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ABSTRACT

The early use by radars of a uniform pulse train is reviewed
and the fundamental nature of the ambiguities in time and frequency
associated with this waveform are discussed. Consideration is given
to the effect of variations in the parameters of a uniform pulse train
on the location and size of the ambiguities in time and frequency.

Maximum reduction of these ambiguities is shown to be
achievable through the use of a non-uniformly spaced pulse train re-
stricted to having unequal time intervals between any two pair of
pulses in the train. This results in equal amplitude sidelobes in
time (reminiscent of the Barker phase codes) which are not increased
by doppler frequency shifts. The ratio of the peak sidelobe level to
the central response is lin volts where n is the number of pulses
in the train.

It is shown that a completely uniform distribution of the inter-
ference volume of the ambiguity surface with this approach is, in
general, impossible. Consequently, a constraint is imposed on the
minimum distance to the first time sidelobes to permit solutions,
albeit not optimum, to the waveform synthesis problem. Two
specific techniques for generating these non-uniformly spaced trains
are examined, and the minimum and maximum duration-bandwidth
product (TW/2m) required for any n by these approaches is evaluated.

After establishing the desirability of a random variation in the
interpulse spacings, a pseudo-random approach to specifying the inter-
pulse spacings using the complete set of least residues modulo (n - 1)
is examined.
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The increase in resolution and reduction in interference
achievable when a non-uniform spacing is combined with a variation
in other pulse train parameters is evaluated. Target limitations to
the maximum TW/27 are discussed and the limits imposed by three
different approaches to the design of the matched filter are considered.

With these limitations on TW/21T and the present capability

for synthesis it is presently practical to achieve a 100-pulse train,
having a -40 db maximum sidelobe level, with TW/2w 22 25,000.

Thesis Supervisor: William M. Siebert

Title: Associate Professor of Electrical Engineering
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 INTRODUCTION

Background

Throughout its thirty-year history, radar has had the problem of
being unable to achieve simultaneous measurement of range and velocity
free from anbiguity. Farly attempts to overcome this problem were
basically unsuccessful and the fundamental nature of this problem was
soon well recognized., With the introduction of automatic data processing
equipment, and the resultant elimination of the human eye and brain from
the filtering and decision-making process, the consequence of this
problem increased. No approach for reducing the severity of this
difficulty has been generally adopted for existing radar systenms,

This thesis examines the use of & non~uniformly spaced pulse train
as a means for achieving high resolution and accuracy simultaneously in

range and velocity, with freedom from ambiguity.

Contents of the Chapters

The contents of the chapters of this thesis are outlined below:

Chapter I considers the historical use of uniform pulse trains and
the fundamental nature of the ambiguities associated with tﬁis waveform.
Approaches to overcoming these ambiguities, and the limitations of these
approaches, are examined.

Chapter II considers the effect of altering each of the parsmeters
of the uniform pulse train. To examine the usefulness of the resultant
waveforms, two criteria for performance are introduced: maximum freedom

from interference and maximum freedom from ambiguity. It is concluded
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that a uniform pulse train, uhambiguous in range and having the smallest
probability of interference, and a non-uniformly spaced pulse train
having the most uniform distribution of interference, respectively, gives
ﬁaximum verformance for these criteria.

Chapter III examines the general properties of non-uniformly spaced
pulse trains. The ultimate limit to performance--a completely uniform
distribution of the interference volume--is evaluated and found to be
impossible to achieve for pulse trains longer than four pulses. A
constraint is imposed on the distance to the first sidelobe in time and
the maximum performance (minimum TW/2x for a given number of pulses) for
trains with relatively few pulses is examined.

Chaptér IV examines a formal approach to selecting the interpulse
spacings for minimum.Tw/Qn. Two specific technigues for generating non-
uniformly spaced trains are examined and the minimum and maximum per-
formance of each technique is determined. The uniformity of distribution
of the interference volume and the resulting spectra are also examined.

In Chapter V, the results of the previous chapter are used to
determine the worst and best approach to generating the interpulse spacings.

A random sequence of interpulse spacings is conceded to yield the best

-performence., Consequently, an approach which provides the opportunity

for a random-~like sequence of interpulse spacings is discussed and evaluated.
Chapter VI examines the performence achievable when a non-uniform
spacing is combined with (a) an amplitude and density taper, (b) selective

pulse dropping, (c) a pulse-to-pulse frequency shift, and (d) a modulation



on each of the pulses. The increase in resolution, when a Barker code
of order 13 is modulated on each of the pulses, is calculated.

