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Abstract

The Karlsruhe Tritium Neutrino (KATRIN) experiment is intended to make a sensi-
tive (~ 200 meV) model-independent measurement of the neutrino mass through
high precision electrostatic spectroscopy of the tritium p-decay spectrum. One of
the principle components in this experiment is the main spectrometer which serves
as an integrating MAC-E filter with O(1) eV resolution. Thorough understanding
of the transmission properties of the main spectrometer system is an inextricable
challenge associated with this effort, and requires a very accurate and fast method
for calculating the electrostatic fields created within its volume. To this end, the
work described in this thesis documents the development of a novel variation on the
Fast Multipole Method (FMM), which is a hybrid of the canonical algorithm and the
Fast Fourier Transform on Multipoles (FFTM) method. This hybrid technique has
been implemented to take advantage of scalable parallel computing resources and
has been used to solve the Laplace boundary value problem using the Boundary
Element Method with millions of degrees of freedom. Detailed measurements taken
during the KATRIN main spectrometer commissioning phase are used to validate
the fully three-dimensional electrostatic field calculation and the hybrid fast multi-
pole method. Then, the hybrid method is used to greatly accelerate charged particle
tracking in a high-statistics Monte Carlo simulation. The data from this simulation
is then used to develop a spatially resolved model of the main spectrometer trans-
mission function. This full transmission function model is then used to evaluate the
performance of several of approximate transmission function models, the results of
which show that a purely axially symmetric treatment of the main spectrometer is
not sufficient. We conclude by addressing the appropriate level of measurement
detail needed in order to reconstruct a realistic, non-axially symmetric transmission
function model.

Thesis Supervisor: Joseph A. Formaggio
Title: Proftessor of Physics
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Chapter 1
Introduction

One of the richest sub-fields of modern particle physics is the study of the sub-
atomic particle known as the neutrino. The variety of experiments dedicated to
extricating the properties of this particle is astoundingly broad, which is due in part
to the extraordinarily small likelihood of neutrino interactions with matter. While
the study of the neutrino is challenging, since the capstone discovery of the Higg’s
boson, it remains one of the most active and promising frontiers in the search for

physics beyond the standard model.

1.1 Theoretical Prediction of Neutrinos

The existence of the neutrino was first postulated in 1930 by Wolfgang Pauli in a
letter as an explanation for the shape of the energy spectrum of beta-decay [184].
His postulate was a “desperate remedy” intended to save the bedrock principle
of energy conservation. At the time, the process of beta-decay was assumed to be
a two-body decay, which kinematically fixes the energies of the decay products.
However, a three-body decay allows a distribution of energies among the decay
products and can produce a non-monoenergetic spectrum. Of course, at the time,
physicists where aware that the beta-decay spectrum was not mono-energetic [131],
but they had been unsuccessful in detecting a third particle involved in the process.

Pauli postulated that this third particle was electrically neutral and therefore had a
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low probability of interaction with any experimental apparatus. However, since
this newly proposed particle was neutral and not a photon, it could not participate
in an entirely electromagnetically mediated interaction. So by extension, Pauli had
also proposed an entirely new force of nature. This new mediating force would
later become know as the weak force.

Enrico Fermi, an Italian physicist who excelled at both theoretical and experi-
mental work, devised a theory for B-decay as a point-like four particle interaction
shortly after learning of Pauli’s idea in 1934 [233]. It is Fermi who is responsible for
the name “neutrino” as the diminutive of neutron [215] (the name which Pauli had
proposed in his letter but had recently been expropriated for the particle discovered
by Chadwick [43]). Fermi constructed his theory using creation and annihilation
operators for the electron and neutrino in a way that was analogous to the existing
theory of atomic photon emission. Incidentally, Fermi’s paper was rejected from
the journal Nature for being too speculative to be of interest [148], despite correctly
reproducing the shape of the beta spectrum and accounting for the extreme spread
in half-lives of known beta emitters though the concept of ‘allowed” and "forbidden’
transitions [233].

Fermi’s theory of the weak interaction would undergo further development
throughout the next several decades with contributions from Gamow and Teller
[87], Lee and Yang [153], and Feynman and Gell-Mann [80]. Eventually the weak
force would be unified with the electromagnetic force by Glashow, Weinberg, and

Salam to form the basis of the standard model of particle physics [95, 227, 207].

1.2 First Detection

The neutrino is notoriously difficult to study because it only interacts with matter via
the weak force and gravity. Since neutrino’s weak force cross section is exceedingly
small it took nearly 25 years before direct experimental evidence of this particle was
available. The first experiment to put the existence of the neutrino on solid footing

was called Project Poltergeist [55]. Lead by C. Cowan and F. Reines, Poltergeist
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exploited the relatively recent invention of the nuclear fission reactor to provide a
large flux of high energy anti-neutrinos. These ant-neutrinos could then be detected
in a target composed of alternating layers of liquid scintillator and a solution of
cadmium chloride dissolved in water. The process that Poltergeist was searching

for was that of inverse B-decay:
Vo+p—on+tet, (1.1)

through which a proton absorbs an anti-neutrino, converting into a neutron and
emitting a positron. This process produces prompt scintillation through the anni-
hilation of the positron, followed by a signal from the capture of the free neutron
on a cadmium nucleus and its sﬁbsequent gamma emission. This type of event,
exhibiting delayed coincidence, provided a unique signature which allowed them
to significantly reject background due to other radiation from the reactor and cosmic

rays which would have otherwise obscured the anti-neutrino induced events.

1.3 Discovery of Flavors in the Neutrino Sector

The decade following the first direct observation of the electron (anti-)neutrino was
a good one for experimental neutrino physics and the development of the theory of
the weak force. It was followed in rapid succession by Lee and Yang's proposal [153]
of parity violation in 1956 and its discovery by Wu [235] in 1957. Later that same
year, Goldhaber devised an amazingly beautiful table-top experiment to measure
the helicity of neutrinos produced in the g-decay of Eu'®? and found them to be
left handed [101]. Meanwhile, the development of accelerators capable of reaching
energies above the pion production threshold allowed high statistics observations of
the decays of charged pions and muons, which had previously only been observed
in cosmic ray events. From the observation of their decay branching ratios, the
question as to whether the neutrinos produced in muon production and decay were

the same particle as that involved in nuclear B-decay arose. To explore this question,
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an experiment making use of the first accelerator produced neutrino beam at the
Brookhaven Alternating Gradient Synchrotron (AGS) [57] was carried out, resulting
in the discovery of the muon neutrino. This discovery lead to confirmation of the
suspicion that the different lepton ‘flavors’ exhibited by the electron and muon
were also present among the neutrinos. The discovery of the 7 lepton in 1975 [187]
prompted a search for the corresponding 7-flavored neutrino. The v; was finally
observed by the DONUT collaboration 25 years later, filling out the standard model

picture of the leptonic sector [141].

1.4 The Solar Neutrino Problem

For a short time in the early 1960s, it may have briefly seemed that the weak
force theory was surprisingly consistent with the available experimental evidence.
However, cracks were beginning to show in the contemporary understanding of
neutrinos. This was particularly exacerbated by the Homestake mine experiment
headed by R. Davis. The Homestake experiment was designed with the rather
audacious goal of measuring the electron neutrino flux from the sun [59, 49]. To ac-
complish this, a massive 390,000 liter tank of tetrachloroethylene was placed nearly
a mile underground in the Homestake gold mine in Lead, SD. The tetrachloroethy-
lene contained large quantities of chlorine which served as the target of neutrino
capture. The massive size of the target was necessary because of the extremely low
probability of inverse B-decay process, while the thick overburden was needed to
reduce the cosmic ray induced backgrounds. The inverse B-decay process of interest
was neutrino capture on the CI¥ isotope present in the tetrachloroethylene. This
would convert the nucleus to Ar®” along with the emission of an electron, according
to:

Ve + C1¥ — AP 107 . (1.2)

The Homestake experiment relied entirely on radio-chemical methods instead of

real time observation of the neutrino capture events. The Ar® atoms were collected
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by bubbling helium gas through the liquid, yielding about one Ar¥ every two
days. Since Ar*’ is radioactive with a half-life of about 35 days, its decay was then
detected by a proportional counter, with each event corresponding to a neutrino
capture. Strangely, the number of Ar¥” atoms collected, and thus the neutrino flux
seen by the detector, were only about a third of the rate predicted by the standard
solar model of J. Bahcall [20]. This discrepancy became known as the solar neutrino
problem.

Following the Homestake experiment, the water Cherenkov detectors Kamio-
kande and its enormous successor, Super-Kamiokande, were the next to observe a
deficit in the solar neutrino rate [178]. Originally designed for a proton decay search,
it was realized that the low background and excellent ability to resolve low energy
electrons in these detectors could provide a means to observe neutrino-electron
scattering from solar neutrinos. These detectors were a significant improvement
over the radiochemical methods of Davis, because real time event observation
allowed an active veto and provided additional information, such as directionality,
which could be used to further reduce background processes. However, rather
than exactly confirming the results of Davis’s search, Kamiokande instead observed
about half the expected flux, which further complicated the puzzle.

One explanation for the solar neutrino problem was provided by the devel-
opment of the theory of neutrino oscillations, which proceeded in parallel with
experiment throughout the middle of the 20th century [177]. The existence of neu-
trino oscillations allows the neutrinos generated by the fusion reactions in the Sun’s
interior to convert to other flavors as they travel on their way to the Earth. Since
the flavors (ve, v, v¢) do not interact with the matter composing the detectors in
exactly the same fashion, oscillations allow for the “disappearance” of some of the
solar neutrino flux. However, these oscillations can only exist if neutrinos have
mass, and specifically, only if their mass eigenstates are different from their flavor
eigenstates.

Experimentally, the solar neutrino problem was finally resolved by the SNO

collaboration [6]. Since the energy of solar neutrinos is only a few MeV or lower,
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the vr and v, flavored neutrinos cannot participate in the charged current reaction,
as they do not have enough energy to produce a y or T particle. The Homestake
and (Super-)Kamiokande detectors were only sensitive to these charged-current
reactions so T and y flavored neutrinos were undetectable. However, SNO was also
sensitive to neutral-current reactions through its use of a heavy water, DO, target.
This is because in addition to the processes of inverse f-decay and neutrino-electron
scattering, heavy water is also subject to the dissociation of its deuterium atoms,
through [196]:

vy +D = pt+n+uvy. (1.3)

Because of its very low threshold (2.2 MeV), all neutrino flavors can participate
in this process. By measuring the flux in both the neutral and charged-current
channels, the SNO collaboration was able to demonstrate that the deficit in the solar

neutrino flux was in fact due to the oscillation of v, into v, and v.

1.5 Neutrino Oscillations

In 1958, Pontecorvo [191] was the first to propose an oscillation model in the
neutrino sector. At the time it was still not known that there were multiple flavors
of neutrino. Rather than flavor oscillations, Pontecorvo’s first model was devised in

order to explain the existence of events of the form:
7+ C1Y — Ar¥ e, (1.4)

which he erroneously believed had been observed by Ray Davis [36]. However,
as more experimental evidence was accumulated, (particularly the distinct nature
of the flavors v, and v, [57]) a flavor oscillation model was developed by Maki,
Nakagawa, and Sakata [166] and subsequently developed into the form we are
familiar with today [37].

A thorough description of the mechanism of neutrino oscillations can be found in

[94, 105], but we will give a brief summary following the notation of [94]. Neutrino
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oscillations rely on the weak interaction eigenstates, |v;) = (v, Vy, v¢), being an
admixture of the free space propagation eigenstates, |vx) = (v1,v2,12), which have
different masses. This mixing is described by the the Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) matrix U, through [94]:
[va) = Y Unlue) (1.5)
k
lve) =Y Unk|va) - (1.6)
a

In the three neutrino model, U can be parameterized as a unitary matrix in the

commonly used form of [171]:

1 0 0 cos 013 0 sin 913€iéq’ cosfp sinfyp O
U= |0 cosfy sinfyy; 0 1 0 —sinf, cosfp, 0 - (1.7)
0 —sinfls cosb| | —sinbjze®r 0 cosbis 0 0 1

This parameterization can be viewed as a series of three rotations, along with the
presence of an additional complex CP-violating phase J;p. If neutrinos are in fact
Majorana particles, there is also the possibility of two additional complex phases.
In which case, we have U — U x diag(l,ei72,ei73) [171].

Under the assumption that neutrinos are produced in a flavor eigenstate and
freely propagate as a plane wave, the neutrino’s flavor content will evolve in time

according to the Schrodinger equation:
L d
zhd—t]v(t)) = H|v(t)) . (1.8)

The mass eigenstates are the stationary states of the free particle Hamiltonian, so

they evolve with a simple energy dependent phase according to:

() = exp (—i%5¢ ) ) 19)

Combining 1.6 and 1.9 implies a neutrino which is produced at time t = 0 in the
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state:

lv(t = 0)) = v, (1.10)

which, as an admixture of several mass states, can be described at some later time ¢
by [94]:
N .E
lv(t)) =) Uz exp (——z—h’ft> lvg) - (1.11)
k

Therefore, given a beam of neutrinos generated in the state v,, there is some non-
zero probability to observe a neutrino, v, of a different flavor, a # b, which is given
by:
2
Pyp—sy (£) = [(wp v (£))[” - (1.12)
In the ultra-relativistic limit, m; < Ej, the energy is dominated by the neutrinos

momentum, E = |p|c, so E; can be expressed to first order in the mass as:

[ 202 2 mic?
Ex = \/p*c?+mect = E |1+ TR (1.13)

Similarly, as the neutrino is moving near the speed of light, c, time may be replaced

by t ~ L/c. Therefore, the transition probability can be approximated quite well by
[94]:

Am2.c3L
K ) (1.14)

PVn’"“”’b(L/E) = ZU:kUbkuﬂ]U;, exp (—I—ZEE—*
k,j

where Am%j is the mass squared difference of the two propagation eigenstates vy
and vj, given by:

Amﬁj = m2 — m; . (1.15)

As a matter of terminology, if an experiment is designed to observe neutrinos of
the flavor v, from a source emitting v,, it is termed an “appearance” experiment,
while if it is designed to measure the deficit of the expected flux of v,, it is called a
“disappearance” experiment.

Over the past several decades, there has been an enormous effort to extract

the parameters describing the PMNS matrix , involving a variety of techniques
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and wide ranging length and energy scales. The observation of solar neutrinos by
the SNO experiment has produced an extremely precise measurement of the mass
splitting Amy;, [24]. Atmospheric neutrino oscillations are sensitive to the Ams;
mass splitting [136]. Examinations of reactor produced neutrinos and long baseline
accelerator experiments have complemented atmospheric and solar neutrino mea-
surements. This has allowed precision measurements of the mixing angles and the

mass differences [41]. A summary of these parameters is given in table 1.1.

Name Value 30 lower limit | 30 upper limit
012 33.72° 31.52° 36.18°
023 49.3° 38.6° 53.1°
013 8.47° 7.86° 9.1°
Am3, (eV?) | 749x107° | 7.02x10 | 8.08 x 107°
Amz, (eV?) | 2484 x 1073 | 2351 x 1073 | 2.618 x 103

Table 1.1: Parameters of the PMNS matrix and neutrino mass differences from
oscillation measurements. Values given are the best fit for the three neutrino normal
hierarchy model of NuFit 2.1 2016 [104].

