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Abstract

The Karlsruhe Tritium Neutrino (KATRIN) experiment is intended to make a sensi-
tive (~ 200 meV) model-independent measurement of the neutrino mass through
high precision electrostatic spectroscopy of the tritium /-decay spectrum. One of
the principle components in this experiment is the main spectrometer which serves
as an integrating MAC-E filter with 0(1) eV resolution. Thorough understanding
of the transmission properties of the main spectrometer system is an inextricable
challenge associated with this effort, and requires a very accurate and fast method
for calculating the electrostatic fields created within its volume. To this end, the
work described in this thesis documents the development of a novel variation on the
Fast Multipole Method (FNM), which is a hybrid of the canonical algorithm and the
Fast Fourier Transform on Multipoles (FFTM) method. This hybrid techniqule has
been implemented to take advantage of scalable parallel computing resources and
has been used to solve the Laplace boundary value problem using the Boundary
Element Method with millions of degrees of freedom. Detailed measurements taken
during the KATRIN main spectrometer commissioning phase are used to validate
the fully three-dimensional electrostatic field calculation and the hybrid fast multi-
pole method. Then, the hybrid method is used to greatly accelerate charged particle
tracking in a high-statistics Monte Carlo simulation. The data from this simulation
is then used to develop a spatially resolved model of the main spectrometer trans-
mission function. This full transmission function model is then used to evaluate the
performance of several of approximate transmission function models, the results of
which show that a purely axially symmetric treatment of the main spectrometer is
not sufficient. We conclude by addressing the appropriate level of measurement
detail needed in order to reconstruct a realistic, non-axially symmetric transmission
function model.

Thesis Supervisor: Joseph A. Formi-aggio
Title: Professor of Physics
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Chapter 1

Introduction

One of the richest sub-fields of modern particle physics is the study of the sub-

atomic particle known as the neutrino. The variety of experiments dedicated to

extricating the properties of this particle is astoundingly broad, which is due in part

to the extraordinarily small likelihood of neutrino interactions with matter. While

the study of the neutrino is challenging, since the capstone discovery of the Higg's

boson, it remains one of the most active and promising frontiers in the search for

physics beyond the standard model.

1.1 Theoretical Prediction of Neutrinos

The existence of the neutrino was first postulated in 1930 by Wolfgang Pauli in a

letter as an explanation for the shape of the energy spectrum of beta-decay [184].

His postulate was a "desperate remedy" intended to save the bedrock principle

of energy conservation. At the time, the process of beta-decay was assumed to be

a two-body decay, which kinematically fixes the energies of the decay products.

However, a three-body decay allows a distribution of energies among the decay

products and can produce a non-monoenergetic spectrum. Of course, at the time,

physicists where aware that the beta-decay spectrum was not mono-energetic [1311,

but they had been unsuccessful in detecting a third particle involved in the process.

Pauli postulated that this third particle was electrically neutral and therefore had a
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low probability of interaction with any experimental apparatus. However, since

this newly proposed particle was neutral and not a photon, it could not participate

in an entirely electromagnetically mediated interaction. So by extension, Pauli had

also proposed an entirely new force of nature. This new mediating force would

later become know as the weak force.

Enrico Fermi, an Italian physicist who excelled at both theoretical and experi-

mental work, devised a theory for -decay as a point-like four particle interaction

shortly after learning of Pauli's idea in 1934 [233]. It is Fermi who is responsible for

the name "neutrino" as the diminutive of neutron [215] (the name which Pauli had

proposed in his letter but had recently been expropriated for the particle discovered

by Chadwick [43]). Fermi constructed his theory using creation and annihilation

operators for the electron and neutrino in a way that was analogous to the existing

theory of atomic photon emission. Incidentally, Fermi's paper was rejected from

the journal Nature for being too speculative to be of interest [148], despite correctly

reproducing the shape of the beta spectrum and accounting for the extreme spread

in half-lives of known beta emitters though the concept of 'allowed' and 'forbidden'

transitions [233].

Fermi's theory of the weak interaction would undergo further development

throughout the next several decades with contributions from Gamow and Teller

[87], Lee and Yang [153], and Feynman and Gell-Mann [80]. Eventually the weak

force would be unified with the electromagnetic force by Glashow, Weinberg, and

Salam to form the basis of the standard model of particle physics [95, 227, 207].

1.2 First Detection

The neutrino is notoriously difficult to study because it only interacts with matter via

the weak force and gravity. Since neutrino's weak force cross section is exceedingly

small it took nearly 25 years before direct experimental evidence of this particle was

available. The first experiment to put the existence of the neutrino on solid footing

was called Project Poltergeist [55]. Lead by C. Cowan and F. Reines, Poltergeist
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exploited the relatively recent invention of the nuclear fission reactor to provide a

large flux of high energy anti-neutrinos. These ant-neutrinos could then be detected

in a target composed of alternating layers of liquid scintillator and a solution of

cadmium chloride dissolved in water. The process that Poltergeist was searching

for was that of inverse p-decay:

e + p - n + e+, (1.1)

through which a proton absorbs an anti-neutrino, converting into a neutron and

emitting a positron. This process produces prompt scintillation through the anni-

hilation of the positron, followed by a signal from the capture of the free neutron

on a cadmium nucleus and its subsequent gamma emission. This type of event,

exhibiting delayed coincidence, provided a unique signature which allowed them

to significantly reject background due to other radiation from the reactor and cosmic

rays which would have otherwise obscured the anti-neutrino induced events.

1.3 Discovery of Flavors in the Neutrino Sector

The decade following the first direct observation of the electron (anti-)neutrino was

a good one for experimental neutrino physics and the development of the theory of

the weak force. It was followed in rapid succession by Lee and Yang's proposal [153]

of parity violation in 1956 and its discovery by Wu [235] in 1957. Later that same

year, Goldhaber devised an amazingly beautiful table-top experiment to measure

the helicity of neutrinos produced in the P-decay of Eu1 5 2 and found them to be

left handed [101]. Meanwhile, the development of accelerators capable of reaching

energies above the pion production threshold allowed high statistics observations of

the decays of charged pions and muons, which had previously only been observed

in cosmic ray events. From the observation of their decay branching ratios, the

question as to whether the neutrinos produced in muon production and decay were

the same particle as that involved in nuclear P-decay arose. To explore this question,
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an experiment making use of the first accelerator produced neutrino beam at the

Brookhaven Alternating Gradient Synchrotron (AGS) [57] was carried out, resulting

in the discovery of the muon neutrino. This discovery lead to confirmation of the

suspicion that the different lepton 'flavors' exhibited by the electron and muon

were also present among the neutrinos. The discovery of the r lepton in 1975 [187]

prompted a search for the corresponding T-flavored neutrino. The v, was finally

observed by the DONUT collaboration 25 years later, filling out the standard model

picture of the leptonic sector [141].

1.4 The Solar Neutrino Problem

For a short time in the early 1960s, it may have briefly seemed that the weak

force theory was surprisingly consistent with the available experimental evidence.

However, cracks were beginning to show in the contemporary understanding of

neutrinos. This was particularly exacerbated by the Homestake mine experiment

headed by R. Davis. The Homestake experiment was designed with the rather

audacious goal of measuring the electron neutrino flux from the sun [59, 49]. To ac-

complish this, a massive 390,000 liter tank of tetrachloroethylene was placed nearly

a mile underground in the Homestake gold mine in Lead, SD. The tetrachloroethy-

lene contained large quantities of chlorine which served as the target of neutrino

capture. The massive size of the target was necessary because of the extremely low

probability of inverse /-decay process, while the thick overburden was needed to

reduce the cosmic ray induced backgrounds. The inverse P-decay process of interest

was neutrino capture on the Cl37 isotope present in the tetrachloroethylene. This

would convert the nucleus to Ar37 along with the emission of an electron, according

to:

e + C1 37 -+ Ar37+e- . (1.2)

The Homestake experiment relied entirely on radio-chemical methods instead of

real time observation of the neutrino capture events. The Ar37 atoms were collected
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by bubbling helium gas through the liquid, yielding about one Ar37 every two

days. Since Ar37 is radioactive with a half-life of about 35 days, its decay was then

detected by a proportional counter, with each event corresponding to a neutrino

capture. Strangely, the number of Ar37 atoms collected, and thus the neutrino flux

seen by the detector, were only about a third of the rate predicted by the standard

solar model of J. Bahcall [20]. This discrepancy became known as the solar neutrino

problem.

Following the Homestake experiment, the water Cherenkov detectors Kamio-

kande and its enormous successor, Super-Kamiokande, were the next to observe a

deficit in the solar neutrino rate [178]. Originally designed for a proton decay search,

it was realized that the low background and excellent ability to resolve low energy

electrons in these detectors could provide a means to observe neutrino-electron

scattering from solar neutrinos. These detectors were a significant improvement

over the radiochemical methods of Davis, because real time event observation

allowed an active veto and provided additional information, such as directionality,

which could be used to further reduce background processes. However, rather

than exactly confirming the results of Davis's search, Kamiokande instead observed

about half the expected flux, which further complicated the puzzle.

One explanation for the solar neutrino problem was provided by the devel-

opment of the theory of neutrino oscillations, which proceeded in parallel with

experiment throughout the middle of the 20th century [177]. The existence of neu-

trino oscillations allows the neutrinos generated by the fusion reactions in the Sun's

interior to convert to other flavors as they travel on their way to the Earth. Since

the flavors (ve, vY, vT) do not interact with the matter composing the detectors in

exactly the same fashion, oscillations allow for the "disappearance" of some of the

solar neutrino flux. However, these oscillations can only exist if neutrinos have

mass, and specifically, only if their mass eigenstates are different from their flavor

eigenstates.

Experimentally, the solar neutrino problem was finally resolved by the SNO

collaboration [6]. Since the energy of solar neutrinos is only a few MeV or lower,
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the v, and v, flavored neutrinos cannot participate in the charged current reaction,

as they do not have enough energy to produce a y or T particle. The Homestake

and (Super-)Kamiokande detectors were only sensitive to these charged-current

reactions so T and y flavored neutrinos were undetectable. However, SNO was also

sensitive to neutral-current reactions through its use of a heavy water, D 20, target.

This is because in addition to the processes of inverse P-decay and neutrino-electron

scattering, heavy water is also subject to the dissociation of its deuterium atoms,

through [196]:

vx + D - p + n + vx. (1.3)

Because of its very low threshold (2.2 MeV), all neutrino flavors can participate

in this process. By measuring the flux in both the neutral and charged-current

channels, the SNO collaboration was able to demonstrate that the deficit in the solar

neutrino flux was in fact due to the oscillation of ve into v1 and vT.

1.5 Neutrino Oscillations

In 1958, Pontecorvo [191] was the first to propose an oscillation model in the

neutrino sector. At the time it was still not known that there were multiple flavors

of neutrino. Rather than flavor oscillations, Pontecorvo's first model was devised in

order to explain the existence of events of the form:

-Te + C13 -+ Ar37 +e- , (1.4)

which he erroneously believed had been observed by Ray Davis [36]. However,

as more experimental evidence was accumulated, (particularly the distinct nature

of the flavors ve and v, [57]) a flavor oscillation model was developed by Maki,

Nakagawa, and Sakata [166] and subsequently developed into the form we are

familiar with today [37].

A thorough description of the mechanism of neutrino oscillations can be found in

[94, 105], but we will give a brief summary following the notation of [94]. Neutrino
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oscillations rely on the weak interaction eigenstates, Iva) = (ve,'V, vT), being an

admixture of the free space propagation eigenstates, Ivk) - (v1, v2, v2), which have

different masses. This mixing is described by the the Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) matrix U, through [94]:

Iva) = EU*kvk), (1.5)
k

IVk) - E akIVa) . (1.6)
a

In the three neutrino model, U can be parameterized as a unitary matrix in the

commonly used form of [1711:

1 0 0 COS 13 0 sin 13el& COS 012 sin 012 0

U =0 COS 023 sin 023 0 1 0 -sin 612 COS 012 0 -(1.7)

0 - sin 023 cos 023 - sin 013eip 0 cos 013 0  0 1

This parameterization can be viewed as a series of three rotations, along with the

presence of an additional complex CP-violating phase pc. If neutrinos are in fact

Majorana particles, there is also the possibility of two additional complex phases.

In which case, we have U -+ U x diag(1, eY2, ei3) [171].

Under the assumption that neutrinos are produced in a flavor eigenstate and

freely propagate as a plane wave, the neutrino's flavor content will evolve in time

according to the Schradinger equation:

ih dIV (0)) = ' I1/(0)) (1.8)

The mass eigenstates are the stationary states of the free particle Hamiltonian, so

they evolve with a simple energy dependent phase according to:

vk (t)) = exp -i i s pVk() (1.9)

Combining 1.6 and 1.9 implies a neutrino which is produced at time t = 0 in the
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state:

Iv(t = 0)) Va , (1.10)

which, as an admixture of several mass states, can be described at some later time t

by [94]:

jv(t)) = U*k exp i tk) (1.11)

Therefore, given a beam of neutrinos generated in the state va, there is some non-

zero probability to observe a neutrino, vb, of a different flavor, a 3 b, which is given

by:

PVa---W,(0 = |(VbV( t ))|12 .(1.12)

In the ultra-relativistic limit, Mk < Ek, the energy is dominated by the neutrinos

momentum, E ~ I c, so Ek can be expressed to first order in the mass as:

Ek p2c2 + m dc4 ~ E (1 + 2E2 . (1.13)

Similarly, as the neutrino is moving near the speed of light, c, time may be replaced

by t ~ L /c. Therefore, the transition probability can be approximated quite well by

[94]:
Am2 C 3 L

Pv a 1v(L/E) = U*kUbkUajU*i exp (-i2E)' (1.14)

where Am21 is the mass squared difference of the two propagation eigenstates Vk

and vj, given by:

Am2= m2 - M? (1.15)

As a matter of terminology, if an experiment is designed to observe neutrinos of

the flavor Vb from a source emitting Va, it is termed an "appearance" experiment,

while if it is designed to measure the deficit of the expected flux of va, it is called a

"disappearance" experiment.

Over the past several decades, there has been an enormous effort to extract

the parameters describing the PMNS matrix , involving a variety of techniques
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and wide ranging length and energy scales. The observation of solar neutrinos by

the SNO experiment has produced an extremely precise measurement of the mass

splitting Am 21, [24]. Atmospheric neutrino oscillations are sensitive to the Am 31

mass splitting [136]. Examinations of reactor produced neutrinos and long baseline

accelerator experiments have complemented atmospheric and solar neutrino mea-

surements. This has allowed precision measurements of the mixing angles and the

mass differences [41]. A summary of these parameters is given in table 1.1.

Name Value 3o- lower limit 3o- upper limit
012 33.720 31.520 36.180
623 49.30 38.60 53.10
613 8.470 7.860 9.10

Am (eV2) 7.49 x 105 7.02 x 10-5 8.08 x 10-5
AMn 1 (eV2) 2.484 x 10-3 2.351 x 10-3 2.618 x 10-3

Table 1.1: Parameters of the PMNS matrix and neutrino mass differences from
oscillation measurements. Values given are the best fit for the three neutrino normal
hierarchy model of NuFit 2.1 2016 [104].

The observation of neutrino oscillations provides strong evidence for the exis-

tence of non-zero neutrino mass and indicates that at least one of the propagation

eigenstates must have a mass greater or equal to the largest mass splitting:

"'I;ax> Am 1 . (1.16)

However, while the introduction of neutrino mass and oscillations has lead to

the resolution of the solar neutrino problem, it has also opened the door to new

questions. The current state of knowledge of physics in the neutrino sector leaves

us with the following open questions:

1. What is the mechanism by which neutrino mass is produced? Are they Dirac

or Majorana particles?

2. Is the mass hierarchy normal (Mi, M 2 < M3 ), inverted (M 3 < mil, m2), or

degenerate (Mi ~ m2 ~ M3 )?

3. What is the value of the CP-violating phase 6cp?

29



4. To what extent is the three neutrino PMNS matrix, U, unitary? Are there

sterile neutrino flavors? If so, how many are there?

5. What is the absolute mass scale of the neutrinos?

These questions can only be informed through more experimentation and remain

one of the most promising avenues in the quest for new physics.

The answer to the first question can only be definitively answered in favor of

Majorana particles with the observation of neutrino-less double p-decay. Within the

standard model, the existence of two neutrino double beta (2vPP) decay as a second

order weak process is a well established fact, and has been demonstrated to exist for

a variety of isotopes [197]. However, while 2vPP-decay provides a useful extension

to our series of tests of the current model of nuclear structure, it does not provide

any instruction on the possibility of physics beyond the standard model. One

exciting possibility which might give a glimpse into new physics, and one which is

predicted by several classes of grand unified theories [238], is that of zero neutrino

double beta (Ovp) decay. So far, the experimental search for OvPP-decay has failed

to yield any indisputable evidence for its existence [1, 138, 237]. If OvPP-decay were

to be observed, this phenomenon would give a clear indication of the nature of

neutrinos as Majorana particles, as well as allowing us to establish an estimate of

the absolute mass scale of the neutrino.

To answer the second question, there are several competing methods for the

determination of the neutrino hierarchy (see [123], [164], and [156]). In the near

term, one promising technique may be that of the Nova and T2K collaborations,

which are using long base line v,, neutrino beams to look for v,, -- + v, oscillation

[19, 90]. In addition, since U13 has been measured to be non-zero[3, 9], the passage

of a neutrino beam through matter can provide some sensitivity (by way of the MSW

effect) to the sign of Am 13 [60]. This will enable another generation of oscillation

experiments currently getting under way to probe the mass hierarchy, as well as

the value of the CP-violating phase &, [174,209].

Measurements of the Z boson width and its invisible decay fraction has con-

30



strained the number of active light neutrinos to the currently known three flavors

[62]. However, this does not preclude the existence of 'sterile' neutrinos which may

not participate in WZ-boson mediated interactions. The observation of the reactor

neutrino anomaly [172] and anomalies in disappearance experiments [143] both

suggest that the presence of an additional "sterile" neutrino flavor(s) is a distinct

possibility. The resolution of these anomalies awaits further experimental results,

and a variety of techniques to explore the existence of sterile neutrinos is underway

[2]. Since the presence of a massive sterile neutrino would modify the shape of the

P-decay spectrum, one interesting possibility is the use of the KATRIN experiment

to explore this effect [83].

The last question cannot be addressed through oscillation experiments as they

are only sensitive to the mass differences. Instead, it can only be probed indirectly

through cosmological measurements, or directly from kinematic measurements.

The mass scale of the neutrinos is a question of utmost importance since it can

inform models of the structure formation of the universe and may provide an

indication of the energy scale at which the standard model breaks down as an

effective theory [228].

1.6 Probes of the Neutrino Mass scale

While there is currently little doubt that neutrinos have non-zero mass, direct

experimental searches have so far failed to demonstrate the sensitivity needed to

make a discovery. This leaves us unable to make a distinction between the several

competing candidate theories which propose how to incorporate neutrino mass into

the standard model. The two most prominent mechanisms for producing massive

neutrinos incorporate them into the standard model in either a semi ad-hoc manner

as Dirac fermions, or as Majorana particles through the see-saw mechanism [175].

Between these two mechanisms, the see-saw mechanism is generally seen as more

compelling, since it provides a natural explanation for the lightness of the neutrino

masses.
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Whether neutrinos are Majorana has been an ongoing line of inquiry throughout

the 20th century and in some ways is a more fundamentally important question

than that of determining the absolute mass scale. However, proof of the Majorana

mechanism can only be provided through the observation of Ovpp-decay. The

converse, however, is not true, and the absence of the direct observation of Ovpp-

decay does not necessarily indicate that neutrinos are Dirac particles. In fact,

if this turns out to be the case, the Majorana-Dirac determination can only be

made possible if both a stringent lower limit on Ovpp-decay lifetimes is made in

conjunction with a definitive measurement of the absolute neutrino mass scale [21].

1.6.1 Cosmology

One approach to determine the mass scale of the neutrinos is through the use of

cosmological observations. Since the discovery of the cosmic microwave back-

ground [186], subsequent satellite based measurements [33, 118] have allowed a

more refined understanding of the matter density anisotropies in the early universe

dating back to the epoch of recombination. Understanding the evolution of these

early anisotropies into the large scale galactic structures we observe later in the

universe's history requires knowledge of several parameters describing the matter

content and energy density of space. These parameters dictate the evolution of

the universe and structure formation according to Einstein's field equations and

Newtonian dynamics. This parameterization and the behavior of each constituent

is collectively referred to as the ACDM model. This is on account of the dominance

of dark energy (A), and cold (non-relativistic) dark matter (CDM) which heavily

influence structure formation. In this model, baryonic matter is assigned only a

small fraction (- 5%) of the energy density of the universe, along with the cosmic

microwave background and cosmic relic neutrinos.

Cosmic relic neutrinos exist as an analog of the cosmic microwave background.

They are remnants leftover from the time when matter had cooled enough for the

weak force to decouple. Recent measurements by the Planck collaboration have put
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a best limit on the sum over all neutrino mass eigenstates of [5]:

Ymn < 0.23 eV . (1.17)

However, this limit is determined through a complex analysis of many correlated

parameters and varies considerably depending on the choice of data sets used in

the analysis. Such a limit is termed model-dependent, since it relies on the choice

of a large number of free parameters which are not well constrained. Furthermore,

given the nature of astrophysical observation, where the system under observation

cannot be controlled in a way so as to explore systematic errors or the presence

of unknown observational biases, then existence of such a limit does not make

laboratory tests dispensable. So while astrophysical data provides much needed

insight into areas which are otherwise inaccessible to experiment, they are not yet

sufficient by themselves to definitively constrain the neutrino mass scale.

1.6.2 Single and Double P-Decay

It is fitting that the same process which lead to the neutrino hypothesis in the first

place would also be an appropriate way to probe their mass scale. In order to briefly

review review single -decay, we will restrict ourselves to /3-decay, and ignore the

similar #+-decay, and electron-capture processes. Single -decay occurs in nuclei,

XN, which have a mass excess greater than me of the corresponding daughter

nucleus, Z+ YN-1, it proceeds according to:

XN - +1 N-1 + e- ' -e (1.18)

The differential rate with respect to the emitted electron's energy at which this

process occurs is dictated by Fermi's golden rule [193]:

d = 2 MI2dp(Etot, Ee) dEe, (1.19)
t, H e
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where | M is the matrix element describing the transition amplitude of the relevant

dynamics of the decay process, p(Etat, Ee) is the differential element of phase space,

Ee is the energy of the emitted electron, and Etrt is the total energy available for

the phase space of the electron and neutrino. In the simplified nucleon picture of

P-decay, this matrix element can be factored into nuclear and leptonic parts under

the assumption that the nuclear part does not depend upon the electron's state

(true for super-allowed and allowed decays). We will not go into detail on the

A
Z+ YN-1

XN

e

Figure 1-1: The P- decay of the nucleus AXN. The blob represents the effective
weak interaction involving the entire nucleus.

construction of the transition amplitude from the Feynman diagram in figure 1-1,

but will instead quote the result [193], which has been factored into these two parts:

dF = 27 IMnuc| 2 IMlep12 dp(Etot, Ee) dEe (1.20)
h dEe

The leptonic matrix element essentially boils down to the probability of finding

the electron and anti-neutrino at the same place within the nucleus, as proposed in

Fermi's original point-like interaction theory. Assuming the wave functions of the

electron and anti-neutrino to be plane waves normalized over the volume of the

nucleus, the leptonic matrix element is given by [181]:

iep12= 1F(Ee,Z+ 1), (1.21)
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where V is the volume of the nucleus and F (E,, Z +1) is the so-called Fermi function

which corrects for the interaction of the electron with the Coulomb charge of the

daughter nucleus. The Fermi function is given by [38]:

2 ((z 1)a)7
F(Ee,Z +1) = (1.22)

1- exp (- (( 1-) 7)

where ve ve / c, a is the fine structure constant, and Z + 1 is the nuclear charge

of the daughter. The nuclear matrix element, IMIc 12, is a measure of the overlap

between the final and initial nuclear states. It contains two contributions:

IM Uc 12  g2IMF I2 g2aGT (1.23)

That which is due to the vector part of the weak interaction, MF, is known as

the Fermi matrix element, and that which is due to the axial-vector part MGT, is

known as the Gamow-Teller matrix element. The relative strength of the Fermi

and Gamow-Teller elements is dictated by the vector and axial-vector coupling

constants; gv and ga. As might be expected, a transition involving the change of a

nucleon from a neutron to a proton involves the isospin raising operator. In fact, in

the case of free neutron decay, the matrix elements are simply:

JMFI -|&+Ijn)j , (1.24)

1MGTI = I(p.T+o-n). (1.25)

However, when we are in the confines of a nucleus, we must sum over all the

nucleons which can participate in the reaction, so the matrix elements become:

A

mif k

A

IM4GTITmf IfLT+(k)c-(k)Ii) (1.27)
Uf k
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where mf is the z-projection of the nuclear angular momentum, and Ii) and (fI are

the initial and final nuclear states.

The form of the nuclear matrix elements in equations 1.26 and 1.27 appear

quite simple (though it hides the true details of the quark structure), and in some

cases they are fairly easy to calculate. In the case of a super allowed decay, the

decaying neutron in the parent nucleus has the same quantum numbers (n, 1, j) as

the produced proton in the daughter nucleus. Therefore, the remaining nucleons

do not participate and the matrix element essentially reduces to the free neutron

case [193]. A particularly important example of a super allowed decay is that of the

isospin doublet:

3H2 _ 3He 1 + e- + -e. (1.28)

However, the vast majority of a-decaying nuclei do not participate in super allowed

decay. This is generally on account of the Coulomb repulsion of the protons,

which raises their energy and allows for a neutron excess to be present in nuclei of

appreciable size. For nuclei which decay through allowed or forbidden processes,

the calculation of the spectral shape becomes more complicated through additional

shape factors. These shape factors depend on the linear and angular momentum of

the emitted electron and neutrino [145]. However, computing the nuclear matrix

elements in these nuclei cannot always rely on a simple treatment of the decay

operator as an isospin raising/lower operator, because decays in heavier nuclei often

involve a transition between nucleon shells or the production of an excited state in

the daughter nucleus. In the general case, the process to compute nuclear matrix

elements consists of the following: solving for the single-nucleon states in some

effective potential, constructing the nuclear wave-function, constructing the Fock

Space of nuclear states, expressing the decay operators in terms of single particle

annihilation/creation operators acting on this Fock space, and finally, evaluating

the single particle transition matrix elements. The full procedure is beyond the

scope of this introduction, but its complexity underscores the advantage of using

much simpler super-allowed decays when probing the neutrino mass from the
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shape of the P-decay spectrum.

In single P-decay, it is the spectral shape of the emitted electron's energy dis-

tribution that allows us to probe the neutrino mass. However, so far neither the

leptonic nor nuclear contributions to the matrix element have provided a term with

any dependence on the neutrino mass. In fact, the neutrino mass enters entirely

through kinematical constraints on the available phase space of the emitted electron.

The phase space term to equation 1.20 is given by [193]:

dp(Etot, Ee) = V2 (4 2 2 (dpe p ( ) dEe. (1.29)
( 2 7,h)6Pe dEe dEtot

The phase space of the daughter nucleus does not contribute, as it is fixed by

energy and momentum conservation. Furthermore, the recoil energy with which

it is imparted is very small since its mass isn't much larger than the electron and

neutrino. In the region of interest near the end-point this energy, Erec, varies very

little and can be treated as a constant, modifying the total energy, Eo, available to

the electron and neutrino. The modified end-point is then given by [181]:

EO = Q - Erec (1.30)

where Q is the total energy available to all products of the decay. Applying the

relativistic energy-momentum relation, rewriting the phase space in terms of the

electrons kinetic energy and combining it with the nuclear and leptonic matrix

elements yields the final description of the shape of the /-decay spectrum near the

end-point:

dF - g2 IM F 12 + g GT 2

dKe 27T3c6h7

x F(Ee,Z+1)Eepe(EO-Ke) (Eo -Ke) 2 - C2,c4 . (1.31)

Note that equation 1.31 treats the interacting neutrino as if it were a particle with a

single mass, ni 1,. Including the full set of mass eigenstates modifies the differential
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decay rate so that it becomes [94, 83]:

dT g2IM F 12 +gIMGT 12
d = 2 7 ~JGh 7 F(Ee, Z + 1)Eepc(Eo - Ke)

dKe 2r3c6h7

Nt,

x LIUeiI 2 [(Eo - Ke - mi) (Eo-Ke)2 m , (1.32)

where O(Eo - Ke - mi) is the Heaviside step function restricting the phase space

to the physical region. Clearly, an experiment with an energy resolution that is

much larger than the differences between the mass eigenstates cannot resolve the

influence of any single mi. Instead, it sees the influence of the coherent sum, given

by [181]:
N,

M2 UeJ 2 m2  (1.33)
i=1

where Uei is the element of the PMNS matrix dictating the mixing between the

electron neutrino and the i-th neutrino mass eigenstate. It is this value that we

refer to as the "neutrino mass" in reference to limits obtained from P-decay. The

current best limit on the neutrino mass from single P-decay comes from tritium and

is held by the Mainz experiment which yielded a limit of m, < 2.2 eV at the 95%

confidence level [146].

The neutrino mass can also be probed through the study of double P-decay. The

process of 2vpp-decay is a second order weak process predicted by the standard

model. It was first predicted by Goeppert-Mayer in 1935 [99]. However, because

of the smallness of the weak force coupling constant, second order processes are

exceedingly rare (with tl/ 2 r> 1018 - 1022 years [93]) and were not observed until

more than 50 years after their prediction [74].

Under the model dependent assumption that neutrino's are in fact Majorana

particles, with V = v, the 2vpp-decay spectrum is modified by a neutrino-less

double P-decay process, given by:

ZXN NZ+2 YN-2 + e + e- (1-34)
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Of course, this decay is only possible if the neutrino is a massive Majorana particle

that is able to serve as both the "anti-neutrino" the "neutrino" at both vertices

in figure 1-2. In order for this decay to proceed, the parent nucleus AXN and the

AX AyN
ZXN Z+2YN-2

N*

W W

e e

Figure 1-2: Neutrinoless go-decay mediated by massive majorana neutrino, / = v.
The virtual nuclear state is denoted by N*.

daughter +2YN-2 must both be more bound than the intermediate nucleus. This

is usually satisfied in the situation where the parent and daughter nuclei are both

even-even, and the intermediate nucleus is odd-odd [76]. Once again, the decay

rate is dictated by Fermi's golden rule, and according to Elliott, [76] reduces to:

F = 27r RoyI2 (ei + e2 P+ E - M i d 2  (1.35)
I Rov126 ( l + 6 + E (2 7) 3  (27r) 3

where Mi and Ef are the mass-energy of the intial and final state nuclei respectively,

ej and ' are the energy and momenta of the i-th final state electron, and I Ro 12 is

the transition amplitude. Fortunately, the phase space integral over the electron

final states factors out of the transition amplitude IRovI 2 [76]. However, the lep-

tonic portion of the transition amplitude does not completely separate from the

nuclear matrix element due to the presence of the neutrino propagator. The leptonic
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component contains terms of the form [76]:

- / e-i-e(x), 1 Y ) ( 75+ (1 5)+Mi 7,cre(y), (1.36)

where j(x) and ec(y) are the electron creation operators, q is the virtual neutrino

four-momentum, and mj is the mass of the j-th neutrino mass eigenstate. The term

involving q' y, drops out once we have applied Casimir's trick in summing over the

spins, because 75 anti-commutes with -y,, and because terms involving the trace of

an odd number of -y-matrices are zero, as well as terms of the form Tr(7y W 75). This

leaves the transition amplitude proportional to the square of a linear combination

of the neutrino mass eigenstates, known as the effective Majorana neutrino mass

[76]:
2

(M -)2 = IMjU2 . (1.37)

This indicates that measuring or placing a limit on the rate of OvP decay is directly

sensitive to the absolute mass scale of the (Majorana) neutrino (but not the shape of

the spectrum). However, there are additional complications when determining the

rate which arise from evaluating the nuclear matrix element. This is because of the

virtual nuclear state N*. The full description of these issues is beyond the scope of

this introduction, but they lead to a wide range in theoretical values for the nuclear

matrix elements. In fact, a review of the calculations for nuclear matrix elements in

the decay of the single isotope Ge76 shows that they vary by a factor of - 3, which

leads to large uncertainties on the mass limits obtained from double P-decay [75].

The current best limit on (mW )2, which comes from a combined analysis is [113]:

(m vo )2 < 0.13 - 0.31 eV . (1.38)

This limit is of course only valid if neutrinos are in fact Majorana particles.

Table 1.2 summarizes the current neutrino mass limits available from cosmology,

Ovpp-decay, and single P-decay. Each of these methods is sensitive to a somewhat
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different mass term, which complicates a direct comparison between each of them.

However, as there is currently no definitive claim of a non-zero mass discovery

(other than oscillations), there is a continuing effort on all fronts to develop more

sensitive experiments to explore the neutrino mass.

Method Mass term Current limit Reference
Cosmology E;, m, < 0.23 eV [5]

OvPP-decay 1 i 1U2 2  < 0.13 - 0.31 eV [113]

/-decay EI U, 12rn7 < 2.2 eV [146]

Table 1.2: Current best limits on the absolute mass scale of the neutrino from various
techniques
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Chapter 2

The KATRIN Experiment

The Karlsruhe tritium Neutrino (KATRIN) experiment is intended to further our

understanding of the neutrino sector by making a model independent measurement

of the absolute neutrino mass scale. Its planned sensitivity is an order of magnitude

better than the current best limit of ~ 2.2 eV [146, 15]. It is important to note

that the KATRIN experiment, being a Tritium P-decay spectroscopy experiment, is

insensitive to the exact neutrino mass mechanism, since it is solely dependent on

the decay kinematics. In addition, unlike cosmological observations which involve

a plethora of variables, direct measurements like KATRIN only require a minimal

number of orthogonal parameters describing the shape of the P-decay spectrum in

order to extract the neutrino mass.

To accomplish this, KATRIN will examine the energy spectrum of tritium P-

decay with unprecedented precision, in order to look for any tell-tale distortion near

the end-point, indicative of a non-zero neutrino mass. On account of the small size

of this effect, KATRIN must attain an energy resolution on the order of 1 eV, while

imaging a high intensity gaseous molecular tritium source and maintaining a low

background rate of less than 10mHz [51]. While the basic technique of the KATRIN

experiment mirrors the approach of previous neutrino mass searches at Mainz [29]

and Troitsk [161], its sheer size brings a number of new challenges which must first

be resolved.
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2.1 Tritium n-Decay

Tritium P-decay makes an excellent probe of the neutrino mass and has been a

mainstay of model independent searches for neutrino mass for the past 60 years

[149, 208, 34, 232, 146, 15]. The reasons for this are several fold. The first is that

it is a super-allowed decay, making the matrix elements of the nuclear transition

independent of the energy of the emitted electron. In addition, the tritium half life

of 12.3 years [163] is short enough to allow a source with high rates, yet long enough

to enable high statistics measurements over a time scale of years. Furthermore,

tritium has the second lowest end-point energy, Eo = 18.6keV, of any P-decay. This

is important, since it maximizes the proportion of the spectrum which is sensitive

to the neutrino mass, which scales like cx 1/ E3 [94]. In addition, for some required

absolute energy resolution AE (which is dictated by the neutrino mass scale), a lower

end-point energy permits a less demanding relative energy resolution, A E / Eo. This

is an important consideration for electrostatic spectrometers, which must maintain

high voltages within a narrow stability range.

However, with better energy resolution comes greater sensitivity to effects due

to the final state of the daughter system. These modify the shape of the spectrum

near the end-point because of molecular excitations. The influences of such final

states can have a deleterious effect on neutrino mass sensitivity when they are

poorly understood and on the same order as the spectrometer resolution. In the

past, this has lead to unreproducible claims of a non-zero neutrino mass discovery.

An example of which is the ~ 30 eV neutrino observed by the Moscow group

[165]. This experiment used a tritiated valine source which had a very complex

and difficult to calculate final state distribution. While this claim eventually proved

unfounded, it spurred the use of better understood tritium sources in subsequent

neutrino mass searches.

Of the predecessors of the KATRIN experiment, the earliest to use a gaseous

tritium source was the Los Alamos experiment [201, 232], which placed an upper

limit on the neutrino mass of < 9.3 eV in the late 1980s. The novel use of a gaseous
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molecular T2 source is particularly notable, since it reduces the spectral broadening

due to the final state distribution and eliminates complications due to solid state

effects. While the Los Alamos experiment used a Tretyakov type spectrometer

similar to that of the Moscow experiment [165], the subsequent experiments at

Troitsk [161] and Mainz [146] were the first tritium P-decay experiments to use spec-

trometers of the MAC-E type (Magnetic Adiabatic Collimation with Electrostatic

Filter). The Mainz experiment, however, used a tritium film quench condensed

on highly-oriented pyrolytic graphite in favor of a more complex gaseous source.

The Troitsk experiment was instead equipped with a windowless gaseous tritium

source as well as a MAC-E filter, making it something of a direct ancestor of the

KATRIN experiment.

Neglecting relativistic and radiative corrections (see [170] for the full relativistic

treatment), the differential decay rate of molecular tritium can be described through

a summation of the simple (multi-neutrino) spectrum of equation 1.32 over all the

final states. The final states modify the end-point as follows [66]:

dF gMF| 2 +g MGT 2

dKe 27n3c6h7  j3PjF(Ee,Z +1)Eepe(Ej - Ke)

N,

X |Ueil2 [®(Ej-Ke-mi) (Ej-Ke)2-M21 , (2.1)

where the sum over j is over all final states which have an end-point Ej = E - ej,

and Pj is the probability of occurrence of the j-th final state. The probability of an

excitation with energy, ej, occurring is typically calculated in the so-called sudden

approximation, which assumes that probability is given solely by the overlap in

the electronic wave functions of the initial T2 molecule and the resulting He3 T ion

[66]. The spectrum of discrete final states in molecular T2 decay according to the

model of Saenz et. al. [206] is shown in figure 2-1. Precise knowledge of the final

states spectrum is of critical importance for KATRIN and a large effort is currently

underway to study them theoretically and experimentally [39].

Of course, barring the existence of sterile neutrinos with large mass and non-
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Figure 2-1: The spectrum of discrete final states of the He3T daughter ion in T2
P-decay. Model shown is from the calculation of Saenz et al. [206].

vanishing coupling [173], the KATRIN experiment cannot resolve the influence of

any single mi but only the effective mass mVV However, the fact that KATRIN is

sensitive to the absolute neutrino mass scale through the coherent sum of equation

1.33 is very advantageous, since it is entirely model independent and makes no

assumptions about whether neutrinos are Majorana or Dirac particles. Furthermore,

unlike Ovpp-decay based searches, the effective mass, mvp has no dependence on

the the complex phases of the matrix elements, Uei, which could, in theory, allow

cancellations that may make the measurement of mm difficult or impossible [234].

Unfortunately, the fraction of P-decay events emitted in the region sensitive to

the neutrino mass is exceedingly small, being on the order of 10-13 as shown in

figure 2-2 [51]. Therefore, any experiment which aims to measure the neutrino mass

through tritium p-decay must be able to image a source with very high luminosity.

2.2 Basic Operating Principles (MAC-E Filter)

Since a high luminosity is necessary to gain enough statistics in the sensitive region

of the spectrum, a spectrometer which can accept /-decay electrons over a large
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Figure 2-2: The fraction of events in the sensitive portion of the spectrum of tritium
P-decay. Figure taken from [51].

solid angle is essential. One such type is the Magnetic Adiabatic Collimation with

Electrostatic filter (MAC-E) spectrometer, initially proposed for photo-electron

spectroscopy [31] and first applied to the problem of probing the anti-neutrino rest

mass by Troitsk [162]. The basic operating principle behind the MAC-E filter relies

on the conservation of the orbital magnetic moment, y, of a charged particle in a

magnetic field. In the non-relativistic limit, y, is given by [181]:

MV2 ELS= =B (2.2)
~21BI BI'

where E1 is the kinetic energy associated with the particle's transverse motion with

respect to the direction of the magnetic field B. When the particle traverses a slowly

varying magnetic field which satisfies the condition [181]:

1 dIBI qc (2.3)
|BI dt m

the orbital magnetic moment becomes the first adiabatic invariant of its motion.

The conservation of y can then be exploited to collimate the momentum of particles

emitted from the source, so that their energy may be analyzed by electrostatic
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means. This can be accomplished by slowly reducing the magnetic field from a

large magnitude in the source region, B5, to a low value in the analyzing region, Ba,

as depicted in figure 2-3.

U

qlE

t t f I
BsBmaX BA Bmax BED

T2 source electrodes detector

p. (without E field)

Figure 2-3: Basic operating principle of a MAC-E filter spectrometer. The momen-
tum of the particles emitted from the source is adiabatically transformed by the
slowly varying magnetic field, so that the longitudinal energy can be analyzed by
the electrostatic field. Figure taken from [51].

From the conservation of equation 2.2, we may equate the orbital magnetic

moment in the source and analyzing regions:

Eja ELs E(2.4)
IBal -Bs 51'

-ELa = IBa1E sin2 Os (2.5)
IBsI

Since adiabatic collimation is used to align the particles momentum against that

of the electric field, only the transverse component of the particle's energy is un-

analyzable. This implies that the irreducible fractional energy resolution of such a
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spectrometer is given by:

AE _Eia _ Bal Bal-- E - IBq1 sin2 S < .B (2.6)
E E |BsJ - JBsJ

In practice, it is often helpful to ensure that the maximum magnetic field encoun-

tered by the particle, Bmax, is not located in the source region. This modifies the

energy resolution to be:
AE _ JBq1 (2.7)
E IBmax

This is done so that we may reject particles that have a high pitch angle, (P, in

the source region. These particles have a greater path length in the source and an

increased probability of scattering, which increases the uncertainty on their original

energy. In KATRIN, the maximum magnetic field is provided by the pinch magnet

located just before the focal plane detector (FPD) so as to reject these high-pitch

angle particles through the magnetic mirror effect. Therefore, the fractional energy

resolution of KATRIN is roughly:

AE 3 x 10- 4 T 5
= 6 = 0.5 x10-~, (2.8)E 6T

which near the tritium end-point of 18.6 keV, yields an absolute energy resolution

of approximately 0.93 eV.

The selection of particles which do reach the detector is governed by the trans-

mission function of the spectrometer. For an ideal spectrometer and a completely

isotropic source, the transmission function can be described analytically in terms of

the particle's kinetic energy, E, charge, q, and the spectrometer potential, U, by [51]:

0 if E -qU < ,

T (E,qU ) = " if0 E-qU<AE , (2.9)
1- _ E

1 ifE-qU>AE.

Clearly, the MAC-E filter is an integrating spectrometer, so care must be taken to
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reduce any low energy backgrounds which may exist between the analyzing region

and the detector, as these will be indistinguishable from the source electrons. This

disadvantage can be mitigated through the use of a MAC-E time-of-flight mode

as described in [214]. However, this mode of operation brings some additional

challenges which have yet to be resolved. In addition, while the transmission

function of an ideal spectrometer may appear quite simple, this expression is only

valid assuming a fixed value for U and Ba. However, the analyzing potential,

Ua, and magnetic field, Ba, can and do vary over the flux tube which images the

source. These inhomogeneities can adversely affect the energy resolution of the

spectrometer if they are not measured or modeled accurately. Fortunately, they can

be compensated to some degree through the discrete pixelation of the detector.

2.3 The KATRIN Beam line

The KATRIN beam line consists of a long collection of modules designed to isolate

those rare decay events which probe the scale of the neutrino mass. Collectively,

the beam line is approximately 70 meters long and consists of four main parts: the

source section, transport and pumping section, spectrometers, and detector region.

It is shown in figure 2-4.

The KATRIN experiment's tritium source is based on the Windowless Gaseous

Tritium Source (WGTS) concept that was pioneered by [232] and [161, 15]. The

WGTS serves to localize a dilute gas of T2 molecules while allowing P-decay elec-

trons to escape to the spectrometers guided along the magnetic field. The gas is

maintained at a steady temperature of - 30K by a dual phase Neon gas-liquid

refrigeration system [111]. The T2 gas is continuously pumped and re-injected to

keep a uniform column density of 5 x 1017 molecules/cm 2 . This density must be

maintained with a stability of 0.1% [51] and is monitored by the rear-wall section.

Before re-injection, the tritium gas passes through a recycling system in order to

maintain the strength and purity of the source. The fraction of other hydrogen

isotopologues present is monitored by a Laser Raman scattering system in order
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(c)

Figure 2-4: The complete KATRIN Beam line. The rear-wall section is denoted by (a),
(b) is the WGTS, (c) is the transport and pumping section, (d) is the pre-spectrometer,
(e) is the main spectrometer, (f) is the magnetic field shaping system and (g) is the
detector section. Image adapted from [50].

to reduce the systematics associated with these impurities [82]. Another relevant

systematic of the source section is the knowledge of the energy loss function from

electrons scattering off the T2 gas as they exit the source. The energy loss function

has been measured at Troitsk [17], but an additional measurement program at

KATRIN will be necessary to meet its demanding design sensitivity.

The transport and pumping section consists of two main parts: the Differential

Pumping Section (DPS) and the Cyrogenic Pumping Section (CPS). The differential

pumping section uses a long beam pipe bent into a chicane, coupled with large

aperture turbo-molecular pumps in order to reduce the remaining tritium gas by

several orders of magnitude. The CPS then further reduces the gas load through

the use of an Argon frost coated tube to absorb any remaining tritium in order to

reach the final vacuum level required by the spectrometer section.

After the transport and pumping section comes the pre-spectrometer. The pre-

spectrometer's primary purpose is to reduce the flux of p-decay electrons entering

the main spectrometer. This diminishes ionization of any residual gas molecules
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which remain in the large main spectrometer volume. Ionization leads to low energy

secondary electrons being emitted in the analyzing region. These can mimic signal

electrons, so it is essential to reduce this process.

The main spectrometer is a massive stainless steel vacuum chamber approx-

imately 10 meters in diameter and 24 meters in length. Such large dimensions

are necessary in order to accommodate the expansion of the magnetic field as

it decreases from 6 T to roughly 0.3 mT in magnitude. The vessel is pumped

through three large ports using a combination of turbo-molecular pumps and Non-

Evaporable-Getter (NEG) strips and must be baked out to a high temperature of

~ 300'C in order to attain the design pressure of < 10-11 mbar [12]. The main

spectrometer is surrounded by the Large Field Compensation System (LFCS), which

is a series of axially symmetric ring magnets designed to shape the field so that it

is both confined within the spectrometer and has an appropriately located mini-

mum. In addition to the LFCS is the Earth's Magnetic field Compensation System

(EMCS), which consists of a series of linear current elements that serve to cancel

out the Earth's magnetic field. This is necessary because the Earth's magnetic field

would otherwise seriously distort the flux tube. The electrode system of the main

spectrometer serves to apply and shape the electric potential for the energy analysis

of the incident electrons. It consists of many double and single-layer wire array

modules, as well as shaping electrodes designed to mitigate Penning traps. A de-

tailed description can be found in [222] and [236]. Figure 2-5 shows the construction

of the electrodes in the main spectrometer, exhibiting the combs upon which the

wire arrays are strung and the support structures upholding each module. The use

of wire arrays instead of solid electrodes reduces the electrically active surfaces

exposed to the interior volume of the spectrometer and protects this volume from

low energy backgrounds arising from the vessel hull. Unfortunately, as a result of

the high vacuum bake out process some electric shorts appeared between some

of the individual wire modules and wire layers. This was caused by the deforma-

tion of several of the copper-beryllium distribution rods [221]. While some of the

short circuits have been repaired, the remaining shorts may necessitate the main
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Figure 2-5: Close up of the electrodes inside the main spectrometer. The CuBe
distribution rods are visible emerging from a vacuum port just behind the wire
array. Figure taken from [12].

spectrometer being utilized in a mode where the double-layer wire arrays must be

operated at a single voltage. This might increase backgrounds originating from the

vessel hull but also alters the spatial homogeneity of the electrostatic field from its

original design.

At the end of the beam line lies the Focal Plane Detector (FPD) system, shown

in figure 2-6. It registers electrons which have passed through the MAC-E filter. It

consists of a 148 pixel silicon PIN diode detector array, roughly 9 cm in diameter,

arranged into 12 rings of 12 pixels each, along with a central 4 pixel "bullseye" [8].

The FPD is preceded by a cylindrical post-acceleration electrode which increases

incident electron energy by roughly 10keV. This aids in decreasing the background,

reducing the likelihood of backscattering, and also improves the energy resolution.

The signals produced from the PIN diode array are then amplified and sent by an

optical link from the high voltage region to the Digital Acquisition (DAQ) system.

The DAQ then digitizes the raw signal at 20MHz and passes it through a trapezoidal

filter in order to provide a triggering signal [8]. Triggered events are then collected
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and exported to an external machine running the software ORCA (Object-oriented

Real-time Control and Acquisition), where they are packaged and saved to disk for

later processing [188].
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Figure 2-6: The components of the focal plane detector system. Image taken from
[8].