Chapter VII considers some possible target limitations to the maximum
TW/Eﬁ. Also evaluated are three approaches to the design of the matched
filter receiver. These are the use of (a) a bank of n delay lines and an
n x n phasing matrix, (b) a series of range gates and a bank of n narrow-
band filters, and (c) a series of n re~circulating delay lines. The critical
state~-of-the-art hardware limitations of each approach ére considered and
the resultant limitation on signal TW/Eﬁ is evaluated. An approach to
compensating for timing errors and pulse distortion is examined.

Chaptef VIII summarizes the target limitation, the state-of-the-art
hardware limitations, and the waveform design limitations. It is concluded
that a pulse train with 100 pulses having all time sidelobes below -40 db
and requiring a TW/Ex ~ 25,000 can be reasonably achieved.

Chapter IX briefly discussed several unsolved problems in the design

of non-uniformly spaced pulse trains.



CHAPTER I
HISTORY OF THE USE AND STUDY OF PULSE TRAINS AND THEIR LIMITATIONS

1.1 Early Problems and Early Solutions

The uniform train of pulses as a radar signal is as old as radar
itself and dates back to before World War IIl. The outstanding reasons
for its widespread use were a) simplicity of generation and reception, b)
the inevitable energy per pulse and peak power limitations of existing
transmitters, resulting in the necessity for integration of many pulses,
and c) the capability it offered for discriminating between wanted and un-
wanted signals, based upon differences in range and velocity.

During World War II and the years immediately followlng there was
little actual use made of waveforms other than the uniform pulse train,
and indeed theré was very little reason to investigate any. The availa-
Pility of high power tubes at thé centimeter wavelengths, the greater
range performance achievable at these wavelengths and the higher doppler
velocity of targets did produce problems of "blind speeds," and "second-
time-around returns," but these problems were seldom severe enough to
cause sufficient discomfort to motivate serious study of the problem. The
two approaches available for alleviating the confusion created by second-

time-around returns were a slight jittering of the prf and the alternative

“use of two widely separated operating frequenciesz, The first approach did

not actually eliminate the second-time around target. However because its
location on the PPI was constantly Jjittering it could be more easily iden-
tified. With the second approach, the interpulse period on each operating

frequency could be made twice as large and consequently the unambiguous
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range doubled. By proper filtering the second-time-around returns could be
eliminated. However neither approach eliminated the blind speeds or blind

ranges.

1.2 Ambiguity Function for the Uniform Pulse Train

The significance of the terms "blind speeds,” blind ranges" and
"second-time-around returns” and the general properties of pulse trains can
be conveniently examined in terms of the ambigulty function, first intro-
duced Ey Ville, Woodward and Davies and extensively studied by
Siéberts’h’5.

Given a signal s(t) = u(t)ejwot, the ambiguity function

o

o(t,w) = k/ﬂ u(t - t/2) u*(t + 1/2)ejumdt (1)

00

is the complex envelope of the response of the matched filter to the orig-
nal signal, when that signal is shifted in time and frequency. The auto-
correlation function, ©(7,0), and the spectrum, €(0,w), are the response
along the time and frequency axes of the ambiguity function.

Among the important properties of Q(T,w) are

co

6(0,0) = Signal Energy = \/ﬁ [ u(t) !2 at - (2)
and
U/L/w 6(t,w) 12 dt dw/2n = Signal Energy = b/} u(t) [2 at. (3)



For this reason it is convenient to normalize the signal energy so that

o0
f [u(t) |2 at = 1.
00

Tt is also convenient to define

|

¥(r,0) = | 6(r,w) | . (1)

Figure 1 shows several representations of the ambiguity function for a
uniform pulse train. The'large responses, or ambiguities at multiples of A
in time away from the central response correspond to the blind ranges* as
well as to the second-, third-, fourth-, etc. time-around targets. The
large responses at multiples of x in frequency away from the central re-

A
v *
sponse correspond to the doppler ambiguities or blind speeds . The height

Ao _ . ¢
.

M
k 2prf =k 2A

o] g

*
Blind Range = k Blind Speed = k prf

where A = radar wavelength
speed of light

1
interpulse spacing = 555

c
RA

it

it

k = any integer

Since the receiver was usually shut off when the transmitter was op-
erating the signals returning to the radar at that time were not detected.
Consequently the radar was blind to the ranges corresponding to these

times.

In the pulse doppler radars all zero doppler returns were usually re-
jected in order to reduce the ground clutter. - Any doppler frequency that
was a multiple of the prf, being indistinguishable from zero doppler, was
also rejected and hence the radar was blind to targets at these speeds.

