2.
For example, uncertainty in the duration of one task would affect the service times of subsequent tasks
and possibly cause those tasks to be dropped or completed with a diminished reward. Robust multi-agent
task allocation algorithms explicitly account for this variability using the known uncertainty model. More
specifically, they employ robustness metrics Mθ to quantify the effect of the uncertainties on the mission
execution. For planning under uncertainty, the objective function in Eq. 2 is modified with a robustness
metric Mθ,

max
x,τ

Mθ

{ Na∑
i=1

Nt∑
j=1

cij(x, τ ,θ)xij

}
(3)

where this metric can be chosen from a number of suitable approaches such as expected value, worst-case
value, or chance-constraints.6 Discussed in the next section, this paper will use the expected value robustness
metric, although the work could easily be adapted for use with the other metrics.

III. Robust Consensus-Based Bundle Algorithm for Multi-agent Planning

This paper highlights the challenges encountered with sampling-based robust planning through explicit
demonstration on the consensus-based bundle algorithm planning framework. The following section provides
background material on this framework and motivates the underlying problem. Additional information on
the consensus-based bundle algorithm framework can be found in earlier work.6

The consensus-based bundle algorithm (CBBA) is a multi-agent task allocation strategy for teams of co-
operative agents operating in a distributed manner.5 In known environments, the baseline CBBA procedure
is able to guarantee conflict-free solutions and the algorithm runs in polynomial-time with good scalability for
increasing numbers of agents and tasks. Robust CBBA methods6 were developed in order to extend CBBA
to uncertain environments. These extensions also demonstrated the suitability of robust CBBA methods
for distributed planning16 through flight test experiments and other hardware demonstrations. This sec-
tion will summarize the important aspects of robust CBBA and highlight the challenges associated with
implementation of the sampling-based algorithm.

A. Overview of the Robust Consensus-Based Bundle Algorithm

The underlying Robust CBBA algorithm is summarized in Algorithm 1. Since CBBA is a distributed
framework, it consists of two planning phases: the bundle construction phase and the task consensus phase.
In the bundle construction phase (Alg. 1, line 3), each agent greedily generates their own suggested task
assignment bundles Ai. These bundles consist of the set of tasks currently assigned to the agent and the
path order of which they will be executed. Alongside their suggested task assignment bundles, each agent
also computes bids Ci corresponding to each task in their assignment. This bid information contains the
agent’s cost/reward associated with successful completion of the tasks in the specified path order and their
knowledge of other agent’s assignments. The bid information Ci is then used in the task consensus phase
(Alg. 1, lines 4-6) to converge towards a final conflict-free assignment A between all the distributed agents.
Note that I is the set of all agents (|I| = Na) and J is the set of all tasks (|J | = Nt).

While the task consensus phase is fairly straightforward once the bids are available, it is not as easy to
obtain the bundles and corresponding bids due to the uncertainty in the planning parameters θ. The costs
and rewards associated with the completion of tasks in a specified order will usually vary with θ; therefore,
the bids Ci and bundle assignments Ai will also vary according to θ. Since the bundle construction phase
can only return a single sequence of assignments and bids, these assignments should be chosen so as to be
robust to uncertainties in θ.

One of the most common and straightforward approaches to obtain a robust task allocation is to optimize
the task assignments with respect to the expected mission performance. In such an approach, the expected
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Algorithm 1 Robust Consensus-Based Bundle Algorithm

1: Initial set of bundle assignments and corresponding bids: {Ai, Ci}, ∀i ∈ I
2: while not converged do
3: (Ai, Ci) ← Robust-CBBA-Bundle-Construction(Ai, Ci,J ), ∀i ∈ I
4: Ci ← CBBA-Communicate(Ci, CNi

) ∀i ∈ I
5: (Ai, Ci) ← CBBA-Bundle-Removal(Ai, Ci), ∀i ∈ I
6: converged ←

∧
i∈I

Check-Convergence(Ai)

7: end while
8: Combine each agent’s bundle assignment: A ←

⋃
i∈I
Ai

9: return bundle assignment A

value operator is used as the robustness metric in Eq. 3.

max
x,τ

Eθ
{ Na∑
i=1

Nt∑
j=1

cij(x, τ ,θ)xij

}
(4)

Note that this is not the same as planning with the mean parameter values. That approach effectively decou-
ples the uncertainty from the computation of the score and will most likely result in very poor performance.6

Leveraging the linearity of the expected value operator, the expected value of the randomly distributed (with
respect to θ) objective costs in Eq. 4 is equivalent to the sum of the expected values. The objective functions
can then be decoupled from the sum over agents.

