Massachusetts Institute of Technology
Cambridge 39, Massachusetts

March 4, 1962

Professor Phillip Franklin

Secretary of the Faculty
Massachusetts Institute of Technology
Cambridge 39, Massachusetts

Dear Sir:

In accordance with the regulations of the faculty, I hereby
submit a thesis entitled, '"The Mechanism of Heat Transfer in
Nucleate Pool Boiling'', in partial fulfillment of th2 requirement
for the degree of Doctor of Science in Mechanical Engineering.

Respectively submitted,

HAN, CHI-YEH



TO THE MEMORY OF MY PARENTS

MR. HAN, TEH-CHING
MRS. HAN-HO, PEARL



Laéora—/’OIy E;ui?meﬁ’t



THE MECHANISM OF HEAT TRANSFER
IN NUCLEATE POOL BOILING

by

HAN, CHI - YEH
)
G B K)
B. S., National North-West College of Engineering, 1948

- W
(B =+ @ 20 = % F2)
M. S., Michigan State University, 1959

Submitted to the Department of
Mechanical Engineering in Partial
Fulfillment of the Requirement for

the Degree of Doctor of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February, 1962

Signature of Author

Certified by_,

Thesis Supervisors

Accepted by

Chalrman, Departmental Commlttee
on Graduate Students
‘/



THE MECHANISM OF HEAT TRANSFER
IN NUCLEATE POOL BOILING

by

HAN, CHI - YEH

(3% 2k %)

ABSTRACT

A study of bubble growth theory in the homogenous temperature
field is made, the natural convection and its stability criterion have
been developed. With these knowledges, a combined situation is studied.
A criterion is developed for bubble initiation from a superheated layer
of liquid. It is found that the temperature of bubble initiation on a given
surface is a function of the temperature condition in the liquid surround-
ing the cavity as well as the surface properties themselves. It is also
found that the delay time between bubbles is a function of bulk liquid
temperature and the wall superheat and is not constant for a given sur-
face.

By consideration of the transient conduction into a layer of
liquid on the heating surface, a thermal layer thickness is obtained.
With this thickness and a critical wall superheat relation for the cavity,
a bubble growth rate is obtained.

Bubble departure is considered and it is found that the Jakob
and Fritz relation works as long as the true (non-equilibrium) bubble
contact angle is used. The effect on departure size of the virtual mass
in the surrounding liquid is found to be negligible at one gravity. That
is, the contact angle is found to be a function of the triple interface

velocity.
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The initiation, growth and departure criterions are each
experimentally, individually checked. They are used to compute
the heat transfer near the knee of the boiling curve using only an
experimental determination for the number of bubble as a function
of wall superheat and other known quantities. Finally the heat trans-

fer rate, q vs. the wall superheat, TW - Tsat relation is computed

and measured and compared. The comparison is satisfactory.
A list of theories and governing equations are given as

follows:

1. Bubble initiation theory.

R = Sue(Tw=Tsot) [, _ J_ 12 Ty To) Tou$

3 (Tp ~Too) (Tw-'l},,)ié‘mj;l. (1)

— _3_ {Tw"TQ) Rc (2)
ZSZTW"Eof'(’— R:jd‘,;b)

h™= =% 3)

2. Bubble growth theory.

R = ,?: ?g ﬁcf Z(TW-T;#)/F__ (TW—TQ)S 4ﬁ+ er é

% Sb Ko 4% 52 Vet
83
2 [7kt 4kt _ § J

. (4)
3. Departure criterion.

~3
(y 03/3 03 ?
max = —"— kd F)
-L,- !;(4.2 . d
! - zg 7 (4R#RR)

(5)

d
where @parivre

PRY
= { /+6§50 o ) }’

_[Z= ’
{fﬂ' f (R RE)

48‘}’-)‘; 27K
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4, Bulk convection theory.

7 = (/- 4nrn—l;;)/'/0-£f-p’—€—(7fu“7;)
U 2
+ 5 LT T = [fR:, (1 &+ &’]i (6)
where

5, =]kt 1)
S, =\} rkt,
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CHAPTER 1

DYNAMICS OF THE GROWTH OF A VAPOR
BUBBLE IN A SUPERHEATED INFINITE FIELD OF FLUID

Introduction

The dynamics of vapor bubble growth is of fundamental impor-
tance in the nucleate boiling. Lord Rayleigh took the first step toward
an understanding of the process. As liquid evaporates into the bubble,
the surface of the bubble at which evaporation takes place moves. When
the radius of bubble is considerably small, the growth rate of bubble is
controlled by surface tension and inertial force of surrounding fluid.

As soon as the radius of bubble becomes large, heat diffusjon process
will control the growth rate of the bubble.

1. Formulation of the Problem

Assumptions
For Fluid = Continuous medium
Incompressible fluid
Spherical Symmetry
No body force
For Vapor= Uniform in temperature and uniform in density

throughout whole bubble space.

a. Continuity Equation

Taking a control volume c.v. of spherical shell of radii I
and +dr in the liquid around the bubble, U, £ being the
radial velocity and density of the fluid particle at r , mass
flux into the control volume is fu(4qr r?) , mass flux out
of the control volume is fu(4-m-r3)+ .5.3; {fu4.qrr’-) dr .



Then the net mass flux out of the control volume must be
equal to the rate of decrease of mass in the control volume,
therefore

2 - _ iy 22
57 (fU4-nrr’) dr = (4-4rr dr - )

Since the fluid is assumed to be incompressible, i.e.

f== Cont. or 2—£—=o

—;—r (fU4'7rr’) = <47 f -,—a?-’;(Ur’)=o

or _°_ 2) — (1)
,ar(Ur) o

For case of unsteady flow U = U (4, r) integrating

with respect to , (1) becomes

Ur* = fu -

Where f({-) is a function of time coordinate -t

Fig. 1 Spherical Bubble Growing in a Superheated Fluid
2



Since the quantity U r®is a function of time alone, it can be
evaluated in terms of its value at any radius, say at the in-
terface R of liquid and vapor. We call it bubble surface ,
this surface moves with velocity R , while the liquid im-
mediately adjacent moves with velocity UR . The net
velocity, R-UR calling evaporation velocity, causes a mass
flow of 4ar R'f'(é-% Ywhich must just equal to the rate of
vaporation of fluid into the bubble.

Thus a mass balance written for the bubble surface gives:

d 4 3 2 .,

s | e = 4- - U )
Since the density changes vary little during bubble growth,

it is permissible to assume that the vapor density is inde-
pendent of time ,

<+ d 4 25 = 3 R - U
_}'f;a_{m).=4nrﬁ;eg 4-ner(R‘ ,8)

or . .
LR =R
SR J— 2

where }5 is vapor density, f is fluid density

& = f’ﬁl

Substituting this result into (2) yields

2 , 2 - 2




Momentum Equation
Starting from the general expression of Navier-Stokes

equations in spherical coordinates, letting velocity compo-
nentsin F, ¢, ¢ directions be U , V , w
respectively, one has from Ref. (2) with help of Fig. 2.

X = So'ntla c:msy 5 7= r Sl'nllv Sinf , ; = } cos¢

u

§ w

1 v
47 |
I

y 4 7

& >N : e

AN
N7

Fig. 2 Velocity Components in a Spherical Coordinate

. 2 3
ov au v oy W ey _Vtw
ot *VarT F e Fsmpeg T
2w
) 2, pu_ 2 W_32et = 2%
7ar v(vou T2 e r P’sing °9



wv _ wicot ¢

A 'Y v NI_,_ w 2V

YT T oy Tmg 3 T ru« 2

o8 w

_—_-__)T!--%—:—-E--P»(Vzl/—';’.?% —rzl;,”z%— 7.:5',":* 37

. (6b)
oulee p e et

| _1_ °PpP 2 w 2 3 2 cosy 2V
R e S O — + V - Y ——— —— —
S rsny 29 How Psing  Psing 29 ' siny ?9

(6¢c)
where:
2_ | @ 2 9 9 2 ! _2:‘
P (Vo) + gz, oy Ut o) H g S
) (6d)

For spherical symmetry:

{U—Wso
) 2 o

T

Therefore (6a) reduces to:

W,y L3P Ly (py - 22

at or — P - ()



and (6d) reduces to:

2 1 ? 2 9
V= (r3F)
gb_l_z U
3 ! ) 2 U . U - —

Substituting Eq. (2) /= ﬁ}. into divergence equation
rl

yields:
uad () = 4 2 fr el £ - LR L)
- B2 i) - 2
Making use of above result, (7) becomes:
- (7a)
where PE—-—B!-(O’,,.+0;,,+0}/,)

For incompressible fluid, the normal stress in - direction

is:
—_ 2y
U;P . P+2/u or
or — U
P o;'r + 2/“"5',;

where /l = fj; = viscosity of fluid.

Substituting P into (7a) gives:

—~

ot ar L or 27t (7b)
6

2
9”+u.§£=—-’-?£n* P



. L
Substituting i/ = _EE_’:L from (5) into (7b) yields:

3= g 528) £ 2, (ks ani)

W _ 2 ( ERR’) __ 28RR' _  2u

oFr "o\ e r? T T
21’_,_:.?_2_. ERR) _ .3_(,2_1_1_): 6 ERR’
> ort r’) i\ r r*

. 22 . « 2
E 5l 22 2(ERR) _ [/ 2%, _ /22 ERR
e (RR+zRR) pr 7 or re

Integrating with respect to through the fluid field gives:

(] 00 P o0

o 2 2 _’_. EkRzz ) 475'Ra

- [-?F(RR +2RR)] + 3 [_(_FLJ=[];%] + [——f;—}
R R “R R

. .2 -’— 3.l= _L _ _ 2;;5;}
6(RR+2R) z ER 7 [D;r(oo) o;rtk)] —

(8)

The boundary conditions are:

= - + - ?_'.:(
, ORI (7% R ) (9)
where E, is vapor partial pressure in the bubble
Pa is the inert gas partial pressure in the bubble
o is the surface tension of fluid at bubble surface

7



Substituting (9) into (8) gives:

z‘ L
ik '“J——=\RR+(2-—)R+——4”R
€p R

for f>>=Ff, , &= Z}ZZ ! above

equation reduces to:

H"'H—Pc -?ﬁg

7

Which is the generalized form of the well known Rayleigh's

== RR +‘§Rz+4j"";—" (10)

equation.

Energy Equation

Energy equation for unit volume of a fluid particle of fixed
identity is from Ref. (1).

bH - PP _\y.g
bt " bt V?+/M§+Q

(11)
where - V-} = energy flux into this system
H = enthalpy of this system
/u é = viscous dissipation term of 'thls system
.l au
- 2 [y’ + (7)+(,,§)J ,] 7
(24 422y 2 (5%
%5 Tax’ T3 ox a7
= heat source in this system

Q@
PD_% = compression work done to this system

7”)



For spherical symmetry, incompressible fluid, negligible
viscous dissipation, no energy flux other than ordinary heat
conduction and constant thermal properties, the equation (11)
is then reduced to:

Z
2T, y T 4 (2T 2 o1 Q
Cl's r °or* I @r) Sc
: (12)
where ﬁ, , £, € are thermal difquivity, density and
gspecific heat of fluid. 2& Rz
Making use (5) U= -7—— , (12) becomes:
2 . 2
?T_I/L(BT_I_zaT_ERR?T_’_Q
ot 7 Foor r: ar Sfe
- (13)
Initial Conditions R= R+’
Rto) — 2 + 8 (14)
Elo TE.- PQ
Where § is a small displacement from initial equilibrium
radius,
k(O) == O (15)
T(r o)== T, (16)
Boundary Conditions
2
At infinity = 2T — 2T _ — o (17)
ar or:
Integrating (13) with respect to 1+ and putting F—— oo
yields

t
T (oo, t) = T, +?'C-‘[Qho,{-') dt

9



If no heat source at infinity, then Qfeo, +) =

T (o0, ¢t) =T, (172)

At bubble surface: If the kinetic energy of the fluid field
is negligible, then the energy equation for a bubble can be
easily obtained by the following way:

Energy gained by the bubble per unit time is
2. — ’
f, 4mR R H,

Energy of water which is evaporated into the bubble per
unit time is

f/;(k —UR) 4:77R=L == fb ,Et (1-€)<#rr R"’,

Energy transferred into bubble across the bubble surface
by means of heat conduction is

i Rl?r‘ r= °

Law of conservation of energy leads to
f4nrRRH = phR (- £)4r7rR+4-ﬂrR( ) K

Simplifying gives

£ RA=phC-8) R+ K(ZT)

f=R

Taking the initial state of fluid as a reference state, the

above equation becomes

SR{L+ e [Tre-T] } = pelmme-T]0-OR + KL

-(18)

10



Where L , H are averages of latent heat of evaporation
and enthalpy of vapor.

Growth of Bubble Controlled by Momentum Equation

As it was pointed out in the introduction, when the bubble radius
is very small, surface tension and inertia force of the surrounding
fluid play the important roles for the bubble growth ( R<o "

for water ).

If the effect of viscosity is neglected, Equation (10) becomes

R+B-P =R w3 R
v = AR =
Ep +z K (19)

Assuming the vapor partial pressure in the bubble to be constant,
the equilibrium in thermodynamics gives that the temperature in
bubble is also constant. Assuming also no air diffusion across
the bubble wall as it grows yields

Pa l’ = constant

Where Pa is partial pressure of inert gas, say air, in the bubble,
12 is the volume of bubble and is equal to 43'77 R

—_— R,
oxr Pa Pdo Rg (20)
Where R, is the initial radius of bubble = K(o)
E, is the initial partial pressure of air in the bubble = Ff0)
—_— ._.__f ‘ﬁ ~ |
For € = P ~ | _ &€ can be considered as a constant

value during the whole range of the bubble life.

If the bubble is in dynamic equilibrium with the liquid, then the
pressure on the bubble surface must be balanced with the external

pressure, so (19) gives

R=R =
11



The driving force must be zero

— R. _
Fir)y= §p+F, = --%RZ--o (21)
where:
_ _ _ 20
SP - E/ F:O 2 R, = SP"'RO

To determine the remaining root of K , one substitutes

R = 2% _
o SP+B, into (21) and has
— _R.o [ £ |1+ 2P }
K SP(SP+R.) Ro

If §p > o, then the two positive roots of (21) which corres-
ponds to actual bubble radii are

A . 20
R= §P+ PR

_ B,o [ ﬂa}
R= Spep) L'71'" R,

and

The case OP > o corresponds tothe condition that the vapor
pressure ﬁ, is greater than the atmospheric pressure FZ, s
so that the liquid can boil, If &P = o , then there is only

one positive root of (21) namely

20
R =
Sp+h.
Provided
Fo > |9P]

12



To determine whether the bubble is dynamically stable or unstable,

the criterions are

d dF;:) indicates dynamic stability
dFwR) .
dR = O indicates dynamic instability

Any bubble which is dynamically stable, will disolve through
diffusion of air out of the bubble. Hence the bubbles that need to
be considered are dynamically unstable ones. From (21)

3
()~ [ 2] — -2t
R‘f“ R R t=o R, R
From (21) R, = 29 _§P
R,
Substituting Jas into above inequality yields
26
*3(—;@—;‘5P) 4+ 2% =o
R, R: (22)
4 C
-2 386p =o
o‘. 40‘
R P
° 3 §P
2 2d _ 8P
o = 7 - 8P S—(7 - TP = F
38P
‘ 8P
Ro = 2
Another extreme case is, no air in bubble, so a, = O
_ _2d
R §P

13



Therefore the initial radius for unstable bubble must be so
bounded that

40‘5 20
35P ° SPI
with  ¢p J
>
T;F‘:o,o C e e (93)

2
Multiplying R R and integrating from t=eo to $+=+4 and
from R=K_ to R=R . Equation (19) becomes

3. . 2.2 ] 3 20 \ 2}
RRR+2RR =27(SP+50’%?‘ Z)RR

or

L d (Rt ] d RZ dR d
L (=L (PRI + B B F-20r X )

With initial condition R (o )= 0, the above expression becomes

= ——3—-8’—]7 - efR j ﬁi
20k -2 5PR.-2B,R. InR,
Ef’?’ (24)

R”’_ 2 SP 20 2F Qo R [ﬂR

14



Thus k",\, 2 _$P , a8 R ~s oo

. [ e
R'tstf{- as R ~ 0o

This means that the bubble radius approaches a linear increase
with respect to time ¢ .