2.4 Simulation of the KATRIN Experiment

In order to understand the systematic uncertainties involved in a measurement

performed by a device as complex as the KATRIN experiment, a very detailed Monte

Carlo simulation package is required. This package must be able to accurately model

the electromagnetic fields involved, propagate particles through those fields and

apply any discrete stochastic interactions which may occur during propagation.

To this end, the KATRIN collaboration has developed the C++ software package

Kassiopeia [85, 212].
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Kassiopeia is the modular and extensively configurable (through a very flexible

XML interface [85]) front-end of the KATRIN simulation code. Its primary respon-

sibility is solving the equations of motion of particles propagating through the

experiment. However, it also serves as an interface through which a user can access

various sub-programs. Kassiopeia is supported by a large collection of such sub-

programs which are designed for a variety of specific purposes. These include many

basic tasks such as approximating the solid geometry of the experiment (KGeoBag)

or calculating the electromagnetic fields (KEMField) [53], as well as more specialized

projects such as modeling the gaseous tritium source section (SSC) [119, 135, 139],

or the silicon detector's response (KESS) [199].

One of the most basic dependencies of Kassiopeia is the geometry library

KGeoBag. This package is responsible for the basic physical modeling of the ex-

perimental components and answering shape, location, and navigation queries

about them. KGeoBag also handles the Boundary Element Method (BEM) mesh

generation for use by the field package KEMField. The common dependence on

KGeoBag across modules allows for a consistent representation of the geometry by

multiple tools.

The purpose of the field solving package KEMField is to compute the electrostatic

and magnetostatic fields produced by the charges and currents of the experimental

apparatus. In order to supply information about the electrostatic fields, KEMField

must first solve the Laplace boundary value problem in order to determine the

configuration of charges. Since the run time of all charged particle simulations

in the Kassiopeia package is dominated by the computation of the electrostatic

field, it is of primary importance that this portion of the code be both accurate and

extremely fast. In order to satisfy these two goals, the KEMField package has been

augmented with a new fast multipole method. This method has been developed so

that a fully realistic three dimensional field model of the KATRIN system can be

simulated within a reasonable time frame.
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Chapter 3

The Laplace Equation and the

Boundary Element Method

The fundamental theory of classical electromagnetism is described by Maxwell's

equations in conjunction with the Lorentz force law. Maxwell's equations, in

vacuum, are given in differential form by:

V E = p/eo, (3.1)

V B = 0, (3.2)

V x E - - ' (3.3)

B3E
" x B = yOJ+ CON a' (3.4)

where E and B are the electric and magnetic fields respectively, p is the charge

density and J is the current density, all of which are explicit functions of position

and time. The Lorentz force law tells us that a particle with charge q and velocity v

experiences a force F, due to the electric and magnetic fields at its position, given

by:

F = q(E + v x B) . (3.5)

In short, Maxwell's equations state the how electric and magnetic fields are gen-

erated from the spatial distribution of charged particles and their currents, while
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in turn, the Lorentz force law tells us how the motion of charged particles is influ-

enced by the fields surrounding them. These equations, coupled with relativistic

kinematics can, in principle, describe every classical electromagnetic interaction.

However, while these equations represent a complete and consistent theory, they

are merely the starting point for exploring an incredibly rich variety of phenomena

and computational techniques.

3.1 The Laplace equation

While the full description provided by Maxwell's equations is always correct classi-

cally, there remain much simpler approximations to the full system of equations

that are still applicable in many situations. For example, in the case of the KATRIN

experiment, we can treat all of the charge and current sources of the spectrometer

fields as being completely static. This ignores any contribution to the fields from

the charged particles that we wish to track through the experiment, but this is a

negligible correction. In this approximation, Maxwell's equations reduce to:

V E p/co. (3.6)

V B = 0 , (3.7)

V x E = 0 , (3.8)

V x B = yoJ. (3.9)

Solving for the magnetic field is quite simple since in the static case (with no

magnetizable materials) the magnetic field can be computed directly from the

current sources using the Biot-Savart law (which follows directly from (3.7) and

(3.9) in the Coulomb gauge):

B(r) o J(r') x (r - r') d3r' . (3.10)
4Sn o r -- rl3

Since the placements and magnitudes of the current sources are directly controllable
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and measurable within the context of a physical experiment, the Biot-Savart law

is sufficient for the calculation of all the relevant magnetic fields. It should be

noted that for axially symmetric sources, such as solenoids and loops, the magnetic

field can be computed much more quickly than the naive numerical evaluation of

Biot-Savart. This is because axially symmetric sources can be easily approximated

using zonal harmonic expansions. A full description of this technique can be found

in [97] and [54].

From the point of view of an experimentalist, solving for the electric field is a

somewhat more complicated problem. Like the Biot-Savart law, the electrostatic

field can be computed directly from charged sources via Coulomb's law:

E(r) = 1 / p(r')(r - r') d3r' , (3.11)
4Tceo f Ir - r/ 3

where the integral is taken over all space. However, unlike current sources, we have

no direct control over the placement of free charges within the experiment. We only

control the voltages on various electrode surfaces. From equations (3.6) and (3.8), it

follows that the electric field can be written as the gradient of a scalar potential (D:

E = -V(D , (3.12)

and that D obeys what is known as the Poisson equation:

V. (VO) = V 21 = -p/co. (3.13)

For regions which contain no free charge (p = 0), this becomes the so-called Laplace

equation:

V 2 4D = 0. (3.14)

Using the Laplace equation to compute the electric fields of the KATRIN experiment

is appropriate, since with the possible exception of the source region, there is

negligible space charge build up and all charge sources are confined to surfaces.
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To compute the electric fields, we must first specify the boundary conditions on

the border of the region where we wish to determine the field. Once the boundary

conditions are specified, the Laplace equation uniquely determines the potential (D

everywhere.

Since the geometry of the KATRIN experiment is sufficiently complex to make

an analytic solution impossible, it is necessary to solve the Laplace equation using

a numerical approach. There are two classes of numerical techniques that are

commonly used for solving the Laplace equation on a computer. These are the finite

difference method and the boundary element method.

The finite difference method is possibly the most widely known technique; brief

summaries of which can be found in [129] and [71]. This method is at first enticing

because of its ability to calculate (D directly from the quantities we experimentally

control (the potentials on electrode surfaces). Also, the application of this method

generally results in a sparse system of linear equations which can be efficiently

solved using a variety of iterative techniques (e.g. relaxation methods). However, it

is unlikely to be capable of modeling KATRIN with sufficient accuracy. The reasons

for this are severalfold. The first is that the finite difference method requires a

volume discretization. This discretization must be sufficiently fine grained that

it is possible to resolve the smallest electrically active features on the boundary,

while also covering the entire volume of interest. Since the smallest features of the

KATRIN main spectrometer are on the order of micrometersi, while the volume

of the spectrometer is roughly 1400 m 3 [51], the memory requirement for such a

volume discretization is on the order of a petabyte for a naive uniform grid. Even

if the volume were adaptively meshed, memory usage could easily reach tens to

hundreds of terabytes. An algorithm with such large memory requirements is

clearly not feasible on modern computer hardware. Secondly, the finite difference

method only accurately determines the potential at the mesh points of the volume

discretization. Since in order to track charged particles we must know the potential

at any arbitrary point in space, this implies we need to interpolate the field between

1The wires of the inner array are roughly 200 jim in diameter.

60



grid points which can result in a loss of accuracy. Furthermore, in order to determine

the electric field, we must compute a numerical derivative from the potential values

which results in a further loss of accuracy. Therefore, despite its initially appealing

simplicity, the finite difference method is wholly inadequate for the task of modeling

the electric field of the KATRIN experiment.

The boundary element method is an alternative approach which allows us to

avoid a volume discretization in favor of a boundary mesh. This is immediately

appealing since it reduces the dimensionality of the problem and results in a much

lower memory requirement. Additionally, the boundary element method allows us

to solve for the source charges instead of a derived quantity such as the potential.

Knowing the source charges allows us to compute the electric field directly without

needing to rely on an accuracy impairing interpolation or numerical differentiation

step. However, as we will see in the following sections, these advantages come at

the cost of a dense (rather than sparse) system of linear equations which requires a

substantially different set of tools in order to solve efficiently.

3.2 The Laplace Boundary Value Problem

To specify the problem we are trying to solve, it is necessary to introduce a more

precise description of the input data and the desired solution as follows. Let 0 be a

compact subset of R3 whose boundary is the orientable manifold F = an. We wish

to find a function, 4D(r) : R3 -9 R, which satisfies the Laplace equation V2(r) = 0,

for all points r E 0. In order to obtain a solution for D, we are required to specify

the boundary conditions for all points r C F.

The boundary conditions can be specified though the use of either Dirichlet or

Neumann conditions. To define Dirichlet boundary conditions, we must prescribe

a function that the potential (D must match on the surface F:

D(r) = D(r), V r E F. (3.15)
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Figure 3-1: A two-dimensional projection of the domain of interest ( C R3, and its
boundary F.

For Neumann boundary conditions, we must define a function for the normal

derivative of <D over the surface:

V<D(r) -f N(r), V r E F. (3.16)
an r

It should be noted that in the case of pure Neumann boundary conditions, the

solution for 4 is only unique up to a globally constant value. This is, however,

unimportant since this does not affect the physically observable field E which

is what determines charged particle motion. It is also possible to specify mixed

Dirichlet-Neumann boundary conditions. That is to say, for some {D}, and {N},

where {D}, {N} c F, and {D} U {N} = F we may define:

<D(r) = D(r), V r c {D} (3.17)

and

= N(r), V r c {N}. (3.18)
an r

Another possible boundary condition is that of the Robin type, which is a restriction

on the value of a linear combination of <D and ( on F such as:

&(D (r) +A = R(r), V r E F. (3.19)
an r

However, we will not consider the Robin case further, as it represents impedance

conditions, and in our idealized electrostatic model, we treat all of the metallic sur-
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faces as perfect conductors (Dirichlet conditions), and all of the insulating surfaces

as perfect (linear) dielectrics (Neumann conditions).

For the aforementioned types of boundary conditions, it is well known that

solutions for the Laplace equation exist and are unique [1291. We should also note

that imposing a fourth type of boundary condition, that of the Cauchy type, re-

sults in an ill-posed problem for the Laplace equation. Cauchy conditions require

simultaneously fixing a value for both (D and a on F. Since the solution to the

Laplace equation with Dirichlet boundary conditions exists and is unique, sepa-

rately specifying Neumann conditions for the same section of boundary would

either be superfluous or result in an overdetermined problem with no solution.

3.3 The Boundary Element Method

In order to develop a computational procedure for determining the solution to the

Laplace boundary value problem (LBPV), we first need to convert the governing

partial differential equation (PDE) into a boundary integral equation (BIE). We will

favor an approach which appeals to physical arguments, but more mathematically

rigorous derivations can be found in [190], [160], [53], or [132].

To transform the PDE into a BIE, we start with the Laplace equation V24P(r) = 0

and multiply it by an as of yet unspecified function G (r, r') : R3 x R3 -+ IR, and

then integrate over the domain 0:

V20D(r')G(r, r')dO = 0 . (3.20)

We will defer the introduction of the exact function G(r, r') until later, but require

it to be square-integrable and twice differentiable over the domain 0. In order to

convert the volume integral into a surface integral, we would like to be able to

apply the divergence theorem of Gauss:

J V - Fd =I F _ ndr . (3.21)
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While the divergence theorem can't be directly applied to equation 3.20, we note

that taking the divergence of a function F = VG, produces:

V - (V<DG) = (V 2 D)G + (V) (VG),

which allows us to rewrite the left hand side of 3.20 as:

(V2(D)GdQ in [V - (VIG) - (V(D) - (VG)] dD .

Rearranging and applying the divergence theorem produces Green's first identity:

(VD) - (VG)d7= (n - V4)GdF. (3.24)

Now we can express the second term on the left hand side as:

(V(P) - (VG)dD =

= i V - (VGCD)d) - J(V2G)4DdQ

i(V2G)DdO.

(3.25)

(3.26)

(3.27)

Inserting the above expression into 3.24 yields Green's second identity:

[(V24)G - (V2G)D] dOF

Clearly, from the fact that <D satisfies 3.20, the first term on the left hand side of 3.28

is zero, so we obtain:

J (V 2 G)<DdO = [(n - V(D)G - (n - VG)<D] dF .

In order to proceed further, it is now necessary to make a particular choice for the

function G. This function is known as a Green's function. A natural choice is to

64

(3.22)

(3.23)

(V2qD)GdO +

(3.28)

(3.29)

=(ft -VG)<D -

= [n - V<D)G - (n - VG)<D] dr .



seek a solution to the so-called fundamental equation:

V2 G(r, r') = -5(r - r') , (3.30)

where 5(r - r') is the three dimensional Dirac 3-function. In three dimensions, this

has the solution [1291 2:
1

G(r, r') = (3.31)
4Tclr - r'|

While we should note that the Dirac 3-function is not a function in the strictest

sense, a precise mathematical definition can be formulated in terms of the theory

of distributions (see [147]). However, for our purpose, it suffices to define it by the

manner in which it acts under integration[160]:

J r')v(r - r')dV = r) if r E V (3.32)
0 if r V V

where V E R3 is some volume. Inserting 3.30 into the left hand side of 3.29 and

applying property 3.32 allows us to express the value of the solution 0 at the point

r C ( as:

V2 G(r, r')0(r')dO = -J(r - r')0(r')dO - -0(r). (3.33)

Therefore,

4(r) = (n - VG(r, r'))D(r')dT - (n - VP(r'))G (r, r')dF , (3.34)

from which we can see that the value of potential 0, is solely a function of the

boundary condition data on the surface F and the Green's function G(r, r'). Using

3.34 to solve for <D from the values of 0 and a on F, is known as the "direct"

2 Note: An addition term of K(r, r') may be present on the right hand side of 3.31, where
V 2K(r, r') = 0 Vr E 7. However, if we take the domain of the fundamental solution to be over all
space R3 and make the reasonable assumption that the potential at infinity goes to zero, then this
additional term is zero and can be ignored
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boundary element method [160]. However, it is generally simpler to implement,

and more physically intuitive to use what is known as the "indirect" method. This

is the approach used in KEMField. The indirect method solves for the value of (D

not directly from the given boundary data, but rather from an unknown source

function on the boundary. Upon inserting the expression for the fundamental

Green's function into 3.34

<;r') =dY- r-r dT , (3.35)
((r) 4[ t(r')fi -_r______-n __D(/)d1 3.5

47T r ir - r'T IF r - r' I

and making the suggestive definitions:

p(r')/eo = (D(r')n , (3.36)

o-(r') /co =- - n - V(D(r') , (3.37)

the nature of these source terms becomes clear:

@(r) -1 (r') dr - p(r') - (r - r') dr (3.38)
47Tco Jr r - r' JI F r - r/13

. S(r,r') D(r,r') I

The first term S(r, r'), known as a single layer potential, is nothing other than the

potential due to a thin layer of charge, o-(r'), affixed to the boundary r. Whereas

the second term 'D(r, r') is known as a double layer potential and is the potential

that would arise from a surface density of infinitesimal dipoles, p(r') [129]. Since

the presence of a dipole layer on the surface of a conductor or a dielectric material

is unphysical,3 we are motivated to discard this term as a possible source function.

However, in addition to physical arguments against this term we note that it

introduces a discontinuity in the potential D [129], which is unacceptable for our

purposes since it leads to an undefined electric field E on the boundary. Instead,
3We are disregarding certain unrelated problems involving mobile charges in solution, where

such dipole layers may form, as they do not obey the Laplace equation. Nevertheless, the freedom
afforded by the term K(r, r') in the Green's function (2), allows us to selectively eliminate either the
single or double layer terms, up to the introduction of a constant [129].
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we are motivated to seek a solution D which is only due to the presence of surface

charges o(r') on the boundary F:

1 o-(r')
@(r) = , dF (3.39)

47co Jr - r/

Arriving at such an ansatz for the solution comes as a rather unsurprising result,

since with the knowledge that there is no net charge in the bulk, it could also have

been derived by the direct integration of Coulomb's law 3.11. Or if the quantity of

interest is the electric field (e.g. mixed or Neumann conditions), Coulomb's law

itself:

E(r) o(r')(rr') dF . (3.40)
47reo r I r - r'13

One advantage afforded by the indirect approach using the single layer potential

ansatz is that it naturally enforces continuity in 0. Therefore, it can be applied

simultaneously to solve both the interior problem (finding (D within the domain

F) as well as the exterior problem (determining 0 in R3 \ 0), while satisfying

the homogeneous condition at infinity. Additionally, since D is continuous across

the boundary F, we can do away with the requirement that F be a closed surface.

While an infinitely thin, open surface is certainly unphysical, it can be a very useful

approximation. When dealing with geometries where thin shells of conducting

material are present (e.g. vacuum chambers), such an approximation often allows

us to reduce the problem size by roughly a factor of two.

3.4 Linearization by Collocation

The results of the preceding section have allowed us to write down a solution as

an integral over the boundary F, but they have not directly helped us determine it,

as we have merely substituted an unknown potential D for an unknown surface

charge density o. In order to determine the surface charge density, 0-, we need to

apply the boundary conditions. For the moment, let us assume that we are solving

a problem with purely Dirichlet boundary conditions. This results in what is known
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as a Fredholm integral equation of the first kind [160]:

D(r) = f KD(rr')o(r)dF, (3.41)

where D (r) is the boundary conditions and KD (r, r') is known as the kernel, where:

KD (r, r') 1 . (3.42)
47rlr - r|

To solve this equation, we need to do two things. The first is to compute the electric

potential according to 3.39. The second is to choose a measure for the error on the

boundary conditions. Unfortunately, unless we are dealing with extremely simple

geometries (e.g. sphere, plane, etc.), it is not generally possible to write down an

analytic form for either the surface or the surface charge density over which to

perform the integration. Similarly, since the boundary conditions are specified

in a continuous manner, it is difficult to compute the degree to which they are

violated for an arbitrary geometry. To deal with these difficulties, we must resort

to making an approximation of the original surface by discretizing it into simpler

component shapes. Let us assume that the original surface, F, can be approximated

Figure 3-2: The boundary F of the domain il is approximated by a discretization
7n (F).

by the union of n simpler two-dimensional geometric entities ui, over which the

charge density takes the form ri(r). We will refer to this set of n shapes ui with

the basis functions o-i(r), as a mesh or discretization, denoted by 7-(r). Figure 3-2

demonstrates a two dimensional projection of a boundary approximated by a mesh.

68



It is desirable that the functions ui and o-i have the following properties. The first is

that the shape functions ui must be composed of two-dimensional patches which

can be positioned, without overlap or intersection, in such a way as to reproduce

the original surface F within some error. That is to say, for some given error, s, it is

possible to find a discretization ;, (F) such that:

inf Ir -r'l du < s , (3.43)

provided n is sufficiently large. Secondly, we would like the shape and basis

functions to be composed of simple forms for which inexpensive integration rules

can be found. A particularly simple choice for the basis functions, which is used in

KEMField, are the so-called pulse functions [91], which take an appealingly simple

form:

c- (r) o-i if r - ii , (3.44)
0 if r V ui

where 0-i is a real number representing a constant charge density over the surface

element, ti. By replacing the continuous integral over F with a sum over a dis-

cretization with a pulse function basis, the single layer ansatz of 3.39 and 3.40 then

respectively become:

(r) 1 [ I J , du , (3.45)
4neco Ii~nr ir r4?TCO " [c7(F) rr

and

E(r) =J (r /)d . (3.46)
47reo UiT (F) r - r/13

The shape functions that are employed in KEMField for the solution of three di-

mensional electrostatic problems are of the rectangular or triangular type. One

dimensional line segments are also used for efficient representation of wire ele-

ments. The full description of these shape functions can be found in the thesis of
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T. J. Corona [53]. The final property needed by the mesh is that the solution space

spanned by the basis functions provides enough freedom to accurately represent

the variation in the surface charge density. An exact definition of this property is

difficult to give a priori, since calculating the error of a particular representation

would require knowing the exact solution of the surface charge density in advance

of solving the problem. However, in light of the existence and uniqueness theorems,

it is not unreasonable to expect that if the boundary conditions are satisfied to

within the required accuracy, then the solution has acceptably converged. A precise

description of this notion of convergence can be formulated for elliptic partial differ-

ential equations [13, 229, 121], but this requires an introduction to Sobolev spaces,

which is far beyond the scope of this thesis. As a practical means of determining

how well the boundary conditions are satisfied, we will use the method of weighted

residuals.

Dirichlet Conditions

For Dirichlet conditions, the residual is defined as the difference between the

boundary value to be enforced and the potential calculated from the surface charge

distribution. The Dirichlet residual of the potential at r E F is given by:

RD (r) = V(r) - 4D(r) . (3.47)

In order to satisfy the boundary conditions we wish to make this residual function

zero over the whole surface F. To do this, we choose a metric defined by some set

of weight functions, f1, against which we form an inner product over the surface F,

requiring that:

fj(r)RD(r)dF = 0. (3.48)

Since practically speaking, we can only do this in an approximate way, it is necessary

to replace the surface, F, with the discretization T, (F). With this substitution, it is

convenient to define the weight functions in such a way that they are orthogonal to

each other with respect to the shape functions composing the discretization, such
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that:

fj(r) = wj(r) if r E uj (3.49)
0 if r V u;

Inserting our definitions of the potential 3.39 and the weight functions 3.49, and

approximating F with the mesh 7 (F), we can decompose 3.48 into n equations of

the following form:

wjr(r)V(r)duj - wj(r) O-i ' 1 du =0. (3.50)
4 e I r du

Upon manipulation, this becomes:

~ J ~wj(r)duidu1 _

C(F I 47eI r - - J wj(r)V(r)duj . (3.51)
uic7;(F) Iij Il 4Io - r

It is now clear that this equation can be written as a matrix equation of the form

Ax = b, by making the identification of the matrix and vector elements as:

Xi 0- , (3.52)

b- = wj(r)V(r)duiJ, (3.53)

and

wj(r)duidu-
Aireor=r'(3.54)1147Tco r - r' I

In order to evaluate the integrals Ai, it is now necessary to make an explicit choice

for the weight functions, w1 . The BEM literature has many options for the type

of weight function we may use, each with varying degrees sophistication. One

possible choice is the so-called Galerkin method [40], where the weight functions,

wj, are chosen to be the adjoint of the basis functions, u. In this way, the residual

error on the boundary condition is minimized in an average sense over the entire

surface of the discretization. A major advantage of the Galerkin method is that the
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resulting system matrix A is symmetric. This both reduces the memory required to

store the coefficients and allows a wider range of algorithms for solving the equation

Ax = b. The primary disadvantages of the Galerkin technique is that evaluation of

the double integrals, Aij, is computationally expensive and the implementation of

the Galerkin method in computer code is relatively complex.

A simpler alternative, which is used by KEMField, is the collocation method. In

the collocation method, rather than performing a weighted minimization of the

residual for all points on the boundary discretization, we choose a set of points,

{ y1}, where we wish the residual to be exactly zero. This results in a simple choice

for the weight functions wj, since they are nothing but Dirac 3-functions:

wj(r) = c(yj - r) (3.55)

Inserting this choice for wj into 3.54 and integrating reduces the double integral for

the matrix elements into a single integral:

Aij = Y ,u (3.56)
147Tolyj - r l

whereas the integral of equation 3.53 simplifies to the value of the boundary data at

the collocation points: bi = V(yi).

While any set of points on the boundary (provided there are as many as the

number of degrees of freedom) can be used as the collocation points, a common

choice is to use the centroids of the elements of the discretization. The centroid yi of

the element ui is given by the integral:

yi = r'dui, (3.57)
Uw

which in the case of a planar polygonal element can be computed simply by averag-
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ing the m vertices vk of the element ii:

1 "
y1 mVk (3.58)

k=1

Choosing the centroids as the collocation points is advantageous for two reasons.

The first is that, given convex polygonal shape functions, ui, the centroid always

exists away from the edges, in a region with a well defined tangent plane and

normal vector. The second reason is that the centroid is always well separated from

neighboring elements, which simplifies the treatment of singularities arising in the

evaluation of 3.56 when r' -s yi. Since the centroids yi are well contained within

their respective elements, all integrals of the form Aij, with i j, are singularity

free. The matrix elements along the diagonal, Aii, remain somewhat problematic,

since yi is in the domain iii. However, it is possible to treat them consistently in a

limiting sense, through the use of the Cauchy principle value (CPV) [42]. This is

done by excising the region contained by a small disk, B(yi), about the point, yi,

from the domain of integration and computing the resulting integral in the limit

that the radius of the disk, B(yi), goes to zero. It suffices to say that the CPV of the

integral, Aii, exists and is readily calculable, however for the sake of brevity we will

not detail this calculation here, as it has been dealt with extensively elsewhere (see

[53] and [84]).

Neumann Conditions

We can follow a similar procedure to apply Neumann boundary conditions. In

the case of linear dielectrics, the boundary condition is a statement about the

discontinuity in the normal component of the electric field. This discontinuity is

due to the polarization charge present on the interface between two materials with

different permittivities. We assume that the surface, IF, representing the interface

between the materials is a smooth, orientable surface with a normal, n, defined

everywhere. Labeling the permittivity of the material above the interface (in the

direction of ft) as + and the permittivity of the material below the interface as c_,
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then for all points r E F, the normal component of the electric field satisfies the

following:

c+E - eEL = 0. (3.59)

Considering that the above expression 3.59 is defined to be zero over the whole

interface, it is a logical choice for the residual function used to enforce the Neumann

condition:

RN(r) = c+E -e E' , (3.60)

with the limiting values of normal component of the electric field EL given by 4:

E-L =lim [n-(r) - E(r Anf(r))]

- lim [ft(r) - V<D(r An(r))] =

(3.61)

(3.62)' [(D(r)] .

As before, we want the integral of this residual function multiplied against the

weight functions, f1, over the surface, F, to be zero:

fj(r)RN (r)dF jfi(r) [e+E - _ E -_ dF = 0.

To carry out this integration in our solution space, we again replace, F, with its

discretization 7, (F) and use the orthogonality of the weight functions to decompose

it into to the n equations:

I wj(r) [e+Elz
UIj

- cE] duj = 0 .

4The value of A in the limit is strictly positive.
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Inserting the expression for the electric field yields:

C_ wj (r) -- dui , du;an J, 4neco Ir - r 'uE'7t1 (F) 11i

- C+ wJ;(r) [ O-i du du; = 0. (3.65)
anl ujuir "4 Tno Ir - r'

I uiE7T1,(F)

Being aware of the singularities that are present in the integrand, we are motivated

to split the sum over 7Jn (F) into two distinct parts: the domain consisting of the

element u1 (which contains the point r) and all other elements ui E T (F) where

i : j. To illustrate the need to make this split, it is useful to take a brief moment

to consider the physics involved in this situation. Locally, the discontinuity in

the electric field across the interface is due to a layer of polarization charge in

the neighborhood of r. This local polarization charge is produced by the unequal

response of the two materials under the influence of an external field, Eext, which

is due to the charges on T, (F) \ u= {u i E 'Tn(F)Ii 3 j}. The region T, (F) \ u1

excludes this local polarization charge, so the external field is continuous at r and

the directional limits for this quantity are equal:

Oi dii [ 0_j d.i (3.66)
[un E uh(F j~1 4-eoIr - r' J n [ () 4neojr -al'
n 4/ -'f .
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Extracting the problematic region, uj, from the sum allows us to write down the

continuous external (Eext) and discontinuous local (Eioc) field terms separately:

(C - f+) wj(r) a -i dui 1 duj1jW an u 47reolr - rj 
ii I

Eex

+ /+wj(r) e_ -- + 1  du = 0. (3.67)
an ul 4Tco0 Ir - r' anJ 47Teojr - r' I

E-LI El~j
E0 Ic - E10CI +.

Inserting our choice of weight functions (collocation) 3.55, evaluating the continuous

derivative, and integrating out the 3-functions produces:

(E-e+) 3 i / (yj) y-r)3cru1 + c-E(y ) -e +E(y ) = 0.
ui7rTr> 4 cn0 yj - r1  

+

i/ j

Ei(y1 )

(3.68)

While one can explicitly evaluate the discontinuous local electric field terms due

to the polarization charge through a limiting process [53], in the case of a smooth

surface,5 one can apply Gauss's law over an infinitesimal pillbox [109] about the

neighborhood surrounding the centroid yj E uj to show that:

eE'(yj) -+EL=(y 1 ) = + +) - (3.69)1 - + 2Eo

5 For a smooth parameterized surface E given by the map E(u, v) : R2 -- R3 , the partial

derivatives R and exist for all r E E. Consequently, there is always a neighborhood about r for
which an local tangent plane exists. This is always true for our choice of shape functions as they are
planar polygons.
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Finally, we obtain a succinct form for the Neumann boundary value problem in the

form of a matrix equation Ax = b, written component-wise as:

(3.70)0(yj) - (yj - r')dui
Ti j eo Iyj -r 13

IIjE 4)

with the explicit identification that:

(3.71)

(3.72)

xi O-i,

bi =0/,

and

I + (1I) (:142)
2 E _ + C+ I

U'

f (yi) . (yj - r')dutj

47r yj - r' 3

where 6ij is the Kronecker delta. This is a discrete version of a Fredholm integral

equation of the second kind:

with a kernel given by:

-1~ =KN(r, r')c(r')d F,
2 r r

fi(r) - (r - r')
KN (r,) - r13

4Tr - r'l3

We note that the factor of 1 is due to our explicit assumption that the boundary

is smooth. This is valid for our choice of discretization and use of the collocation

method, since we use planar polygonal elements and only evaluate the boundary

conditions at the centroids. For a non-smooth surface, this numerical factor may

vary as a function of r and depends on the local solid angle subtended above and

below the surface (see [53]).
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Mixed Conditions

In practice, pure Dirichlet or Neumann systems are not commonly encountered,

and mixed systems need to be dealt with. However, now that we have specified the

matrix equations resulting from pure Dirichlet and Neumann systems, it is not hard

to construct the analogous equation for a mixed system. Since we have used the

single layer ansatz for both types of systems, there is no difference in the form of

the equation, or the solution vector, x, which is simply the list of the surface charge

densities on each discrete patch of the boundary. Therefore, we only need to specify

the matrix elements and the right hand side of this equation, the form of which only

depends on whether a specific collocation point is a member of the set of Dirichlet

surfaces { D} or Neumann surfaces {N}. The right hand side is given by:

bi { V(yi) if {D} , (3.76)
0 if yi E {N}

and the matrix elements are:

Ai 4 , 1y]-r'I dui if yi E {D}

Aij = l 7c j-')(i r)z - . (3.77)
A j. + (1 - 6) (E e) f 6(yi" i if yj E {N} (

All that remains is to implement a means of solving a general matrix equation of

the form Ax = b. We should note that unlike the matrix equations encountered in

finite difference methods, this is a dense linear system. This is due to the long range

nature of the Coulomb force which couples each mesh element to all of the other

elements in the problem. We also note that because we have chosen collocation as

the means of enforcing the boundary conditions, the matrix A is non-symmetric

and typically A 1 :A Aji. Unfortunately, since a dense non-symmetric linear system

is the most general kind, solving the BEM problem for large geometries will require

some special techniques.
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Chapter 4

Solving Dense Non-symmetric Linear

Systems

Now that we have constructed a linear system representing the Laplace bound-

ary value problem, we are left with the task of solving the resulting dense non-

symmetric matrix equation. Various direct and iterative methods are available for

dealing with problems of this type. To choose an appropriate method, we need to

carefully consider how the required memory and computational resources of each

algorithm scale with, N, the number of degrees of freedom in the problem.

4.1 Direct Methods

The first and most obvious techniques which come to mind for solving a dense

and non-symmetric system are the so-called direct methods. Some of the most

well known methods in this category are Gaussian elimination, LU decomposition,

and QR factorization [102]. These methods require the explicit computation and

storage of the matrix elements of A, which immediately means that they all have

minimum memory costs which grow like 0(N 2). An even worse limitation than the

memory requirement is that the number of arithmetic operations that are required to

compute the solution scales like 0(N 3 ). In light of the scaling properties of the direct

methods and the limitations of modem computer hardware, it is clear that they are

79



generally not practical for solving BEM problems with a dimension much larger

than N = 104. Accurate modeling of the KATRIN spectrometer hardware requires

discretizations containing more than ~ 106 mesh elements, so direct methods are

not particularly useful for this purpose. Since extensive literature [102, 64, 218]

exists on the topic of direct methods and they are not appropriate for solving the

type of large scale BEM problems we are interested in, we will not consider them

further.

4.2 Iterative Methods

Another family of techniques for solving linear systems are iterative methods. The

basic algorithm of an iterative process relies on being able to compute some measure

of the error given a solution estimate. Then a better solution is generated using

the data provided by the error. This process is performed repeatedly until some

convergence condition is reached. Usually this condition requires that the error

be less than some threshold e. A basic skeleton of an iterative method is outlined

in algorithm 1. Obviously, there are significant details omitted from algorithm

Algorithm 1 Iterative process to solve Ax = b.

Input: Matrix A, right hand side b, and initial solution estimate x0 .
1: Compute error estimate Eo.
2: while E ;> c do
3: Generate next solution estimate xj+ 1 using the previous error estimate Ei.
4: Compute error estimate E i+.
5: end while

Output: The approximate solution x, with error E, < c.

1, as there are many choices for the manner in which we choose to measure the

error and in the way we generate an improved solution estimate. Since we are

interested in solving problems with N ~ 106 or more unknowns, we must confine

ourselves to the class of iterative processes which are known as matrix-free methods.

Matrix-free methods are those which do not require us to compute or store the

matrix A in its entirety. With the exception of the Robin Hood method, we will
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primarily concern ourselves with a subset of matrix-free iterative techniques, known

as Krylov subspace methods.

4.3 Robin Hood

Robin Hood is a novel iterative method that was specifically developed for the

solution of Laplace boundary value problems in electrostatics [151, 152, 150, 84].

While it is not in the class of algorithms known as Krylov subspace methods, it

is a very important reference against which we can compare other methods, as it

has shown itself to be both accurate and scalable to large problems [53]. Being a

matrix-free method, the elements of A need not be stored. However, a fast means

of obtaining an arbitrary matrix element is generally necessary for its successful

implementation. Aside from a means to compute the matrix elements, the Robin

Hood method only requires the storage of the current solution estimate, xi, along

with a residual vector, ri, composed of the error estimates associated with each

degree of freedom. This small storage requirement gives Robin Hood optimal

memory scaling, proportional to O(N). An outline of one variant (the Gauss-Seidel

limit [53]) of this Robin Hood is given in algorithm 2. For further discussion of this

method, its variants, and its relation to other iterative methods such as Gauss-Seidel

or Successive-subspace-correction, the reader is referred to [151, 152, 150, 84, 53].

Algorithm 2 Robin Hood algorithm to solve Ax = b.

Input: Matrix A and right hand side b. Initially x0 = 0 and ro = b.
1: while ||r ||o > ellb|oo do
2: rij = |ri||jo > Identify largest element of residual and its index j.
3: AJ = (bj - rij/Ajj) > Compute the correction to xi,j.
4: xi+1 = xi + Ajej > Update solution approximation.
5: z = A,,j > Calculate the j-th column of A.
6: r i+ = ri + A z > Update the residual.
7: end while

Output: The approximate solution x,,, with relative residual error ri < C b .

The primary disadvantage of the Robin Hood algorithm is that it has an arithmetic

scaling that is O(N 2) [84]. This is due to the fact that the work done during each
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iteration is proportional to N, while the number of iterations required to reach

convergence is also proportional to N. However, the nature of the algorithm is

almost embarrassingly parallel. This is because most of the work done during

one step of the iterative process consists of many, 0(N), independent calculations.

Therefore, it benefits greatly from parallel computing. The adaptation of the Robin

Hood algorithm to make use of large CPU clusters and the massively parallel single-

instruction-multiple-data (SIMD) architecture, provided by graphics processors

(GPUs), has been carried out by [53]. The parallel implementation has shown it

can easily handle BEM problems of the scale involved in KATRIN because of its

excellent parallel efficiency [53].

4.4 Krylov Methods

Krylov methods are a sub-family of iterative techniques which are in the class of

algorithms known as projection processes1 . Such processes construct a solution

by projecting the residual onto an appropriate subspace in order to successively

minimize orthogonal components of the error. Specifically, starting with an initial

approximation xO C RN, a Krylov method will generate an approximation to the

solution x, given by [157]:

Xn X +z~ , (4.1)

at the n-th iteration. When no information on the solution is available at the outset,

a typical choice for the approximation at the initial step is the zero vector, though

this particular choice is not necessary for the success of the method since any choice

will suffice (though some may afford faster convergence). The vector, z,,, is drawn

from the m-dimensional subspace Sm C RN (known as the search space) subject to

the condition on the residual:

r, = b - Ax,, I C,,,, (4.2)

'In fact, the previously mentioned Robin Hood algorithm is also a projection process, though it is
not a Krylov method.
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where C,,1 is the m-dimensional subspace known as the constraint space. A Krylov

method is a projection method where n = n and the subspace over which the

projection takes place is specifically the Krylov subspace [205]:

Cn(A,ro) = span{ro, Aro, A 2 rO, ... ,A"-lro} . (4.3)

The Krylov subspace is a particularly judicious choice for the search subspace, since

it can be augmented recursively through repeated application of the matrix A on

the initial data. This choice for the search subspace is motivated by the Cayley-

Hamilton theorem. A direct consequence of this theorem is that for an invertible

matrix, A E RNxN, we can express its inverse as a matrix polynomial with degree

no larger than N - 1 [63, 205]:

N-I
A-' = cOIN + T CkA (44)

k=1

Simple manipulation of the original equation shows us that the initial residual,

ro, is related to the true solution by x = xo + A -ro. Therefore, in light of the

Cayley-Hamilton, this implies the solution is given by the series:

N-1
x = xo + coro + T, Ck(Akro) (4.5)

k=1

Since the approximate solution at the n-th iteration is drawn from the Krylov

subspace, KC (A, ro), it is easy to see that x,, is simply the truncated series:

n-1
x- = xO + coro + I ck (A kro) . (4.6)

k=1

Therefore, the problem of obtaining the best approximation, x,,, amounts to com-

puting the set of coefficients, Ck, which minimize the residual r,, = b - Ax,.
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4.4.1 GMRES

Probably the most widely known and successful Krylov subspace method is the

Generalized Minimum Residual (GMRES) algorithm introduced by Saad et al. [204].

Its success is due to its broad applicability 2 and guaranteed convergence 3 .

The GMRES algorithm is a projection process which chooses C, = AC, (A, ro) and

is in essence a modified Arnoldi iteration [14]. The Arnoldi iteration transforms a

general matrix into upper Hessenberg form, H, through a succession of orthogonal

similarity transformations [218]. The practical implementation of which is not much

4more complicated than the familiar Gram-Schmidt orthogonalization process

GMRES incorporates an additional step following the Arnoldi iteration, consisting

of a series of Given's rotations which transforms the upper Hessenberg matrix into

an upper triangular matrix. This process also conveniently provides the current

L2 norm of the residual error, which allows one to track the progress towards the

solution without explicitly evaluating the residual5 . Once the residual error has

converged to an acceptably small value, the approximate solution can be constructed

by inverting H, which can easily be accomplished through back-substitution.

For a non-singular system of dimension N, GMRES is guaranteed to converge

in no more than N iterations, and in doing so, the residual norm, IIri 12, at each

iteration will produce a strictly monotonically decreasing sequence [158]. However,

since any strictly monotonically decreasing sequence is possible (including the

worst-case sequence which is essentially constant for all iterations but the very last),

this guarantee is not always practically useful, especially when N is extremely large.

On the other hand, many systems of interest do in fact converge in k iterations,

where k < N, and this is typically true of the BEM problems we seek to solve.

Unfortunately, it is not generally possible to predict beforehand which systems will

2Unlike other such methods such as the Conjugate Gradient Method (CG), which requires a
symmetric matrix [116], it makes no assumption on matrix structure, hence the term "generalized".

3GMRES is guaranteed to converge for non-singular systems.
4 The process is slightly modified from canonical Gram-Schmidt in order to deal with numerical

round-off error in floating point mathematics.
5This is advantageous, since evaluating the residual costs an extra matrix-vector product involv-

ing the full system matrix A.

84



converge in an acceptable number of iterations.

The primary disadvantage of the GMRES algorithm is that it must explicitly

store the bases of the Krylov subspace. This results in memory usage which grows

at each iteration, such that after k iterations the memory usage is O(kN). This

can pose severe difficulties for systems which are slow to converge. In order to

accommodate such systems, GMRES is typically used in a restarted fashion, where,

after some number, n, iterations the existing set of Krylov subspace basis vectors

are discarded. The process then begins again using the current best solution ap-

proximation i. Restarted GMRES is typically denoted as GMRES(n) and has been

implemented in KEMField as outlined by [204, 205]. The basic process is summa-

rized in algorithm 3. Unfortunately, the restarted algorithm, GMRES(n), no longer

has the guaranteed convergence property of the original algorithm and can take

much longer to converge to an acceptable residual error or even stagnate completely.

Other algorithms with a fixed memory foot-print and better convergence properties

than restarted GMRES(n) do exist. Typically, methods such as GCROT [61, 117]

and Loose-GMRES (LGMRES) [23] do this by selectively recycling a subset of the

basis vectors in the Krylov subspace. However, these algorithms are generally

more complicated to implement and so far have not been included in the KEMField

software package.

4.4.2 BiCGSTAB

An alternative to GMRES, which does not maintain a full Krylov subspace, is the

Biconjugate Gradient Stabilized method (BiCGSTAB). This algorithm is derived

from the Lanzcos biorthogonalization procedure with some corrections to aid

numerical stability. BiCGSTAB is notable for its small and fixed memory foot-

print. Since it only needs to carry over a handful of biorthogonal vectors at each

iteration, in order to advance the solution, it can avoid the accumulated memory

problem of GMRES. Unfortunately, for the problems we are interested in solving, it

tends to exhibit somewhat poor convergence. Given its limited use, we will avoid a
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Algorithm 3 Restarted GMRES(n) algorithm to solve Ax = b.

Input: The matrix A, right hand side b, and initial estimate xo.
1: ro b - Axo > Compute
2: po I Iro 112 and vo = ro/po > Normalize and augme
3: p = 1pol and j = 0 > Initialize residual error
4: while p > eI|b| 2 and j < n do

w =_ IA
for i = 0,...,j do

Hij = (w, vj)
w = w - Hi,jvj

end for
P = |w||2 and vj+1 = w/.
for i = 0,...,j - 1 do

a = Hij, b = Hi+1,j
Hi=j = cia + sib
Hi+1,j = -sia + cib

end for
16: cj= Hj,/ HJ1 +3 2

17: sj = P/ HJ + p2

18: Hj, 1 = H?- + p2 and Hj+1 ,j = 0

19: pj cjpj and Pj+1 - Sjpj
20: p = pj+1  Iand j = j+ 1>
21: end while
22: y = argmin|Hy - pH|

y ElR

23: j = x0 + , yivi
i=O

24: if p < cflbI| 2 then exit.
25: else
26: xO = i. goto 1:
27: end if

the initial residual.
it Krylov subspace.
and iteration count.

> Gram-Schmidt orthogonalization.
D:

6:
7:
8:
9:

10:
11:
12:

13:

14:

15:

> Restart.

Output: The approximate solution i, with relative residual error p eI b 1|2

detailed description, except to note that BiCGSTAB does not guarantee convergence

for a general non-singular non-symmetric matrix. In addition, the residual norm

doesn't necessarily form a monotonically decreasing sequence as the algorithm

progresses [45]. An extensive discussion of its properties and development can be

found elsewhere (see [223, 205]). A summary of the algorithm as it is implemented

in KEMField can be found in algorithm 4.
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Algorithm 4 BiCGSTAB algorithm to solve Ax = b.

Input: The matrix A, right hand side b, and initial estimate x0.
1: i b - Ax o  > Compute the initial residual.
2: r = ?, i = xo, p = 0, v 0 > Initialize values.
3: a = 1, co = 1, p = 1, ^ =I
4: while ||r||2 > eflbj|2 do
5: p = (r,r)
6: P = (p/p)(a/w)
7: p = r+/(p -wv)
8: v = Ap
9: r =p/K(,v)

10: s= r - av
11: t = As
12: W = s, t) / (t, t)
13: i = + ap + ws > Update solution approximation.
14: r= s - wt > Update residual.
15: p =p
16: end while
Output: The approximate solution i, with relative residual error r|12 < e b f|2.

Despite the appealing simplicity and fixed memory foot-print of both GMRES(n)

and BiGCSTAB, these methods tend to suffer from stagnation when applied to

poorly conditioned systems. For such systems, preconditioning is often necessary

in order to accelerate convergence, or even to obtain an acceptable solution at all.

4.5 Convergence and Preconditioning

The convergence behavior of the aforementioned GMRES technique in the case of a

normal matrix, A, is generally governed in the worst-case sense by the spectrum of

A [158]. For a diagonalizable matrix A = XAX- 1, where A is the diagonal matrix

of the eigenvalues Ak of A and X is the matrix of corresponding eigenvectors, it can

be shown that the worst-case rate of convergence is bounded. The bound on the

convergence rate (the ratio of the residual norm at the n-th iteration to the original

residual norm) is given by [158, 2051:

||r,||2 < K2(X ) min [max p(Ak) , (4.7)
| |ro|2 pEsr [ k _ J
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where K2 (X) = |IIX1| 2 1X- 1 12 (i.e. the condition number of the matrix of eigenvec-

tors), 7T,, is the set of polynomials with unit value at the origin and whose degree

does not exceed n. This min-max problem is very difficult to solve, and unlike

better understood symmetric-matrix algorithms, such as the conjugate gradient

(CG) method, this expression does not reduce to a simple function of the condition

number 6. Rather, this bound depends on the shape of the eigenvalue distribution,

rather than just its extrema [158]. Furthermore, despite the availability of some

(generally overly pessimistic) bounds on the convergence rate7 , it is usually not

possible to estimate the convergence rate of a linear system under GMRES without

a priori knowledge of all the eigenvalues of A. Moreover, the convergence behavior

of restarted GMRES(n) [133] or BiCGSTAB is even more difficult to predict. Hence,

in practice, it is usually much easier to explore the properties of a particular class

of linear systems under various solvers in an empirical manner. Nevertheless,

knowing that the above estimate of the worst-case convergence behavior depends

on the condition number of the eigenvector matrix X, it is reasonable to suspect that

iterative solvers might benefit from some form of preconditioning when dealing

with slowly converging systems.

The essential idea of preconditioning is to perform some easily8 invertible

transformation on the linear system of interest which results in a new problem

whose eigenvalue distribution has a smaller spectral radius and thus has a smaller

condition number. For the moment, we will not explore the exact form of this

transformation, since developing effective preconditioning techniques is still an

open topic across many disciplines and depends heavily on the type of matrix and

the underlying physics describing the BIE we wish to solve. A preconditioning

transform can be applied to the system of interest in several different ways, but the

technique used in KEMField is called right-preconditioning, as the transformation

6 The condition number K of a matrix can be defined in terms of a ratio of its most extreme
eigenvalues: K = Amax/Amin.

7These bounds can be obtained with the assumption that the eigenvalues are bounded away
from the origin in the complex plane within a region with a certain spectral radius (defined by the
eigenvalue extrema)[98].

8We mean 'easy' in the sense that it is less computationally expensive to invert the preconditioning
transformation P than the original system matrix A.
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is applied on the right-hand side of the system matrix A. Letting P denote the

preconditioning matrix, then when using right-preconditioning, we are interested

in solving [205]:

AP-1 (Px) = b, (4.8)

via

AP-'z = b (4.9)

and

Px = z. (4.10)

While it is sometimes desirable to have a fixed explicit form for the preconditioner

P and its inverse, is is not always possible to obtain or store an effective explicit pre-

conditioner for large problem sizes. Instead, one alternative is to use what is called

variable preconditioning, where the inverse action of the preconditioner is obtained

by solving equation 4.10 using an iterative method. Applying this preconditioning

scheme to GMRES results in what is known as flexible-GMRES (FGMRES) and its

restarted variant FGMRES(n) [203]. FGMRES(n) as it is implemented in KEMField

is outlined in algorithm 5. Similarly, the right preconditioned version of BiCGSTAB

is referred to as BiCGSTAB-P [223] and is outlined in algorithm 6. BiCGSTAB-P can

also be used with variable preconditioning, which is known as flexible-BiCGSTAB

[45].

4.6 Conclusion

Tackling the Laplace boundary value problems posed by the KATRIN experiment

requires an efficient linear equation solver. A wide variety of techniques for solving

this type of problem are available, both direct and iterative. After considering

the scaling behavior of each of these algorithms (summarized in table 4.1), we

conclude that an algorithm which is both iterative and matrix-free is necessary in

order to solve the problem with reasonable constraints on time and memory. We

note that the scaling of the iterative techniques varies depending on the number
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of iterations k required to reach convergence. The exact value of k is usually much

less than N but can be larger and depends heavily on the condition number of the

matrix at hand. Also, since Krylov type iterative methods rely on the evaluation

of the matrix-vector product, the scaling of these algorithms is proportional to the

cost of this product. If the matrix is highly structured, the arithmetic cost of the

matrix-vector product can be as low as 0(N). However, in the naive worst case

scenario, the evaluation of the matrix-vector product is 0(N 2 ). Therefore, in the

case of the GMRES algorithm, which is guaranteed to converge in at most k - N

iterations, the worst case arithmetic cost to solve the linear equation is 0(N 3 ) for a

completely unstructured matrix. Whereas for the BiCGSTAB algorithm, which has

no guarantee of convergence and may never satisfactorily converge, its worst case

arithmetic cost is infinite. While the worst case estimates for the arithmetic cost of

BiCGSTAB and GMRES are somewhat discouraging, in practice many problems

converge much more rapidly. The expected scaling of these methods is indicated in

table 4.1.