Eθ
{ Na∑
i=1

Nt∑
j=1

cij(x, τ ,θ)xij

}
=

Na∑
i=1

Eθ
{ Nt∑
j=1

cij(x, τ ,θ)xij

}
(5)

The centralized problem can then be decomposed into subproblems for each agent

max
xi,τ i

Eθ
{ Nt∑
j=1

cij(xi, τ i,θ)xij

}
(6)

s.t. G(xi, τ i,θ) ≤ b

xi ∈ X
τ i ∈ T

and the global score is the sum over the agent-specific scores.
Since the execution times of the tasks depend on the order in which they are arranged, the path variable

pi(xi) = pi is introduced to define the order in which the tasks specified in xi are executed. Path pi is
thus an ordered sequence of tasks. In general, each agent has an upper bound on the number of tasks it can
feasibly execute within the time interval. As such, a maximum path length |pi| ≤ Li is included to limit
the number of assigned tasks. The complete solution to the task allocation problem not only optimizes the
assignment of tasks but also the order in which they’re executed. The optimization program in Eq. 6 can
then be recast in terms of the path pi(xi).

max
xi,τ i

Eθ
{ Nt∑
j=1

cij(xi, τ i,θ)xij

}
= max

pi,τ i

Eθ
{ Nt∑
j=1

cij(τij(pi(xi)),θ)xij

}
(7)

The optimization can be solved as a two-step process,

max
pi,τ i

Eθ
{ Nt∑
j=1

cij(τij(pi(xi)),θ)xij

}
= max

pi

(
max
τ i

Eθ
{ Nt∑
j=1

cij(τij(pi(xi)),θ)xij

})
(8)

where the inner portion obtains the optimal task service times and the outer portion iterates over possible
paths. In uncertain environments, the computation of the optimal execution times is difficult as it may vary
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for different realizations of the uncertainty. For instance, given a path assignment pi(xi) and realization of
the uncertainty θk, the optimal task service times are

τ ∗i = argmax
τ i

Nt∑
j=1

cij(τij(pi(xi)),θk)xij (9)

with corresponding optimal cost Jkpi
= Jpi

(θk).

Jkpi
=

Nt∑
j=1

cij(τ
∗
ij(pi(xi)),θk)xij (10)

However, if the realization of the uncertainty is different, θk 6= θl, then the optimal task service times might
change and result in a different cost, Jkpi

6= J lpi
. Therefore, the total robust path score for each agent is

given by the distribution of the scores over θ.

Jpi
= Eθ

{ Nt∑
j=1

cij(τ
∗
ij(pi(xi)),θ)xij

}
=

∫
θ∈Θ

( Nt∑
j=1

cij(τ
∗
ij(pi(xi)),θ)xij

)
P(θ)dθ (11)

=

∫
θ∈Θ

Jpi
(θ)P(θ)dθ

Algorithm 2 Robust-CBBA-Bundle-Construction(Ai, Ci,J ) for Agent i

1: while |pi| ≤ Li do
2: for all available tasks j ∈ J \ pi do
3: for all available positions in pi do
4: Insert task j into path pi at location n −→ pi⊕nj

5: Compute-Expected-Score −→ Ĵpi⊕nj

6: end for
7: Maximum score Ĵpi⊕n∗

j
= max

nj

Ĵpi⊕nj

8: Marginal score ∆Jij(pi) = Ĵpi⊕n∗
j
− Ĵpi

9: Compute bid sij for task j from marginal score ∆Jij(pi)
10: hij = I(sij > existing bid)
11: end for
12: Optimal task to add to bundle j∗ = argmax

j /∈pi

∆Jij(pi)hij

13: if (∆Jij∗(pi)hij∗ > 0) then
14: Add task j∗ to the bundle, update path, bids, and times
15: else
16: Break
17: end if
18: end while
19: return bundle Ai and bids Ci

B. Sampling-based Approximate Score

In practice, it is very difficult, if not impossible, to compute the analytical interval from Eq. 11. Instead, an
approximation of the expected score can be computed using sampling methods. These sampling methods
use N samples of Jpi

(θ) with corresponding weights wk to compute the approximate score.

Jpi
≈

N∑
k=1

wkJ
k
pi

(12)

These weights wk are functions of the probability distribution, wk = f(P(θ)). The previous approach6 for
approximating the expected score for a specific path pi is given in Algorithm 3. The robust score computation
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from Algorithm 3 is then used within the distributed planning framework. The complete bundle construction
algorithm for each agent is shown in Algorithm 2. Within Alg. 2, the sampling-based approximate score
computation is repeated for each available task and path position (Alg. 2, line 5).