The observation of neutrino oscillations provides strong evidence for the exis-
tence of non-zero neutrino mass and indicates that at least one of the propagation

eigenstates must have a mass greater or equal to the largest mass splitting:

Mymae = \/ |AM3,] .

However, while the introduction of neutrino mass and oscillations has lead to

(1.16)

the resolution of the solar neutrino problem, it has also opened the door to new
questions. The current state of knowledge of physics in the neutrino sector leaves

us with the following open questions:

1. What is the mechanism by which neutrino mass is produced? Are they Dirac

or Majorana particles?

2. Is the mass hierarchy normal (mj,m; < ms3), inverted (m3 < mq,mp), or

degenerate (1 ~ my ~ m3)?
3. What is the value of the CP-violating phase 6;,?
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4. To what extent is the three neutrino PMNS matrix, U, unitary? Are there

sterile neutrino flavors? If so, how many are there?
5. What is the absolute mass scale of the neutrinos?

These questions can only be informed through more experimentation and remain
one of the most promising avenues in the quest for new physics.

The answer to the first question can only be definitively answered in favor of
Majorana particles with the observation of neutrino-less double B-decay. Within the
standard model, the existence of two neutrino double beta (2v) decay as a second
order weak process is a well established fact, and has been demonstrated to exist for
a variety of isotopes [197]. However, while 2vfB-decay provides a useful extension
to our series of tests of the current model of nuclear structure, it does not provide
any instruction on the possibility of physics beyond the standard model. One
exciting possibility which might give a glimpse into new physics, and one which is
predicted by several classes of grand unified theories [238], is that of zero neutrino
double beta (OvpBp) decay. So far, the experimental search for Ovpp-decay has failed
to yield any indisputable evidence for its existence [1, 138, 237]. If OvBpB-decay were
to be observed, this phenomenon would give a clear indication of the nature of
neutrinos as Majorana particles, as well as allowing us to establish an estimate of
the absolute mass scale of the neutrino.

To answer the second question, there are several competing methods for the
determination of the neutrino hierarchy (see [123], [164], and [156]). In the near
term, one promising technique may be that of the Nova and T2K collaborations,
which are using long base line v, neutrino beams to look for v, — v, oscillation
[19, 90]. In addition, since U;3 has been measured to be non-zero[3, 9], the passage
of a neutrino beam through matter can provide some sensitivity (by way of the MSW
effect) to the sign of Am;3 [60]. This will enable another generation of oscillation
experiments currently getting under way to probe the mass hierarchy, as well as
the value of the CP-violating phase ., [174, 209].

Measurements of the Z boson width and its invisible decay fraction has con-
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strained the number of active light neutrinos to the currently known three flavors
[62]. However, this does not preclude the existence of “sterile’ neutrinos which may
not participate in W,Z-boson mediated interactions. The observation of the reactor
neutrino anomaly [172] and anomalies in disappearance experiments [143] both
suggest that the presence of an additional “sterile” neutrino flavor(s) is a distinct
possibility. The resolution of these anomalies awaits further experimental results,
and a variety of techniques to explore the existence of sterile neutrinos is underway
[2]. Since the presence of a massive sterile neutrino would modify the shape of the
B-decay spectrum, one interesting possibility is the use of the KATRIN experiment
to explore this effect [83].

The last question cannot be addressed through oscillation experiments as they
are only sensitive to the mass differences. Instead, it can only be probed indirectly
through cosmological measurements, or directly from kinematic measurements.
The mass scale of the neutrinos is a question of utmost importance since it can
inform models of the structure formation of the universe and may provide an
indication of the energy scale at which the standard model breaks down as an

effective theory [228].

1.6 Probes of the Neutrino Mass scale

While there is currently little doubt that neutrinos have non-zero mass, direct
experimental searches have so far failed to demonstrate the sensitivity needed to
make a discovery. This leaves us unable to make a distinction between the several
competing candidate theories which propose how to incorporate neutrino mass into
the standard model. The two most prominent mechanisms for producing massive
neutrinos incorporate them into the standard model in either a semi ad-hoc manner
as Dirac fermions, or as Majorana particles through the see-saw mechanism [175].
Between these two mechanisms, the see-saw mechanism is generally seen as more
compelling, since it provides a natural explanation for the lightness of the neutrino

masses.
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Whether neutrinos are Majorana has been an ongoing line of inquiry throughout
the 20th century and in some ways is a more fundamentally important question
than that of determining the absolute mass scale. However, proof of the Majorana
mechanism can only be provided through the observation of OvBp-decay. The
converse, however, is not true, and the absence of the direct observation of OvfS-
decay does not necessarily indicate that neutrinos are Dirac particles. In fact,
if this turns out to be the case, the Majorana-Dirac determination can only be
made possible if both a stringent lower limit on OvBB-decay lifetimes is made in

conjunction with a definitive measurement of the absolute neutrino mass scale [21].

1.6.1 Cosmology

One approach to determine the mass scale of the neutrinos is through the use of
cosmological observations. Since the discovery of the cosmic microwave back-
ground [186], subsequent satellite based measurements [33, 118] have allowed a
more refined understanding of the matter density anisotropies in the early universe
dating back to the epoch of recombination. Understanding the evolution of these
early anisotropies into the large scale galactic structures we observe later in the
universe’s history requires knowledge of several parameters describing the matter
content and energy density of space. These parameters dictate the evolution of
the universe and structure formation according to Einstein’s field equations and
Newtonian dynamics. This parameterization and the behavior of each constituent
is collectively referred to as the ACDM model. This is on account of the dominance
of dark energy (A), and cold (non-relativistic) dark matter (CDM) which heavily
influence structure formation. In this model, baryonic matter is assigned only a
small fraction (~ 5%) of the energy density of the universe, along with the cosmic
microwave background and cosmic relic neutrinos.

Cosmic relic neutrinos exist as an analog of the cosmic microwave background.
They are remnants leftover from the time when matter had cooled enough for the

weak force to decouple. Recent measurements by the Planck collaboration have put
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a best limit on the sum over all neutrino mass eigenstates of [5]:
Y m, <023 eV. (1.17)
ll

However, this limit is determined through a complex analysis of many correlated
parameters and varies considerably depending on the choice of data sets used in
the analysis. Such a limit is termed model-dependent, since it relies on the choice
of a large number of free parameters which are not well constrained. Furthermore,
given the nature of astrophysical observation, where the system under observation
cannot be controlled in a way so as to explore systematic errors or the presence
of unknown observational biases, then existence of such a limit does not make
laboratory tests dispensable. So while astrophysical data provides much needed
insight into areas which are otherwise inaccessible to experiment, they are not yet

sufficient by themselves to definitively constrain the neutrino mass scale.

1.6.2 Single and Double 3-Decay

It is fitting that the same process which lead to the neutrino hypothesis in the first
place would also be an appropriate Way to probe their mass scale. In order to briefly
review review single f-decay, we will restrict ourselves to B~ -decay, and ignore the
similar B*-decay, and electron-capture processes. Single p-decay occurs in nuclei,
4 Xn, which have a mass excess greater than m, of the corresponding daughter

nucleus, 4 1 YN—-1, it proceeds according to:
4 ———)A Y -+ + 7 1.18
7z XN 7+1 YN-1+€ Ve . (1.18)

The differential rate with respect to the emitted electron’s energy at which this

process occurs is dictated by Fermi’s golden rule [193]:

dr |M|2dp(%;d£‘, , (1.19)
€
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where | M| is the matrix element describing the transition amplitude of the relevant
dynamics of the decay process, p(E;, E.) is the differential element of phase space,
E. is the energy of the emitted electron, and E;; is the total energy available for
the phase space of the electron and neutrino. In the simplified nucleon picture of
p-decay, this matrix element can be factored into nuclear and leptonic parts under
the assumption that the nuclear part does not depend upon the electron’s state

(true for super-allowed and allowed decays). We will not go into detail on the

A
Z+1YN-1

e

Figure 1-1: The B~ decay of the nucleus 4 Xy. The blob represents the effective
weak interaction involving the entire nucleus.

construction of the transition amplitude from the Feynman diagram in figure 1-1,

but will instead quote the result [193], which has been factored into these two parts:

2 dp(Eiot, Ee)

E— . (1.20)

2
dr = ?n' |Mnuc|2 |M]gp|

The leptonic matrix element essentially boils down to the probability of finding
the electron and anti-neutrino at the same place within the nucleus, as proposed in
Fermi’s original point-like interaction theory. Assuming the wave functions of the
electron and anti-neutrino to be plane waves normalized over the volume of the

nucleus, the leptonic matrix element is given by [181]:

1
(Miey|* = 5 F(Ee, Z+1), (1.21)
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where V is the volume of the nucleus and F(E,, Z + 1) is the so-called Fermi function
which corrects for the interaction of the electron with the Coulomb charge of the

daughter nucleus. The Fermi function is given by [38]:

2((—2%,125)71

e (- (5] )

where B, = v./c, « is the fine structure constant, and Z + 1 is the nuclear charge

F(Ee,Z+1) = (1.22)

of the daughter. The nuclear matrix element, | M, ]2, is a measure of the overlap

between the final and initial nuclear states. It contains two contributions:
2
Moe|” = g2 ME|* + g2 M| . (1.23)

That which is due to the vector part of the weak interaction, Mp, is known as
the Fermi matrix element, and that which is due to the axial-vector part M¢r, is
known as the Gamow-Teller matrix element. The relative strength of the Fermi
and Gamow-Teller elements is dictated by the vector and axial-vector coupling
constants; ¢, and g,. As might be expected, a transition involving the change of a
nucleon from a neutron to a proton involves the isospin raising operator. In fact, in

the case of free neutron decay, the matrix elements are simply:

| Me| = [(pledin)| (1.24)
(Mcr| = [(pltrolm)] . (1.25)

However, when we are in the confines of a nucleus, we must sum over all the

nucleons which can participate in the reaction, so the matrix elements become:

A

IMe| =Y {1t (T, (1.26)
g k
A

M| =Y (1Yt (k)o(k)|i)| , (1.27)
M k
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where my is the z-projection of the nuclear angular momentum, and |i) and (f| are
the initial and final nuclear states.

The form of the nuclear matrix elements in equations 1.26 and 1.27 appear
quite simple (though it hides the true details of the quark structure), and in some
cases they are fairly easy to calculate. In the case of a super allowed decay, the
decaying neutron in the parent nucleus has the same quantum numbers (1,1, j) as
the produced proton in the daughter nucleus. Therefore, the remaining nucleons
do not participate and the matrix element essentially reduces to the free neutron
case [193]. A particularly important example of a super allowed decay is that of the
isospin doublet:

3Hy — 3Hey+e™ +7,. (1.28)

However, the vast majority of f-decaying nuclei do not participate in super allowed
decay. This is generally on account of the Coulomb repulsion of the protons,
which raises their energy and allows for a neutron excess to be present in nuclei of
appreciable size. For nuclei which decay through allowed or forbidden processes,
the calculation of the spectral shape becomes more complicated through additional
shape factors. These shape factors depend on the linear and angular momentum of
the emitted electron and neutrino [145]. However, computing the nuclear matrix
elements in these nuclei cannot always rely on a simple treatment of the decay
operator as an isospin raising /lower operator, because decays in heavier nuclei often
involve a transition between nucleon shells or the production of an excited state in
the daughter nucleus. In the general case, the process to compute nuclear matrix
elements consists of the following: solving for the single-nucleon states in some
effective potential, constructing the nuclear wave-function, constructing the Fock
Space of nuclear states, expressing the decay operators in terms of single particle
annihilation/creation operators acting on this Fock space, and finally, evaluating
the single particle transition matrix elements. The full procedure is beyond the
scope of this introduction, but its complexity underscores the advantage of using

much simpler super-allowed decays when probing the neutrino mass from the
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shape of the B-decay spectrum.

In single B-decay, it is the spectral shape of the emitted electron’s energy dis-
tribution that allows us to probe the neutrino mass. However, so far neither the
leptonic nor nuclear contributions to the matrix element have provided a term with
any dependence on the neutrino mass. In fact, the neutrino mass enters entirely
through kinematical constraints on the available phase space of the emitted electron.

The phase space term to equation 1.20 is given by [193]:

477)? d d
dp(Eror, Ee) = V* énh))ﬁp% ( i ) P ( e ) dE, . (1.29)

The phase space of the daughter nucleus does not contribute, as it is fixed by
energy and momentum conservation. Furthermore, the recoil energy with which
it is imparted is very small since its mass isn’t much larger than the electron and
neutrino. In the region of interest near the end-point this energy, E;., varies very
little and can be treated as a constant, modifying the total energy, Ey, available to

the electron and neutrino. The modified end-point is then given by [181]:
Eo = Q — Erec (1.30)

where Q is the total energy available to all products of the decay. Applying the
relativistic energy-momentum relation, rewriting the phase space in terms of the
electrons kinetic energy and combining it with the nuclear and leptonic matrix
elements yields the final description of the shape of the f-decay spectrum near the

end-point:

ar @M+ M
dK, 2713c6H7

x F(E, Z + 1)E.pe(Ey — K.) \/(EO —K)2—m2ct. (1.31)

v B

Note that equation 1.31 treats the interacting neutrino as if it were a particle with a

single mass, m,,. Including the full set of mass eigenstates modifies the differential
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decay rate so that it becomes [94, 83]:

dr _ gl Mrl* + g3 Mor”

dKe 271-36-6;'17 (Ee, Z + 1)EGPC(E0 - Kg)

Ny
x Z |Ue,~]2 @(Eo — K, — m,') \/(Eo - Ke)z — mlz] , (1.32)
i=1

where O(Ey — K, — m;) is the Heaviside step function restricting the phase space
to the physical region. Clearly, an experiment with an energy resolution that is
much larger than the differences between the mass eigenstates cannot resolve the

influence of any single m;. Instead, it sees the influence of the coherent sum, given

by [181]:

Ny
my =Y |Ueil*m?, (1.33)
i=1

where U,; is the element of the PMNS matrix dictating the mixing between the
electron neutrino and the i-th neutrino mass eigenstate. It is this value that we
refer to as the “neutrino mass” in reference to limits obtained from B-decay. The
current best limit on the neutrino mass from single p-decay comes from tritium and
is held by the Mainz experiment which yielded a limit of m,; < 2.2 eV at the 95%
confidence level [146].

The neutrino mass can also be probed through the study of double B-decay. The
process of 2vpBB-decay is a second order weak process predicted by the standard
model. It was first predicted by Goeppert-Mayer in 1935 [99]. However, because
of the smallness of the weak force coupling constant, second order processes are
exceedingly rare (with t;/, > 10'® — 10?2 years [93]) and were not observed until
more than 50 years after their prediction [74].