-6
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of these frequency ambiguitieé decreases as §£§a§§[g due to the finite
width, &, of the pulse.

Of fundamental importance is the fact that the "clear area" of the am-
biguity surface has a duration in time of A and a width in frequency of %,
with a resultant clear area of 1, independent of the prf. Whenever the
product of the time extent and the doppler spread of the target ensemble
exceeds 1 then the entire target ensemble cannot be contained within the

ambiguity-free central region and ambiguity in time and/or frequency must

occur. Consequently, we can define a time extent-doppler bandwidth for the

target as
2(r, = r.) 2(v, - v.)
- 1 2 1 2
TRWD/ en = - . = (5)
where
rl = maximum target range
r2 = minimum target range
v, = maximum target velocity
v2 = wminimum target velocity
A = radar wavelength
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For example if

ry = 120 miles

r2 = 0 miles

vi = +300 mph = 440 ft/sec
v, = =300 mph = -4k0 ft/sec
A = 1/3/ (s-band)

then

2 x 120 -
Tihpy/2n = 106,000 X 173 !

By selection of the prf, the signal can be designed to be ambiguous in one
dimension only or be ambiguous in both but not (by adjusting the prf alone)
ambiguity-free. Since the ambiguities in time and frequency are regularly
spaced and are of approximately equal height then the total volume under
¥(7t,w), over the target space, or the interfering volume, is independent of

the prf and is

TWave form/2x

n W
L/L/\W(T:w)df %g ~ Targetzzﬂ (6)

Target space

‘assuming that the time extent and doppler bandwidth of the target environ-

ment are smaller than the durationvand bandwidth of the signal. When the
target extent in time and spread in frequency is greater than the signal
duration and bandwidth, then all the ambiguities, and the whole volume

under ¥(T,w) is within the target space.

-10~-
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1.3 Historical Study of Pulse Trains

In the early and mid-Forties very little examinstion was made of vari-
ations of the uniform pulse train, and the variations actually considered,
amplitude modulation, pulse width modulation,'frequency and/or phase modu~
lation, and modulation of the prf, were only applied in extremely special-
ized situationsa.

Amplitude modulation usually referred to cross-section variation due
to changes in the target aspeect or tova variation that ﬁas characteristic
of the particular target itself. Propeller rotation on an airplane, for
example, gives rise to a periodic variation in cross-section, which can be
used to derive additional information about the target. The intentional
use of amplitude modulation of the transmitted signal was limited to
specialized communication systems, where the amplitude varied in accordance
with the modulating function.

Pulsewidth modulation was a technique for amplitude (actually energy)
tapering the transmitted pulse train by using a pulse to pulse variation of
the duration of transmission. This technique had applications in special-
ized communication systems and was occasionally used to provide a more dis-
tinctive target return (vis-a-vis clutter) on the PPI.

In the literature of the late Forties and early Fifties* many

6,7,8,9

authors investigated the spectrum and sutocorrelation function of a

uniform pulse train when it is modulated by a) an amplitude variation

¥And even in current Russian Literaturelo’ll.
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across the train, b) a non-uniform spacing, and c) an unequal pulse dura-
tion. These variations were invariably considered either to analyze the
effects of random errors in these parameters on the uniform train perfor-
mance or to examine the usefulness of these variations as modulation tech-
nigques (AM, PPM, or PDM) for telemetry and/or commnication.

In the mid Fifties, when electronic data processing came into use the
problems created by the ambiguities and blind regions inherent in the uni-
form pulse train became increasingly acute. A procedure was suggested for
resolving these time and frequency ambiguities that required the sequential
use of more than one prf12’13. Several prf's could be selected so that
their first few blind ranges and blind speeds were slightly different.
Consequently, the range and velocity where all prf's were ambiguous would
be large enough so that all ranges and velocities could be determined un-
anbiguously.

The limitation to this approach is the "de-ghosting" problem. In
order to determine the real range and velocity of a target, the ambiguous
range.and velocity measured using the several prf's must be compared. In
the presence of k targets, there could be as many as k returns from each
prf, resulting in k" correlations for n pri's. These correlations become
ummanageable when more than a few targets are simultaneously observed. The
solution often adopted in a multiple target environment was Lo accept an
anbiguity in either range or in velocity, but not both. This usually re-
sulted in an unambiguous range and several blind speeds. As a result while

there was an inability to determine the doppler velocity unambiguously,
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the facility to reject stationary objects was still retained.
In the late Fifties, the problems created by the space age dominated