Name Type Memory Scaling Arithmetic Scaling

QR [102] Direct O(N2 ) O(N)
LU [1021 Direct O(N 2 ) O(N3 )

Gaussian Elimination [102] Direct O(N 2 ) O(N 3)
Robin Hood [84] Direct O(N) O(N 2)
BiCGSTAB [223] Iterative 0(kN) to O(N 2 ) 0(kN) to oo

GMRES [204] Iterative 0(kN) to 0(N2 ) 0(kN) to 0(NI)
BiCGSTAB-P [223] Preconditioned Iterative 0(kN) to O(N2 ) 0(kN) to oo

FGMRES [203] Preconditioned Iterative 0(kN) to O(N2) 0(kN) to O(N3)

Table 4.1: Table of algorithms used to solve Ax = b and their scaling properties.

In closing, the two primary algorithms we will use to solve KATRIN's Laplace

BEM problem are GMRES and BiGCSTAB. In order to exploit these Krylov subspace

based methods and their preconditioned variants, we will need a means to compute

the action of the matrix A (or the preconditioner P) on some arbitrary vector v.

While this requirement does not preclude the use of straightforward 0(N 2 ) matrix-

vector multiplication (presuming direct storage or calculation of all of the necessary

matrix elements), there are much more effective methods available to compute
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the matrix-vector product for Laplace BEM problems. Despite the fact that A is

generally an unstructured matrix, the Fast Multipole Method (FMM) can be used to

compute the matrix-vector product with arithmetic cost of O(N In N) or even 0(N).

The FMM and its variants will form the basis of the engine we use to solve these

large non-symmetric systems arising from the Laplace boundary value problem.

The performance of these Krylov techniques in conjunction with the FMM will be

explored in subsequent chapters.
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Algorithm 5 Restarted FGMRES(n) algorithm to solve Ax = b.

Input: The matrix A, right hand side b, and initial estimate x0 .
1: ro = b - Axo > Compute
2: po = 11ro 112 and vo = ro/po > Normalize and augme
3: p = 1pol and j = 0 > Initialize residual error
4: while p > ellb1| 2 andj < n do
5: z1 = P-1 vj > Apply vari
6: w = Az j

for i = 0,...,j do
Hij = (w, vj)
w = w - Hi,jvj

end for
P = flwI12 and vj+1 = w/P.
for i = 0,...,j - 1 do

a = Hi,j, b = Hi+,,j
Hi,j = cia + sib
Hi+1,j = -sia + cib

end for

23: y argminj|Hy - p|l
yElR'

24: = x0 + 3 yiZi
i=O

25: if p < e b|1 2 then exit.
26: else
27: Xo = i. goto 1:
28: end if

the initial residual.
it Krylov subspace.
and iteration count.

ble preconditioner.

t> Gram-Schmidt orthogonalization.

> Normalize and augment Krylov subspace.
t> Apply Given's rotations on j-th column of H.

> Compute j-th Given's rotation.

> Apply j-th Given's rotation to H.

> Apply j-th Given's rotation to p.
> Update residual error and iteration count.

> Solve j x j least-squares minimization.

t> Compute solution approximation.

> Restart.

Output: The approximate solution i, with relative residual error p < e Ib 12-
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7:

8:
9:

10:
11:
12:
13:
14:
15:
16:
17: cj= H,/ H 1 + p2

18: sj P=/ H?. + p2

: H1

19: HH=i H7 +/p2 and H+,

20:
21:

22:

pj. c p1 and pj+= -sjpj
p= pj+1 Iand j = j+1

end while



Algorithm 6 BiCGSTAB-P algorithm to solve Ax = b.

Input: The matrix A, right hand side b, and initial estimate x0 .
1: r = b - Ax o r> Compute the initial residual.

r = i, i =x0 ,p =0,v=0
1,W = 1,p = 1,P = 1

while ||r||2 ;> e|b2 do
p =(r,r)

p r+ #(p -Wv)
P- 1p = y

9: v = Ay
10: 4 = p/(r,v)
11: s = r-av
12: P-1 s =z

13: t = Az
14: P-it = w

w (z,w)/(w,w)
5i = + ay + wz

> Initialize values.

> Apply preconditioner.

> Apply preconditioner.

> Apply preconditioner.

> Update solution approximation.
> Update residual.

19: end while
Output: The approximate solution i, with relative residual error |lrH2 < eIb 112
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2:
3:
4:
5:
6:
7:
8:

15:
16:
17: r= s- wt
18: p = p
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Chapter 5

Introduction to the Fast Multipole

Method and its Variants

5.1 Motivation and Development

The Fast Multipole Method (FMM) was introduced in the mid-1980s by Rokhlin

[202] and Greengard [106, 1071. Initially, it was used as a means to accelerate the cal-

culation of the two-dimensional Laplace boundary value problem but subsequently,

as a rapid method for the Coulomb force field calculation in three-dimensional

N-body problems. Since that time, it has been extended by numerous authors to

cover a very wide range of physical systems and boundary integral equations, such

as electrostatics, elastostatics, acoustic scattering, electromagnetic scattering and

other problems [160].

The primary motivation behind the original development of the FMM is the

long-range (1/r) nature of the Coulomb potential. Since this potential. lacks a

cut-off length beyond which its effects can be ignored, BEM and N-body problems

governed by it, have a dense set of interactions. In other words, every element or

particle is influenced by the individual presence of all the others. For boundary

element problems, this results in dense linear systems which become computa-

tionally infeasible to solve for large N when using direct methods. Therefore, in

95



order to make use of the boundary element technique for realistic three-dimensional

problems, an algorithm with greatly reduced memory and arithmetic scaling is

needed.

Since direct methods cannot be used for solving the linear systems arising

from the Laplace BEM problem, when N is large, we will need to resort to an

iterative approach such as the Krylov techniques summarized in the previous

chapter. However, these iterative methods still have a computational cost which

scales like 0(kN 2 ), for k iterations, when using straightforward matrix-vector

multiplication. Fortunately, Krylov subspace methods do not require access to the

individual elements of the system matrix, A, only a black-box method of evaluating

the action of A on an arbitrary vector v. This provides an avenue we may exploit.

Naively, the arithmetic cost of a general matrix vector product is O(N 2 ), but it

is well-known that the matrix-vector products of certain structured matrices (e.g

sparse, Fourier, Vandermonde, Toeplitz, etc.) can be evaluated with much less effort

[100]. For example, discrete Fourier transforms only require 0(N log N) operations

when using the fast Fourier transform (FFT) algorithm [102]. In order to reduce the

complexity of the matrix-vector product involving our system matrix A (which is

unstructured), we would like to replace it by an accurate approximation which may

be applied in a more structured way. To do this, we split A into near-field (which

cannot be accurately approximated) and far-field components:

A = All + Af . (5.1)

The near-field matrix, A,, is a sparse matrix consisting of an O(N) number of

pre-computed and stored diagonal and near-diagonal terms. Its action may be

computed directly. The far-field matrix, Aj, is a diagonal-less dense matrix whose

action must be computed in an approximate way without reference to any indi-

vidual matrix elements. The FMM can be used to evaluate the action of Af in a

manner whose arithmetic costs scale like 0(N log N) or even 0(N) in certain cases

[32]. Such a reduction provides vastly accelerated processing times over the direct
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approach, and for many problems, it is the only practical approach to obtain a

solution.

In order for the FMM to be applicable, it is necessary that the kernel governing

the equation be separable or approximately separable. If this is so, then it may be

expressed as a series [32]:

K(x, y) ~ EPk (X)4(y). (5.2)
k=O

Any set of basis functions lPk(x) and k(y), satisfying equation 5.2 can be used for

the expansion. Even a simple Cartesian Taylor series would be sufficient. However,

in the case of the Laplace equation, the rotational invariance of the kernel makes

it convenient to expand it in spherical coordinates, where the functions lP (x) and

Jk(Y) take the form of the regular and irregular solid harmonics [78], [224]. While

in principle, such an expansion is infinite, once an acceptable numerical precision

has been specified, the series can be truncated at some maximum degree k = p. By

expanding the kernel in this way, we can represent the far-field effects of a particular

source with a finite set of coefficients. This compresses the field information into

a series which is far less computationally expensive to evaluate than using the

original source-kernel convolution form of equation 3.39.

Aside from the need to solve large scale Laplace BEM problems, an additional

(and in our case, the original) motivation for the use of the fast multipole method

is the need for fast field evaluation when tracking charged particles. Once the

boundary value problem is solved, particle tracking simulations require evaluating

the electric field and potential by summing over all the charge sources on the

mesh. Since the arithmetic costs of this direct sum scales proportionally with the

number of mesh elements, field evaluation can slow down particle simulations

immensely when tracking in complex geometries. In fact, evaluation of the electric

field alone is the primary bottleneck in all three-dimensional simulations of the

KATRIN experiment.
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5.2 Multipole Expansions

To develop the necessary expansion technique, we recall that in the indirect BEM

formulation of the Laplace boundary value problem, the matrix equation arises

from the application of a single layer potential convolved with the Neumann (eq.

3.75) or Dirichlet (eq. 3.42) kernels. Since the Neumann kernel, KN (r, r'), is simply

the result of the gradient operator applied to the Dirichlet kernel, it is appropriate

to concentrate on the latter:

1
KD(r,r') =. (5.3)

47nlr - r'|

Apart from the unimportant pre-factor of 1/4T, this is simply the inverse Euclidean

distance function, which can be expanded in terms of the spherical harmonics using

[78, 129]:
1 C r_

= - r' =YJ"(e, (p)Y-"'(0', /'), (5.4)
r - 1= _; rmax

where rmin = min(r, r') and rmax = max(r, r'). The above expression can be derived

(see [78]) by rewriting the distance formula using the law-of-cosines, then Taylor

expanding and collecting terms of like-powers, the result of which is the generating

function of the Legendre polynomials P. Equation 5.4 then follows from the

application of the well-known addition formula of spherical harmonics [129, 73].

In equation 5.4 and throughout this thesis, the spherical harmonics, Y,"'(0, p), are

defined using the Schmidt-semi-normalized convention following that of [107]:

Y1,"1 (= - P1111 ' (cos Ojei"lP , (5.5)

where P "nI is the associated Legendre polynomial. We note that in this definition

the Condon-Shortly phase has not been included and that the following conjugation

relation between harmonics with same degree, 1, but opposite sign order, m, holds:

Yi~"n, (0, q)) = YP" (0, 0) . (5.6)
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Figure 5-1: Geometry of the multipole expansion.

With the mathematical preliminaries out of the way, we can now consider their

application to the Laplace boundary value problem consisting of the set of surfaces

F. During the construction of the linear system governing this system, we would

like to find a faster way to evaluate the far-field contributions due to some surface

subset, E C F. We can assume without loss of generality that all source points

r' E E are closer to the origin than the evaluation point, r, and that E is confined

within a sphere, S, with radius, ro, about the origin of the coordinate system. Hence

we have rmin = r' and rmax = r, figure 5-1 illustrates this situation. By applying the

single-layer ansatz of equation 3.39 to E and replacing the Dirichlet kernel with the

expansion 5.4 we find:

4D(r) = j (r') E (i+) Ym (p) d . (5.7)
47reo -n=o m=-n (r+

This allows us to pull out the r dependence from under the integral sign yielding:

D(r) = 4 o M(0 ) r o-(r')Y " (', )dE. (5.8)
T iO n=0 oud oe

Therefore, in the region outside of the sphere, S, the potential can be expressed as
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the sum:
1 QM "Y"(0, 0)4D(r) = 1 ' (5.9)

47Te0 1=0 I=- 1+1

where the l-th degree and rn-th order multipole moment Q7' is given by the integral:

= / r'r(r)Y((',Y)dE. (5.10)

As mentioned before, in practice, we must must terminate an expansion after

some realistic number of terms. We will refer to an expansion which terminates at

Imax = p as an expansion of degree p. The number of terms in a p-degree expansion

is (p + 1)2. However. due to the conjugation property (equation 5.6) of the spherical

harmonics, the number of independent coefficients that need to be calculated is

slightly less and is given by: (p + 1) (p + 2)/2. A p-th degree expansion produces

an approximate value of the potential cP:

1 P II Y1n(, p)D(r) = 1e 0 ? I rl+1' (5.11)
47. =0 m=-1

which has a truncation error e with respect to the true potential (D(r) bounded by

[108]:

C D(r) - C(r) < aQtot (ro)P+ , (5.12)
ro -- r r

where a is a constant of proportionality which varies depending on the accuracy of

the algorithm used to compute the multipole coefficients, and Qtot is the sum of the

absolute value of all the charges contained by S. Clearly, the larger the value of p,

the lower the truncation error will be, albeit at a larger computational cost.

Now if we were limited to the use of a (remote) multipole expansion of the type

described in equation (5.11), we would not have gained a great deal of efficiency

over the direct matrix-vector evaluation when solving the BEM problem. Nor

would we be offered much of a speed up during particle simulations unless we only

need to track charged particles in a region external to all of the charge sources (mesh

elements). Since the remote multipole expansion is a Laurent series in r, it converges
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far away from the origin of the expansion, so is not appropriate for evaluating the

field in regions which are bounded by or contain charged sources, such as the

KATRIN main spectrometer. Moreover, if we used the remote expansion in order to

evaluate the field on collocation points or for tracking particles inside the electrodes

of such a structure, we would necessarily have to decompose it into a large number

of sub-collections, in order to create overlapping regions where each sub-collection's

expansion could separately converge. In this case, rather than having to evaluate

the field by summing over a large number of direct evaluations of each electrode,

we instead would have to sum over some number, M, multipole expansions in

order to calculate the field. Because M would necessarily be proportional to N,

evaluating the field at all N collocation points of a BEM problem (evaluating the

matrix-vector product) using this approach would still scale like 09(N 2 ). So while

this might be slightly faster than the direct method depending on the distribution

of mesh elements, it is unlikely that it would provide a dramatic gain in speed.

However, as an alternative to the multipole expansion, one can also use its

Taylor series analog, called the local coefficient expansion. The local coefficient

expansion can be made to converge to the potential, (D, within a sphere, S, with

radius, ro, due to all of the sources outside this sphere. That such an expansion can

be constructed is easy to see in light of equation 5.7. If all of the charge sources on E

are outside of S as in figure 5-2, then r' > r, and rmin = r and rmax = r'. Once again

pulling the r dependence outside of the integral we find:

1 o i () (r')Yk(oiqi)
<b(r) = rY (0, p) i dE, (5.13)

from which we can see that the local coefficient expansion of the potential is given

by:

1 k
<(r) = 7 ri L'Y 6,p (5.14)

j=0 k=-j
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Figure 5-2: Geometry of the local coefficient expansion.

with the coefficients generated from:

Y (0', (P')
Lk - o-(r') dE . (5.15)

i fl rj+1

As could be expected, it can be shown the truncated local coefficient expansion has

an upper error bound, which in a manner analogous to equation 5.12, decreases as

the truncation degree, p, is increased.

Theoretically, if we were able to entirely fill the region of interest with overlap-

ping balls of varying radius, each containing a local coefficient expansion of the

charges external to it, we could guarantee a constant 0(p 2 ) cost for any field evalu-

ation1 . Unfortunately, directly constructing such a set of expansions is not useful for

solving the Laplace BEM problem in of itself, since it would require no less than

0(N2 ) operations during each matrix vector product. However, as was proven by

Rokhlin and Greengard [202, 106, 107], it is possible to construct this set of local

coefficient expansions indirectly from a collection of remote (multipole) expansions

in a manner whose arithmetic costs are much less than the direct approach. In order

1As an added benefit with respect to the task of tracking charged particles, being able to cover the
region of interest with a collection of local coefficient expansions can drastically reduce the number
of computationally expensive direct integrations and greatly accelerate the field calculation. This
method is not entirely different from forming a field map [54], with the exception that the coefficients
of the interpolation are computed directly from the remote sources rather than inferred from local
values of the field, and thus much more accurate and memory efficient.
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to do so, it is necessary to have a technique to convert between remote and local

expansions, as well as translate the expansion origin of a remote or local expansion.

5.3 The Transformation Rules

A straightforward implementation of a local coefficient field map would require

the coefficients to be computed through direct integration over the charge sources,

in a manner similar to computing the multipole moments. This would be very

inefficient, as it would require roughly 0 (Np 2 ) integration operations for each local

expansion needed about each of the N collocation points. However, three theorems

regarding the translation and transformation of multipole and local coefficients can

be used to develop a much better algorithm: the Fast Multipole Method [1081. The

first two theorems, regarding the translation of the origin of a multipole or local

coefficient expansion, have had a long history, having arisen during the course of

development of quantum mechanics and quantum chemistry (see [213] and [58]

for further discussion). The third theorem, due to Greengard and Rokhlin [107],

allows us to transform a multipole expansion due to localized sources into a local

coefficient expansion about another position. Detailed derivations of these theorems

can be found in [78] and [224].

The first theorem we will consider describes the transformation of a multipole

expansion about one origin, to that of another multipole expansion about a different

origin. Visually, this is represented in figure 5-3 and is stated as follows:

Theorem 5.1 Consider a multipole expansion with coefficients {0. } due to charges lo-

cated within the sphere, D, with radius, a, centered about the origin. This expansion

converges for points outside of sphere D. Now consider the point Q = (p, a, /) V D. We

may form a new multipole expansion, about the point, Q, due to the charges within D,

which converges for points outside of the sphere D' which has its center at Q' and radius
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Figure 5-3: Multipole to multipole translation. The red shaded area indicates the
region where the original multipole expansion {O } does not converge. The blue
shaded area indicates the region where the new multipole expansion {M } does
not converge.

a' = p + a. The coefficients of the new expansion multipole {MI} are given by:

k J m=n C _-"ijkj-jmj-|k--mAmA_-" "n-m ,,
Mk = E m Ak , (5.16)

n=0m=-nI

where

Am =-~ (5.17)n (n - -m)!(n + m)!

The second theorem describes the conversion of a local coefficient expansion

about one origin into a local coefficient expansion about another origin. Graphically,

this is represented in figure 5-4 and stated as follows:

Theorem 5.2 Consider a local expansion with coefficients {O } due to charges located

outside the sphere, D, with radius, a, centered about the origin. This expansion converges

for points inside of sphere D. Now consider the point Q = (p, e, P) E D. We may form

a new local coefficient expansion, about the point, Q, due to the charges outside D, which

converges for points inside of the sphere D' which has its center at Q and radius a' = a - p.

The coefficients of the new local coefficient expansion { L } are given by:

P m=n OmijmI-Im-k-kIkAm-k A pn-IYm-k
L= n-j A , (5.18)

(-n)m+=A-
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Figure 5-4: Local coefficient to local coefficient translation. The red shaded area
indicates the region Where the original local expansion {O'} conver es. The blue
shaded area indicates the region where the new local coefficient {Lj } expansion
converges.

where A' is defined by equation 5.17.

Finally, the third theorem describes the conversion of a multipole expansion

about one origin into a local coefficient expansion about another origin (see figure

5-5 ) as follows:

Theorem 5.3 Consider a multipole expansion with coefficients {O" } due to charges lo-

cated within the sphere, D, with radius, a, centered about the origin. This expansion

converges for points outside of sphere D. Now consider the point Q = (p, a, 0) i D.

We may form a local coefficient expansion , about the point, Q, due to the charges within

D, which converges for points within the sphere D' which has its center at Q and radius

a' = p - a. The coefficients of the local coefficient expansion { L } are given by:

oo m=n Omijk-mI-|k-mAmA Y~nk
L k= n J , (5.19)

n=0 m=-n (1)Ajikpi+n+1

where Am is defined as before in equation 5.17.

Collectively, these three theorems form the backbone of the Fast Multipole

Method.
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Figure 5-5: Multipole to local coefficient transformation. The red shaded area indi-
cates the region where the original multipole expansion {o1" does not converge.
The blue shaded area indicates the region where the new local coefficient expansion
{ } does converge.

5.4 Canonical Fast Multipole Method Algorithm

The Fast Multipole Method (FMM) has been continuously improved and applied

to new problems over the past few decades and many versions exist. However,

of primary importance is what we will refer to as the "canonical" algorithm as

described in [108,46]. The canonical fast multipole method makes use of all three of

the transformation theorems in order to reduce the computational cost required to

evaluate the matrix-vector product as much as possible. The sequence of operations

is organized around a tree structure which adaptively subdivides space in order to

reduce the number of operations needed. The use of a hierarchical tree to accelerate

force calculations during the simulation of N-body problems was pioneered by

Appel [11] and expanded upon by Barnes and Hut [25] . Unfortunately, the Barnes-

Hut algorithm only makes use of the monopole term in the multipole expansion and

as such, it generally lacks sufficient accuracy for many purposes. However, the tree

structure of Barnes-Hut is extremely useful and serves as a basis about which the

FMM operations can be structured. A very simple graphical argument motivating

the use of a tree to accelerate the calculation of Coulomb-like interactions can be

seen in figure 5-6. In this figure, the small white circles denote N charge sources,
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(b) Far-field interactions mediated
(a) Direct pairwise interactions. through coarse grouping.

Figure 5-6: Using a tree structure to reduce the number of interaction calculations
in an N-body problem.

and the lines joining them represent their interactions. In order to calculate the field

at each source, we must consider the influence of all its neighbors. If we were to do

this by summing over each pairwise interaction, as done in figure 5-6a, the number

of arithmetic operations would grow like O(N2 ). However, if we group nearby

charges together, we can compute their influence on their far away neighbors as a

single entity using a multipole expansion. In figure 5-6b, the near-field interactions

(those between members of the same group) are calculated directly, while the far

field is treated through the multipole interactions of the coarse groups (represented

by the ellipses). In this way, even though only two tree levels have been used, the

number of pairwise interactions can be drastically reduced. This type of hierarchical

decomposition is the origin of the reduced arithmetic cost of the FMM.

While the details sometimes vary depending on the exact application, the proce-

dure when using the FMM to evaluate a matrix-vector product typically boils down

to performing the following sequential processes:

1. Construct the region tree and the associated element lists for each node.
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2. Construct the multipole expansion for each mesh element about the center of

their respective node, according to equation 5.10.

3. Gather the multipole expansions of each node into that of its parent, proceed-

ing up the tree, using theorem 5.1.

4. Convert the multipole expansion of each node to a local coefficient expansion

in its neighboring nodes, using theorem 5.3.

5. Distribute the local coefficient expansion of each node to its children, using

theorem 5.2.

6. Evaluate the field at each collocation point due to the local coefficient expan-

sion, using equation 5.14 and directly from sources in nearby nodes.

The first task is the construction of the region tree and associated node-element

lists. For a static BEM mesh, the region tree only needs to be generated once at the

beginning2 . Clearly, the example we presented in figure 5-6 is greatly oversimplified,

but the general idea is roughly the same in two or three-dimensions. However,

rather than an ad-hoc subdivision of space, the hierarchical tree structure used

by the FMM is based on an adaptive binary division of space in each dimension,

which depends on the local density of mesh elements. When dealing with objects in

three-dimensions, the tree-structure takes the form of an octree (called a quad-tree

in two-dimensions). The basic node of an octree is a simple cubical volume coupled

with a list of the mesh elements contained within it. The cube can be divided along

its mid-planes in order to form eight child cubes, as shown in figure 5-7. The mesh

elements may then be distributed to their respective child nodes which in turn

may be further refined as necessary. The children can be identified by the indices

0 through 7. In order to distinguish between nodes (and their associated cubes

and mesh element sets) at different levels of the tree, we will address them with

a subscript consisting of the concatenation of their child index and that of their
2On the other hand, the multipole moments and subsequent local coefficient expansions must be

recomputed any time there is a modification to the value of any of the charge sources on the mesh,
so steps 2-6 must be repeated during each matrix-vector product.

108



Figure 5-7: Cubical subdivision comprising the basic node structure of an octree.
Child cubes are addressed from 0 to 7 and may be subdivided in turn. From this
orientation child cube 5 is positioned in the back and is not visible.

parents. We will denote the nodes by A, their associated cubes by C, and mesh

element sets by S. For example, the cube associated with the root node would be

denoted as CO and the address, S014, would represent the mesh element set of the

4-th child of the 1-st child of the root node. In an octree, the lowest level of the

tree is simply the cubic bounding volume of the region of interest containing the

entire discretization TN(F) of the boundary F. Each subsequent level subdivides

those child volumes which contain more than some acceptable number, s, of mesh

elements. In order to avoid excessive memory usage, node creation is typically

terminated after a certain number of levels, or once the node volume is comparable

with the size of the mesh elements. The general tree construction routine can be

defined recursively, as listed in algorithm 7. Figure 5-8 graphically demonstrates

the concept of how such a data structure is applied to a BEM problem. For clarity,

we have limited the illustration to two-dimensions by applying a quad-tree with

only three levels of subdivision to a plane curve discretized into linear segments.

The node addressing scheme is exhibited for the first few levels of the quad-tree.

Once the region tree has been constructed, we can then proceed to compute the

multipole moment expansions and convert them to local coefficient expansions.

To do this, we will need to apply the multipole-to-multipole, multipole-to-local,

and local-to-local transformation theorems systematically over the tree. We should

note that the root node and its immediate children do not participate in any of the

transformation operations since they are too close together. However, in the dia-
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Algorithm 7 Recursive construction of region tree

Input: Mesh element set So _; TN('), and bounding cube Co with length f.
1: Set tree level n : 0, initial address i = 0.
2: procedure: Subdivide(S[i], C[j], n)
3: Compute r[ ], the size of smallest mesh element in S[j]
4: if JS[j I > s and r[ ] < f /2" and n < nmax then

5: Divide C[j] into 8 child cubes C[igj of length f /21".
6: Sort elements of S[;] into the 8 subsets S[ijj.
7: forj = 0 ... 7 do
8: call Subdivide(S[ jj, C[i~j, n + 1) > Recurse on the children.
9: end for.

10: else return.
11: return.
Output: The adaptively subdivided octree for the region contained by Co.

grams which follow we have included them in order to make the data flow pattern

clearer. In order to define the necessary set of operations, an exact categorization

of the tree nodes is needed. The canonical algorithm divides the node collection

into three categories [32] with respect to each node. The first category is that of the

near-neighbors. For a given cube, its set of near-neighbors are those nodes which

are at the same level of tree refinement and which share a face, edge or corner

with it. The second category is that of the well-separated nodes. These are the

compliment to the set of near-neighbors, being those at the same tree level which

do not have any boundary points in common. Finally, the last category is that of

the nodes which are part of the interaction-list. These nodes are the children of the

near-neighbors of the selected nodes parent. Figure 5-9 demonstrates how each one

of these categories are defined with respect to a given node.

At the lowest level of the tree, the calculation of the multipole expansions is

very straightforward, as it is simply the evaluation of equation 5.10 for each mesh

element about its respective node center. Once the multipole moments are known

for each element owned by a leaf node, they can be summed to form the multipole

expansion for each leaf node. Then, theorem 5.1 can be applied to collect each child

node's multipole expansion into its parents expansion. This collection process is

known as the "upward-pass", because the multipole information passes from the
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(a) Geometric representation (b) Tree representation.

Figure 5-8: Adaptively refined hierarchical quad-tree construction applied to a
boundary curve in two dimensions. Shaded regions represent leaf nodes with
non-empty mesh element lists. Rectangles represent composite nodes and circles
represent leaf nodes. Node labels at the lowest tree level are not shown for the sake
of clarity.

children to their parents. Graphically this process is represented in figure 5-10.

Once a multipole expansion has been formed for each node, its far-field influ-

ence can then be converted into local coefficient expansion within other nodes. This

processes is carried out using theorem 5.3. Since the error on the multipole expan-

sion (and its local coefficient representation) increases with decreasing distance

from the source, it is important that we apply this conversion only to nodes that are

far enough away in order to maintain the required accuracy. For a selected node

on some tree level, only those nodes which are in the interaction-list participate

in the multipole-to-local conversion process. Graphically, the multipole-to-local
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Figure 5-9: Categorizing various nodes according to their relative position with
respect to the node of interest (marked with a star). The near-neighbors are shaded
with diagonal lines, well-separated nodes are shaded gray, while the nodes which
are on the interaction-list are colored white.

(a) Geometric representation

M M M M

(b) Tree representation

Figure 5-10: Upward pass: Compute multipole moments and
larger collections through translation from child to parent.

gather them into

conversion for a single node is demonstrated in figure 5-11. For the sake of sim-

plicity, figure 5-11, only displays the multipole-to-local conversion operation for a
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particular node, at a single tree level (level 2).

M M M M

M

M

L

M

Figure 5-11: Demonstration of the conversion of several multipole expansions into a
local coefficient expansion for a particular node. The solid lines denote a multipole-
to-local transformation which is carried out between nodes at the 2nd tree level.
This conversion is only applied to the shaded nodes (in the interaction-list). The
unshaded nodes are too close to participate in the multipole-to-local operation at
this level of the tree.

Next, in order to reduce the number of expansions which must be evaluated

in order to compute the field, a "downward-pass" is performed. The downward-

pass uses theorem 5.2 to re-expand the local coefficient expansion of each parent

about the center of each of its child nodes. Figure 5-12 illustrates this operation.

The down-converted local coefficient expansions are constructed about each child

cube's center from the parent local coefficient expansion and account for all of the

charge sources in the well-separated region. This process allows the far-field to be

evaluated solely from a single, local-coefficient expansion in each leaf node, rather

than requiring us to sum over the local coefficient expansions of all its parents.

Finally, in order to complete the evaluation of the matrix-vector product, the

field must be computed at each collocation point. To do this, we first evaluate the

local coefficient expansion of the node of interest which contains the collocation

point. This provides the contribution from all the charged sources in the far-field,
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(a) Geometric representation (b) Tree representation

Figure 5-12: Downward pass: Translation of local coefficient expansions from parent
to child nodes.

which are contained in the well-separated nodes and nodes on the interaction-list.

We then sum the far-field contribution with the effects of all nearby sources. The

nearby sources are those mesh elements which are contained by the node of interest

or by any of its near-neighbor nodes (see figure 5-9). The field evaluation from

nearby sources must be evaluated directly through either analytic or numerical

integration, in order to preserve accuracy.

5.4.1 Complexity/Scaling of the Canonical Algorithm

Given how complicated the fast multipole method is, it is perhaps natural to be

somewhat suspicious about how well it can reduce the needed computational effort

over the naive approach. However, it can be shown that the number of arithmetic
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operations for a single FMM-based matrix-vector product is approximately given

by [32]:

189 () p4 + 2N p2 + 27Ns, (5.20)

where N is the number of mesh elements, p is the degree of the expansions used,

and s is the average number of collocation points (mesh elements) per box at the

finest tree level. Typically, the computer run time is dominated by the multipole-

to-local transformation term since it is proportional to p4 and obtaining accurate

results demands high values of p. Large p is required because in three-dimensions,

the multipole error decreases rather slowly, proportional to (v's) - P [32]. Various

schemes have been proposed to reduce the cost of the multipole-to-local trans-

formation and increase the accuracy of the FMM when using smaller values of p.

One method to do this is to diagonalize the transformation operator through the

application of a rotation operation [46], which reduces the number of operations

used in the multipole-to-local operation from 0(p4 ) to 0(p3 ). Another technique,

developed by Elliot and Board [77], recognized that the multipole-to-local transfor-

mation operator could be represented as a discrete convolution (over the degree

and order of the spherical harmonics) and accelerated with the fast Fourier transfor-

mation to obtain 0(p2 log p) complexity. Unfortunately, because their algorithm

requires the normalization terms of the response functions to be factored out, it is

numerically unstable for moderate to large values of p. This is precisely where it

would otherwise be most advantageous and provide the largest speed-up.

5.5 The Fast Fourier Transform on Multipoles (FFTM)

Variant

Ong et al. [180] took a slightly different tack compared to Elliot et al. [77], when ap-

plying the FFT to accelerate the multipole-to-local transformation. Their algorithm

is known as the Fast Fourier Transform on Multipoles (FFTM). The development of

the FFTM relies on the realization that the multipole-to-local conversion operation
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is in essence a convolution not only over the degree and order of the basis functions,

but also over the spatial coordinates. It is well-known that discrete convolution

operations can be greatly accelerated through the use of the convolution theorem

and the Fast Fourier Transform (FFT) algorithm. Unfortunately, the FFT requires

the data to be transformed to be sampled on a uniform grid, which is decidedly

not the case for the adaptively generated octree structure of the FMM. However, if

we are willing to sacrifice the adaptive hierarchical subdivision of space in favor

of a uniform subdivision, we can make use of the convolution theorem to quickly

perform the multipole-to-local conversion for all nodes at once. The well-known

discrete convolution theorem can be stated as follows [48]:

Theorem 5.4 Let u = [uu1,. .. , UA1] and v = [vo, v1,..., vy_ 1] be two sequences of

complex numbers of length A and p respectively. The discrete cyclic convolution (without

aliasing) of these two sequences is defined as:

w = f iv= [wO', i,.,WN1 (5.21)

with
N

wn Ukan k, (5.22)
k=O

and where ii and i- are the augmented (zero-padded) sequences of total length N = A +

p - 1, given by:

i u ifO<i<A and fvv if O<i . (5.23)
0 if A < i < N 0 if p < i < N

Denoting the discrete Fourier transform of a sequence as T(... ) and its inverse transform

as F--( - ), then the discrete cyclic convolution is given by:

W = o 0 V T-1 (F(ii) o f(t)) , (5.24)

where the operator 0- denotes the point-wise multiplication of the two sequences.
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It can be shown that the arithmetic cost to evaluate equation 5.21 directly using

5.22 scales like 0(N2 ), whereas performing the convolution indirectly through use

of equation 5.24 and an FFT (such as the Cooley-Tukey algorithm [521) results in an

arithmetic cost proportional to 0 (N log N). Furthermore the discrete convolution

theorem can be extended to multidimensional data in a straightforward manner

[681. The efficient evaluation of the discrete convolution by theorem 5.4 motivates

the observation of Ong et al. [180] as follows:

Observation 5.1 Consider a three dimensional grid, indexed by 0 < i, j, k < d, which

consists of a set of d3 cubes of length f and centers (Xi, y], zk) =(i+ 2', + ,k +). If

we were to form the multipole expansion due to the charges within each cube about its center,

and proceed to compute the influence of each multipole expansion on the local coefficient

expansion about every other cube center, then using the naive direct implementation of

theorem 5.3, would require an arithmetic cost that would scale like 0(p4 d ). However,

observe that the functional form of this operation is essentially a three dimensional discrete

convolution, which we may express as:

L (x,y,z) ~

L, E E E L M' (x', y', z') x T'k(X - x'y - y', z - z') (5.25)
n=0 mt=-n .xl +x y, 3+-y z, +,z

with response functions defined as:

k |k-m|l-|k| -1m| A A y ikW
V "' (p,o4, ti = ,M (5.26)

1," ( 1g n '! j+n+

and (p, a, P) being the spherical coordinates of the point (x - x', y - y', z - z'). Now,

let the three dimensional array M"' be the multipole moments associated with each cube

in the d x d x d grid, and T 'i, be the associated response functions (spanning a grid of

size 2d x 2d x 2d). Then the local coefficients associated with each cube in the grid may

be computed with an arithmetic cost proportional to 0(p4 (d log d ) 3 ) through the use of
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theorem 5.4 as:

rT T n P n f

Lk = ms- M l0 k T- 8 0 T("',k) , (5.27)
n1=0 m=-n n1=0 m-

where A 1 and t%"'k are the augmented (zero-padded) arrays and F(...) denotes the

three-dimensional discrete Fourier transform.

The FFTM algorithm is considerably simpler to implement than the FMM be-

cause it does not rely on the multipole-to-multipole and local-to-local translation

theorems. Instead, it only requires the following four steps:

1. Subdivide the region of interest equally in each dimension into smaller cubes.

2. Construct the multipole expansion for each mesh element about the center of

their respective cube, according to equation 5.10.

3. Convert the multipole expansion of each node to a local coefficient expansion

in all other nodes (excluding its neighbors), using theorem 5.4 and observation

5.1.

4. Evaluate the field at each collocation point due to the local coefficient expan-

sion using equation 5.14 and directly from sources in nearby nodes.

Graphically, the process is shown collectively in figure 5-13. Since the subdi-

vision must be uniform, there is no use for a hierarchical tree structure. Instead,

we can simply sort the mesh elements into the appropriate boxes and compute the

multipole expansions about their centers. After this operation, we are left with a

cubic grid of multipole expansions (figure 5-13b).

Next, in order to perform the multipole-to-local coefficient transformation we

apply the convolution theorem. Before doing so, we must compute the response

functions, T'k, according to theorem 5.26 and transform them. Additionally, beforeu~n

Fourier transforming the response functions, it is necessary to mask off those which

are too close to the origin. This masking off is done by zeroing out all of the response
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(c) Conversion of multipole expansions
into to local coefficients through convolu-
tion with response functions.

(b) Formation of multipole expansions.

(d) Field evaluation within the dashed
box due to local coefficients and nearby
mesh elements (bold).

Figure 5-13: FFTM Algorithm.

functions within some number of subdivisions, z, of the origin. Typically, the zero-

mask size z = 1. It is also important to zero pad the array of multipole expansions

and the response functions out to the appropriate length before applying the Fourier

transform. Since the discrete Fourier transform assumes that the data is periodic,

zero padding is needed in order to avoid data corruption from wrap-around effects.

To compute the convolution, we then perform the point-wise multiplication

between the transformed multipole array and the transformed response function

array and sum according to theorem 5.4 and observation 5.1. Following that,

we then perform the inverse Fourier transformation on the result, to obtain the

local coefficients at the center of each subdivision as in figure 5-13c. Finally, we
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may compute the field at any collocation point through the evaluation of the

local coefficient expansion of its respective node and a direct sum over the nearby

elements (those which are contained in neighboring cubes within z subdivisions).

Figure 5-13d demonstrates the evaluation of the field within the bold dashed box,

due to the sum of its local coefficient expansion and direct integration from sources

inside its immediate neighbors (within the shaded zero-mask region). For a more

concise description of the FFTM algorithm along with some performance metrics,

see references [180] and [159].

It is important to point out that while the FFTM is generally more accurate

than the FMM for a given maximum expansion degree p (which is extremely

advantageous for charged particle tracking), the arithmetic work required by FFTM

to evaluate a BEM system matrix-vector product does not have the same O(N)

guarantee as the FMM. This is because it lacks a hierarchical decomposition of

space, which allows us to reduce the number of nearby mesh elements about each

collocation point until it is roughly equal to some constant, s, which is independent

of the total number of mesh elements N. For a uniform subdivision of space, the

average number of nearby elements is still proportion to N/d 3, which implies the

arithmetic cost of the matrix-vector product still scales like O(N 2 ), albeit with a

greatly reduced pre-factor. If we were able to increase the number of divisions, d,

proportionally with N without limit, then the FFTM algorithm could have scaling

properties similar to the FMM. However, because this rapidly increases the space to

store the response functions, computer memory limitations ensure d cannot scale

without limit. This leads us to conclude that any practical algorithm which scales

well for large BEM problems must make use of some sort of hierarchical spatial

decomposition in a way similar to the canonical FMM. Therefore, in order to exploit

the advantages of each approach we will develop at hybrid algorithm incorporating

both the canonical FMM and the FFTM.
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Chapter 6

The Hybrid Fast Fourier Multipole

Method (HFFMM), a FFTM/FMM

Variant

6.1 Introduction and Motivation

The fast multipole algorithm provided by KEMField is a novel variation on the

algorithm introduced by Greengard and Rokhlin and is a hybrid of both FFTM

and FMM. The FMM relies on an octree partitioning of space which provides a

very efficient use of memory resources. However, it tends to have a higher cost in

performing the multipole-to-local coefficient transformation and field evaluation,

because it requires a larger expansion degree, p, to obtain the same accuracy as

FFTM. FFTM on the other hand, divides space into a fine but uniform grid. This

means that problems with a large number of degrees of freedom, N, tend to require

an increasing number of spatial subdivisions, d, to appropriately reduce the required

number of near-field integrations. Unfortunately, the value of d tends to be limited

due to computer resources because of the amount of memory needed to store

the response functions and expansion coefficients scales like d3 . This ultimately

limits the number of degrees of freedom we can solve effectively with FFTM.
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This is a substantial disadvantage for the purposes of KATRIN, because the main

spectrometer requires a high number of mesh elements to represent it accurately.

Storing the response functions for a uniform grid with a discretization scale on the

order of the smallest features of the main spectrometer would have prohibitive

memory requirements, similar to that of a finite difference method. On the other

hand, for a grid whose resolution is limited by reasonable memory constraints

on the response functions, there would be too many direct evaluations (required

in order to maintain accuracy due to nearby mesh elements) to provide a useful

acceleration of the field computation. These limitations makes FFTM unappealing

by itself, but motivates us to seek a way to combine of the best properties of FFTM

and the FMM.

The hybrid algorithm in use by KEMField (which we will refer to as the Hybrid

Fast Fourier Multipole Method (HFFMM)), couples the accelerated multipole-to-

local coefficient conversion of FFTM with the adaptive refinement available to the

FMM algorithm by sub-dividing space into a d3-tree. In the FMM, the number

of spatial divisions of any node is always d = 2 in each dimension, resulting

in an octree. In our algorithm, the number of spatial divisions, d > 2, is a user

selectable parameter. The upward (collection of multipoles into coarser groupings)

and downward pass (distribution of local coefficients into finer regions) stages

of the hybrid algorithm are functionally the same as that of FMM. The major

differences being the number of children each node in the tree contains and the

fact that the multipole to local coefficient conversion for neighboring nodes at

the same depth in the tree is performed using FFTM. This technique allows us

to avoid the high memory usage associated with FFTM when using a fine spatial

discretization, but affords us the benefit of FFTM's generally greater speed and

accuracy when computing the multipole to local conversion. The disadvantage of

this hybrid algorithm is the relatively large number of user controllable parameters,

which while allowing greater flexibility, tends to complicate the search for a set

of parameters which achieves the best compromise between speed, accuracy, and

memory usage.
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6.2 Algorithm

The hybrid algorithm proceeds very similarly to the FMM, though the details of

each step vary. The main steps are as follows:

1. Preprocess the geometry by computing the centroid and bounding balls of all

mesh elements.

2. Construct the region tree according to rules 6.1, 6.2, 6.3, and 6.4, and create

the associated mesh element lists for each node. Prune leaf nodes that do not

contain any collocation points or mesh elements.

3. Construct the multipole expansion for each mesh element about the center of

the cube associated with the node which owns it, according to equation 5.10.

4. Gather the multipole expansions of each node into that of its parent, proceed-

ing up the tree, using theorem 5.1.

5. Convert the multipole expansion of each node to a local coefficient expansion

in its neighboring nodes, using FFTM from observation 5.1.

6. Distribute the local coefficient expansion of each node to its children, using

theorem 5.2.

7. Evaluate the field at each collocation point due to the local coefficient ex-

pansion using equation 5.14 and also directly from the mesh elements in the

near-field.

The first task of preprocessing the geometry is more a matter of practical im-

plementation than an absolutely necessary step. Preprocessing is mainly intended

to simplify the construction of the region tree by making the mesh element and

sub-region association simpler to define. The first half of the preprocessing step

is to compute all of the centroids of the discretization's mesh elements. This is a

simple matter since these are already known, being the collocation points in our

BEM implementation. Secondly, we must calculate the minimum bounding sphere

123



of each mesh element in order to know how to place it in the region tree. A spherical

bounding volume is convenient because it entails a very small amount of additional

information, and it roughly conforms to the region of space where a particular mesh

element's multipole expansion is excluded from convergence.

6.2.1 The Tree Structure

Once the mesh has been processed, we can go on to construct the region tree. How-

ever, before proceeding further, it is worthwhile to take a moment to clarify our

notation and outline the necessary components of the region tree and its nodes.

While our primary goal is to solve BEM problems in three-dimensions, there is noth-

ing about the tree construction which is specific to R3. Therefore, we will consider

the general case of D dimensions when describing the tree structure. Throughout

the following we will refer to hypercubes as simply cubes, and hyperspheres as

balls.

Every node which is a member of the tree can be denoted by Ai. The subscript i

is the global node address, which is generated by concatenating every local address

of all the node's parents, in order, from the the root node to the node of interest.

Since the tree,1 Vo, is intended to adaptively subdivide space, each node in the tree

must be associated with a region. Naturally, the root node is associated with the

cube, Co c RD, which represents a bounding cube enclosing the region of interest.

The cube, C0, is centered upon the point, po E RD, and has side length f. When any

node in the tree is subdivided, dD children are produced. For any given node, Ai,

we may reference any of its immediate children by appending the child's index, j,

using the following notation: A[i]j, where] {O, 1,..., dD - 1}. The child's index j

serves to distinguish it amongst its parent's immediate children and is also known

as its local address (being the last index of its global address). The region cubes

associated with each of these children are produced by dividing their parent's cube

into d equal parts along each of the D dimensions, producing a D-dimensional array.

1Because every node in the tree is accessible through the root node, we can refer to the complete
region tree by referencing the root node, A/o.
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Additionally, the spatial location of each child can be related to its local address, j,

through the application of row-major ordering to this array. For example, the j-th

immediate child of the root node, Nj01 , is associated with the cube, C [o]p which has

a side length, f/d, and is centered upon the point:

D-1, -(K 1 )_1] ^

P[O]j = PO + + [d- eK. (6.1)

The indices {aK} indicate the spatial location of a node in the child array and are all

in the range {0, ... , d - 1}. The local address, j, can be computed from the spatial

indices {ak} using row-major order as:

D-1

I = aKd . (6.2)
K=O

Similarly, we can invert this relation to obtain the spatial indices of a node from the

local address j, through the recursion:

aK= bKl mOd d, (6.3)

bK K+- aK)d, (6.4)

with the base case:

aD-1 = j mod d, (6.5)

bD-1 = (j - aD- Id. (6.6)

In addition to a region cube, each node in the tree is also associated with a list of

all of the BEM mesh elements it contains/owns, a list of all the collocation points it

contains, a multipole (remote) expansion, and a local expansion.

Since the HFFMM algorithm requires various sets of operations to be performed

over the tree, in addition to the tree structure, we must also specify how to navigate

over it. Typically, we are interested in applying a particular action to every node in
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the tree in a specific order. There are primarily two different ways to visit the nodes

in the tree; these are recursive and corecursive order. Recursive order, also known

as depth-first, visits all of the children of a particular node before visiting any of its

siblings. This visitation pattern can be defined using the notion of a "stack" or rather

a last-in-first-out (LIFO) data structure according to algorithm 8. Corecursive order,

Algorithm 8 Apply the operation A to every node in AFo] (co)recursively.

Input: Root node Af[j, operator A and empty stack (queue) S.

1: S.push(N[o]) > Push root node onto stack(queue).

2: while IISH #: 0. do
3: .Nij = S.popo > Remove reference off of top (front) of the stack (queue).
4: Ai~j] - A( ji]) > Apply action A.
5: if K 3 has children then

6: for j=0,..., dD _ I do

7: S.push(K[ij) > Add j-th child to top (back) of the stack (queue) S.
8: end for
9: end if

10: end while
Output: Operation A applied to every node in the tree: K1 i1 -+ A (Aig )

also known as breadth-first, visits all of the siblings of a particular node before

visiting any of its children, and can be defined using a "queue" or first-in-first-out

(FIFO) structure according to algorithm 8 (reading within the parenthesis). It is also

sometimes useful to use reverse-(co)recursive visitation, in which case, every node

in the tree is visited in depth(breadth)-first way but from the direction of the leaf

nodes towards the root node. This can be done in a manner similar to that given in

algorithm 8 but with some additional memory usage for temporary references.

As might be expected, the assembly of the hybrid region tree is somewhat more

complicated than the standard recursive octree construction in algorithm 7. This

is not only because of the differing number of subdivisions, d, but also because

the subdivision of any particular node can depend on the state of its neighbors.

However, unlike the FMM, there are only two categories of nodes; those which

are nearby-neighbors and those which are well-separated. Nearby-neighbors are

determined by the zero-mask size, z, and can directly influence each other by
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directly participating in the multipole-to-local transformation using FFTM. On

the other hand, the interaction between well-separated nodes must be mediated

through their parents and has to be passed along by the local-to-local transformation

through at least one tree level. Rule 6.1 determines whether any two nodes are

considered nearby-neighbors.

Rule 6.1 Assume a zero-mask size, z, and the existence of a node, .A, at tree level m. The

cube, C, associated with X has a side length, tm = l/dm, and is centered at the point p.

Any node K' belonging to tree level, m, whose cube center, q, satisfies any one offollowing

D inequalities,for K = 0 ... , D - 1:

(p - q) - zK , (6.7)

is considered a nearby-neighbor of node X. All nodes on the tree level, m, which are not a

nearby-neighbor of Ar are considered to be well-separated.