From (24), it is evident that the terms in -—L-'L;!- and —;—5
become quite rapidly. Pﬁysicall_y, this means that the effect of
air in a bubble can be important to initiate the growth of the
bubble. But its effect upon the subsequent behavior of the bubble
radius is negligible. Furthermore, all of the initial conditions
such as Ro 85 i.f. are involved in the -—;:—, term which also
vanish quite rapidly as R A/ ce

For case of an =0 , no inert gas in the steam bubble, if the

viscosity is neglected again, then (19) becomes

) 2 SP"‘?}.{
3 ]
RR"’"‘Z’R ef (25)

Setting the right-hand side equal to zero, one obtains the equili-

2
brium radius R, = SOF; which together with the condition
[RJ P © | defines the initial equilibrium of the

vapor bubble.
Introducing dimensionless parameters 7 , T such that

-8 = tfE. e j-k
7

15



One has:
R ——-R.’(

k=%(R}=%(&7} = %(&7)5—;—
.

Ro — E = §P

[ & Vep ef |

ﬁ_:_ SP_fj_dt

— =

SP_;
ef dr df 90)?,7 )

Substituting K, R & R into (25) gives
R, " ’ 41
7 ejﬁ’ Ej’ 7 s P

With help of initial condition, T = §P , the above equation
(-]

is reduced to

. _ﬂ.z:— __l_ (
77-}-27 / 7 26)

Multiplying (26) by 727 and integrating from 7 to 7
yields ‘

or



3

% 7.: -

i34

Where 7( is dimensionless velocity of bubble wall for

3
%+
3

wln

(27

~ [Win

. 3.2 2 ,3 2 c
Lettin = h =N+ where is a
g c 71 7, 3 7‘ 7,'

constant taking on various values depending upon the value

chosen for 7 % 7 ,(27) can be simplified to
¢ i
L d ’ .

— ] ‘
751\/%—?4-? (28)

Figure 3 shows a plot of (28) for various values of €

raag"”‘i

o4

L o
Lo lz /16 20 7

Saddle

-a¢ poin+t

_¢'

-2

Fig. 3 Normalized Velocity and Displacement Diagram of
Bubble Wall

17



The significance of the graph is as follows, the choice of a
point ( '7 ,iz ) on the graph as an initial value determines the

value of € and hence prescribes the subsequent behavior of
the bubble radius as governed by equation (28).

. [
Thus for 7& < | with 7‘ =0 ,Or (< 3 it means the

bubble will collapse.
For '7 > | with 71 =0 ,or < é" , 1t means that the
‘

bubble will grow.
The point 7.,:: l, 72 =0 ig a saddle point, since a bubble in

this state remains in equilibrium or loosely speaking, it takes

an infinite time for the bubble to increase or decrease in size.
However, the equilibrium is dynamically unstable. In the actual
physical case, such an equilibrium would soon be upset by a slight
change in termperature. Taking the positive root of equation (28),
separating the variable and inte grating, one obtains

With the change in variable X =

integral becomes
!
7'.

D R —
T- T, =

A
# 715 WALy (29)

The integral in (29) is an elliptic integral except when
=
¢ = 3 and ©O

18



Decomposing the integrand of (30) into partial fraction yields

where

,4-‘—; B=—'""'

- _: =F ,_)_Ed7+(-y 7 /"'()%747})\[;_%]

]
3 - Pz

)]
n

=7 [(-—)1 NG ERRE Ml o 2

where

5= [LF 4y =27 o5 -3

_ JI+2' — F
= 2(7+z/+2. In ,7+z v
“’7

]E“ 7f77‘"“ 7

v | G
- -G B g
T j71 7

Put 7 7,!-2.:-;{4-3 7 Jj__'
+3 -
Ty <o S

19



7z - F

t3= JFT*r[”J???ﬂ”
j——l—— = 2 7+2

[T
coT-T -f [(“4-/(2./734-20177;2—51?‘)

+(—-,-/(-—Z7-— E i s)

4(:})(2./7'7-}’ +j'§"[h %*F

-4-('7'5-) z,/?—??]’lj

$I-

7
Y+2 J'" J9+z’ -2 L In 192’ -5 -5 ]
—F[ -2 %‘f}_f; ,/'7_-.«?-/-/—1 T}.

T %?*“—Zif'q;*é ~
4 32 Eln %f?i—‘_"*ﬁj(?*"')]
* 7J-—-+ +F(7+-L)

) [ 2 2T+ 2a0s) ]
- [7—' j%:‘?ﬁ(pf)l

7

(31)

20



For another extreme case d=o

o E iy iz + 2L -3+
T/ 2["7 37 ]i 7].4’2 ,-"i"*”}' (32)

Growth of Bubble Controlled by Heat Transfer

Initially the growth of vapor nucleus depends very strongly on
the surface tension and inertia of surrounding fluid. But in one
component system, the growth very quickly becomes limited
by rate of heat transfer at which latent heat of vaporation can be
supplied at the bubble surface, then the growth rate is governed
by equations (13), (16) and (18).
Introducing the dimensionless temperature 3 , such that

% = T- Te

[- ]
If no heat source exists in the fluid field, then equation (13) is

transformed to

%_?-= k (% e ;;’%f— - Erﬁsz% %Tx:— (33)
Equation (16) become-s | -

x (r,o) = ¥(c0,t) =o (34)

¥ (R.t) = -2 (35)

21



Equation (18) leads to

-%- [ CR,-t)] = 7R (Z+ EE) (36)
where

P _ 73«_;:»

w = |—-E

3= e

s - St

which are all dimensionless quantities,

Similitude Analysis: A set of similarity solution can be found

by the dimensional reasoning.

For two sets of physical models, one is denoted with Telta, the
other is denoted without Telta,
Let A be the time scale factor, B be the length scale factor be-

tween these two models. For same temperature scale, one has

o F |
- %) e

Since bubble radius R is a function of 4 only, so one cantry

an exponential relation of the bubble radius scale as follows

X A/
R = A R (38)

Substituting equation (37) and (38) into (33) yieldsz‘ ' .

2% 1 4(dE L2 3%) AT KRR
A F B WwE T or B r* 9t ar

N 1))

22



A similarity solution exists, if and only if (33a) and (39) are
identical in form. This requires the following relations be-

tween the scale factors namely,

3«
oA
A B* B3
. 4
. B = A7
30(~|
or —2— = ——ﬁ—, 3xX = —z— .

1
With X =7 , a single parameter S~

will be sufficient to describe the phenomena.

From the dimensional reasoning, if § isa dimensionless

parameter, then (42) and (41) are reduced to

G _r
= /AT

R—2pRT , R—pJt

X(rnt) = *(S)

Where P is a proportional constant

L o 2% 3 _ X =z 1 _
2s ot 25 =zJke T

X __ % s _ 2% L L _

r S o 25 24t [T

v ] o 2%

T ST T T 75*

(40)

(43)

(44)

(45)



Substituting these derivatives into (38) yields

j_g_ = 2 %%S_(_S_S~I+8F3s-z)

Separating variable leads to
2
PEd R
39’ -) -2
= - - -+ E
S 2(-s-s F s”)
2S
Integrating gives
2% ( sz 3 - ’
L5 -4 e )
2 2 3 - ’
or [n(%5)= -5 -22-"5 s+¢C
2% _ C s—z ejsa—zipss-’
25
Integrating again and using the boundary condition (34) at
infinity € (c0,+) = o , gives
S 2 ~d-2eg
¥ =C j x e F* dx
©9
[~ -4 2 3 )
-5 -X-2EB X
or ¥ =-C j x* e F dx
s (47)

By using the boundary condition (36) at bubble surface and
noticing P = [S] , one obtains from (36)
r=R

42 k(4 +wez) = C’/B*‘(é"z‘*ff’l) £

24



L '
From (44) R = 2 J{'-é Yy , above equation becomes
2t

#72p (BT (L) (Z+wen)=Cp 2 P z‘ff,s“
e 2 Fs ep’Une)(g rwBE)
Then (44) is reduced to
= -(F+weE) Zﬁse’zaui) :“ e'x£2£ B{'ala: (48)
)

The growth constant F can be found for a prescribed tempera-
ture at the bubble wall which is also the same temperature in the
bubble. From {48) [36] o= —F , itfollows

oo
..x zs/ez

T s praep [ S Ty
3'*6051 +(EF) 2P <

S (<))

The bubble growth constant B canbe solved from (49) by succes-
sive approximation or a plot of the equation as shown in Fig. 5 may
be used. Fig. 6 displays P fora typical case, bubble growth in

superheated water at various pressure.

The values of P and R for two extreme cases can be determined
in the following way.

For P very small which is the case of small superheat ,
~0 or o< F << |

Bi(i1+2 s)
e

@ —I-ZE x
j < e F d= ~j
B



putting U= e | du= —-2x€ d=

integrating by parts gives
=* —-x*
Lim zzé dx = [ - j——z—’:- Cax) e dx
p—e s
oo
-x* / ]
= edx='—'-ﬁf_'—°7cf’\4"
P P P
substituting this into (49) gives

R T

(50) becomes

= _ [ aT K
F \/:’(j-l-‘ozy J > _;;q-(—é:" —%&AT) (50)
7 [2aT Pc ot ’
= 2 =
R F Kt fﬁ [L-;-(c—cv)AT:) (51)
where
AT = Too ~ Tsat
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Fig. 5 Bubble Growth Constant to the Superheat

|
Bubble radius

R =2p/kt’

S
T

/ o.'
Jo * 15

Too~Tsa¢
Fig. 6 Bubble Growth in Water
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For ’3 ~ very large which is the case of high superheat,

and P >>ﬁ

changing the variable X by using

xX = ___@7
I-
dx = _B_ d7 } (52)

(49) becomes

3, -
3 B U+28) 1-22 e "7 V-2 (_)Bz)
Jepr=z2pe -(J’}J, 4y
’-—
_ o (Flo-grtaey-]
P J e 4
) (53)

or

T eEp "“Pj: 4 f(y“j (54)

where
-3
Fiy==[0- 5225 ]
For large value of P , the principal contribution to the integral

is in the neighborhood of X=%, = /5 or 7=7. =0 , hence the

saddle point method can be used to determine the asymptotic form

offfﬁ,F) as F._o-oo.
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One has from Ref. 8 the Watson's lemma
L. 2 pzf(y’)
" gep o L | B T

)sz""ja’lé (55)
' ~ —PET as B~ o0
Plep) ETH] 4; FF , s p =6

Substituting (56) into (49) yields

3 +w&£ /— F (57)

o

jB A/F. AT
ar fo [ L _ €-C , (58)
5 [': “T]

c

R ~/ ZFR — '/Z:%- a7 pe[fE (59)

£ [ L+c-c)aT]

From equation (44)
. AT
R=F ﬁ;: '_'fn% 7 [}E (60)
E[Lr ar]

Generally [, >> (€-¢,)aT , (59) and (60) can be reduced to

[iz" Achfﬁ
~ 7 T AL
o ATPC [k
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If ig al (near critical point) w=1, E=o0

(48) reduces to

-f ._s:

?E-=—(j+&yzﬁ3epfm.e7tcs—s e (62)

when Fr=R, S =j3} (49) reduces to

Pz = pop=af[pdepp]l

Time increasin

o om——— ¢ S——

At t=1

Fig. 7 Temperature in Fluid Field
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Fig. 8 Bubble Radius Time Plot

4, Conclusion
Bubble growth is controlled by momentum equation for small bubble

radius, and is then controlled by heat transfer equation, when

bubble radius is large.
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CHAPTER II

DYNAMICS ON THE NATURAL POOL CONVECTION

Introduction

Natural pool convection arises in various ways, for instance,
when a heated object is placed in a fluid, otherwise at rest, the
density of which varies with temperature. Heat is transferred
from the surface of the object to the fluid layers in its neighborhood.
The density decrease which in a normal fluid is connected with a
temperature increase,causes these layers to rise and create the
natural convection which now transports heat away from the object.
Physically such a flow is described stating that it is caused by body
force, the gravity. -

The natural pool convection plays an important role in the heat
transfer apparatus. This complicated mechanism linked together
with phase change (vaporization) in nucleate boiling makes the theo-
retical approach almost impossible. In order to have a more clear
insight of this combined process, one needs to understand each in-
dividual process at first. This is the aim of this study.

1. Assumptions

a. Fluid properties ?,c,,fﬁ; the kinematic viscosity, specific

heat, thermal diffusivity are assumed to be constant. -

b.. Density change is neglected except in the natural convection

term of momentum equation.
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2.

Formulation of the Problem

Continuity equation is

)} + w )
pt

D oy
e 'f( ax 27 23
. (1)

Momentum equations are

f-%(tg v, w)=f(X,Y, Z)—(-;’;,%,%)-rr-rpfvz(u, VW)
X== o

Y..—:. [+

Z=7J @

Energy equation is

2 L] <
Dr . PIT 2T 27T 9T
Jeot = Bt +k{9x‘+’7'+?5’)+/u§ ®

where
7 - 2 [ 3+ 5]
o 2 o4 . w )z

+ (:Z"' :uy)z'*'(:;"' a;)"'va; 2%

2 ay or 2w 2
"3(91: t 7 *a;)
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State equation is

f=F (1-«8) (4)

Where f is the density of fluid at the temperature T, ,

ol denotes the bulk coefficient of expression of fluid.
The density change is very small. One can discard its varia-
tion except in the convection term in (2) which is the driving

force of natural convection. By this statement (1) reduces to

w_ W
2L 4 * =0 (5)

29X ?7 33,
The pressure term is

m =P +P

(6)

where P, is pressure term at steady state without convection
which is a function of 3 only.

i.e.

'BP

=L [- «(@-T;)]

where

@=7T + pj

which is a negative quantity in this case.

5 ”“7f<'"“ﬁé> (7)

1 Free. boundar7

l |
AT ey S R ~— & Rf7id bauna/or7

X Te >
Fig. 1 Boundary Condition of Naturai Pool Convection
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If a termperature perturbation is imposed on the system by an

amount § atpoint (%, ¥4, F ), such that f= ﬂ*ﬁ;
The density of fluid at that point will change to

F= £ 1= x+pg)] (8)

The corresponding change of pressure due to temperature
perturbation ¥ willbe P . One can call P the perturba-
tion of pressure.

Substituting T = B +P into (2), and making use of (7) and (8)
yields '

f_bE;-_ (u. v, w) -_-_.-j:[l—o((PZ-l-Q)](O.O, 7)-—(3 2 9)1’

X4 a]
-7]1(:-«}35) (o. 0. 1) + 7’)°V (U v w)

Now changing all f to f and simplifying lead to
[-]

FHpluvw=xhfjloe)= (2 7,,;)P+1y°v(uvw) ©)

If the heat dissipation term and flow work term are discarded,
the energy equation is then linearized to

pT T, 3
——D—F—.:k,(-%lx:;*'?;; ; ) (10)

where f = £ =  thermal diffusivity of fluid

Writing
T= @ ( IA_) -+ % (X
where @ is non-convective steady state temperature distribution,
N is the unsteady state temperature distribution due to a small

perturbation of convection.
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For this case

@="T+p; (11)

Since one is dealing with a small perturbation, the nonlinear
terms must be small quantities of higher order, so equations
(9) and (10) can be linearized to

fRlyw) =-(F. ,7 ,j)F+(oo f]o«x)q-zzfvlu v, w)

Regrouping the simplified equations into vector forms leacs to

(af -IV) U -—‘--}f- P -x% 7 (12)
-kvz)%‘—'-“H'V@:‘f“’ (13)
where
u (u, v. w)

UX(z) gives

I = — s
T(ny)—:bA(vxg)—- «[v*xz] “F vx({vp)
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Making use of the identities of

vx(UxV)= V- -vww-Uuvv+uww-Vivuy)

vx(VxU)=v(v-U) -vz_q =-al (57 Con-/-:'w'-{-?)
vVXvyp =o

The above equation is reduced to

%(VXQJ"’I/A(VKQ)=—=<[v§xzj (14)

and U X(14) leads to

-2 (Ag)+;zA(Ag>=—-°<{—g a +17-7) vit]

Or(—% -ya)al =« {—l AR +(_Z-V) vh} ' (15)

2
(—:5{ "J/A) A(l3); making use of (12) and (16) lead to

(5 ’)’A/)A(% —ka) % = —«f—}_A%-HZ'V)V%}'V@

-u-[(55-r2)2] VO
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Since

@:‘r‘.-}P}) V@=‘—(°;°,F), _Z::-_(o,ol—.?),
. = - -2,’ . = -?- . =0
2v=-73F 0 v vO= fauk; 270

Then the above equation is reduced to

(_;-a-t- —,PA)A(-%-—&_A)*::_,(F;'(A”— 2 %)

711
J
Defining
. 22, 2 2" 2
A= — —_— ==
BI’ / 2 =V
2
A = —, __._- = 2
2 ox? 7
One has

2 - )
[(at ?A)(s?-kd)zs-i—o(/p.f_’\z]%:o (16)
;— component of (15) is

(3?1: ~p4)4w=«;A&¢< ~oan

Similarly, operating ( —-?-_ -£ A ) onto (17) and making use of
(13) and (15) yield

(Z-ra (% paya+=pral e

I

o
(18)
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X -Component of (12) is

°
(3 —7a) U=~ 3-4' %% (19)

(20)

2 (19)+ == (20) with help of -—-—-—- = (3“ -+ —3—2-) leads to

x 7

1‘) =‘-'AP (21)

(Za) gives

7 = (19) —
-Va) ( - ;) (22)
Writing |

2¢ _ 2%
uUu=- 23=x 2 I

v= - 33t )

Where 4’ is unrestricted and substituting into (22) gives

(23)

Ci
e gt A e
(?i‘ v )AZSU = 0 (24)
Continuity condition requires

?w——(?u w)-——‘-Az‘# (25)

7 z
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(24) and (25) in combination of poundary conditions serve to
determine § and f . Then U , Y can be determined by
(23).