most of radar thinking and only sporadic consideration was given to the use

of pulse trains of any kind., In 1956, Siebertlh discussed the advantages

inherent in the use of & uniform pulse train "for those applications in
"
which resolution capability is the pre-eminent design specification. More

recently, Fowle, Kelly and Sheehan15

discussed the high resolution achiev-
able with a "properly designed" uniform pulse train. The phrase "properly
designed" implied that the radar frequency was low enough so that the time
extent-doppler bandwidth product of the target ensenble was less than
unity, and the prf selected so that the "clear area" encompassed the entire
target enviromment. They concluded that any change from the completely
uniform pulse train would adversely affect the resolution and target han-
dling capability of the waveform*. But often the target environment and
the operating frequency were fixed by other constraints and consegquently,

the target TRWb/Q“ could not be reduced below one. No solution is pre-

scribed for this situation.

1.k Conclusions
Siebert points out that, "When slight compromise can be tolerated in
resolution performance, important advantages in other respects can be a~-
17124‘

chieved by several variations in the coherent periodic pulse waveform... .

It is these variations that must be taken advantage of if pulse trains are

¥They also concluded, "It does not appear desirable to use complex modula-
tion on the individual pulses in the train." The example in 6.4 shows

this conclusion to be erroneous. -

-13-
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to find extensive use in large TRWb/Eﬂ environments. Considering the re-
newed interest in, and need for, high resolution waveforms capable of oper-
ating in this type of target enviromment it is important to examine varia-
tions of the uniform pulse train and to determine the influence these vari-
ations have in altering the location and amplitude of the ambiguities in
time and frequency. The target environment (i,e, number of targets, varia-
tion in scattering cross-section, distribution in range and velocity, etc.)
within which the resultant waveforms will and will not prove useful can

then be determined.

-1l
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CHAPTER IT
EFFECT OF VARTIATION OF THE PARAMETERS OF THE UNIFORM PULSE TRAIN
A train of pulses is uniquely determined by the specification of the
following parameters for each pulse in the train:
a) amplitude
b) phase
c¢) pulsewidth
d) ©polarization of transmission
e) bandwidth
f) center frequency

g) location

2.1 Amplitude Modulation

The use of a deliberate variation in the amplitude of pulses in the
train has heen suggested as a means for achieving lower near-in sidelobes
along the frequency axis. This also results in a slight broadening of the
doppler ambiguities. An amplitude taper alone results in no alteration in
the location of the ambiguities in time and frequency and only slight re- -
duction in their megnitude.

A form of amplitude taper is the selective dropping, from a uniform
pulse train, of individual pulses in the train. In a target environment
limited in number this approach can be used to "tag" parts of the train to
resolve the range ambiguity. This approach was used in the radar observa-
tions of Venus made by the Millstone Hill radar of the Lincoln Laboratory.

The selective dropping of pulses can also be used to achieve a varia-

-15-
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tion in the energy density (i;e. number of pulses per unit time) across the
train. By dropping more pulses from the beginning and end of the train
than from the middle, a symmetrical energy density taper can be created
which will reduce the near in doppler sidelcobes. The singular advantage of
this approach over a multistepped variation in amplitude is the more effi-
cient operation inherent in the use of only one transmitting levél, and the

elimination of the necessity for mismatching the receiver.

2.2 Phase Modulation

P
Extensive study has been made of coded pulse waveformslo’l7’18’l9.

These waveforms are usually constructed by introducing 0% or 180o phase
shifts, each increment in time &, in a pulsed sinusoid of duration T*. The
phase code is presented as a.sequence of one's and zero's, standing for a
sequence of 0° or 180° phase shifts.

Although these phase codes were originally designed as a modulation
for a gontinuous signal, they are also applicable for a train of pulses and
result in

¥ (1 = k8,0) (t = ®,0) (72)

continuous - wtrain

~and

Y s —— —5- ' -T-(- -II
Voombimonst T = K8:w) # ¥ . (7= KA . x) for x> w > - %

Where k = O’ 1-, 2, L ] n"‘l

*Codes with three phase shifts, OO, 120° and 2&00, and codes with Ffour

phase shifts, OO, 900, 180° and 270° have also been examined.

-16-
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In the search for phase éodes having & uniformly low interference
level throughout the ambiguity surface the most successful results were
achieved through the use of null sequence codeslb, in which TW/Qﬁ = EM -1.