Under the model dependent assumption that neutrino’s are in fact Majorana
particles, with 7 = v, the 2vBB-decay spectrum is modified by a neutrino-less

double S-decay process, given by:

AXN —8 5, Yn2+e +e . (1.34)
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Of course, this decay is only possible if the neutrino is a massive Majorana particle
that is able to serve as both the “anti-neutrino” the “neutrino” at both vertices

in figure 1-2. In order for this decay to proceed, the parent nucleus 4 Xy and the

A
AXN Z42YN-2

e e

Figure 1-2: Neutrinoless pp-decay mediated by massive majorana neutrino, 7 = v.
The virtual nuclear state is denoted by N*.

daughter é 12 YN—2 must both be more bound than the intermediate nucleus. This
is usually satisfied in the situation where the parent and daughter nuclei are both
even-even, and the intermediate nucleus is odd-odd [76]. Once again, the decay
rate is dictated by Fermi’s golden rule, and according to Elliott, [76] reduces to:
r=2n/ )y IRwi25(€1+€2+Ef—Mi)(§%é% , (1.35)
spins
where M; and E are the mass-energy of the intial and final state nuclei respectively,
€; and p; are the energy and momenta of the i-th final state electron, and |Rg,|? is
the transition amplitude. Fortunately, the phase space integral over the electron
final states factors out of the transition amplitude |Ry,|? [76]. However, the lep-
tonic portion of the transition amplitude does not completely separate from the

nuclear matrix element due to the presence of the neutrino propagator. The leptonic
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component contains terms of the form [76]:

. d4 i ) 1 - ’4")/ + m; 1 _
=i [ ™ we("”f’( z%) (qqz”_mz’> ( 275) Yee(y), (136)
' j

where &(x) and ¢°(y) are the electron creation operators, g is the virtual neutrino

four-momentum, and m; is the mass of the j-th neutrino mass eigenstate. The term
involving /-y, drops out once we have applied Casimir’s trick in summing over the
spins, because 5 anti-commutes with 7, and because terms involving the trace of
an odd number of y-matrices are zero, as well as terms of the form Tr(<y;7y,75). This
leaves the transition amplitude proportional to the square of a linear combination

of the neutrino mass eigenstates, known as the effective Majorana neutrino mass

[76]:
2

(1.37)

<m1/,3;3>2 =

Z mj Ugj
j

This indicates that measuring or placing a limit on the rate of OvBf decay is directly

sensitive to the absolute mass scale of the (Majorana) neutrino (but not the shape of
the spectrum). However, there are additional complications when determining the
rate which arise from evaluating the nuclear matrix element. This is because of the
virtual nuclear state N*. The full description of these issues is beyond the scope of
this introduction, but they lead to a wide range in theoretical values for the nuclear
matrix elements. In fact, a review of the calculations for nuclear matrix elements in
the decay of the single isotope Ge”® shows that they vary by a factor of ~ 3, which
leads to large uncertainties on the mass limits obtained from double B-decay [75].

The current best limit on (mvﬁ ﬁ>2, which comes from a combined analysis is [113]:
(Myg;)° < 0.13—031 eV. (1.38)

This limit is of course only valid if neutrinos are in fact Majorana particles.
Table 1.2 summarizes the current neutrino mass limits available from cosmology,

OvpBB-decay, and single B-decay. Each of these methods is sensitive to a somewhat
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different mass term, which complicates a direct comparison between each of them.
However, as there is currently no definitive claim of a non-zero mass discovery
(other than oscillations), there is a continuing effort on all fronts to develop more

sensitive experiments to explore the neutrino mass.

Method Mass term Current limit | Reference
Cosmology Yim; <023eV [5]
Ovpp-decay | /|x;mUR[% | <013-031eV | [113]

B-decay | /¥, |Uni[2m? <22eV [146]

Table 1.2: Current best limits on the absolute mass scale of the neutrino from various
techniques
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Chapter 2

The KATRIN Experiment

The Karlsruhe tritium Neutrino (KATRIN) experiment is intended to further our
understanding of the neutrino sector by making a model independent measurement
of the absolute neutrino mass scale. Its planned sensitivity is an order of magnitude
better than the current best limit of ~ 2.2 eV [146, 15]. It is important to note
that the KATRIN experiment, being a Tritium pB-decay spectroscopy experiment, is
insensitive to the exact neutrino mass mechanism, since it is solely dependent on
the decay kinematics. In addition, unlike cosmological observations which involve
a plethora of variables, direct measurements like KATRIN only require a minimal
number of orthogonal parameters describing the shape of the B-decay spectrum in
order to extract the neutrino mass.

To accomplish this, KATRIN will examine the energy spectrum of tritium g-
decay with unprecedented precision, in order to look for any tell-tale distortion near
the end-point, indicative of a non-zero neutrino mass. On account of the small size
of this effect, KATRIN must attain an energy resolution on the order of 1 eV, while
imaging a high intensity gaseous molecular tritium source and maintaining a low
background rate of less than 10mHz [51]. While the basic technique of the KATRIN
experiment mirrors the approach of previous neutrino mass searches at Mainz [29]
and Troitsk [161], its sheer size brings a number of new challenges which must first

be resolved.
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2.1 Tritium 3-Decay

Tritium B-decay makes an excellent probe of the neutrino mass and has been a
mainstay of model independent searches for neutrino mass for the past 60 years
[149, 208, 34, 232, 146, 15]. The reasons for this are several fold. The first is that
it is a super-allowed decay, making the matrix elements of the nuclear transition
independent of the energy of the emitted electron. In addition, the tritium half life
of 12.3 years [163] is short enough to allow a source with high rates, yet long enough
to enable high statistics measurements over a time scale of years. Furthermore,
tritium has the second lowest end-point energy, Ey = 18.6keV, of any B-decay. This
is important, since it maximizes the proportion of the spectrum which is sensitive
to the neutrino mass, which scales like o< 1/ Eg [94]. In addition, for some required
absolute energy resolution AE (which is dictated by the neutrino mass scale), a lower
end-point energy permits a less demanding relative energy resolution, AE/ Ey. This
is an important consideration for electrostatic spectrometers, which must maintain
high voltages within a narrow stability range.

However, with better energy resolution comes greater sensitivity to effects due
to the final state of the daughter system. These modify the shape of the spectrum
near the end-point because of molecular excitations. The influences of such final
states can have a deleterious effect on neutrino mass sensitivity when they are
poorly understood and on the same order as the spectrometer resolution. In the
past, this has lead to unreproducible claims of a non-zero neutrino mass discovery.
An example of which is the ~ 30 eV neutrino observed by the Moscow group
[165]. This experiment used a tritiated valine source which had a very complex
and difficult to calculate final state distribution. While this claim eventually proved
unfounded, it spurred the use of better understood tritium sources in subsequent
neutrino mass searches.

Of the predecessors of the KATRIN experiment, the earliest to use a gaseous
tritium source was the Los Alamos experiment [201, 232], which placed an upper

limit on the neutrino mass of < 9.3 eV in the late 1980s. The novel use of a gaseous



molecular T, source is particularly notable, since it reduces the spectral broadening
due to the final state distribution and eliminates complications due to solid state
effects. While the Los Alamos experiment used a Tretyakov type spectrometer
similar to that of the Moscow experiment [165], the subsequent experiments at
Troitsk [161] and Mainz [146] were the first tritium B-decay experiments to use spec-
trometers of the MAC-E type (Magnetic Adiabatic Collimation with Electrostatic
Filter). The Mainz experiment, however, used a tritium film quench condensed
on highly-oriented pyrolytic graphite in favor of a more complex gaseous source.
The Troitsk experiment was instead equipped with a windowless gaseous tritium
source as well as a MAC-E filter, making it something of a direct ancestor of the
KATRIN experiment.

Neglecting relativistic and radiative corrections (see [170] for the full relativistic
treatment), the differential decay rate of molecular tritium can be described through
a summation of the simple (multi-neutrino) spectrum of equation 1.32 over all the

final states. The final states modify the end-point as follows [66]:

M+ @Ml
dK, 2713c5K7

Y PiF(E., Z+ 1)Ecp.(E; — Ke)
j

N,
< Y Ul @(Ej—Ke—rni>\/(Ej—Ke>2—m,2] , @)
=1

1

where the sum over j is over all final states which have an end-point E; = Eg — ¢,
and P; is the probability of occurrence of the j-th final state. The probability of an
excitation with energy, €;, occurring is typically calculated in the so-called sudden
approximation, which assumes that probability is given solely by the overlap in
the electronic wave functions of the initial T, molecule and the resulting He3T ion
[66]. The spectrum of discrete final states in molecular T, decay according to the
model of Saenz et. al. [206] is shown in figure 2-1. Precise knowledge of the final
states spectrum is of critical importance for KATRIN and a large effort is currently
underway to study them theoretically and experimentally [39].

Of course, barring the existence of sterile neutrinos with large mass and non-
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Figure 2-1: The spectrum of discrete final states of the He®T daughter ion in T,
B-decay. Model shown is from the calculation of Saenz et al. [206].

vanishing coupling [173], the KATRIN experiment cannot resolve the influence of
any single m; but only the effective mass m,,. However, the fact that KATRIN is
sensitive to the absolute neutrino mass scale through the coherent sum of equation
1.33 is very advantageous, since it is entirely model independent and makes no
assumptions about whether neutrinos are Majorana or Dirac particles. Furthermore,
unlike OvppB-decay based searches, the effective mass, Myg, has no dependence on
the the complex phases of the matrix elements, U,;, which could, in theory, allow
cancellations that may make the measurement of Mgy difficult or impossible [234].

Unfortunately, the fraction of f-decay events emitted in the region sensitive to
the neutrino mass is exceedingly small, being on the order of 10713 as shown in
figure 2-2 [51]. Therefore, any experiment which aims to measure the neutrino mass

through tritium B-decay must be able to image a source with very high luminosity.

2.2 Basic Operating Principles (MAC-E Filter)

Since a high luminosity is necessary to gain enough statistics in the sensitive region

of the spectrum, a spectrometer which can accept B-decay electrons over a large
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Figure 2-2: The fraction of events in the sensitive portion of the spectrum of tritium
B-decay. Figure taken from [51].

solid angle is essential. One such type is the Magnetic Adiabatic Collimation with
Electrostatic filter (MAC-E) spectrometer, initially proposed for photo-electron
spectroscopy [31] and first applied to the problem of probing the anti-neutrino rest
mass by Troitsk [162]. The basic operating principle behind the MAC-E filter relies
on the conservation of the orbital magnetic moment, y, of a charged particle in a

magnetic field. In the non-relativistic limit, y, is given by [181]:

2
mv,  E;

“ 2] B 22

where E | is the kinetic energy associated with the particle’s transverse motion with
respect to the direction of the magnetic field B. When the particle traverses a slowly
varying magnetic field which satisfies the condition [181]:

1 d[B| _ 4iB|

the orbital magnetic moment becomes the first adiabatic invariant of its motion.
The conservation of y can then be exploited to collimate the momentum of particles

emitted from the source, so that their energy may be analyzed by electrostatic
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means. This can be accomplished by slowly reducing the magnetic field from a
large magnitude in the source region, B, to a low value in the analyzing region, B,,

as depicted in figure 2-3.

M f bt

BsBm, BA Bmu: BD

T, source electrodes detector

p., (without E field)

Figure 2-3: Basic operating principle of a MAC-E filter spectrometer. The momen-
tum of the particles emitted from the source is adiabatically transformed by the
slowly varying magnetic field, so that the longitudinal energy can be analyzed by
the electrostatic field. Figure taken from [51].

From the conservation of equation 2.2, we may equate the orbital magnetic

moment in the source and analyzing regions:

EJ_a EJ_s
_ 2l 2.4
[Ba] ~ Bd] t)
B
s P = ||B"||Esin2 ¢s . (2.5)
s

Since adiabatic collimation is used to align the particles momentum against that
of the electric field, only the transverse component of the particle’s energy is un-

analyzable. This implies that the irreducible fractional energy resolution of such a
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spectrometer is given by:

E_ — ELn IBal

By|
— : 2 < | a .
E E |Bs| S fe = | Bs|

(2.6)

In practice, it is often helpful to ensure that the maximum magnetic field encoun-
tered by the particle, Bn,y, is not located in the source region. This modifies the

energy resolution to be:

AE 1Ba . (2.7)

E  [Bnay
This is done so that we may reject particles that have a high pitch angle, ¢, in
the source region. These particles have a greater path length in the source and an
increased probability of scattering, which increases the uncertainty on their original
energy. In KATRIN, the maximum magnetic field is provided by the pinch magnet
located just before the focal plane detector (FPD) so as to reject these high-pitch
angle particles through the magnetic mirror effect. Therefore, the fractional energy
resolution of KATRIN is roughly:
AE _3x1074T

— —— . — -5
3 T 05%x1077, (2.8)

which near the tritium end-point of 18.6 keV, yields an absolute energy resolution
of approximately 0.93 eV.

The selection of particles which do reach the detector is governed by the trans-
mission function of the spectrometer. For an ideal spectrometer and a completely
isotropic source, the transmission function can be described analytically in terms of

the particle’s kinetic energy, E, charge, g, and the spectrometer potential, U, by [51]:

.
0 ifE—qU <0,
L EEE
- FoB
1 if E—qU > AE .

Clearly, the MAC-E filter is an integrating spectrometer, so care must be taken to
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reduce any low energy backgrounds which may exist between the analyzing region
and the detector, as these will be indistinguishable from the source electrons. This
disadvantage can be mitigated through the use of a MAC-E time-of-flight mode
as described in [214]. However, this mode of operation brings some additional
challenges which have yet to be resolved. In addition, while the transmission
function of an ideal spectrometer may appear quite simple, this expression is only
valid assuming a fixed value for U and B,. However, the analyzing potential,
U,, and magnetic field, B,, can and do vary over the flux tube which images the
source. These inhomogeneities can adversely affect the energy resolution of the
spectrometer if they are not measured or modeled accurately. Fortunately, they can

be compensated to some degree through the discrete pixelation of the detector.

2.3 The KATRIN Beam line

The KATRIN beam line consists of a long collection of modules designed to isolate
those rare decay events which probe the scale of the neutrino mass. Collectively,
the beam line is approximately 70 meters long and consists of four main parts: the
source section, transport and pumping section, spectrometers, and detector region.
It is shown in figure 2-4.

The KATRIN experiment’s tritium source is based on the Windowless Gaseous
Tritium Source (WGTS) concept that was pioneered by [232] and [161, 15]. The
WGTS serves to localize a dilute gas of T, molecules while allowing B-decay elec-
trons to escape to the spectrometers guided along the magnetic field. The gas is
maintained at a steady temperature of ~ 30K by a dual phase Neon gas-liquid
refrigeration system [111]. The T; gas is continuously pumped and re-injected to
keep a uniform column density of 5 x 1017 molecules/cm?. This density must be
maintained with a stability of 0.1% [51] and is monitored by the rear-wall section.
Before re-injection, the tritium gas passes through a recycling system in order to
maintain the strength and purity of the source. The fraction of other hydrogen

isotopologues present is monitored by a Laser Raman scattering system in order
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Figure 2-4: The complete KATRIN Beam line. The rear-wall section is denoted by (a),
(b) is the WGTS, (c) is the transport and pumping section, (d) is the pre-spectrometer,
(e) is the main spectrometer, (f) is the magnetic field shaping system and (g) is the
detector section. Image adapted from [50].

to reduce the systematics associated with these impurities [82]. Another relevant
systematic of the source section is the knowledge of the energy loss function from
electrons scattering off the T, gas as they exit the source. The energy loss function
has been measured at Troitsk [17], but an additional measurement program at
KATRIN will be necessary to meet its demanding design sensitivity.