Since convection cells which are bounded by a vertical cylinder

and by two horizontal surfaces are concerned, an obvious first

step to the solution (16) and (18) is the separation of variables
xX,49.3., + Dby assuming

at
% =< Z(p )‘(x]}/
nt
w= € W(;)f(x,;) (26)

For undecayed oscillatory motion, X must be imaginary.

The top and the bottom surface of the fluid are assumed to be
planes and horizontal, so that its depth has a constant value

A and to take as the other boundary a vertical cylinder having
any shape of horizontal cross section. This cylindrical surface,

or "cell wall" may either be a material boundary in the case of

- very large, or it may be a surface of symmetry between

]
adjacent cells of a 'convection pattern' in the case of = Vvery
!
small. In both instances, one may impose the condition that no

heat is transmitted through the cell wall, either because its mate-
rial is thermally non-conducting or in consequence of the predicated

symmetry.

Therefore from the membrane analogy, one imposes the conditions

o, w+ a‘w =o

A a%=° (27

2

or h szj:.;-a"f:r-o



Inwhich @ isa characteristic number.

Making use of (27) leads to

A*"'(-a;z*Az)*—{ajz hZ)* (28)
In operation form, (28) becomes
_ 2 a*
A= —55'2"' —'};'; (29)

From (26), one writes

yo) %= [ - ﬂ——~-)]s\q

(—? - 7
In operation form
(2 -yv) =" % (5 Z —=
at J" ]77- (30)

With help of (29) and (30), (16) becomes
(2 -8 > _a
{[_Q_ 15| LR -3 (5
— & 2_ —
/F W }
From (26) it leads to

-6 )55 530

Q

ARl )y
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where D = 4
é CE2
Boundary Conditions

At every boundary, physical conditions are imposed both on the
temperature ¥ and fluid velocity (4 , ¥V , W ), but every
condition can be expressed in terms of either 8§ or(u , 7
w ),since ¥ and W are related by both equations (12) and
(16).

h

a. — is very large, its boundary is a non-conducting rigid
1 .
surface on which the fluid can not slip.

3

a

: = 28 _
o (u, v, w) =0, 5 =2¢° (32)

Where 1‘; is the outward normal to the cylindrical
boundary.

2>

O
ST

cell in beep Pool cell in Shallow Poal

Fig. 2 Convection Cells
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h

b. —— is very small, its boundary is the wall of the convection
!

cell which is assumed to be the surface of symmetry.

W oK% _
S =©° & —'a_r;_—-o (33)

c. On bottom surface:
At ; =o , rigid surface, no slip, constant temperature
U= Y= W=o0 * = O

from U, + 2 1 oUW _ _—

. %3“’— o
w—:%u}‘—_—: %::—O - : (34)

d. On top surface:

Free surface, no shear stress, constant temperature ,

_2.‘:1—;_2.9—-:_—0) %:—-—o

b

From
U 20 oW
— am— PR

LU= Biu=o g/ R =0 (35)



From equation (17) with help of equation (27) and boundary
condition ¢ =0, one has

(2 . = =092 ¥ =
G -ve)aw =cgak=-2j s R=o (36

on free or rigid face ,
Algo from (13) and § =w =o , one writes

2 _ - _ 2% _
(3¢ ~R2) K = pur=e. & St =°

A% = O
Making use of (27) with help of above relation leads to

e . a*
A(Ag%):—-“—'d(—;;”)‘—"‘——-;zé% =0 (37)
Operating A onto (17) with help of (37) yields
2 _ g 2

A j(at va) AW} .-(52 ~ya)aw

= 4«;4}_% = X/AAZ%;—-_O

. )
L (fa‘i': -Vas) 2w = o on both free and rigid surfaces(38)

For free surface



With the help of definitions of 4 and ( 2 _ v a)

ot

and boundary conditions (36) becomes
[(_0. -2) (- a2 +a’)] (- a )

h’ J 3 hz

4 z
= .—Q— a—' -e:. - _E.. - _Q__. 2 4. 3
(- % )w-2( Gz rg)w=e
) D;'W‘:-o

6
Similarly from (38) Dj w- =0 etc.

‘
w- =o' = pltw-=Dw=...... =0 (39)

For rigid surface, (34) and (36) give

= = (2 — —
w""b}w_(?i' 28)aw =o0 : {40)

For steady state solution

a -— C—
>t = =0

(31) is reduced to

2 2 3 _ « g._:'
R A )
» @y, = XBlL &

Normalizing (41) by introducing dimensionless variable k]
such that
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AV
fi
Sl
(T
i
-lw
\
-~
|\
n
e

yields

ey (o-a®y - prh*a’jw =o \

(42)
[/1_4/ (pxa®) —JB)’/{'Q"J $=o0 J
(24) reduces to v* V; Y = (43)
(40) reduces to W =DW = (b*- Qz)z“r = = (44)
(42) becomes [(p'_ a)yr N a‘J W =o (45)
where )‘3 B Yh* _ Ra
hva*  a* 1

Ra.-_-_.- :%—y-ﬁ-i == Ra7/817h /Vumber I (46)

The immediate problem is to correlate A with a and
thereby to find the lowest value of the characteristic number
of the Rayleigh number Fa= - Br4A”_ tor which

'Y

steady slow motion can occur.
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Defining the characteristic number

R B __BUE I 2R
a % 7 4 P (47)

where A and - /5 are positive numbers.

4. FExact Solution of the Simplified Equations

a. Determination of W in Equation (26)

Writing 'W — W; + -W;

where W, » W, are the even and the odd solutions of
equation (45), and can be written in the form

We

|

A, Cosh g+ Ascosh 3.5 + Ay Cosh ] 2
3
=, A; Cosh bt Z (48)

t=)

w: = BI 5',',,47'5 -+ B, 3,'nh;’5-+ % S,‘nb/sg
= = B, Sink /i3 | (49)

§=/
where Z are the roots of the equation
!

(72—-4‘)3= —/\3626

o } 50

2 4
]-—a = )\q’iﬁ'_—.—/\a’(co, w, W)

/ . / .
where @, w, ,w, = / , F(-1+i/F), 5 (-1-i3)
are the three cube roots of unity, so that

E
wz = 603 . aJ3 = G()z

: 2z
ca (A-0)*

Z‘r- a (4-<8B) }

;:—. Q (A‘fl:B)
3 48

%‘Q
il

(51)



where

L
2A = (142 +N)%T + (z+-z'-)\)} 52)

2 4
2B = (1+A+XND% — (1+Z N)
take AI =1 e Bl = —{/
Since solution must be real, i.e., the imaginary parts in

(48) and (49) must vanish., Therefore one has

A, C"S/P;zg = A Casé[ag.

8, S‘mhi;g = B S‘inlrzsg

From (51) —_
7‘ - ?3

Az-'-"—- A3 Bz. = 53

where ( ) denotes conjugate of ( ).

Therefore, definition of conjugate quantities gives.

L (c,-¢c) -}
B = £(s+is5) By=z(5-¢8) (53)

3

A, = £ (c,+4icy) Ay = +

Solutions of (48) and (49) can be therefore written as

W = Cos [a \-173]+ €, Cosh(ad3) cos(aBZ)
+ ¢, Sinh (a4j) Sin(a 5}) (54)

d
W.= sin[a(A-D7F] +5, Sinh(@A3) cos@@Bg)

+s5, CoshlahZ) Sin(aB3F) (55)

For the case of boundary condition in this problem, one
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surface is free and the other constrained .

Choosing the odd solution in the form of
W, = B sink (-3)+ B Sinh J,(1-3) +§ Sinh i (1-3)

Boundary conditions at free surface % =| are from (39)

2 4
W= BW=Dw=—=----- =0 (56)

which are automatically satisfied by the function itself .

Boundary condition at rigid surface F=o are from (44)

W= DW= 2 2% =
w=I(b-a)w=o (57)

Substituting W =W, J=-e in(57) yields
B, Sin /13?, +B, S/n/)72+ B, S‘;n/yia =0
1_'1',31 Cos/tfl + ]z 8, Cosﬁfz_ +75 B, ca.d;]3 =0
(Z,z.qz)zgl S‘,‘;,éil +(;z’-a,‘)33‘ Sin/)i‘ + (};‘- 42)233 S‘"n/lzj =0

5,) B, 5 B 3 will vanish identically unless the

determinant of above simultaneous equations vanishes.

Sinh 7 Sink ]3 Sink [5

(58)

I
0

fi c,sb;, i? Cosh 72 173 Cosh

W sink ﬁ 3 *Sink f; co; Sink 5‘3
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Since 2 2
3
(92=a’)= (Aaw)

7.:- )= dw)
‘L‘—«‘f = (A dw)

-] +4 —) —4i3
wI/ CD,) U.)3 == / P I+;B-' , ;F
Dividing through by s;-n/;i, Sinh 7 Sink 73 and putting
= 2 _ —I—4F 2 4T
w* =y, @) =TT T T
yield
/ / / / / /
7,&:7‘67, Z‘ co/l7, 7, coﬁis = Z,Coﬂiil cho«f»;, Z’Co#ri_, =o
) -1 & -1+i3 o —3-iF -3+E
—= Tz = 2
or

] ] 1
7, &#7, 7 Co"ﬁjz A “’""]g =0
o J3+4 B -4
2 g.cothg,+E =i ] othp, ~lE1) [ ath fy = ©

(59)

which is the eigen-value equation of @ and A

Determination of the Parameter @ and f(x4)={(8in (26)
7 7

For a rigid cylindrical boundary. When the testing vessel is
relatively small in diameter compared with the depth of Water,
the boundary of the convection cell is the solid wall of the
testing vessel. For a special case, when the testing vessel

is a circular cylinder of radius F; from (27

hia,w+a*w =0

or thzf- + a’]C =0
51
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In polar coordinate

(60) becom

B2+

Putting w-= -W-f.

es

r o

2
L2 4L l,)w—f-a.zw— =0

I‘”f

one obtains

b

/12(—31 +La2 4+ L __il)]'. + a]c =0

i

2 r 3,

Putting ]C = % R into (61) yields

h*(

K 4
R

R o+ = .qi—)-rcz‘:_o

Separating the variables leads to

By periodicity property

= c.os(n? + ol, )

. . 2
FFR+rRrR + (i;—, F'-n')R =0

R = AJ(2r)+BY(&r)
Since W or f must be finite at r=o

or

B=o

]C(r/ ?)-_—.
fro =

A Cos(hj +a,) Z, (_E.r)

A cosno+2,) J, (%-—:y
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Boundary condition at solid side wass r=r ,is W=oe
or 75= ° which leads from (64) to

J”(f;:");) = 0

(65)
Free Swrfaca o
cnstani’ fempetature-
h
znsviated
Solid wal]
Solid svrface
Constan+t femlpa.ra—i'ure
Fig. 3 Boundary Condition of Convection Cell
Another boundary condition at F=/, . is % =0,
or 2,75 — o which leads from (64) to
an
Q
}dl’»‘z") ] =0
d (66)
rdper
< Q n Q
or ]n+ (—r) = — _7(-—-[’) =0 (67)
b " h r Tk '

which is consistent with 65)
The eigen-value %— can be determined by (65), then @

is determined.
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When the cylindrical boundary is a surface of symmetry
of the convection cell. This case is valid for vessel
diameter much greater than the depth of fluid.

Boundary condition is jw =0 or _if_. =0 /ﬁ is
n dn
unit normal to the cylindrical cell boundary. For steady

state case, the convection cells are in regular hexagons
of side length [

Y
oT
=3 } 63

' —
-y +l=o - Frey-l=e
x+§[=o —_— /7\-—' I—€l=0

d= 1
==X f=0

F’:x _-7 —[:O

Fig. 4 Boundary of a Hexagonal Convection Cell

For a regular hexagon having sides defined by the straight
lines

(% + fzi-'[) (J-,éf’?(—l-]:tf) (f::"' z—7:&1)=-.o (68)
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Christopherson found the golution as

f=3f {cos [ ZW(J;X,L7)]+ c,s[.z_"_.( 5 x 7)]+m(__17)

or
_ 2nrh 3 ) 2nnwr o it s,
= 3]€ i(os[-;T(E'Cosa+Sm0)J+Cas [—37—(15'(0:0 S.nb)]*cos(ﬂ 540)}
= f(r,a) ,
(69)
where

Fcosp = =< 3 rsint =7

Substituting ]C from (69) into the governing equation (60)

Yzf + T)JL = O, one can see easily that if

( ) = (4""' or _2,:1— = __4_?'71 (70)

then (69) will satisfy governing equation (60).
Furthermore if (69) satisfies the boundary condition % =o0,

along the boundary lines defined in (68), then f must be

a solution.

By inspection of (69), one has 7‘: (rg)= f{r -p) , there-
fore 7‘— is symmetrical with respect to the X -axis, p=o

In the same manner, one has

£(r, 6+3
= é.jCo {cosEzn"r[J;Casla-f-g:)—)- Sin (9'4'%")]]

+ Cosﬁz’mr[ 3 cos {0+—— ) — Sm{&-#’)]]
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+ Cos {_4_;"'_;_” Sin(f S’T—)”
= 3 f )’cos i_z_f Sing )+ Cos [23;"’(!3058-9""8)]
+ cos [ 2T cost+ smej]}
Ff(r, 87

Similarly -f(r, g) = f(r/ o+

Therefore f(r, §) is symmetrical with respect to axes

= T 27
g=o0 > =3~ . So one needs to show boundary

-3
condition on anyone of six sides of hexagon. For simplicity,

2'11')

one chooses the side of

x=2L L
9
- G0z

_ 2w jgm[ {ﬁ'x+7 ] + S:n{ (j"'x—-?)]} = O

3\/—" —EI
X2

Therefore satisfies boundary condition which has proved
that Christopherson's solution is a correct one. With help of
(69), a set of jC = constant lines is plotted in the following

figure.
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Fig. 5 Contour Lines of Vertical Component of
Convection Velocity

Lines Of-
J--.: cons+t.

A photograph of a convection cell is shown as follows.

Determination of U & v

Having obtained the solution of W , one can calculate

W , V in the following manner.
kz

From (27) W =- — & W (71)
Qa 2

From (25) %‘3’ = 2, ¢

Substituting (71) into above equation leads to



Fig., 6 Pattern of Convection Cell According
to a Photograph of

H. Siedentopf from L. Prandtl,
"Stromugslehre'', Vieweg-Verlag,
Brunswick, Germany, 1949
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Integrating yields

z
$=- b2y
a* 3}
where ‘/’ denotes a plane harmonic function of X and 4

such that &, +’ — o . Now at cylindrical boundary, if

(72)

this is a surface of symmetry, the fluid velocity must be in
the direction orthogonal to the unit normal of the boundary,

i.e., ~
_l:l_’ N =0O

The projection of velocity vector in %-4Y plane must
be perpendicular to the unit normal of the boundary ?I.