The difficulty with the sampling-based score approximation methods is that the approximate score com-
putation requires a large number of simulations. For example, the previous work with robust CBBA6

commonly uses 50,000 samples to compute the approximate score for each candidate path pi. This process
is then repeated for each remaining available task (Alg. 2, line 2) until the path length is filled. Finally,
those steps are repeated for each of the Na agents. If the computation of the score Jkpi

is computationally
inexpensive, then this process is straightforward; however, the score is not always so easy to compute. In
many applications, the score calculation is computationally expensive and it would be infeasible to run such
a large number of calculations. For instance, consider the aerial firefighting problem from Section I. The
assignment of UAVs to fire monitoring tasks explicitly depends on the locations of the fire at future instances
of time. Given relevant parameters, namely wind direction and speed, fire simulation models7,8 can be used
to accurately predict the fire spread and determine the resulting firefighting task locations and durations.
While these simulation models are necessary to compute the task assignments, they do require additional
computation resources. A simplified Matlab-based fire simulator derived from these models can take 50
seconds to compute the relevant task information for a single realization of θk, depending on the resolution
of the fire simulation grid. It would be impossible to perform thousands of fire simulations for each candidate
path, but arbitrarily capping the number of simulations can also lead to poor solutions. Regardless of the
application, it is desirable to minimize the number of simulations required to compute the approximate score
for a given task assignment without sacrificing the accuracy of the approximation.

Algorithm 3 Compute-Expected-Score: Pure Monte Carlo

1: {θ1, . . . ,θN} samples from P(θ)
2: {w1, . . . , wN} corresponding weights

3: {w1, . . . , wN} ←− {w1, . . . , wN}/
∑N
k=1 wk

4: for k = 1 : N do
5: τ ∗i = argmax

τ i

∑Nt

j=1 cij(τ
∗
ij(pi(xi)),θ)xij

6: Jkpi
=
∑Nt

j=1 cij(τ
∗
ij(pi(xi)),θ)xij

7: end for
8: Jpi

=
∑N
k=1 wkJ

k
pi

9: return Jpi

IV. Machine Learning Methods for Efficient Sampling

This work uses machine learning techniques to address the difficulties encountered with sampling-based
approximations described in Section III-B. Machine learning methods are employed to construct a model
from a small number of samples, predict the cost over a wider range of unseen θ values, and select further
samples from Θ in order to improve these approximations. In particular, Gaussian process models are used
for regression and prediction from a small set of samples and active learning is used to select future sample
points. The following section describes a new procedure to replace Algorithm 3 that relies upon fewer samples
of the score function Jpi

(θ).

A. Gaussian Process Regression Model

Gaussian process (GP) regression methods, also known as Kriging, have been used to model unknown func-
tions from observed sample data in a variety of aerospace applications. These applications range from
surrogate models for system design optimization,17,18 efficient flight simulation models,19,20 and nonpara-
metric learning-based control.21,22 In all these applications, GPs are used to create a Bayesian nonparametric
model from a finite number of observed samples. The power of these nonparametric models arises from the
fact they provide mean and covariance functions that can be used to both efficiently predict the response over
unobserved regions of the input space and quantify the confidence in those predictions. This scalability and
flexibility make GP regression models well-suited to the problem with sampling-based score approximations.

By definition, a Gaussian process is a collection of random variables, any finite subset of which are
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Gaussian distributed.9 A Gaussian process can then be viewed as a distribution over possible functions. For
the robust task allocation problem, this distribution is written as

J(θ) ∼ GP(m(θ), κ(θ,θ′)) (13)

where m(θ) is the mean function and κ(θ,θ′) is the covariance function.

m(θ) = Eθ[J(θ)] (14)

κ(θ,θ′) = Eθ[(J(θ)−m(θ))(J(θ′)−m(θ′))] (15)

In this work, the covariance function κ(θ,θ′) uses the squared exponential.

κ(θ,θ′) = α2exp(−1

2
(θ − θ′)Λ−1(θ − θ′)T ) (16)

The signal variance is given by scalar α2 while matrix Λ is the diagonal matrix of the length scales for each
dimension of θ. The GP hyperparameters (α2,Λ) are selected during the training process.

1. Training and Prediction

Given a path pi(xi), the GP regression model of the unknown, true score function Jpi(θ) is constructed
from a training set S. This training set consists of parameter samples θk ∈ Θ and their corresponding true
score Jkpi

. The complete set of all these parameter samples is set ΘS and the set of their corresponding score
evaluations is Jpi

(ΘS). The training set S is then used to construct a Gaussian process regression model
as in Eq. 13. More detailed information on the GP training and hyperparameter selection processes can be
found in Chapters 2 and 5 of Rasmussen and William’s textbook.9

With this trained regression model, the GP can be used to predict the score function Jpi(θ) over the

entire feasible set Θ. Given a sample θ∗ ∈ Θ, the joint predictive distribution Ĵpi
(θ∗) is defined by a

posterior mean µ(θ∗) and covariance function Σ(θ∗) where matrix K = κ(ΘS ,ΘS).