The transport and pumping section consists of two main parts: the Differential
Pumping Section (DPS) and the Cyrogenic Pumping Section (CPS). The differential
pumping section uses a long beam pipe bent into a chicane, coupled with large
aperture turbo-molecular pumps in order to reduce the remaining tritium gas by
several orders of magnitude. The CPS then further reduces the gas load through
the use of an Argon frost coated tube to absorb any remaining tritium in order to
reach the final vacuum level required by the spectrometer section.

After the transport and pumping section comes the pre-spectrometer. The pre-
spectrometer’s primary purpose is to reduce the flux of f-decay electrons entering

the main spectrometer. This diminishes ionization of any residual gas molecules
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which remain in the large main spectrometer volume. lonization leads to low energy
secondary electrons being emitted in the analyzing region. These can mimic signal
electrons, so it is essential to reduce this process.

The main spectrometer is a massive stainless steel vacuum chamber approx-
imately 10 meters in diameter and 24 meters in length. Such large dimensions
are necessary in order to accommodate the expansion of the magnetic field as
it decreases from 6 T to roughly 0.3 mT in magnitude. The vessel is pumped
through three large ports using a combination of turbo-molecular pumps and Non-
Evaporable-Getter (NEG) strips and must be baked out to a high temperature of
~ 300°C in order to attain the design pressure of < 107! mbar [12]. The main
spectrometer is surrounded by the Large Field Compensation System (LFCS), which
is a series of axially symmetric ring magnets designed to shape the field so that it
is both confined within the spectrometer and has an appropriately located mini-
mum. In addition to the LFCS is the Earth’s Magnetic field Compensation System
(EMCS), which consists of a series of linear current elements that serve to cancel
out the Earth’s magnetic field. This is necessary because the Earth’s magnetic field
would otherwise seriously distort the flux tube. The electrode system of the main
spectrometer serves to apply and shape the electric potential for the energy analysis
of the incident electrons. It consists of many double and single-layer wire array
modules, as well as shaping electrodes designed to mitigate Penning traps. A de-
tailed description can be found in [222] and [236]. Figure 2-5 shows the construction
of the electrodes in the main spectrometer, exhibiting the combs upon which the
wire arrays are strung and the support structures upholding each module. The use
of wire arrays instead of solid electrodes reduces the electrically active surfaces
exposed to the interior volume of the spectrometer and protects this volume from
low energy backgrounds arising from the vessel hull. Unfortunately, as a result of
the high vacuum bake out process some electric shorts appeared between some
of the individual wire modules and wire layers. This was caused by the deforma-
tion of several of the copper-beryllium distribution rods [221]. While some of the

short circuits have been repaired, the remaining shorts may necessitate the main
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Figure 2-5: Close up of the electrodes inside the main spectrometer. The CuBe
distribution rods are visible emerging from a vacuum port just behind the wire
array. Figure taken from [12].

spectrometer being utilized in a mode where the double-layer wire arrays must be
operated at a single voltage. This might increase backgrounds originating from the
vessel hull but also alters the spatial homogeneity of the electrostatic field from its
original design.

At the end of the beam line lies the Focal Plane Detector (FPD) system, shown
in figure 2-6. It registers electrons which have passed through the MAC-E filter. It
consists of a 148 pixel silicon PIN diode detector array, roughly 9 cm in diameter,
arranged into 12 rings of 12 pixels each, along with a central 4 pixel “bullseye” [8].
The FPD is preceded by a cylindrical post-acceleration electrode which increases
incident electron energy by roughly 10keV. This aids in decreasing the background,
reducing the likelihood of backscattering, and also improves the energy resolution.
The signals produced from the PIN diode array are then amplified and sent by an
optical link from the high voltage region to the Digital Acquisition (DAQ) system.
The DAQ then digitizes the raw signal at 20MHz and passes it through a trapezoidal

filter in order to provide a triggering signal [8]. Triggered events are then collected
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and exported to an external machine running the software ORCA (Object-oriented
Real-time Control and Acquisition), where they are packaged and saved to disk for

later processing [188].
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Figure 2-6: The components of the focal plane detector system. Image taken from

[8].

2.4 Simulation of the KATRIN Experiment

In order to understand the systematic uncertainties involved in a measurement
performed by a device as complex as the KATRIN experiment, a very detailed Monte
Carlo simulation package is required. This package must be able to accurately model
the electromagnetic fields involved, propagate particles through those fields and
apply any discrete stochastic interactions which may occur during propagation.
To this end, the KATRIN collaboration has developed the C++ software package
Kassiopeia [85, 212].

54



Kassiopeia is the modular and extensively configurable (through a very flexible
XML interface [85]) front-end of the KATRIN simulation code. Its primary respon-
sibility is solving the equations of motion of particles propagating through the
experiment. However, it also serves as an interface through which a user can access
various sub-programs. Kassiopeia is supported by a large collection of such sub-
programs which are designed for a variety of specific purposes. These include many
basic tasks such as approximating the solid geometry of the experiment (KGeoBag)
or calculating the electromagnetic fields (KEMField) [53], as well as more specialized
projects such as modeling the gaseous tritium source section (SSC) [119, 135, 139],
or the silicon detector’s response (KESS) [199].

One of the most basic dependencies of Kassiopeia is the geometry library
KGeoBag. This package is responsible for the basic physical modeling of the ex-
perimental components and answering shape, location, and navigation queries
about them. KGeoBag also handles the Boundary Element Method (BEM) mesh
generation for use by the field package KEMField. The common dependence on
KGeoBag across modules allows for a consistent representation of the geometry by
multiple tools.

The purpose of the field solving package KEMField is to compute the electrostatic
and magnetostatic fields produced by the charges and currents of the experimental
apparatus. In order to supply information about the electrostatic fields, KEMField
must first solve the Laplace boundary value problem in order to determine the
configuration of charges. Since the run time of all charged particle simulations
in the Kassiopeia package is dominated by the computation of the electrostatic
field, it is of primary importance that this portion of the code be both accurate and
extremely fast. In order to satisfy these two goals, the KEMField package has been
augmented with a new fast multipole method. This method has been developed so
that a fully realistic three dimensional field model of the KATRIN system can be

simulated within a reasonable time frame.
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Chapter 3

The Laplace Equation and the
Boundary Element Method

The fundamental theory of classical electromagnetism is described by Maxwell’s
equations in conjunction with the Lorentz force law. Maxwell’s equations, in

vacuum, are given in differential form by:

V'E:P/e(); (31)
V-B=0, (3.2)
oB
V XE = 5 (3.3)
JoE
V x B = po] +€opo (34)

where E and B are the electric and magnetic fields respectively, p is the charge
density and J is the current density, all of which are explicit functions of position
and time. The Lorentz force law tells us that a particle with charge g and velocity v
experiences a force F, due to the electric and magnetic fields at its position, given
by:

F=g(E+vxB). (3.5)

In short, Maxwell’s equations state the how electric and magnetic fields are gen-

erated from the spatial distribution of charged particles and their currents, while
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in turn, the Lorentz force law tells us how the motion of charged particles is influ-
enced by the fields surrounding them. These equations, coupled with relativistic
kinematics can, in principle, describe every classical electromagnetic interaction.
However, while these equations represent a complete and consistent theory, they
are merely the starting point for exploring an incredibly rich variety of phenomena

and computational techniques.

3.1 The Laplace equation

While the full description provided by Maxwell’s equations is always correct classi-
cally, there remain much simpler approximations to the full system of equations
that are still applicable in many situations. For example, in the case of the KATRIN
experiment, we can treat all of the charge and current sources of the spectrometer
fields as being completely static. This ignores any contribution to the fields from
the charged particles that we wish to track through the experiment, but this is a

negligible correction. In this approximation, Maxwell’s equations reduce to:

V-E=p/e, (3.6)
V-B=0, (3.7)
VXxE=0, (3.8)
V x B = ugJ . (3.9)

Solving for the magnetic field is quite simple since in the static case (with no
magnetizable materials) the magnetic field can be computed directly from the
current sources using the Biot-Savart law (which follows directly from (3.7) and

(3.9) in the Coulomb gauge):

_ Ho J(r,) X (r—r’) 3./
B(r) = 4—7—1-/ o (3.10)

Since the placements and magnitudes of the current sources are directly controllable
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and measurable within the context of a physical experiment, the Biot-Savart law
is sufficient for the calculation of all the relevant magnetic fields. It should be
noted that for axially symmetric sources, such as solenoids and loops, the magnetic
field can be computed much more quickly than the naive numerical evaluation of
Biot-Savart. This is because axially symmetric sources can be easily approximated
using zonal harmonic expansions. A full description of this technique can be found
in [97] and [54].

From the point of view of an experimentalist, solving for the electric field is a
somewhat more complicated problem. Like the Biot-Savart law, the electrostatic

tield can be computed directly from charged sources via Coulomb’s law:

_ 1 p()(x—r) 5,
E(r) = Treg PR ar, (3.11)

where the integral is taken over all space. However, unlike current sources, we have
no direct control over the placement of free charges within the experiment. We only
control the voltages on various electrode surfaces. From equations (3.6) and (3.8), it

follows that the electric field can be written as the gradient of a scalar potential ®:
E=-Vo, (3.12)

and that ® obeys what is known as the Poisson equation:
V- (V®)=V2®=—p/e. (3.13)

For regions which contain no free charge (p = 0), this becomes the so-called Laplace
equation:

V2P =0. (3.14)

Using the Laplace equation to compute the electric fields of the KATRIN experiment
is appropriate, since with the possible exception of the source region, there is

negligible space charge build up and all charge sources are confined to surfaces.
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To compute the electric fields, we must first specify the boundary conditions on
the border of the region where we wish to determine the field. Once the boundary
conditions are specified, the Laplace equation uniquely determines the potential ®
everywhere.

Since the geometry of the KATRIN experiment is sufficiently complex to make
an analytic solution impossible, it is necessary to solve the Laplace equation using
a numerical approach. There are two classes of numerical techniques that are
commonly used for solving the Laplace equation on a computer. These are the finite
difference method and the boundary element method.

The finite difference method is possibly the most widely known technique; brief
summaries of which can be found in [129] and [71]. This method is at first enticing
because of its ability to calculate ® directly from the quantities we experimentally
control (the potentials on electrode surfaces). Also, the application of this method
generally results in a sparse system of linear equations which can be efficiently
solved using a variety of iterative techniques (e.g. relaxation methods). However, it
is unlikely to be capable of modeling KATRIN with sufficient accuracy. The reasons
for this are severalfold. The first is that the finite difference method requires a
volume discretization. This discretization must be sufficiently fine grained that
it is possible to resolve the smallest electrically active features on the boundary,
while also covering the entire volume of interest. Since the smallest features of the
KATRIN main spectrometer are on the order of micrometers!, while the volume
of the spectrometer is roughly 1400 m? [51], the memory requirement for such a
volume discretization is on the order of a petabyte for a naive uniform grid. Even
if the volume were adaptively meshed, memory usage could easily reach tens to
hundreds of terabytes. An algorithm with such large memory requirements is
clearly not feasible on modern computer hardware. Secondly, the finite difference
method only accurately determines the potential at the mesh points of the volume
discretization. Since in order to track charged particles we must know the potential

at any arbitrary point in space, this implies we need to interpolate the field between

IThe wires of the inner array are roughly 200 ym in diameter.
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grid points which can result in a loss of accuracy. Furthermore, in order to determine
the electric field, we must compute a numerical derivative from the potential values
which results in a further loss of accuracy. Therefore, despite its initially appealing
simplicity, the finite difference method is wholly inadequate for the task of modeling
the electric field of the KATRIN experiment.

The boundary element method is an alternative approach which allows us to
avoid a volume discretization in favor of a boundary mesh. This is immediately
appealing since it reduces the dimensionality of the problem and results in a much
lower memory requirement. Additionally, the boundary element method allows us
to solve for the source charges instead of a derived quantity such as the potential.
Knowing the source charges allows us to compute the electric field directly without
needing to rely on an accuracy impairing interpolation or numerical differentiation
step. However, as we will see in the following sections, these advantages come at
the cost of a dense (rather than sparse) system of linear equations which requires a

substantially different set of tools in order to solve efficiently.

3.2 The Laplace Boundary Value Problem

To specify the problem we are trying to solve, it is necessary to introduce a more
precise description of the input data and the desired solution as follows. Let (2 be a
compact subset of R?> whose boundary is the orientable manifold ' = Q). We wish
to find a function, ®(r) : R® — R, which satisfies the Laplace equation V2®(r) = 0,
for all points r € (). In order to obtain a solution for @, we are required to specify
the boundary conditions for all points r € I’

The boundary conditions can be specified though the use of either Dirichlet or
Neumann conditions. To define Dirichlet boundary conditions, we must prescribe

a function that the potential ® must match on the surface I':

®(r)=D(r), Vr € T. (3.15)
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Figure 3-1: A two-dimensional projection of the domain of interest @ C R?, and its
boundary T

For Neumann boundary conditions, we must define a function for the normal

derivative of @ over the surface:

od

Vo(r) A = ol

= N(r), Vr € T. (3.16)
It should be noted that in the case of pure Neumann boundary conditions, the
solution for @ is only unique up to a globally constant value. This is, however,
unimportant since this does not affect the physically observable field E which
is what determines charged particle motion. It is also possible to specify mixed
Dirichlet-Neumann boundary conditions. That is to say, for some {D}, and {N},
where {D}, {N} CT,and {D} U {N} =T we may define:

®d(r) =D(r), Vr € {D} (3.17)
and
g;f =N(r), Vr € {N}. (3.18)

Another possible boundary condition is that of the Robin type, which is a restriction

on the value of a linear combination of ® and %% on I such as:

a@(r)—l—ﬁ?}% R(r), Vr € T. (3.19)

T
However, we will not consider the Robin case further, as it represents impedance

conditions, and in our idealized electrostatic model, we treat all of the metallic sur-
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faces as perfect conductors (Dirichlet conditions), and all of the insulating surfaces
as perfect (linear) dielectrics (Neumann conditions).

For the aforementioned types of boundary conditions, it is well known that
solutions for the Laplace equation exist and are unique [129]. We should also note
that imposing a fourth type of boundary condition, that of the Cauchy type, re-
sults in an ill-posed problem for the Laplace equation. Cauchy conditions require
simultaneously fixing a value for both ® and %‘g on I'. Since the solution to the
Laplace equation with Dirichlet boundary conditions exists and is unique, sepa-
rately specifying Neumann conditions for the same section of boundary would

either be superfluous or result in an overdetermined problem with no solution.

3.3 The Boundary Element Method

In order to develop a computational procedure for determining the solution to the
Laplace boundary value problem (LBPV), we first need to convert the governing
partial differential equation (PDE) into a boundary integral equation (BIE). We will
favor an approach which appeals to physical arguments, but more mathematically
rigorous derivations can be found in [190], [160], [53], or [132].