Making use of (23) with help of above statement yields

U Cos(x,n) +VCosly, n)

" |
-2 ‘%)‘”""'”’*(’ 255k Jeslp =0 oy

Where @ is the unit vector of
segment ds of the cylindrical ,3‘ v
boundary, let 2 be unit vec- :
tor of segment ds of the cylin-

drical boundary of the convection

cell, from geometry

Boundar
ojl-‘ cell

Cos (%, n) = Cos (y, 8)
Cos (y, n) = Cos (y, s)

Fig. 7 Velocity Component
on the Boundary of
Cell.
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Substituting these relations into (73) gives

(_ _’;_i__ ’_3;_}7L) Cas(x,n)'f' (—-% -#-%)Co.s(y,n)

= - [ % Cos(x n)+ %—é Cos [7,n)]-— [—g% Cos(x:s)-l'—a%fos(?,S)J

?2¢ _ 2P¥ —~o

2n 93
° + 2 = O (74)
°oNn 25

Since the motion is steady, from (24), one has
an P =o (1+a)

Both conditions (74) and (74a)will be satisfied if ¢ =
constant and :%% = 0 on the boundary. According (72),
this last condition requires that 7‘,= o0 , so that

2
2 _ 2 (k2 __F 2 (),
an °on a* 93 e* 23 ' 2N
(Since 2% . 5 on the boundary)

an
7
Substituting (72) with + = g and )L’ = constant into (23)

leads to

y__2%_2b__2k __ 2 (Ao 4 aw
=7 o= ?7 2% 2x ' a* 2?3 2{2953{1

Solution of ;Q .

In equation (26) for case of £L= o

¥ = Zg)f(z,7)
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where f( x,7)= f{r’g)

For rigid insulated circular cylinder
Fre)= J, 1) Cos(nO+%,)

where -E—- is determined by (65),

For hexagonal convection cell, (69) is still valid.
From (41) and (45), the governing equation of Z is

[(D"—- a*)’+ A2 a6] Z=o0

The solution will be similar to (48) and (49)

Z=2_+Z
e o

e

i=|
Boundary conditions are from (34) ,
For rigid wall 3 =0, =0, w=Dw-=

From (13) with help of W =0, —= = =0, onehas

at —

A¥ =o0 or (P°-a*)zZ =o

Z = = Awsh2 3 Z == 8 sinh

i=1

From (13) a® = —/EL- w , differentiating with respect to 2,

and using boundary condition 24

=0

? _ 2 _
53(4\;@.._%_3;(” =o
or (p*~a*) PZ = 0O

So one has

Z =0
(b>-a*)Z =o at Z=o0
(p*a*) bz =0 J
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For free wall, the boundary conditions are
¥ =0 . W= b w=20
which lead to

7 = (ptal)z =(p-a)p'z =0

77
at %=1 @
where D = 4 Z = F
7 b
Choosing the odd function in the form of
Z == B Sinh9 (1-2)
= . Sin R G
° =1 ! .?' (78)

leads to an automatical satisfaction of the boundary condition
(1) at F =1

On the bottom plane :_?‘j = o, substituting boundary conditions
(76) yields

B, Sinéj + B, S;»A],_ + B S:'n/lﬂ?3 =0
B, (Z‘.‘_ a’) 9,'»17; + B, (]; “a") Sinh AL 7, &) sinhg =0
B, (7%a2 Cosh 7, B 1. (] a) Gk, + B ], (;;—a’) Cosh f=°

3 5

Free Boundary -

0/////////-7 o Z
R:71‘d Salmq'or7

Fig. 8 Temperature Perturbation in Pool Convection
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Bl’ B2, B3 will vanish unless the determinant of above

Simultaneous equations vanish, i.e.,

Sin/l ;, Sin /'72. Sinh Z’
wl giﬂjlj’ cw, .S’,'ryhzz W,y .")‘iﬂ/)]3 == O
h h
A ( A et N RS T (79)
Since q_2 - a2 = X a2 w; i = (1, 2, 3) which is from (50)
]
After a reduction, (79) becomes
(wl - w:?) (Zawz C”%;z - 73603 Coﬂ]g Y
_..(wb-— ws) (Zw/ Co'/'/iil - Za Wy Co#tis ) = o (80)
where w w W = | -1+ L5 -1-il8  respectively
r T2 T3 > T2 T 2

The Criterion of Stability

Now the problem is reduced to that of finding the least value of

—B yéf'_ 1,3 4 _
[ k’/ l.‘r,-!-— [)\ “ —JCN'*. [RQJ erit.
) (81)

in (45) and (46)
for which, under particular conditions imposed at horizontal sur-
face, non-zero solutions of (45) exist, i.e., steady solutions of

the governing equation (18). The criterion of thermal stability
will be that

—_Bl4*
v =l

1)

K
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Na

When the cylindrical boundary is of specified shape and

rigid, for example, circular cylinder of radius Yl ,
trom (65)  J, (& v,) = 0, one finds with help of Bessel

function table the four lowest roots of equation (65) for
n=0,1, 2, 3

TABLE I

Roots of Jn(—%— rq y=0

n-= 0 1 2 3
First Root 2.404 3.832 5.135 6.379
Second Root 5,520 7.016 8.417 9.760
Third Root 8.654 10.173 11.620 13.017
Fourth Root 11,792 13.323 14.796 16.224

Table 1 with help of (59) will give a series of values of

)\3 a4 against a . A minimum k3 a4 will be the criterion

"Rayleigh number'' of stability which is a function of _l;_
1

When the fluid has specified depth h but indefinite horizon-
tal extension, it becomes the case of hexagonal convection
cell. For a particular value of a, the corresponding value
of X can be found from (59), then the corresponding value

of 13 za.4 can be calculated, from the plot of 7L3 a4 versus a

as shown below.
q;

11—
4 lio§
1106 |~
]iog =

ltoz

lloo ! ) | a
25 2.6 268 2.9 2.8
Fig. 9 <Criterion of Stability of Convection Cell Pattern
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One obtains a criterion of stability

7\3Q4 = [:ﬁzﬁ:}uh‘ = /oo

v k (82)

If 7&3 a4 > 1100 , a convection cell pattern will form due

to a small disturbation.

If AS a4 < 1100 , any disturbance will finally die off.

6. Discussion

a. Several behaviors of convection cell revealed by non-linearity

of temperature function.

The above study is based on the linearized theory which is an
exact method for very small disturbances. Several important
behaviors are lost through the linearization of the governing
equations, such as the shape of convection cell and the direction
of circulation of fluid flow in each individual cell, and so forth.

In the previous study, the convection cell was assumed hexagonal,
one needs to explain theoretically the observed results that:

i, The cells in steady convection approach a hexagonal form.

ii, The occurrence of ascent or descent in the middle of the
cell depends on how the kinematic viscosity varies with
temperature. It is found that due to the variation of
viscosity with temperature, the non-linear terms contain
s second-order term which is destabilizing. This second
order term regulates the development and leads to a final
motion composed of regular hexagons with ascent in the
middle of the cell according as the viscosity decreases
with the temperature, and with descent in the middle of

the cell if the viscosity increases with the temperature.

The experimental results may be summarized briefly as the
following:
i, In order that convection should take place, the negative
temperature gradient P must reach a critical value
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' dependent on the depth and physical properties of the
fluid .
ii, The convection motion tends toward a regular hexa-
gonal pattern.
iii, The size of the cells is fixed by the depth, physical
properties of fluid.
iv, The location and orientation of the cells vary from
experiment to experiment and depend on the initial
disturbance of the fluid.

Followed by the similar analyéis, with an approximation
V=yY+ 9 Cos/’;(/eg-p %)
~ ~N R "
=~ 1/9-*?[605/‘[83—2/( Sln/lt‘F; (83)

where 7 are negative quantities
P

4 = the kinemetical viscosity at j = 0.

A solution of the system of non-linear equation satisfying the
boundary condition is of the form:

M= = 4 W& Cosi%z Cos"lv7 anm?(}
i,}',m e ]

U = z, B”(;t) S'/'m'?:x Cos)T] .Sl'nm’x;
i,}.,m ’/ (84)

U = 2 C,. () Cosizz Sp'n'[ S]'n m’}\’
ij,m ’/"’ / 7 }



Taking only the first two terms yields

Lo d ~o s ~/ ~
W = Ay Cos2lYysSinAj + A, Cos B x Costy Sink 3 (85)

or

~ n ~/
w = (,4°"C082[j + A’” CoSﬁx 60517) 5".";\\/3

°
Steady state condition, —3 = o© with help of Ref. (5) gives

—

Alu = 2 AOZI (86)

Then (85) reduces to

w = An, (Cos gx Cosz\’y-}' 2{' Cos 32-‘7) SI.H‘XJ (87)

According to Christophersen, equation (69), hexagons are
given analytically by

CosE,ZIz Cas,?j—}-% Co.s:.ZJ7

(88)

n ns
Which is the same form of (87) with ) =F,€ , hence
one has proved that when t — ©0 , or —a?'l': =0 > the motion

tends toward a pattern consisting of hexagons.

From condition of instability which is obtained from non-linear
equation by substituting (83) and (85) into governing equation,

one has

Y A4,., <©° (89)

67



i,

ii,

When 2  is positive, A,,, as well as A,,, must

be negative. From (87), the field velocity on the
center line of the cell is

W( x=0, 7: o, 0< < h) = % ,4”, S:’nt)‘\'} (90)

ar .~
since o< ¥ <. ~ 5 Sinx 3 is positive ,
but A m is negative.

Therefore (90) leads to that

W  must be negative,
From (83)

27 ~ LA
=% Jpusinups (91)

Since /A{/,BZ is a small number and ©O 4}}3 < T
therefore S'in/?i/az is positive (/7}' , P are nega-
tive) hence __g_’% must be positive.

When 74 is negative, from (89) Ayl A,,, must

be positive. The velocity of fluid on the center line of

convection cell from (90) must be positive and from (91)

2V _
o%

Summary of result

- 7’/}:" 5;,,/'4}‘ 2 ; must be negative,

2%
For _2¥ <o, 6 W atcenter= upward

oK

For Y >0 w at center = downward }
’ (92)
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7. Heat Transfer

For steady state case heat is transferred from the bottom to the
fluid by conduction, and is carried to the top by convection.

For steady case
T= @+ %
where @ = T, + F 3
M = Z(}) f(xj)
where Z(;} is determined by (78) and (79),
f(x,;: is given by (64) or (69),
Since near the bottom which is heating surface, the fluid velocity
is zero. So the heat transferred through this solid boundary can

be calculated as a pure conduction probelm, the total heat flux
transferred into the fluid is then

d=x a’7 : (93)

From dimensional analysis, looking through equation (45), (46),
and (47), one sees that only Rayleigh number

R, _ Al £*
2 = % ¥ is the characteristic dimensionless group
of heat transfer,
Defining
Q ~
o h(T.-T,) (94)
where

o~

/z is the over-all heat transfer coefficient
A is total area of heat surface
N Normalizing ’;;, by introducing Nusselt number

Nu = —f,% (95)
C
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Where D is a characterizing length of the system, it may be
diameter of heating surface or the depth of fluid.
Correlating Ra against Nu leads to

Nu = F [Ra] (96)

This correlation was first studied experimentally by Cryder and
Finalborgo and was summarized by Fishenden and Saun ders as

follows:

For laminar range
7
/05 < Ra < 210
1
Mu = o.54 R (97)

For turbulent range
7 lo
20 < Ra < 3°/0
[

/Vu = 0.4 Rag (98)

Where

w)
0

side length of square heating plate

gy
J%L diameter of circular heating plate == ,//4

The fluid depth h is assumed very large compared with
the dimension of heating plate.

yz (Tw"Toe) D3
* v

where T;, = wall temperature

7; = fluid temperature at a large distance from the

Ra in (97) and (98) = (99)

wall.
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CHAPTER III

THE MECHANISM OF HEAT TRANSFER

IN NUCLEATE POOL BOILING

Introduction

With a complete understanding of bubble growth and natural
convection theories from Chapters 1 and 2, one can go further to
attack the combined situation of above two individual heat transfer
processes. When the wall temperature exceeds the saturation
temperature of the fluid which is in contact with, a thin layer of
superheated fluid near the wall is formed. If there is a cavity on
the wall, initially filled with inert gas, a bubble will start to grow
from that spot, when the wall superheat becomes sufficiently high.

A further increase in the wall superheat will cause an increase in
the growth rate and bubble generation frequency.

The growth of the bubble will 1ift up the superheated liquid
layer from heating surface. The departure of the bubble will carry
away the thermal layer from an influence circle around the nucleate
site. This repeated process gives rise to the high heat transfer in
nucleate boiling. '

When the bubble frequency exceeds a certain value, the dis-
tance between consecutive bubble is so small that they join together
into an unstable and shakey chain and the idealizations made in the
analytical portions of this study will no lenger be valid for an accurate
prediction of the heat transfer rate. Reference (7) gives the boundary
dividing the isolated bubble region from the columns of bubbles region.
This work, in general, applies only to the region of isolated bubbles.
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1, Bubble Initiation Theory
a. General Description
A bubble is generally initiated from a small gas filled cavity
or crack on a solid surface so long as the surrounding fluid

is heated to a sufficiently high temperature. Both the pre-
existence of the gas phase and the temperature are necessary
but not sufficient. This mechanism has been completely dis-
cussed in Reference (3), in the case of homogeneous tempera-
ture field. An extension of this mechanism to the non-
homogeneous temperature field (which is of primary interest)
will be developed in this section. A similar situation can be
seen in the process of chicken incubation. A chicken can be
incubated from an egg, if and only if, this egg is a fertile one.
The bubble initiation mechanism is similar in that, a gas phase
must already exist along with the right temperature conditions
as shown in Figure 1.

b. Transient Thermal Layer

Since the convection intensity near a solid wall is damped down
dus: to the no slip boundary condition for a solid surface, the -
use of the pure conduction equation is justified in determining
the temperature distribution in this thin layer of fluid near the
heating surface. For this particular problem, a simplified
physical model is shown in Fig. 2.

Initial condition is

T=7-‘-” a-l' X = 0 -1
+ =0 :
T = Teo at x >o J (1)

Boundary condition is
T= Tw at x=2

T= Te a+t z=0°}-t7°

(2)
The solution to this problem is found from Ref. (1) as
x
T-Teo =TT ®fc 2737 (3)
xa
27T __ _ Tw To #ht
ax Tkt € @)



at x-_—_—-o

T . Ta"—rw \
( 29X )x=o \l'ﬂ'k‘t (5)

If the actual temperature distribution near the wall is
assumed to be a straight line distribution, the slope of

this straight line is determined by equation (5). This
assumption has been justified through measurements made
in Reference (6). With this fact, one can introduce the
notion of thickness of transient thermal layer by drawing

a tangent line from x = 0 on the T - T~ Xcurve defined
by (3), the interception of this straight line on X-axis gives
the transient thermal layer thicknecs as shown in Fig. (3).

§ =kt (6)

This means that the temperature distribution at any instant
varies linearly from the wallto x=§ , beyond § , the fluid
does not know whether the wall is hot or cold. The layer
thickness increases with the square root of waiting time.
Criterion of Bubble Growth Initiation

Having the defintion of the transient thermal layef, one can

determine the time required from the beginning of generation
of thermal layer to the beginning of bubble growth, This
period is defined as the waiting period of a bubble, tw‘ The
criterion for initiating bubble growth is from Reference (4)
that the thermal layer surrounding the bubble nucleus must be
at a mean temperature equal to or above the temperature of
the vapor in the bubble in order to give rise to an inward flow
of heat from the superheated thermal layer to the bubble
through the bubble wall. Before bubble growth the bubble is
in the condition of thermo-static equilibrium. The equation
of static equilibrium for the bubble is then
ap = 3

c (7)

With the help of the Clausius - Clapeyron thermodynamic

equilibrium relation, one has

L aThL
Ap — 4Tk _n ATRL ®)
75.'41‘ j'%’";' 7;‘a§
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where AT = T,— Tsat

T,, , are temperature and pressure of the vapor
in the bubble at the initial stage of bubble

growth,
Eliminating 4P from above equations yields
_ 2d Tses
AT = 'T;-Ts“ = _—Rcﬂb
or
_ - _ 2 & Tsad
7; T“—_];ﬂ' Toe"' Fl’g,ﬁb (9)

During the waiting period, the bubble wall can be treated
approximately as an insulated hemi-spherical surface of
radius R (the temperature distribution in the surface
tension layer of the bubble is unknown). Presumably there
is tangential conduction in a thin layer around the bubble so
that the interface temperature is constant. A physical model
of this idealization is shown in Fig. 4.