Figure 6-1 exhibits the nearby-neighbor and well-separated categories with respect

to a particular node for several values z.

z=3

z =2

z =1

Figure 6-1: Example of the node categories for a two-dimensional tree with two lev-
els (d = 3). The node under consideration is marked with a star. Nodes considered
to be a member of its set of nearby-neighbors are shaded as indicated for various
values of z.

With the nearby-neighbor condition defined, we can move forward with the de-
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scription of the tree assembly process. To avoid the complexity of three-dimensions,

we will illustrate the construction with a very simple two dimensional example.

In this example, a square two-dimensional region contains two well-separated

electrodes, as shown in figure 6-2. We will use a value of d = 3 for the number of

divisions to make, limit the depth of the tree to only two levels, nmax = 2, and use a

zero-mask size of z = 1 to define the nearby neighbors.

In order to determine how to proceed with the subdivision of the unrefined

region and the subsequent refinement of its children, we will consider the bounding

balls of the mesh elements in conjunction with two simple rules. The first rule

determines if a particular mesh element should be associated with a certain node

and is known as the insertion condition. We will use the notation, B(pi, ri), to denote

the ball of radius, ri, centered about the point, pi, and C(pi, f) to denote a cube of

side length, f, centered about the point pi.

Rule 6.2 Consider a member node of the region tree, Ari, at tree level, m. i is structured

about a cube, C(pi, ,n ), with f, = Id". To determine which mesh elements are associated

with this node, we construct the spherical assignment region Bi(pi, ri), where ri = /' ,

and q is a user defined parameter. The mesh element, u, will contribute to the multipole

expansion of Ai if it satisfies the following two conditions:

q; E C(piC,,n) (6.8)

and

Bj (qj, r;) C Bi (pi, ri) , (6.9)

where Bj(qj, rj) is the minimum bounding ball enclosing u. Furthermore, if the node, i,

satisfies both 6.8 and 6.9 but has no child node, Afi], which also satisfies both of these

conditions, then it is said that the node, X, owns the mesh element up

The second rule is known as the subdivision condition and determines when a

particular node must be subdivided in order to adaptively refine the region. There

are several choices available for the subdivision condition which can significantly
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Figure 6-2: An unrefined region containing two localized electrode groupings,
denoted by the blue and red triangles.

affect the manner in which the tree is constructed. However, for the time being,

we will defer discussion of these other conditions and use the simplest but most

aggressive condition according to rule 6.3.

Rule 6.3 If the node, Ai, owns more than one mesh element and it lies at tree level,

m < nmax, then Nij will be subdivided into dD children.

The result of applying these two rules on our initial region (figure 6-2) is shown in

figure (6-3). Once this first pass of refinement has been performed, we then prepare

the region for the computation of the expansion coefficients by the application of

one more additional rule.

Figure 6-3: After the application of rules (6.2) and (6.3), the region where the field
needs to be computed has been subdivided into a tree. At the first level of the tree,
the root region is divided into nine child sub-regions. At the second level, the two
sub-regions which contain the electrode groupings are further sub-divided into
nine children.

129



Rule 6.4 Any node, Xi, that lies at tree level, m < nmax, and which is also a nearby-

neighbor of a node which owns an electrode must also be subdivided.

Rule 6.4 is called the adjacency-condition because it causes nearby-neighbors of

nodes, which have children containing charged sources, to be subdivided as well.

This is necessary in order to apply FFTM because we need a locally uniform grid in

order to perform the Fourier transform involved in the multipole-to-local coefficient

conversion. Applying this rule results in the final form of the refined region tree,

shown in figure (6-4).

A

A

Figure 6-4: The resulting region after the application of rule (6.4).

The final step in the tree construction is the pruning of unused nodes. This step

is not strictly necessary, since it is only done for computational efficiency. Unused

nodes are those which were subdivided according to the adjacency condition but

contain no collocation points where we would need to evaluate the field. Since no

field calculation is done within these nodes during the evaluation of the BEM matrix-

vector product, we can discard them and avoid calculating their local coefficient

expansion. Of course, if we are interested in producing a field map over all space

for use in particle tracking, this pruning step is not done.

Once the region tree has been constructed and ownership of each electrode has

been delegated to the appropriate nodes, we can compute the multipole moment

expansion of each node's region. The first step of this process starts with a recursive

visitation of all the nodes in the region tree. During this visitation, we compute

the multipole expansion of each owned mesh element about the center of the node
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AA

Figure 6-5: The multipole moment labels are color-coded according to the respective
electrode group they originate from. The small M indicates the multipole moment
of a leaf region due to its contained electrodes. The faded large M indicates the
multipole moment of a parent region due to its children. Only regions that have a
non-zero multipole moment are labeled. The cohort of each region with a colored
border is shaded with the same color.

which owns it. It is important to note that non-leaf nodes can participate in this

process and may have non-zero multipole expansions. This is due to the fact

that some mesh elements may be too large to satisfy the insertion-condition and be

distributed downward to child nodes. For details on how the individual mesh

element multipole expansion is calculated, see appendix A for triangular mesh

elements, and appendix B for rectangular elements and line segments. To form

the multipole expansions of each node's region, we then simply sum over all the

multipole expansions of its owned mesh elements.

The second step is to progressively gather the multipole moments of each node

into the multipole expansion of its parent, using theorem 5.1. This process, starting

from the leaf nodes, is performed through a reverse-order recursive visitation over

the tree. The multipole-to-multipole translation action continues up the tree until

the root node is reached and each region in the tree has been assigned a multipole

expansion. Figure 6-5 shows this process graphically.

After all the regions have a multipole expansion, the computation of the local

coefficient expansions can begin. To do this, we consider only regions who have a

non-zero multipole expansion and consider the influence they have on their cohort.

We define the nodes that belong to a cohort as the union of the node of interest's

own children with the children of its nearby-neighbors. Graphically, the members
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of a cohort are indicated in figure 6-5 by the color-coded shaded regions. In order to

compute the contribution that each source (non-zero multipole expansion) region

has on the local coefficient expansions of the nodes in its cohort, we artificially

set the multipole expansions of all regions which are not children of the region

of interest to zero. Then, we compute the convolution of this grid of multipole

expansions with the response functions using theorem 5.3 and observation 5.1. This

action is represented graphically in figure 6-6. It is applied over all nodes in the tree

using a corecursive visitation. In this two-dimensional example, we have chosen

d = 3 with a zero-mask size of z = 1. To compute the transformation using FFTM,

we copy the multipole expansions of the children of the node of interest into the

appropriate position in an array. The array elements corresponding to the node

of interest are marked with a dashed box in figure 6-6. This array is structured to

conform to the local structure of the region tree about the node of interest. Then,

the elements in the array which correspond to the spatial locations of the children

of nearby-neighbors of the node of interest are artificially set to zero (these are

marked with a zero). To avoid wrap-around artifacts, the array is zero padded

(the shaded region) out to a size of 2d(z + 1). This padding is slightly larger2 than

necessary but this does not significantly affect the number of arithmetic operations

needed. The multipole array is then convolved with the response function array

(those response functions which have been masked to zero are marked as such),

resulting in an array of local coefficient expansions. The resulting local coefficients

generated in the shaded region are invalid/irrelevant and are discarded. The useful

local coefficients (unshaded region) are then copied out of the array and summed

into the local expansions of the cohort nodes in the tree. This process is applied to

every node which contains at least one child with a non-zero multipole expansion.

After the multipole-to-local conversion has been conducted for each level in

the region tree, we can perform the downward distribution of the local coefficients

of each parent to its children using theorem 5.2. This action is applied through

another corecursive visitation, the final result of which is shown in figure 6-7. After

2The minimum allowed size is 2d(z + 1) - 1, but we use 2d(z + 1).
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Figure 6-6: Graphical representation of the multipole-to-local transformation pro-
cess as a convolution, performed using the FFTM.
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(b)

Figure 6-7: The computation of the local coefficient expansions from the multipole
expansions proceeds from left to right. First the FFTM (observation 5.1) process is
applied separately at each level of the tree to the nodes with non-zero multipole
moments as indicated by the arrows marked with (a). Once each node's local
coefficient contribution from its nearby-neighbors is computed, then theorem 5.2 is
used to propagate the parent's local coefficients down to its children as indicated
by the arrow marked with (b). Each parent's contributions are then summed with
the existing local coefficient expansions at the finest granularity as indicated by
the arrow marked with (c). The local coefficients are color-coded according to the
electrode groups by which they have been influenced. Purple indicates they are
influenced by both groups of electrodes.

this step all regions in the tree that were not pruned will have a local coefficient

expansion. It is important to note that by construction, the mesh elements which are

owned by a node or its nearby-neighbors do not contribute to its local coefficient

expansion. This is because the expansions of nearby electrodes converge poorly, so

we excluded them by using a zero-mask, z > 1. Therefore, to maintain accuracy

when computing the field for a point contained by some region, the influence of the

nearby mesh-elements must be evaluated directly.

When evaluating the field, there will be some truncation error due to the multi-

pole expansion. The dominant term in this error tends to originate from the closest

source included into the local coefficient expansion, because the truncation error

depends on the ratio of the source radius to the distance from the source to evalu-

ation location (see eq. 5.12). The larger and closer the source, the larger the error.

Figure 6-8 provides a rough idea of how the truncation error varies spatially in the

example region we have used. If we wish to further mitigate the truncation error,
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Figure 6-8: Spatial distribution of the absolute difference between the approximate
field and true field (arbitrary scale), for a configuration similar to the example
geometry.

we have several options. The first is to simply increase the maximum degree of the

multipole expansions, p. The next is to increase the number of divisions, d, which

decreases the size of the source regions in order to improve the error ratio. The last

possibility is to increase the zero-mask size, z, which has the effect of increasing the

distance between the source region and the target.

6.3 Scale Independent Transformation Rules

The response functions which govern the application of the multipole-to-multipole,

multipole-to-local, and local-to-local coefficient transformations are quite time con-

suming to compute and would significantly slow down the algorithm if they were

to be calculated on an as-needed basis for every transformation. Fortunately, we

can perform the majority of the work necessary to compute the response functions

upon initialization with little work thereafter. This is because the Laplace equation

is scale independent, which implies the response functions can be factored into

separate terms containing the radial and angular dependence. Moreover, since

the transformations are always applied on a discrete Cartesian grid of nodes with

fixed spacing, the angular terms do not change between tree levels and only need

to be computed once. The radial terms, which do change for different tree levels,

can be accounted for by simply rescaling the source moments and resulting target
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moments.

To demonstrate this, we will first consider the application of the multipole-to-

multipole transformation of theorem 5.1 to the three dimensional grid of d3 children

owned by a node. Assuming that this node lies at some level in the tree where

the cube side length is 1, then the positions of the child nodes with respect to their

parent's center can be determined according to 6.1. Therefore, their displacement in

each dimension is simply:

Ax = IQ) + -

Az = 1 a + 1)- 1

The distance, p ({ a, }), between the expansion center of the child (source) and the

parent node's center (target) is given by:

p({a2})= + - (6.10)

which is clearly dependent on the side length, 1, and thus implicitly on the tree

level. On the other hand, the angular positions (a, P) of the child node centers (with

respect to the parent node's center) are completely independent of the node size,

and are given by:

a({aK}) - arctan (V (Ax) 2 + (Ay) 2  (6.11)
Az

and

P({aK}) arctan .A (6.12)

Now, in order to simplify the process of rescaling the response functions, we would

like to rewrite them in such a way that the indices of source moments, (Og ), are
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independent of the target moment, (MI), indices. To do this, we can make the index

replacements j - n - n' and k - m -+ in' on equation 5.16, which yields3:

j ti cm'i|k|- k-m'-m' k-izn' 'p 'Y ' Fk

Mj = ( (Ak
I AIn'1=0 m'I=-n' I

mk~ Tn'k,'(t

MI - p' ( E (p_"'O" TM211 (1,f) . (6.13)
n'1=0 m= n

Factoring out the dependence on I produces:

M = : I "'( M2M~jn (t, ) (6.14)

with the scale independent multipole-to-multipole response functions associated

with the expansion at {aK}, given by:

TM2 M,I(ax,f)

I -ni ' ' -k 2 2 ~n

|jkj-|k-mz'|-|mi'| i-i n',' - k 2 K (6.15)
Ak d +2d) -

These scale independent functions can be pre-computed once over the full grid

(over which each of the indices, aK, range independently from 0,1,... , d - 1) and

stored for later reuse. From equation 6.14, it is clear we can use TM2M to apply

the transformation at any level of the region tree, provided we properly pre-scale

the source moments and post-scale the target moments by the appropriate length

factors.

The local-to-local transformation can be handled in nearly exactly the same way,

except the scale factors have the opposite dependence on the source and target

moment indices. Factoring out the scale dependence from the response functions of

3 Note, we may start the summation from n' = 0 since we are free to reorder the summation
however we want.
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theorem 5.2 yields:

P n
(In E (MO1  (6.16)L = l-1 [ [ ( 1"1") TL2L -6

n=j m=-n

with the scale independent response functions for {a,} given by:

kmn
tL2Lj?

nl-I
A"i-kAkY'"i-.kap 22

iliti-jim-kj-jkj Al-] . I n-j 2 aK + 12(.7
(-1)n+jA'"K= [ d 2d) 2

Similarly, we may do the same for the multipole-to-local response coefficients of

theorem 5.3. Of the three rules, the reuse of the multipole-to-local response functions

between tree levels is by far the most critical for good performance. This is because

multipole-to-local response functions must be computed over a much larger grid,

which has dimensions of 8d3 . Furthermore, they must be Fourier transformed (an

expensive operation) over an even larger grid of dimension [2d(z + 1)]3, before

they can be used in the convolution operation of observation 5.1. An additional

problem is posed by the memory requirements of the multipole-to-local response

functions which are proportional to p4 [2d(z + 1)]3. Without treating them in a scale

independent manner, this memory requirement would be multiplied further by the

number of tree levels, nmax, which would be especially problematic if we wished

to use high order expansions 4. On account of the large memory requirements of

the multipole-to-local response functions, in addition to factoring out the scale

dependence, it is also helpful to factor out the normalization coefficients. Factoring

out the normalization coefficients reduces the memory growth of the response

functions from 0(p4 ) to 0(p 2 ), which can result in significant savings. Performing

both the scale and normalization factorization on the multipole-to-local response

4 For example, for the (not unreasonable) parameters p = 16, d = 8, and z = 1 the memory
required to store the unfactorized multipole-to-local response functions approaches 17 GB. This may
present an issue for the application of this method to non-scale independent problems such as the
Helmholtz equation.
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functions of theorem 5.3 produces:

0 11=11 ni-in _1i+ )A 10
I ((-1)" A" " k) ,M2L,' (6.18)

where the scale independent functions are given by:

tM 2 L ',i )

0 whenever any Ia, < z, for K = 0,1, 2

7- k K (d [ 2 otherwise. j+n

These response functions are calculated over a full grid where each of the spatial

indices {a,} are allowed to span the range from -d(z + 1) to d(z + 1) - 1. Note

that those response functions which are within the zero-mask size, z, are forced to

zero to avoid the singular region.

6.4 Description Of Parameters and Options

The behavior and performance of the hybrid algorithm is governed by a set of

user controlled parameters. The proper set of parameters is heavily geometry

dependent. A selection which provides the user acceptable results in terms of speed

and accuracy for one particular problem, may be entirely useless for a different

problem. In general, to accommodate the hardware and geometry at hand, the best

parameters are usually found through trial and error. However, in order to do this,

the user needs to have a rough idea about the expected effect each parameter has

on the algorithm's performance.

The first parameter to consider is the maximum degree of the multipole/local

expansions, p. This parameter controls the number of coefficients in the computed

multipole and local coefficient expansions. The storage requirements of the response

functions grow in proportion to O(p 4 ), while the storage requirements for the
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resulting region tree which stores the local coefficient grows like 0(p2 ). The time

for a single field evaluation with no nearby mesh elements also scales like 0(p2 ).

Second is the number of spatial divisions, d. This parameter controls the number

of subdivisions of each node/sub-region in the tree. Occasionally, it can sometimes

be helpful to use a different number of divisions for the root node. This is referred

to as the number of top-level divisions, dt. This feature is primarily used in order to

make the workload more granular so that it can be evenly distributed across several

computers when the algorithm is run in parallel5 .

The next most important parameter is the zero-mask size, z. In the z = 1

case, for a given three-dimensional node, all nodes which share with it a face,

edge, or corner with its cubic region are considered neighbors, so it will have

26 neighbors. Similarly, in the z = 2 case, following rule 6.1, it will have 124

neighbors. This pattern continues, such that in the general D-dimensional case the

number of neighbors of a region is given by (2z + 1)D - 1. The size of the response

functions needed for the multipole-to-local transformation grows in proportion to

(2d(z + 1))D. Accuracy generally increases with higher values of z, but at the cost

of increased memory usage and a larger number of direct evaluations, which tend

to slow down the field evaluation.

Also of importance is the maximum tree level, nmax, which prevents any node at

depth, nmax, from being subdivided. This parameter is not strictly necessary, since

node subdivision will terminate eventually once the mesh element size approaches

the size of the cubic sub-regions associated with each node. However, this limitation

is still useful in order to keep the memory usage of the tree from growing beyond

machine constraints.

The last parameter is the insertion ratio rq. This parameter determines when

a mesh element is allowed to be inserted into a node, as given in rule 6.2. It is

generally necessary to use r > 1 in order to prevent mesh-elements from being

trapped at high levels in the tree. When i < 1, trapping can happen even for small

(relative to node size) mesh-elements if they are located too close to the boundary
5Discussion of the parallel implementation will be deferred until the next chapter.
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between two nodes. This occurs because even if only a small portion of the mesh

element crosses the boundary, it cannot be delegated to a child node and it must

remain owned by the parent. This sort of trapping can be detrimental to the run

time of the program because it causes more direct calls during field evaluation. The

use of larger values of q to relax the insertion condition can reduce the number of

direct calls needed at the cost of a slight reduction in accuracy. The default value of

q= 4/3 has been determined to strike a satisfactory balance between accuracy and

speed for most geometries encountered in practice.

6.5 Estimating the Complexity/Scaling of the Hybrid

Variant

Developing an estimate of the computational work involved in the hybrid algorithm

is somewhat complicated by the algorithm's dependence on the problem geometry

during the tree construction. Since it is a combination of the geometry of the

BEM mesh and the insertion and subdivision conditions which together govern

the tree construction, the operation count cannot be independent of the mesh

element distribution. However, a geometry independent worst-case estimate of

the work required in the evaluation of a matrix-vector product can still be useful,

but will require some assumptions/modifications to the actual algorithm. The first

assumption is that the mesh elements are small enough that they can be treated as

points when determining the insertion condition. This has the same effect as setting

the parameter q = co, so that the finite size of the mesh elements has no influence on

the tree construction. The second assumption is that the mesh element distribution

is uniform enough that adaptive subdivision is unnecessary. Thirdly, we also

assume that the spatial subdivision can be made fine enough that on average, the

number of mesh elements in a leaf node is approximately a constant, s, independent

of N. Lastly, for the sake of simplicity, we will assume that the number of top level

divisions, dt, is also d. With these four assumptions, we can then proceed to estimate

141



the number of arithmetic operations involved in the matrix-vector product.

Since we assumed that at the lowest tree level the number of elements in a node

is on average s, we can estimate the number of nodes at the lowest tree level as

roughly N/s. Furthermore, the reduction factor in the number of nodes at each

level above the lowest is d3 in three-dimensions, so we can expect the number of

tree levels to be roughly:

nmax =logd(N/s). (6.20)

Now, we can consider the work involved in each step of the algorithm6 . The

first task is to compute the multipole expansions of each individual mesh element

(denoted P2M). Since there are roughly p2 coefficients in each expansion, we need to

perform roughly Np 2 integrations followed by Np 2 addition operations to compute

and sum these coefficients into the multipole expansions of the leaf nodes. Therefore,

the number of operations for this task is proportional to:

KP2M = 2Np2 . (6.21)

Next, we need to gather the multipole expansion of each node into their parent's

expansion (denoted M2M). This requires roughly p4 multiplications and additions

for each expansion that must be translated. The multipole-to-multipole operation

must be applied to each node with a non-zero multipole expansion at every level

in the tree. While the number of nodes at the lowest level of the tree is NIs, the

number of nodes at each ascending level of the tree is reduced by a factor of d 3

as the root node is approached. Summing the amount of work needed for the

multipole-to-multipole gathering operation over every tree level implies a cost

proportional to:

KM2 M = () ( I )k( N)P( ) . (6.22)
S k=0 3s

6We ignore the cost of constructing the region tree, which only needs to done once at initialization
and not during every matrix-vector product evaluation.
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The same line of reasoning and limit also applies to the local-to-local conversion,

implying KL2L - KM2M. Additionally, under the assumption that d > 2 always,

then (i ) < 8/7, and the upper limit for the operation count of the multipole-to-

multipole and local-to-local operations (up to a proportionality constant) is given

by:

KM2M < 8Np 4  (6.23)
7s

Now turning our attention to the cost of the multipole-to-local conversion step

(denoted KM2L), we note that for a given division number, d, and zero-mask size, z,

the length of the data array for each of the p4 convolutions we must perform is:

A = 2d(z + 1) (6.24)

in each dimension. Therefore, the number of multiplication/addition operations

required to execute the three dimensional Fourier transform via the FFTM for a

single node cohort is roughly:

p4 A3 10 2 A 3 . (6.25)

The log 2 is due to the assumption that we are using a radix-2 FFT to perform

the Fourier transform, but other radices or mixed-radix algorithms with slightly

different costs are possible. Since this operation only needs to be applied to the top

(nmax - 1) levels of the tree, the number of nodes is dominated by the next-to-lowest

level, which has roughly N/d3s nodes. Therefore, the total number of arithmetic

operations involved is roughly proportional to:

( N 1a-1 ( k-

KM2L p4 A3 log 2 A3  (6.26)

KM2L < 3p4A3g102 A ( ( d3  (6.27)

KM2L 24Np4A3 10 2 A (6.28)
7d3s

Finally, we need to consider the evaluation of the field at the collocation points

143



due to the local coefficient expansions and from near-field pairwise interactions.

The cost of evaluating the field due to local coefficients (denoted L2P) at the N

collocation points is roughly:

KL2P= Np 2 . (6.29)

The near-field cost is proportional to the number of direct pairwise interactions

between mesh elements contained by neighboring nodes (denoted KP2P). For this

purpose, we only need to consider the approximately N/s nodes at the lowest level

of the tree, since under our assumptions, all the mesh elements are owned at the

lowest level. Each of these nodes contains approximately s mesh elements and has

[(2z + 1)3 - 1] nearby-neighbors also with ~ s mesh elements. Therefore, the total

number of pairwise interactions that need to be computed is approximately:

KP2P = Ns2 (2z + 1)3 . (6.30)

The sum all of these contributions (weighted by their constants of proportionality7 ):

Ktotal = aP2MKP2M + aM2MKM2M + iM2LKM2L

+ aL2LKL2L + &L2PKL2P ap2 pKP2P , (6.31)

produces a worst-case total arithmetic cost of a matrix-vector product using the

HFFMM. While we have made no statement about the constants of proportionality,

we expect them to be primarily governed by the hardware and software implemen-

tation of the algorithm, and are therefore roughly independent of the number of

degrees of freedom, N, and the other user selected parameters.

In light of these work estimates, we can make the following several remarks

under the assumption that the proportionality constants are all roughly equal. The

first is that in order to roughly balance the workload between each portion of the

far-field calculation, a reasonable choice for the number of mesh elements in the

7 These constants cannot be determined a priori, since they depend on the exact implementation
of each calculation.
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average leaf node should be around s = p2 . Using this choice for s, the work

estimate of equation 6.31 reduces to:

Ktotal = N (37 + 192(z + 1)3 10 2 A + 7p 2 (2z + 1)3) (6.32)

From this we can see that like the canonical FMM, the cost of this algorithm scales

like O(N), although the exact prefactor depends heavily on the choice of the

parameters p, d and z. Lastly, we remark that we can consider the canonical FMM

and FFTM as limiting cases of the hybrid method. In the case where we fix d = 2

and z = 1, while placing no limits on the number of tree levels (rnmax) we produce

the canonical FMM8 . Whereas, if we fix nmax = 1 but allow d and z to vary freely,

the hybrid algorithm becomes the FFTM algorithm.

8This is true with the minor caveat that the multipole-to-local calculation is calculated via the
convolution theorem in the HFFMM rather than in direct fashion as in the FMM. However, for a
division number of z = 2 the difference in arithmetic cost between these two methods is negligible.
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Chapter 7

Computer Implementation and

Performance of the HFFMM

Algorithm

7.1 Introduction

The HFFM method has been designed to serve as an optional library included in

the KATRIN field solving package KEMField. Its purpose is to accelerate the field

calculation for complex three-dimensional field problems for both the solution of

Laplace BEM problems and fast particle tracking. The KEMField main library was

written primarily by T.J. Corona [53] in the C++ programming language. It uses

object oriented design and template meta-programming techniques so as to allow

it to be flexibly extended to cover a wide variety of problems. The fast multipole

library is an extension to KEMField and also follows these design principles in order

to allow maximum flexibility. In addition, through the use of MPI and OpenCL it

has been extended to run on both single machines and parallel computing clusters

with or without acceleration from graphics processing units (GPUs).

The organization of the fast multipole library mirrors the rest of KEMField and

is therefore divided into several sub-libraries. These sub-libraries are organized by
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task. At the base of these sub-libraries is the core sub-library, which is responsible

for all of the templated and abstract classes associated with operations on tree nodes

which do not require a specific form for the tree. The math sub-library serves to

collect all of the complex (but independent) mathematical operations that are needed

(e.g. the rotation of spherical tensors, etc.). The tree sub-library organizes the

concrete operations which may be applied to tree nodes without explicit reference

to the equation being solved (e.g. node subdivision or neighbor finding). The

kernel sub-library is responsible for all classes which compute spherical harmonic

expansions of the equation kernel1 . The elect rostatics sub-library is concerned

with the specifics of applying the HFFMM to the calculation of electrostatic fields,

whereas the interface and utility sub-libraries localize the interface of the fast

multipole library with the rest of KEMField and provide user configurable XML

bindings respectively.

7.2 Problem Input

The input for a Laplace BEM problem is generated from the KATRIN geometry

package KGeoBag. KGeoBag provides both a C++ and a XML interface which allows

the user to specify the system geometry, boundary conditions, and parameters con-

trolling the mesh production. Meshing is carried out deterministically depending

on the properties of the parent surface, the discretization size scale and a 'power'

term which governs how the discretization scale should vary depending on the

distance from an edge or corner.

Since the discretization and boundary conditions are constructed and handled

externally in KGeoBag, from the perspective of the HFFM method the problem input

is simply a collection of independent mesh elements in a global coordinate system.

In fact any meshing library may be used as long as it can produce the data (shape

and boundary conditions) needed to fill a container of KEMField basis functions.

1 Only three dimensional Laplace is currently implemented here, but it could be extended to
cover the Helmholtz equation and other elliptic PDEs.
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Since the details of the mesh elements may vary depending on the problem at

hand or the library used to create them, and we want to allow for the possibility

of extending the HFFMM machinery to other BIE problems, a preprocessing step

is necessary. This preprocessing step is needed in order to decouple the tree con-

struction from the geometric details of the mesh, while still allowing for efficient

adaptive subdivision of the region of interest. Efficient subdivision demands that

the tree construction step have information about the size and placement of the

mesh elements. However, it does not depend critically on their shape. Therefore, we

can obtain an effective shape-agnostic tree construction algorithm by replacing each

of the mesh elements (triangles, rectangles, line segments, etc) with its minimum

bounding ball. Calculating the minimum bounding sphere for the current set of

available geometric elements in KEMField (line segment, rectangle, triangle) is not

difficult. However, with a modicum of additional work, a more general algorithm

(see [89]) capable of handling any mesh element representable by a convex hull or

point cloud can be used. All that the general bounding ball algorithm requires is

that the mesh element be able to produce the point cloud of their extrema (i.e. the

three vertices of a triangle) which is a trivial proviso for most shapes. An example

of this preprocessing step applied to the KATRIN detector region mesh of [53] is

shown in figure 7-1.

7.3 Tree Structure

The skeleton on which the HFFM method is built upon is the region tree data struc-

ture. This structure is composed of a collection of linked nodes which are designed

to encapsulate the minimum amount of information needed in order to navigate

over the tree. However, they must also be flexible enough to be able to provide

access to the data structures needed to solve an arbitrary BIE. In order to simultane-

ously accomplish these two goals, the node class KFMNode inherits from the class

KFMObj ectCollection which is based around the template class GenScatterHierar-

chy using KFMObjectHolder. The details of the template class GenScatterHierarchy

149



diameter
0.0521 0.05

-=0.04

0.000174-

0.03

0.02

0.01

Figure 7-1: Depiction of the size and placement of the bounding balls generated
from applying the pre-processing step to the KATRIN detector region mesh.

and its usage can be found in Alexandrescu's classic book [7]. The basic definition

of KFMbjectHolde r and KFMbjectCollection can be found in listings 7.1 and 7.2

respectively. For the sake of brevity, throughout this chapter the majority of the

implementation details of individual classes will be omitted, leaving only the class

structure exposed in the code listings.

template<typename T>

class KFMObjectHolder

{
public:

KFMObjectHolder():fObject(NULL){;};

virtual -KFMObjectHolder(){delete fobject;};

T* fObject;

Listing 7.1: KFMObjectHolder.hh

template< typename TypeList >

class KFMObjectCollection: public KGenScatterHierarchy<TypeList, KFMbjectHolder >

{

public:

KFMObjectCollection(){};

virtual -KFM~bjectCollection(){};

};

Listing 7.2- KFMObjectCollectionhh
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To instantiate a concrete node class for a particular BIE, the template class

KFMNode of listing 7.3 accepts a typelist specifying the object types which will be

constructed and referenced by each node.

template<typename ObjectTypeList>

class KFMNode: public KFMbjectCollection<ObjectTypeList>

Listing 7.3: KFMNodehh

For example, the typelist of classes which are needed to construct the node type that

is used for solving electrostatic problems in three dimensions with the collocation

method is given in listing 7.4.

typedef KTYPELIST_9(KFMCubicSpaceTreeProperties<3>,

KFMElectrostaticElementContainerBase<3, 1>,

KFMIdentitySet,

KFMIdentitySetList,

KFMCollocationPointIdentitySet,

KFMCube<3>,

KFMNodeFlags<2>,

KFMElectrostaticMultipoleSet,

KFMElectrostaticLocalCoefficientSet) KFMElectrostaticNodeObjects;

typedef KFMNode< KFMElectrostaticNodeObjects > KFMElectrostaticNode;

Listing 7.4: KFMElectrostaticNodehh

In this way, a node can be built out of several disparate classes with minimum

additional work. Those operators which disregard the node contents altogether

(particularly navigation operations) can avoid dependency on every possible con-

crete node type by accepting a typelist or node type as a template parameter. Data

reuse between different nodes is also possible with this object collection scheme, so

we can avoid keeping multiple copies of the same object in memory.

It is good practice to ensure that the 'operations that are to be applied to each

node have access to all the information specific to the action at hand, but no more

than necessary. This is done so as to avoid introducing spurious dependencies

between the various classes and libraries through the typelist present in the node

template mechanism. This is made possible through the use of the template class

KFMObj ectRet riever given in listing 7.5. This template class accepts both the full
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typelist and a specific data type to be retrieved. The object of interest can then

be extracted from the data collection of a node through the use of a static cast

which introduces no runtime overhead. This adds a layer of indirection needed to

avoid dependencies between the end user (a specific operation) and the full typelist

containing all the data types in use with a particular node type. It also ensures that

a certain level of encapsulation is maintained. This retrieval mechanism allows all

the various tree operations access to the data they need without them being aware

of the concrete node type and its full typelist. It also enables each node type to be

extended at any time without necessitating the modification of any of the other the

operations which act upon it.

template< typename ObjectTypeList, typename ObjectType>
class KFMObjectRetriever

{
public:

KFMObjectRetriever () {};

virtual -KFMObjectRetriever (){};

static ObjectType* GetNodeObject(KFMNode<bjectTypeList>* node)

{

return staticcast< KFMObjectHolder<ObjectType>* >(node) ->fObject;

}

static void SetNodeObject(ObjectType* objptr, KFMNode<ObjectTypeList>* node)

{

static-cast< KFMObjectHolder<ObjectType>* >(node) ->fObject = obj-ptr;

}

Listing 7.5: KFMObjectRetrieverhh

7.4 The Actor System

The actors are responsible for applying particular operations to the data contained

by the region tree. Since we want to avoid any dependencies between the tree/node

structure and the problem data encapsulated by the nodes, the node actors must

inherit from an abstract template class which accepts an arbitrary node type as
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template<typename NodeType >
class KFMNodeActor
{

public:
KFMNodeActor(){};
virtual -KFMNodeActor () {};
virtual void ApplyAction( NodeType* node) = 0;

Listing 7.6: KFMNodeActorhh

in listing 7.6. Typically, we are interested in applying a set of operations over the

entire tree or some subset of nodes which can only be located by visiting the entire

tree. This can be done in two main ways: either by visiting each node in a depth-

first (recursive) fashion, or in a breadth-first (corecursive) manner, according to

algorithm 8. Since this visitation procedure is so common, it is useful to separate

out the tree navigation process into two separate actors, KFMRecursiveActor and

KFMCo recu rsiveActo r. These two classes can then be used to traverse the tree and

apply any arbitrary operation to the nodes of interest. They also accept options to

perform the visitation in reverse order. In addition to these two tree traversal actors,

there are two other classes of general purpose actors. These are KFMCompoundActor,

which can be used to apply a series of operations collectively to each node all at

once, and KFMConditionalActor, which decides whether to apply a certain action

to a particular node depending on some user provided conditional statement.

7.5 Data Structures

It is worthwhile to briefly review the exact contents of the node data structures

pertaining to the Laplace BEM problem. These are given in the typelist of listing

7.4. Several of these objects are common to any fast multipole method in three

dimensions, regardless of the BIE that is being solved. These are:

1. KFMCubicSpaceTreeProperties<3>: This class contains the data needed to con-

struct a d3 -tree. In particular, it manages the number of divisions at the top,

dt, and subsequent tree levels, d, the zero-mask size z, the maximum tree

level nmax, and the total number of nodes. These quantities must be accessible
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through any node in the tree in order for visiting actors to obtain the informa-

tion necessary to complete their operations. It is templated on the dimension

of the problem.

2. KFMIdentitySet: This class contains a list of all the mesh elements which are

owned by its respective node. This list can then be used to retrieve the relevant

mesh elements from their container.

3. KFMIdentitySet List: This class is a list of pointers, which reference all objects

of type KFMIdentitySet that belong to a node's neighbors. Access to the

complete list of nearby mesh elements is required in order to perform the local

field evaluation. Keeping pointers to neighboring lists is not strictly necessary,

but helps to avoid time consuming nearby-neighbor searches over the tree.

4. KFMCollocationPointIdentitySet: This class is a list of all the collocation

points contained in a node's region of responsibility. Keeping track of the

collocation points as separate entities is necessary because the mesh elements

are sorted according to the center of their minimum bounding ball, which

may not necessarily coincide with the mesh element centroid (the collocation

point).

5. KFMCube<3>: This class stores the center and side length describing the region

cube associated with its node. It is templated on the dimension of the problem.

6. KFMNodeFlags<2>: In order to keep track of which nodes need certain op-

erations applied to them, it is useful to provide two boolean flags indicat-

ing whether a node contains sources (mesh elements) or targets (collocation

points). This class is templated on the number of boolean flags desired for the

problem at hand. For electrostatics there are only two flags.

The data structures which are specific to solving electrostatics problems are:

1. KFMElectrostaticElementContainerBase<3,1>,

2. KFMElectrostaticMultipoleSet,
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3. KFMElectrostaticLocalCoefficientSet.

The element container class is templated on the physical dimension of the problem

and on the number of degrees of freedom of the basis functions used on the mesh

elements. It is provided as a means to retrieve individual mesh elements for various

operations. The multipole and local coefficients sets are somewhat self-explanatory

and serve to simply store the expansion coefficients pertaining to the spatial region

associated with each node.

7.6 Generation of Expansion Coefficients

The generation of the multipole and local coefficient expansion coefficients pro-

ceeds according to the rules laid out in the previous chapter. The first step is to visit

every node in the tree with the initializer class KFMScalarMomentInitializer which

allocates space and zeros out the memory for each expansion. Then, the tree is

traversed by the moment distributor, KFMElementScalarMomentDist ributor, which

collects information about all of the mesh elements and their multipole expan-

sion centers. This data is passed to the KFMElementMomentBatchCalculator which

carries out the calculations necessary to obtain the multipole expansions for each

mesh element and returns the results to the distributor. The moment distributor

then sums up all of the relevant moments into each node's multipole expansion.

Following this process, the multipole moments of each region are visited by the

KFMScalarMomentRemoteToRemoteConverter actor, which executes the multipole-to-

multipole transformation necessary to complete the upward pass. The conversion

of the multipole moment expansions into local coefficient expansions is then car-

ried out by the KFMScala rMomentRemoteToLocalConverter. This actor must take care

to collect the multipole moment expansions in a way that respects their relative

spatial positions and then properly sum the local coefficient contributions into the

neighboring nodes. Finally, the downward pass is handled by the KFMScala rMo -

mentLocalToLocalConverter, which adds the contributions from far-field regions

into each child node's local coefficient expansion by way of their parent. Each of
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the aforementioned classes are virtual and can be overloaded with any number of

additional techniques to perform the same operations. This allows the end user or

developer to adapt the algorithm to exploit any parallelism that might be present in

the computer architecture they have available.

7.7 Sparse Matrix Generation and Handling

The generation of the near-field matrix elements is also carried out by a series of ac-

tors traversing the region tree. Before this is done, it is assumed that all of the mesh

elements have been sorted into nodes and the classes KFMIdentitySet, KFMIdenti -

tySetList and KFMCollocationPointIdentitySet have been initialized and filled.

It is important to note that while the number of elements in the sparse near-field

matrix is proportional to 0(N), this can still result in a large memory requirement

depending on the parameters chosen by the user. On occasion, this memory require-

ment can exceed the amount of RAM on the machine in use, requiring out-of-core

memory access. Figure 7-2 shows an example of a typical sparse matrix generated

by the near-field terms in a three-dimensional Laplace BEM problem. When the

memory usage is large, it is necessary to store the matrix elements in an efficient

way so that they can be easily read back from out-of-core memory on disk storage.

To accomplish this, we construct the near-field matrix in two stages. The first stage

traverses the region tree and determines the structure of the sparse matrix, while

the second stage performs the actual calculation of each matrix element and streams

it to disk. The sparse matrix format we use to store the near-field information in

is referred to as the block compressed row storage (BCRS), or dense block format

[22]. This sparse matrix format is particularly helpful for two reasons. The first

is that the row and column indices are readily available, being the indices stored

in the KFMCollocationPointIdentitySet and the KFMIdentitySetList respectively.

Secondly, the memory access pattern of the BCRS format allows for rapid evalua-

tion of the sparse matrix-vector product because it avoids indirect addressing as

much as possible. Unlike other sparse matrix formats such as coordinate list (COO)
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or dictionary of keys (DOK), each of the individual block is relatively compact

and only needs access to a limited number of vector elements rather than needing

random access to the entire vector under multiplication [22]. An example of the

BCRS compression format is shown in figure 7-3.

The matrix structure determination stage is carried out by the structure generator,

KFfenseBlockSparseMatrixStructureGenerator. This class visits each node and

examines the lists of mesh elements contained by the nearby-neighbors (which
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Figure 7-3: An example of the block compressed row storage (BCRS) format applied
to a matrix with sparse entries. The row and column indices run along the left
and upper edges respectively. Only the non-zero matrix elements along with their
row/column coordinates (indicated by the dashed and dotted boxes respectively)
are stored.

serve as the column indices of the non-zero matrix entries) and the list of collocation

points (which serve as the row indices). From these sets of indices, we can then

compute the block size of the matrix elements representing all of the near-field

interactions of a particular node. When the matrix elements have to be stored out-

of-core, efficient read back requires that the data must be buffered in a certain chunk

size. The structure generator determines into which chunk each series of matrix

element blocks and their index collections should be grouped. This separation

into chunks allows us to approximately fill the buffer size without exceeding it

during I/O operations. The information describing which chunk each block and its

indices belongs to, as well as the memory offset of each matrix block and indices

is written to a structure file. The sparse matrix structure file is generated first so

that the total size of the matrix is known, which allows the user to intervene if the

parameters that were chosen result in excessive memory usage. This structure file

is then used by the KFMDenseBlockSparseMatrixGenerator to calculate each matrix

element needed while streaming this data continuously to disk.

In order to apply the near-field matrix to a vector, the process is carried out

in reverse. The matrix elements are streamed from disk by reading out buffered

chunks into memory. Then, the structure file is used to reconstruct the matrix
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by extracting the matrix elements and indices of each block from the buffered

memory chunks. The reconstructed matrix block is then applied to the vector.

This is repeated until each block has been multiplied against the vector. Since the

BCRS Structure File:
* Column Chunk Index
* Column List Offset
" Column List Size - -

" Row Chunk Index
" Row List Offset
" Row List Size

" Element Chunk Index
" Element Block Offset +
" Element Block Size

(a)

Column Index F iffe

Row Index File 2-1: 9 2 1 3 2
5:4 7 2 83
:6: 2 8 7 5 9

Matrix Element File

(b) (c)

Figure 7-4: The relationship between the files representing the BCRS sparse matrix
form. In (a) the structure file stores information describing the shape and location of
each block's data. In (b) the matrix element, row, and column indices are stored in
their respective files in a compressed format. In (c) a matrix block is reconstructed
from decompressed data and ready to be used in the application of the matrix-vector
product.

generation of the near-field sparse matrix files can be time consuming, it is helpful

to allow the reuse of these files when encountering the same geometry and tree

parameters. For this reason, the matrix, index, and structure files are stored with a

naming convention which involves the MD5 hash of the relevant tree parameters

(dt, d, z, nmax, q) and the meshed geometry in order to facilitate fast look up and

matching for reuse.

7.8 Tree Balancing

One important aspect regarding the practical implementation of the HFFMM algo-

rithm, in conjunction with a Krylov subspace solver which needs further discussion,
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is the need to balance the computational work required by various parts of the

matrix-vector product calculation. Specifically, solution progress is most efficiently

made by ensuring that the amount of arithmetic work is evenly divided between

the calculation of the near-field (sparse matrix) and far-field (HFFMM) portions

of the complete matrix-vector product. The proportion of time spent on these two

parts of the computation is determined by the structure of the tree subdividing the

region of interest.

The region tree by default is constructed according to the rules 6.1 through

6.4. However, minor changes to any of these rules can substantially affect the

resultant tree structure. For instance, the subdivision condition as stated according

to rule 6.3 causes a very prolific subdivision of region of interest. Overly aggressive

subdivision leads to a tree which is overpopulated in comparison to the number of

mesh elements. An excessive number of tree nodes will in turn cause the far-field

portion of the matrix-vector calculation to dominate the computation time.

In order to modify the construction of the tree in a way which leads to a more

equitable distribution of computation, a different subdivision strategy needs to

be used. This subdivision strategy is referred to as a balanced strategy because

it is intended to evenly divide work between the near and far-field terms. The

default subdivision strategy of rule 6.3 is termed the aggressive strategy. In order

to construct a tree which is properly balanced, the decision to subdivide a node is

made based on the amount of computation time that would be required to evaluate

the field at the collocation points it contains in two simplistic situations. The first

situation is that the node remains unsubdivided, requiring a number of near-field

evaluations which are roughly equivalent to the evaluation of a matrix-vector

product of size a x b. Here, a is the number of mesh elements owned by the node,

and b is the number of mesh elements owned by its nearby neighbors. In the second

situation, the node is considered to have been subdivided. In the subdivided case

it is assumed that the arithmetic costs necessary are those due to evaluating the

HFFMM far-field calculation over this node and its immediate children. In this case,

the only remaining near-field evaluations are those due to mesh elements which
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are too large to be distributed to the child nodes.

Naturally, it is rather difficult to evaluate the cost of these two different scenarios

directly from operation counts, since even if a realistic count of the number of

operations needed could be obtained, variations in hardware performance (both

within a single machine and across multiple machines) would likely render them

unreliable. Instead, a more empirical approach to scoring each situation is taken.

To determine whether a node subdivision would result in reduced computation

time, the two scenarios are scored using a weighted sum of parameters. The

parameters come from simple theoretical estimates of the number of operations

required, and the weights come directly from a series of timing tests performed

during initialization. The two timing tests needed to gauge the cost are based on

the most computationally intensive parts of the matrix-vector product: the sparse

matrix-vector product and the evaluation of an FFT of the size needed by the

multipole-to-local transformation. The score of each scenario is then calculated and

the decision to subdivide the node in question is made according to rule 7.1.

Rule 7.1 Let there be a node, .Ij, which lies in a three dimensional tree at level, m < nmax.

In addition, assume the number of mesh elements owned by Ai (without subdivision) is a,

and that the number of mesh elements owned by its nearby-neighbors be b. Furthermore,

assume that if Ai were to be subdivided, that the number of mesh elements it would continue

to own (those not given to its children) would be c. Also, assume that {d, p, z} are the

parameters chosen to govern the application of the HFFMM, where d is the number of

divisions, p is the degree of the multipole expansions, and z is the zero-mask size. Now, let

the average time required to evaluate a sparse matrix-vector product consisting of r non-zero

elements be a, and let P be the time needed to evaluate a single three dimensional FFT of

total size A 3, where A = 2d(z + 1). Then, we can compute two scores for the node, A'; the

subdivided situation score, fw, and the un-subdivided situation score, fw, as follows:

fE= ab) (7.1)
r
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and

fm = 2p4 3 + (b) (7.2)
r

If fw < fw, then the node, Ai, is subdivided, otherwise it is left unchanged.

It should be noted that certain caveats may apply to the use of rule 7.1. The first

important caveat is that the weight applied to the cost of the sparse matrix-vector

product evaluation, P, may vary substantially depending on whether the sparse-

matrix is small enough to fit in RAM, or is too large and needs to be off-loaded to

a hard disk. Since the complete size of the sparse matrix cannot be known before

the entire region tree is constructed, it is usually best to use the most conservative

estimate in order to avoid excessive memory usage. The second caveat is that when

the Krylov solver is used in conjunction with a preconditioner (usually an iterative

solver coupled with a low-degree HFFMM approximation) the relative proportion

of time spent in the near-field evaluation may increase. Typically in this situation

the simplest way to bias the scoring back towards a more balanced strategy is to

re-weight the cost of the FFT calculation by evaluating the scoring functions with an

artificially smaller value of the expansion degree, p. Usually an appropriate choice

is to simply compute the weights with the value of p used by the preconditioner.

7.9 Parallel Implementation on Graphics Processing

Units

In order to take advantage of the capabilities of modern computer hardware, it is

necessary to make use of parallelism whenever possible. Graphics Processing Units

(GPUs) provide a tremendous amount of computing power in a relatively small

and inexpensive package. However, in order to exploit the capabilities of these

devices, we must organize our calculations around the single-instruction-multiple-

data (SIMD) paradigm which governs the architecture of GPUs. The organization

of most GPUs relies on having a large number of relatively simple (at least in

comparison with a general purpose CPU) processors along with several layers of
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memory. A graphical representation

7-5.

CPU

System RAM

of a generic GPU system is exhibited in figure

DMA

Figure 7-5: Basic architecture of a GPU enabled system.

The array of processors within the GPU each contain a core which executes the

SIMD instruction stream along with a small portion of Li cache memory and a

special function unit (SFU). Together, these processors act on data in the local (L2

cache) and global memory (GPU RAM). To leverage the power of this architecture, it

is necessary for the programmer to manually manage the movement of data through

each layer of memory while maintaining synchronization between each running

thread. To do this in an abstract and machine independent way, the OpenCL

programming language has been developed by the Khronos group [112]. OpenCL

organizes the SIMD computation needed by the program into a series of sequentially

executed kernels. Kernels are small programs containing the instructions to be run

in parallel on the GPU processors. The GPU processor cores then all execute the

163

GPU

Controller/Thread Scheduler

SIMD Core] SIMD Core M SIMD Coe

L[ Cache LI Cache [1 [e C

SIMD Core SIMD Core r SiMD] Core

L[ Cache Li Cache L Cache Li Cache

L2 Cache/Local Memory

SIDC SIMD SIMD CIMD Core SIMD Core

Li Cache Cache [1 [e C
FSFUI ~~FU] SUF

SIMD Core re SIMD Core

u Cache l I Cahe l] aCs l | ah

GsFU ] A / b M1E mEr

GPU RAM/Global Memory

J-



same kernel instruction stream in lock step upon different data sets. Since the

simple GPU processors lack branch prediction capabilities, if a branch condition

is encountered in the instruction stream with different results between threads,

then both sides of the condition must be executed sequentially before proceeding.

Therefore, the programmer must take care to avoid divergent branch conditions

across the threads which are running in parallel.