To transform the PDE into a BIE, we start with the Laplace equation V2®(r) = 0
and multiply it by an as of yet unspecified function G(r,r’) : R®> x R® — R, and

then integrate over the domain ()
/Q V20 (¢')G(r, ¢')dQ = 0. (3.20)

We will defer the introduction of the exact function G(r,r’) until later, but require
it to be square-integrable and twice differentiable over the domain ). In order to
convert the volume integral into a surface integral, we would like to be able to

apply the divergence theorem of Gauss:

/ V. FdQ = fF-ﬁdr. (3.21)
Q r
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While the divergence theorem can’t be directly applied to equation 3.20, we note

that taking the divergence of a function F = V®G, produces:
V- (VOG) = (V2®)G + (V) - (VG), (3.22)
which allows us to rewrite the left hand side of 3.20 as:
/Q(V2d>)GdQ _ /Q [V (VOG) — (V) - (VG)]dQ . (3.23)
Rearranging and applying the divergence theorem produces Green’s first identity:
/Q (V20)GdO) + /Q (VD) - (VG)dQ = ,ér (A - V®)GAT . (3.24)

Now we can express the second term on the left hand side as:

/Q(VCD)‘(VG)dQ:'/Q(VG)-(VCD)dQ (3.25)
- /Q V- (VGP)dO — /Q (V2G)®dO) (3.26)
:fr (A-VG)® - /Q (V2G)DdQ) . (3.27)

Inserting the above expression into 3.24 yields Green'’s second identity:
/Q [(V20)G - (v2G)o| dr = }g[(ﬁ V)G - (A-VG)®|dT.  (3.28)

Clearly, from the fact that ® satisfies 3.20, the first term on the left hand side of 3.28

is zero, so we obtain:
/Q (V2G)®dQ) — ﬁ (- V®)G — (A - VG)®|dT . (3.29)

In order to proceed further, it is now necessary to make a particular choice for the

function G. This function is known as a Green'’s function. A natural choice is to

64



seek a solution to the so-called fundamental equation:
V3G(r,Y) = —6(r—71), (3.30)

where é(r — 1’) is the three dimensional Dirac §-function. In three dimensions, this

has the solution [129] %:
1

) = e

(3.31)

While we should note that the Dirac J-function is not a function in the strictest
sense, a precise mathematical definition can be formulated in terms of the theory
of distributions (see [147]). However, for our purpose, it suffices to define it by the

manner in which it acts under integration[160]:

P(r) ifreV
/ ()6 — ¢ )dV = , (3.32)
v 0 ifrg v

where V € R? is some volume. Inserting 3.30 into the left hand side of 3.29 and

applying property 3.32 allows us to express the value of the solution & at the point

rc ()as:
/Q V2G(r,f')®(¥)dQ = /Q _6(r — ¥ )D(r')dQ = —D(r). (3.33)
Therefore,
®(r) = ﬁ (A VG(r,¢))®(r')dT — ﬁ (f- VO(X'))G(r,¢')drl, (3.34)

from which we can see that the value of potential @, is solely a function of the
boundary condition data on the surface I and the Green’s function G(r,t’). Using

r

3.34 to solve for ® from the values of ® and %% on I, is known as the “direct

2 Note: An addition term of K(r,r') may be present on the right hand side of 3.31, where
V2K(r,¥') =0 Vr € Q. However, if we take the domain of the fundamental solution to be over all
space R? and make the reasonable assumption that the potential at infinity goes to zero, then this
additional term is zero and can be ignored
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boundary element method [160]. However, it is generally simpler to implement,
and more physically intuitive to use what is known as the “indirect” method. This
is the approach used in KEMField. The indirect method solves for the value of ®
not directly from the given boundary data, but rather from an unknown source
function on the boundary. Upon inserting the expression for the fundamental

Green’s function into 3.34

O(r) = ﬁ [—j[rq’(r,)ﬁ (=1 _ f" Ve(r) dl‘} , (3.35)

lr—1']3 |t —r/|

and making the suggestive definitions:

p(r')/eg = @(r')i, (3.36)
o(r')/eg = —h- VO(r), (3.37)

the nature of these source terms becomes clear:

1 o(r') p(r) - (r—7)
P(r) = 5 |r_r,| ?4 lr—r'l3 ar| . (3.38)
(rr’) D(rr’)

The first term S(r, r'), known as a single layer potential, is nothing other than the
potential due to a thin layer of charge, o(r’'), affixed to the boundary I'. Whereas
the second term D(r,r’) is known as a double layer potential and is the potential
that would arise from a surface density of infinitesimal dipoles, p(r’) [129]. Since
the presence of a dipole layer on the surface of a conductor or a dielectric material
is unphysical,® we are motivated to discard this term as a possible source function.
However, in addition to physical arguments against this term we note that it
introduces a discontinuity in the potential ® [129], which is unacceptable for our

purposes since it leads to an undefined electric field E on the boundary. Instead,

3We are disregarding certain unrelated problems involving mobile charges in solution, where
such dipole layers may form, as they do not obey the Laplace equation. Nevertheless, the freedom
afforded by the term K(r,r’) in the Green'’s function (2), allows us to selectively eliminate either the
single or double layer terms, up to the introduction of a constant [129].
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we are motivated to seek a solution ® which is only due to the presence of surface

charges o(r’) on the boundary I':

o(r')
~ 47neg f lr — 1t/ [ (3-39)

Arriving at such an ansatz for the solution comes as a rather unsurprising result,
since with the knowledge that there is no net charge in the bulk, it could also have
been derived by the direct integration of Coulomb’s law 3.11. Or if the quantity of
interest is the electric field (e.g. mixed or Neumann conditions), Coulomb’s law

itself:

E(r) = —— ﬁ”(r’)(r“r')dr. (3.40)

4rr€q lr—r/|3
One advantage afforded by the indirect approach using the single layer potential
ansatz is that it naturally enforces continuity in ®. Therefore, it can be applied
simultaneously to solve both the interior problem (finding ® within the domain
Q) as well as the exterior problem (determining @ in R> \ (), while satisfying
the homogeneous condition at infinity. Additionally, since ® is continuous across
the boundary I', we can do away with the requirement that I" be a closed surface.
While an infinitely thin, open surface is certainly unphysical, it can be a very useful
approximation. When dealing with geometries where thin shells of conducting
material are present (e.g. vacuum chambers), such an approximation often allows

us to reduce the problem size by roughly a factor of two.

3.4 Linearization by Collocation

The results of the preceding section have allowed us to write down a solution as
an integral over the boundary I, but they have not directly helped us determine it,
as we have merely substituted an unknown potential ® for an unknown surface
charge density ¢. In order to determine the surface charge density, o, we need to
apply the boundary conditions. For the moment, let us assume that we are solving

a problem with purely Dirichlet boundary conditions. This results in what is known
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as a Fredholm integral equation of the first kind [160]:

D(r) = erD(r, t')o(¢)dT, (3.41)

where D(r) is the boundary conditions and Kp(r, ') is known as the kernel, where:

1

Kolr) = g1

(3.42)

To solve this equation, we need to do two things. The first is to compute the electric
potential according to 3.39. The second is to choose a measure for the error on the
boundary conditions. Unfortunately, unless we are dealing with extremely simple
geometries (e.g. sphere, plane, etc.), it is not generally possible to write down an
analytic form for either the surface or the surface charge density over which te
perform the integration. Similarly, since the boundary conditions are specified
in a continuous manner, it is difficult to compute the degree to which they are
violated for an arbitrary geometry. To deal with these difficulties, we must resort
to making an approximation of the original surface by discretizing it into simpler

component shapes. Let us assume that the original surface, I, can be approximated

Ta(T)

Figure 3-2: The boundary I of the domain () is approximated by a discretization
Tu(T).

by the union of n simpler two-dimensional geometric entities u;, over which the
charge density takes the form c;(r). We will refer to this set of n shapes u; with
the basis functions ;(r), as a mesh or discretization, denoted by 7, (T"). Figure 3-2

demonstrates a two dimensional projection of a boundary approximated by a mesh.
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It is desirable that the functions u; and o; have the following properties. The first is
that the shape functions u; must be composed of two-dimensional patches which
can be positioned, without overlap or intersection, in such a way as to reproduce
the original surface I' within some error. That is to say, for some given error, s,'it is

possible to find a discretization 7,(I') such that:

L [inflr—r|du<s, (3.43)
wi €Tu(T) gy, rel

provided # is sufficiently large. Secondly, we would like the shape and basis

functions to be composed of simple forms for which inexpensive integration rules

can be found. A particularly simple choice for the basis functions, which is used in

KEMField, are the so-called pulse functions [91], which take an appealingly simple

form:

o; ifr € u;

0 ifréu;
where 0; is a real number representing a constant charge density over the surface
element, u;. By replacing the continuous integral over I' with a sum over a dis-
cretization with a pulse function basis, the single layer ansatz of 3.39 and 3.40 then

respectively become:

d(r) = Y o du | , (3.45)
4reo ;€ Ty(T) 1; | I"I
and
1 (r—r)
E(r) = Y, o[ ——5du | . (3.46)
47T€g weTu(r) o |I‘ — r/‘

The shape functions that are employed in KEMField for the solution of three di-
mensional electrostatic problems are of the rectangular or triangular type. One
dimensional line segments are also used for efficient representation of wire ele-

ments. The full description of these shape functions can be found in the thesis of
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T. ]. Corona [53]. The final property needed by the mesh is that the solution space
spanned by the basis functions provides enough freedom to accurately represent
the variation in the surface charge density. An exact definition of this property is
difficult to give a priori, since calculating the error of a particular representation
would require knowing the exact solution of the surface charge density in advance
of solving the problem. However, in light of the existence and uniqueness theorems,
it is not unreasonable to expect that if the boundary conditions are satisfied to
within the required accuracy, then the solution has acceptably converged. A precise
description of this notion of convergence can be formulated for elliptic partial differ-
ential equations [13, 229, 121], but this requires an introduction to Sobolev spaces,
which is far beyond the scope of this thesis. As a practical means of determining
how well the boundary conditions are satisfied, we will use the method of weighted

residuals.

Dirichlet Conditions

For Dirichlet conditions, the residual is defined as the difference between the
boundary value to be enforced and the potential calculated from the surface charge

distribution. The Dirichlet residual of the potential at r € T is given by:
Rp(r) = V(r) — ®(r) . (3.47)

In order to satisfy the boundary conditions we wish to make this residual function
zero over the whole surface I'. To do this, we choose a metric defined by some set
of weight functions, fj, against which we form an inner product over the surface T,
requiring that:

/rf,'(r)RD(r)dF =0. (3.48)

Since practically speaking, we can only do this in an approximate way, it is necessary
to replace the surface, I', with the discretization 7, (I'). With this substitution, it is
convenient to define the weight functions in such a way that they are orthogonal to

each other with respect to the shape functions composing the discretization, such
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that:
wi(r) ifr € u;

f]-(r) = . (3.49)
0 ifré¢ U

Inserting our definitions of the potential 3.39 and the weight functions 3.49, and
approximating I' with the mesh 7,(T"), we can decompose 3.48 into n equations of

the following form:

u; 67',

' du;
I 1 u; €Ty (T) I 0
Upon manipulation, this becomes:
w;(r)du; wj(r)dudu; / \d
; 1. 3.51
// 4reglr —r'| wi(0)V ()du; (3:51)
Ty I

It is now clear that this equation can be written as a matrix equation of the form

Ax = b, by making the identification of the matrix and vector elements as:

X;=0j, (3.52)
b; = | w(r)V(r)du;, (3.53)
] ] ]
llj
and
// r)du; du] (3.54)
Aij = 4meglr — ']

uj

In order to evaluate the integrals A;;, it is now necessary to make an explicit choice
for the weight functions, w;. The BEM literature has many options for the type
of weight function we may use, each with varying degrees sophistication. One
possible choice is the so-called Galerkin method [40], where the weight functions,
wj, are chosen to be the adjoint of the basis functions, u;. In this way, the residual
error on the boundary condition is minimized in an average sense over the entire

surface of the discretization. A major advantage of the Galerkin method is that the
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resulting system matrix A is symmetric. This both reduces the memory required to
store the coefficients and allows a wider range of algorithms for solving the equation
Ax = b. The primary disadvantages of the Galerkin technique is that evaluation of
the double integrals, A;j, is computationally expensive and the implementation of
the Galerkin method in computer code is relatively complex.

A simpler alternative, which is used by KEMField, is the collocation method. In
the collocation method, rather than performing a weighted minimization of the
residual for all points on the boundary discretization, we choose a set of points,
{yi}, where we wish the residual to be exactly zero. This results in a simple choice

for the weight functions wj, since they are nothing but Dirac é-functions:

wi(r) = 6(y; — ) (3.55)

Inserting this choice for w; into 3.54 and integrating reduces the double integral for

the matrix elements into a single integral:

. du,‘
U

whereas the integral of equation 3.53 simplifies to the value of the boundary data at
the collocation points: b; = V(y;).

While any set of points on the boundary (provided there are as many as the
number of degrees of freedom) can be used as the collocation points, a common
choice is to use the centroids of the elements of the discretization. The centroid y; of

the element u; is given by the integral:

yi = / r'du; (3.57)

u;

which in the case of a planar polygonal element can be computed simply by averag-
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ing the m vertices v of the element u;:

1 m
yi=— ) Vi (3.58)
k=1

Choosing the centroids as the collocation points is advantageous for two reasons.
The first is that, given convex polygonal shape functions, u;, the centroid always
exists away from the edges, in a region with a well defined tangent plane and
normal vector. The second reason is that the centroid is always well separated from
neighboring elements, which simplifies the treatment of singularities arising in the
evaluation of 3.56 when r' — y;. Since the centroids y; are well contained within
their respective elements, all integrals of the form A;;, with i # j, are singularity
free. The matrix elements along the diagonal, A;;, remain somewhat problematic,
since y; is in the domain u;. However, it is possible to treat them consistently in a
limiting sense, through the use of the Cauchy principle value (CPV) [42]. This is
done by excising the region contained by a small disk, B(y;), about the point, y;,
from the domain of integration and computing the resulting integral in the limit
that the radius of the disk, B(y;), goes to zero. It suffices to say that the CPV of the
integral, A;;, exists and is readily calculable, however for the sake of brevity we will
not detail this calculation here, as it has been dealt with extensively elsewhere (see

[53] and [84]).