From potential flow theory and the fluid flow analogy, the
potential line in fluid flow is just equivalent to the isothermal
line in heat conduction, the distance of an isothermal line
passing throughthe top point of a waiting bubble is TR
distant from heating surface when measured on the straight
part of this isothermal line,

Fluid temperature at X = —%—Rc is

3
7 R
T=(hTa) (1- 54 Too = T~ (T Teo % (10)
Equating this temperature to the bubble temperature yields
the criterion of initiation of a bubble growth from a nucleate

site of cavity radius R, as

T 3?:
T s ;a_ ('l;, ~ Teo) Re (11)

29

2 Tw'TSa+(’ - Rcﬁ,b)
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when § is expressed in terms of the waiting period
TRINRE L [ (T~ Tes ) Re ]z
w T m - 29
ko 4 k TW Tg.’(l"' Rgﬁ“)

The Most Favorable Cavity Radius for Initiating Bubble
Growth and the Minimum Waliting Period

(12)

As the waiting time increases, the thermal layer increaes
until to a certain condition such that the temperature line
of luid becomes tangent to the bubble temperature curve.
At this instant, if and only if, there is a dry cavity of
radius RC £ on the heating surface, a bubble will begin to
grow from this spot. This radius corresponding to a
minimum waiting period, is called the most favorable
cavity radius Rc £ Let us now turn our attention to the
solution of equation (11).

Solving for R from (11) yields

ko= SRl [ 2 f_ /zcr.,—m?;..s'J
T ™ (R~ Taes S f L

For any given waiting period, there are two possible cavity

(13)

radii which will nucleate. When these two cavity radii are
equal, it means the two intersecting points coincide, (see
Fig. 5), or the fluid temperature line and bubble tempera-
ture curve are tangent to each other. Observing (13) gives
the condition of equal roots of Rc as

12 CTw =T ) Tsas ©

| - == O
(7o~ Tsa+)’$ fL
Solving for § which is by definition  Smin, yields
S — 12 (TW‘TQ)‘,}#O'
) ﬁ L (7-W—T$a+)2 (14)

Equal root condition in (13) with help of (14) gives

Smin (Tw=Tegs)
— 9
¢ = P @
(—}w) = _;se'_’» - o4 Foy=To0 ) Toot a* (b)
e Th Th L (T~ Tear)®
Upper and Lower Bounds of Radius of Active Nucleate Cavity
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The thermal layer cannot, in general, increase without
limit with the waiting time. It will be washed off by the
natural convection of the fluid as it grows beyond the thick-

ness of natural convection layer S”c . This means
Smax = Smc

(16)
Knowing 5”,“ from the natural convection information,

the maximum and minimum cavity radius for initiating a
bubble growth can be calculated from (13) with help of (16)

Swe T~ Tus) 72T Teo) T304 6
(R min. ™ 3 e Sl 21 <Tw-n.n‘§,¢ﬁ.‘4] (n

Any cavity outside this interval cannot qualify as an active
nucleation site. A diagram is shown in Fig. 5.

A Numerical Example for a Quantitative Illustration

Fluid = degased, distilled water

Tsap = 2120 F = 672° R
T = 202° F

Tw = 2420 F

o =38.3 107 1b. /it.
£ =0.0374 1om/ £t.3

4 =1.82 1078 fi.2/sec.
L =755 103 ft. 1b./ lbm.

The most favorable cavity radius for initiating a bubble growth
is from (I5) a

R, = 20T = 1.2/ -/0—3)‘-}‘-
f ﬁla (Tw-..rs‘oi')
The corresponding thermal layer thickness is from (14)
3 o 2 & Tsor ( Tw = Teo)
min

= 48§)15°
B L (Tow—Teat)? Joie
The minimum waiting period for this bubble is

a
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2. Bubble Growth Theory
a, Assumptions

i, Neglect any convection, not due to bubble itself,
completely.

ii, Neglect the change of mass of fluid due to evaporation
or condensation through the interface of vapor and liquid.

iii, One dimensional case is converted into the three dimen-
sional case by the introduction of a curvature factor.

iv, Neglect the inertia force and the surface tension of the
fluid, '

v, Constant properties of fluid.

i, Spherical bubble surface.

vii, Uniform wall temperature, mainfluid temperature and

fluid pressure.

After a waiting period tw’ the bubble is going to grow.

For the first few moments, the surface tension effects and
the inertia effects of surrounding fluid are so large such

that the growth rate is controlled by momentum equation

but after the radius increases to about twice its initial value,
the surface tension and inertia effects will become negligible,
so that the growth rate is controlled only by the heat transfer.
In this study, only the heat transfer effects will be considered
for the evaluation of bubble growth curve.

b. Formulation and Solution

For simplicity, the one dimensional physical model for heat
transfer mechanism is given in Fig. 6.
Initial condition is

T = T ~(Tw-Ta) %" for o< xX<§

where g m 1 + =0 (18)
T= T for S «ex<co

Boundary condition is
T = Tsaor+ for X =0 } + >o
T= 7o For X =90 (19)

Introducing a new variable
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0 = T-Tset such that

b5, = ©, By = Tw-Toat, Bu= T~ Tor -

then (18) and (19) are transformed to

9-‘='"Tw'1;.f u;n'x:owngus:&x for O<x45} =0
b= To T = = 0, for §<x<38 (21)

&

= o0 or X =0
f 1 t >o
0= lo Tses= bu For X = oo J (22)
The governing equation is then
99 __ 1 30
22~ 4 ot (23)

The problem is now reduced to a semi-infinite conductor,
with a prescribed initial temperature Plxo)= flx) and
surface temperature zero, then the solution of (23) with
conditions (21) and (22) will be, from Reference (1)

_(xX-x ok ”(xm:')3
Skt 4%t ,
9—zrrf7“"’ € }d" e

where

7C(z")

gw_ lx'o“x’ f,,- o< x < §

= é 7¢or §< x'<o0
ze -l") (!fl') 25
B8 ety [T [ s [ 09

at x=o0 (25) becomes

_ T -
(’31 e ‘N’—"fﬁ{‘)—j f(x)(zz)e dx

2 09 2
-x X
—— [j sgwx’) e4ktdx ’+ 0” x’ emdx’
27 'b"-t‘)’ 5
o _ 6.-8 )
= == (8, e [kt r]f =) (26)
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Referring to the bubble growth model as shown in Fig. 8,
the governing equation for bubble growth is

n (4-M'R _d_g_) % ? %(4/1/R )kcf( ) +z(4'ﬂﬁ)ll (TW--’-;M‘)

_ 2P hep(20) , T h(Tu-Tsat)

or d-t- % L 7‘tx_o ﬁﬂb (27)
where @, = curvature factor where | < <5
2
@ = surface factor = 2R (1hcosg) H“"
, ?W’-Kz S (28)
= . TWR®S/» "
% base factor = _Wy‘t- ___;’__
ﬁ = volume factor = _¥ L{amR®) - 3 [2mr f/“"f/]"s ‘7”3 ‘/"f"-’?
_ 2+ts p(2+5/hp) _i-_’_';ﬁf
= ’

contact angle

7

l'e 54

)

coefficient of heat transfer from heating

surface to the steam bubble through its base area,
Substituting (26) into (27) yields

dR _ PP Acp I (3 ab:a,.,fm,,, R A

at 2, ﬁ.b Jmu (?)};‘,
« . . . B . . . - 29

For the case of a bubble growing in an infinite fluid field of
superheat 9“, then z =1, z =1, Z= 0, &=oc0 ,
and (29) becomes

dr __ Rker §, _ 2 Gfc i
at Ll VmRE T f,L ‘/:I (30)

From homogenions solution of bubble growth rate, one has
from Scriven's theory (see Reference (18))

drR _[3 6B.fc [
dt 7 __,%L‘/::

Comparing (30) and (31), one finds the value of curvature

(31)

factor to be

ﬁ =J§-' f"r 7""’ §>>R (32)
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Another extreme case is for 7 = qr, it reduces exactly to
one dimensional case then

Fe =1 (33)
For y =0 , and §<<f, it reduces to Plesset's thin layer
case which gives

?f. = ,C'éE. (34)

Combining these three extreme cases, one can manufacture
a ﬁ such that it satisfies (32), (33), and (34) simultaneously,

i.e.,

fc= [J;'+-%(I~J§”)H(l-:) %E+S +-2-]

R*+S w

(35)

—

where R 1is the time average of bubble radius or

—c— {
= + [ rat (36)
[
Integrating (29), with respect to time t gives

(<) pr
R-R, = 7’,? if]‘ﬁr[p (6,8, Wkt '\%t’-]d++Lf

Al
or
o PP ke[ 20, o Bl 52 sz
ok %J;[FSﬂ( rf s
i - -zerfe eiz)] f——é;’;“'f (37)

Normalizing (37) by introducing dimensionless variables

T = 4kt %& A = R leads to

N, = ?;”c ;{9 [F TejJ——’-f. + 2 ff =
24 C ? W
-2 f Fz—?,)]-l- 4};’2; (38)

A bubble growth plot for T >7;a 3 T = ‘rsa* and
T, < -rh{- in normalized coordinates is shown in Fig. (10).
co
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C.

Experimental Result Compared with the Theory

Fluid = Distilled and degased water
4 = 1.807 1076 f£t.2/ sec.
€ = 1.007 btu/lbm.
# = 3.16 1076 ft.2/sec.
Y = 104 l/f—.
¢ = 38.3 1074 1b. /ft.
£ = 59.97 lbm/ft. 3
fr = 0.0374 1bm/ ft.3
L = 755 103 ft. 1b. /Ibm
P = 1atm

Surface = 16 k gold polished on clothe wheel by No. 8

diamond compound
P = 0.750 radian
Data recorded -
Tw = 229.98° F
T = 205.02° F
L= 212°F
Bubble number 1 =
Camera speed = 1140 frames / sec.
'i'w = 0, 0245 sec.
1, = 0.0166 sec.
R,= 0.397 - 1072 ft,
$ =0.372 * 1073 ft. (from (6))
R =0.01097 - 1073 ft. (from (13))

<

For —?‘5-2- = 1,52
%
t =5:10"° sec. R=3.36- 103 .
10 + 1073 gec. 3.89 - 1079 ft.
15 - 10-3 gec. 4.08 * 1073 ft,
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Bubble number 2 =
Camera speed = 1260  frames/sec
w = 0.0437 sec.
0.0167 sec.
= 0.533 - 1072 ft,
0.498 + 1073 ft. (from (6) )

bR 7

/4

o X ghot
" 1 i |

=1.62

t =5-. 10"3 sec,. R=3.99" 1073 ft,
10 - 1073 sec. 4.93 - 10-3 ft,
15 + 1073 sec. 5.25 « 1073 ft.

Bubble number 3 =
Camera speed = 1380 frame /sec.
4, = 0.0275 sec.
1, = 0.0145 sec.
R,= 0.479 102 £t
§ =0 3950 ft.

For ik =173
P
_ -3 _ . =3
t =5-10 sec, R = 3.928 10 ft.
10 - 10-3 sec. 4.619 - 10-3 ft,
15 - 1073 sec. 4.848 + 1073 ft,

From (37)
with % =0
1%

From (37)
with };’ =0
[/

The corresponding bubble growth curves with a comparison from

theoretical ones are shown in Fig. 11.

The bubble growth history

for these three bubbles are shown in Fig. 12, 13, and 14,

d.

Discussion of the Bubble Growth Theory

In the bubble growth theory, the thermal layer on the bubble
surface is assumed to be picked up by a growth of bubble

immediately at the last moment of waiting period. From the

high speed photographic study described above, one can see

that at the first moments, the bubble growth rate is very high
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and the bubble expands laterally at such a rate that in fact

a very large piece of thermal layer is picked up during the
first few moments. This fact will give a strong support of
the one dimensional appreach. Actually the bubble growth
history is composed of three periods, namely the waiting
period ‘t , the unbinding period ZL,,‘, , and the departure
period P When the wall superheat increases, the waiting
period of bubble at a particular cavity decreases very rapidly.
If the thermal layer thickness calculation is still based on

the waiting period, the error will be V;ery large. This will
make the deviation between the theoretical bubble growth rate
and actual one, very large. From Fig., 15, in which the
dynamic effect and surface tension effects to bubble growth
are shown, the following can be seen: During the waiting
period, the bubble is heated in order to initiate growth from
its cavity. During unbinding period, the bubble is trying to
librate itself from the binding force of surface tension and the
inertia effects of its surrounding fluid. The bubble radius
increases very slowly and the momentum equation governs the
motion of bubble surface. During the departure period, the
effects of surface tension and inertia of fluid become so small
that the heat transfer equation governs the motion of bubble
surface and the thermal layer is picked up by the growing
bubble immediately during the first few moments of this
period. Therefore the thermal layer thickness for very high
wall super heat case where the waiting period is very short
should be calculated by

5=J:77'ﬁ('fw++%5 instead of & =J’7’** .

Observations from those 22 bubbles listed in subsection 2-c
show that the departure period was nearly constant, the
waiting period changed by a factor eight to one. The uneven
heating due to a 500 watt light source for photography purpose
at the rear side of test section caused a pronounced unsymmet-
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rical turbulent convection of fluid which changed the
thermal layer distribution. The temperature fluctuations
associated with the turbulence gave rise to fluctuations in _
the waiting period a/Se.

3. Departure Criterion

a.

Formulation

From the bubble growth equation and the hormalized bubble
growth diagram in Fig. 10, one can see that a bubble can
either depart from its nucleate site, stay there or collapse
there. For the case of Tg > Tse4 , the ubble grows mono-
tonically, the bubble must eventually depart from the heating
surface due to monotonically increasing buoyant force of the
bubble. For the case of T = Tg,4 » it is not clear, one
needs a criterion for judging if or not a bubble will depart
from the heating surface. In case where the bubble departs,
the time to departure is the quantity of interest. This is
the next question to be considered.

In order to study the dynamical departure criterion of a
bubble from a heating surface, a force and motion analysis
is necessary. The assumption of a perfectly spherical
bubble will give no information. For this reason, one needs
to modify the physical model of bubble from a spherical one
to some other shape. In this section, the inertia force effect
of the surrounding fluid is calculated by truncated spherical
bubble model which is of course not exact. After writing
down the governing equations, having chosen the dominating
variables of the quasi-static solution which is cempatible
with the analytical solution in the static case, the assumption
of a spherical bubble for evaluating bubble volume and surface
is resumed.

From potential flow theory, the inertia mass of the surrounding
fluid of a solid sphere departing from a solid plane boundary
is (Reference 2)




By the fact of non~sphericity of the bubble shape and with
support cf experiments, Davidson had corrected this value

_. _I .
My = 76 S U (39)
where 1% is the volume of bubble, F is the density of the

fluid.
MJ is assumed to be uniformly distributed as a very thin

to

mass layer on the surface of the bubble. Considering the
bubble as a thin shell loaded with hydrostatic force and iner-
tia forze, defining /’ as the pressure on the inner face of
surface tension layer of the bubble and ) %3 2 the pressure
on the outer face surface tension layer of the bubble, and with
the conce, . inertia mass layer, one has by momernium
equation trom Fig. 16, )

¥ d
E.= B+ a5 ) o

Sppf .
£ 5= Eoy~fi3:30+5% ".{ gi["s'”f _9._3)@:}]} (41)

by B Rt (“42)

Shell formula of force equilibrium applied at the top point of
the bubble gives

- - o, g = 29
(B Bd=%*% =% (43)
at point ( X, 3 ), it becomes
- - _ o o
(B 3By = = + (44)
Defining the equation of meridian curve of the bubble as
J=3(x,b.t) (45)

where b is a function of time, then
~ / +(§£‘)z Sing = ____d.i.___-
R=—2 ' “T7 [« (46)
Substitutmg (40), (41), and (42) into (43) and (44) and elimi-
nating- P 5 and P s ylelds
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g v'si o -
e (F3-E0) - s A

— g g {5 Bk Lxonp gy 4l o0
Using an approximation

3
= HK, S=ama (s

p )

in which R is determined by (37) and is function of time
substituting (46) into (47), the ditterential equation for the
bubble surface can be found.