An additional complication is that the memory management must be handled

explicitly between the several layers of memory on the GPU. Before executing a

kernel to process the data, the host CPU must transfer memory from the main

compute RAM to the GPU's RAM. This is often accomplished through direct mem-

ory access (DMA) in order to avoid wasting CPU processing time. This memory

transfer is typically quite slow and must be avoided whenever possible. However,

in OpenCL the data in the GPU's RAM can be maintained in a persistent state. So

provided that the necessary data fits in the available space, the initial transfer only

needs to be done once. Once data is in the GPU's global RAM the kernel code must

also explicitly handle access to the RAM and transfer data to the local (private)

cache in order to reduce memory access latency. Poor memory access patterns

can drastically reduce the performance of GPU code, and not all calculations (e.g.

sparse matrix-vector multiplication) are amenable to the memory architecture of

the GPU.

7.9.1 OpenCL Kernels

OpenCL excels at processing problems with high arithmetic intensity but does

poorly when there is a large number of conditional statements. For this reason, only

the most computationally intensive portions of the HFFMM were ported to run on

the GPU. On account of the algorithm complexity and the amount of branching

needed by the tree construction and tree traversal, these subroutines were not

ported to the GPU. The primary subroutines ported to run on the GPU include:

. The source-to-multipole moment (P2M) calculation.
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* The multipole-to-multipole (M2M) translation calculation.

" The multipole-to-local (M2L) transformation convolution (both the FFT and

the point-wise summation).

" The local-to-local (L2L) transformation calculation.

A basic outline of the program flow involving GPU acceleration is shown in figure

7-6.

Of all the ported routines, the source-to-multipole calculation is the easiest to

parallelize. This is due to the simple fact that all of the individual mesh elements

are completely independent of each other. For this task, each thread is assigned the

computation of all of the moments of a single mesh element. Since the memory

required to store the multipole expansions of all of the mesh elements typically

exceeds that of the GPU's RAM, each pass of the kernel responsible for the source-

to-multipole calculation must be staggered with a kernel whose task is to handle the

summation of multipole moments into the expansions of the leaf nodes of the tree.

During the reduction pass care must be taken to avoid race conditions. To avoid

this problem, the number of unique nodes present among the mesh elements in the

buffer is determined and each thread is responsible for summing the expansion

contributions of a single unique node.

Once the multipole moment expansions are available for all nodes containing

sources, the next step is the upward pass. This process is organized by following the

region tree traversal in reverse recursive (depth-first) order. The CPU host performs

the tree traversal and in this process identifies the relationships between the child

and the parent nodes. The node identities are then passed to the kernel running on

the GPU, where they are used to look up the appropriate expansion data in the GPU

buffer. Once an appropriately large list of node identities is available to the GPU

kernel, the multipole-to-multipole expansion transformation process is executed. In

a manner similar to the source-to-multipole calculation, a separate reduction pass is

needed in order to avoid race conditions in the summation step.

After the multipole expansions of each source region have been calculated,
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Figure 7-6: Program diagram of the OpenCL accelerated calculation, showing the
instruction streams and data objects which exist concurrently. Time flows from the

top to the bottom. The left half of the chart consists of data and execution objects
existing exclusively on the host (CPU) device, whereas the right half belongs to
objects dwelling on the GPU device. The green and blue shaded circles represent
control and arithmetic operations belonging to the CPU and GPU respectively. The

purple and red shaded rectangles represent the data objects on each device. The
solid arrows indicate the flow of data, while the dashed arrows indicate the control
hierarchy between different operation subroutines.
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the next step is to perform the multipole-to-local coefficient conversion on these

expansions. This is also managed by having the CPU host perform a corecursive

(breadth-first) traversal of the region tree, which generates a list of associated

source and target nodes to participate in the transformation. The multipole-to-local

transformation kernel then performs the Fourier transform accelerated convolution

for many node collections at once and writes the result into a buffer which can then

be reduced by a separate summation kernel.

Following the multipole-to-local conversion, the local-to-local transformation is

the last remaining GPU accelerated step. It functions in a way very similar to the

multipole-to-multipole transformation step, except that the tree traversal is done in

forward recursive order. In addition, no separate summation kernel is necessary to

avoid race conditions for the local-to-local transformation, because each child node

receives only a single contribution from its parent.

Once the local coefficient expansions are available for all regions containing

targets (collocation points) ,the expansion data is passed back from the GPU to the

CPU to be used for far-field evaluation. In principle, the far-field evaluation step

could also be accelerated by the GPU, but since it is responsible for only a small

fraction of the total execution time, this is not considered necessary.

7.10 A Parallel Implementation Using the Message

Passing Interface (MPI)

Another paradigm for exploiting parallelism is the multiple-instruction-multiple-

data (MIMD) technique, most commonly associated with large computing clusters2

This type of parallelism is well suited for algorithms which contains a large number

of conditional statements and whose control flow is highly dependent on the data

they are processing. On account of this property, MIMD is not well suited to the
21t should be noted that the MIMD paradigm is not the same as multiple-program-multiple-data

(MPMD), sometimes known as high-throughput computing (HTC), which consists of running many
entirely independent processes which do not maintain any type of synchronization or communica-
tion.
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dense collection of relatively simple processors on a GPU, but it is ideally suited for

handling the control of the HFFM method over a cluster of CPU-based machines

which may or may not be GPU accelerated.

The Message Passing Interface (MPI) is a standard for the set of libraries used to

abstract away the details of synchronizing and communicating between a collection

of processes executing disparate tasks directed toward a common result. There

is a large variety of implementations of the MPI standard, however, KEMField is

typically linked against the version distributed by the OpenMPI collaborative [86].

OpenMPI provides the functions needed to construct arrays of processes with

specific topologies, maintain synchronization between these processes, and perform

synchronous and asynchronous communication between various subsets of running

processes.

7.10.1 Static Load Balancing

Some minimal degree of synchronization obviously must be maintained between

individual MPI processes so they can cooperate in computing a matrix-vector

product for a Krylov subspace solver. This is usually accomplished through the use

of a barrier call which forces all processes to reach the same point in the program

before they are allowed to proceed. However, processing power is wasted any time

a thread is left idle while waiting for others to finish. Therefore, it is important

to find a way to balance the work loads between processes to ensure as little time

is wasted as possible. For example, it would be extremely inefficient to give one

process on a computing cluster 99% of the work load while dividing the remaining

1% over a myriad of other processes.

Since our problem (solving Laplace-BVP) is oriented around a spatial region

(containing the meshed boundary of interest), the primary technique for properly

apportioning the work load is domain decomposition. In a domain decomposed

problem, each separate process is responsible for the work in some spatial subset of

the region enclosing the mesh. Unfortunately, determining a domain decomposition
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which produces an appropriate partitioning of the necessary work among several

processes is very difficult. In the ideal scenario, a uniform (spatial) division of the

region of interest across all the available compute nodes ought to yield an even

distribution of the arithmetic work. However, most real world geometries we wish

to consider are highly non-uniform, so such a naive approach produces an unsatis-

factory work distribution. This task is further complicated by the fact that many

computing clusters contain heterogeneous hardware with varying performance.

Given these complications, it generally best to take a more heuristic approach to the

domain decomposition problem than to attempt to deduce the optimal partition

from theory.

Before attempting to apportion work among several MPI processes, it is neces-

sary to have the HFFM method first construct the region tree. Each process needs a

copy of the entire region tree in order to determine how to execute the algorithm

operations over its domain and communicate relevant data to other processes. Once

each process has a copy of the full tree structure3 , the domain decomposition can

take place. This decomposition is done entirely at the top level of the tree. Work

is distributed discretely by assigning each process responsibility for the region

contained by some set of nodes at the top level. While the domain decomposition

process could in principle cross tree levels, restricting it to the top level is helpful in

reducing both the amount and the complexity of the needed interprocess communi-

cation. However, a consequence of limiting the domain decomposition to the top

level of the tree is that it is important to use as large a value as reasonably possible

for the number of top level divisions, dt. Using a large value for dt provides better

granularity in the amount of work that can be apportioned between each process,

and in turn, results in better load balancing. This is in fact the reason why the

number of top level divisions is provided to the user as a separately controllable

parameter.

Immediately following the region tree construction, all of the top level nodes
3 The tree construction is completely deterministic, so in practice, it is simpler to have each process

construct its own copy of the region tree itself rather than having this done by a single process and
then passing the needed data between processes.
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are uniformly divided between all of the available MPI processes with no regard to

their contents. To find a more equitable work distribution, we first have a scoring

mechanism assign a work value to each node at the top level of the tree. This scoring

mechanism takes into account the estimated amount of arithmetic work needed to

process the region contained by each top level node. The score of each top level

node is simply the total sum of all the scores of each undivided node (see equation

7.1) and each subdivided node (see equation 7.2) encountered during the recursive

visitation of the portion of the region tree on its branch. Once the work score of

each top level node is known, we then need to find a way to distribute nodes across

the MPI processes in a way which equalizes the work done by each thread. This

multi-way partition problem is a variation on the knapsack problem and is known

to be NP-complete and quite difficult to solve exactly [144]. However, finding the

optimal solution is not necessary for our purpose; an approximate solution will

suffice. This greatly simplifies the task and allows us to use a simple simulated

annealing approach.

Load balancing through simulated annealing works by stochastically minimiz-

ing an energy function. Since the time-to-solution is governed by the slowest thread

(i.e. the one which does the most work), an appropriate choice for the energy

function to be minimized is the maximum of all the thread work scores. We note

that this choice of energy function does not necessarily balance the work done by

each MPI thread, but rather attempts to minimize the cost of the worst case work

load. This allows a little more flexibility in choosing a solution and yields faster

convergence to an acceptable work partition.

To perform the minimization we start with the initial node-thread distribution

and then iteratively permute the partitioning by taking a random node from one

process and giving it to another. Upon this permutation, we then compute the

energy function of the new state. If the energy is lower than the previous state, we

always make the transition. The permutation is disfavored if the new energy is

higher than the previous state. However, we do not completely ignore this new

state, but rather allow for some non-zero probability to make the transition anyways.
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This transition probability is governed by the size of the energy difference and an

artificial temperature which is gradually lowered after each iteration. Allowing

disfavored transitions allows for a more exhaustive search of the parameter space

and yields a greater likelihood of finding the global minimum. The node-thread

partitioning method is given in algorithm 9.

Algorithm 9 Assign top level nodes to MPI threads to balance work load.

Input: The d3 top-level nodes {A} and the number of threads TMpI < d3
1: Arbitrarily sort top-level nodes into TMpI sets Sk associated with the k-th thread.
2: Compute the work scores associated with each top-level node: si = s (i).
3: Compute energy function of initial state Eo = max E s(Ar;).

k Ni C Sk
4: Set initial temperature to to = Eo /2.0, y = 0.95, and iteration count n = 0.
5: while n < dt x TMp1 do
6: Randomly choose two sets Sa and Sb with 0 < a, b < TMpI.
7: Randomly choose a node Ari E Sa. Move MV from Sa to Sb-
8: Compute the new energy function of the current state E, = max S (Ari)

k .Ni=Sk
9: if E, > E, 1- then

10: Compute probability for unfavored transition p - e-(Ei-E1)/t_1i
11: Randomly generate x E [0,1
12: if x > p then
13: Restore original state: Move MN back to Sa from Sb.
14: end if
15: end if
16: Update t,= t, and n = n + 1.
17: end while
Output: The TMpI updated sets Sk listing the top-level nodes associated with each

MPI thread.

It should be noted that since this is a stochastic algorithm, it causes the MPI

threads to diverge during execution. However, since this optimization problem is

embarrassingly parallel, the thread divergence can be used to our advantage as a

means of exploring the solution space more extensively. The best solution among

the candidates generated by each MPI process is taken to be the final node-thread

distribution. Figure 7-7 demonstrates graphically the node-to-thread distribution

before and after the simulated annealing process has been performed to re-balance

the work load.
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(a) Initial node-process distribution (b) After node redistribution.

Figure 7-7: Visual comparison of top level node distribution among MPI threads
before and after static load balancing has been performed through simulated an-
nealing. Nodes belonging to the same process are shaded the same color. In this
example dt = 8 and the number of MPI threads is TMpI = 8.

7.10.2 Task Division

Until now, we have implicitly assumed that while each of the MPI threads may be

responsible for processing a different subset of the region tree, it is essentially per-

forming the same task as all the other threads. However, unlike SIMD parallelism,

this is not a requirement in the MIMD paradigm. This gives us the freedom to allo-

cate specific tasks to certain MPI threads. We can use this ability to simultaneously

evaluate the near-field and far-field portion of the matrix-vector product.

This task-based division of work is advantageous when running on hybrid

computing clusters, that is to say, clusters which have GPU accelerators available

on their compute nodes. Typically, when running on such a cluster, while calcula-

tions are being run on the accelerator device (GPU), the CPU is generally left idle.

However, we can make better use of these types of machines when KEMField is

compiled with both MPI and OpenCL based parallelism enabled. To make use of

the available CPU processing power while waiting for results from the accelerator

device, we can assign a separate MPI thread to run on it and perform some useful

work. In this case, we can assign the CPU the task of evaluating the near-field

(sparse matrix) portion of the matrix-vector product.

Having the GPU device evaluate the far-field while the CPU evaluates the near-
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field effects is a division of work which plays to the advantages of each type of

device. The far-field evaluation (requiring the application of the HFFMM) has

high arithmetic intensity (requiring the evaluation of many small FFTs) and little

divergence among threads. This makes the far-field evaluation well suited to

running on GPUs. The near field (sparse matrix) evaluation on the other hand is a

task which is generally ill-suited to SIMD type devices such as GPUs. This is for two

reasons. The first is that there is a large amount of data dependent branching which

causes thread divergence. This is detrimental to performance on SIMD devices.

The second reason is that it requires many small and frequent reads from RAM.

This also negatively affects performance on devices such as GPUs because of their

small local memory cache and the manner in which they access their global memory

(RAM) bank. GPUs favor coalesced reads of large chunks of memory which is

difficult to adapt to the task of sparse matrix-vector product evaluation without

wasteful access of unnecessary data. However, CPUs excel at branch prediction and

have much larger local memory caches which favors their use for this task.

Therefore, to maximally exploit the available hardware (specifically hybrid

clusters) the KEMField implementation of the HFFMM algorithm employs both MPI

and OpenCL. Furthermore, we leverage the MIMD ability of MPI to assign work

loads which are best suited to each aspect of the hardware.

7.11 Field Map Generation and Calculation

So far, we have extensively discussed the HFFM method as it pertains to solving the

Laplace boundary value problem using the BEM, but we have neglected to discuss

its use for the fast calculation of the electric potential and field at arbitrary points.

Since solving the Laplace BVP with BEM only requires us to evaluate the field

and potential at fixed points (collocation points), we are allowed to make certain

optimizations (such as using a sparse matrix to evaluate the near field terms) which

do not hold for arbitrary locations. However, for charged particle tracking, we must

be able to evaluate the potential and field at any point in the region of interest.
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For the purpose of creating a field map, the HFFM method proceeds to compute

the local coefficient expansions in much the same manner as when used for eval-

uating the Laplace BVP system matrix-vector product. However, in this case we

need to construct local coefficient expansions for all leaf nodes in the region tree,

not just those which contain collocation points. Hence, we cannot reduce the work

needed by pruning nodes from the tree which do not contain mesh elements. This

is because we cannot predict in advance where charged particles may be tracked.

Unfortunately, this leads to a much larger memory usage for the local coefficient

expansions. While this is unavoidable, if we desire field evaluation which is as fast

and accurate as possible, adjusting the parameters {dt, d, z, P, nmax} governing tree

construction allows a great deal of user control over the relative importance given

to speed, accuracy and memory usage.

Once the local coefficient field map is constructed, the first step in the field

calculation is locating the leaf node containing the point of interest, p. This can

be done in a simple, recursive manner. At any level of the tree the spatial indexes

(ao, a1, a2 ) of the child node containing p can be calculated from the center, c, and

side length, 1, of the cube associated with the parent node according to equation 7.3:

ao Ax px - (cx - 1/ 2 )
a 1 d I I d I

al =[Ay] py - (cy - 1/2)] (7.3)
d d

a2 Az pz - (cz - 1 / 2 )

During the first step in the recursion, when calculating the containing child node at

the top level of the tree, if dt 3 d then equation 7.3 should be modified accordingly

The recursion terminates once a leaf node (a node with no children) has been

reached.

Upon determination of the leaf node containing p, we must have quick access to

the list, C,, (the direct evaluation list) of all the mesh elements which are considered

to be in the near-field. These nearby mesh elements must have their contributions

evaluated directly, as their contribution is not included in the local coefficient
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expansion in order to maintain accuracy. This set of mesh elements are those which

are either owned by the leaf node containing p, its nearby-neighbors, or by any of its

parents or their respective nearby-neighbors.

Since we want to evaluate the field quickly, we need to be able to construct the

direct evaluation list faster or at least as fast as it takes to evaluate the field from the

elements on the list. However, in order to construct the direct evaluation list for a

leaf node, a fair amount of work is necessary to perform the needed tree traversal.

This is because we must visit all of a leaf node's nearby-neighbors and all of the

nearby-neighbors of all its parent nodes. This process can be quite expensive when

the tree is deep and is unfortunately too slow to perform on an as-needed basis. On

the other hand, it can be quite memory intensive to pre-compute and store the direct

evaluation list for each leaf node. So as a compromise between these two extremes

(as-needed vs. pre-computed), we can instead have each leaf node keep a set of

references to the lists (which are stored by the KFMIdentitySet object associated

with each node) of nearby mesh elements which would be merged to form the direct

evaluation list. This set of references is managed by the class KFMIdentitySet List.

This allows the list of mesh elements in the near-field to be constructed quickly at

the time the field evaluation is needed, without navigating the region tree to visit

nearby nodes and retrieve their mesh element lists.

We can compute the potential at any point in the region of interest through the

use of equation 7.4:

(D (P) = Onear (p) + (far (r)

E J , du + L Y (O,qp)r) , (7.4)
A7ne0 |p - rl | ATe0 j=O k=-j

where C, is the set of mesh elements which are considered to be nearby, Lk are
I

the local coefficients associated with the leaf node containing p, and r is the dis-

placement with respect to the local origin (the leaf node's cube center c), given
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r = p - c . (7.5)

The electric field can be evaluated according to equation 3.12 as the negative gradi-

ent of the potential, as follows:

E(p) = -V<D(p) = Enear(p) + Efar(r) . (7.6)

This gradient can be computed through the use of numerical differentiation; how-

ever, this is not necessary. The near field term can be computed directly using

equation 7.7:

Enear (p) =4re0  14T UiElcl

for which analytic methods exist [53].

S- r'du1,
U,

(7.7)

The far-field term is more quickly and

accurately evaluated by first applying the gradient in spherical coordinates and

then performing a coordinate transformation. The components of the gradient can

be computed according to equations 7.8 through 7.10 as follows (see [159]):

Er =- ar

1 aCD
E 7

r

- 1
41e0 j1k-

rsinO aO

S1o 
-L Y ((, )jri

j=1 k=-j

j - k a)!P (coso)
S(eikr-1

(j + Jk)! aO

1 P
4 rco j=1 k=-j

Finally, the far field term of the electric field is given in Cartesian coordinates

through the transformation:

Efar(r) = =y[sin0cos P

sin 0 sin p

cos 0

cos 0 cos (P

cos 0 sin (P

- sin 0

-sin 1
cos (P

0] CEr

Eo

E0

(7.11)
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It should be noted that because of the presence of the factor of (1 / sin 0) in the Eq

component, there is some numerical instability encountered when 0 is small (near

the z-axis). When this case is encountered, we can avoid this problem by evaluating

the far-field term of the electric field either through numeric differentiation or by

a coordinate transformation. In order to avoid numerical differentiation which is

itself sometimes subject to numerical instability, coordinate transformation is the

technique implemented in KEMField. This is done by first applying a rotation (of

7r/4 about the y-axis) on the set of local coefficients, L according to theorem A.1.

Then the electric field is evaluated in the transformed coordinate system, away from

the problematic z-axis, and finally, the result is transformed back to the original

coordinate system.

7.12 Field Map Persistence

The last aspect of the fast field map implementation which must be considered is

the ability to save and reconstruct the field map objects so they may be reused in

multiple execution contexts. Maintaining persistence of the region tree, nodes, and

their associated data requires that they be serialized so that they can be streamed to

disk. This is a non-trivial task, since by its nature, the region tree has a nonlinear

memory structure with many cross references between nodes and the data objects

they contain. In order to simplify this task, we break the data to be serialized into

two parts. The first part manages the structure of the tree, while the second part

contains the data objects attached to the tree nodes (such as the local coefficient

expansions).

To serialize the tree, we first assign each node a unique number by which we

may identify it. Then, to serialize the structure of the tree, we perform a corecursive

visitation over the tree and store the identities of the parent and children associated

with each node. An example of this simple scheme is shown for a very small tree in

figure 7-8. In this example, we have chosen to exhibit the serialized data in a human

readable XML format, though in reality, this relational data would be stored on
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disk in a binary format. We should note that although this storage format does not

generate the smallest memory footprint possible, having bidirectional information

in the serialized data makes reconstruction of the tree much simpler. To reconstruct

the tree, we simply allocate a linear array containing the total number of nodes in

the tree, assign unique identifiers to each one, and then re-link the nodes according

to the serialized tree structure information.

0

1 W2 3 4

[5]6 L 1 0 11 12

(a) Graphical representation of a simple (b) Node relations serialized into XML.
region tree. Vertical dots indicate some omitted data.

Figure 7-8: Example of the serialization of the region-tree node relationships. Output
is shown in a human-readable XML format.

Once the marshaling of the tree structure is taken care of, all that remains is to

serialize the data objects associated with each node. This task is made simpler by the

fact that we don't need any auxiliary data, only that which is required to compute

the fields. This consists of the local coefficient expansions (KFMElect rostaticLocal -
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<tree>
<node>

<id> 0 </id>
<parent> </parent>
<children> 1 2 3 4 </children>

</node>
<node>

<id> 1 </id>
<parent> 0 </parent>
<children> 5 6 7 8 </children>

</node>
<node>

<id> 2 </id>
<parent> 0 </parent>
<children> </children>

</node>

<node>
<id> 4 </id>
<parent> 0 </parent>
<children> 9 10 11 12 </children>

</node>
<node>

<id> 5 </id>
<parent> 1 </parent>
<children> </children>

</node>

<node>
<id> 12 </id>
<parent> 4 </parent>
<children> </children>

</node>
</t ree>



Coef ficientSet) and the lists (KFMIdentitySet) of the mesh elements owned by each

node. These objects are quite simple in structure, having no external references

other than which node they belong to, and are straightforward to serialize. Upon

reconstruction, the references to nearby mesh element lists (KFMIdentitySetList)

needed for evaluation of the near-field terms can be reconstructed with a small

amount of additional work during initialization by repeating the original method

of construction.

7.13 Performance of the HFFM Method

There are several aspects that need to be examined in order to evaluate the perfor-

mance of the HFFM method. Primarily, we are interested in evaluating its speed,

accuracy and efficiency in solving the Laplace boundary value problem in both stan-

dard and parallel implementations, as well as determining the speed and accuracy

of the HFFMM field map as compared to the direct method of integration.

7.13.1 Boundary Value Problem Accuracy

Solving the Laplace boundary value problem with the BEM introduces various

errors due to the many approximations that have been made in order to make

the problem tractable. The first approximation is the discretization of the original

surface into a mesh of linear elements. If there are any curved sections in the

original surface, there will necessarily be some error in how we model the surface

position with the mesh. The second approximation is that we are treating the charge

density on each mesh element as a constant, whereas in reality (even if the mesh

model matches the original surface exactly), the charge density will vary within a

mesh element. And thirdly, we are treating the fields as approximately constant

over each individual mesh element, by only evaluating them at the collocation

point (centroid) when determining the residual error with respect to the boundary

conditions. Furthermore, we are not attempting to solve the linear system generated
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by the BEM to absolute convergence4, but merely to some chosen residual error,

p. While all of these approximations might seem to conspire to make this method

unusable, they are all in essence controllable, and can generally be made small

enough so as to be insignificant as long as we use a large enough number of

discretizations, N, and solve the linear system to an appropriately small residual

error, p.

Coupling the HFFMM to the BEM introduces another approximation on top of

an already approximate method. Since we are now using a multipole expansion

to evaluate the far-field, we would like to understand how the accuracy of the

combined HFFMM-BEM algorithm behaves, as the parameters of the HFFMM

portion of the algorithm are changed. To do this, we explore the accuracy as a

function of the two parameters which have the largest effect, the degree of the

expansion, p, and the zero-mask size, z. The test problem we will first consider is

that of computing the capacitance of the unit cube. The unit cube capacitance test

has the advantage that there is no error introduced by linearizing curved surfaces,

and while being quite simple, it does not have a trivial solution. The capacitance

is also a global property of the geometry and is therefore sensitive to the global

accumulated error of the technique we use to solve the problem. Unfortunately,

the value of the capacitance of the unit cube is not available analytically. However,

Helsing et. al. [115] have computed the value of the capacitance of the unit cube (in

units of 47reo) to be:

Ccube = 0.66067815409957, (7.12)

which is accurate to a relative error of 10-13. This error approaches the machine

epsilon of double precision floating point math (~ 10-15). It serves as a sufficiently

accurate reference value for our tests, since we will only solve the linear system

generated by the unit cube problem to a relative L2 residual error of p = 10-8.

However, before examining the accuracy as a function of p and z, we must ensure

that the geometry has been discretized accurately enough that the error introduced

4This is not possible using floating point math in any case.
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by the underlying BEM method alone is not the dominant effect. To determine the

appropriate number of mesh elements, N, where the error on the BEM approxi-

mation becomes smaller than the error due to the multipole expansion, we will

repeatedly solve the unit cube problem with a different value of N and expansion

degree p until the error on the capacitance approaches the residual error. The result

of this test is shown in figure 7-9, from which we can see that once the mesh contains

approximately 106 elements, the combined error on the capacitance due to the BEM

and multipole approximations approaches the allowed residual error. Therefore,

we may fix N = 106 and p = 10-8 in order to study the error on the capacitance as

a function of p and z, the results of which are shown in figure 7-10.

Relative Error on Unit Cube Capacitance vs. Number of Mesh Elements
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Figure 7-9: Computed error on the unit cube capacitance as a function of the number
of mesh elements for various multipole expansion degrees. The linear system was
solved to a relative residual error of p - 10-8 using the combined HFFM method
with z = 1. The maximum tree level was unconstrained.

From figure 7-10, we can see that as a general rule, the error of the HFFM method

decreases as the expansion degree, p, increases. This is a good confirmation that the

method works as expected and comes as no surprise since the error on the multipole

expansion decreases according to a power law in p (see equation 5.12). In addition,
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the accuracy is also improved when using a larger value for the zero-mask size, z.

This is also expected since this has the effect of increasing the distance between the

multipole expansion center and the location where the field is evaluated.
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Figure 7-10: Computed error on the capacitance of the unit cube consisting of 106
mesh elements as a function of the multipole expansion degree p and zero-mask
size z.

7.13.2 Performance with Iterative Krylov Solvers and as a Precon-

ditioner

It is also interesting to explore the convergence behavior of the HFFMM-BEM

algorithm when used in conjunction with various Krylov subspace techniques.

While there are a multitude of Krylov solvers available, we will consider the two

most prevalent: GMRES and BiCGSTAB, along with their preconditioned variants

FGMRES and BiCGSTAB-P. We have chosen these methods because of their ability

to address the solution of non-symmetric systems generated by the collocation-BEM

using only matrix-vector product evaluations as discussed in section 4.4.
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To test the performance of the HFFMM, we have solved the Dirichlet problem

of the unit cube discretized into 5 x 104 rectangular mesh elements, with its surface

set to unit potential. The first Krylov solver we considered for use along with the

HFFMM was BiCGSTAB. BiCGSTAB is notable for its very simple implementation

and its low memory usage. Figure 7-11 shows the relative residual norm error on the

solution as a function of the number of arithmetic operations. As can be seen from

figure 7-11, BiCGSTAB can sometimes stagnate and take an exceedingly long time

to reach an acceptable level of error. In an attempt to improve the convergence be-

havior, the BiCGSTAB-P algorithm was also explored in conjunction with a HFFMM

based preconditioner using a dipole (p = 1) approximation. Unfortunately, this

type of preconditioner did not offer any improvement over the non-preconditioned

BiCGSTAB algorithm and was in fact substantially worse.

Krylov solver convergence (BiCGSTAB)

BiCGSTAB: No Preconditioner

I- 1  -- - - ------ - - BiCGSTAB-P: Dipole Preconditioner (p=)

10-2_

10-4.A.................
0 -3

... . ........... .. . . . .

z0 50 10 K 15 1 2

Arithmetic Work (a.u)

Figure 7-11: Relative L2 residual norm as a function of the number of arithmetic
operations performed when solving the unit cube Dirichlet problem with BiCGSTAB
and BiCGSTAB-P.

As an alternative to BiCGSTAB, the better behaved GMRES method was also
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explored. Unsurprisingly, this method greatly outperforms BiCGSTAB for our

test problem. Unfortunately, without preconditioning, the convergence rate of

GMRES alone is still fairly slow. However, the FGMRES algorithm coupled with a

simple HFFMM-based preconditioner immensely improved performance. Figure

7-12 shows the convergence behavior of GMRES and FGMRES for the unit cube

problem with various preconditioners. Out of the several preconditioners tried with

FGMRES, the monopole (p = 0) and dipole (p = 1) preconditioners offered the

greatest amount of speed up in the rate of convergence (roughly a factor of 5) for the

unit cube test case. It should be noted that for problems which contain Neumann

boundary elements, the monopole preconditioner is not sufficient, since although

it can approximate the potential it treats the electric field as zero. Therefore, for

Neumann and mixed boundary problems the dipole preconditioner is the lowest

degree preconditioner that ought to be used.

Krylov solver convergence (GMRES)

1 0  - ------------- .- - -GMRES: No Preconditioner
--------- FGMRES: Monopole (p=O)

10-2 .................. ... --- .-- .--- FGRMES: Dipole Preconditioner (p=1)
- - FGMRES: Quadrupole Preconditioner (p=2)

-4 ....

E0

-J-

* . .. ~ ~ . . . . . . . . .......
z 10-8 -. - -- -.- - -

0 5000 10000 15000 20000
Arithmetic Work (a.u)

Figure 7-12: Relative L2 residual norm as a function of the number of arithmetic
operations performed when solving the unit cube Dirichlet problem with GMRES
and FGMRES.
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In order to benchmark the speed of the HFFMM-BEM method, we have chosen to

compare it against the Robin-Hood method (which is the current KATRIN standard

solver). To do this, we have considered the wallclock time taken to solve the simple

problem of computing the unit capacitance of a sphere discretized into triangles.

For the purpose of this study, the convergence condition used to terminate the

Robin-Hood solver was to ensure that the relative L, norm residual on the solution

was less than 10-8. The Krylov based solvers were terminated when the relative L2

norm on the residual was less than 10-8. For this choice of convergence conditions,

the relative accuracy yielded on the final value of the capacitance of the unit sphere

by each method was limited solely by the discretization error. The parameters used

for the HFFM method were, p = 8, z = 1, and d = 4. Figure 7-13 shows the time

taken by each solver to reach the convergence condition as a function of the number

of triangles in the mesh 5. For meshes with more than 104 elements, the difference

between the quadratic scaling of the Robin Hood method and the linear scaling of

the fast multipole method becomes readily apparent.

It is also informative to examine the time to reach convergence as a function

of the expansion degree, p, and the zero-mask size, z. To do this, we will use the

unit cube geometry discretized into 106 elements, which is the same geometry that

was used in the accuracy study of figure 7-10. Figure 7-14 shows the wallclock time

needed to reach convergence (defined as a relative residual error on the solution of

10-8), as a function of the expansion degree for several values of the zero-mask size.

Since the size of the sparse matrix depends heavily on z, it is not surprising

that choosing a larger z causes the time taken to solve the problem to increase

substantially. However, while the time as a function of z behaves as expected,

what is quite remarkable is that the time required to reach convergence is nearly

independent of the expansion degree, p. This is somewhat unexpected, but not

altogether surprising once it is noted that this problem was solved using the dipole

preconditioner (p = 1). Evidently, the majority of the arithmetic work needed
5 This study was performed on a computer running Debian Linux with an Intel core i7-6700HQ

CPU clocked at 2.60GHz, equipped with an NVidia GTX 970M graphics processor and 32GB of
RAM.
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Time To Solve Unit Sphere vs. Number of Discretizations
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Figure 7-13: Wallclock time to solve the unit sphere capacitance problem as a
function of the number of boundary elements for both the Robin Hood method and
the dipole preconditioned HFFMM-FGMRES method.

to solve the problem is performed by the preconditioner and the sparse matrix

multiplication. However, the preconditioner does not affect the accuracy of the final

result, only the choice of p and z used for the full matrix multiplication affects the

accuracy. Therefore, whenever memory constraints allow it, it is very advantageous

to use a high degree expansion to solve large problems so as to increase the accuracy

of the result without much additional cost in time.

7.13.3 Field Map Accuracy and Speed

It is also important to compare the speed and accuracy of the HFFM field map

method with the direct integration method for the purpose of field solving at

arbitrary locations, which is necessary for particle tracking simulations. To test

the accuracy in this use-case, we have considered the unit sphere test problem

discretized into approximately 104 triangular elements. For this geometry, we have
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Time to Solve Unit Cube vs. Expansion Degree
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apparent that as the expansion degree is increased, the accuracy of the multipole

field map improves until it approaches the round off error inherent in the direct

calculation. This limit appears to be at a relative accuracy of around 10-12 to 10-13
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for the electric potential and around 10- 0 to 10-12 for the electric field.

Relative Error on Electric Potential
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Figure 7-15: Series of stacked histograms of the relative error on the electric potential
for various expansion degrees, p.

To justify the use of the HFFM field map over direct integration, we also need

to evaluate the speed of each method. For this purpose, the same unit sphere

geometry as considered in the previously mentioned accuracy tests was used, but

was discretized into a varying number of boundary elements. Figure 7-17 shows

the time taken for the potential and field evaluation for each method. It is important

to note that the exact time required for a single field/potential evaluation will vary

considerably, depending on the BEM geometry at hand and on the parameters

selected to generate the field map. However, as seen in figure 7-17, the scaling of

the two methods is entirely different, since the HFFMM field map can calculate the

field in an amount of time which is roughly independent of the number of BEM

elements, while the time taken by the direct method grows in proportion with the

number of BEM elements.
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Figure 7-16: Series of stacked histograms of the relative L2 norm error on the electric
field for various expansion degrees, p.

7.13.4 Parallel Efficiency

Since it is not feasible to solve the KATRIN main spectrometer geometry on a single

machine, it is useful to estimate the parallel efficiency of the HFFM method when it

is distributed across many cores. To test the efficacy of the parallel implementation, a

simple geometry with a relatively uniform distribution of mesh elements composed

of a grid of tori was used. Figure 7-18 shows the test problem geometry, which

was solved using HFFMM-GMRES with a dipole preconditioner until the relative

L2 norm residual on the solution was 10-8. These tests were carried out using

MPI+OpenCL on the Babbage cluster at NERSC, which consists of 44 compute

nodes, each equipped with two Intel Xeon Phi (Knight' Corner) accelerators. The

parameters chosen for the HFFM method are given in table 7.1. Since the workload

is distributed by allocating sub-collections of the top-level nodes to each process,

it is expected that the number of top-level divisions, dt, may affect the workload
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Time For Evaluation vs. Number of Discretizations
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Figure 7-17: Average time taken to evaluate the electric potential and field as a
function of the number of boundary elements for various methods. Evaluations
of the potential are represented by a solid line, while evaluations of the field are
represented by a dashed line.

dI d z p 1 nmax
16,8,4 2 1 8 4/3 5

Table 7.1: Parameters used by the HFFM method when solving the test geometry in
figure 7-18.

balancing. For this reason, several values of dt were chosen for this test. Figure

7-19 shows the wallclock time taken to solve the test problem as a function of the

number of MPI processes.

When gauging the utility of a parallel version of an algorithm, it is common to

measure the factor by which the run time is reduced relative to the single machine

implementation. This speed-up factor (s = T1 / TN) is shown in figure 7-20 as

function of the binary logarithm of the number of processes. In the case of an ideal

implementation of a perfectly parallel problem, it would be expected that a problem

which takes time T1 to be solved by a single processor would take TN = T1 / N
to be solved by N processors. This ideal scenario is rarely, if ever, achieved in
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Figure 7-18: The geometry used to test the parallel efficiency of the HFFM method
consists of 216 tori held at alternating potentials ( 1V). The mesh consists of
roughly 2 x 106 triangular BEM elements.
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Figure 7-19: Wallclock time to solve the torus test problem with the parallel HFFM
method as a function of the number of processes.
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Figure 7-20: Speed up factor of the HFFM method as a function of the binary log of
the number of processes (torus test problem).
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practice. However, it does motivate a measure of the efficiency, e, of a parallel

implementation, which is given as the true speed up factor divided by the ideal

speed up factor, e = s / N. Figure 7-21 shows the parallel efficiency of the HFFMM

algorithm as a function of the binary logarithm of the number of processes. As could

be expected of any real program, the parallel efficiency degrades as the number of

processes is increased. However, for a moderate number of processes, the parallel

efficiency is satisfactory and remains greater than 50% for up to 32 processes when

using dt = 16 on our test geometry.

Parallel Efficiency vs. Log2 Number of Processes (N)
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Figure 7-21: Parallel efficiency of the HFFM method as a function of the
of the number of processes (torus test problem).
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Chapter 8

Measurement of the Spatial

Asymmetries in the KATRIN Main

Spectrometer's Electrostatic Potential

8.1 Background and Motivation

The electromagnetic design of the KATRIN main spectrometer was intended to pro-

duce a nearly axially symmetric analyzing potential, even when in close proximity

to the wire electrodes and their support structures. Unfortunately, the azimuthal

variation in the potential has been enhanced due to the electrical short circuits be-

tween the two layers in the wire arrays [221]. These shorts reduce the effectiveness

of the wire arrays in shielding the volume of the spectrometer from the electrostatic

influence of the spectrometer wall and the wire array support structures [1301. Since

the presence of electrical shorts in the wire arrays was not expected and may not

be feasible to repair before tritium data collection is undertaken, it is necessary to

measure the size of this potential variation and understand what effect it may have

on a neutrino mass measurement.

The purpose of these measurements is two fold. The first is to measure the fine

scale azimuthal variation in the analyzing potential at outer radii to ensure it is
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tolerably small. The second purpose is to validate the three dimensional electric

field calculation (specifically the HFFMM) as an accurate method of simulating

KATRIN's fields. With a validated field model, we can then confidently use it in a

Monte Carlo simulation to estimate what, if any, systematic effect these potential

variations may have on the neutrino mass extraction and also determine if pixel-by-

pixel knowledge of the transmission function offers any additional resolving power

in the eventual neutrino mass analysis.

Ideally, multiple direct measurements of the transmission function itself would

provide knowledge of any changes in the analyzing potential over the entire flux

tube. However, it is far too time consuming to measure the transmission function

over such a large parameter space, which requires both the electron beam position

and momentum to be adjusted, as well as the spectrometer's magnetic field and

electrode potentials. Therefore, it is not feasible to search for fine scale azimuthal

variations in the analyzing potential by direct measurement of the transmission

function for anything but a small subset of the flux tube. On the other hand, it

was realized during the wire integrity check performed during the first phase of

commissioning [125] that the time-of-flight (ToF) spectra can also serve as a sensitive

tool for the measurement of the size of the potential variation.

During the SDS1-M12 measurement', the transmission function was first sam-

pled at a particular point (north, south, east, west), then the e-gun's energy was set

to a value where approximately 50% of the electrons emitted were in transmission

while the e-gun's position was scanned azimuthally (with a fixed radial displace-

ment) around the spectrometer. Originally, it was expected that the variation of the

rate as a function of the azimuthal angle could be used to map the shift in analyzing

potential, since when the beam energy corresponds to a transmission probability

of roughly 50%, the change in the rate of electrons at the FPD is roughly a linear

function of the analyzing potential that they encounter. Unfortunately, because the

shift in the analyzing potential was fairly large, being on the order of the width of

the transmission function, there were regions where the rate of electrons reaching

1SDS1 was the first commissioning phase of the KATRIN's Spectrometer-Detector-System.

196



the detector was either maximal or zero, which yields no information about the

analyzing potential in that area. Because of this, it was determined that a more

satisfactory probe of the shift in potential was the most-probable ToF. Despite being

an indirect probe (requiring a full simulation to extract the variation in electric po-

tential from the measured ToF), the ToF is a better method to probe the spectrometer

since it is still sensitive to the potential, even when the electrons' energy is above

full transmission. This is helpful since the electron gun can be used at a higher

energy which is in the region of maximal transmission (where the rate alone would

otherwise provide no information about the analyzing potential), making it easier

to avoid regions where the rate drops to zero.

Unfortunately, the SDS1 measurement was also complicated by flux tube block-

age caused by the spectrometer-to-detector flapper valve which malfunctioned and

could not be removed entirely from the beam line. An additional complication

to this measurement was posed by the misalignment of detector region magnets

which caused a portion of the flux tube to intersect the vacuum chamber wall. The

combination of these two effects made it impossible to perform this measurement

at nominal magnetic field settings (3-9 G in the analyzing plane) and instead, a

low field of 1.5 G had to be used. Thus, while useful for probing the wire integrity,

this measurement was not altogether very useful for determining the properties

of the main spectrometer in its normal operating range. The misalignment of the

magnetic field was also a problem as it introduced a large asymmetry in the field.

This made it difficult to perform a purely azimuthal scan of the electron beam

without large accompanying changes in the radial position. Additionally, since

the wire integrity measurements were only taken at one radial UHV manipulator

position and magnetic field setting, it was not possible to determine the radial

depth of the azimuthal variations in the analyzing potential. Furthermore, the

electron gun manipulator was not instrumented with a read-out of its position data,

so the azimuthal position of the electron beam could only be roughly estimated

through knowledge of beam-pixel crossings. Hence, it was necessary to revisit this

measurement during the second phase of commissioning.
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8.2 Experimental Configuration

The basis of examining the main spectrometer and its functionality as a MAC-

E filter under various magnetic and electrostatic settings is to probe it with an

electron source with consistent and well understood properties. To this end, the

commissioning of the main spectrometer was performed through the use of an

electron gun provided by the Mfinster group [220]. This electron gun provides

a means of probing the response of the main spectrometer as a function of the

incident electron's positions and momentum. The electron gun was placed at

the pre-spectrometer entrance of the main spectrometer and was mounted on a

UHV manipulator (see figure 8-1) in order to select the electron beam's flux tube

position. The beam is generated from a gold-plated optical fiber illuminated with

light produced from a UV laser. This produces a nearly mono-energetic photo-

emission of single electrons at a rate of several kilohertz. The energy distribution of

the produced electrons is roughly Gaussian, with an approximate width of 0- = 0.2

eV [127]. The photo-electrons are then accelerated within the gap of a parallel plate

capacitor which is oriented relative to the local magnetic field in such a way as

to provide some selectivity over the electron's pitch angle (defined as the angle

between the electron's momentum vector and the magnetic field). Unfortunately,

the angular selectivity of the electron gun is rather poor at the low voltages that

were necessary during this measurement. However, this feature of the electron gun

was not critical for these measurements.

Since azimuthal variations in the analyzing potential are expected to be relatively

small, it was necessary to ensure that the electron beam passed very close to the

wire arrays. For this reason, large electron gun manipulator angles were used. In

addition, low magnetic field settings were necessary to expand the flux tube so that

its outer limits approach the surface of the spectrometer walls. The azimuthal ToF

scans were done at two separate B-field settings; a more sensitive 2 Gauss setting,

intended to move the flux tube closer to the wires and maximize the visibility of the

ToF variations, and the nominal 3.8 Gauss setting intended for use in an eventual
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Figure 8-1: Top down view of the MUnster group electron gun. The photo-cathode is
mounted near the end of the section of gray tube attached to the UHV manipulator.
The green cylinders are the pre-spectrometer magnets. The main spectrometer
vacuum flange is the yellow trapezoidal object on the left. Image taken from [220].

tritium measurement mode. Fine tuning the magnetic field configuration of the

main spectrometer is accomplished through adjustments to the currents in the air

coil system (LFCS). These were set so that the magnetic field strength at the mid-

plane of the main spectrometer was approximately 2 or 3.8 Gauss in magnitude.

A list of the currents used to configure the LFCS coils for each setting is given

in table 8.1. The Earth Magnetic Field Compensation System (EMCS) coils were

set to the nominal currents of 8.7 A and 50 A for the horizontal and vertical coils

respectively. This roughly canceled the effect of the Earth's magnetic field which

would otherwise severely distort the flux tube.

To further accentuate the azimuthal variation in the analyzing potential, a greater

than standard potential difference (300V instead of the nominal 200V) was placed be-

tween the wire arrays and the spectrometer vessel. Ideally, all of the measurements

to examine the ToF and transmission function would have been taken at the full

nominal potential of 18.6kV. Unfortunately, due to the development of a Penning

discharge in the electron gun chamber at high voltages, this was not possible [126].

The occurrence of a Penning discharge is extremely undesirable during operation

of the electron gun, because it can cause sputtering damage to the photosensitive
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LFCS Coil Number 2 Gauss Current (A) 3.8 Gauss Current (A)
1 5.24 20.92
2 10.48 25.49
3 7.25 20.01
4 18.49 28.23
5 23.94 38.52
6 19.83 27.25
7 7.95 34.16
8 19.30 50.57
9 5.72 10.02
10 29.99 44.36
11 27.29 37.00
12 8.28 20.81
13 39.61 43.14

14 & 15 63.07 50.33

Table 8.1: LFCS coil current summary.

gold layer which is only 40nm thick [124]. Sputtering damage causes changes to

the photo-cathode work function and therefore the electron energy distribution. In

extreme cases it can disable the gun entirely by removing the gold layer. Therefore,

the spectrometer potential was limited to less than 1kV for the majority of the

measurements. While not identical to the tritium measurement configuration, these

low voltages settings are still comparable because the azimuthal variations we are

looking for are primarily a function of the difference between the vessel and wire

array potentials, which is essentially the same for both configurations. Table 8.2

shows the different electrostatic configurations used during these measurements.

The more positive potential on the steep cone electrodes is necessary to prevent

early retardation, which is caused when the incident particles are electrostatically re-

flected because they have not sufficiently transformed their transverse momentum

into longitudinal momentum [110].

Vessel Potential (V) Wire Array Offset (V) Steep Cone Offset (V)
-500 -300 +100

Table 8.2: Main spectrometer electrode configuration.
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8.3 Measurement Procedure

The collected run data consists of the following two types: time-of-flight (ToF)

data and transmission function (TF) measurements. The azimuthal ToF scans

were started by first measuring a transmission function to locate the transmission

edge. Then the e-gun energy was fixed to a small surplus (- 1.25 eV) above the

transmission edge, while the UHV manipulator was moved around azimuthally to

watch for the changes in the time-of-flight. During these scans, four transmission

function measurements were taken in - 900 degree intervals.

A transmission function measurement is taken along a particular field line

by first fixing the position of the electron gun, and then varying its energy. The

location of the transmission edge 2 is usually not known precisely at the start of

the run, so typically we perform a fast binary search within 10eV of the expected

energy in order to locate it. Then, once the edge has been found, we scan the

electron's gun energy from approximately 1 eV below to 1 eV above the transmission

edge in roughly 0.15 eV increments and record the electron rate at the FPD for

each energy. Plotting the normalized electron rate (with respect to the maximum

rate) as a function of energy yields the transmission function. This transmission

function represents the probability that an electron randomly selected from the

source ensemble has of being passed through the main spectrometer MAC-E filter

as a function of energy. Since it depends on the energy and momentum distribution

of the source, a transmission function measurement therefore requires a good

understanding of the electron source in order to extract the main spectrometer

properties directly from the normalized rate.

One way a transmission function measurement can be augmented is by record-

ing the ToF as a function of energy. This was done in order to help construct a

correspondence between the shift in the analyzing potential and the shift in the ToF.

This correspondence will be used to obtain a map of the potential variation as a

function of the azimuthal angle over a full 360' scan, at a much finer resolution (1')
2 We will define as the transmission edge as the energy where the rate of electrons arriving at the

FPD from the electron gun is 50% of the maximum rate.

201



than would be possible by performing many very time consuming transmission

function measurements.

Table 8.3 contains a brief description of the run data which is of immediate

interest for our purposes.

Collection Run Numbers B-field Surplus energy Description
(A) 23840-23851 2 Gauss 1.25eV 4 TF + ToF 3600 scan, Ap = 1'
(B) 23864-23873 3.8 Gauss 1.25eV 4 TF + ToF 3600 scan, A4 = 1'

(C) 23936-23945 3.8 Gauss 1.25eV 4 TF + ToF 3600 scan, Ap = 10, radius varied

Table 8.3: Data summary.