Ĵpi
(θ∗) ∼ N (µ(θ∗),Σ(θ∗)) (17)

µ(θ∗) = κ(θ∗,ΘS)K−1Jpi(ΘS) (18)

Σ(θ∗) = κ(θ∗,θ∗)− κ(θ∗,ΘS)K−1κ(ΘS ,θ∗) (19)

The posterior mean represents the estimated score at θ∗ while the covariance Σ(θ∗) captures the confidence
in that prediction. Note that since the samples Jpi

(ΘS) are exact values of Jpi
(θ) rather than noisy

measurements of it, the GP prediction model assumes noise-free observations. An example of the GP
regression model and its predictive capabilities is shown in Figure 1. In this example, the true function is
sampled at 11 equally-spaced values of θ, shown in Figure 1(a). In Figure 1(b), these samples are used form a
GP regression model where the mean function approximates the true function. The plot also shows the 95%
confidence intervals (±2σ bounds) on the predictions calculated with the covariance function. Notice that
the covariance shrinks at each sample point from ΘS as their is no uncertainty with a noise-free observation
of Jpi

(θ).
The GP prediction model trained from set S can then be used to estimate the expected value of the score

function

Jpi
≈ Ĵpi

= Eθ[Ĵpi
(θ)] =

∫
θ∈Θ

Ĵpi
(θ)P(θ)dθ (20)

where the actual expected value of the score was given in Eq. 11, Jpi
= Eθ[Jpi

(θ)]. Given the training set
S, the expected value in Eq. 20 can be reduced to

Eθ[Ĵpi |S] =

∫
θ∈Θ

Eθ[Ĵpi(θ)]P(θ)dθ (21)

=

∫
θ∈Θ

µ(θ)P(θ)dθ (22)
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(a) Sampled score function Jpi (θ)

-15 -10 -5 0 5 10 15
Parameter θ

4

6

8

10

12

14

S
co

re

GP µ(θ)±  2σ
GP µ(θ)
True J(θ)
Sampled J(θ)

(b) GP regression model and predictions

Figure 1. Gaussian process regression model fit to samples of the score function J(θ) = Jpi (θ). The top figure
shows 11 equally-spaced samples of θ and corresponding Jpi (θ) used to form the training set S. The lower
figure shows the GP regression model trained from S and its prediction µ(θ) over the entire feasible set Θ.
This figure also shows the 95% confidence intervals (±2σ bounds) on the prediction.

where µ(θ) is the posterior predictive mean function from before. Just as in Eq. 12, this analytical integral
can be numerically approximated with a finite number of data points.

Ĵpi
≈

N∑
k=1

wkµ(θk) (23)

For this new approximation, the weights wk are functions of the probability P(θ) selected based upon
the Bayesian Quadrature rule.12–14,23 Central to this approach is the assumption that it is significantly
less computationally expensive to train the GP regression model and predict than it is to simply obtain
additional samples of the score function. As long as this assumption holds and training set S is smaller than
the evaluation set, |S| << N , it is more computationally efficient to predict the score Ĵpi

(θ) over the N
samples from Θ as in Eq. 23 than it is to actually sample Jpi

(θ) as in Eq. 12. This approach (Algorithm 4)
will then replace pure Monte Carlo estimation (Algorithm 3) for the computation of the expected score in
Algorithm 2, line 5.

While it may be more computationally efficient to compute Ĵpi(θ) and Ĵpi using the Gaussian process
prediction model, it does not necessarily guarantee the GP approximation is accurate. If the training set
is poorly chosen, then the GP estimate Ĵpi

could differ quite dramatically from the true value Jpi
. The

following subsection presents an algorithm that not only computes Ĵpi , but iteratively improves this estimate

to reduce the approximation error Ĵpi
− Jpi

.
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Algorithm 4 Compute-Expected-Score: Passive Learning

1: Input: set U , set S
2: Train a regression model GP(m(θ), κ(θ,θT )) using training set S
3: Compute estimated scores Ĵkpi

= µ(θk) for all θk ∈ S ∪ U
4: Estimate expected score Ĵpi

=
∑N
k=1 wkĴ

k
pi

5: return Ĵpi
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Figure 2. Probability distribution of the parameter P(θ) compared to samples of the true score function
J(θ) = Jpi (θ). Note that samples in regions around θ = 0 or θ = 10 have zero probability and will thus have no

effect upon Ĵpi .