Neumann Conditions

We can follow a similar procedure to apply Neumann boundary conditions. In
the case of linear dielectrics, the boundary condition is a statement about the
discontinuity in the normal corrip0nent of the electric field. This discontinuity is
due to the polarization charge present on the interface between two materials with
different permittivities. We assume that the surface, I, representing the interface
between the materials is a smooth, orientable surface with a normal, A, defined
everywhere. Labeling the permittivity of the material above the interface (in the

direction of fi) as €, and the permittivity of the material below the interface as €_,
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then for all points r € T, the normal component of the electric field satisfies the
following;:

e+Ef —e_EX=0. (3.59)

Considering that the above expression 3.59 is defined to be zero over the whole
interface, it is a logical choice for the residual function used to enforce the Neumann
condition:

Ry(r) = e;Ef —e_EZL, (3.60)

with the limiting values of normal component of the electric field E1 given by *:

Fi= dim [A(r) - E(r & A(r))] 3.61)
= lim [A(r) - V(r £ AR(r))] = 2 o) (3.62)

As before, we want the integral of this residual function multiplied against the

weight functions, fj, over the surface, T, to be zero:

/r £:(x) Ry (r)dl = /r fi(x) [ex Bt e _E4]dar=o0. (3.63)

To carry out this integration in our solution space, we again replace, I', with its
discretization 7, (I') and use the orthogonality of the weight functions to decompose

it into to the n equations:

/wj(r) [evEL —e EL]duj=0. (3.64)

ll,'

4The value of A in the limit is strictly positive.
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Inserting the expression for the electric field yields:

o_
_/ZU](I‘)——- / - du]
] on | eTr 47I€0|r |
€ /w (r)a+ / duj=0. (3.65)
et ST _ j— Y
; on y eT, 4neglr 'd

Being aware of the singularities that are present in the integrand, we are motivated
to split the sum over 7,(T') into two distinct parts: the domain consisting of the
element u; (which contains the point r) and all other elements u; € 7,(I') where
i # j. To illustrate the need to make this split, it is useful to take a brief moment
to consider the physics involved in this situation. Locally, the discontinuity in
the electric field across the interface is due to a layer of polarization charge in
the neighborhood of r. This local polarization charge is produced by the unequal
response of the two materials under the influence of an external field, Eext, which
is due to the charges on 7,,(T) \ u; = {u; € Ty(I')|i # j}. The region T,(T) \ u;
excludes this local polarization charge, so the external field is continuous at r and

the directional limits for this quantity are equal:

AR a,
on - 4neo|r—r’| ~ on 47‘[6‘0]1‘ r'|

u; eTn ; tTn
I#j i#]

(3.66)

75



Extracting the problematic region, u;, from the sum allows us to write down the

continuous external (Eext) and discontinuous local (Ej,.) field terms separately:

d
o () du;
€+)/w](r) on ueT(r /4ne0|r—r’| Ui
ll]' '%]

EJ_

ext

0. ojdu; d4 ojdu;
. B — 7 VY du.=0. (3.67
+/w,(r) “~on uj 47reo|r-r’| “+on o Jy 47u-:0|r—r’l K een
u; ~ - g
B locl— E]tc!«y

Inserting our choice of weight functions (collocation) 3.55, evaluating the continuous

derivative, and integrating out the J-functions produces:

YJ) (Y} t')du; n 1
- —€ + e_E ; — €4+ E ; =0.
R )] = bl

1;61

N\ /

Eéxt(y )

(3.68)
While one can explicitly evaluate the discontinuous local electric field terms due
to the polarization charge through a limiting process [53], in the case of a smooth
surface,” one can apply Gauss’s law over an infinitesimal pillbox [109] about the

neighborhood surrounding the centroid y; € u; to show that:

o
1 1L — ]
€_Eloc(Yj) T €+Eloc(Yj) T — —(E_ +€+)2€0
SFor a smooth parameterized surface £ given by the map Z(u,v) : R2 — R3, the partial
derivatives %= and ¢E exist for all r € T. Consequently, there is always a neighborhood about r for
o g q Y y &

which an local tangent plane exists. This is always true for our choice of shape functions as they are
planar polygons.

(3.69)
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Finally, we obtain a succinct form for the Neumann boundary value problem in the

form of a matrix equation Ax = b, written component-wise as:

_1__0]. _ (6— - €+) Y o / f(y;) - (yj — v')du; (3:70)

2¢g e-+er/) S dregly; — '
i#]
with the explicit identification that:
X =0;, (3.71)
b =0, (3.72)

and

1 1
Ajj = o 505+ (1 =) <

€y — e_) / f(yi) - (yi — r')du, (3.73)

€_ +e€y 4rly; —r'|3

]

where J;; is the Kronecker delta. This is a discrete version of a Fredholm integral

equation of the second kind:

%a(r) = /F.KN(r,r’)(T(r’)dl", (3.74)
with a kernel given by:
A (r—r)
Kn(r,t') = pr=P— (3.75)

We note that the factor of 3 is due to our explicit assumption that the boundary
is smooth. This is valid for our choice of discretization and use of the collocation
method, since we use planar polygonal elements and only evaluate the boundary
conditions at the centroids. For a non-smooth surface, this numerical factor may
vary as a function of r and depends on the local solid angle subtended above and

below the surface (see [53]).
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Mixed Conditions

In practice, pure Dirichlet or Neumann systems are not commonly encountered,
and mixed systems need to be dealt with. However, now that we have specified the
matrix equations resulting from pure Dirichlet and Neumann systems, it is not hard
to construct the analogous equation for a mixed system. Since we have used the
single layer ansatz for both types of systems, there is no difference in the form of
the equation, or the solution vector, x, which is simply the list of the surface charge
densities on each discrete patch of the boundary. Therefore, we only need to specify
the matrix elements and the right hand side of this equation, the form of which only
depends on whether a specific collocation point is a member of the set of Dirichlet

surfaces { D} or Neumann surfaces { N}. The right hand side is given by:

V(y) ify; € {D
b — (yi) ifyi€{D} (376

0 ify,'E{N}

and the matrix elements are:

— 1 . Y
Ajj —deu, 1f Yi & {D}

Ajj = (3.77)

& |2+ (1= oy) (£55) S ﬂ(ﬁ"f;fyy,."::/@d“f} if y; € {N}
]
All that remains is to implement a means of solving a general matrix equation of
the form Ax = b. We should note that unlike the matrix equations encountered in
finite difference methods, this is a dense linear system. This is due to the long range
nature of the Coulomb force which couples each mesh element to all of the other
elements in the problem. We also note that because we have chosen collocation as
the means of enforcing the boundary conditions, the matrix A is non-symmetric
and typically A;; # Aj;. Unfortunately, since a dense non-symmetric linear system
is the most general kind, solving the BEM problem for large geometries will require

some special techniques.
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Chapter 4

Solving Dense Non-symmetric Linear

Systems

*

Now that we have constructed a linear system representing the Laplace bound-
ary value problem, we are left with the task of solving the resulting dense non-
symmetric matrix equation. Various direct and iterative methods are available for
dealing with problems of this type. To choose an appropriate method, we need to
carefully consider how the required memory and computational resources of each

algorithm scale with, N, the number of degrees of freedom in the problem.

4.1 Direct Methods

The first and most obvious techniques which come to mind for solving a dense
and non-symmetric system are the so-called direct methods. Some of the most
well known methods in this category are Gaussian elimination, LU decomposition,
and QR factorization [102]. These methods require the explicit computation and
storage of the matrix elements of A, which immediately means that they all have
minimum memory costs which grow like O(N?). An even worse limitation than the
memory requirement is that the number of arithmetic operations that are required to
compute the solution scales like O(N?). In light of the scaling properties of the direct

methods and the limitations of modern computer hardware, it is clear that they are
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generally not practical for solving BEM problems with a dimension much larger
than N = 10%. Accurate modeling of the KATRIN spectrometer hardware requires
discretizations containing more than = 10° mesh elements, so direct methods are
not particularly useful for this purpose. Since extensive literature [102, 64, 218]
exists on the topic of direct methods and they are not appropriate for solving the
type of large scale BEM problems we are interested in, we will not consider them

further.

4.2 Iterative Methods

Another family of techniques for solving linear systems are iterative methods. The
basic algorithm of an iterative process relies on being able to compute some measure
of the error given a solution estimate. Then a better solution is generated using
the data provided by the error. This process is performed repeatedly until some
convergence condition is reached. Usually this condition requires that the error
be less than some threshold €. A basic skeleton of an iterative method is outlined

in algorithm 1. Obviously, there are significant details omitted from algorithm

Algorithm 1 Iterative process to solve Ax = b.

Input: Matrix A, right hand side b, and initial solution estimate x.
1: Compute error estimate Eg.
2: while E; > € do
3 Generate next solution estimate x;,1 using the previous error estimate E;.
4: Compute error estimate E;, 1.
5: end while
Output: The approximate solution x,, with error E,, < €.

1, as there are many choices for the manner in which we choose to measure the
error and in the way we generate an improved solution estimate. Since we are
interested in solving problems with N & 10° or more unknowns, we must confine
ourselves to the class of iterative processes which are known as matrix-free methods.
Matrix-free methods are those which do not require us to compute or store the

matrix A in its entirety. With the exception of the Robin Hood method, we will
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primarily concern ourselves with a subset of matrix-free iterative techniques, known

as Krylov subspace methods.

4.3 Robin Hood

Robin Hood is a novel iterative method that was specifically developed for the
solution of Laplace boundary value problems in electrostatics [151, 152, 150, 84].
While it is not in the class of algorithms known as Krylov subspace methods, it
is a very important reference against which we can compare other methods, as it
has shown itself to be both accurate and scalable to large problems [53]. Being a
matrix-free method, the elements of A need not be stored. However, a fast means
of obtaining an arbitrary matrix element is generally necessary for its successful
implementation. Aside from a means to compute the matrix elements, the Robin
Hood method only requires the storage of the current solution estimate, x;, along
with a residual vector, r;, composed of the error estimates associated with each
degree of freedom. This small storage requirement gives Robin Hood optimal
memory scaling, proportional to O(N). An outline of one variant (the Gauss-Seidel
limit [53]) of this Robin Hood is given in algorithm 2. For further discussion of this
method, its variants, and its relation to other iterative methods such as Gauss-Seidel

or Successive-subspace-correction, the reader is referred to [151, 152, 150, 84, 53].

Algorithm 2 Robin Hood algorithm to solve Ax = b.

Input: Matrix A and right hand side b. Initially xg = 0 and ry = b.
1: while ||rj|le > €||b|lc do

2: rij = |Itilleo > Identify largest element of residual and its index j.
3: Aj=(bj—rij/Ajj) > Compute the correction to x; ;.
4: Xi+1 = X; + Aje; > Update solution approximation.
5: z= A, > Calculate the j-th column of A.
6: riy =1 +A4z > Update the residual.

7: end while
Output: The approximate solution x,, with relative residual error ||1;||c < €||b]|c -

The primary disadvantage of the Robin Hood algorithm is that it has an arithmetic
scaling that is O(N?) [84]. This is due to the fact that the work done during each
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iteration is proportional to N, while the number of iterations required to reach
convergence is also proportional to N. However, the nature of the algorithm is
almost embarrassingly parallel. This is because most of the work done during
one step of the iterative process consists of many, O(N), independent calculations.
Therefore, it benefits greatly from parallel computing. The adaptation of the Robin
Hood algorithm to make use of large CPU clusters and the massively parallel single-
instruction-multiple-data (SIMD) architecture, provided by graphics processors
(GPUs), has been carried out by [53]. The parallel implementation has shown it
can easily handle BEM problems of the scale involved in KATRIN because of its

excellent parallel efficiency [53].

4.4 Krylov Methods

Krylov methods are a sub-family of iterative techniques which are in the class of
algorithms known as projection processes!. Such processes construct a solution
by projecting the residual onto an appropriate subspace in order to successively
minimize orthogonal components of the error. Specifically, starting with an initial
approximation xg € RV, a Krylov method will generate an approximation to the
solution x,, given by [157]:

Xn = X0+ Zm , 4.1)

at the n-th iteration. When no information on the solution is available at the outset,
a typical choice for the approximation at the initial step is the zero vector, though
this particular choice is not necessary for the success of the method since any choice
will suffice (though some may afford faster convergence). The vector, z,,, is drawn
from the m-dimensional subspace S;, C RV (known as the search space) subject to

the condition on the residual:

r,=b—-Ax, LCy, (4.2)

!n fact, the previously mentioned Robin Hood algorithm is also a projection process, though it is
not a Krylov method.
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where Cy, is the m-dimensional subspace known as the constraint space. A Krylov
method is a projection method where m = n and the subspace over which the

projection takes place is specifically the Krylov subspace [205]:
Ku(A, ry) = span{ry, Ar, A’rg, ..., A"‘lro} . 4.3)

The Krylov subspace is a particularly judicious choice for the search subspace, since
it can be augmented recursively through repeated application of the matrix A on
the initial data. This choice for the search subspace is motivated by the Cayley-
Hamilton theorem. A direct consequence of this theorem is that for an invertible

matrix, A € RN*N, we can express its inverse as a matrix polynomial with degree

no larger than N — 1 [63, 205]:

N—1
AT =cIn+ Y AR (4.4)
k=1
Simple manipulation of the original equation shows us that the initial residual,
ro, is related to the true solution by x = x¢ + A7 lry. Therefore, in light of the
Cayley-Hamilton, this implies the solution is given by the series:
N-1

X = Xg + corg + Z ck(Akro) . 4.5)
k=1

Since the approximate solution at the n-th iteration is drawn from the Krylov

subspace, K, (A, rp), it is easy to see that x,, is simply the truncated series:
n—1
X = Xo + coro + Y ck(AFrg) . (4.6)
k=1

Therefore, the problem of obtaining the best approximation, x,, amounts to com-

puting the set of coefficients, ¢y, which minimize the residual r, = b — Ax,,.
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44.1 GMRES

Probably the most widely known and successful Krylov subspace method is the
Generalized Minimum Residual (GMRES) algorithm introduced by Saad et al. [204].
Its success is due to its broad applicability? and guaranteed convergence®.

The GMRES algorithm is a projection process which chooses C;, = K, (A, rp) and
is in essence a modified Arnoldi iteration [14]. The Arnoldi iteration transforms a
general matrix into upper Hessenberg form, H, through a succession of orthogonal
similarity transformations [218]. The practical implementation of which is not much
more complicated than the familiar Gram-Schmidt orthogonalization process?.
GMRES incorporates an additional step following the Arnoldi iteration, consisting
of a series of Given's rotations which transforms the upper Hessenberg matrix into
an upper triangular matrix. This process also conveniently provides the current
L, norm of the residual error, which allows one to track the progress towards the
solution without explicitly evaluating the residual®. Once the residual error has
converged to an acceptably small value, the approximate solution can be constructed
by inverting H, which can easily be accomplished through back-substitution.

For a non-singular system of dimension N, GMRES is guaranteed to converge
in no more than N iterations, and in doing so, the residual norm, |r;||2, at each
iteration will produce a strictly monotonically decreasing sequence [158]. However,
since any strictly monotonically decreasing sequence is possible (including the
worst-case sequence which is essentially constant for all iterations but the very last),
this guarantee is not always practically useful, especially when N is extremely large.
On the other hand, many systems of interest do in fact converge in k iterations,

where k < N, and this is typically true of the BEM problems we seek to solve.

Unfortunately, it is not generally possible to predict beforehand which systems will

2Unlike other such methods such as the Conjugate Gradient Method (CG), which requires a
symmetric matrix [116], it makes no assumption on matrix structure, hence the term “generalized”.

3GMRES is guaranteed to converge for non-singular systems.

% The process is slightly modified from canonical Gram-Schmidt in order to deal with numerical
round-off error in floating point mathematics.

5This is advantageous, since evaluating the residual costs an extra matrix-vector product involv-
ing the full system matrix A.
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converge in an acceptable number of iterations.

The primary disadvantage of the GMRES algorithm is that it must explicitly
store the bases of the Krylov subspace. This results in memory usage which grows
at each iteration, such that after k iterations the memory usage is O(kN). This
can pose severe difficulties for systems which are slow to converge. In order to
accommodate such systems, GMRES is typically used in a restarted fashion, where,
after some number, n, iterations the existing set of Krylov subspace basis vectors
are discarded. The process then begins again using the current best solution ap-
proximation X. Restarted GMRES is typically denoted as GMRES(r) and has been
implemented in KEMField as outlined by [204, 205]. The basic process is summa-
rized in algorithm 3. Unfortunately, the restarted algorithm, GMRES(n), no longer
has the guaranteed convergence property of the original algorithm and can take
much longer to converge to an acceptable residual error or even stagnate completely.
Other algorithms with a fixed memory foot-print and better convergence properties
than restarted GMRES(n) do exist. Typically, methods such as GCROT [61, 117]
and Loose-GMRES (LGMRES) [23] do this by selectively recycling a subset of the
basis vectors in the Krylov subspace. However, these algorithms are generally
more complicated to implement and so far have not been included in the KEMField

software package.