8.4 Data Pre-processing

All the run data is passed through a pre-processing step. This consists of fitting the

energy spectrum with a Gaussian centered at the expected energy (the sum of the

spectrometer and post-acceleration electrode potentials) and cutting events more

than 3o- away from the peak. This provides a rudimentary background rejection

which is sufficient for the high-rate e-gun data, since the background rate is less

than 1Hz and the E-gun rate is ~ 4.5 kHz. Figure 8-2 shows the typical energy

spectrum and marks the cut region. The cut portion of the spectrum is composed

primarily of events with an incident electron multiplicity greater than one and

comprises less than 1.8% of the total data collection. Additionally, all pixels that do

not exhibit a rate in excess of 1kHz at any point during a run are also cut, with the

exception of those pixels which are neighbors of a high-rate pixel. This is done to

eliminate the majority of the background that is not relevant to the ToF/TF analysis,

while keeping pixels which might have had their edge caught by the electron beam.

All of the relevant slow control data during the run has been linearly interpolated

for times between measurement points, in order to provide smooth information

during sub-runs. The slow control data update rate is typically less frequent than

the sub-run time length (about ~ 15 seconds apart vs. 5-10 seconds for each

sub-run) so interpolation is necessary in order to estimate the values of slowly

changing parameters. The slow control parameters of interest are primarily the
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Figure 8-2: The portion of the energy spectrum selected for use in the ToF and
transmission function analysis. The shaded region represents the selection of events
which passed the energy cuts. This spectrum is from run #23840.

electron gun surplus energy and the position (azimuthal and polar angle) of the

UHV manipulator. Since it is important that the polar angle and surplus energy

of the electron gun do not change substantially during the course of a run, as a

check on data quality, these quantities are plotted as a function of the electron

gun's azimuthal angle. Figures 8-3, 8-5, and 8-7 display the deviations of the

manipulator's polar angle and the potential difference between the electron gun

backplate and inner electrode during the course of run collections (A), (B), and (C)

respectively. The potential difference, A U = (UG - UIE), between the electron gun

and the spectrometer's inner electrode potential serves as a proxy for the surplus

energy, while the polar angle serves as a proxy for the beam's radial coordinate in

the flux tube. From these plots, we see there is a small drift in the surplus energy

and the polar angle of the electron gun during the first two run collections. For

collections (A) and (B), the polar angle drifts less than 0.3%, while the change in

the energy is approximately 3.2% of the 1.25eV surplus, which is an acceptable

amount of drift. However, for run collection (C), there was an obvious malfunction

in the electron gun control during the last run which causes the surplus energy
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to jump approximately -0.4 eV and the manipulator's polar angle by nearly 0.50.

On account of this malfunction, we have discarded the data for azimuthal angles

above ~ 70' from this collection. It should be noted that the sinusoidal trend in the

manipulator's polar angle during run collection (C) was deliberately applied. It

was intended to compensate for the misalignment of the electron gun system and

ensure less radial variation in the position of the electron beam in the flux tube.

8.5 Extraction of the Time of Flight Parameters and

Comparison to Monte Carlo

For the run collections in (A), (B), and (C), each 90 degree azimuthal scan has been

stitched together and the ToF distribution has been extracted as a function of the

electron gun manipulator azimuthal angle. Figures 8-4, 8-6, and 8-8 show the ToF

distribution trend for run collections (A), (B) and (C) respectively. Note that the

reference pulse arrives at the DAQ system 1.27pis later than the moment an electron

is ejected from the gun [128] but that the figures show the raw ToF spectrum which

has not had any corrections due to the signal path latency applied. The large 30'

gap in each trend centered around 175' is due to several pixels (primarily #106)

being disabled because of a bad pre-amp card. The other small gaps are either due

to collisions with the main spectrometer walls or a shift in the analyzing potential

greater than the surplus energy of the e-gun.

In order to reduce the entire ToF spectrum at each manipulator angle into a

single representative number, we have chosen to use the most-probable ToF
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Figure 8-3: Run collection (A).
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Figure 8-5: Run collection (B).
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for run collection (B).
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Figure 8-7: Run collection (C).

.1 n-6

-150

I ToF Distribution vs. E-gun azimuthal angle I

-100 -50 0 50
E-gun manipulator azimuthal angle (degrees)

100

Figure 8-8: The raw ToF distribution as a function of the e-gun's manipulator angle
for run collection (C).
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The most-probable ToF is defined as the location of the peak of the ToF spectrum

as determined by a fit with an asymmetric (two-sided) Gaussian function [137],

given by:

2 exp(- 22) :if X > (81)
(r +1)'27ro-2  exp(- - 2 ): otherwise

An asymmetric Gaussian was found to be an empirically acceptable model, since at

low surplus energies, the ToF distribution can become quite distorted with respect

to the original electron energy distribution. Since the time-of-flight is a periodic

function of the laser pulses (T = 10ps), it is necessary to wrap the fit function of

equation 8.1. This is because slow electrons from the previous pulse can arrive

within the time window of the next pulse. Constructing the wrapped version of

the fit function is simple, since for any given PDF f(x), with x E (-o, oo), we can

define its wrapped counterpart g(y), with y E [0, T) as:

g(y) = f(y) + E f(y + kT) + f(y - kT) . (8.2)
k=1

For practical purposes, it is necessary to terminate this sum at some reasonable

upper limit of k. Using a value of k = 5 has sufficed for our purposes since the ToF

distribution width is relatively narrow compared to the laser pulser period, T, and

any contributions outside of this window are negligible. The fit is then performed

for all events sorted into 1' azimuthal angular bins. An example of such a fit is

shown in figure 8-9. The result from these fits is the most-probable ToF trend for run

collections (A) and (B), show in figure 8-10. Angular bins which did not register a

rate greater than 200Hz typically do not contain enough events in order to perform

a valid fit and were cut from the analysis. The error bars on each of most-probable

ToF data points are a uniform 100ns, as this is the FWHM of the timing resolution

of the DAQ system. The time resolution of the DAQ system depends on the event

energy and the shaping length of the trapezoidal filter. The time resolution has been

estimated from [8], using an event energy near the peak (11keV) and the shaping

length used during these run collections (1.6ps).
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Run #23864, sub-run #10 ToF distribution
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Figure 8-9: Example of the wrapped asymmetric gaussian fit to the ToF distribution.
Applied to run #23864, sub-run #10, this corresponds to an approximately 10 slice
around 0 = -150* from the ToF distribution trend shown in figure 8-6.

With the most-probable ToF trend as a function of azimuthal angle extracted,

we are now in a position to validate the three dimensional electric field calculations.

This requires us to make a quantitative comparison of the data we have collected

with a global simulation of the spectrometer-detector system. For this purpose,

the ToF trend as a function of the azimuthal angle provides a useful test, because

unlike the transmission function, it is relatively insensitive to the exact parameters

describing the electron gun (particularly the angular distribution of the emitted

electrons which cannot be measured with great certainty). The variation in the

ToF also has the advantage that it is a relative, rather than absolute, measurement.

Furthermore, through the use of the transmission function runs, which allow us to

calibrate the ToF as a function of surplus energy, we can convert the most-probable

ToF as a function of azimuthal angle into a measurement of the analyzing potential.

This enables us to make a direct comparison between the calculated and measured

potential values. However, before proceeding further with the data analysis and

its comparison to the Monte Carlo simulation, we need to describe the simulation

procedure in more detail.
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Figure 8-10: Extracted most-probable ToF as a function of the electron gun manipu-
lator azimuthal angle for run collections (A), (B), and (C). Data for run collection (C)
above 0 = 700 is corrupt due to a malfunction in the electron gun control and has
been excluded. These ToF values have not been corrected for timing signal latency.
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8.6 Simulation of a Realistic Three Dimensional Main

Spectrometer Model

The first task in simulating the main spectrometer system is the calculation of the

electric and magnetic fields. The calculation of the magnetic field from the known

current sources is fairly straightforward. However, calculating the electric fields of

the main spectrometer requires us to have a detailed model of its geometry. This

geometric model was painstakingly assembled by T.J. Corona [53] using the original

computer-aided-design (CAD) files and measurements of the vessel hull deforma-

tion, and generates roughly 5 million elements once it has been discretized into

rectangular and triangular patches. In addition, the main spectrometer model also

has 44 parameters describing the voltage settings for each electrically independent

element. Figure 8-11 shows each independent module of the main spectrometer

and the short circuits between them.

Until recently, the time required to solve for the charge densities of the main

spectrometer model precluded any attempt to solve the complete system with all

44 degrees of freedom. Instead, several standard configurations were chosen and

solved directly. However, this is not ideal, since typically even while the voltage

set points may match the standard configurations exactly, they do not necessarily

match the voltage values read back from the hardware. This issue required anyone

who wanted to simulate a particular data set to solve the charge densities of each

run configuration separately. Unfortunately, this requires an untenable amount of

computation time, making this very difficult for anything but small data sets.

However, the use of the parallel-HFFMM algorithm has reduced the time re-

quired to solve a single configuration of the main spectrometer system to roughly

3.5 hours 3. This has made it possible to solve all 44 independent configurations

and create a superposition library. To create this library, we set each module to unit

potential while holding all the others fixed at zero and solve the resulting linear

system until the relative residual norm is less than 10-6. From this library, we

3 This was done using MPI+OpenCL on 44 nodes of the NERSC Babbage cluster.
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Figure 8-11: Main spectrometer electrode modules. Image taken from [130].

Figure 8-12: Graphical representation of generating a new solution from the scaled
superposition of two library solutions.
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can then generate the solution of any configuration by simply summing the scaled

charge densities. Figure 8-12 demonstrates a simple graphical representation of this

procedure. Using this superposition method, we can produce the charge densities

of any configuration of the main spectrometer in the time it takes to read the 22GB

library from disk.

Once the charge densities are known, we then proceed to construct a fast multi-

pole field map of the spectrometer in order to enable rapid particle tracking. This

is also done with the HFFM method using the parameters given in table 8.4 and

the aggressive tree division strategy. This choice of parameters produces a field

dt d z p 'i nmax
16 2 1 11 4/3 8

Table 8.4: Parameters used to generate the fast multipole field map of the main
spectrometer.

map that requires approximately 13 - 16ys for each potential/field evaluation,

whereas the direct method with GPU acceleration requires roughly 0.1s for each

evaluation4 . This corresponds to a speed up factor of roughly ~ 6300 - 7500 over

the (GPU-accelerated) direct method. The absolute error between the direct and

multipole methods on the potential and field calculations are shown as a function

of position over the central plane of the main spectrometer in figure 8-13. In the

central region, the error on the potential is generally much less than 3 mV, and the

error on field is less than 0.2 V/m.

These errors should not significantly affect the behavior of the simulated parti-

cles, but in order to confirm that the field and potential errors are of an acceptable

size, we can examine the amount of energy conservation violation as particles

traverse the spectrometer model. Figure 8-14 shows a histogram of the energy viola-

tion during the course of each track as it passes through the main spectrometer. The

mean violation is roughly 0.002 eV, which represents a relative error with respect to

the particle's kinetic energy of approximately - 10-3 to 10-6 over the course of its
4The speed of the direct and fast multipole methods were evaluated on a computer with 32GB of

ram equipped with an Intel core i7-6700HQ processor and a NVidia GTX 970M graphics card.
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(a) Potential Error

(b) Field Error

Figure 8-13: The absolute error on the potential and field values generated from
the fast multipole field map as compared to the direct method over the X-Y plane
through the main spectrometer at z = 0.
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trajectory. This is small enough to have negligible effect on its motion.
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Figure 8-14: The size of energy conservation violation in tracking electrons through
the main spectrometer model.

8.7 Particle Tracking and Navigation

In addition to accurate field evaluation, correctly tracking electrons through the

spectrometer requires us to solve the equations of motion accurately and efficiently.

This demands that we choose a time step for the Runge-Kutta ODE solver which is

small enough to prevent the build up of numerical error, but large enough to avoid

wasting effort when the error on the variables is already very small. To achieve this,

we use the technique of embedded Runge-Kutta solvers, as described in appendix

C. This allow us to efficiently estimate the local error on the ODE solution and limit

the error in the position and momentum variables to be less than a certain amount.

For the purpose of simulating our run data, the maximum allowed local error in

the position variable estimated by the embedded Runge-Kutta method during each

step was chosen to be 5 nm. The momentum error was not explicitly constrained

for these simulations.
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Along with solving the equations of motion, particle tracking requires a naviga-

tion algorithm, which has the responsibility of determining if the electron path has

intersected any known surfaces. The ability to locate intersections of the electron

beam with geometric objects is of particular importance for our analysis, since we

must properly kill particle tracks which encounter the wire arrays and walls of

the spectrometer in order to avoid spurious events at the FPD. The pre-existing

Kassiopeia navigation algorithm implemented in the class KSNavSpace relies on

having the ability to locate the nearest point and normal vector of all surfaces in the

geometry. It then uses linear interpolation to compute the particle state between

steps and locate intersections [85]. This method can be extremely fast and robust

when all of the objects in the geometry model are properly nested and can be

described analytically. However, this method was found to be insufficient when

faced with the complexity of the three dimensional main spectrometer model. In

order to work around this problem, a new navigation algorithm (implemented in

the class KSNavMeshedSpace) using an octree subdivision of space was developed,

based around ideas developed for ray tracing in computer graphics [96, 200].

The alternate navigation algorithm relies on breaking down the elements of the

simulation geometry into a mesh in same way as in the BEM. Once a mesh has been

specified, we construct an adaptive octree subdivision of space and sort the mesh

elements into tree nodes in exactly the same manner in which the fast multipole

region tree is constructed in algorithm 7. This adaptive subdivision allows us to

quickly locate any nearby mesh elements. With the octree constructed, determining

if there has been an intersection with any step of an electron track is relatively

simple. First, the ODE solver propagates the solution forward by the appropriate

time step. Then, a bounding ball is constructed about this new section of the electron

track. All nodes in the octree which intersect the bounding ball are then located

and examined to see if they contain any mesh elements. If they do not contain any

mesh elements, then no intersection is possible, so the ODE solver proceeds to the

next step. However, if the intersected nodes do contain mesh elements, then the

interior of the bounding ball must be examined. This requires an appropriately
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accurate interpolant to represent the electron trajectory between the start and end

of each step. Since we have the momentum of the particle available at each step, we

can always construct a 3rd order accurate Hermite interpolant regardless of which

type of Runge-Kutta integrator is used. However, greater accuracy is sometimes

required, so the continuous Runge-Kutta methods of [72] were also implemented in

order to enable 5th and 7th order accurate interpolation between the start and end

of each step without additional derivative evaluations. The interpolated trajectory

is then subdivided into a piecewise linear approximation, so that each segment

can then be examined in order to see which octree nodes it intersects. If a segment

intersects a node containing mesh elements, then each element must be examined

to see if it in turn is intersected. This process iterates over all segments until either

an intersection is found or the end of the step is reached. The simplified version

of the full technique is summarized in algorithm 10. An additional advantage of

this new navigation algorithm is that the particle state at an intersection can be

determined much more accurately. This prevents the accumulation of errors during

non-physical boundary crossings which only change the state of the simulation

(but not the particle). Figure 8-15 demonstrates the use of the KSNavMeshedSpace

navigation algorithm in tracking particles through the main spectrometer.

8.8 Generation of the Monte Carlo Data Set with Kas-

siopeia and Comparison to the ToF Data

In order to generate simulated particle tracks that will allow us to compare the mea-

sured and calculated field values, we need to make some simplifying assumptions

when assembling the Monte Carlo model.

The first and most important simplification is that we will not explicitly model

the electron gun. This simplification is needed to make the computational work

required tractable. Since the electron gun is physically moved in order to access

different positions in the flux tube, modeling the system completely would require
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Algorithm 10 Algorithm to locate the intersection of a particle track and a meshed
geometry.

Input: The geometry mesh TN(F), its corresponding octree .o, and the next step of
the particle trajectory given by the interpolant x(t) : R -+ R3, with t C [t0 , t1].

1: Construct the bounding ball, B, of all points p E x(t) for t c [to, ti].
2: Find the set of nodes {Afi}, with non-empty mesh element lists Li, such that

B n Ci 4 0 by recursively visiting the octree, A(o, according to algorithm 8.
3: if {N} = 0 then
4: goto end. > No mesh elements near the bounding ball, no intersection

possible.
5: end if
6: Construct the piecewise linear approximation i(t) specified by the sequence of

points {po, pi,. . ., p}, such that e > sup ||i(t) - x(t) | for all t c [to, t1].
7: for k=Otok= n-1 do
8: Construct line segment Lk from Pk to Pk+1-
9: for each Nj c {Ai} do

10: if Lk n Cj 0 0 then
11: for each mesh element u,, E {Lj} do
12: if Lk n u, 0 0 then
13: Return the intersection point P = Lk n um.

14: end if
15: end for
16: end if
17: end for
18: end for
Output: Either no intersection exists, or the first intersection with the mesh, P.

us to solve for the charge densities of each of the 360 different configurations of

the detector-spectrometer-gun system. To avoid this, we have instead chosen to

model the electrons by propagating them forward from the entrance to the main

spectrometer with a fixed energy and pitch angle.

This simplified electron gun model also ignores the finite (Gaussian) distribu-

tions of electron energy and pitch angle. This is advantageous since it reduces the

total number of particles we need to track through the spectrometer model, while

still being sensitive to the azimuthal potential variations. This is a reasonable sim-

plification since we can see from the data in figures 8-4 and 8-6 that (at least to first

order) the shape and width of the ToF distribution does not change as a function

of the azimuthal angle. This implies that whatever the electron gun's true energy
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Figure 8-15: Particle tracks through the main spectrometer demonstrating the use
of the new navigation algorithm to locate the intersections of electron tracks with
the hull and wire arrays.

and pitch angle distributions are, they did not change during the measurement.

Therefore, picking a single energy and pitch angle (00) should still allow us to model

the change in the most-probable ToF as a function of angle.

The second simplification is that we assume that the electron's energy at the

spectrometer entrance is dictated entirely by the voltage of the electron gun photo-

cathode. This reflects our lack of knowledge about the work function of the various

surfaces involved, which essentially serve to alter the electron's energy. While we

can determine the work function of the electron gun photo-cathode using light of

different wavelengths, the work function of the main spectrometer is inaccessible to

direct measurement. Fortunately, the effect of the unknown vessel work function is

to make a small but relatively uniform change to the absolute potential the particle

sees during its flight through the spectrometer. So while this may introduce a small

offset to the value ToF, it should leave the size and location of the variations due to
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spatial fluctuations of the analyzing potential unaffected. To compensate for this,

we will allow the simulated ToF trend to float on a constant offset which we will fit

out using the per-pixel-ToF data.

Finally, we also need to compensate for our lack of perfect knowledge about the

location of the focal plane detector (FPD). In principle, the exact physical position of

the FPD can be measured to within a few millimeters using surveying equipment

such as a Faro arm [210]. However, of foremost importance for the neutrino mass

measurement is not the exact physical position of the FPD but rather its relative

position with respect to the center of the flux tube which images the tritium source.

This cannot be measured through the use of surveying equipment but only by

propagating particles through the flux tube and examining the FPD's response.

A variation of this alignment technique has been done previously, but with an

asymmetric magnetic field setting intended to propagate particles from the main

spectrometer walls onto the FPD [114]. This method can inform us about the

alignment of the physical main spectrometer and the FPD. However, is does not

necessarily measure the true alignment of the flux tube with the FPD, since by

necessity, it does not use the same magnetic field configuration as in a neutrino

mass measurement. In order to deal with the FPD placement uncertainty, we will

fit out the FPD's relative X-Y position with respect to the simulated flux tube using

the hit pattern and per-pixel-ToF data.

With these assumptions out of the way, the first step in the simulation of the

most-probable ToF trend is to construct a map of the ToF for all positions on the

FPD face in its nominal position. To do this, the field of the main spectrometer

and detector system is computed directly from the electrode potential and magnet

current settings reported by slow control. Then, we start a large cylindrical grid

of electrons at the entrance of the main spectrometer in the central plane of the

pre-spectrometer magnet and track them until they either terminate on the FPD or

main spectrometer surface. Each simulation consisted of tracking approximately

1.1 x 104 particles. The radius of the starting positions of the particles ranged from

1mm to 33mm, and the azimuthal positions covered 0' to 3600 in 1' increments. For

220
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Figure 8-16: The ToF of particles arriving in the detector as a function of position in
the FPD plane. Generated from a Kassiopeia simulation of the run conditions of
collection (A).

those particles which do successfully reach the surface of the FPD, we can record

their simulated ToF as a function of their terminal position, which allows us to

reconstruct the expected ToF over the plane coincident with the detector face. The

interpolated ToF as a function of position in the FPD plane is shown in figures 8-16,

8-17, and 8-18 for the simulation of the run conditions of collections (A), (B), and (C)

respectively. We note that for the run collections with the 2 Gauss magnetic field

setting ((A), (C)) the azimuthal variation in the ToF due to the influence of the wire

array support structures is readily apparent with a periodicity of approximately 18

degrees, whereas the 3.8 Gauss magnetic field setting of run collection (C) is much

less sensitive to this effect. Once we have simulated the ToF as a function of position

in the FPD plane, the next step is to reconstruct the path of the electron beam over

the FPD face during the course of each run collection. Naively, one would expect
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Figure 8-17: The ToF of particles arriving in the detector as a function of position in
the FPD plane. Generated from a Kassiopeia simulation of the run conditions of
collection (B).

that the electron beam trajectory ought to be circular. However, various factors, such

as the imperfect axial symmetry of the magnetic fields and misalignment between

the detector, spectrometer, and electron gun systems serves to distort the trajectory

from the expected shape. Since we were not able to reproduce the true FPD hit

pattern with an (offset) circular trajectory, we have chosen the next simplest model

(which has 2 additional parameters), which is that of an oval. The oval model is

represented by the following parametric equations as a function of the azimuthal

angle p:

x=cx + r cos(p)[1+ tcos2 (po)], (8.3)

y = Cy + r sin(qp)[1 + a cos2 (p - o)] . (8.4)

The position of the oval center (cx, Cy), the nominal radius r, distortion a, and bulge

222



0.04- TOF vs. Terminal Position in FPD Plane

20
0.03-

19
0.02-

18

0.01
17

0 16

15-0.01 1

14
-0.02-

13
-0.03

12

-0.04 -r ]
-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

x

Figure 8-18: The ToF of particles arriving in the detector as a function of position in
the FPD plane. Generated from a Kassiopeia simulation of the run conditions of
collection (C).

angle (Po are fit directly from the FPD hit pattern which is completely orthogonal

to the ToF data. The oval model fit is a highly non-linear problem, so we rely on a

simulated annealing approach (provided by ROOT's Minuit2 package) in order to

minimize the objective function. Unfortunately, this method (simulated annealing)

is unable to offer any error estimation. However, the error estimating fitter provided

by Miniut (MIGRAD) is not able to converge with any reasonable objective function.

In any case, MIGRAD's error estimates are probably not meaningful for this fit

since the objective function is not of a X2 or log-likelihood form. Instead, the

objective function is computed using the Bhattacharyya distance measure (BDM)

[192] between the oval model's prediction of the FPD hit pattern and the actual FPD
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hit pattern. The objective function is given by:

/147 1/2

TBDM (8.5)
i=0~ N}

where ui is the model's expected number of hits in pixel i, vi is the actual number

of pixel hits, and N,, and Nv are the norms of the simulation and data histograms

respectively. Table 8.5 shows the oval model fit parameters for each run collection.

Figures 8-19, 8-20, and 8-21 show how the oval model fits the hit patterns of run

Description cX (mm) cy (mm) r (mm) a (mm) 45o
Run Collection (A) -1.11 -3.16 38.11 1.27 -104.80
Run Collection (B) -1.20 -2.95 38.15 -1.16 152.60
Run Collection (C) -0.69 -0.73 39.63 -1.55 -73.50

Table 8.5: Parameters of the oval model fit to the FPD hit pattern for each run
collection.

collections (A), (B), and (C) respectively.

For run collection (C), the hit pattern formed from the complete collection

(including the corrupted run) was used because although there was some instability

in the manipulator position and the surplus energy of the electron gun, this should

not severely affect which pixels are hit by the beam.

Once the oval model of the electron beam's path over the FPD's face has been

determined from the hit pattern, the next step is to fit out the FPD X-Y displacement

and the constant ToF offset. To do this, we first compute the per-pixel-ToF from the

data. This is defined as the most-probable ToF constructed from the distribution of

all events incident on a single pixel during the run collection. Then, we minimize

the x 2 difference between the per-pixel ToF and the predicted per-pixel-ToF. The x 2

function is given by the following sum over the set of Npixels pixels hit during the

run collection:
2 Npixel, d 1i s )2

X i (1(i) + -2 (i)(.

where Id (i) and T, (i) are the mean per-pixel-ToF of the data and simulation respec-

tively. The deviation of the data, o (i), is taken to be the FWHM of the DAQ timing
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Figure 8-19: The oval model fit to the FPD hit pattern for run collection (A). The
black dashed line exhibits the model's electron beam trajectory. The purple pixels,
with no events, are all members of the same disabled pre-amp card.

resolution (1OOns), while o- (i) is the root-mean-square deviation of the simulation

samples on each pixel. The predicted per-pixel-ToF is calculated by sampling the

ToF function generated from the Kassiopeia simulation (such as that shown in

figures 8-16 to 8-18) at many points located along the oval beam path that has

been fit from the hit pattern. We then allow the position of the FPD and thus the

corresponding oval shaped beam path model to float in the X-Y plane until the

difference between the simulated per-pixel-ToF and the per-pixel ToF is minimized.

The result of this minimization for run collections (A), (B), and (C) is shown in
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FPD Hits: Run Collection B
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Figure 8-20: The oval model fit to the FPD hit pattern for run collection (B). The
black dashed line exhibits the model's electron beam trajectory. The purple pixels,
with no events, are all members of the same disabled pre-amp card.

figure 8-22.

Description A, (mm) AY (mm) At (ys) Latency corrected At (ps)
Run Collection (A) -1.72 0.15 2.61 0.16 -3.35 0.03 -2.08 0.03
Run Collection (B) -1.90 0.15 2.84 0.18 -3.14 h 0.03 -1.87 0.03
Run Collection (C) -1.55 0.19 3.26 0.001 -3.34 0.04 -2.07 0.04

Mean Value -1.72 0.17 2.90 0.33 -3.28 + 0.12 -2.01 0.12

Table 8.6: Parameters describing the constant ToF offset and the displacement of the
FPD relative to the flux tube center generated from the per-pixel ToF fit. Except for
the errors on the mean parameter values, the errors given are those reported from
the MIGRAD fitting routine.
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FPD Hits: Run Collection C
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Figure 8-21: The oval model fit to the FPD hit pattern for run collection (C). The
black dashed line exhibits the model's electron beam trajectory. The purple pixels,
with no events, are all members of the same disabled pre-amp card.

Table 8.6 contains the results of this fit for run collections (A) and (B). The

values of the displacement are relative to the nominal position of the FPD used in

the simulation and determined from previous alignment measurements [114, 210].

Values of the constant ToF offset which are corrected for the signal latency are listed

in the last column.

It is worth noting that even for a variety of run conditions and different electron

beam paths, the displacement of the FPD with respect to the center of the flux tube

as well as the offset between the simulated and measured ToF are both reasonably
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Figure 8-22: The per-pixel ToF (black squares) of each run collection plotted with
the simulated per-pixel ToF (red dots) after the three parameter fit. The data points
are plotted as a function of the azimuthal angle of the center of the corresponding
pixel. Each simulated per-pixel ToF point is displaced 2 degrees to the right for
clarity.

consistent. It is not immediately clear what reason exists for the anomalously small

error on the value of the y-coordinate displacement of run collection (C). However,

run collection (C) does not form a complete 360' scan due to the corruption of the

last run, so it's possible this had some effect on both the oval model fit and the

displacement fit.

With the FPD displacement and constant offset between the data and the sim-
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ulated ToF determined from the per-pixel fit, we can now examine the behavior

of the ToF at sub-pixel resolution by plotting it as a function of the electron gun

UHV manipulator's azimuthal angle. To generate a high resolution prediction of

the most-probable ToF, we simply sample the simulation generated ToF interpolant

along the (corrected for displacement) beam path in 1 increments and apply the

constant ToF correction. The predicted ToF and the most-probable ToF trend fit

extracted from data are shown overlaid in figures 8-23, 8-25, and 8-27 for run collec-

tions (A), (B) and (C) respectively. The normalized residual error between the data

and the simulation are shown below each ToF trend.

From figures 8-23, 8-25, and 8-27, we can see there is fairly good agreement

between the data and the Monte Carlo. However, a more qualitative comparison is

desirable. Unfortunately, due to the non-linear nature of the fitting problem, the

reduced X2 metric is not appropriate here [10]. Instead, we have histogrammed the

normalized residuals in figures 8-24, 8-26, and 8-28. Under the assumption that

the simulation model produces an appropriate reproduction of the data and has

not been over-fit, we would expect the normalized residuals to form a Gaussian

distribution with a mean of zero and a standard deviation of one. Examining the

distribution of the normalized residuals for each ToF trend shows that the means

are reasonably consistent with zero and that the standard deviations are close to one.

However, observing agreement between the shapes of simulated and measured ToF

trends is not completely sufficient for us to validate the field calculation. Instead,

it is preferable to make a direct comparison between the measured and calculated

electric potential in the analyzing region.
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Most probable ToF vs. E-gun azimuthal angle
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Figure 8-23: The ToF trend as a function of the e-gun's manipulator angle for run
collection (A).
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Figure 8-24: Distribution of normalized residuals run collection (A). The black line
shows a Gaussian fit to the distribution with y = 0.087 and o = 0.79.
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Most probable ToF vs. E-gun azimuthal angle
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Figure 8-25: The ToF trend as a function of the e-gun's manipulator angle for run
collection (B).
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Figure 8-26: Distribution of normalized residuals run collection (B). The black line
shows a Gaussian fit to the distribution with y = 0.92 and a- = 0.78.
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Figure 8-27: The ToF trend as a function of the e-gun's manipulator angle for run
collection (C).

18

a-

Distribution of Normalized Residuals

.4

Normalized residual
4

Figure 8-28: Distribution of normalized residuals run collection (C). The black line
shows a Gaussian fit to the distribution with p 0.59 and a- = 1.02.
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8.9 Extraction of the Electric Potential Variation

In order to better validate the field calculations, we need to extract the actual

variation in the analyzing potential from the data in a way that is independent of

the Monte Carlo model. To do this, we will make use of the transmission function

measurements that were taken at 900 intervals during the azimuthal ToF scans in

order to calibrate the ToF response to a shift in surplus energy. Since the energy

of the electron gun was fixed during the azimuthal angle scans, any shift in the

ToF should primarily be the result of a change in the surplus energy and thus a

variation of the potential along the beam path.

In theory, if the position of the electron beam in the flux tube had been perfectly

symmetric about the flux tube axis, a single transmission function taken at a point

during the azimuthal scan would be sufficient to calibrate the relationship between

the ToF and the potential shift. However, because of the misalignment between the

electron gun and the flux tube, there is also some radial variation in the electron

beam position, which mixes the radial and azimuthal potential inhomogeneities,

as well as changing the overall length of the flight path. Unfortunately, due to the

small number of transmission function measurements taken during the azimuthal

ToF scans, compensating for the radial variation is somewhat difficult and is the

dominant error in the resulting extracted potential.

In order determine the analyzing potential from the value of the ToF, we will

need to be able to estimate this relation from the transmission function measure-

ments. With a functional form for the relation between the ToF and the analyzing

potential, we may then invert it and extrapolate the change in analyzing potential

from variations in the ToF. To this end, we will fit the measurements with a func-

tion derived from an extremely simplistic model of the underlying physics. The

time-of-flight, t, is given by the following integral over the arc length:

' A (8.7)

In order to compute this integral exactly, we would need to know the particles exact
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trajectory and velocity along its path. Therefore, computing the exact value of the

time of flight in a realistic model of the main spectrometer is generally only possible

by numerically solving the equations of motion. Such a degree of complexity is

not necessary to produce a simple model for the fit function, but we can gain

some insight from examining simulated particle trajectories. Figure 8-29 shows
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Figure 8-29: Behavior of the kinetic energy of a particle as it traverses the main spec-
trometer MAC-E filter. The electric and magnetic fields were configured according
to the run conditions of collection (B).

the expected behavior of an electron's kinetic energy as it passes through the main

spectrometer configured as in run collection (B). What is notable from this graph is

that we can divide the trajectory into three regions: the analyzing region (2) where

the kinetic energy is small and essentially constant, and the entry and exit regions

(1) and (3), where the kinetic energy of the electron is large and it is undergoing a

large amount of acceleration. With this information it is reasonable to assume that

to a large degree, the ToF only depends on the particle and spectrometer properties

in region (2), and that the contributions of the entry and exit regions are small and

essentially constant. Furthermore, we will also assume that the particle has no

transverse momentum and that the trajectory is a straight line. This ignores not only
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the gyro-motion but also the fact that the particles of interest (since their starting

positions are off-axis) follow the curved path of the magnetic field lines. Therefore,

we replace the integral of 8.7 with the exceedingly simple approximation:

ft'2 d ~ + (8.8)v(E) (v)

where, L = f2 - f1, is the length of the electron trajectory in the analyzing region, -Y

is an arbitrary offset due to the particle's travel time outside of the analyzing region,

and the average velocity is:

= 

2K) -2(Etot- q(U))/m. (8.9)
ni

The electron's total energy is defined by the electron gun potential UG:

Etot = qUG , (8-10)

which is related to the inner electrode potential by the surplus energy, qA:

qA - qUG - qUIE - (8.11)

Throughout the spectrometer, the potential in the analyzing region is slightly more

positive than the inner electrode potential by a spatially dependent amount, f3(r, P),

which represents the radial and azimuthal inhomogeneity:

U(r, q) = UIE + f(r, p) . (8.12)

Combining equations 8.12 and 8.11 with 8.8 yields a three parameter model for the

ToF as a function of surplus energy (at a fixed starting position). This model is given
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by:

L
t (qA) Irgi = 2+ (8.13)

in (UG - ()

2L+ ( , (8.14)

where L, y, and (P) are the parameters to be fit from the ToF data.

In order to reconstruct the true ToF as a function of energy, we must first apply

a cycle correction to the raw data which is only known up to some multiple of the

pulser period of r = 10ps. To perform this cycle correction, we make the assumption

that the ToF as a function of surplus energy is a monotonically decreasing function.

Therefore, if we compare two adjacent data points (t1, E1) and (t 2, E2 ), if El < E2

then we expect to have t, > t2 . However, if this is not the case, and instead, ti < t2,

then there are two possible reasons which may cause this to happen. The first

reason is measurement error, while the second is that the change in the ToF between

the two energies has been great enough that at least one pulser period has been

crossed. If the reason is measurement error, then the change in ToF should not be

very large, and the slope should be less than some parameter K5:

m t2 - t <K. (8.15)
E2 - E1

If however, the slope, m, is larger than this limit, then the ToF increase must be due

to a pulser period crossing. In this case, we need to modify all values of the ToF

for energies, E1 < E2, by making the correction t -+ t + T. To ensure that the ToF

is reconstructed properly, we iterate over all the data points in order to apply this

correction as many times as necessary. The reconstructed ToF curve is then fit with

the model of 8.14. An example of the data and resulting model fit is shown in figure

8-30 for run #23938. We note that value of the parameter -y is negative, which is

obviously non-physical. However, this is not the true value and is of no significance

5Empirically, the appropriate value of K was found to be approximately 3ps/(0.16eV).
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because our reconstruction of the ToF vs. energy curve is only unique up to some

constant multiple of the pulser period. Applying this model to each transmission

_10, X2 /ndf 41.31/ 8
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Figure 8-30: The ToF as a function of surplus energy. The red line is the fit according
to the model given in equation 8.14. The black circles are the data points of the
most-probable ToF at each measured energy. The error on the ToF is taken to be the
DAQ resolution of 100ns.

function measurement in collections (A), (B), and (C), yields the parameter values

given in table 8.7. The fits are shown in appendix D for visual comparison with the

data.

Now in order to proceed with the extrapolation of the mean shift of the electric

potential in the analyzing region, (P(<p, r)), from the measured ToF recorded during

the azimuthal scans, we simply need to invert the relation of equation 8.14, which
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Run Collection Description L (m) () (V) y (ps) Angle qP
Run # 23839 16.88 0.44 2.75 0.05 -2.36 0.25 -160.0'
Run # 23844 14.71 0.17 2.50 0.01 -1.44 0.15 -70.0

(A) Run # 23847 14.92 0.14 2.84 0.01 -1.96 0.14 20.00
Run # 23850 13.97 0.13 2.58 0.01 -0.99 0.13 110.00
Mean Value 15.12 1.24 2.67 0.16 1.69 0.60 NA
Run # 23863 13.23 0.10 2.74 0.01 -0.66 0.12 -160.0'
Run # 23866 12.75 0.11 2.75 0.01 -0.77 0.12 -70.0'

(B) Run # 23869 13.74 0.14 2.99 0.01 -1.62 0.14 20.00
Run # 23872 12.88 0.12 2.77 0.01 -0.89 0.13 110.0'
Mean Value 13.15 0.44 2.81 0.12 -0.99 0.43 NA
Run # 23933 18.21 0.33 2.87 0.03 -3.24 0.21 -160.0'
Run # 23938 14.60 0.16 2.59 0.01 -1.51 0.15 -70.0'

(C) Run # 23941 15.26 0.18 2.71 0.01 -2.00 0.16 20.00
Mean Value 16.14 1.86 2.72 0.14 -2.25 0.89 NA

Table 8.7: Parameters of the ToF as a function of surplus energy for the model of
equation 8.14, fit to various data sets.

yields:

(P((p, r)) = 2 - A . (8.16)
, (t(qA)|rq - )

The value of the ToF and surplus energy are known directly from recorded data

as a function of the electron gun manipulator's azimuthal angle, p. However, we

note that the parameters, -r and L, do change as a function of angle, so there is some

ambiguity in the choice we should make for their values when reconstructing (P).

Ideally, we would have a fine enough sampling to interpolate -y and L for positions

in between the transmission function measurements. However, with only four

sample locations, this is not enough to enable a smooth and reliable interpolant.

Instead, we will simply use the mean values of L and ;7 of each run collection to

extract (/) from equation 8.16. This choice will naturally introduce some slowly

varying bias into the resulting values of (/). However, unlike an interpolant, which

is designed to match the known values of (P) exactly at the measured locations,

this choice does allow us to form a crude estimate of the error. We can estimate the

error by examining the difference between the ToF-extracted value of (P) and the

value determined by the transmission function measurement. The error, O-b, due to

this model based bias is given for each run collection in table 8.8.
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Description 0b (V)
Run Collection (A) 0.48
Run Collection (B) 0.11
Run Collection (C) 0.47

Table 8.8: The expected error in the reconstructed value of (p) for each run collection,
due to the use of the mean values of L and y in the model.

It is important to note that while the error, o-, is not a Gaussian random error, it

is still independent of the error due to the ToF jitter. Therefore, in order to estimate

the error on the extracted value of (3), we will simply sum in quadrature the

uncertainty due to the ToF variance, o-t, and the bias o-b:

2= +0-2 (8.17)

The extracted values of (P) are shown in figures 8-31, 8-33, and 8-35 for run collec-

tions (A), (B), and (C) respectively. The shaded region in these figures represents

the error band about the extracted value of (3), and the points marked with a star

are the analyzing potential values extracted directly from the transmission function

measurements.

The value, (3), is the time-weighted average of the shift of analyzing potential

with respect to the inner electrode within the analyzing region, given by:

2 = 1 /t 2 U(x(t))dtl - UIE , (8.18)

where t, and t2 are the times of the entry and exit of the electron through the

analyzing region. In order to compare the value of (P) extracted from the ToF data

to that computed from the field model, we need to examine a large collection of

simulated electron tracks through the main spectrometer. Using a Runge-Kutta

method to solve the equations of motion of a particle through the spectrometer

produces a track which consists of some number, N, of time-ordered sample points

along its path through phase space: {ti, xi, pi}. From these sample points, we can
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compute the discrete approximation to equation 8.18 as follows:

() [ it U(xi)(ti+1 - - UIE, (8.19)
tb -- ta i=a

where the step indices a and b are those associated with the particle entering and

exiting the analyzing region respectively. In order to determine a and b, we rely

on the mean value of the length, L, extracted from the data. First, we compute the

cumulative arc length of the particle's trajectory for each sample point i = f(xi).

Then, we locate the sample location, xj, which is closest to the mid-plane of the

spectrometer z = 0. Any sample point, Xk, associated with an arc-length, 4k, that

satisfies:

|fk - fjl < L/2, (8.20)

is within the analyzing region. Therefore, the values of the first and last indices

in the sum, a and b, can be found by determining which two indices satisfy the

following conditions:

fJ-fa > -L/2 and fj- -a-1 < -L/2, (8.21)

fj - fb < L/2 and fj - fb+1 > L/2. (8.22)

Using these definitions and equation 8.19, we can compute (P) for every simulated

particle track which impinges on the FPD, allowing us to construct () as a function

over the FPD plane in a manner similar to that of the ToF interpolation. Then, to

produce (P) as a function of the manipulator angle, <p, we sample the simulation

generated interpolant along the oval beam path fit from the FPD hit data. We

note that since we are using the same constant value of L to define the analyzing

region, the simulated value of (P) should be biased in a manner similar to the

extracted value. The simulated value of (P) at each measured angle is shown as a

blue dashed line along with the data (black) for comparison in figures 8-31, 8-33,

and 8-35. Generally we are not interested in the absolute value of the potential, but

only the change as a function of azimuthal angle. Therefore, in order to compare
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the variation in (P) as a function of angle to the simulation, (P) has been uniformly

shifted by an amount, sp and plotted as the red line. The value of sp was chosen

to eliminate the average difference between the simulated value and the extracted

value of (P) over all angles measured. This value is taken to be:

-1 No
S N 1((4(P))s - (p/(Pi))d) (8.23)

This shift represents our lack of knowledge about the true kinetic energy of the

electron beam due to the non-zero spread in the initial photo-electron energy distri-

bution, as well as the work function of the photo-cathode and main spectrometer

electrode surfaces. The work function of the photo-cathode changes the starting

energy of the electron from its expected value, while the work function of the main

spectrometer modifies the potential seen by the electron beam during its flight. The

value for s for each run collection is given in table 8.9.

Description sf3 (V) y-
Run Collection (A) -0.18 0.061
Run Collection (B) -0.07 0.033
Run Collection (C) -0.21 0.073

Table 8.9: The values of the mean and RMS spread of the residuals between simu-
lated and extracted value of (P).

The residuals between the calculated (unshifted) value of (P) and the value of

(p) extrapolated from the ToF measurement are shown in figures 8-32, 8-34, and

8-36. From the distribution of the residuals, we can see that the absolute difference

between the calculated and measured potential is less than - 0.2V and that the

RMS spread is between 0.03 and 0.07 V. The values of the shift and RMS spread of

the residuals are given in table 8.9.

In conclusion, we have made a measurement of the mean potential along the

electron's flight path within the analyzing region of the KATRIN main spectrometer

for several electric and magnetic configurations. In the process of reconciling the

FPD hit pattern with the ToF variation as a function of angle, we have determined
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that there is a small (order of millimeters) displacement of the FPD relative to the

center of the flux tube. The measurement also shows that the azimuthal variations

in the ToF for the 3.8 Gauss field setting (which is one of the lowest magnetic field

settings considered for the upcoming neutrino mass measurement) are primarily

due to the flux tube misalignment relative to the main spectrometer, and (at least

for all but the outermost two pixel rings) not due to the influence of the electrical

short circuits. Furthermore, we have computed the expected value of the electric

potential utilizing the HFFMM algorithm for field computation and made a direct

comparison of the measured potential with the calculated value. This comparison

has demonstrated that the field calculations have an absolute error on the order of

several tenths of a volt and a relative error6 of roughly 0.01-0.03%.

6Taking the relative error to be the mean value of the residual, sp, divided by the inner electrode
voltage, we have, in the worst case scenario: so/ UIE = 0.21/782.0 = 2.6 x 10-4. However, assuming
that a constant shift in the potential is irrelevant, then the relative error can be assumed to be
dependent on the spread in the residual, which in the worst case is o-P/UIE = 0.073/782.0
9.3 x 10-5.
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Chapter 9

Constraining the Systematic Effects of

the Transmission Function Model on

the KATRIN Neutrino Mass

Measurement

9.1 Motivation and Observables

In order to extract a neutrino mass value from the count rate data of the KATRIN

experiment, it will be necessary to fit the data with a model that makes a realistic

representation of the true system. Constructing such a model requires us to make

some assumptions about the behavior of each component of the experiment. These

assumptions can be made directly through measurement, inference from simulation,

or some combination of the two. However, whatever these assumptions are, there

will inevitably be some uncertainty associated with them. The deviation between

the true value of each parameter and the value assumed when constructing the

experimental model will induce a systematic shift on the extracted value of the neu-

trino mass. These shifts are termed systematic errors and must be well constrained

so their influence does not exceed the purely statistical error inherent in stochastic
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processes such as radioactive decay.

One important assumption which goes into the experimental model of the KA-

TRIN experiment is how we represent the transmission function of the main spec-

trometer. In particular, we are interested in knowing how well we must constrain

the spatial inhomogeneities of the transmission function, so that the systematic

error induced by this effect is limited. The spatial inhomogeneities of the main spec-

trometer transmission function arise primarily from the variation of the electrical

potential and magnetic field in the analyzing region. Therefore, constraining the

uncertainty in the transmission function variation requires a detailed understand-

ing of the electric and magnetic fields over the analyzing plane. However, for the

purpose of this study, we will mainly concern ourselves with the variation in the

electric potential and assume that any magnetic field inhomogeneities which may

exist are purely axially symmetric.

The observables in the KATRIN experiment are rates, or rather, counts of electron

events at the FPD as a function of the spectrometer fields and source configuration.

The number of events seen by the i-th pixel of the FPD while the spectrometer is

fixed at potential, U, is given by:

[ dF(E,mnq, Eo)1
Nij = t;Bi + t Ai d E x Ri(qUj,E)J dE, (9.1)

where t1 is the measurement time spent on potential U, E is the electron kinetic

energy, Bi is the background rate for the pixel, Ai is a normalization constant

representing the strength of the source imaged by the pixel, d17/dE is the differential

decay spectrum of equation 2.1, and Ri is the response function associated with the

pixel.

Hidden in the response function, Ri, is all of the dependence on the source and

spectrometer properties imaged by one pixel. Ri is given by a weighted, nested

convolution of the transmission function with the inelastic scattering energy loss
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function f(e), as follows:

Ri(qUj, E) = PoRi,o(qUj, E) + P1 Ri,1 (qUj, E) + P2Ri,2 (qUj, E) +- -- , (9.2)

where the n-th discrete scattering responses are:

Rj,O(q U, E) = Tief(qU, E - e) >(e) dc ,

R, 1 (qUj, E) = Ri,o(qUj, E - c)f (e)de ,

Ri,2 (q U, E) = R, 1 (qUj, E - e)f(e)de ,

and the weights, P, are the average probability of an electron undergoing n inelastic

scattering events as it transits the source. The true picture is of course somewhat

more complicated, due to the non-uniform gas density of the source, as well as the

scattering probability's dependence on pitch angle, but these details are beyond

our scope and are discussed in detail in [120, 134, 110]. The energy loss function,

f(e), must be determined through a dedicated measurement phase at KATRIN in

order to meet the demanding goals of the design report [511. It has, however, been

measured previously for T2 at the Troitsk experiment, so for the purpose of this

study, we use the energy loss model of Aseev et al.[16], which is shown in figure

9-1.

In order to compute the response function of equation 9.3, the KATRIN experi-

ment also needs to resolve the effective transmission function, Tieff (qU, E), for each

pixel of the main spectrometer. For an isotropic source along a single field line,

the transmission function of the spectrometer is well approximated by the analytic
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Figure 9-1: The energy loss function, f(e), due to inelastic scattering in the T2 source
[16].

form of equation 2.9, with relativistic corrections, it becomes [110]:

0

l -- l E B-- V (Ya+1)

T(E,qU) =I _+_

1- -

1

if E - qU 0 ,

ifO<E-qU AE

if E-qU > AE.

Further corrections also must be made for synchrotron radiation losses, Doppler

spreading, and inhomogeneities in the source region magnetic field. However, for

the sake of simplicity, we will not include these other effects in this study.

It should be stressed that the effective transmission function imaged by one

pixel, TO, is not equivalent to the single-field line approximation of equation 9.4.

This is due to the spatial variation of the analyzing potential and the magnetic field

across the spectrometer. This modifies the width and the location of the edge of

the transmission function as a function of spatial position. If no effort were made
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to resolve the spatial location of an electron event at the FPD, this effect would

severely degrade the energy resolution of the spectrometer. Of course, the designed

segmentation of the FPD provides a means of compensating for this effect, since

each pixel is exposed to a small portion of the flux tube over which these variations

are much less significant. Nevertheless, since the pixels of the FPD do have a

finite extent, there is still some irreducible smearing of the transmission function as

viewed by each pixel due to the field inhomogeneities.