B. Active Learning for Sample Selection

The last subsection illustrated that a trained GP regression model can be used to efficiently predict the score
over the entire set of Θ; however, the GP model can also be used to intelligently select future samples in order
to improve the accuracy of these predictions. In a realistic scenario, only a limited number of additional
samples can be taken from the true score function Jpi

(θ) and the problem is how to select these samples to

improve Ĵpi
(θ) and Ĵpi

the most. In order to address this issue, active learning can be used to select the

“best” samples to decrease the approximation error Jpi
− Ĵpi

.
Active learning methods are closed-loop statistical learning processes used to select future training points

to improve a data-driven model according to an appropriate error metric. While the majority of active
learning work has focused on binary classification problems,10,11,24–26 active learning has been applied to
regression problems as well.12–14,27–30 In particular, the work in this paper modifies earlier active learning
regression methods for Bayesian quadrature12–14 to create an iterative process to select samples and retrain
the Gaussian process regression model.

The crux of any active learning procedure is the metric used to evaluate possible samples and subsequently
select the next samples to query. As the goal of this work is to decrease the error in the estimated expected
score Jpi

− Ĵpi
, the “best” samples for this are not necessarily the same as the best samples to improve the

estimated scored function Ĵpi
(θ) directly. Equation 23 suggests that the most appropriate selection criteria

is a function of not just Ĵpi
(θ), but also the probability distribution P(θ). This is illustrated in Figure 2,

which shows the probability distribution P(θ) compared to the same true score function Jpi(θ) from Figure 1.
Further samples should ignore regions such as the one around θ = 0 where there is little-to-no probability
and thus will have no effect upon Ĵpi

and Jpi
− Ĵpi

even if the accuracy was improved in that region.

The selection metric used to identify the “best” samples to improve Ĵpi
is the minimization of the entropy

of the total integrand Jpi(θ)P(θ) from Eq. 11. This metric has been used before for active learning,12 known
as the uncertainty sampling metric. According to this metric, the parameter vector θ with the largest variance
of the integrand V[Jpi

(θ)P(θ)] should be sampled as this reduces the entropy by the largest amount. The
variance of the integrand actually reduces to the weighting of the posterior covariance of the estimated score
function with the square of the probability distribution.

V[Jpi
(θ)P(θ)] = Σ(θ)P(θ)2 (24)
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The best parameter vector to sample, labeled as θ, is therefore the point with highest value of this weighted
term.

θ = argmax
θ

{
V[Jpi

(θ)P(θ)]
}

= argmax
θ

{
Σ(θ)P(θ)2

}
(25)

Interestingly enough, this is the same result achieved when the samples are chosen to minimize the expected
squared loss between Jpi

and Ĵpi
.31

1. Active Learning Framework

The sample selection metric is used as the basis for a closed-loop active sampling procedure to replace the
sampling-based procedure detailed in Algorithm 3 and the passive-learning approach in Algorithm 4. Just as
was seen in Algorithm 4, the output Ĵpi

is a direct replacement for the numerical approximation Jpi
output

from line 9 of Algorithm 3.
The active learning procedure assumes the existence of a large, but finite set of feasible parameter vectors,

labeled F , with cardinality N that approximates the uncountable set Θ. Set F is initially broken up into
two subsets, S and U . Set S contains a small collection of sampled vectors θ ∈ ΘS and their corresponding
true scores Jpi

(ΘS). Set U , known as the unsampled set, is significantly larger and contains the remaining
points in F that have not been sampled. Parameter vectors θk in both S and U have their weights wk
precomputed based upon their probability P(θk). Note that this set F can be the same exact set of points
originally intended for use in Algorithm 3. However, only the training set S is sampled, not all of F , and
these samples are used to construct a Gaussian process regression model GP(m(θ), κ(θ,θT )) (Alg. 5, line
2). The resulting GP predicts the score over the entire set F . As they are explicitly known, the training
points in S will have zero prediction error with a noise-free GP, that is Ĵpi

(θk) = Jpi
(θk) for all θk ∈ ΘS .

This was seen at the sample points in Figure 1(b).
With the trained GP regression model, the iterative portion of the active learning procedure can begin.

Assuming there is a limit T on the number of additional samples to take beyond the initial training set S,
where |S|+ T << N , the iterative process is repeated T times (line 3). This limit T is set ahead of time by
the controls engineer as a suitable upper bound. For instance, this limit can be determined by the number
of iterations than can be feasibly achieved within a time restriction. Most active learning work has either
assumed this limit T or iterates until the unsampled set U is empty; however, the latter case is precisely what
Algorithm 5 is aiming to avoid. During each of the T iterations, the entropy metric from Eq. 25 identifies
the next sample θ to query from the true score (lines 4-5). This data is then added to the training set S
and θ is removed from the unsampled set U so that the same point is not sampled twice (lines 6-7). The
GP model is retrained with this new training set S and the process is repeated. After the loop terminates,
the GP’s posterior mean function µ(θ) is used to compute the estimated scores over the entire set F (line
10). These estimated scores are then combined with their corresponding weights wk to obtain the estimate
of the expected score Ĵpi

as in Eq. 23.
One step of the loop from Algorithm 5 is depicted in Figure 3. The score function is the same function

from Figures 1 and 2. The trained GP from Figure 1 and the selection metric from Eq. 25 is used to select
the next sample point, shown in Figures 3(a) and 3(b). After obtaining a measurement of the true score
function at this sample point, a new GP regression model is trained. The results are shown in Figure 3(c).