4.4.2 BiCGSTAB

An alternative to GMRES, which does not maintain a full Krylov subspace, is the
Biconjugate Gradient Stabilized method (BiCGSTAB). This algorithm is derived
from the Lanzcos biorthogonalization procedure with some corrections to aid
numerical stability. BiCGSTAB is notable for its small and fixed memory foot-
print. Since it only needs to carry over a handful of biorthogonal vectors at each
iteration, in order to advance the solution, it can avoid the accumulated memory
problem of GMRES. Unfortunately, for the problems we are interested in solving, it

tends to exhibit somewhat poor convergence. Given its limited use, we will avoid a
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Algorithm 3 Restarted GMRES(n) algorithm to solve Ax = b.

Input: The matrix A, right hand side b, and initial estimate xg.

1: 19 = b — Axg > Compute the initial residual.
2: po = ||roll2 and vo = 1o/ po > Normalize and augment Krylov subspace.
3 p=|poland j =0 > Initialize residual error and iteration count.
4: while p > ¢||b|; and j < n do
5: W = AVj
6: fori=0,...,j do > Gram-Schmidt orthogonalization.
7 Hi,j = <W, V]>
8: W—=WwW— H,',]'Vj
9: end for
10: B =||lwl|l2and vj;; = w/B. > Normalize and augment Krylov subspace.
11: fori=0,...,j—1do > Apply Given's rotations on j-th column of H.
12: a= H,"]‘, b= Hi-H,j
13: H,',j = cja+s;b
14: Hi+l,j = —s;a+cib
15: end for
6 cj=Hj;/\/[H; + B > Compute j-th Given’s rotation.
17 sj=p/\[H} . + B
18 Hjj=/H};+p?and Hj1,; =0 > Apply j-th Given's rotation to H.
19: pj = cjpjand pjy1 = —S;p; > Apply j-th Given’s rotation to p.
20: p=|pjrilandj=j+1 > Update residual error and iteration count.
21: end while
22: y = argmin||Hy — p|| > Solve j x j least-squares minimization.
yeR/
23: X = xp + Z]: Yivi > Compute solution approximation.
i=0
24: if p < €||b||> then exit.
25: else
26: Xp = X. goto 1: > Restart.
27. end if

Output: The approximate solution X, with relative residual error p < €||b||,.

detailed description, except to note that BICGSTAB does not guarantee convergence
for a general non-singular non-symmetric matrix. In addition, the residual norm
doesn’t necessarily form a monotonically decreasing sequence as the algorithm
progresses [45]. An extensive discussion of its properties and development can be
found elsewhere (see [223, 205]). A summary of the algorithm as it is implemented
in KEMField can be found in algorithm 4.
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Algorithm 4 BiCGSTAB algorithm to solve Ax = b.

Input: The matrix A, right hand side b, and initial estimate xg.
1 £ =b— Axg > Compute the initial residual.
2r=%x=x0,p=0v=0 > Initialize values.
da=lw=1p=1p=1
4: while ||r||2 > €||b||2 do

5: p = (r,r)

6 p=(p/p)(a/w)

7. p=r+B(p—wv)

8: v = Ap

9: a=p/( V)
10: S=r—av

11: t=As
12: w = (s,t)/(tt)
13: X =X+ap+ ws > Update solution approximation.
14: r=s—wt > Update residual.
15: p = [y

16: end while
Output: The approximate solution X, with relative residual error ||r||z < €||b||,.

Despite the appealing simplicity and fixed memory foot-print of both GMRES(n)
and BiGCSTAB, these methods tend to suffer from stagnation when applied to
poorly conditioned systems. For such systems, preconditioning is often necessary

in order to accelerate convergence, or even to obtain an acceptable solution at all.

4.5 Convergence and Preconditioning

The convergence behavior of the aforementioned GMRES technique in the case of a
normal matrix, A, is generally governed in the worst-case sense by the spectrum of
A [158]. For a diagonalizable matrix A = XAX ™!, where A is the diagonal matrix
of the eigenvalues Ay of A and X is the matrix of corresponding eigenvectors, it can
be shown that the worst-case rate of convergence is bounded. The bound on the
convergence rate (the ratio of the residual norm at the n-th iteration to the original

residual norm) is given by [158, 205]:

212 < () {min [maxtpn0] | @)

[Iroll2 PETn
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where x3(X) = ||X||2/|X~||2 (i-e. the condition number of the matrix of eigenvec-
tors), 7t,, is the set of polynomials with unit value at the origin and whose degree
does not exceed n. This min-max problem is very difficult to solve, and unlike
better understood symmetric-matrix algorithms, such as the conjugate gradient
(CG) method, this expression does not reduce to a simple function of the condition
number®. Rather, this bound depends on the shape of the eigenvalue distribution,
rather than just its extrema [158]. Furthermore, despite the availability of some
(generally overly pessimistic) bounds on the convergence rate’, it is usually not
possible to estimate the convergence rate of a linear system under GMRES without
a priori knowledge of all the eigenvalues of A. Moreover, the convergence behavior
of restarted GMRES(n) [133] or BiCGSTAB is even more difficult to predict. Hence,
in practice, it is usually much easier to explore the properties of a particular class
of linear systems under various solvers in an empirical manner. Nevertheless,
knowing that the above estimate of the worst-case convergence behavior depends
on the condition number of the eigenvector matrix X, it is reasonable to suspect that
iterative solvers might benefit from some form of preconditioning when dealing
with slowly converging systems.

The essential idea of preconditioning is to perform some easily® invertible
transformation on the linear system of interest which results in a new problem
whose eigenvalue distribution has a smaller spectral radius and thus has a smaller
condition number. For the moment, we will not explore the exact form of this
transformation, since developing effective preconditioning techniques is still an
open topic across many disciplines and depends heavily on the type of matrix and
the underlying physics describing the BIE we wish to solve. A preconditioning
transform can be applied to the system of interest in several different ways, but the

technique used in KEMField is called right-preconditioning, as the transformation

%The condition number x of a matrix can be defined in terms of a ratio of its most extreme
eigenvalues: ¥ = Amax/ Amin.

"These bounds can be obtained with the assumption that the eigenvalues are bounded away
from the origin in the complex plane within a region with a certain spectral radius (defined by the
eigenvalue extrema)[98].

8We mean ‘easy’ in the sense that it is less computationally expensive to invert the preconditioning
transformation P than the original system matrix A.
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is applied on the right-hand side of the system matrix A. Letting P denote the

preconditioning matrix, then when using right-preconditioning, we are interested

in solving [205]:
AP71(Px) =D, (4.8)
via
AP7'z=b (4.9)
and
Px=z. (4.10)

While it is sometimes desirable to have a fixed explicit form for the preconditioner
P and its inverse, is is not always possible to obtain or store an effective explicit pre-
conditioner for large problem sizes. Instead, one alternative is to use what is called
variable preconditioning, where the inverse action of the preconditioner is obtained
by solving equation 4.10 using an iterative method. Applying this preconditioning
scheme to GMRES results in what is known as flexible-GMRES (FGMRES) and its
restarted variant FGMRES(n) [203]. FGMRES(n) as it is implemented in KEMField
is outlined in algorithm 5. Similarly, the right preconditioned version of BiCGSTAB
is referred to as BICGSTAB-P [223] and is outlined in algorithm 6. BICGSTAB-P can
also be used with variable preconditioning, which is known as flexible-BiCGSTAB
[45].

4.6 Conclusion

Tackling the Laplace boundary value problems posed by the KATRIN experiment
requires an efficient linear equation solver. A wide variety of techniques for solving
this type of problem are available, both direct and iterative. After considering
the scaling behavior of each of these algorithms (summarized in table 4.1), we
conclude that an algorithm which is both iterative and matrix-free is necessary in
order to solve the problem with reasonable constraints on time and memory. We

note that the scaling of the iterative techniques varies depending on the number
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of iterations k required to reach convergence. The exact value of k is usually much
less than N but can be larger and depends heavily on the condition number of the
matrix at hand. Also, since Krylov type iterative methods rely on the evaluation
of the matrix-vector product, the scaling of these algorithms is proportional to the
cost of this product. If the matrix is highly structured, the arithmetic cost of the
matrix-vector product can be as low as O(N). However, in the naive worst case
scenario, the evaluation of the matrix-vector product is O(N 2). Therefore, in the
case of the GMRES algorithm, which is guaranteed to converge in at most k = N
iterations, the worst case arithmetic cost to solve the linear equation is O(N?) for a
completely unstructured matrix. Whereas for the BICGSTAB algorithm, which has
no guarantee of convergence and may never satisfactorily converge, its worst case
arithmetic cost is infinite. While the worst case estimates for the arithmetic cost of
BiCGSTAB and GMRES are somewhat discouraging, in practice many problems
converge much more rapidly. The expected scaling of these methods is indicated in

table 4.1.

Name Type Memory Scaling | Arithmetic Scaling
QR [102] Direct O(N?) O(N3)
LU [102] Direct O(N?) O(N?)
Gaussian Elimination [102] Direct O(N?) O(N?3)
Robin Hood [84] Direct O(N) O(N?)
BiCGSTAB [223] Iterative O(kN) to O(N?) O(kN) to o0
GMRES [204] Iterative O(kN)to O(N?%) | O(kN) to O(N®)
BiCGSTAB-P [223] Preconditioned Iterative | O(kN) to O(N?) O(kN) to o
FGMRES [203] Preconditioned Iterative | O(kN) to O(N?) | O(kN) to O(N?)

Table 4.1: Table of algorithms used to solve Ax = b and their scaling properties.

In closing, the two primary algorithms we will use to solve KATRIN'’s Laplace
BEM problem are GMRES and BiGCSTAB. In order to exploit these Krylov subspace
based methods and their preconditioned variants, we will need a means to compute
the action of the matrix A (or the preconditioner P) on some arbitrary vector v.
While this requirement does not preclude the use of straightforward O (N?) matrix-
vector multiplication (presuming direct storage or calculation of all of the necessary

matrix elements), there are much more effective methods available to compute
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the matrix-vector product for Laplace BEM problems. Despite the fact that A is
generally an unstructured matrix, the Fast Multipole Method (FMM) can be used to
compute the matrix-vector product with arithmetic cost of O(N In N) or even O(N).
The FMM and its variants will form the basis of the engine we use to solve these
large non-symmetric systems arising from the Laplace boundary value problem.
The performance of these Krylov techniques in conjunction with the FMM will be

explored in subsequent chapters.
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Algorithm 5 Restarted FGMRES(n) algorithm to solve Ax = b.

Input: The matrix A, right hand side b, and initial estimate xo.

1:
2:
3:
4:

Y N

10:
11:
12:
13:
14:
15:
16:
17:

18:

19:

20:
21:
22:
23:

24:

25:
26:
27:
28:

rp =b — Axg > Compute the initial residual.
po = ||roll2 and vo = 1o/ po > Normalize and augment Krylov subspace.
p=|poland j=0 > Initialize residual error and iteration count.
while p > €||b|j; and j < n do
z; = pP-ly j > Apply variable preconditioner.
W = AZ]'
fori =0,...,j do > Gram-Schmidt orthogonalization.
Hij; = (w,vj)
w=w— H;v;
end for
B = |lwl2and vi;; =w/B. > Normalize and augment Krylov subspace.
fori=0,...,j—1do > Apply Given’s rotations on j-th column of H.
a=H,;;b=H;
Hi,j =c;a+ Sib
Hiy1)= —sia+cb
end for
cj=H;;/, /sz,j + B? > Compute j-th Given's rotation.
Sj = ﬁ/,/sz’j—%ﬁz
H;;=/H};+ p*and Hj;1,; =0 > Apply j-th Given'’s rotation to H.
pj = cjpjand pj 1 = —s;p; > Apply j-th Given’s rotation to p.
p=|pjlandj=j+1 > Update residual error and iteration count.
end while
y = argmin||Hy — p|| > Solve j X j least-squares minimization.
yER/
X =X+ i Yiz; > Compute solution approximation.
i=0
if p < €||b||2 then exit.
else
Xp = X. goto 1: > Restart.
end if

Output: The approximate solution X, with relative residual error p < €||b||>.
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Algorithm 6 BiCGSTAB-P algorithm to solve Ax = b.

Input: The matrix A, right hand side b, and initial estimate xg.
1: £=Db— Axp

2:

10:
11:
12
13:
14:
15:
16:
17:
18:

r=%x=xp,p=0,v=0
a=1l,w=1p=1p=1
while |[|r||2 > €]||b]|>» do

p=(rr)
B=(p/p)(a/w)
p=r+p(p—wv)

Plp=y
v = Ay
a=p/ (&)
S=r—av
P ls =2
t= Az
Plt=w

p=p

19: end while
Output: The approximate solution X, with relative residual error ||r||2 < €]|b||2.

> Compute the initial residual.
> Initialize values.

> Apply preconditioner.

> Apply preconditioner.
> Apply preconditioner.

> Update solution approximation.
> Update residual.
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Chapter 5

Introduction to the Fast Multipole
Method and its Variants

5.1 Motivation and Development

The Fast Multipole Method (FMM) was introduced in the mid-1980s by Rokhlin
[202] and Greengard [106, 107]. Initially, it was used as a means to accelerate the cal-
culation of the two-dimensional Laplace boundary value problem but subsequently,
as a rapid method for the Coulomb force field calculation in three-dimensional
N-body problems. Since that time, it has been extended by numerous authors to
cover a very wide range of physical systems and boundary integral equations, such
as electrostatics, elastostatics, acoustic scattering, electromagnetic scattering and
other problems [160].

The primary motivation behind the original development of the FMM is the
long-range (1/r) nature of the Coulomb potential. Since this potential. lacks a
cut-off length beyond which its effects can be ignored, BEM and N-body problems
governed by it, have a dense set of interactions. In other words, every element or
particle is influenced by the individual presence of all the others. For boundary
element problems, this results in dense linear systems which become computa-

tionally infeasible to solve for large N when using direct methods. Therefore, in
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order to make use of the boundary element technique for realistic three-dimensional
problems, an algorithm with greatly reduced memory and arithmetic scaling is
needed.