Under the adiabatic approximation, the effective transmission function for each

pixel can be computed as a flux-source-density weighted average of the analytic

transmission function (eq. 9.4) integrated over the pixel area, Ai. For the i-th pixel,

this is given by:

f T(qU, E,r, p)p(r, p)B(r, p) . dA

Teff (q U, E A f p(r, P)B(r, 0) - dA (9.5)

Ai

where p(r, p) is the column density of the tritium source imaged by the detector,

B(r, p) is the magnetic field at the detector face, and T(qU, E, r, 0) is the trans-

mission function (eq. 9.4) associated with the single-field line specified by the

coordinates (r, p) at the FPD face. To very good approximation, both p(r, p) and

B(r, op) are essentially constant over the area of one pixel, so equation 9.5 reduces to

a simple area weighted average:

ri,2 (Pi2

Ti'eff(qU, E i = T (qU, E, r, p)rdrp . (9.6)

The evaluation of the above expression requires us to know the single-field line

transmission function (of equation 2.9) and consequently, the analyzing potential,

UA (r, p), and analyzing magnetic field strength, BA (r, p), imaged onto the FPD

everywhere within one pixel. Clearly, it is not realistic to measure these quantities di-

rectly everywhere. However, the transmission function broadening can be explored

indirectly through the use of the three-dimensional electric field model (validated
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though the measurements described in the last chapter) in conjunction with a Monte

Carlo particle tracking simulation provided by the Kassiopeia package.

We will use this Monte Carlo simulation in order to answer several questions

about the transmission function exposed to each pixel and the experiment as a

whole. These are as follows:

1. What is the distribution of the analyzing potential viewed by each pixel?

2. How is the transmission function modified by the finite extent of each pixel?

3. What is the systematic error induced by treating only the FPD rings distinctly,

or ignoring the pixel-by-pixel variation altogether?

4. Is the transmission function variation among pixels within one ring small

enough that it can be ignored? In other words, can the spectrometer be

modeled as completely axially symmetric?

5. How well does the analyzing potential need to be measured so as to recon-

struct the spatial variation of the transmission function? To what level can the

systematic error, due to the transmission function spatial inhomogeneities, be

limited by measurement?

9.2 Calculation of the Pixel-wise Effective Transmis-

sion Functions

In order to generate a reliable model of the transmission function seen by each

pixel, we need to generate a large sample of electron tracks passing through the

main spectrometer. A large sample is needed so that statistical fluctuations do not

overwhelm the effects we are seeking. Somewhat similar studies have been done

previously, using an axially symmetric model of the main spectrometer electric and

magnetic fields [70, 110]. However, until the development and implementation of

the fast multipole technique described in this thesis, using a fully three dimensional
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model of the electric field was not computationally feasible. This was due to the

slowness of the direct evaluation. Since the direct method requires ~ 0.1 - 1 seconds

to evaluate the electric field and several thousand evaluations (> 104) are needed

for each particle track, a simulation of - 106 particles would require several CPU-

centuries to complete. The HFFM method reduces this time by roughly a factor of

6000-7000 and makes the simulation of large particle sets viable.

To generate the events used to study the pixel-dependence of the transmission

function, the fully three dimensional BEM model of the main spectrometer as de-

scribed in [53] was used in conjunction with the HFFM method to compute the

electric fields. The BEM mesh was also used for navigation in order to resolve parti-

cle collisions with the spectrometer walls. The Laplace BV\P was solved using the

super-position solver (described in section 8.6) with the electrode potential values

as described in table 9.1. This potential setting was chosen from several standard

Vessel Potential (V) Wire Array Offset (V) Steep Cone Offset (V)
-18400 -200 +100

Table 9.1: Main spectrometer electrode configuration. Here the hull is set to -18.4kV,
the inner electrode to -18.6kV, and the steep cone electrodes to -18.5kV. Both wire
layers (where they exist) are set to the same potential.

configurations used during the SDS series of commissioning measurements because

it reflects a worst-case "shorted" configuration of the main spectrometer. If the

electrical short circuits between the wire layers are repaired before tritium data

taking starts, the uniformity and axial symmetry of the electrical potential viewed

by the detector should be improved. However, since this may not be the case, it is

important to understand what effect this deviation from the original design may

have on the neutrino mass extraction. Once the charge densities were obtained, a

HFFM field map was constructed according to the parameters of table 9.2. Tracking

was performed using the adiabatic approximation with an 8-th order embedded

Runge-Kutta method. The estimated local error on the position and momentum of

the particle were limited to 50 nm and 0.018 eV/c respectively, so as to provide a

reasonable trade off between the speed and accuracy of the simulation.
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dt d z p i nmax
16 3 1 13 4/3 5

Table 9.2: Parameters used by the HFFM method to map the field of the three-
dimensional main spectrometer for particle tracking studies.

Since for the purpose of this study we are primarily concerned with the az-

imuthal inhomogeneities of the electric potential, the magnetic field of the main

spectrometer was treated using the axial symmetric approximation. The magnet

positions of the full experiment beam-line model and optimized current values,

as laid out in table B.7 of [110], were used to model the magnetic field using the 3

Gauss settings. The optimized settings for a higher (6 Gauss) analyzing magnetic

field were also modeled using the same current and position values for the magnets,

with the obvious exception of the LFCS coils, the currents of which are given in

table 2 of [179]. We will refer to these magnetic field configurations as the 3 Gauss

and 6 Gauss settings respectively. The EMCS was configured so as to perfectly

compensate the transverse components of the Earth's magnetic field.

A total of 3.2 x 106 electrons were tracked through the spectrometer for each

magnetic field setting, starting from the mid-plane of the first pre-spectrometer

magnet (z=-12.1) and ending at the detector plane (z=13.93). Their starting positions

were uniformly distributed over the flux tube, up to a radius of 0.04 m. Their

starting momentum was isotropically distributed up to 700 with respect to the

magnetic field direction. This was done in order to capture all particle behavior up

to the cut-off angle (which corresponds to 66' in the pre-spectrometer magnet).

9.3 Description of Transmission Function Model

Using the Monte Carlo data set, we can construct a model of the transmission

function imaged by each pixel of the FPD in two ways.

The first method is quite straightforward. We simply count the number of parti-

cles in each energy bin that either reach the detector or are electrostatically reflected
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in the volume of the spectrometer'. Clearly, determining the pixel associated with a

particle that has reached the detector face is a simple matter. However, to compute

the transmission probability, we also need to make a pixel assignment for those

particles which were reflected and never actually reached the detector. To do this,

we use the transmitted particles to construct a function which maps the starting

plane location to each FPD pixel. Then, this map can be used to look up the FPD

pixel associated with each reflected particle. In essence, this map represents the

pixel each reflected particle would have hit, if it had been provided with enough

energy. Constructing the energy-binned ratio of transmitted to reflected particles

emitted from the same pixel region immediately gives us the effective transmission

function. The accuracy of this method is of course limited by the statistics of the

Monte Carlo simulation, as well as the degree to which energy conservation is

violated by the finite numerical precision with which the equations of motion are

solved. It best serves as a means by which we can evaluate the self-consistency of

the Monte Carlo simulation with the second method.

The second method is to perform the calculation of the area-averaged trans-

mission function directly from equation 9.6. To do this, we must first construct

the value of the analyzing potential, Ua, and analyzing magnetic field, Ba, that is

mapped to the face of the FPD. This can be done in a simple manner by determining

the location of the minimum longitudinal energy along the track of each transmitted

particle. This location is considered the analyzing point. The value of the electric

potential and magnetic field at the analyzing point are then taken to be the values of

Ua (r, p) and Ba (r, q) mapped to the particle's terminal location, (r, p) on the FPD.

Figure 9-2a shows the analyzing potential inhomogeneity, (UA - UIE), of the main

spectrometer mapped to the FPD face for the 3 Gauss magnetic field configuration.

Figure 9-2b shows the corresponding analyzing magnetic field inhomogeneity. The

potential and magnetic field inhomogeneities for the 6 Gauss setting are shown in

figure 9-3.

'Particles which are magnetically reflected at the pitch magnet only affect the overall normaliza-
tion and are ignored for the purpose of computing the transmission probability.
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Figure 9-2: The analyzing potential and magnetic inhomogeneities mapped by
particle tracks to the FPD for the 3 Gauss field setting.
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Figure 9-3: The analyzing potential and magnetic inhomogeneities mapped by
particle tracks to the FPD for the 6 Gauss field setting.
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From figures 9-2 and 9-3, it is readily apparent that there is a vertical asym-

metry in the analyzing potential. To see how this affects the analyzing potentials

imaged to pixels within one ring, it is helpful to plot the mean analyzing potential

inhomogeneity for each pixel as a function of the pixel ID. The mean potential

inhomogeneity for each pixel is shown in figures 9-4a and 9-4b for the 3 Gauss and

6 Gauss field settings respectively. The error bars represent the RMS variation of the

potential inhomogeneity within each pixel. The variation within each ring (visible

as large oscillations) is due primarily to the overall vertical asymmetry and is a

result of the vessel deformation. The RMS spread within individual pixels is mostly

due to their radial extent. Some of the outermost pixels also suffer from some

additional azimuthal variation due to the wire combs, but this is a sub-dominant

effect.

Once we have constructed the maps of the analyzing potential and magnetic

field, we can then proceed with the calculation of the effective transmission function

for each pixel. To do this, we compute equation 9.6 numerically using 32 x 32

Gauss-Legendre quadrature over the area of each pixel in uniform 3meV steps from

4 volts below to 2 volts above UIE-

As a check of the self-consistency of the Monte-Carlo with the area-weighted

transmission function calculation, we show the results of both methods by com-

puting the effective transmission function (3 Gauss setting) for the inner-most ring

(bullseye) and for the outer-most ring, in figure 9-5. The Monte Carlo result is

primarily limited by statistics, but also by the numerical accuracy of the particle

tracking which causes small energy violations on the order of 0.05 eV between the

start and end of a track. It should be noted that the accuracy of the particle tracking

is mainly limited by the choice of step size for the numerical integrator, and not

by the field calculation. Therefore, the energy violation could in principle be made

negligible, but at the cost of more integration steps, resulting in a slower run time

and worse statistics. However, in light of the comparison between the two methods,

it appears that the results are consistent to within the Monte Carlo error. Therefore,

it appears appropriate to use the simpler method of equation 9.6 to calculate the
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Figure 9-4: The mean potential inhomogeneity for each pixel of the FPD, labeled by

pixel ID. Variation within rings is clearly evident.
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effective transmission function of each pixel.

It is also informative to calculate the effective transmission function for the

entire detector as a whole, as well as for each ring. Comparing these with the

pixel resolved approach demonstrates the effectiveness of the detector pixelation

in improving the energy resolution of the spectrometer. Figure 9-6 shows the

effective transmission function (for the 3 Gauss setting) for the entire detector and

resolved into individual rings and pixels. From this figure, we can see that the

radial and azimuthal inhomogeneities severely degrade the energy resolution of the

spectrometer if no segmentation or only ring based segmentation were to be used.

However, nearly the full ~ 1 eV resolution is recovered when using individual

pixel-by-pixel segmentation.

9.4 Method of Ensemble Tests

Now that we are able to calculate the effective transmission function for each pixel,

we need to evaluate the effect that our choice of transmission function model has on

the extracted neutrino mass. To do this, we have chosen to use the method ensem-

ble tests [51, 110, 140] because of its ease of implementation and straightforward

interpretation. This is done by constructing pseudo-data from a number of toy ex-

periments and fitting the pseudo-data with a model of our choosing (not necessarily

the same as the model used to generate the pseudo-data). To generate a toy experi-

ment, we start by choosing a set of parameters representing the KATRIN experiment

which determine the rate of electrons leaving the source and reaching the detector

according to our understanding of equation 9.1. After computing the expected

number of counts, Nij, for each detector pixel, i, and potential setting, U, we then

draw a random value, Nij, from a Gaussian distribution2 with a mean y = Nij and

width c Ni, = I . This set of randomized counts {Nij is the pseudo-data, which

2 Radioactive decay is of course a Poisson process. Therefore, the spread on the measured number
of counts, N, collected by the KATRIN detector is expected to follow a Poisson distribution. However,
when the mean number of events is large enough, this reduces to a Gaussian distribution with a
mean P = N and width o- = VN. This is the method adopted in the KATRIN design report [51].
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Figure 9-5: Comparison of the two methods to compute the effective transmission
function for the pixels in the bullseye and outer ring for the 3 Gauss setting. The
lines are the effective transmission computed by equation 9.6, while the marked
points were computed from the Monte-Carlo ratio of counts.
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Figure 9-6: The effective transmission function of the FPD under
tion regimes for the 3 Gauss field setting.

various segmenta-

represents a hypothetically possible measurement, based on our understanding

of the experiment. The parameters used to describe the spectrum-response model

when generating the pseudo-data, {NiIj}, are the Monte Carlo "truth" values which

we intend to extract. Repeating the pseudo-data generation and subsequent fit
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many times builds up a distribution of possible measurement values. The spread in

the distribution of fit values obtained from the pseudo-data provides an estimate of

the statistical power of a measurement, while any deviation of the mean away from

the true value (used to construct the pseudo-data) represents a systematic error

associated with the model used when fitting the pseudo-data.

To extract the parameters of interest, (E0 , m,), along with the so-called nuisance

parameters3 (A, B) from the randomized pseudo-data, we need to construct an

objective function. A simple choice is the x2 metric which is given by:

M2 ! M1 Ni. - Nij(A, B, E0, 297
X2  L 9.7)

j (]

This summation is rather expensive to compute, especially when we consider that

for the standard measurement program the number of potentials is M, - 40, and

the number of pixels is MP = 148. This results in a total of 5920 terms in the sum. Of

course, this is not a particularly large number. However, it is important to remember

that the objective function must be evaluated many times (hundreds) in order to

explore the parameter space, and that the evaluation of each term in the series must

be computed using high order numerical integration4 .

Evaluating equation 9.1 requires a model of the differential P-decay spectrum

for molecular tritium. However, the differential spectrum was calculated using the

simple spectrum of equation 1.31 instead of the full model of equation 2.1, so as

to avoid the full summation over all the possible molecular final states. Since the

theoretical discrete final state model of Saenz et al. [206] consists of 155 discrete

terms, this implies that a single evaluation of the fully pixelated objective func-

tion would require over a million evaluations of the simple differential P-decay

spectrum of equation 1.31. Therefore, this feature of the differential spectrum was

not modeled. Although it will be important to include the final states in the final

3For simplicity we treat the background rate, B, and source activity, A, as uniform over all pixels.
Though in principle these parameters could vary pixel-to-pixel.

4The integration method we chose to evaluate equation 9.1 is 256t"-order Gauss-Legendre quadra-
ture.
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neutrino mass extraction, since their effect is independent of the response function,

the influence of the final states is not expected to modify systematic effects caused

by the transmission function model.

In addition to the differential spectrum model, we also need a model for the

response of each pixel. As mentioned before, this requires the energy loss function

f(e), the scattering probabilities, P, and the effective transmission function of each

pixel (as calculated in the previous section). Since the purpose of this study is to

investigate the pixel-wise effective transmission function, the energy loss function

and scattering probabilities were assumed to be known completely and were calcu-

lated using the model of Aseev et al. [16] using the scattering probabilities of table

9.3 [140]. The convolution of equation 9.3 was calculated for up to four scatterings,

by discretely sampling the energy loss function and effective transmission func-

tion every 3meV. The discrete samples were then convolved in an accelerated way

through the use of the convolution theorem and a FFT. Evaluation of the response

function during the integration of equation 9.1 was done by linearly interpolating

between the set of discrete sample points. The resulting response function for all

148 pixels, colored by their respective ring, is shown in figure 9-7. The individual

pixel response functions are difficult to resolve by eye on such a large energy scale,

but the spreading is readily apparent.
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Figure 9-7: The pixel segmented response functions.
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The other parameters describing the KATRIN model, along with the scattering

probabilities that were used for performing the ensemble tests, are given in table

9.3.

Name Value
End-point, EO 18575 eV

Neutrino mass squared, m2  0

Detector efficiency, CFPD 0.9
Background rate, Br 0.01 Hz
Energy loss model Aseev et al. [16]

PO = 0.413, P1 = 0.293, P2 = 0.167
Scattering probabilities [140] P3 0.079, P4 -0.032

Column density, p 5 x 1017 cm-2
T2 fraction fT2  0.95

Analyzing plane area, A, 63.6 m2

Source magnetic field, B, 3.6 T
Pinch magnetic field, Bmax 6.0

Measurement Range5  EO - 30 to EO + 5 eV
Measurement Time Distribution 3 years, design report [511

Table 9.3: KATRIN parameters used for the ensemble tests.

9.4.1 Evaluation of Transmission Model Induced Systematic Shifts

In order to evaluate how a particular choice of transmission function model may

affect the value of the extracted neutrino mass, we first need to decide upon a

Monte-Carlo "truth". For this, we will use the fully pixelated set of effective

transmission functions obtained from calculating equation 9.6 using the particle

tracking simulation data. Then, we will fit the pseudo-data generated from the

"truth" model using values of NiJ calculated with other representations of the

spectrometer transmission function.

The alternative transmission function models we will consider are somewhat

naive, but represent simple assumptions based on what we can obtain (the analyzing

potential along a single field line) with limited electron gun measurements and no

further assumptions. These alternative models are as follows:

5The measurement voltages were adjusted upwards by 1.7 V to compensate for UA # UIE.
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1. An ideal single field line transmission function (eq 9.4) based on the value

of UA and BA evaluated at the central radius of each ring at x = 0. This

assumes perfect axial symmetry and generally accounts for the overall radial

inhomogeneity but ignores the radial inhomogeneity within one ring.

2. An ideal single field line transmission function (eq 9.4) based on the value of

UA and BA evaluated at the center of each pixel. This makes no assumption

about symmetry but ignores the inhomogeneity within a single pixel.

3. A smeared, radially averaged (at x = 0) transmission function (eq 9.6, but

with Ap = 0) for each ring. This assumes perfect axial symmetry and accounts

for the radial inhomogeneity within one ring but ignores azimuthal variations.

Each ensemble test consists of 104 pseudo-data collections and a subsequent

fit. The results of a single test are shown in figure 9-8 (test of the 3 Gauss setting,

model #3), which demonstrates the distribution generated from the fitted values

of m 2 . The width of the distribution represents the statistical sensitivity, whileVP;

the deviation from zero represents the systematic shift induced by our choice of

transmission function model (in this case, model # 3). The results of the ensemble

tests for models #1-3 are shown for both the 3 Gauss and the 6 Gauss field settings

in table 9.4.

From table 9.4, it is evident that the effect of making an axially symmetric

approximation when modeling the main spectrometer transmission function is

smaller for the 6 Gauss field setting than for the 3 Gauss setting. This comes as no

surprise since the potential inhomogeneity is much reduced in this case. It is also

clear that the models which ignore inter-pixel/ring variation of the transmission

function are not satisfactory at all. However, the use of the simple axially-symmetric,

radially-smeared model of the transmission function (model #3) still results in a

systematic shift of -6.3 x 10-3 eV 2 . Since the designed limit on the quadrature

summed systematic errors of the KATRIN m2 measurement is 17 x 10-3 eV2, this

represents an additional 6.6% contribution to the total systematic error which was

not envisioned in the design document [51]. It should be pointed out that this is
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Figure 9-8: An example of the results from an ensemble test for the 3 Gauss field
setting. Pseudo-data was generated using the fully pixelated effective transmission
function, while the fit was performed using transmission function model #3.

Transmission 3 Gauss: 3 Gauss: 6 Gauss: 6 Gauss:
.uco mo estat on MV, syst. Am2  0-stat on m , syst. Am,function model bp sytAm

x10- 3 (eV2 ) x10- 3 (eV2 ) x10-3 (eV2 ) x10-3 (eV2 )

Model # 1 22 -67 19 -22
Model # 2 21 -49 19 -11
Model # 3 19 -7.4 18 -6.3

Table 9.4: Table of systematic shifts on the m' induced by transmission function
model choice.

by no means is an insignificant effect and is comparable with some of the largest

identified systematic effects estimated in the design report [51].

The statistical errors are also slightly increased, but are not as detrimental to

the measurement as the systematic shifts. Therefore, to obtain the best neutrino

mass sensitivity possible, it is necessary to include the azimuthal variation in the

transmission function model. However, from this study two additional questions

arise: To what level of detail do we need to know the azimuthal variation of the

transmission function, and how well does this additional knowledge improve our

limits on the systematic error?
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9.5 Measurement Strategy for the Full Reconstruction

of the Transmission Function

The particle tracking studies have shown that there is significant spatial variation

in the transmission function and that this variation is not purely axially symmetric.

Furthermore, from the method of ensemble tests, it is clear that several naive

models of the transmission function result in significant systematic errors in the

neutrino mass extraction. Since reliance on the field calculations and simulation

alone is unacceptable as a means of constraining the analyzing potential (due to

unknown system misalignment or deviations in the model geometry), it is necessary

to explore a method by which we may reconstruct the transmission function over

the entire spatial extent of the flux tube from measurement alone. However, it is

not immediately clear where physically and with what resolution the analyzing

potential ought to be measured in order reconstruct it. In order to determine this,

we will resort to sampling theory.

When dealing with the reconstruction of functions in polar coordinates, the

immediate method which springs to mind is that of Fourier-Bessel expansion

[211]. However, this method is unappealing for the reason that the function to

be reconstructed must be sampled in the radial coordinate at the locations of the

zeros of each of the n Bessel functions used in the expansion. This method is

satisfactory, and indeed, ideal, for an easily sampled function, where control over

the exact location of each sample point can be made. However, it is not particularly

helpful when reconstructing the analyzing potential everywhere. This is because it

is difficult to control the exact position of the electron beam, and precise knowledge

of its location can only be obtained at special points (such as the intersection of

two or three pixels). Therefore, as an alternative to Fourier-Bessel series expansion,

we will make use of Lagrange interpolation in polar coordinates. Fortunately, this

method does not require uniformly spaced or otherwise specifically positioned

samples in order to reconstruct the function.

Marvasti [168] presented a theorem on the number and the locations of samples
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x

Figure 9-9: The non-uniform polar sampling strategy of theorem 9.1.

needed to reconstruct a two-dimensional band-limited function in polar coordinates

using complex functions. Margolis subsequently adapted this theorem so it can

be expressed without complex numbers [167]. There are two versions of this

theorem, one which relates to samples taken on non-uniform angular intervals along

unevenly spaced rings, and a second, in which the samples are taken with arbitrary

spacing, along lines which pass through the origin at non-uniform angular intervals.

Although either technique can be used to reconstruct band-limited functions, for

the sake of simplicity, we will only consider the first version of this theorem, which

is stated nearly verbatim, as follows (see [167] for the original statement and further

details):

Theorem 9.1 Let {rn; n = 0, 1,2,...} be a sampling sequence of real numbers with

average density greater than R / T, where each number corresponds to a circle with radius,

r,,, centered at the origin. Let {,,; n = 0, 1, 2,.. ., m = 0, 1, 2.. ., N - 1 } be a set of real

numbers, which defines nonuniform samples on the circle r,,, where N > 2K + 1. If { rn }
satisfies:

rn - n- <L L< oo ,R (9.8)
r, - rk| > 6 > 0 , n 5 k.

Then, any function f (r, 0) band-limited to the circular disk of radius, R, and angularly
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band-limited to K can be perfectly reconstructed from the set of nonuniform samples,

{f(r, Onm)} by:

f, )G (r)

n=O r,( G' (r,,)(r - rn) ' (9.9)

where

G(r) = (r - ro) F 1 - , (9.10)

and
00sin((00,q)/2)

/ N odd

<Dm(0) = 
(9-11

cos 0 in((O-Onq)/2) N even.

An example of this sampling scheme is shown in figure 9-9 and demonstrates

that uniform spacing between the samples is not necessary to reconstruct a band-

limited function, as long as the density is sufficient to satisfy the Nyquist criterion.

Using this theorem, we can then determine what number of measurement points

would be needed to sufficiently determine the analyzing potential throughout the

flux tube cross section so as to limit the systematic shift induced by our limited

knowledge of the transmission function. To do this, we will first generate several

sampling schemes and examine the error between the calculated and reconstructed

analyzing potential. Then, we will consider the systematic shift induced on the

neutrino mass measurement caused by using a transmission function model based

on the reconstructed analyzing potential. We note that the same arguments also

hold for the analyzing magnetic field. However, for the purpose of this study, we

will limit ourselves to reconstructing the potential only and treat the magnetic field

as if it were known perfectly. Before proceeding, we should make note that this

interpolation method is by no means the only way to reconstruct the analyzing

potential everywhere. However, it is advantageous because of its loose requirements

on the sampling positions and its ideal convergence properties when applied to

band-limited functions. In addition, it is also probably not realistic to completely
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Name Number of Ring Azimuthal locations (0)

measurement points locations (approximate)
4 x 4 16 1,5,9,13 0,90,180,270
5x 5 25 0,2,6,10,13 0,72,144,216,288
6 x 6 36 0, 2, 6, 9, 11, 13 0, 45, 90, 135, 180, 225, 270, 315

Table 9.5: Table of sampling schemes to reconstruct the analyzing potential (and
transmission function) throughout the flux tube.

ignore the field calculation and rely solely on measurements when developing a

full model of the transmission function. However, this self-imposed limitation is

effective for exploring a worst-case scenario where this extra information is not

relied upon.

Since measurement of the transmission function (and analyzing potential) is

relatively time consuming, it is not realistic to measure it for every pixel. Instead,

we need to make a judicious choice for the total number and location of each of

the measurements. For this purpose, we will consider three simplistic sampling

schemes. These are outlined in table 9.5. The radial locations are assumed to be at

the outer radius of each specified ring, and the azimuthal locations are given by

the listed values. These locations have been chosen somewhat arbitrarily, and it

is expected that the sampling locations of an actual measurement would deviate.

This should not generally be an issue given the flexibility of theorem 9.1, as long as

the full radius of the flux tube (FPD) is covered and the number of sample points

is the same. However, while there is no strict requirement on the exact azimuthal

location of each measurement, it is important that the samples along a single ring lie

at roughly the same radius. This should not be too difficult a requirement provided

that the measurement locations are close to the pixel's radial edge, where boundary

crossings can be used to position the beam just inside each pixel.

The results of interpolating the analyzing potential using each of the sampling

schemes in table 9.5 are shown in figure 9-10. It should be noted that this evaluation

of the sampling methods neglects measurement error on the analyzing potential.

However, as this can generally be expected to be roughly 10-30mV or less [110], it

is not a significant source of error in comparison to that which is inherent in the
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interpolation technique itself. From figure 9-10, we can conclude that in general,

the 6 Gauss field setting is more easily reconstructed and needs fewer sampling

points than the 3 Gauss field setting. This comes as no surprise since for the 6 Gauss

field setting, the flux tube is further away from the spectrometer walls and exhibits

much less azimuthal variation. In general, for both field settings, the variation

in the analyzing potential can be resolved to within roughly 50 mV for the 6 x 6

sampling scheme. However, for the 3 Gauss field setting, the outermost ring cannot

be properly resolved and exhibits large ~ 0.3V errors. This is due to the influence

of the wire comb support structures. Fortunately, this effect dies off within the

outermost ring, leaving the interior of the flux tube unaffected. If desired, the

potential variation in the outermost ring could be resolved properly, but this would

require a large number of azimuthal sampling positions (> 20), which may not be

realistic.

Now that we have directly explored our ability to infer the analyzing poten-

tial between measurement points, what remains is to determine what systematic

effect each sampling scheme has on the neutrino mass measurement. To do this,

we repeat the procedure of the previous section, generating a set of pseudo-data

using the Monte-Carlo calculated effective transmission functions, and then fitting

it with an alternate transmission function model. However, instead of the previ-

ously mentioned transmission function models, we will construct the fit models by

using the sample-reconstructed analyzing potential when computing the effective

transmission function of each pixel. The results of these ensemble tests for each

of the sampling schemes listed in table 9.5, and for both the 3 and 6 Gauss field

settings, are given in table 9.6.

From these results, we can see that for the 3 Gauss field setting, more detailed

sampling schemes generally reduce the systematic error on the neutrino mass.

When considering the 3 Gauss field setting, using the most detailed measurement

scheme (6 x 6) to reconstruct the analyzing potential yields a reasonably acceptable

level of systematic error of 2.7 x 10-3 eV 2. This represents roughly 1.25% of the

full systematic error budget of 17 x 10-3 eV 2. On the other hand, the 6 Gauss field
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3 Gauss: 3 Gauss: 6 Gauss: 6 Gauss:
Transmission 2 on2 2Trnsisio stat on m3 syst. Amz 0-stat on M, syst. Ami
function model sP i s Ar

x10- 3 (eV 2) x 10- 3 (eV2 ) x 10- 3 (eV2) x 10-3 (eV2 )
Reconstructed, 4 x 4 18 3.6 18 5.8
Reconstructed, 5 x 5 18 3.3 19 5.6
Reconstructed, 6 x 6 18 2.7 18 5.0

Table 9.6: Table of systematic shifts on the ,measurement induced by imperfect

reconstruction of the spatial variation of the transmission function for several
analyzing potential sampling schemes and magnetic field settings.

setting does not seem to exhibit much improvement with an increased sampling

density. This is likely because the analyzing potential is much more homogeneous

for the 6 Gauss field setting, and the lowest sampling strategy already manages

to resolve the variation over the flux tube. However, what is more puzzling, and

somewhat counterintuitive, is that even though the spatial inhomogeneities of the 6

Gauss transmission function are less severe than the 3 Gauss setting, the systematic

shift in the extracted neutrino mass is larger. Of course, when deciding between the

two magnetic field settings, there are other considerations (such as the background

rate) that are equally or more important than the optimization of the transmission

function behavior.

On the basis of this study, we conclude that with a sufficient, but reasonable

number of measurement points, the fully, non-axially symmetric behavior of the

transmission function throughout the flux tube can be modeled quite accurately

using the interpolation method of theorem 9.1 alone. Using the 6 x 6 sampling

scheme to reconstruct the analyzing potential variation can reduce the systematic

error percentage caused by our transmission function model by a factor of 5 over

that which is induced by using the axially-symmetric, ring-smeared model. In

the future, it is expected that combining measurement data with input from the

three-dimensional field model when constructing a realistic model of the trans-

mission function may help to reduce the systematic error associated with the field

inhomogeneities even further.

273



Error on Interpolated (U - U,) (V)

10-

0.02

0.01 -

-0.01

-0.02 -10-3

-0.03

-0.04-

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 10
X (M)

(a) 3 Gauss, 4 x 4 sampling scheme.

Error on Interpolated (U - UIE) (V)

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
X (m)

Error on Interpolated (U - U.) (V)

10-1

102

10-3

10-4

(b) 6 Gauss, 4 x 4 sampling scheme.

Error on Interpolated (U - U3) M( I

10.04

0.02

0.01 4

0

--0.01

10-3 -0.02-

-0.03-

i0- -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
X (M)

10-3

10-4

(c) 3 Gauss, 5 x 5 sampling scheme.

Error on Interpolated (U -U

0.041

-0.01-

10-2

-0.02- 10 -3

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
X (M)

(e) 3 Gauss, 6 x 6 sampling scheme.

(d) 6 Gauss, 5 x 5 sampling scheme.

Error on Interpolated (U- UM) (V)

0.04-

-0.01

-0.02-

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
X(m)

(f) 6 Gauss, 6 x 6 sampling scheme.

Figure 9-10: The error on the reconstructed analyzing potential for the 3 and 6 Gauss
field settings under different sampling schemes. The color axis units are volts.
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Chapter 10

Conclusion and Future Outlook

The KATRIN experiment has the ambitious aim of making the most sensitive model

independent measurement of the neutrino mass to date. In order to accomplish

this goal an enormous number of challenges must be overcome. This thesis has

contributed to this effort by developing a novel variant of the fast multipole method

in order to rapidly calculate the electrostatic field of the main spectrometer system

using the boundary element method. This technique has been implemented as an

extension to the open source field solving library KEMField and integrated with

the particle tracking software Kassiopeia. It has also been extended to exploit

high performance computing, using both MPI and OpenCL based parallelism,

and has used to fully solve the boundary value problem of the three dimensional

KATRIN main spectrometer geometry. Furthermore, it has improved the field

solving performance by over three orders of magnitude in speed and has, for the

first time, enabled high-statistics Monte Carlo simulations of millions of charged

particles in a fully three dimensional model of the KATRIN main spectrometer.

In order to validate this fast field calculation model, an electron gun was used to

make a detailed survey of the analyzing potential inhomogeneities within the main

spectrometer using a transmission function calibrated time-of-flight method. It was

found to be accurate to within 0.01-0.03%. The validated model was then used

to perform a Monte Carlo simulation of electrons in the main spectrometer using

the shorted electrode configuration. The results of this study show that simple
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axially symmetric models of the transmission function are not sufficient to meet the

systematic error budget of the KATRIN experiment. However, further investigation

of several sampling techniques, has shown that a reasonable measurement program

can resolve the azimuthal variation of the analyzing potential well enough to bring

the systematic effect associated with an imperfectly modeled transmission function

down to the percent level. This is a promising result and it will help in delivering

KATRIN's formidable goal of 200 meV sensitivity to the neutrino mass.

KATRIN's measurement will be the most sensitive model-independent probe

of the neutrino mass scale to date, and will help constrain and inform extensions

to the standard model and cosmology. With additional developments (such as

the MAC-E-TOF method [214]) KATRIN's sensitivity may be able to be pushed

even further. However, because of the manner in which the energy resolution of

the spectrometer depends on its size, KATRIN will probably be the last terrestrial

MAC-E filter to place a new limit on the neutrino mass from tritium p-decay. In

the long term, new techniques such as cyclotron radiation emission spectroscopy

(CRES) [18] and the use of atomic tritium will likely be necessary in order to go

beyond the abilities of KATRIN in its current form. With the rapidly approaching

completion of KATRIN's commissioning phase, the prospects for new insight into

the absolute neutrino mass scale look very promising, and the next several years

will no doubt be very exciting.
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Appendix A

The Spherical Multipole Expansion of

a Triangle

This appendix has been reproduced from the original publication [28].

A.1 Introduction

The behavior of systems under electrostatic forces is governed by the electric field

E, which can be expressed as the gradient of a scalar potential cD:

E = -V<D (A.1)

In the absence of free charges, the potential (D is determined by the Laplace equation,

V2(1 = 0 (A.2)

for all points x in the simply connected domain 0. The Laplace equation admits

a unique solution for the field E when the conditions on the boundary of the

domain, i), are specified. The boundary conditions may be completely specified

by associating either a value for the potential (D (Dirichlet), or the derivative of D

with respect to the surface normal a (Neumann), for every point on af.
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One technique for numerically solving the Laplace equation is the boundary ele-

ment method (BEM). Compared to other popular methods designed to accomplish

the same goal, such as Finite Element and Finite Difference Methods [190], the BEM

method focuses on the boundaries of the system rather than its domain, effectively

reducing the dimensionality of the problem. BEM also facilitates the calculation of

fields in regions that extend out to infinity (rather than restricting computation to

a finite region) [216]. These two features make the BEM faster and more versatile

than competing methods when it is applicable.

The basic underlying idea of the BEM involves reformulating the partial differ-

ential equation as a Fredholm integral equation of the first or second type, defined

respectively as,

f(x) J K(x, y)0(y)dy (A.3)
an

and

c1(x) = f(x) + A J K(x, y)>(y)dy , (A.4)

an

where K(x, y) (known as the Fredholm kernel), and f(x) are known, square-inte-

grable functions, A is a constant, and 1(x) is the function for which a solution is

sought. Discretizing the boundary of the domain into N elements and imposing

the boundary conditions on this integral equation through either a collocation or

Galerkin scheme results in the formation of dense matrices which naively cost

O(N 2 ) to compute and store and O(N 3 ) to solve [160]. This scaling makes solving

large problems (much more than ~ 104 elements) impractical unless some underly-

ing aspect of the equations involved can be exploited. For example, for the Laplace

equation there exist iterative methods, such as Robin Hood [152] [84], which take

advantage of non-local charge transfer allowed by the elliptic nature of the equation

to reduce the needed storage to 0(N) and time of convergence to 0(N), with

1 < a < 2.

Another technique that has been used to accelerate the BEM solution to the

Laplace equation, and has also found wide applicability in three dimensional elec-
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trostatic, elastostatic, acoustic, and other problems, is the fast multipole method

(FMM) [160]. The FMM was originally developed by V. Rohklin and L. Greengard

for the two dimensional Laplace boundary value problem [202] and N-body simula-

tion [107]. Fast multipole methods are appropriate when the kernel of the equation

is separable or approximately separable so that, to within some acceptable error, it

may be expressed as [32],

p
K (x, y) ~[Pk(x)(y) .(A.5)

k=O

In the case of the Laplace equation, the kernel is often approximated by an expansion

in spherical coordinates, with the functions IN (x) and Jk (y) taking the form of the

regular and irregular solid harmonics [78], [224]. This expansion allows the far-field

effects of a source to be represented in a compressed form by a set of coefficients

known as the multipole moments of the source.

When applying BEM together with FMM in solving the Laplace equation over a

complex geometry, it is necessary to determine the multipole moments of various

subsets of the surfaces involved. At the smallest spatial scale, this requires a

means of computing the individual multipole moments of each of the chosen basis

functions (boundary elements). Geometrically, these basis functions usually take

the form of planar triangular and rectangular elements, with the charge density on

these elements either constant or interpolated between some set of sample points.

Since rectangular elements cannot necessarily discretize an arbitrary curved surface

without gaps or overlapping elements and can be decomposed into triangles, we

consider it sufficient to compute the multipole expansion of basis functions of the

triangular type.

In section (A.2) we introduce the integral we wish to compute. In section

(A.3) the coordinate system in which the integral is evaluated is described and

we demonstrate a recursive evaluation of the multipole moments in the case of

constant charge density. The manner by which the multipole moments convert

under coordinate transformation is described in section (A.4). We discuss the
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application of this method to triangular basis functions with non-constant charge

density in (A.5), and provide the results of some numerical tests in section (A.6).

Unless otherwise specified, throughout this paper we will index all vector and

matrix elements starting from zero.

A.2 Mathematical Preliminaries

For an arbitrary collection of charges bounded within a sphere of radius R about

the point xo, there is a remote expansion for the potential <D(x) given by [129], [107]:

<D(x) = Q rn11 . (A.6)
1=0 m=-I

This approximation converges at all points x - xoI > R. The coefficients Q' are

known as the multipole moments of the charge distribution. The functions Yj"(&, p)
(known as the spherical harmonics), are given by:

Y j" (OP) = N j" P '(cosO e""0, (A.7)

where the coordinates (r, 0, p) are measured with respect to the origin xo, and the

function PF" is the associated Legendre polynomial of the first kind. Several nor-

malization conventions exist for the spherical harmonics; here we use the Schmidt

semi-normalized convention with the normalization coefficients given by:

N 'I( - Im)!

When the charge distribution o(x') is confined to a surface E, the moments are

given by the following integral:

Q ?" = g(x) ((0,.p) r' dE .(A.9)
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Here we have used a bar over the spherical harmonic to denote the complex conju-

gate. The integral given in equation (A.9) can be addressed in a straightforward

manner through two dimensional Gaussian quadrature [155]. It can also be reduced

to a one dimensional Gaussian quadrature if one first computes an auxiliary vector

field and applies Stokes' theorem, as described by Mousa et al [176]. However,

for high-order expansions, accurate evaluation of the numerical integration be-

comes progressively more expensive. It is therefore desirable to obtain an analytic

expression of the multipole moments.

For an arbitrary expansion origin and triangular surface element, Equation (A.9)

is very difficult to compute analytically. In order to proceed, we therefore make two

simplifying restrictions on the general problem: we assume that the charge density

o-O is constant over the triangle, and that we can always find a special coordinate

system S unique to each triangle in which to perform the integral (A.9).

A.3 Coordinate system for integration

In order to compute the multipole expansion of the triangle E defined by points

{Po, P1, P2}, we first must select the appropriate coordinate system to simplify the

integration. Without loss of generality, we choose a system so that the vertex PO lies

at the origin, and the e1 direction is parallel to the vector P2 - P1. The plane defined

by the triangle is then parameterized by the local coordinates (u, v). Formally, this

local coordinate system S can be defined with the following origin and basis vectors:

0 PO

Q-PO
S : IQ-PI , (A.10)

P2 -)
el P2--P1I

e2 =eoXel

where {PO, P1 , P2 } are the points defining the triangle E in the original coordinate

system. The point Q lies at (h, 0) in the (u, v)-plane and is the closest point to PO,
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which lies on the line joining the points P1 and P2 . It is given by:

Q = P +A
|P2 - p12

) (P2 - P 1 ). (A.11)

Figure (A-1) shows the arrangement of this coordinate system.

V.

w

I,

P0 ,i P2

so u

y
x

(a) Triangle E in global coordinate sys-
tem.

P2

PO Q
*-------- --------- *

P1

h

(b) Triangle E in local coordinate system
S.

Figure A-1: In (A-ia) the boundary element E (shaded region) is shown with
arbitrary position and orientation in the global coordinate system. A detailed view
of the local coordinate system, S, in which the integration is performed, is shown in
(A-1b), where the w axis points out of the page.

Within S the integration takes place entirely in the (u, v)-plane, therefore the

integration over the 6 coordinate can be trivially evaluated at 0 = 7r/2, and the

integral reduces to:

02 r ()

Q= N7 Pm (0) JJ croei'm'rl+1drd).p
'P1 0

(A.12)

As can be seen in figure (A-1) the upper limit on the r integration is given by:

h
cos (A.13)
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Performing the integration over the r coordinate leaves us with:

Q Nm" h'+2P"n(o)
1+2 ) J e- l' d

I (cosp);+2

1I,11

The prefactors ICI,,, are easy to compute. To address the integral 'l,,' we split our

integrand into imaginary and real components, I;,,, = A;,,, - iB;j,,, where:

'P2

J CO = o 12d

P2

j;sin(m dop
(Co) 12I

(A.15)

(A.16)

Before evaluating these integrals, we must first introduce the Chebyshev poly-

nomials [4], [169]. The Chebyshev polynomials of the first kind T,, (x) are defined

recursively for n > 0 as:

To(x) = 1

T1 (x) - x

(A.17)

(A.18)

(A.19)Tn+(x) - 2xTn (x) - T,_1(x) .

Similarly, the Chebyshev polynomials of the second kind, U,, (x), are defined as:

Uo(x) =1

U1(x) - 2x

(A.20)

(A.21)

(A.22)U,1 +1(x) = 2xU,, (x) - U,_ 1 (x) .

These polynomials are noteworthy for our purposes because of the two following
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useful properties:

T, (cos p) = cos (no)

U" (cos 0) =
sin((n + 1)p)

sin p

(A.23)

(A.24)

We can exploit these in order to evaluate Al,,, and B1,,n recursively. We first address

A,,,,,. Using (A.23) we may rewrite (A.15) as:

4)2

Akm = (A.25)Ti (cos ) dp,
(COS 0)1+

which can be expanded in terms of Tm- 1(x) and T- 2 (x) using (A.19) to give

P2

2 T1 (1(cos P) do,

'2

f Tm-2(Cos p) dp.
J1(COS 0) 1+2

This yields the recursion relationship for the Al,,:

Aj,mt - 2AI-1,m1-1 - Aj,m1-2 -(A.27)

Similarly we may use the Chebyshev polynomial of the second kind (A.24) to

rewrite (A.16) as

1,111 - (Cos ) sinpodp (A.28)

and derive the recursion relationship for the B;,,,, which unsurprisingly has the

same form:

B,,m = 2BI_1,"1 - 31,m-2 (A.29)

Given these recursion relationships, we can reduce the integrals A7,m and Bl,,,, of

any degree 0 < I and order 0 < m < I into a series of terms, for which only the

base cases must be evaluated explicitly. Figure (A-2) shows a representation of the

recursion relationship.
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A2,0 A2,1 A2,2

A3,0 A3,1 A3,2 A3,3

Figure A-2: Graphical representation of recursion given in equation A.27 up to
I = 3. Circles denote terms which must be computed as a base case. Squares denote
terms which may be computed by recurrence. The arrows indicate dependence.
Higher order terms extend downwards and to the right, as denoted by the dotted
lines and arrows.

Specifically, the integrals that are not further reducible by recursion are the

following; Ai,o, A,,1, B1,0, and B1,1. Fortunately, all of these base cases have relatively

simple solutions that either have a closed form, or a terminating reduction relation.

Integrals of the form B;,0 are zero for all I > 0, while the B;,1 are given as follows:

02

/, J sinB;,P = dP (A.30)

whereas both A1,0 and A,1I are integrals of a power of secant I0;

02

I0 (sec P)Pdp (A.31)

01

with A;,o =I12 and A,, 1 =7. The notation P and these integrals are addressed

in A.8.
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It should be noted that during the process of computing the value of the Qj"

moment through recursion, the real and imaginary parts of all moments with degree

< I and order < m will be computed. These values can be stored so that there

is no need to repeat the recursion for each individual moment needed. This is

useful when determining the multipole expansion of a boundary element since all

moments up to certain maximal degree can be computed in one pass through the

recurrence.

A.4 Multipole moments under coordinate

transformation

We can make use of the results of the preceding section to compute the multipole

expansion coefficients of the boundary element E with respect to an arbitrary

origin and set of coordinate axes. Typically, we are most interested in being able

to construct the multipole moments Mk of E in the coordinate system that has the

canonical Cartesian coordinate axes, with an origin at an arbitrary point So. We

denote this system as S":

0 =so

-" (1,0,0)
S" : ( . (A.32)

e' (0,1,0)

j2- (0,0,1)

Therefore, we must first construct the coordinate transformation A : S -+ S",

and then determine how this coordinate transform operates on the coefficients Q"

of the multipole expansion given in S. The rigid motion A : S -+ S" can be specified

by a rotation U : S -+ S' followed by a translation T : S' - S". We can describe

the translation by the displacement A = So - Po, and the rotation U by the Euler

angles (a, P, -y) following the Z - Y' - Z" axis convention of [189] and [92]. The

Euler angles allow us to write the rotation U as the composition of three successive
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Table A.1: Euler angles in terms of the elements of the matrix U

Angle U22 # I U2 2 = 1 U22 = -1

a atan2 ,U2 1 -U 2 ) 0 7T
_______ ~ sing' I __________ )_______

3 acos(U22 ) atan2(UO,Uoo) atan2(Uoi,Un1)

- atan2 U g12  U02  0 0
______ sin I sinp ) _ _ _ __ _ _ _ I_ _ _ __ _ _

rotations U = Uz"(-) Uy'(P)Uz(a). Explicitly, U is given by

cos -sin y 0 cosp 0 - sin 31cos a - sin a 0

U sin'} cos - 0 0 1 0 sin a cos a 0 (A.33)

0 0 1 sin 0 cos 0 0 1

and can be related to the basis vectors of the coordinate system S by:

T

UOO U01 U0 2 1 o

U U 10 U11 U12  = 1 . (A.34)

U20 U2 1 U22  02

It is well known that the Euler angles (a, P, -y) do not uniquely describe an arbitrary

rotation matrix U, however, a unique description is not necessary for our purposes.

A convenient set of choices is given in table (A.1). With the transformation A : S -+

S" specified by the Euler angles (a, P, -y) and the displacement A, we can determine

the multipole moments of E in S" through the application of theorems (A.1) and

(A.2).

Theorem (A.1), from Wigner [231], originates in quantum mechanics [73]. It

appears when needing to express the result of the action of the rotation operator

D' (a, 3, -y) upon a particular eigenstate 11, m) of total angular momentum 1, which

is associated with the spherical harmonic Yj" (0, p), in terms of the eigenstates of

the rotated frame I1', in'). Note that since total angular momentum is conserved,

this rotation operator does not mix states with a distinct value of 1 (thus 1 =').

Specifically, Wigner's theorem tells us the matrix elements of the rotation operator
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D (a, P, -y), which is a member of the (21 + 1) x (21 + 1) matrix representation of

SO (3). A more succinct version of this theorem is given in [92], and is restated here

in slightly a modified form.

Theorem A.1 Assume there are two coordinate systems which share the same origin

S :(O,2oc? 1,212) and ': (0, 0j ', &), that are related by the rotation U c SO(3)

specified by the Euler angles {a, P, 'y} such that 0 = Uil,for i = 0, 1, 2. Furthermore

assume that there is a function F(O, p) that can be expanded in terms of the spherical

harmonics Ym (0, p) such that:

F(0, p) = E "(
1=0 1m11=-

(A.35)

then there exists a function f (O', p') such that

0o 1
f (0', (P') = F (0 (O'f', (' ') q " Yj" (O', o')

1=0 mI'=-1
(A.36)

where the coefficients qI" are given by:

(A.37)q ' f D' (a,

and elements of the Wigner matrix , (a, f, 7) are given by:

(A.38)

with

(1 + m')!(l - i')! 1/2
d-p = x

L(l +m)!(l -in)!

(-i - 0- + M

Cos

-

sin (A921-2cr-m'-m)
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where the summation over r is for all values where the entries of binomial coefficients are

non-negative.