These codes result in

W(O:O) ~ \V(O:Ol (8)
2TW/ 2x zz(ygl

¥(r,0) =

For the same code used with a pulse train, the same results would apply,
except that the doppler ambiguities along the frequency axis are unaffec-
ted by the phase code. Note that the location of the non~zero portions of
the ambiguity surface still lie in strips, 20 wide in time, centered at
T = * kA,

Other phase codes, when used in a target environment where the maximum
l, can provide superior performance. The most

‘ D Max <7
well known of these are the Barker Codes17 which satisfy

doppler spread, f

¥(0,0) > y(x,0) | (9)
n

The autocorrelation function for the largest known Barker Code (for which

vn=13) is shown in Figure 2. This phase code depends upon the coherent can-

cellatioﬁ of pairs of sub-pulses having equal amplitude, freguency and du-
ration, but 180° out of phase. But the frequency shift due to the target

velocity results in a relative phase shift across the pulse, upsetting this
coherent cancellation. Consequently the usefulness of these codes is lim-

ited to those target situations where the dopplér spread is small and for

-17-
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which resolution in frequency is either not necessary or not possible.

There have been investigations of codes that employ a variation of
pulse phase and amplitude. HuffmanlS has examined the class of amplitude
and phase codes having zero response along the major part of the W(T,O)
axis. Tigure 3 shows +the autocorrelation function for a continuous signal
of duration T using one such code. No examination has been made of the
effects of errors or doppler shifts on the filter response,

KlauderEO develops‘a waveform using the self-transform property of the
Hermite polynomial, that has a circularly symmetrical ambiguity surface,
without prominent peaks. The resultant envelope of the transmitted wave-
form is & bipolar signal very similar to several cycles of a sinusoid. The
use of a sampled version of this signal is possible. Unfortunately, the
performance of this waveform is rather poor, with first gidelobe levels of
-8 db and a fall-off proportional to only t-l/e. Nonetheless, when better
anbiguity surfaces are achieved with amplitude and phase "tapers' the wave-
formg can be adopted to use with pulse trains.

Consequently when a phase code with a uniformly low ambiguity surface
is used with a pulse train the peak of the ambiguities at 7 = £ kA will be
reduced although the response at other doppler frequencies, at the same

time, will be inereased. Using the best available codes results in

y(rT = kd,w) =~ ¥(0,0) . (8)

The ambiguities along the zero doppler axis are unaffected by these phase

codes.
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2.3 Pulsewidth Modulation

When the transmitter is peak power limited, a variation in pulse width
can be used to put an equivalent amplitude taper across the pulse train.

If the spectrum of these pulses is not too different over the doppler fre-
gquencies of interest, then the effect on the ambiguity surface, over the
target space, is virtually the seme as that achieved with a direct ampli-
tude taper, except for an increase in the time duration of the non-zero
strips of the ambiguity surface around 7 = kA.

It is possible to envision situations where the variations in pulse-
width became large enough so that the signal spectrum is considerably al-
tered. However, unless a fairly large number of pulses have widths equal
to the interpulse spacing and consequently, nulls at w = EKK/A, the ambi-
guity at ¥(0,2n/A) will not be severely affected. Further, the use of
pulses this long will sharply reduce the range resolution. The major dis-
advantage of a pulse width variation across the train is that the range
resolution of the signal will inevitably be determined by the longest pulse

used.

2.4 Polarization Diversity

The transmission of pulses alternatively on two orthogonal polarize~
tions could conceivebly double the "clear area." If the target scattering
matrig is diagonal and consequently the target does not depolarize the sig-
nal, then all the energy returned at any time will be received on one po-
larization only and hence, the two polarizations will be "blind" to each

other. One use made of this property is the reduction of the clutter re-
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turn from rain clouds ’“", Here transmission is on one sense oOf circular

polarization and reception on the same sense. Since the spherical rain

drops will reverse the sense of polarization and real targets can be ex-
pected to depolarize the transmitted siénal (i.e. return energy on all po-
larizations) the target returns on the same sense of polarization will De
enhanced vis-a~vis the rain.

To achieve a'doubling of the clear area using this approach requires,
in addition to a diagonal scattering matrix, that transmission and recep-
tion on orthogonal polarizations be available, and the Faraday rotation be
very small or known. Rarely, in actual situations, is even one of these

requirements met.

2.5 Bandwidth Variation

The use of pulses centered at the same frequency but varying in band-
width across the train can provide a "decoupling” quite similar to that
provided by a pulse-to-pulse frequency Jjump. Since the filter response to
a signal at the same frequency as the filter is approximately proportional
to the ratio of the two bandwidths, an increase in bandwidth of two to one
on successive pulses reduces the first time sidelobes by 6 db, the second

time sidelobes by 12 db, the third time sidelobes by 18 db, etc. However,
n-l

5 2 prohibitively large bandwidth for

the total bandwidth reguired is
large n.