V. Results

This section demonstrates the active learning procedure on multiple task allocation problems. The first
two examples better illustrate the active learning process on simpler problems and compare it to passive
learning-based procedures as well as the original Monte Carlo approach. The third example is an aerial forest
firefighting problem that employs a fire simulation engine to assign surveillance tasks to multiple UAVs. This
last example highlights the need for limiting the number of samples as the inefficiency of the fire simulator
severely restricts the practicality of Monte Carlo methods.

A. Single Agent Example

The first example demonstrates the active learning-based expected score algorithm (Algorithm 5) on the
evaluation of a single path pi from Algorithm 2, line 5. In particular, there are two tasks that the agent
must complete. Both tasks have a time-varying reward associated with completion of the particular task;
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Algorithm 5 Compute-Expected-Score: Active Learning

1: Input: set U , set S, limit T
2: Train a regression model GP(m(θ), κ(θ,θT )) using training set S
3: for each iteration t = 1 : T do
4: Select best sample θ = argmax

θ∈U
(Σ(θ)P(θ)2)

5: Obtain true score Jpi(θ)
6: S −→ add {θ, Jpi(θ)} to training set S
7: U −→ remove {θ, Jpi

(θ)} from unsampled set U
8: Retrain regression model GP(m(θ), κ(θ,θT )) with new set S
9: end for

10: Compute estimated scores Ĵkpi
= µ(θk) for all θk ∈ S ∪ U

11: Estimate expected score Ĵpi =
∑N
k=1 wkĴ

k
pi

12: return Ĵpi

however, the path pi is already fixed (Alg 2, line 4) and thus the first assigned task will always be initiated at
the same time, resulting in the same reward every time. Essentially, the uncertainty only affects the score of
the second task. Both tasks are subject to the uncertain parameters θ = [θ1, θ2] which directly affect the time
it takes to complete the task. The mapping of the uncertain parameters to the time required to complete
a task is shown in Figure 4. The likelihood of these uncertain parameters is given by the multivariate
probability distribution depicted in Figure 5. Ultimately, the uncertainty will result in a parameter-varying
score function for the given path, Jpi(θ), illustrated in Figure 6. The goal of the sampling-based procedure
is to compute the expected score from samples of this true score function and the probability distribution
P(θ).

The active learning procedure is illustrated in Figures 7 and 8. The initial training set S consists of 25
randomly selected measurements of Jpi

(θ) which are used to train the initial GP regression model. This
trained model is then used to predict the score over the entirety of Θ, shown in Figure 7(a) and (b). The
active learning procedure from Algorithm 5 then selects the next sample point from the entropy metric. This
process is repeated for T = 100 iterations. Figure 7(c)-(f) plot the predicted scores early in this process after
5 and 10 iterations while Figure 8 depicts the scores after 50 and 100 iterations. Even after 100 iterations,
with 125 training points in total, the GP model is not able to perfectly capture the true score function from
Figure 6. Ultimately, that is unnecessary as the procedure is weighted towards areas of high probability.
This is seen in Figure 8, where the majority of the samples are located near regions corresponding to the
high probability peaks in Figure 5. The end result is the gradual improvement in the estimated expected
score Ĵpi

when using Algorithm 5 depicted in Figure 9. After 100 iterations of the procedure, the estimated

expected score Ĵpi
closely matches the actual expected score Jpi

. A comparable approximation using Monte
Carlo estimation (Algorithm 3) requires 65,000 samples of Jpi(θ), in comparison to the 125 samples used by
active learning. The reduction in the number of samples drastically reduces the computational overhead for
problems when it is computationally intensive to obtain samples from Jpi

(θ).

B. Multi-Agent Planning under Uncertainty

The second example demonstrates the entire CBBA assignment procedure on a multi-agent, multi-task
planning under uncertainty problem when Algorithm 3 has been replaced by active and passive learning.
The planning problem consists of 2 UAV agents and 10 tasks to complete. All of the tasks have the same time-
varying reward. Just as in the previous example, the task duration is effected by two uncertain parameters
θ = [θ1, θ2]. These two parameters are defined by the same probability distribution from Figure 5. There
are two different types of tasks in this problem (5 each) which are both affected by the uncertainty. These
tasks are the function from Figure 4 scaled by factors of 2 and 4, respectively.