The initial conditions are that
at t=eo, b=R., } = R. d“kca—z. (49)
A numerical method similar to the technical of Bashforth

and Adams in Reference 13 is necessary for a complete

solution,
putting X =X, , ;’ = ;. into (47) leads to
2d _ ISin@, _ u Py i) —
b , {ff)]J*dtj/s = [?E(z;g"fz 5.)]}(50)

where ﬁ = angle of contact
Therefore from solution of (47), putting ?’= ﬁ , one has

where %, and b are functions of time
o X=x, (3.5 %) (52)
Then the departure criterion is
=90
X, Ah>e (53)
from which the departure time can be solved by
z, [30, b, t]=o (54)

If (54) has no real positive root t; , it means no departure.
If (54) has a real positive root t; andj’( td)ba , it means
®
that the bubble will depart at t,. This is a complete descrip-

tion of formulation and method for finding out an exact solution.
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Solution

An approximate solution for this problem can be obtained
in the following way.
For case of very small contact angle %<<%r , {50) can
be simplified by assuming a nearly spherical bubble and
x, S ;”ﬁ negligible compared with }. in the last term
of (50).
29 _ Osmg, _ -1 — (P y P 2 ..
b %, R F173. [’ T RL IR (k +RR)] (55)

The law of motion with help of the notion of the inertia mass

layer gives

(sz)lﬂi d'l' /‘ .aip (,l; _P)ﬂrx+2/rrx o’Smj’

With help of (44) and (41), the above equation is reduced to

ff)”;"‘d—f’ 311’(4’7%!) {s"' +d)mz +z/7rx,55,,7a
” 9"””?*‘??(?? e ”’Io (_‘f‘ds;:: ’}«7)

.3 .o
Adding a term = 3/’%; (£°+rR) 1! on both sides of above

equation gives

(f-ﬁ)/bo[l % ‘f- R K+RR)} o (
+#(;}0$}—%(R+RR)60

6 Slm )

For small contact angle ?o , J ~ 2R , ” ~ -‘%Eks,
one has then ¢

gSin
(ff‘,);v’[z ” ‘ff,/‘]/?{ +RR)]—an ( s d)-t- NRPR (4R+RR)
e e e . . . . . (56)

Now dropping out all subscripts 0 in (55) and (56) and
keeping their original definitions yields

1L, Osme 2 _ P-f)33 up
%+ % =7 - [l 43‘fﬁ’ik(R+ R)]1

2 e
ff’)/”[l 489’_;;);3(R+RR)] J
=mx (0_1"'2_,%)4, Z’;"R ‘4kz+R§) (57)
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d
For the static case g =90 , all dot and double dot terms
in (57) drop out, so (57) is reduced to

|, using 2z PRIJ3

R & « } (58)
o S';n9 L )
== b n—- b

The departure criterion for the governing equation (58) was
given in Reference (9) by Fritz. He used the numerical
analysis result of Bashforth and Adams (Reference 13) to
correlate the dimensionless quantity -—E- against the

the contact angle. He concluded that the bubb]e will depart
at maximum volume, so that

mrx*d ;Siag ! — o 2 3
'ﬁ' = -= =0a3/13Q (59)
max [ P52 )/ ( * R )] departvre 5?

where
a. — jZi
* TR | (60)

which is called Laplacian characterizing length of a static

bubble (59) is supported successfully by experimen{s for

P =0 upto @ = 2.4 radians.

Comparing (57) and (58) term by term, one can see that a

quasi-static solution exists, if the static Laplacian length
Qg is replaced by a dynamic length such that

— -—
a, = a5 [1- o — s 1RR)J .

then the quasi-static criterion for dynamic departure will be

1 q
13»“ [oalaajn-r 7;”?(4R+RR) d

29 ]d‘fad-ure
oz A ]
L /_ “f (4R+RR) departure
-..................(62)

~N
where ? is the dynamic contact angle.

This departure criterion is based on an assumption which gives
the right result in the static case and yields an estimate of the
effect of dynamic forces on the departure size of that bubble.
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Crudely one can regard the dynamic forces as altering the
gravity that the bubble sees. Observations from the high
speed photographs of bubbles show that the contact angle
apparently changes with the velocity of the triple interface.
It is experimentally well established that the contact angle
only has its equilibrium value when the system is static.
In our experiments (see Fig. 12, 13 and 14) the change in
the contact angle was obvious as the bubble went from
advancing to receding and also when the rate of growth
changed. The departure size was found to be a function of the
receding dynamic contact angle rather than the mean value
experienced by the bubble which is in contact with the surface.
The most important force change, the contact angle, appears
to be the viscous force. To a first approximation, the change
in contact angle might be linear in the ratio of the viscosity
force and surface tension force. Dividing bubble Weber num-
ber with bubbzle Reynolds number yields a new number,

(LER) EE) = L8 (63)
which is the ratio of viscosity force to the surface tension
force. (See the appendix)
The correlation relating.?/ to f is then

7 = (/+Aﬂ;_—y)9’ (64)

where A is a constant to be determined by experiments.
In Reference (10), Staniszewski had performed 51 experi-
ments using water and alcohol as the fluids at different
system pressure, A\ can be evaluated using these experi-
ments and is

A = 6850 : (65)
Actual measurements of the dynamic contact angle from
Figs. 12, 13 and 14, show that (65) was in good agreement.

Since Staniszewski's experiments were done at relatively low
wall superheat, the dynamical effects other than the contact
angle change are secondary to the gravity effects on departure.
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This, we feel, is the primary cause of apparent dynamic
effect on departure size by Staniszewski. The value of
contact angle reported by Staniszewski are actually aver-
ages for a large number of readings. It is assumed here,
on the basis of our own observations, that the dependence of
the departure size on the bubble growth rate is a result of

a change in contact angle due to dynamic effects rather than
any dynamic effects. In the subsequent subsection, a cal-
culation will be made to show that the dynamic effects in the
liquid are, indeed negligible for the condition under which

our data and that of Staniszewski's were taken.

(62) is only an approximate criterion for the case of cmall
contact angle. The exact one should be found from (53)
which is too complicated to work out for this study as far as
the time is concerned. However with the suggestion re-
ported in subsection 3 - a., and a complete understanding of
Reference 13, ageneral departure criterion might be worked

out with the help of machine computation.

Putting j = 0 in (47), a criterion for zero gravity case can
be obtained.

To show the dynamic contact angle effects on bubble departure,
Stanizewski's data is shown in Fig. 18 in which

Zo :
Ry = o0.42:5 ¢ oy ( 1+ toae R, 1
R, = o4z ? oy j (66)

where R’d is in ft.

? is in radian

R, isinft. /sec.
The Period to Departure and the Bubble Generation Frequency
Putting V¥ =‘-’3Z-'R3andR=Rd, one can solve for Ry from (62).
Having solved for R d’ the corresponding time i d’ the departure

period, can be solved by (37).
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With t q found from (37) and tW found from (12) the bubble
generating frequency is then

/
f= 45t (67)
A bubble generating cycle diagram is shown in Fig. 18.

Discussion
In this analysis, the effect of the disturbance of the surrounding
fluid due to natural convection is completely discarded. Ac-
tually the natural convection of the surrounding fluid, the
irregularity of bubble shape, the surface condition of the wall,
the disturbances arising from a growth and a departure of the
neighboring bubbles, the bubble population density will strongly
influence the departure diameter. Therefore, a deviation of
only + 10% of the departure diameter from the experimental
result is not surprising
Comparison with Experimental Results
Fluid = Distilled and degased water
Surface = No, 8 diamond compound polished gold surface

P = 0.750 radian
Data are exactly the same as that in bubble growth theory.

For bubble number 1 -
*R = 4.009 - 1073 £t from (62) and (48)
Ry =8.974 - 1073 £t. from experiment

For bubble number 2 -

R, = 5.363 ° 10'2 ft. from (62) and (48)

Rd =5,328 * 10 " ft. from experiment
For bubble number 3 -

R, = 4.886 * 1072 ft. from (62) and (48)

Ry = 4.792 ¢ 1073 £t from experiment

* The value R in ? was taken from the slope of experimen-

tal bubble growth curve at t =t q " stead of theoretical Ones,

A plot of measured departure radii against the calculated ones
is shown in Fig, 19. '
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4.

Heat Transfer Correlation

a.

Explanation of Boiling Curve

Boiling curve can be best explained by the theory of "bulk
convection of the transient thermal layer''. Observations
show that when the wall temperature exceeds the saturation
temperature of the fluid, the heat transfer increases very
rapidly with the wall temperature. Many researchers have
tried to explain why this occurs. The following study explains
these observations by means of a so-called theory of bulk
convection of the transient thermallayer, or simply bulk con-
vection theory. When the boiling starts, the bubbles depart
from the heating surface. In departing, the bubbles bring
part of the layer of superheated liquid adjoining the bubble

into the main body of fluid. At the same time, the cold fluid
flows onto the heating surface. The heat transfer rate for the
first few moments after this process is very high due to the
very high temperature gradient near the wall. After a certain
time, a new thermal layer is built-up, and a new bubble starts
to grow. When this bubble grows to a certain size, it departs
from the heating surface and a new thermal layer is brought
to the main body of fluid again. By this kind of repeated trans-
pertation of thermal layer (which is technically called bulk
convection), heat is transferred to the fluid from the wall. The
heat transfer rate by this process is nearly proportional to the
square root of bubble generation frequency. In Fig. 20, one
can see that from A to B, heat transfer rate increases very
rapidly due to the increase in TW - Tsat which increases the
bubble generating frequency, the enthalpy content of the tran-
sient thermal layer and the density of active cavity population.
At B the active cavity population has been increased to a sat-
uration state such that the influence circle of each bubble
touches one another. A further increase of TW - Tsat does
not increase area of production of transient thermal layer, but
the bubble frequency and enthalpy content of thermal layer
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continues to increase. Therefore after B the rate of increase
of § is reduced. B is a point of inflection. From B to C
the bubble frequency increases until to a certain stage such
that unstable and shaky vapor jets are formed. These con-
tinuous vapor columns reduce the effective area of production
of transient thermal layer, such that the curve becomes con-
cave downward. From C to D, the effective area of production
of transient thermal layer decreases more rapidly than in-
crease of the enthalpy content in the thermal layer due to
increase of TW - Tsat’ therefore the curve drops. At point
D, the effective area of production of transient thermal layer
has been reduced to zero, a steady and continuous blanket of
vapor exists between the heating surface and main fluid. The
fluid gets essentially no chance to touch the heating surface,
therefore no transient thermal can be built up on the heating
surface and the heat transfer rate reaches to a minimum
value. Bulk convection process is completely stopped at D.
A further increase of TW - Tsat will increase heat flux again
by radiation and conduction across the gap.

Mechanism of Heat Transfer

The heating surface in pool boiling is divided into two parts,
the bulk convection area and the natural convection area. In
the area of bulk convection, heat is assumed to be transferred
into the fluid by transient conduction process. Following the
departure of a bubble from the heating surface, a plece super-
heated liquid is brought into the main body of the fluid. By
this kind of repeated process heat is transferred from heating
surface to the main body of the fluid. In the area of the natural
convection, heat is supposed to be transferred from heating
surface into the main body of fluid by the usual convection pro-
cess in a continuous manner. A physical model of bulk con-

vection mechanism is shown in Fig. 21.
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At stage 1, a plece of superheated transient thermal layer

is torn off from heating surface by the departing bubble,

and at the same time, the cold fluid from the main body of
the fluid flows onto the heating surface, after a time interval
tw’ this cold liquid layer is heated to a condition such that
the tiny bubble on that cavity is able to grow which is shown
as stage 2. At stage 3, the bubble grows laterally with a
very high rate such that a very large piece of thermal layer
is picked up in a very short time interval. At stage 4, the
bubble is going to depart from the heating surface which will
bring the situation immediately to stage 1 again, This cyclic
process furnishes a way to transfer the heat from the heating
surface to the main body of the fluid.

The system which is used to evaluate the heat transfer per
bubble cycle is as follows.

Formulation

i, Natural Convection Component
A theoretical study of natural pool convection points out
that the natural convection heat transfer can be corre-

lated by using two dimensionless groups namely

~s
The Nusselt Number . _ AD
fek s (68)
The Rayleigh Number o . ¥ 3 (Tw—Too) O
v

For Laminar Range ’
,054 Ko < 2-1/0 .
Nv =— ok4 Ra

For Turbulent Range ‘o

7
B -« .
2:10 <Ka < 310 )
{

(a)

| )

(69)

(b)
My = o./4 Rd

where D= V&~
A = Area of heating surface,
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This correlation was first studied experimentally by
cryder and Finalborgo and was summarized by Fishenden
and Saunders.

Substituting (68) into (69) and making use of the definition
of heat transfer coefficient yield

For Laminar Range
/O‘. < Ra< 2-/0

!
? = 7;{7' -T. ) = o.#4-fc’ {}':7(7;;"2;’;’)#‘»3]‘ (70)
NCc w oo

For Turbulent Range ;
& . L
2:/0° <« Ra < 3°/0 4,2.3
~ ~T ) R
e =k (Tw-T) = 0-14fc [th_w?n .l (71)

For illustrative purpose, a numerical example is given

as follows.
Liquid = water

T, - 212°F F =59.97 Ibm/it. 3
T, =242°F ¢ =1.007 btu/lbm °F
Te = 202°F 9 =32.2 ft. [sec. >
D =17/8"=0,156 #
# =1.81- 107 1t.%/sec.
)I _ 10—4 '/OF
v =03/6 /0 jtz/s.e.
From (68) p. — )’f(Tw'@ D’ — §&4 ./o" > 2 .,07

*r
which is in turbulent range, from (71)
Y (T-T) A I_ 725 BEU/ge
ZVC = 0/4fc [ ij [ J = 172& -/ﬂ--Sec)

The thickness of the thermal layer of natural convection is

fek o _ -2
ii, Bulk Convection Component

(72)

From equation (2), one can obtain the heat transferred
through unit area of heating surface to the fluid during
time t as

S Tocpdz = cpm, T [erfe fig dx= 2B )
o -]
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For this case, & is not a constant throughout the
bubble base where the transient conduction thermal
layer is developing. Such a donut-shaped layer is
illustrated in Fig, 22,

For convenience in integration, the initial state is
taken at the end of waiting period, so that
= [T, w '

=Jmkh = |
Sd = rWh[+w* '!'dj (74)
Making use of (72), the heat transferred into transient

thermal layer as well as in the main body of fluid beyond

the transient layer during one bubble formation cycle is

Ra _ _
AQ_.__._ L‘ 2.PC(Z;7' TO)J{Zﬂrdf)’f'ﬂr(kiz-f:) zf“:,;l; % Sd

R;
= - 09) [ 2
Zﬁc:)‘_"?, To [ 2mwrSar —I-/"rr"(EI’L R, )%]

e

(75)

where Ri is influence radius

Ri =2 Rd for the isolated bubble case 2

Ri <2 “bd for the close packed case

(76)

Since R, << Ry, and § is nearly linear in F , so
(75) can be approximated to yield
2

aQ = Z)DC(TW"-];)[R:SJ_%RJ (Sd—gc)] 77
If 'n'" is the number of active cavities of radius R, per
unit area of heating surface, and )C is the frequency of
bubble generation, then the heat transfer rate per unit
area due to bulk convection of the transient thermal layer

is approximately from (77)

?Bc=nf 4Q=2fC(Tw'T”)nf[E‘_ Rd(s S)](,?B)
iii, Vapor Convection Component

In addition to the heat transferred directly tc fluid, heat
is also transferred directly into bubble through the heating
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surface exposed to the vapor inside the bubble. This
component is important c:ly at very high wall super-
heat. It can be omitted irn nucleate boiling region but

must be considered in the fi].m boiling region.
Ra S-n

_ . (79)

where Rb = R Sin j) = base circle radius of bubble

Ac Surface area of cavity
7; = Heat transfer coefficient of vapor con-

Y vection.
Since A and R are very small quantities, (79) can be

reduced roughly to

~ 2 .2
Zyc ~ ]L/I (T~ Teat t R, Smf (80)
iv, General Expression of Heat Transfer
Combining (70) (or (71)), (79) and (80) leads to

Z=pc Joc * fue ,

R
= (1- ﬂTnRz)ﬁ/u.i—é(Tw +2f°(7;v T)n)C[E y 3"( J;)J
IR A R

A three dimensional sketch of the heat transfer as a
function of subcooling and wall superheat is given in
Fig. 23 in which the effects of subcooling of main fluid and
wall superheat can be easily interpreted by means of the
bulk convection theory.
Discussion
The population density of bubbles at the close packed condition
is such that the bubbles are so densely packed that the influence
circle of one nucleate cell touches its neighbors, considering

one half cell as indicated in Fig. 24 by shaded area, one has
!

Mg — z - ]
Mep A~ % (zr ER) z B R;? (82)
where Ri =2 Rd (83)

(83) was justified by some rough experiments in which a ball

of radius "'a" was pulled up from ilie bottom of water tank
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which has a layer of chalk powder on the bottom. Observations
showed that the chalk powder within a circle of radius Ri ¥ 2a
moved toward the center forming a vortex ring in the wake part.
of the ball. This vortex ring is a method of scavenging away
the thermal layer within this influence circle and putting a new
layer of cold liquid on the heating surface bounded by the in-
fluence circle. A sketch of this process is shown in Fig. 25.