The alternative transmission of two pulses, both at the same center
freguency but one having 32 times the bandwidth of the other, results in
approximately a 30 db reduction in all odd tiﬁe sidelobes. To reduce the

first and second, fourth and fifth, seventh and eighth, etc. sidelobes to
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the same 30 db level would reQuire another factor of 32 in bandwidth on the
third pulse or a thousand to one variation in bandwidth across three
pulses! The same type of result can be achieved using an equivalent varia-
tion in pulse width. However, a variation in bandwidth does not increase
the non-zero areas of the ambiguity surface. Neither the variation in
bandwidth or the variation in pulsewidth alters the position or amplitude
of the ambiguities along the frequency axis.

This approach is limited by the extravagant use of bandwidth. Further
the entire system must be able to handle the large bandwidth, but the sys-

tem resolution is not increased proportionately.

2,6 Freguency Shifting

In general, freguency Jjumping, pulse-to-pulse;

a) will not affect the location and magnitude of the ambiguities on
the frequency axis,

b)  will result in a reduction in the time duration of the central
response from © to approximately ex/w,

e¢) will not alter the volume under the central region of the ambi-

" guity surface [ & > 1 > -5, %2 w > - % ] or the resolution be-

tween two targets close in range and doppler, and

a) will result in a reduction in the ambiguities, at multiples of A
in time;

Since the ambiguities along the frequency axis are unaffected, for

this technique to be useful the spacing between pulses must be small enough

so that all doppler components are unambiguousv(i.e., £ v < %). The re-
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sulting ambiguities at multipies of A are reduced due to the "orthogona-
1lity" of the different pulses.

Unfortunately, the effect of the frequency shift on the central re-
sponse [ ¥(® >t > - 8,0) ] and the effect on responses at ¥[kA,0] are in-
timately related. If the frequency steps are sufficiently large so that
the filter response over much of the ambiguity surface is small, then the
resultent signal spectrum will have large holes in it. As a result, there
will be ambiguities in the central time response, i.e., several peaks along
¥(d > 1 > - 8,0). The presence of these ambiguities need not be a deter-
rent to the use of this approach, but it implies that the unambiguous range
accuracy is determined by 2% , the pulse spectral width, and not W, the
signal spectral width. Conversely, if the resultant signal spectrum is
completely filled and consequently there is only a single peak along
w(a‘g T> - $,0), then the pulse spectra will tend to overlap resulting in
higher sidelobe levels. |

One way of reducing these sidelobes is to use a pulse with a spectrun
more narrowly confined than §i§_§, Frequency shifting with pulses having

a rectangular spectrum offers the possibility of very low sidelobes.

A technique for achieving a completely filled signal spectrum is a

" pulse-to-pulse step in frequency of 1/6. This produces a signal extremely

similar to linear FM. This can be seen by examining the spectrum, which is

sin w &5/2
w d/2

spite the fact that all signals used are orthogonal, the maximum response

the sum of many spectra, separated by 1/5 in frequency. De-

of each filter to these orthogonal pulses is not zero but %; , where k is
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the number of spectral widths separating the signal and filter.>

Unfortunately with a linear change in frequency with time, there will
be a correlation between range and velocityee. In a pulse train, this
coupling is % cps/A seconds or BdA second/cps. If the prf is selected
slightly higher than the maximum doppler frequency, then the range varia-
tion, from minimum velocity to maximum velocity, 1s approximately 8.

To eliminate this objectionable time-frequency coupling, yet still re-
tain a completely filled signal spectrum, the use of a random sequence of

these same frequencies has been suggested. However, Kelly23 has shown that

the volume under the ambiguity surface within the central region is

2n
A B
' dw B
f f\p(r,w)dw: = =T (10)
o -B&

and is independent of the frequencies of the transmitted signal as long as
the narrow band assumption is valid. Consequently, the use of a randpm
sequence can only redistribute within the central region the same volume
inherent in the use of any pulse train of duration T and pulsewidth &, re-
gardleés of the frequencies used or their sequence. Even assuming that it
is possible, by sufficiently randomizing the sequence of frequencies, to
achieve a central region uncoupled in time and frequency, and of the shape
shown in Figure 4 this volumetric constraint limits the lowest possible
average sidelobe within thié region. Since the total volume is 8/T and the

volume in the central spike is = Eﬂ/WT, the remaining volume must be dis~-
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tributed throughout & region which is 28 by 1/A or an area of 28/A. The
lowest possible average sidelobe occurs when the volume is uniformly spread

and results in

_ BT - 2x/WT
Y(7,w - 28/A

1 - EﬁZWS (115

2n

or

<

3
€
"

Further, for n ffequencies separated by % s W/Qﬁ = % and therefore the

average sidelobe level is

1o
Wt,w) = 2o 7 (12)

B

A train of at least 50 pulses using 50 different frequencies will be re-
guired to meke it possible to achieve a 20 db average sidelobe within this
central region.