Even though there are only 2 UAVs and 10 tasks in total, the robust CBBA planning procedure requires
roughly 400 separate function calls of Algorithm 5 on average before obtaining a suitable task allocation.
Each function call utilized 75 training samples to approximate the expected score. After completion of the
planning, this translates into roughly 30,000 different samples of score functions. This active learning proce-
dure is compared against the passive learning approach from Algorithm 4 and the Monte Carlo estimation
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(a) Original GP regression model and the next sample as identified by the entropy selection metric (Eq. 25)
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(b) Entropy selection criteria and the next sample identified by the selection metric (Eq. 25)
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(c) Retrained GP regression model with this new sample

Figure 3. One step of the active learning procedure from Algorithm 5. The original GP regression model and
the selection metric are used to select the next sample. This point has the largest entropy in the integrand and
will induce the greatest change on the model when sampled. The GP model retrained with this new sample
is shown at the bottom.

approach from Algorithm 3. In this latter approach, no GP model is constructed, instead a large number
of randomly selected samples are drawn according to P(θ) and the expected score is the statistical average.
The number of samples for each function call of Algorithm 3 is gradually increased up to 12,500 for suitable
comparison to the learning-based approximations.

Figure 10 shows the normalized approximation error for each of the three approaches. All three strategies
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(a) 3D view (b) Top-down view

Figure 4. Task duration (in seconds) as a function of the uncertain parameters θ1 and θ2.

(a) 3D view (b) Top-down view

Figure 5. Likelihood of the uncertain parameters θ1 and θ2.

(a) 3D view (b) Top-down view

Figure 6. True score Jpi as a function of the uncertain parameters θ1 and θ2.

have an average approximation error of around 0%. Note that the mean error from Figure 10(b) is also
roughly 0% but is omitted for easier viewing. The main difference between the approaches is in the error
bounds. The active learning procedure has the lowest upper bound on the normalized error while the passive
learning approach has a slightly higher error. Likewise, the randomized Monte Carlo approach has noticeably
worse error bounds. The Monte Carlo estimation procedure required roughly 6000 samples to match the
approximation error performance bounds that were achieved by active learning procedure in 75 samples
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(c) Step 5: 3D view
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(d) Step 5: Top-down view
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(e) Step 10: 3D view
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(f) Step 10: Top-down view

Figure 7. Adaptation of the predicted score Ĵpi (θ) during the active learning procedure. The first two figures
(a) and (b) depict the starting GP model trained using the initial training set S. The latter figures show the
predicted score after 5 and 10 iterations of the procedure.

(50 iterations). Even though they all have roughly the same statistical mean error, the active learning
procedure will have a lower variance, which is not surprising considering the active learning procedure used
the minimization of the variance of the integrand as the selection criteria. These approximation error results
highlight the benefits in sample efficiency with an active learning sampling approach.

C. Aerial Forest Firefighting

The last example is an aerial forest firefighting task allocation problem. In this example, a team of 2 UAVs on
a simplified surveillance mission is used to identify and monitor the expansion of a forest fire. These agents
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(a) Step 50: 3D view
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(b) Step 50: Top-down view
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(c) Step 100: 3D view
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(d) Step 100: Top-down view

Figure 8. Adaptation of the predicted score Ĵpi (θ) during the active learning procedure (continuation of
Figure 7). The first two figures (a) and (b) show the predicted score after 50 iterations. The latter two show
the predict score at the conclusion of the procedure.
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Figure 9. Expected score Ĵpi after T iterations of the active learning procedure. The active learning procedure
only utilizes the best sample from each of the T iterations in addition to 25 initial training points. After T = 100
iterations, the updated training set only consists of 125 samples from Jpi (θ).

must periodically visit the four quadrants of the assigned search zone and map the fire front expansion if
any flames are detected within the quadrant. Mapping the fire expansion is a slower process than simply
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Figure 10. Normalized approximation error with the number of samples. Figure 10(a), compares the active
learning procedure in Algorithm 5 with a passive learning variation. Both approaches construct a GP prediction
model and obtains 1 additional sample during each iteration, but the active learning procedure selects its
sample while the passive learning procedure randomly draws one according to P(θ). Before the first iteration,
the GP regression model is constructed using 25 randomly selected training samples. Figure 10(b) shows the
normalized approximation error from a Monte Carlo implementation of Algorithm 3. In this plot, the mean
is not shown as it was essentially a constant 0.

searching for fires, thus a quadrant’s surveillance task will require additional time to complete if flames are
present and this time will increase with the growth of the fire within that quadrant. The goal of the task
allocation algorithm is to assign surveillance tasks to the UAVs in order to balance quadrant visits with the
need to map fire expansion.