From potential flow theory, the velocity potential and stream
line function in the surrounding fluid of a departing sphere of
radius a from a solid plane boundary are from Reference (2)

3 3 a® a?
(5 2{3 ;;‘ 2hre " 64/.‘ a*r) cosg 4, (34)
= L _.zc!3 a®r? . a%® _ af al i3
-4 ( r 4[,3 326‘ b;r sz‘ ) S”e+C; (85)

The velocity components at point P in radial and meridian
directions are

_i U 3 3 a6 a6 Q? ")COSD
L= "ar "’i’( 73 4/,’ F32)8” 0 324%° (86)

= §—‘- 3 q‘ aﬁ 9
1/00—}‘ = (,3 24? jzé‘ ﬁ’r ‘f/l‘f’ ) $inb (87)

putting a =R_, h=Ryin (86) and (87) gives roughly the
velocity components of the fluid surrounding a departing

bubbl
u eras:_ (73K¢ - 9) cosp *+

where U is the bubble rising velocity at departure,

Example with experlmental data taken from Reference (5).

% - 8.3 10% btu/tt. 2/nr. = 23 btu/it. ?sec.

T~ 2200F evaluated from bubble growth theory based on
the bubble growth curve given in Reference (5).

- o

Tsat 2120 F

T, =196°F

t =12 - 1073 sec.
W
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3

t 12 - 10 ° sec.

d
Rd = (0,040 in = 0, 0033 ft.
From (74)

-4
$=,/'7T§_$ = 2.62 /0 f[‘
y -4
8a= Jnr&,y- ) = 3.70 -/0 fl—

-—,F—.F = 4/.6 Cyole/S‘ec.
Fig. 5in Referenck 5 shows that this is the close packed

case R, = 2R, =0.0066 ft., (82) gives

/ < 1/ 2
== = é6 3
" 2 3R> ° /ﬂ'

From (78), the heat transfer due to bulk convection is
2 1 52 — Bty z
Jac = 27fpe o T [A74 -3 R G- 80) = 173 [ fsec)

which is about 75% of the total heat flux supplied to the heating

surface.

v

The heat flux required for evaporation of vapor into bubble is

nFL )/ ,xf = 15/ B [t sec)

which is about 6% of the total heat flux.

The heat transfer due to natural convection for close packed
case is from (71) and (82) oz )
(T.,-T.) & 13
=()~ & >oa/4 {i)é w_leo = 0/32 Bt/ 2
Zilc @ 2J3 fc. P 9‘1" sec)
which is about 0. 6% of the total heat flux.
Most of the difference between the calculated and experimental

results is due to geometric idealization. From above example,
one can see that the bulk convection of transient thermal layer
from heating surface to the main fluid constitutes a chief means
of heat transfer. Bubbling is the only natural mechanical driving
force which propels such a bulk convection. The bubble growth
theory and the departure criterion in nucleate boiling heat trans-
fer are important not because they can carry a large amount of
heat due to evaporation of fluid into the bubble voids (only a few
percent), but because they supply the way to take off the transient
thermal layer repeatedly from the heating surface.
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Comparison with Experiment Results

Two sets of experimental results are presented in this section;
one set is ours, while the other was taken from Ref. 17,
both results were compared with this theory.

i, Result 1 - (From our experiments)
Fluid used: Distilled degased water

Surface: Gold layer plated on copper base,polished
with No. 8 diamond compound.

System pressure P = | atm
Data point 1, Qg 0.0620 btu/sec. from (91)

T = 218.73°F
w (o]
= 212.00° F
sat °
Tep = 178.56° F
N = 12,
N, = 12 of R = 3.0460 - 1079 ft.

from (17), (Rc) min V&8 taken as

the cavity radius, since (Rc) max

is nearly a hundred times larger

>N

ltha.n the surface texture dimeneion,

N, =0
Qp = 0.0620 btu/sec. from (81)
Data point 2 7 Qp = 0.1202 btu/sec. from (91)
T =235.00°F
w (o]
= 212.00° F
sat o
Tw = 199.72 F
N = 18,
N, = 12 of R, = 3.0460 - 1079 .
f =69.15 /sec. from (17),
(11), (12), (62),
(37), and (67)
N, = 6 of R, = 0.7859 - 1079 £,
Ry =4.15 - 1073 ¢t.  from (62),
(37)

Qp =0.1142 btu/sec. from (81)
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Data point 3 = QR
T

w

Tsat

T

N

(N
a

Ry

= 4,215 " 10

0. 1433 btu /sec.
237,11° F

212° F

201.87° F

20,

- 18, -2

12 och = 3,046 * 10

{ f = 78.46 1/sec.

6 of R, = 0.7859* 10"
of R
C

ft.

5 g,

f = 53,08 1/sec.

=5 g,

2 = 0,7240 * 10

=3 g

Qp = 0.1412 btu /sec.

Data point 4 = QR

w

sat
Tes

N

(N
a

Data point 5 =

102

sat o
o = 200,53 F

0.1866 btu/sec.
237.61° F

219° F

= 201.38° F

= 20
= 20,

-5

12 of Rc = 3.046 - 10 " ft.

f=280.72 1/sec.

=5 o

6 of R, = 0.7859 * 10
f=61.56 1/sec.
20fR_ = 0.7240 * 10~

f=6.44 1/sec.

L

5 g,

4.231 * 1073 £t

0.1584 btu/sec.

0.2157 btu/sec.
240.65° F
212.00° F



N_ =20, (2 of R = 3.046 - 1079 £t

f = 88.03 1/sec.
}6ofR_=0.7859 1072 g,
< f = 87.06 1/sec.
3 of R, = 0.7240 - 1072 £t

f=178.60 1/sec.

LNi

Rd = 4,322 °.10 7 ft.
Qp = 0.2056 btu [sec.

A comparison of experimental result with theoretical ones is

0
-3

shown in Fig. 26.
ii, Result 2 - (From Fig. 8 on Reference (17) )
Fluid: n - pentane 05 le

Surface: Nickel, 4/a polished
System pressure: 1 atm

Properties of fluid:
o

T . =97°F
sat 3
£ =37.8 Tbm/it.
£ =0.187 bm/tt.”
& =-=9.79 - 107% 1b/it.
L = 146 btu/lbm = 1136 - 1075 ft. 1b/lbm
2 =441 107% t.%/sec.
£ =1.097 - 1078 1t.2/sec.
¢ = 0.527 btu/lbm
Y =8.1-10"3 J&* (From Ref. (17))
Data point 1= §p _ o 390 btu /{it. 2 sec.)
T =111°F
W (o)
T = Te 97“ F
sat
n= =430 1/ft.°

{ - 430 of R = 0.365 ° 1072 £t. from(17)

713 - 0.390 btu /(it. 2 sec.)
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Data point 2 = § = 0.865 btu /(. 2 sec.)
T =119°F
w (o]
= T@ =97 F
- 1580 1/ft. 2
n_ = 430 1/it.2 of R_ = 0.365° 10
f=139.8 1/sec.

from (17),(11), (12),(62), (37),
and (67)

at

!Smlﬂ

Spt.

n, = 1150 1/tt.2 of R, = 0.233- 1072 g,
from (17)
R, = 2.60° 1073 ¢, from (62)and (37)
95 = 0.806 btu/ (it. % sec.)
Data point 3 = ?R = 1.208 btu /(ft. 2 sec.)
T, - 122° @
= = O
T.o® To 97°F
n = 2480, ‘ 5
n_ = 1580, 430 of R = 0.365° 107 1t.
{ f=43.0 1/sec.
\ 1150 of R_ = 0.233" 10°° ft.
f=42,6 1/sec.
n, = 900 of R_ = 0.205 ° 1072 ft.
R, =2.79 " 10793 1.
; = 1258 btu /(f‘t.z sec.)
P
Data point 4 = fp = 1500 btu /(f'c‘,2 sec.)
T =124°F
w O
T .= Te =97°F
n = 3800, -
n_ = 2480, , 430 of R = 0.365° 107 1t.
f=45.4 1/sec.
1150 of R_ = 0. 233" 1079 1,

f= 45,2 1/sec.
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s

L900 of R, = 0.205° 107
f=144.9 1/sec.

, = 1320 of R_ = 0,1903 * 1075 .

R, =283 1073

d ft.

- 1611 btu /(ft. 2 sec.)

= 124§.6 éF‘ Ts.%a:'rw = 77°F-'
= 5760,

n_ = 3800 ( 430 of R = 0.365 ° 10
f=147.4 1/sec.
1150 of R = 0.233" 10~
) ) f = 47,3 1/sec.
900 of R = 0.205° 10
f=47,1 1/sec.
1320 of R = 0.1903* 10°
f=46.3 1/sec. )

- 2.855 * 1075 ft.

2.125 btu /(ft. % sec.)

7%
, _ 2
Data point 5 = f§ = 1.815 btu /(ft. “ sec.)
Tw
n

D pt.

5ot

Spi.

B¢t

n, = 1960

2y
1

=0
9
n

A bubble initiation diagram of these points is shown in Fig. 27.

A comparison of experimental results with theoretical ones

is shown in Fig. 28.

5. Description of Apparatus and Method of Experimentation

a,

Experimental Set-Up
The experimental set-up is shown in Fig. 29. The heating

surface was made by electroplaﬁnja layer of 16 k gold of

0005 inch thickness on the top surface of a thin flanged
cylindrical copper block. The reason for gold plating was to
minimize the effects of oxidation so that the surface conditions
will remain the same from the beginning to the end of each test.
At the bottom of copper block, seven 120 watt chromelux
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electrical heaters were imbedded in holes in the copper
block. The heat generated by these heaters was transferred
to the top surface by pure conduction. The reduction of
cross section of copper block underneath the heating surface
was for the purpose of intensifying the heat flux at the heating
surface. A thin flange surrounds the heater to eliminate un-
desired bubble nucleation which might occur at a boundary.
This flange was very thin so that the temperature near the
edge of the heating surface was low enough to prevent bubble
initiation. A piece of Teflon heat insulator was inserted be-
tween the lower face of this thin flange and pool base. A
detailed drawing of the heating surface and the shank part of
copper block is shown in Fig. 30.

A thermo-bottle filled with ice was used for the cold junction
of the thermocouples which were connected with a potentio-
meter through a six-way switch. A drain hole valve was also
attached to the bottom of the test section. In order to predict
the surface temperature, three thermocouples Ti, TZ’ and
T 3 were inserted in the holes on the shank part of copper
block, a three point interpolation formula was used to deter-
mine the wall temperaiure TW. These thermal couple holes '
were 1/16 inch in diameter, 19/32 inch in depth and were
spaced 1/4 inch apart. All dimensions were meagured from
the heating surface. The bottoms of these three holes were
at the center line of the shank. In the fluid, another thermo-
couple, T 4> Was used to measure the temperature of main
body of fluid, Tq, . It was located one inch above the heating
surface. All thermocouples were made of No, 30 Chrome-
Alumel wire. In order to avoid excessive corrosion, the
thermocouple T 4 Was shielded in a 1/16 inch stainless steel
tube with Teflon seal at the outer end.

The fluid was contained in a 3 inch diameter and 20 inch
length, specially heat~-treated, high strength glass tube,
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Observations and photographs could be made through a so-
called "fluid crystal''. This was a glass box filled with the
same fluid as that in testing section and so placed as to
eliminate distortion due to curvature, The front wall was
flat, the rear wall was made of a segment of circular tube
with a radius of curvature just equal to the outside radius
of the testing tube, such that the distortion of bubble shape
due to light refraction of tube was eliminated. With this
device, an accurate measurement of bubble dimension could

be obtained from high speed photograf)hy.

A helically wound copper tube in the upper part of the testing
tube was used as a condenser. The saturation temperature

of the fluid Tsat
from 1 atmosphere to 1/4 atmosphere through an asperator

was controlled by varying the system pressure

vacuum pump. The temperature of the main body of fluid Teg
was controlled by varying the flow rate of the cooling water
through a cock. The wall temperature T was controlled by
varying the electrical power of the heatex‘fvs through a variac,
Surface Preparation

Boiling data are difficult to reproduce due to changes in the
surface conditions. There are two ways in which these
changes appear; namely, changes due to contamination and
cavity reactivation, Contamination can be eliminated by pro-
per choice of the metal for the heating surface, reactivation
of a nucleate cavity can not be eliminated by the following
method.
The 16 k gold plated surface was first finished by 200
grit emery paper which was continuously wetted by a
a water jet. The direction of stroke was kept constant.
The surface was finished by stroking in one direction
till all scratches were eliminated then rotating 90° to
eliminate all the scratches in the other direction. The
whole piece was then washed in a water jet. Following
exactly the same procedure, the surface was finighed by
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400 grit and 600 grit emery paper. The surface was
then cleaned by hot water jet, alcohol jet and hot air
jet and was then put on the No. 4 diamond compound
wheel. The diamond compound should be put on the
center area of grinding wheel and diluted by kerosene
before starting grinding operation. The piece was
held gently near the edge area of wheel, kerosene was
injected on the wheel clothe occasionally. Operation
was continued until the scratches due to 600 grit emery
papei' disappeared completely. Then the piece was
taken off from No. 4 diamond compound wheel, the hot
water jet, the alcohol jet and the hot air jet were then
each put on the surface. After the washing process,
the piece was then put on the No., 6 diamond compound
wheel and then No. 8 wheel using the same sequence of
operations as on the No. 4 wheel,

An unclean piece will leave some dust particles on

the wheel which sometimes make some unremovable
scratches on the surface. To make a good surface,
one needs usually more than 10 hours. Patience and
cleanliness are the two most important characteristics
of a surface worker. Scratches due to the grinding com-~
pound can be removed only by its next number grinding
compound as recommended here. No, 4 diamond com-
pound scratches can not be removed by No. 8 diamond
compound wheel in a reasonable length of time without
introducing No. 6 diamond compound wheel.

At the last few minutes of grinding process on the No. 8
diamond compound wheel, the kerosene jet was applied
all over the center area of the wheel, such that the dia-
mond compound was washed to a very dilute condition,
the piece was then put near the center part of the
wheel where the rubbing speed is lower, then a heavier
pressure was applied. After one to two minutes, the
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surface would become shining, mirror-like smooth.

It was washed by hot water jet, alcohol jet and hot

air jet, it was then introduced in the pool of a ultra-
sonic cleaner for 2 minutes. This process would help

to wash out small diamond dust particles and bits of
metal which were trapped in the cavities on the surface.
Then the surface was washed again by alcohol and Methyl
ether jet. The surface at this stage was assumed to be

the surface required,

After each test, the surface was renewed by going
through all the steps immediately after No. 6 diamond
compound wheel. It needed only 20 minutes to finish
the job.

In order to keep surface condition unchanged, every
element which is in the boiling system should be cleaned
by washing soap, hot water jet and distilled water jet
before each test.

Method of Experimentation

After making a new surface and washing all the parts, they
were assembled, distilled water was introduced into the top
of the test section. Two hours of vigorous boiling with a
moderate heat flux was maintained for degassing purposes,
then the heat flux was reduced until there were no active
cavities on the surface, then the heat flux was increased
gradually until the first active cavity appeared on the surface.
This was the starting point of each test. A steady state con-
dition was assumed to be reached two hours after the heat

flux was changed.

During each run the following measurements were made.
Power, fluid temperature, heater-unit temperatures,
system pressure, number of active centers, and num-
ber of new sites arising from the change in heat flux,
Technically the later are called the initiated cavities
which generate bubbles with very low frequencies such
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that the contribution to the heat transfer is negligible .
The heat transfer to the fluid through the heating sur-
face was determined by the simple conduction formula
knowing the temperature gradient in the shank of copper
block. The wall temperature TW within a circular area
of 7] 3/16'"" diameter on the center part of the heating
surface was assumed to be uniform .
Photographic Technique

High speed photographs were taken with a Wollensack camera.
A Kodak Tri-X negative 100' film for' high speed photography
was used. About 2400 frames per second was taken which
necessitated a reduction of voltage supplied to the Wollensack
camera motor to about 70 volts through a variac. A 500 watt
iliuminating lamp was installed at the rear of the test section
at about 6 inches away from the tube center, so that the heating
surface looked shining bright. The focus of the camera was
very carefully adjusted such that no relative motion between
the circle on the focusing lens and the bubble to be photographed
was observed. Each two marks of time on the film represent
1/60 sec.