Consequently, frequency Jjumping will reduce the interference between
two targets separated by more than 8. It does not enhance the ability of
the waveform to resolve between two targets closely separated in time

and/or frequency.

2,7 Position Modulation

A variation in the pulse period, or the location of the pulses, by al-
tering the uniformiy sampled character of the waveform alters the size and
location of the ambiguities along the time and frequency axes. Further,
with the interpulse period varied, non-zero portions of the ambiguity sur-
. face are no longer restricted to the regions where T‘=.kA + 8. |
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It may be possible, by spacing the pulses randomly, to achieve a spec-
trum which is the result of a random addition of all the pulses at w £ O,
This is quite similar to the effect of a random phase reversal on the time

axis and should yield

¥(0,0)
n

~ y(0,w) . (13)

If it were possible, in addition to select the minimum interpulse spacing
larger than the time extent of the target ensemble, then v(t,w) =

0 for ]T ] > 8. The limitation to this approach is the necessarily low
prf, the poor velocity resolution and the necessity for a long time on tar-
get. In many respects this approach is worse than & uniform pulse train
having the same minimum spacing.

Another approach is to ensure that the pulse spacing is varied by at
least a pulse width, for example, as shown in Figure 5, so that the dis-
tancevbetweeh any two pulses in thé train differs by at least ® from the
distance between any other pair of pulses. When the pulse train is being
autocorrelated, the correlation (for |t | >8&) of each pulse with every

other pulse will consequently occur for slightly different time shifts.
.This results in the autocorrelation function shown in Figure 6, with many
non-overlapping time sidelobes (triangles for a constant fréquency rectan-
gular pulse), each with amplitude for l/n. The autocorrelation function

for a uniform pulse train is also shown for comparison.
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Consequently, as long as the sidelobes are no closer together than o

yigégl > y(7,0) for || >8

n

Tt is simple to show that this result holds for all w and that this

analysis accounts for the total volume under ¥(7,w).

o0
% .
o(t,w) = /ﬂ u(t - %) u (t + g) eIt gy (1)
.
)
where
1 5] ) ® ' =
u(t) = I tmE 2t 2t 3 for by = by, bpseeee B g -
= otherwise
and

]1[!%%@|2M ! (3)

‘ . *
By definition of the generating technique, u(t - %) u (t + %) consists
of, at most, the product of one pulse with another pulse. Hence, o(T,w),
for each of the time sidelobes, is just the o(t,w) for a single, constant

frequency, rectangular pulse sinusoid of duration & (shown in Figure 7).
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Therefore

: 1 sin dw/2
or = t; - t,,0) = ”§m¥‘ (1)

which has its maximum value when w = O. Consequently equation (10) holds

for all values of w, and

HO0) > y(<,u) =] >3 (15)
n
Further
o kAED
" 2 .. dw 1
J[ J[\ [o(r,w) | ©at - = = (16)
- kA~B

Since a sidelobe in time is produced by the correlation of each of the n
pulses with n-l other pulses, the total number of these sidelobes along the
time axis is n(n-1). Therefore, the total volume contained in these side-

lobes is .

(17)

]
=
i
B

JF d[“l o{1,uw) ’2 art %% = iE [n(n-1)]

[7] >3
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The rest of the volume can be found in the 6(d >T 2> - 8,w) region where
. R 1
there are the equivalent of about A/8 ambiguities each of volume T/ n

and consequently, a total volume in this region is

. o]

5,
, 2 aw A [ 1 } AT 1 1
f’g(“")l AT =% | Tfem |85 | AT (/8] | T n (18)
-0 =Q '
The total volume in the region 8 > T > -8, X >w > - X is still:-zor
Twleﬁ . Contours of the envelope of the central regions of the émbiguity

function for this type of waveform are shown in Figure 8. The restriction
on pulse spaéing; that no pair of pulses can be the same distance apart as
any other pair of pulses and that the increment in spacing be > 9, need not
be severely limiting to the signal designer. Further, to the extent that
this train "looks" like a uniformly spaced train, the near-in spectrum will
have the E%%Eﬁé characteristic that would be expected of a uniform train.