One of the major issues that arises in the firefighting problem is that the fire expansion is initially unknown
and is greatly affected by uncertain parameters such as wind speed, wind direction, and vegetation types (i.e.
grassland, forest, rocky terrain). In this work, it is assumed the initial fire location is known, such as after a
lightning strike, along with a map of the vegetation, but the wind speed and direction are poorly modeled with
noisy measurements. Despite these uncertainties, the robust CBBA planning algorithm must still provide
a single task assignment for the UAVs. Replanning can be used to reassign tasks during the middle of the
actual execution, but this work focuses entirely on the initial task assignments. In order to preemptively
evaluate the robustness of prospective paths over various parameter combinations, the aforementioned fire
simulator must be employed during the construction of the task assignments. Depending on the size of the
map and time scales, the simulator may require close to a minute to compute a single fire trajectory. This
computational inefficiency served as the primary motivation for the development of sample-efficient methods
for robust task allocation.

In the firefighting scenario, the 2 agents can potentially visit the four quadrants four times each, for a
total of 16 surveillance tasks of uncertain duration. The estimation of the wind speed and direction resulted
in the multivariate distribution shown in Figure 11. Robust CBBA with active learning was then applied
to compute a task assignment with desirable robustness to this uncertainty distribution. The resulting task
assignment only schedules two visits to each of the quadrants in order to ensure quadrants aren’t neglected
as the result of unplanned delays. During the computation of the task allocation, there were 760 different
function calls to Algorithm 5 and each function call used up to 50 iterations of the active learning step
to compute the approximate expected score. The resulting normalized mean and standard deviation over
these 760 function calls is shown in Figure 12. These results suggest that fewer than 50 iterations of the
active learning procedure can be employed to obtain a reasonably accurate approximation. This reduction
in the number of simulated traces greatly enhances the practicality of robust CBBA for the derivation of
task assignment strategies for this and similar applications.

While active learning does offer a viable alternative to other sampling-based procedures, each procedure
has their own strengths and weaknesses. One potential issue with active learning is that it can induce a small
bias in the evaluation whereas randomized Monte Carlo sampling will not. In the results from Figures 10(a)
and 12, active learning demonstrates a slight error bias. This is due to the fact samples are chosen based
upon an imperfect model of Jpi

(θ), but this bias will decrease as more samples are obtained. Randomized
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Figure 11. Likelihood of the uncertain wind direction and wind speed.
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Figure 12. Mean and standard deviation of the normalized error from 760 robust score approximations used
to compute the task assignment for the firefighting problem.

Monte Carlo approaches do not suffer from this bias in theory, as they rely upon the law of large numbers;
however, this returns to the previous concern with sample efficiency. Ultimately, the choice will depend on
the application. These results in this paper demonstrate that the active learning procedure is a suitable
replacement for the existing sampling-based procedures when necessary.

VI. Conclusion

This paper presents a machine learning framework for sampling-based robust multi-agent planning under
uncertainty. In particular, this work focuses on distributed task allocation using the robust consensus-based
bundle algorithm (CBBA), although it can easily be modified for other planning algorithms. Sampling-based
methods typically require a high number of simulations in order to compute the robust score. However, in
many applications, such as an aerial forest firefighting problem, it is difficult and computationally intensive
to determine the robust score. The goal of this work is to reduce the number of simulations required to
compute the expected score without sacrificing accuracy.

A machine learning-based algorithm is developed to compute the expected score with few evaluations
of the actual score function. Given a likelihood of the uncertain parameters, the algorithm can evaluate
a particular task assignment. Gaussian process (GP) regression models are trained from a small subset of
samples of the true, computationally-intensive score function. This regression model is used to inexpensively
predict the score over the unobserved regions of the parameter space. These predictions are combined with
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the probability distribution of the parameters to estimate the expected score. Furthermore, a small number
of additional samples are actively selected according to an entropy reduction metric. These new samples
induce the largest possible improvement in the estimated score. Three example problems demonstrate the
new algorithm and the reduction in the number of samples with minimal impact on the accuracy of the
estimated scores.

Future work will consider extensions to this algorithm. The most immediate step is to derive batch
versions of Algorithm 5 to select multiple samples before retraining the regression model. Batch methods
can offer further computational savings with minimal impact on the accuracy by lowering the number of
training steps for the same number of samples. Additional work will focus on removing the slight error bias
encountered in the last two examples. Ultimately, the active learning process presented here is intended as
a tool to extend existing multi-agent planning architectures to more complex real-world applications.
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