The camera was placed as close as possible to the test sec-
tion without losing the sharp focus required. A reference
wire of 0.040 inch in diameter was placed besides the bubble
which was to be photographed. The bubble diameter measure-
ments were made by projection on a microfilm projector. A
geometric mean value of bubble diameters in three principal
axis directions was considered as the bubble diameter for
volume calculation,

Temperature Calibration, Wall Temperature Prediction and
Heat Flux Determination

i, Temperature Calibration

For this special kind of chrome-alumel thermocouple,
the following data were recorded.
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Reading at boiling point of water = 5. 209 milli-volts
Reading at melting point of tin = 12,410 milli-volts
Reading at freezing point of water= 0,000 milli-volts
Atmospheric pressure P = 77.66 cm H
Boiling point of water at P = 77,66 Cm. H7
is from T = 100.000 + 0.03686 (P - 76.00) -
0. 0000220 (P - 76.00)% = 100.061°C

Melting point of tin at atmospheric pressure = 231. 8d’c

Freezing point of water at atrnospheric pressure =
0.000°C

From Reference (14), a three point interpolation formula

gives

(-]

T ==o007267/ ) (297540-V) 'c (89)

Where ¥ is the reading of thermocouple from potentio-
meter (M. V.)
T is the corresponding temperature ¢

Wall Temperature Prediction

Referring to the sketch of heat surface and heat conduc-
tor shank which is shown in Fig. 30, the following
dimensions were obtained by an accurate measurement.

S, = o0.242"

2
s,:..-’ 0.234"
33 = 0 230"

The location of each thermocouple and the heating surface

can be described by coordinate X's, say

174

'x, = 9 , x, = §, =0242
— 7 —_— = 0.706"
x,=5,%5, =040 X = §+5,+5, 706

If the corresponding temperature sat Xl’ X2, X3, and
XW are Tl’ T2, T3, and TW, then with help of Ref. (14),
the wall temperature can be extrapolated by Lagrangian
method as
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W™ (X)) (X=X 2 (Kx) (o) 2 (KX -X)
substituting the value of Xl’ Xz, X3, and XW into above
equation yields

Tw = C 72657, -2.867657, +2.74/6 7,

(90)
iii, Heat Flux Determination
From conduction equation, cne has
= AT T- T3
Q- A kAL = Ak BB
AS = cross section area of shank of conductor =
0.00769 12 ft. 2
K = conductivity of copper = 219 btu/(°F hr.ft.) =
0. 060833 btufft. °F-sec.)
X3 = 0,476" = 0.03967 ft.
T1 - T3 in degree Fahrenheit
Q =0.0118 (T, -T,) btu/sec. (91)

Discussion and Conclusion

a. Discussion

In the preceding sections it has been shown possible to con-~
sider the individual processes of bubble initiation, growth,
and departure and with nothing other than geometric ideali-
zations and fluid and surface properties, compute a heat flux
versus wall temperature curve. The computed and measured
heat flux curves compare satisfactorily. In making this com-
parison however, an extraordinary amount of information was
needed. In practical terms, quantities like surface nucleation,
properties and bulk temperatures are just not known with suf-
ficient precision to make a boiling curve prediction possible.
In addition, only the isolated bubble portion of the pool boiling
curve has been studied. If the forced convection or the close
packed regions are of interest, then other geometrical ideali-
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zations of the fluid mechanics are needed. This all raises

the question of where do we go from here ?

The close correlation between theory and experiment and

the fact that no arbitrary constants have been used show that

no important physics has been forgotten. What further should

be done in nucleate boiling ? First, the physics,

i,

ii,

iii,

Bubble Initiation

More experience is needed in the experimental control
of surface conditions. Contact angle, drift and surface
nucleation properties need more study in order that

meaningful experiments can be desired.

Bubble Growth

This appears to be well understood

Bubble Departure

The zero gravity departure prediction should be tested.
Forced convection bubble departure should be studied

as only a few odd measurements now exist.

Engineering work - better heat flux temperature difference
correlations are now possible based on our cleaner under-
standing of the basis processes. Work with industrial
rather than laboratory type data is probably most desirable,

b. Conclusions

i,

ii,

The nucleate pool boiling curve in the isolated bubble re-
gion can be predicted from a knowledge of fluid properties
and surface conditions. Resort need not be made to any
physically unmotivated quantities.

Dynamic effects on bubble departure size manifest them-
selves primarily through contact angle variations with

the usual Fritz formula still holding.

iii, A formula including dynamic effects in the liquid has been

developed that would predict bubble departure at zero
gravity for certain fluid properties and temperature

distributions.
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iv, The waiting period between bubbles is shown to be a

vii,

known function of cavity size and liquid and surface
temperature.

Using measured delay times, bubble growth rate can be
predicted with good precision,

Using measured contact angles bubble departure size
can be predicted.

Contact angle has been found to be a function of velocity
across the surface. This in turn has been correlated
with viscous effects in terms of a ratio of Webber to

Reynolds numbers.
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BUBBLE GROWTH TABLE 1

The Experimental Data for Bubble Number 1

ty = 0.0245 sec. Camera speed =
1140 frames/sec.
td = 0.0166 sec.
R, =3.974 " 107 1t.
No. ¢ Bt_lbble Diametgr on R
Frame  Millisec (e i) Sealo = 857 % 1 Millitt
1 0 2.32 0.429
2 0.877 9. 48 1.754
3 1.654 13.72 2.538
4 2.631 16.04 2.967
5 3.508 17.80 3.293
6 4, 385 18. 40 3.404
7 5.262 18.95 3.506
8 6.139 19.57 3.620
9 7.016 19.86 3.674
10 7.893 20.00 3.700
11 8.770 20. 36 3.767
12 9.647 20,72 3.833
13 10.524 21.10 3.904
14 11.401 21.65 4,005
15 12,278 21.90 4,052
16 13.155 21,90 4,052
17 14,032 21.80 4,033
18 14,909 21.69 4,013
19 15,786 21,48 3.974(Rd)
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BUBBLE GROWTH TABLE 2

The Experimental Data for Bubble Number 2

tw = 0, 0437 sec. Camera speed =
t, = 0.0167 sec. 1260 frames /sec.
Ry = 5.328 © 1077 ft.
No. £ quble.Diametgr on R
L Millisec o Projestor Millift,
1 0.793 9.26 1,713
2 1,586 14,22 2.631
3 2,379 17.53 3.243
4 3.172 19,76 3.656
5 3.965 21,65 4,005
6 4,758 22.80 4,218
7 5.551 23.87 4,416
8 6.344 24,67 4,564
9 7,137 25, 20 4,662
10 7.930 25,48 4,714
11 8.723 25.50 4,718
12 9.516 25,80 4,773
13 10. 309 26,10 4,829
14 11,102 26,74 4,947
15 11,895 27,26 5.043
16 12,688 27.40 5.069
17 13.481 27.70 5.125
18 14, 274 27.90 5.162
19 15,067 28.53 5.278
20 15,860 28.87 5,341
21 16.653 28.80 5.328(Rd)
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BUBBLE GROWTH TABLE 3

The Experimental Data for Bubble Number 3

tw = 0.0275 sec. Camera speed =
1380 frames/sec.

td = 0.0145 sec.

Ry = 0.395 * 107 ft,

No. " quble Diametr:er on R
Frame Millisec (e i) Sealos Booe s 1 Millift.
1 0.725 9.52 1.711
2 1.450 14,10 2.609
3 2,175 16.88 3.123
4 2,900 18.45 3.413
5 3.625 19.55 3.617
6 4,350 20. 60 3.811
7 5.075 21,73 4,020
8 5.800 22,08 4,085
9 6.525 22,53 4,168
10 7.250 22,75 4,209
11 7.975 23.68 4,381
12 8.700 24.00 4,440
13 9,425 24.10 4,459
14 10. 150 24,33 4,501
15 10.875 24,15 4,468
16 11,600 24,74 4,577
17 12,325 25,52 4,721
18 13.050 25,80 4,773
19 13.775 25,88 4,788

20 14,500 25.90 4.792(Rd)
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TABLE 4
HISTORY OF BUBBLE GENERATIONS

- o - 9190 _ o
'Ew = 229.987F, lrsat 2127 F, Tg 205.027F

Distilled water on gold surface ground by No. 8 diamond compound

Bubble Camera Speed tW (sec.) td (sec.) Rd (Millift. )
No. (frames/sec.)
1 1140 0.0254 0.0167 3.974
2 1260 0.0436 0.0167 5.328
3 1380 0.0275 0.0145 4,792
4 1500 0. 0466 0.0167 3.534
5 1650 0.0735 0,0261 3.691
6 1800 0.0594 0.0172 4,224
7 1920 0.0490 0.0151 4L188
8 2040 0.0633 0.0162 4,658
9 2130 0.0319 0.0155 3.931
10 2190 0.0337 0.0160 5.125
11 2280 0,0672 0.0149 3.321
12 2370 0.0785 0.0167 3.448
13 2520 0.1640 0.0143 3.633
14 2700 0.1250 ( 0.0512 4,201
Three in
Tandem)
15 2770 0,0436 0.0143 3.566
16 2850 0.0393 0.0161 4,782
17 2910 00,0216 0.0158 5.367
18 2910 0.0450 0.0139 3.374
19 2940 0.0756 ( 0.0296 3.571
Two in
: Tdndem)
20 2940 0.0252 0.0163 4,967
21 2940 0.0354 0.0139 3.883
22 2940 0. 0490 0.0129 4,183

Observation from above table shows that the waiting period tw changes

from 17(tw)min. to 130(tw) min.
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Fig. 10 Normalized Bubble Growth Curves
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NOMENCLATURE

Dimensions in H, M, L, T, 8; The Heat energy, Mass, Length, Time,

Temperature.

A Scale factor of time [O]
Area of heating surface [Lz]
Arbitrary constant [O]

Al

A2 Arbitrary constants

2

B Scale factor of length [O]

B1

B2 Arbitrary constant

Bs

C Integration constant
Initial characteristic number of a growing bubble [O]

D Characteristic length of heating surface for natural

convection L]
= (o]

D, _33 (L1

F Driving force of bubble growth [MT~2 L~1]

I Integration

J Bessel function

K Thermal conductivity of fluid HT 117l

Kc Thermal conductivity of copper [HT"1 L1 9"1]

L Latent heat of evaporation of fluid [HM"l]

M1 Inertia mass of surrounding fluid [ M]

N Total number of nucleate centers on heating

surface [O]

Na Total number of active nucleate centers [O]

Ni Total number of initiated nucleate centers [O]

P Pressure in the fluid outside the bubble [ML-1 T-2]
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Total heat flux [T

Heat flux predicted by theory [HT'l]
Heat flux received by heating surface [HT'I]
Radius of bubble [L]
Radius of base circle of bubble [L}
Radius of cavity [L]
Departure radius of bubble [ L]
Meridian curvature radius of bubble at the base

circle [L]
Bubble surface [L 2]
Temperature []]
Temperature of vapor in the bubble [ O]
Saturation temperature of fluid at the system

pressure [©]
Wall temperature [ V]
Temperature of mainbody of fluid [©]
Rising velocity of a solid sphere : [LT™1)
Reading of thermocouple [ Mill-volts]

Characteristic velocity function of natural

convection

Body force in x, y, z directions

Characteristic temperature function in

natural convection

Characteristic number of convecticn cell [ O]
Radius of a solid sphere [ L]
Radius of curvature of bubble at its top [L]
Specific heat of fluid (M1 g1
Specific heat of vapor [EM~1 g1
Frequency of bubble generation [T-1
Gravity acceleration [LT"2]

Distance from the center of a solid sphere to
the solid plane boundary [L]
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Coefficient of heat transfer from wall to the fluid [HT"1 1.~2 9"1]

Coefficient of heat transfer from wall to vapor [HT™1 L-2¢71]
Thermal diffusivity of fluid [L2 T71]
Side length of convection cell [L]
Number of nucleate centers per unit area [L'z]
Number of active nucleate center per unit area [L"z]
Number of initiated nucleate center per unit area [L‘2]
Pressure inside the bubble [ML-1 T"z]
Heat flux density ‘ [HL"2 T-1]
Heat flux density predicted, received [HL"2 T“l]
Eigen values in function W

Radius from center of bubble to a point in the fluid [L]
Normalized bubble radius [ O]
Time [T]

[l -t
o el
v

SH-
lop

Departure period

Unbinding period

[T]
[T]

RN

N

Waiting period

Radial velocity, velocity along x-axis [LT"1]
Meridian velocity, velocity along y-axis [LT’1]
Circumferential velocity along z-axis [LT-1]

Distance from the bubble surface to the axis of
revolution of bubble; wall distance [L]
Distance from the plane tangent to the bubble at

top point of bubble to a point on the bubble surface [L]

>
>

e Wil 3> 8.

N

Laplacian operator

Temperature

Function of temperature

Constant in dynamic contact angle

Pressure
Summation sign
Velocity potential
Dissipation function

Streamline function
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[L2 T-1]
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x

KO [ EEN0 305058508 € A q G SN AN R >

Angular velocity
Exponent
Bubble growth constant

Temperature gradient

Bulk thermal expansion coefficient of fluid

Small displacement from equilibrium
Thermal layer thickness

Normalized density difference
Normalized z coordinate

Distance from bubble center to base plane
Angle

T-T temperature difference

sat
Characteristic number in pocl convection

Coc’ "« ‘ent of viscesity
Kinematical viscosity

A

PeT

Density of fluid

Density of vapor

Normal stress in radial direction

Surface tension

+* [5p a4t

Rolep ° 7§52

Vapor index

Angle, contact angle
Dyaamic contact angle
Base factor

Surface factor

Curvature factor

Volume factor

Polar angle

Density ratio =
Normalized specific heat difference
Temperature perturbation

Normalized temperature difference
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[T1]
[O]
[O]

[eL-1]

[ 671
[L]
[L]
[O]
[O]
[L]
[O]
[O]
[O]

[L-1]

[MT~! L-1j
[L2 T-1]
[O]

[ ML™3]
[ML™3]
[ML™1 T?)
[MT"2]

[O]

[O]
[O]

[ O]

[O]
[O]
[O]
[ 6]
[ O]



i

z = - .1"‘___';?‘_"- (o]
4 Volume of bubble [L3]
Ra Rayleigh number [ O]
= _".%)_;éi (used in theory)
= —lL/gﬁL—-ws (used in experiment)
Ne Nusselinumber [O]
_ _hkD
" ek
) Average or conjugate of { )
(.) =Time rate of ( ) [ ()T 1
) =Time rate of () [ ( )T-2]
(~) Similarity physical quanity of ( )
() Vector of ( )
Subscripts
Bc Bulk convection
ep Close packed condition
d Departure
Nc Natural convection
Sot Saturation
Ub Unbinding
ve Vapor convection
w Wall; waiting
@© Mzin beody of fluid
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APPENDIX

THE EFFECT OF VELOCITY ON CONTACT ANGLE

It is evident from Figures 12, 13, and 14, that the contact
angle is smallest when the contact ring is growing most rapidly
and largest when the contact ring is contracting most rapidly. The
data reported here are too skimpy to get much of a measure of the
importance of this effect, so the purpose of this appendix is to re-
late the deviations in contact angle from the static condition to the
growth velocity of the bubble which is a known quantity. The ex-
tensive data of Staniszewski will then be used to determine the best

value for the constant in the relationship between these two quantities.

The relationship between the apparent contact angle and con-
tact ring radius is shown in Figure 31 for the three bubbles illustrated
in Figures 12, 13, and 14. For these three bubbles, the data of
Figure 31 for the rate of contact ring radius change can be obtained
at the point of departure along with the associated contact angle.
These points are plotted on Figure 32 as three circled crosses. At
the same time, the growth rate of the bubbles at departure can be
plotted versus the contact angle. These points are the circled X's.
There is obviously a similar relationship between these two velocities
and the contact angle deviations, Asthe growth velocity is a known
quantity in this work, it is this quantity which has been used to cor-
relate rather than contact ring velocity.

To repeat, the physical velocity of significance in determing
contact angle deviations is the contact ring velocity. This, in general,
is not known but bears a casual relationship to the growth velocity, so
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it is this quantity used to correlate the contact angle deviations.
The constant in the equation relating the static contact angle to the
dynamic contact angel equation (64) is determined from the exten-
sive data of Staniszewski. Figure 32 gives the calculated and
observed values of all these quantities.
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