The direct evaluation of the coefficients D', ,,Y(f,) through the use of the

expressions given by Wigner is known to be inefficient, as well as numerically

unstable for large values of I and certain angles [47]. However, given the wide

applicability of spherical harmonics to quantum chemistry, fast multipole methods,

and other areas, there has recently been a large effort to develop efficient and stable

methods to perform such rotations in both real and complex spherical harmonic

bases. The current state of the field of spherical harmonic rotation is well summa-

rized by [154], with the algorithm developed by Pinchon et al. [189] being one of

the fastest and most accurate. We will provide a brief description their algorithm

here.

To avoid the need of complex matrix-vector multiplication, the method proposed

by Pinchon et al. [189] is executed in the basis of real spherical harmonics S" (0, p).

The real spherical harmonics as defined by Pinchon (note the difference in the

normalization convention) are related to our definition of the complex spherical

harmonics given in equation (A.7) by

S (6,) = 2l+ (0, P) (A.40)

f- ~1' [Y" (, p) +(-1)"'Y7-"'(0,tp)] -im > 0
7" (0, p) = K. (A.41)

1 2 1 ) [(-1)'Yj "(0, ) - Y I '( ,q)] : < 0

To apply a rotation to the set of multipole moments { Qi"} with 1 fixed and in ranging

from -l to 1 we first must calculate the corresponding real basis {R"' } coefficients,

such that

SQY"(0,p) = 2 " S7"(0,q) , (A.42)
rn2+ 1 nI

using the relations given in (A.40) and (A.41). Then, to prepare this set of moments
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{ R"'} for the rotation operator we arrange them to form the column vector R;:

RI R-1, R-1+1, R-1+2, ... , Rl-1, R' . (A.43)

The application of the Wigner D-matrix to this column vector produces the cor-

responding vector of rotated moments rl. For efficiency, the Dl-matrix is itself

decomposed into several matrices, each of which may be applied to the vector R; in

succession:

r, = D'(a,, )R, = [ X;(a)J;X; (P) JX; (-r)] R, (A.44)

In this notation, the X, matrices effect a rotation about the z-axis, while the Ji

matrices perform an interchange of the y and z axes. The advantage to this method

is that the X, matrices have a simple sparse form whose action on the vector R; can

be computed quickly, as they consist only of non-zero diagonal and anti-diagonal

terms. For example, for I = 2:

cos(2a) 0 0 0 sin(2a)

0 cos(a) 0 sin(a) 0

X2(a) 0 0 1 0 0 (A.45)

0 -sin(a) 0 cos(a) 0

-sin(2a) 0 0 0 cos(2a)

The interchange matrices JI, on the other hand, are completely independent of the

rotation angles and therefore only need to be computed once. While the computa-

tion of J, is beyond the scope of this paper, there is an elegant recursive scheme to

compute them up to any degree 1 given by Pinchon et al. [189]. After the rotated

moments r, have been computed in the real basis, we need only convert them back

to the complex basis through the inverse of equations (A.40) and (A.41) to obtain

the set of moments {q" }.

Now that we have obtained the multipole moments {q"''} in the coordinate

system SI, we need to determine how they are modified by a displacement of the
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expansion origin. This can be accomplished by the application of theorem (A.2).

This theorem, presented by Greengard and Rohklin [202], [107], is a principle part of

the fast multipole method, applied during the operation of gathering the multipole

expansions of smaller regions into larger collections, and describes how a multipole

expansion about one origin can be re-expressed as an expansion about a different

origin. Graphically, this is represented in figure A-3.

Theorem A.2 Consider a multipole expansion with coefficients {O"'} due to charges

located within the sphere D with radius a centered about the point Po. This expansion

converges for points outside of sphere D. Now consider the point So V D such that

A = So - P0 = (p, f, P). We may form a new multipole expansion about the point So due

to the charges within D which converges for points outside of the sphere D' which has its

center at So and radius a' -p + a. The multipole moments of the new expansion { M}

are given by:

j mnok"'ilkl-lin|-lk-m| A,"|A k-mn n-)I,/a,p

mk Ak j-1 P Y (A.46)
11=0 m=-A

where

A"l' = -~ (A.47)
1 (n - m)!(n +m)!

Immediately applying this theorem to the set of moments {q"' } results in the final

objective of obtaining the multipole moments of the boundary element E in the

coordinate system S". However, the number of arithmetic operations required by

the application of theorem (A.2) scales like 0(p4 ). This high cost can be mitigated

by the use of a special case of theorem (A.2), by White et al. [230], and is stated in a

form similar to that stated by [108], [46] below:

Theorem A.3 Consider the situation given in theorem (A.2), in the case that the point

So t D is such that A = So - Po = (p, 0,0). That is, So lies on the z-axis above Po. We

may form a new multipole expansion about the point So, with the multipole moments of the
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D'

2a

2(p+a)

Figure A-3: Multipole to multipole translation. The solid shaded area indicates
the region where the original multipole expansion {O'"} does not converge. The
striped area indicates the region where the new multipole expansion {M. } does
not converge.

new expansion { M } given by:

k &i O_, AOA _pnyo(0,0)
m = n Ak . (A.48)

n=O I

Theorem (A.3) by itself is of course only directly applicable in rare circumstances.

However, White et al. [230] noted that it can be applied to perform a multipole-to-

multipole translation along any axis needed if a rotation is performed through the

use of theorem (A.1) before and after the translation operation. The first rotation

applied aligns the z-axis with the vector So - Po, while the second rotation is

the inverse of the first. The use of the rotation operator together with the axial

translation has a cost which scales like 0(p3 ), which for high-degree expansions

can provide useful acceleration when compared to the implementation of theorem

(A.2) alone.
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(a) Zero-th order (N = 0). (b) First order (N = 1). (c) Second order (N = 2).

Figure A-4: Planar boundary elements with various orders of charge density inter-

polation. Height above the element indicates the value of the local charge density.

A.5 Application to higher order basis functions

There are many schemes for function interpolation over triangular domains, such

as the natural orthogonal polynomial basis put forth by [198], [67], [182] and [142],

and the more commonly used variations on Lagrange and Hermite interpolation

[226], [217], [26], [44]. For the sake of simplicity, we avoid these more advanced

interpolation schemes in favor of a simpler but less well-conditioned bivariate

monomial basis for the charge density. This basis is well suited to the method

of integration described in the preceding sections, as it can be represented more

naturally in the same coordinate system S. Making a change of basis from some

other interpolation method to the bivariate monomials is relatively straightforward;

however, we will defer discussion of this change of basis and its application to

low-order Lagrange interpolation to A.9.

We make the assumption that the interpolated charge density on the triangle

can be expressed in terms of the local orthogonal coordinates (u, v) by:

N N-a

E E SabUab : (u, v) -
o-(u,v) = a=O b=O , (A.49)

0 : (u, V) V E

where N is the order of the interpolation, the variables (u, v) are as defined in

figure (A-1), and sa,b are the interpolation coefficients. For an example of various

orders N of interpolation, see figure (A-4). It is possible to perform a change of basis

on the interpolating polynomials [88] to compute the Sa,b coefficients in terms of the

coefficients of some other polynomial basis; we leave discussion of this change of
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basis to A.9. As can be seen from figure (A-1) the local coordinates (u, v) in terms of

the polar coordinates (r, p) are given by

u(r,') = r cos

v(r, p) = r sin p.

(A.50)

(A.51)

Inserting our expression for the charge density (A.49) and local coordinates (A.51)

into (A.12) and exchanging the order of integration and summation results in:

N N-a f

Q =O E Sb(0
a=O b=0 O

J r((P) (cos p~a(sin p)be-iml(ra~bl1drdp .
0

Performing the integration over the r coordinate leaves us with:

N N -a S/bha+b+1+2

azO b0 a J
kab/,??

(0 2 (sin p)be-i ipdo
Nr""'()l (cos p)b+l+2

We compute the integrals of the form I'b by splitting into imaginary and real

component s, 11',= A' b ilb

b __(0 2

I'' jp,
(sin o)b cos(mp)

(cos p)b++2

i b [(2 (sin p)b sin(M )
Ur''" P (cos o)b+l+2 do

Using (A.23), we may rewrite (A.54) as

b 02Aj''" fo1
(sin p)b T,(cos p) do.

(cos p)b+l+2

Expanding this using (A.19) gives

Ab = /'2 (sin ) bT,-(cosp) do -1,111 'P (cos p)b+l+1
/2 (sin p)bTr,-2(cos 0) do

.fo (CO (o )b+1+2-
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which yields the recursion relationship for the A,,:

A 2A- Am 2  (A.58)

Similarly for the B we have:1,11'

-1,n-1 -l i,m-2 (A.59)

Reducing the integrals Ab and Bb with this recursion relationship leaves us with

the task of evaluating the base case integrals that are not further reducible: Ab,

Ab , B, and Bb l. Integrals of the form Bb are zero for all I > 0 and b > 0, while, 0', 1,1 _ 0

the remaining base cases can all be expressed as:

Ab = Ib+1 (A.60)

A, +l+1 (A.61)

L, 1  b+1 (A.62)1,1 b+1+2

where

Iq fP2 (sin 0)q dp . (A.63)
P J01 (cos O)Pd

The solution of I is addressed in A.8.

The application of the coordinate transform to the moments Qj" then follows as

detailed in section (A.4). A summary of the full method by which to compute the

multipole moments of a triangle is detailed in algorithm (11).

A.6 Numerical Results

In order to gain some understanding of the accuracy and efficiency of the algorithm

presented in this work, some numerical tests were performed with regard to the

problem of evaluating the electrostatic potential of a uniformly charged triangle.

This simple scenario was chosen because there exists an analytic solution to the
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Algorithm 11 Computing the multipole moments of a triangular boundary element.

Input: Triangle E : { Po, P1, P2 } and associated charge density interpolation coeffi-
cients {sab}-

1: Compute height h and coordinate system S for triangle E according to equation
(A.10).

2: forl =Otopdo
3: for m = 0 to l do
4: for all sa,b k 0 do

5: Compute the prefactor Ca,b according to equation (A.53).

6: Recursively compute the integral I, according to equations (A.58)
and (A.59).

7: end for
8: Compute the multipole moment Q"' E Kj',bEI and Q-"= Qi".

a b
9: end for

10: end for
11: Compute the Euler angles (a, /, -y) of the rotation U : S - S' according to table

(A.1).
12: Using theorem (A.1) compute the effect of the rotation U on the set of moments;

{Q f"} -+ {qfl }.
13: Using theorem (A.2) alone, or according to [230] through the use of theorem

(A.1) and theorem (A.3) together, compute the effect of the translation A : S' -+
S" on the moments; {ql'} -+ {q"'}.

Output: The multipole moments {q1'} of the triangle E in coordinate system S".
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potential of a uniformly charged triangle [84], which makes absolute accuracy

comparisons feasible. All of the following tests were performed in double precision.

Since the integrals required to compute the multipole expansion of boundary

elements are typically evaluated using numerical quadrature, a straightforward

two dimensional Gauss-Legendre quadrature method was used as a benchmark

against which to compare the speed and accuracy of the analytic algorithm. The

benchmark numerical integration is performed by first converting the integral

over the triangular domain given by the points {PO, P1, P2 } to an integral over a

rectangular domain through the use of a slightly modified version of the transform

described by Duffy [69]. We can then write the surface integral given in equation

(A.9) as:

L1 L2 L1 L(

Q1 -= f ro- Y n(0 (r), p(r) r x dvdu= J f(u,v)dvdu , (A.64)
0 0 0 0

where r(u, v) = t(u, v) - xo, and t(u, v) is given by

(Po + unif + v (1 - u/L1 ) n2 ) -_

t (Po + unl + v (1 - u/L1 ) n2) . y , (A.65)

(PO + un, + v (1 - u/L1) n2) z

with Li Pi - PoI and ni = (Pi - Po)/ Li, where i = 1,2, and the point xo is the

origin of the expansion. The two dimensional integral over the (u1, v)-plane is then

performed using m-th order two dimensional Gauss-Legendre quadrature [4], given

by:
L, L2Q," =4 2 [ iw(uij, Vj) (A.66)

i=1 j=1

where

11i = ((xi + 1)2 1(A.67)
v= L(xj+ 1)

while wi and xi are the one-dimensional Gauss-Legendre weights and abscissa,

respectively. These can be calculated as described by Golub et al. [103]. The
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orders of the quadrature rules that were considered were m = {4, 6, 8, 10}. It

should be noted that this numerical integration routine is not the most efficient

possible, and is only meant to provide a point of reference to a more commonly

used means of computing the multipole coefficients. There are several techniques

to accelerate the numerical integration over the benchmark we provide, such as

adaptive quadrature [35] or quadrature rules specifically formulated for triangular

domains. For example, Cowper [56] gives a 6-point rule with a degree of precision

of 4, and a 12-point rule with a degree of precision of 6, which require roughly

3 times fewer function evaluations than the corresponding 4 x 4 and 6 x 6 two-

dimensional rules used in this study. However, the computation of the weights

and abscissa for an arbitrary order quadrature rule on a triangular domain is more

complicated than the simple two-dimensional scheme, which are trivially generated

from the one dimensional Gauss-Legendre weights and abscissa. For the sake of

simplicity, these adaptive techniques and triangle-specific quadrature rules were

not considered for this study.

lam 
Degree of expansion

12 nw m n-2
10- A n=4 r nal

104 o n-16 o n -32
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Figure A-5: Comparison of the accuracy of the multipole expansion against the
direct method of evaluating the potential. Coefficients of the multipole expansion
are calculated using the analytic method described in this paper. Absolute error
is shown as a function of the ratio Ix - x0 /R, where Ix - x0 is the distance of the
evaluation point from the expansion origin, and R is the radius of the smallest
sphere enclosing the charge distribution.
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The first study consisted of 100 randomly generated acute triangles, whose

vertices were chosen to lie on the unit sphere. For each triangle the charge density

was selected such that, at a single collocation point (the centroid), the potential as

evaluated by the direct method was unity. This was done in order to normalize

the scale of the absolute error such that the smallest measurable error is on the

order of 10-15. Then, the multipole expansion of each triangle (up to degree n = 32)

about the origin xO = (0,0,0) was formed and 104 points x were selected within the

volume 1 < Ix - xo| < 100. These points had angular coordinates that followed

a uniform distribution over the unit sphere, but the radial coordinate was chosen

with a higher weight towards smaller radii in order to provide sufficient statistics

in this region. At each point the absolute error between the direct potential and

the potential given by the multipole expansion was computed for expansions of

degree n = {1, 2, 4 ,8, 16, 32}. Using the algorithm described in this work to

compute the multipole coefficients, the absolute error on the potential is plotted as

a function distance from the expansion origin divided by the radius of the region

enclosing the charge in figure (A-5). For comparison, the accuracy of the multipole

expansion when using two-dimensional Gauss-Legendre quadrature to compute

the multipole coefficients is shown in figure (A-7).

It should be noted that the minimum possible error obtainable by the multipole

expansion is a slightly increasing function of distance. This trend is observed re-

gardless of the technique used to compute the multipole moments of the source so

it is likely attributable to round off error in either the direct potential calculation or

in the calculation of the potential from the multipole expansion. However for our

purposes this is not an important feature, since we are interested in demonstrating

how quickly the expansion converges to this limiting error. As a general rule, as the

degree of the expansion is increased the multipole approximation will converge to

the minimum possible error at a smaller distance from the source. However, this

is only true so long as the method used to compute the multipole moments of the

expansion respects the oscillatory behavior of the spherical harmonics. For low

degree expansions numerical quadrature rules with a small number of function

299



evaluations can compute the the multipole moments exactly to within machine
precision. However, as the degree of the expansion is increased the higher or-
der spherical harmonics oscillate more rapidly and progressively more expensive
quadrature rules are needed to evaluate the coefficients to equivalent accuracy. This
effect can be seen in figure (A-7). For example, up to an expansion degree of n = 8,
the 4 x 4 Gauss-Legendre quadrature rule is sufficient to compute the multipole
coefficients to the same accuracy as our algorithm. However continuing to use the
4 x 4 Gauss-Legendre quadrature rule while increasing the degree of the expansion
up to n = 32 does not result in a more accurate evaluation of the potential. To obtain
the full benefit of a high degree expansion one must correspondingly increase the
number of function evaluations used by numerical integration.

- o-Quadraurs (14 x 14)

Degree of Expansion

Figure A-6: Time required to evaluate all of the multipole coefficients of a single
triangle for the method detailed in algorithm (11) and various m x m point Gauss-
Legendre quadrature.

The second study demonstrates the efficiency of this algorithm as an alternative
to simple two dimensional numerical integration. To do this, a comparison was
made between the time needed to compute all of the multipole expansion coef-
ficients of a single triangle (up to a certain degree) using the analytic algorithm

and the time needed when using numerical integration. This test was carried out
on a computer with an Intel i7 processor running at 1.9GHz, results are shown in

figure (A-6). For all but the lowest degree p <; 4 expansions, the performance of
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the algorithm presented in this work is approximately an order of magnitude faster

than the lowest accuracy Gauss-Legendre quadrature rule considered, while for

high order expansions p > 16, it is nearly two orders of magnitude faster than the

quadrature rule which obtains equivalent accuracy.
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of the multipole expansion against the
direct method of evaluating the potential. Coefficients of the multipole expansion
are computed using two-dimensional Gauss-Legendre quadrature rules of varying
precision.

A.7 Conclusion

We have presented a novel technique to evaluate the multipole expansion coeffi-

cients of a triangle. This method evaluates the necessary integrals through recursion

within the context of a coordinate system with special orientation and placement.

The results of the integration can then be generalized to the case of an arbitrary

system through the well known transformation properties of the spherical harmon-
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ics under rotation and translation. Furthermore we have demonstrated that the

application of this method to the multipole expansion of triangles with uniformly

constant charge density compares favorably in terms of accuracy and speed to

numerical integration. This method can also be extended to the case of non-uniform

charge density, provided the interpolant can be represented as a sum over the

bivariate monomials. We expect this method may find use in solving the three

dimensional Laplace equation with the fast multipole boundary element method

(FMBEM). We speculate that other boundary integral equation (BIE) problems, such

as the Helmholtz equation in the low frequency limit k -+ 0, could benefit from this

approach if the integrand in the multipole coefficient integrals can be expanded in

terms of the solid harmonics. Such will be the study of a following paper.

A.8 Integrals

The solutions to the integrals found in equations (A.30), (A.31), and (A.63) can

be found in any standard table of integrals [122], [185]; however, for the sake of

completeness we include the solutions and reduction formula here. Starting with

equation (A.30) we have an integral of the form

02

I co do , (A.68)

which may be solved by simple u-substitution, with u = cos(p), which yields,

1 CO S 2  
1 , P C O S 2

ii -/ - (A.69)
P f UP p - 1 CO

Cos (Pl

The integral in equation (A.31) is of the type:

P2

I0 = (secq)Pdp. (A.70)

P'i
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This can be addressed with integration by parts, which yields the reduction relation,

10 = sin p(sec p)P- P2

P (P - 1 )
+ ( 2 '-2

p
(A.71)

with the non-trivial base case:

0 Jsec pd = In I tan

1P(

+ 4 (A.72)

Both of the above integrals turn out to be special cases of equation (A.63), which

has the form,

(A.73)/= 2 (sin o) qd
P 01 (Cos o) P

where p and q are positive integers. When p ? q, this integral can be simplified by

the reduction relation:

Iq = (sinop)9-l
Iv (q - p)(cos p)P-1

02

01
( - 1) jq-2

q - p P
(A.74)

until the base cases 10 and P are reached. If p = q, we simply have an integral of aP

power of tangent,

I = = 2 (tan o)Pd p (A.75)

which in turn can be reduced with

Ip =(tan o)P- p-2
P p - 1 p-2 (A.76)

until reaching the non-trivial base case,

Il = -In I cos 0114). (A.77)

Although most of these integrals do not have a simple closed form, the implemen-

tation of the base cases and reduction formula in computer code is a fairly simple

task.
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A.9 Change of interpolating basis

Since the calculation of section (A.5) proceeds assuming that the interpolant on the

boundary element can be expressed in the basis of the bivariate monomials, in order

to make these results relevant to the various interpolation methods often used (see

for example, [226], [217], [26], [44]) we need to be able to change the basis of the

interpolant. Explicitly, we would like to express the interpolant as a sum over the

bivariate monomials. To do this, we must determine the coefficients of the bivariate

monomials in terms of the original interpolation parameters. To motivate this

section, we will consider the example task of changing from the bivariate Lagrange

to bivariate monomial basis. The objective we seek is to replace the tedious symbolic

manipulation often encountered when performing a polynomial change of basis

with a well defined numerical procedure. We expect that the results may apply to a

wider class of interpolants other than Lagrange, though this extension is beyond

the scope of this paper. To start, we will first introduce some basic definitions, with

the assumption that the reader is familiar with the concept of a group and ring such

as presented by [183] or [30].

Let R [u, v] be the polynomial ring over the real numbers in the variables u and

v. Then for all F(u, v) e R[u, v], we may write F(u, v) as the series,

F(u,v) = L L fa,bI'Vb (A.78)
a=0 b=0

where the coefficients fa,b c R, and nf, mf c N0 . The sum and product operations

on this ring are defined in the usual sense as follows; for F(u, v), G(u, v) E R[u, v],

the sum is given by:

nh 111hi

F(u,v) + G(u,v) = H(u,v) = 1: ha,buavb R[u,v] (A.79)
a=h b=f

where ha,b = fa,b -+ 90~, and nh = max(nf, ng) with ml, defined similarly. The
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product is given by:

Ilk 
111k

F(u, v) - G(u, v) = K(u, v) = kbuaV b E R[u, v] (A.80)
a=0 b=0

where
a b

ka,b - E fij -ga-i,b-j (A.81)
I.=0 j=0

and nk = nf + nil with mk similarly.

For a given polynomial F(u, v), the greatest integer a + b for which the coefficient

fa,b is nonzero is called the maximal combined order of F(u, v). We will denote the

set of all bivariate polynomials F(u, v) E R [u, v] whose maximal combined order is

N as PN. In general we may write any polynomial S(N) (U, v) E PN as follows

N N-a

S(N)(UV) = TSUaVb (A.82)
a=0 b=O

Consider for example the first order bivariate polynomial,

s( 1)(u, v) = ,O + 50,1u -+ s1ov . (A.83)

This function can be also represented as the matrix vector product:

s( 1)(u, v) (1,u) '0 SO,1 1 (A.84)
Ls5,0 0 v]

RM

The ability to write the above example in this manner motivates us to find a map

between PN and the set of (N + 1) x (N + 1) upper left triangular matrices, TN- In

general, we expect that the bivariate polynomial S(N) (u, v) E PN, may be written

in terms of a matrix vector product involving an upper left triangular matrix

R(N) E TN whose entries correspond to the coefficients sa,b as follows:
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soO so, sO,2 ... SO,N 1

si,O si, ... S1,(N-1) 0

s(N)(u N) (1,u, . s2,0 *'' s2,(N-2) . (A.85)

0 .- 0
vN

SN,O 0 0 0

R(N)

Clearly, the set TN forms a group under matrix addition, and this corresponds to

the fact that PN is also closed under addition. Unfortunately, PN is not closed under

the operation of polynomial multiplication (-), because repeated multiplication

can produce a polynomial of arbitrarily large order. In order to construct a proper

ring from the set PN we must restore the property of closure by replacing the

traditional product operator (.), with a new operator (G) which we will define as

multiplication combined with the truncation of terms with combined order larger

than N. Formally, for any two polynomials F(u, v), G(u, v) E PN, this operator is

given by:
N N-a

F(u,v) G G(u,v) = H (u,v) = ( (ha,b uaV b G PN (A.86)
a=O b=O

where,
a b

ha,b =Z E fi,j -ga-i,b-j. (A.87)
i=0 j=0

We note the the (G) product defined in equation (A.86) only differs from the

definition of normal polynomial multiplication in equation (A.80) by the limits on

the summation. This definition leads us to the following lemma.

Lemma A.1 The set PN together with the binary operations + and 0 forms a ring.

In light of lemma (A.1) we would also like to find a binary operator on two

matrices A, B E TN which mirrors the action of multiplication on the set PN of

bivariate polynomials. It is clear from inspection of equations (A.80) and (A.81)

that multiplication () over the polynomials in R Lu, v] corresponds with the two
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dimensional convolution (*) of the two matrices formed from the monomial coeffi-

cients. However, the set TN is also not closed under the convolution operator (*).

To restore this closure we will instead consider a different operator 0, specified in

definition (A.1).

Definition A.1 Let the two matrices A and B be elements of TN, then the action of the

binary operator * on A and B produces another matrix C e TN, whose elements are given

by:
a b
T E Ai,jBa-i,b-j a + b < N

Ca,b i=0 j=0 (A.88)

0 a +b>N

Choosing the ® operator to be defined as the product operation over TN pro-

duces the following lemma.

Lemma A.2 The set TN together with the binary operations of matrix addition + and the

operator ® forms a ring.

To make use of the two rings (PN, +, 0) and (TN, +, 0) in the problem of de-

termining the monomial coefficients of an interpolant, we now need a bijective

map between the two which preserves the structure of the operations on each ring.

Specifically, we need an isomorphism, A : (PN, +, 0) -+ TN (PN, +, *). Equation

(A.85) has already demonstrated the nature of A-' : (TN, +, *) - (PN, +, 0) as

a matrix vector product, and leads us to definitions (A.2) and (A.3), and theorem

(A.4).

Definition A.2 Since we may write all F(u, v) E PN according to equation (A.82), we

define the map A : PN -> TN as A(F(u, v)) = R, where the entries of the matrix R E TN

are given in terms of the monomial coefficients of F(u, v) by R,,j = fi,j and are zero when

N < i+j.

Definition A.3 For all R E TN, we define the map A- 1 : TN -- PN as follows,

A- 1 (R) = F(u,v) (A.89)
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where the bivariate polynomial F(u, v) E PN is given by the following matrix vector

product,

F(u, v) = uTRv (A.90)

where the column vectors u and v of length N + 1, have their i-th entry given (as powers of

the variables u and v) by ui and vi respectively.

Theorem A.4 The inverse of the map A : PN -4 TN, is given by A- TN -+ PN,

moreover the map A is a isomorphism from the ring (PN, +, 0) to the ring (TN, , ).

Now that we are in a position to make use of the isomorphism A, we will also

make some assumptions on the class interpolants upon which we wish to make

the change of basis. The first assumption is that interpolant HN (u, v) of maximal

combined order N may be written in terms of a finite set of basis polynomials

QN C PN as,

UN(u v =L jp(N) (U, V) (A.91)

where p5 N) (u, v) G ON and the U are know as the interpolation coefficients. The

second assumption is that any higher order basis function of the interpolant can be

expressed as linear combination of products of the first order basis functions. We

will term such a class of interpolants as simple according to definition (A.4).

Definition A.4 Assume that a given class of two dimensional inter polating polynomials

has the set offirst order basis functions given by

f =cp ( / ( () C P1. (A.92)

Now consider all multi-sets Ci of size 1 < k < N,formed by making all possible combina-

tions (with repetition allowed) from elements of I. The number of multi-sets Ci is given

by:

M_= (Mk) (A.93)
k=1

If the class of inter polants is such that any N-th order basis polynomial p N ) can be written
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as,

p(N) = _ ij 1 x (A.94)
i=0 xECi

where yi,j E R and Ci is the i-th multi-set of size k < N, and which for all x E Ci, we have

x E (D1, then we will call such a class simple. We will call the set of coefficients rij together

with the corresponding set of multi-sets Ci, the rule of this simple class.

With this definition in mind, we can now approach the problem of converting

from a bivariate Lagrange basis to a bivariate monomial basis. Specifically, we wish

to find the bivariate monomial coefficients of the polynomial N-th order Lagrange

interpolant I-N (U, v). Computationally, this amounts to finding the entries of the

matrix A(HN (U, v)) - R(N) given the set of interpolation coefficients {U1 I.

We will follow the notation of [2261 and [217], who define the first order La-

grange interpolant for a triangle composed of vertices Pj (u, vj) as:

H1 (u, V) = [ Uj p (u )(A.95)
j=0

where,

p (u, V) = (Tkl + qkI u - kIV) (A.96)
I 2A

and

Tk 11kVI - vkU1 (A.97)

kl Uk - uI (A.98)

1k1 = Vk - VI (A.99)

while (j, k, 1) is any cyclic permutation of (0, 1, 2). The area of the triangle is denoted

by A. Within the context of the coordinate system S, we have PO = (0,0), and
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U1= 112 h, so we may directly write down the basis functions p,) as:

p (u,v) = [(vI - v 2)(u - h)] (A.100)

(1 ) 1
p (u,v) V2u - hv] (A.101)

p( ) =1 [-viu +hv] A122 A
p2 (u, v) 2A Ivu+h](A.102)

which have the corresponding coefficient matrices of:

(R h(V2 - V1) (V1 - V2)(A13
0 2A 0 0

1 ~0 v

R(_) = (A.104)
2A -h 0

___ -viiR(A) = (A.105)
2 2A h 0

To obtain the bivariate monomial coefficients 7Ta,b of the polynomial f 1 (x, y) it is

then only a simple matter of summing each matrix weighted with the appropriate

Lagrange interpolation coefficient.

a,l, = LUiR2(1 (A.106)
j=0 -a,b

In order to extend this to N-th interpolation we could again compute the coeffi-

cients 7Ta,b explicitly through direct inspection of the N-th order basis polynomials.

However, for higher orders this quickly becomes tedious even with the use of

a computer algebra system. Alternatively we can make use of the isomorphism

A between the rings (PN, +, G) and (TN, +, *). We note that since the bivariate

Lagrange basis is a simple class of interpolating polynomials, we can express any
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N-th order basis functions according to equation (A.94) as:

(N+1)(N+2)/2-1

HN(u, v) = (A.107)
j=0

Furthermore, under the isomorphism A the rule of the N-th order Lagrange basis

can be re-expressed in the space of TN by:

(A.108)
R() M-1

R EN) =ryij 1 H@A(x)
i= xeC1

where we use H- ® to denote a repeated product of the * operator over the matrices

given by A (x). This allows us to compute coefficient matrices R N) directly from

from the first order coefficient matrices RW) solely through matrix summation and

the use of the * operator. Then, to compute the bivariate monomial coefficients rmab

we only need to perform the sum:

(N+1)(N+2)/2-1

_j=0

UjR N)]

a,b

(A.109)

As an example, consider the second order Lagrange interpolant, given by,

(A.110)52 ) = ( , V )
j=0

with the rule of the second order basis functions defined by:

p) (u, v) = () (2p) - 1) =2 p (1)
I 

pI

: 0 <j< 3

: 3 j < 6

(A.111)

(A.112)

where c = j mod 3, and 3 = (j + 1) mod 3. Using equation (A.108) to re-express
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equations (A.111) and (A.112) in terms of coefficient matrices, R yields:

R - 2 (R 1 ) R 1))- R 1 ) : 0 j < 3 (A.113)

R = 4R ) R : 3 < j < 6. (A.114)

Thus the bivariate monomial coefficients of the polynomial H2 (u, v) can be com-

puted in terms of the interpolation coefficients Uj and coefficient matrices R(2 ) of

the second order basis functions by:

nab rEUR . (A.115)
-j=0 a,b

In a similar fashion, this method can be applied to any class of simple interpolants,

summarized in algorithm (12).

Algorithm 12 Compute bivariate monomial coefficients of a simple interpolant.

Input: Triangle E : { PO, P 1, P2 } and set of coefficients { Uj } of the N-th order simple

interpolant S(N)(u, v) with rule ({"yij}, {Ci}).
1: Compute coordinate system S for triangle E according to equation (A.10).
2: Compute (u1, v) coordinates of {PO, P1, P2} in S.

3: Form the matrices R(1) of the coefficients of the 1st order polynomials in the
I

bivariate monomial basis according to equations (A.104) to (A.105).

4: Compute the coefficient matrices R (N) of the N-th order basis polynomials
I

according to equation (A.108) and the rule ({i, 1}, {Ci}).

5: Sum the coefficient matrices R(1) weighted by their interpolation coefficient U1

according to equation (A.109) to obtain the matrix M.
6: Map each element of M to the bivariate monomials coefficient sa,b of S(N) (u, V)

according to the isomorphism A- 1 : TN -+ PN-

Output: The set of bivariate monomials coefficients {sa,b} of S(N) (u, V).
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Appendix B

The Spherical Multipole Expansion of

Rectangle and Wire Elements

B.1 Rectangular Elements

Rectangular mesh elements can be viewed as simply the union of two triangular

mesh elements. The moments of which can be computed according to algorithm 11

and then summed. However, in order to cut the number of multipole-to-multipole

translation transformations that are necessary in half it is more expedient to divide

the rectangle into four triangles as in figure B-1. The moments of triangles A and A'

are related by a single plane rotation of rr. Therefore, the moments of triangle A'

about the centroid c can be expressed in terms of the moments of triangle A by the

simple relation:

M11"(A') = (-1)"'M'?"(A) .(B.1)

Triangles B and B' can be treated similarly. To obtain the moments M"' of the

rectangle about its centroid c, we first compute the moments of triangles A and B

using algorithm 11, and then sum them with moments of their rotated counterparts

A' and B'. The resulting rectangle moments can then be transformed through

theorems A.2 and A.1 to form an expansion about any other origin.
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A A'

Bt

Figure B-1: Division of a rectangle into four triangles to simplify the calculation of
its multipole moments.

B.2 Wire Elements

Of the three mesh element types used, the wire elements are the simplest, the

parameters describing them consist only of the two vertices (po,p1) spaced apart

by a distance, s, and a diameter d. Since the multipole approximation is only

useful in the far-field limit we will assume that a wire may be treated as a linear

charge density, A, as if it had no thickness, d = 0. Therefore the calculation of

its multipole moments reduces to a one dimensional integral. To simplify the

integration further we will choose the coordinate system S such that po is at the

origin and p1 = (r sin 6 cos p, r sin 6 sin p, r cos 0). In this coordinate system, the

expression for the moments is given by:

Y 1 (6AsP+1 (B.2)
Mi'" ~~ = 1 ) 'p B2

It is then a simple matter to use theorem A.2 to translate the moments to form an

expansion about any other chosen origin.
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Appendix C

Embedded Runge-Kutta Integrators

This appendix has been adapted from the original documentation [27].

C.1 Introduction

Efficiently integrating an ordinary differential equation numerically requires the

ability to estimate the error on the approximate solution. This is necessary so that we

may choose an appropriate time step which is small enough to keep the numerical

error under control, but large enough so that we do not waste time computing the

solution to unneeded precision. There are several techniques to obtain an estimate

of the numerical error accumulated during a single step of a Runge-Kutta integrator.

Typically, when the system under consideration has a conserved quantity such as

energy or momentum we can use the error in this quantity as a proxy for the error

on the position. However, it is also helpful to be able to estimate the error in the

particles position directly. This can be accomplished through the use of embedded

Runge-Kutta methods. To motivate the use of these more efficient methods we first

will review two somewhat more primitive direct error estimation methods.
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C.2 Step Doubling

The simplest and most straightforward method of numerical error estimation is

called 'step-doubling'. In this method, we only need the use of a single Runge-Kutta

routine. We would like to estimate the error on the solution y, as we propagate

it from the n-th step to the (n + 1)-th step over a step of size h, (i.e. given y(x),

integrate to find y(x + hn) ). So in order to estimate the numerical error we first

take one step of size h1 = h, which gives us some estimate of the exact solution

y(x + hn). We will refer to this estimate as yi. Then we repeat the process, however,

rather than taking just one step of size h, we take two steps of size h2 = hn/2

This gives us another estimate of the exact solution y(x + h,,). We will refer to this

estimate as Y2-

Now, for the sake of argument lets assume our Runge-Kutta method is accurate

to the 4th power of the step size. That is to say, that if we take a step of size hi, then

difference between the exact solution and the estimate, scales like h5. So in the case

of a 4t order Runge-Kutta method, we may relate the estimate of the solution y,

after taking a step of hi = h to the exact solution y(x + h,,) by:

y(x + ht1) y(x) + Ah, +p(hl1 )5 + Oh6 = y, + a1 . (C.1)

Y1

Where al is the numerical error on the estimate y1. And similarly we may relate

the estimate of the solution Y2 after taking a two steps of size h2 = h/2, to the exact
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solution y(x + h) by:

+C11
2()

+A' +4)'

+ oh1y(x) + h2 +2 2+(
Y2

y(X+ In

y(x + hn1 )

y(x + hn)

y(x + hn)

Now we note that we may obtain qp by equating orders of h5 in a Taylor expansion

of the true solution:

y(x + hn) = y(x) +

Which tells us that that:

and similarly for p':

h (dlly

M=221 Mn! (d x

x

1 (d 5y) N
5! dx5

Now we may relate 0' to q? by Taylor expanding (5 about x, which gives:

O 1
5!

d5y
dx 5

x+ T

1
5!

d5y
dx5 x

+ 37
17=1

(/ )
M!

dly d5y

dx5 X
(C.9)

Now putting this expression for p' back into equation (C.5) and only keeping terms

up to 5 th order in hn, we now have:

y(x + hn) = Y2 + 2( (In + Ohn = Y2 + t2,

where a2 is the numerical error on the estimate Y2. So we see (ignoring terms of

Oh6 or higher), that the error on the yi estimate is a, ph5, and the error on the Y2
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= y(x) + Ah:

+ )

y2 + (0+ P') (2)

+ Oh 6

(C.2)

(C.3)

(C.4)

(C.5)+ Ohl

yi + All, + p(h1 )5 + Oh . (C.6)

1 (d 5y)
i 5! dx5 (C.7)

(C.8)

(C.10)
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estimate is a 2  (qhi)/16. So, while we cannot compute the exact solution y(x + h,,)

to find the true error, we can obtain a good approximation of the numerical error

a,, by taking the difference of equations (C.1) and (C.10), to find:

5yi y2| = I(p h2I =15_ _ 15ph ~ Ph =ai . (C.11)

We note that the estimate Y2 is more accurate than then estimate y1, so if we were

going to continue integrating the ordinary differential equation from the (n + 1)-th

step on to (ii + 2)-th step, it would seem prudent to take the estimate Y2 as yn+,

rather than the estimate yi. However, we have only calculated the error a, on yl.

Shouldn't we find a2? In this particular case (4 th Runge-Kutta), we could find a2 by

simply dividing our estimate of a, by 16. However, in practice, this is not generally

necessary, since al is always larger than t2, and for our purposes it is safe to over

estimate the error on our solution.

So now suppose that we wish to integrate an equation with a 4 th order Runge-

Kutta method, with the constraint that the absolute value of the estimated numerical

error of each step should be no larger than a certain size P > 0. Given this constraint

how should we the optimize our process of integration, so that we may take the

largest step size possible without the numerical error a on the solution of each step

exceeding P?

In order to do this we take note of the fact that our estimate of the numerical

error depends on the step size h as:

|al oc h5 . (C.12)

So, if we take a step of size h, and obtain an error estimate of a, then the step size

hb that would have produced an error of size f is related by:

h p 1 5

b hb = ha (C.13)
ha a

Given this information, we can develop a basic process in which we should
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approach the integration of the initial value problem:

y(xo) = yo , y'(x) = f(x, y(x))

while satisfying our error constraint. The process is:

1. Starting at some particular (y,,, xn), compute an estimate of y,,+1 for a given

step size h,. Call this estimate yi.

2. Starting from the same (yni, x1j), compute another estimate of yn,+1 by taking

two steps of size h, /2. Call this estimate Y2-

3. Compute an estimate of the numerical error a Y1 - y2-

4. Compute the step size h' that would have produced an error of size /, using

h' = (hil (1/5)

5. If the error a < P then the step of size h was good. Then we can set yn+1 = Y2

and xn+1 = xn + h and repeat the process starting from (Yn+1, x,1+1) using h' as

the new step size. However if a > P then the step of size h,, was unsatisfactory,

and we must repeat the process starting from (yn, xn) with the new step size

h'.

This basic process usually works well enough for some purposes. However, it

by no means is the most efficient approach. First of all, using h' as the new step

size for the next step is not particularly well suited. If we use h' then the error on

the next step will be very close to P, and could possibly exceed it, which would

result in an unnecessary recalculation of the next step. It is better to replace h' with

Sh', where S is some 'safety-factor' which prevents h' from quickly becoming too

large or too small. In practice, the authors of [194] have found a 'safety-factor' of

S - 0.9 to be satisfactory for most purposes. This a simple enough fix, however

there are other complications. For example, say the user, rather than desiring a

fixed limit on the numerical error per step of P, would prefer that the percent error

on each step not exceed some limit e. If this is the case, then a naive solution
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would be to use the same process outlined previously, but replace 3 with some

other error limit /2 which varies with each step as 32 EIy, 1. However, this is

deficient for the following reason. Consider what would happen if for some step

y, = 0. If this were to happen then the constraint on the numerical error of this step

could never be satisfied without reducing the step size to zero, and our integrator

could not proceed. One means of avoiding this problem would be to replace /2

with some other #3 = EhnIy' , or 4 C ( ynI + hI y'). This way, even if there is

a zero crossing in y, our error constraint will not be reduced to zero. However,

this introduces a new problem. If we choose this means of calculating our error

constraint, with Pi scaling with hn, then the exponent 1 in equation (C.13) is no

longer correct. Instead we should use 1. However if our routine has no way of

know which of these methods are being used, a safe means of accounting for both

possibilities [194] is to take:

1/4

h'= Sh1  P >, a , (C.14)

h' =Shn p <a .(C.15)

That way whenever we decrease the step size we use the larger exponent, and

whenever we increase the step size we use smaller exponent. This ensures we do

not underestimate the factor by which the step size is decreased (if it needs to be

decreased for the next attempt) and we do not overestimate the factor by which

the step size is increased (if it needs to be increased for the next step). With these

modifications to the process outlined previously, the 'step-doubling' method can

be an effective means of adaptively changing the step size as one proceeds with

integration of the initial value problem.

The largest drawback to method of 'step-doubling' is that it is not particularly ef-

ficient. The maximal number of evaluations of the derivative function for a 4"' order

Runge-Kutta method is four per step. However, the step doubling approach uses

12 evaluations for every step. For derivative functions that are computed cheaply
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this is not such a draw back. However if the derivative is very computationally

expensive to calculate (i.e if it involves the evaluation of electric or magnetic fields)

then our 'step-doubling' routine will be rather slow in comparison to a method

which uses a constant step size, or a method which adapts its step size based on the

amount of error of a more cheaply computed conserved quantity, such as energy.

C.3 Two Runge-Kutta Routines of Differing Order

An alternative means of adaptive step size control is to use two separate Runge-

Kutta integrators of differing order to create an estimate of the numerical error.

This is often more efficient than the 'step-doubling' approach because it generally

requires fewer evaluations of the derivative per step.

An example of this would be the use of one 41' and one 5' order Runge-Kutta

integrator. So to estimate the error on the solution y, as we propagate it from the

n-th step to the (n + 1)-th step over a step of size h, we would simultaneously use

both integrators to produce estimates y4 and Y5 of the solution. These estimates are

related to the exact solution y(x + h,,) by:

y(x + hn ) =Y4 + 00~ + Oh6 (C.16)

y(x + h,,) =Y5 + Ohl .IC.7

Using these expressions we can immediately find an estimate of the numerical error

a on our solution (ignoring terms of Oh6) by taking:

|ys- y p jh=5 (C.18)

Now in this particular case a o h5. So essentially the same approach we described

when using the 'step-doubling' method to increment the solution, also applies here.

The only difference being that in the previous case we took one step of size hn to

produce the first estimate of the solution, and then took two half steps of size hn /2,
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to produce the second estimate. Where in this case, we instead take one step of size

h, with the 4"' order integrator to produce the first estimate, and then repeat with

a step of the same size with the 5 "' order integrator to produce the second estimate.

This method has all of the advantages of 'step-doubling' method, with the benefit of

using less function evaluations per step. A optimal 4 th order Runge-Kutta method

needs four function evaluations, while an optimal 5 th order method needs six. So

this method is more efficient than the 'step-doubling' method, requiring only ten

evaluations of the derivative per step, rather than twelve, to achieve comparable

accuracy.

C.4 Embedded Runge-Kutta Routines

While the use of two separate Runge-Kutta routines with differing orders was seen

to be more efficient than step-doubling. There is yet another even more efficient

means of estimating the numerical error on each step. The downside of using two

separate Runge-Kutta routines to produce an error estimate is that many of the

derivative evaluations made over the course of taking a (p - 1)th order step and

a separate pt' order step are either repeated unnecessarily or lie very close to one

another. While at first glance this feature appears to be unfortunate, if we are careful

about choosing the coefficients of our pti and (p - 1)t Runge-Kutta methods we

can reuse most of the function evaluations needed for the pth order routine in the

(p - 1) t' routine with perhaps one or two extra evaluations needed.

This technique, whereby a lower order Runge-Kutta integrator routine is 'embed-

ded' in a higher order integrator, was first pioneered by E. Fehlberg [79]. The details

of choosing the appropriate coefficients which minimize the number of derivative

evaluations needed, and the numerical error on the estimate of the solution are

far beyond the scope of this summary. However, we will give an example of the

method. Those interested in further details are referred to [225], [65], and [81].

One of the simplest examples of the so called embedded Runge-Kutta-Fehlberg

method is that which combines a 5"' and 40' order Runge-Kutta routine. The
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0 6656/12825

1859/4104
2197/4104

28561/56430

-11/40
-1/5 0 BJ
-9/50 2/55 } P

Table CA: Butcher tableau of coefficients for Fehlberg's dual 49' and 5t' order
embedded Runge-Kutta method.

coefficients of this method are given in the Butcher tableau of table C.1 [79]: Given

these coefficients, the initial value problem:

y(xo)= Yo

is then solved by repeatedly progressing from the n-th estimate (denoted y,,) of the

exact solution y(x,,) to the (n + 1)-th estimate (denoted y,,+1) of the exact solution

Y(xn+) =y(xn + h,). So, to find the 5t' order (n + 1)-th estimate yn+,, given Yn

we use [195]:

6

Yn+1 = yn + I $ik1,
i=1

(C.19)

where the ki, are given by:

k1 = hnlf (x, , 9)

ki hilf x, + Cih ,, 9+E
i-1

(C.20)

(C.21)Ai j k 1)
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Using the same ki we can also then obtain the 4t' order (n + 1)-th estimate by:

6

Yn+1 =n + Z Biki, (C.22)
i=1

So now we have two estimates of the exact solution y(xn+1), one accurate to 4

order, and the other accurate to 5 1hi order. So we can again obtain an estimate of the

numerical error a on the exact solution y(xn+ 1 ) by once again taking:

Yn+1 - Yn+1 . (C.23)

Therefore, given some constraint on the numerical error P, we can also determine if

the step was satisfactory and what the appropriate step size h' for the next attempt

ought to be, through the following:

1/4

h' = Sh, '31/;Z:t, (C.24)

h' = Sh 1 / t /3< . (C.25)

So we see that by using an 'embedded' Runge-Kutta routine we have solved the

same problem using only six derivative evaluations per step, a great improvement

over the ten or twelve evaluations per step the previous two methods needed.

C.5 Extensions to Embedded Runge Kutta Routines

So far in this summary we have only considered examples involving 4'' and 5"

order Runge-Kutta routines. However these methods can be generalized any Runge-

Kutta pair of orders p and q, where q ; p - 1. Using pairs of order (p,q) we now

may obtain an estimate on the numeric error a of the n-th step, by taking [219]:

a = (hn)P-q-1 lyp -Yqj . (C.26)
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In calculating the next appropriate step size we now use [219]:

l/(p-l)

h' Shn, - ; > ,

h' Sh, p < I.

The generalization of this step size control method to the integration of an

ordinary differential equation with k components is also relatively straightforward.

In this case the user must define a constraint on the error /' corresponding to i-th

component of the solution of the ODE for each of the k components. The numeric

error ac on the i-th component yi of the estimate of the solution ',, is simply:

- (h)P-'h1 y' - . (C.27)

Now in determining the next appropriate step size, we need to ensure that we only

increase the step size when the numeric error a' is less than that of the user defined

error constraint / for every one of the k components. If there is any component

where a' is larger than the user defined error constraint P' then we must shrink the

step size. So the rules for calculating the next appropriate step size h' become:

h' = Shn max if V i E {1, - k} we have a ; a,

h' = Sh, (min - if - some i where /3 < ai

and we can efficiently propagate the solution while limiting the error on all com-

ponets.
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Appendix D

ToF Trend Fits
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Figure D-1: ToF as a function of surplus energy, run #23839.
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Figure D-2: ToF as a function of surplus energy, run #23844.
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Figure D-3: ToF as a function of surplus energy, run #23847.
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Figure D-4: ToF as a function of surplus energy, run #23850.
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Figure D-5: ToF as a function of surplus energy, run #23863.
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Figure D-6: ToF as a function of surplus energy, run #23866.
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Figure D-7: ToF as a function of surplus energy, run #23869.
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Figure D-8: ToF as a function of surplus energy, run #23872.
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Figure D-9: ToF as a function of surplus energy, run #23933.

331

T
U

0

I

3'

30

25

2D

is

10

10

5



1: .I . 1 I --1 4-2 0 2 4 8 8 10

(u,. - UE,)

x10,0.8
0.6
0.4
0 00

0
-0.2 0
-0.4
-0.6 0
-0.8 0

-2 0 2 4

(UIE -gU )

6 8 10

Figure D-10: ToF as a function of surplus energy, run #23938.
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