Since direct methods cannot be used for solving the linear systems arising
from the Laplace BEM problem, when N is large, we will need to resort to an
iterative approach such as the Krylov techniques summarized in the previous
chapter. However, these iterative methods still have a computational cost which
scales like O(kN?), for k iterations, when using straightforward matrix-vector
multiplication. Fortunately, Krylov subspace methods do not require access to the
individual elements of the system matrix, A, only a black-box method of evaluating
the action of A on an arbitrary vector v. This provides an avenue we may exploit.
Naively, the arithmetic cost of a general matrix vector product is O(N?), but it
is well-known that the matrix-vector products of certain structured matrices (e.g
sparse, Fourier, Vandermonde, Toeplitz, etc.) can be evaluated with much less effort
[100]. For example, discrete Fourier transforms only require O(N log N) operations
when using the fast Fourier transform (FFT) algorithm [102]. In order to reduce the
complexity of the matrix-vector product involving our system matrix A (which is
unstructured), we would like to replace it by an accurate approximation which may
be applied in a more structured way. To do this, we split A into near-field (which

cannot be accurately approximated) and far-field components:
A=A+ Af. 6.1)

The near-field matrix, A,, is a sparse matrix consisting of an O(N) number of
pre-computed and stored diagonal and near-diagonal terms. Its action may be
computed directly. The far-field matrix, Ay, is a diagonal-less dense matrix whose
action must be computed in an approximate way without reference to any indi-
vidual matrix elements. The FMM can be used to evaluate the action of Ay in a
manner whose arithmetic costs scale like O(N log N) or even O(N) in certain cases

[32]. Such a reduction provides vastly accelerated processing times over the direct
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approach, and for many problems, it is the only practical approach to obtain a
solution.

In order for the FMM to be applicable, it is necessary that the kernel governing
the equation be separable or approximately separable. If this is so, then it may be

expressed as a series [32]:

K(x,y) ~ kf (&) - 5.2)
=()

Any set of basis functions ¢ (x) and &i(y), satisfying equation 5.2 can be used for
the expansion. Even a simple Cartesian Taylor series would be sufficient. However,
in the case of the Laplace equation, the rotational invariance of the kernel makes
it convenient to expand it in spherical coordinates, where the functions {(x) and
Ck(y) take the form of the regular and irregular solid harmonics [78], [224]. While
in principle, such an expansion is infinite, once an acceptable numerical precision
has been specified, the series can be truncated at some maximum degree k = p. By
expanding the kernel in this way, we can represent the far-field effects of a particular
source with a finite set of coefficients. This compresses the field information into
a series which is far less computationally expensive to evaluate than using the
original source-kernel convolution form of equation 3.39.

Aside from the need to solve large scale Laplace BEM problems, an additional
(and in our case, the original) motivation for the use of the fast multipole method
is the need for fast field evaluation when tracking charged particles. Once the
boundary value problem is solved, particle tracking simulations require evaluating
the electric field and potential by summing over all the charge sources on the
mesh. Since the arithmetic costs of this direct sum scales proportionally with the
number of mesh elements, field evaluation can slow down particle simulations
immensely when tracking in complex geometries. In fact, evaluation of the electric

field alone is the primary bottleneck in all three-dimensional simulations of the
KATRIN experiment.
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5.2 Multipole Expansions

To develop the necessary expansion technique, we recall that in the indirect BEM
formulation of the Laplace boundary value problem, the matrix equation arises
from the application of a single layer potential convolved with the Neumann (eq.
3.75) or Dirichlet (eq. 3.42) kernels. Since the Neumann kernel, Ky (r, t’), is simply
the result of the gradient operator applied to the Dirichlet kernel, it is appropriate

to concentrate on the latter:

1

Ko(r ) = o=

(5.3)

Apart from the unimportant pre-factor of 1/47, this is simply the inverse Euclidean

distance function, which can be expanded in terms of the spherical harmonics using

[78, 129]:

1=0m=—1 \ "max
where rmin = min(7, ') and rmax = max(r, ). The above expression can be derived
(see [78]) by rewriting the distance formula using the law-of-cosines, then Taylor
expanding and collecting terms of like-powers, the result of which is the generating
function of the Legendre polynomials P;. Equation 5.4 then follows from the
application of the well-known addition formula of spherical harmonics [129, 73].
In equation 5.4 and throughout this thesis, the spherical harmonics, Y (6, ¢), are

defined using the Schmidt-semi-normalized convention following that of [107]:

mo__ ( lm I) |1711 ump
Yl mp (COS 9)3 (5.5)

where P,‘ "l is the associated Legendre polynomial. We note that in this definition
the Condon-Shortly phase has not been included and that the following conjugation

relation between harmonics with same degree, I, but opposite sign order, m, holds:

Y76, 0) = Y['(0,9) - (5.6)
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Figure 5-1: Geometry of the multipole expansion.

With the mathematical preliminaries out of the way, we can now consider their
application to the Laplace boundary value problem consisting of the set of surfaces
I'. During the construction of the linear system governing this system, we would
like to find a faster way to evaluate the far-field contributions due to some surface
subset, £ C I'. We can assume without loss of generality that all source points
r' € ¥ are closer to the origin than the evaluation point, r, and that X is confined
within a sphere, S, with radius, ry, about the origin of the coordinate system. Hence
we have rmin = 1’ and rmax = r, figure 5-1 illustrates this situation. By applying the
single-layer ansatz of equation 3.39 to X and replacing the Dirichlet kernel with the

expansion 5.4 we find:

o= foa £ . (13w

n=0m=—n

dx. . (5.7)

This allows us to pull out the r dependence from under the integral sign yielding:

1 = & Y (F, / Ny —m(nl 4
D(r) = : E ’—rﬂrlﬁ/xr’a(r )Y, (6, ¢ )dx (5.8)

Therefore, in the region outside of the sphere, S, the potential can be expressed as
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the sum:

mym 6,

®(r) = r’+1 ’

(5.9)

47T€0 1=0 m=—1I

where the I-th degree and m-th order multipole moment Q" is given by the integral:
QU = / o) Y (0, ¢ )dE . (5.10)
Jz

As mentioned before, in practice, we must must terminate an expansion after
some realistic number of terms. We will refer to an expansion which terminates at
linax = p as an expansion of degree p. The number of terms in a p-degree expansion
is (p + 1)%. However. due to the conjugation property (equation 5.6) of the spherical
harmonics, the number of independent coefficients that need to be calculated is
slightly less and is given by: (p +1)(p +2)/2. A p-th degree expansion produces
an approximate value of the potential ®:

4 1 mym
B(r) = 1 i QY (6, ¢)

— T s 5.11
Ameg | rl+1 (>.11)

=0 m=—I

which has a truncation error € with respect to the true potential ®(r) bounded by

[108]:
1 p+1
() ()

where « is a constant of proportionality which varies depending on the accuracy of

e = |®(r) - ()| < 1Quor , (5.12)

the algorithm used to compute the multipole coefficients, and Qiot is the sum of the
absolute value of all the charges contained by S. Clearly, the larger the value of p,
the lower the truncation error will be, albeit at a larger computational cost.

Now if we were limited to the use of a (remote) multipole expansion of the type
described in equation (5.11), we would not have gained a great deal of efficiency
over the direct matrix-vector evaluation when solving the BEM problem. Nor
would we be offered much of a speed up during particle simulations unless we only
need to track charged particles in a region external to all of the charge sources (mesh

elements). Since the remote multipole expansion is a Laurent series in r, it converges
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far away from the origin of the expansion, so is not appropriate for evaluating the
field in regions which are bounded by or contain charged sources, such as the
KATRIN main spectrometer. Moreover, if we used the remote expansion in order to
evaluate the field on collocation points or for tracking particles inside the electrodes
of such a structure, we would necessarily have to decompose it into a large number
of sub-collections, in order to create overlapping regions where each sub-collection’s
expansion could separately converge. In this case, rather than having to evaluate
the field by summing over a large number of direct evaluations of each electrode,
we instead would have to sum over some number, M, multipole expansions in
order to calculate the field. Because M would necessarily be proportional to N,
evaluating the field at all N collocation points of a BEM problem (evaluating the
matrix-vector product) using this approach would still scale like O(N?). So while
this might be slightly faster than the direct method depending on the distribution
of mesh elements, it is unlikely that it would provide a dramatic gain in speed.
However, as an alternative to the multipole expansion, one can also use its
Taylor series analog, called the local coefficient expansion. The local coefficient
expansion can be made to converge to the potential, ®, within a sphere, S, with
radius, rp, due to all of the sources outside this sphere. That such an expansion can
be constructed is easy to see in light of equation 5.7. If all of the charge sources on X
are outside of S as in figure 5-2, then ' > r, and 7, = r and rmax = 1. Once again
pulling the r dependence outside of the integral we find:
0 K0, ¢)
y }: Y50, 9) / r/1+1 s, (5.13)
=J

j=0k=

1

10
(r) = 47eg

from which we can see that the local coefficient expansion of the potential is given
by:

(e}

r’LkY" 0, (5.14)
47T€o ]E:Ok—z—] 2
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Figure 5-2: Geometry of the local coefficient expansion.

with the coefficients generated from:

YH(,¢)
k _ AN

As could be expected, it can be shown the truncated local coefficient expansion has
an upper error bound, which in a manner analogous to equation 5.12, decreases as
the truncation degree, p, is increased.

Theoretically, if we were able to entirely fill the region of interest with overlap-
ping balls of varying radius, each containing a local coefficient expansion of the
charges external to it, we could guarantee a constant O(p?) cost for any field evalu-
ation!. Unfortunately, directly constructing such a set of expansions is not useful for
solving the Laplace BEM problem in of itself, since it would require no less than
O(N?) operations during each matrix vector product. However, as was proven by
Rokhlin and Greengard [202, 106, 107], it is possible to construct this set of local
coefficient expansions indirectly from a collection of remote (multipole) expansions

in a manner whose arithmetic costs are much less than the direct approach. In order

'As an added benefit with respect to the task of tracking charged particles, being able to cover the
region of interest with a collection of local coefficient expansions can drastically reduce the number
of computationally expensive direct integrations and greatly accelerate the field calculation. This
method is not entirely different from forming a field map [54], with the exception that the coefficients
of the interpolation are computed directly from the remote sources rather than inferred from local
values of the field, and thus much more accurate and memory efficient.
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to do so, it is necessary to have a technique to convert between remote and local

expansions, as well as translate the expansion origin of a remote or local expansion.

5.3 The Transformation Rules

A straightforward implementation of a local coefficient field map would require
the coefficients to be computed through direct integration over the charge sources,
in a manner similar to computing the multipole moments. This would be very
inefficient, as it would require roughly O(Np?) integration operations for each local
expansion needed about each of the N collocation points. However, three theorems
regarding the translation and transformation of multipole and local coefficients can
be used to develop a much better algorithm: the Fast Multipole Method [108]. The
first two theorems, regarding the translation of the origin of a multipole or local
coefficient expansion, have had a long history, having arisen during the course of
development of quantum mechanics and quantum chemistry (see [213] and [58]
for further discussion). The third theorem, due to Greengard and Rokhlin [107],
allows us to transform a multipole expansion due to localized sources into a local
coefficient expansion about another position. Detailed derivations of these theorems
can be found in [78] and [224].

The first theorem we will consider describes the transformation of a multipole
expansion about one origin, to that of another multipole expansion about a different .

origin. Visually, this is represented in figure 5-3 and is stated as follows:

Theorem 5.1 Consider a multipole expansion with coefficients {O' } due to charges lo-
cated within the sphere, D, with radius, a, centered about the origin. This expansion
converges for points outside of sphere D. Now consider the point Q = (p, «, ) € D. We
may form a new multipole expansion, about the point, Q, due to the charges within D,

which converges for points outside of the sphere D' which has its center at Q' and radius
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Figure 5-3: Multipole to multipole translation. The red shaded area indicates the
region where the original multipole expansion {O} does not converge. The blue
shaded area indicates the region where the new multipole expansion {Mk} does
not converge.

a’ = p + a. The coefficients of the new expansion multipole {M;‘} are given by:

m=n ok m k| —|m|—|k— mlAmAk monY, ™ (a, B)

%)

, (5.16
n=0 m;— A]k )
where
i ( 1)"
AL = \/(n - TEEL ; (5.17)

The second theorem describes the conversion of a local coefficient expansion
about one origin into a local coefficient expansion about another origin. Graphically,

this is represented in figure 5-4 and stated as follows:

Theorem 5.2 Consider a local expansion with coefficients {O"} due to charges located
outside the sphere, D, with radius, a, centered about the origin. This expansion converges
for points inside of sphere D. Now consider the point Q = (p,a,B) € D. We may form
a new local coefficient expansion, about the point, Q, due to the charges outside D, which
converges for points inside of the sphere D' which has its center at Q and radius a’ = a — p.

The coefficients of the new local coefficient expansion {Lf,c } are given by:

o & men Opilm=lm=ki=lkl gmk Akpn—jymk(q, B
Lj - Z _Z ( 1)11+]Am (5-18)

n:] m=—n
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Figure 5-4: Local coefficient to local coefficient translation. The red shaded area
indicates the region there the original local expansion {O};' } converges. The blue
shaded area indicates the region where the new local coefficient {L ; } expansion
converges.

where A} is defined by equation 5.17.

Finally, the third theorem describes the conversion of a multipole expansion
about one origin into a local coefficient expansion about another origin (see figure

5-5) as follows:

Theorem 5.3 Consider a multipole expansion with coefficients {O}' } due to charges lo-
cated within the sphere, D, with radius, a, centered about the origin. This expansion
converges for points outside of sphere D. Now consider the point Q = (p,«,p) & D.
We may form a local coefficient expansion , about the point, Q, due to the charges within
D, which converges for points within the sphere D’ which has its center at Q and radius
a' = p — a. The coefficients of the local coefficient expansion {L;‘ } are given by:

mep Optitk—mI—K-Iml Al AFY K (a, B)

e , (5.19)
o W, (_])nAﬁnkp;+n+l

where A} is defined as before in equation 5.17.

Collectively, these three theorems form the backbone of the Fast Multipole
Method.
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Figure 5-5: Multipole to local coefficient transformation. The red shaded area indi-
cates the region where the original multipole expansion {O”'} does not converge.
The blue shaded area indicates the region where the new local coefficient expansion
{Lf} does converge.

5.4 Canonical Fast Multipole Method Algorithm

The Fast Multipole Method (FMM) has been continuously improved and applied
to new problems over the past few decades and many versions exist. However,
of primary importance is what we will refer to as the “canonical” algorithm as
described in [108, 46]. The canonical fast multipole method makes use of all three of
the transformation theorems in order to reduce the computational cost required to
evaluate the matrix-vector product as much as possible. The sequence of operations
is organized around a tree structure which adaptively subdivides space in order to
reduce the number of operations needed. The use of a hierarchical tree to accelerate
force calculations during the simulation of N-body problems was pioneered by
Appel [11] and expanded upon by Barnes and Hut [25] . Unfortunately, the Barnes-
Hut algorithm only makes use of the monopole term in the multipole expansion and
as such, it generally lacks sufficient accuracy for many purposes. However, the tree
structure of Barnes-Hut is extremely useful and serves as a basis about which the
FMM operations can be structured. A very simple graphical argument motivating
the use of a tree to accelerate the calculation of Coulomb-like interactions can be

seen in figure 5-6. In this figure, the small white circles denote N charge sources,
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(b) Far-field interactions mediated
(a) Direct pairwise interactions. through coarse grouping.

Figure 5-6: Using a tree structure to reduce the number of interaction calculations
in an N-body problem.

and the lines joining them represent their interactions. In order to calculate the field
at each source, we must consider the influence of all its neighbors. If we were to do
this by summing over each pairwise interaction, as done in figure 5-6a, the number
of arithmetic operations would grow like O(N?). However, if we group nearby
charges together, we can compute their influence on their far away neighbors as a
single entity using a multipole expansion. In figure 5-6b, t