With a waveform having a few dozen pulses in the train, a reasonable

design approach is to use an "almost uniform” pulse spacing, since the

§%§E§§ response has lower average sidelobes than would the spectrum for a
random pulse spacing. Using this approach, the average prf should be high
~enough so that the first ambiguity at w = Qn/A is at a higher frequency
than the highest doppler frequency of interest. With a very large number

of pulses a random spacing could be used to yield not only the EE reduction
n

in range but also a % reduction in the doppler ambiguitiles.
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Fig. 8. Envelope of the ambiguity function for a non-uniformly spaced pulse train.




2.8 Criteris for Judging Performance

The use of one or more variations from a uniform pulse train appear to
of fer considerable freedom in the design of better (or at least different)
ambiguity surfaces., However all suffer from the volumetric constraint im-
posed by the duration-bandwidth product of the waveform and the target.
Given this nettlesome constraint only two criteria seem reasonable for
judging the superiority of one ambiguity surface over another and conse-
quently oné design approach over another:

a. Maximum Freédom from Interference

For signals of equal duration-bandwidth product; if over a region
where T, > 7 > 7 and 0 >w > w the ares for which Wl(T,w) is not
identically zero, is greater than the area for which we(T,w) is not
identically zero, then we(r,w) is the better ambiguity surface over
that region.

Y. Maximum Freedom from Ambiguities

For signals of equal duration-bandwidth product; if over a region
ﬁhere Taz'rZ"cbandwaszwb

llfl( T)w)max > ll're( T)w)max

then we(r,w) is the better ambiguity surface over that regilon.

The first criterion is applicable in an environment where the varia-
tion in cross section is extremely large or the target of interest is very
small compared to the background interference. 1In this cage, any object

located where V¥(7,w) # O is assumed to obscure the target of interest.
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The second criterion is applicable where the variation of target cross
section is not excessively large. It is this criterion of "uniform volume
spread" which is usually implied when the "ideal" or "optimum" ambiguity

surface is discuSsedlh’eu.

2.9 Conclusions

Given the target environment implied by the first criterion, it is im-
portant to minimize the non-zero areas of y(7,w) within the target space.
This requires that the pulse train have a uniform pulse spacing and uniform
pulsewidth. If possible the interpulse spacing should exceed the time ex-
tent of the target ensemble. As noted before this limits interference to
targets not differing in range by more than &, but results in a multiple
doppler ambiguity. Having done this, it is desirable to sharply amplitude
taper the train to reduce the frequency sidelobes to a minimum and to make
use of modulation on each of the pulses to increase the signal resolution.

Given the target environment implied by the second criterion, it is
desirable to reduce the ambiguities to a uniform level. This requires
spreading the volume out over large regions of the time~frequency space.
The most effective way to do this is to vary the interpulse reriod so that

the maximum number of time sidelobes are generated. This results in

HO:0) > y(,0) for 7] > (15)
0 |

The addition of a pulse-to-pulse frequency jump can be used to reduce the
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time sidelobes while the use of modulation internal to each pulse will in-
crease the resolution of the waveform.

Perhaps the most important conclusions that can be drawn are that, for
the two extremes of target ensemble used to compare ambiguity surfaces the
most effective solutions are, a) the use of the very old (and time‘honored)
approach of a uniform train, unambiguous in range, ambiguous in velocity;
and b) the usé of & new approach, a non uniformly spaced pulse train unam-
biguous in either range or velocity. In view of the fact that very little
new can be said about uniform pulse trains and very little has been said
about non uniformly spaced pulse trains the rest of this study will be de-

voted to the latter subject.




CHAPTER III
GENERAL PROPERTIES OF NON UNIFORMLY SPACED PULSE TRAINS

3.1 Properties of Optimum Pulse Trains

Since the side-lobe (or interference) level over virtually the entire
surface is directly related to the number of pulses in the train, it is
reasonable to examine first the limits to this number. The maximum number
of»pulées, for any Tw/en can be determined by examining the total number of
sidelobes generated and constraining their maximum time extent to 2T.

Each pulse in the train correlates with all the n pulses in the train
for a total of n2 correlétions, Since n of these correlations occur at

T = 0, the total number of sidelobes, N, is

N=n" -n=n(n-1)
Since the time duration of each triangular sidelobe measuréd at the one-
half voltage points is ©, then the minimum total time duration of all side-
lobes if they were adjacent to one another is

T = n{n-1)%

Since the total duration of the autocorrelation function cannot exceed 27T,

>a(a1) (19)



or

2TW/2% > n(n-1) (20)

and for n >> 1 [2Tw]2n > LI (21)

If equation (20) is an equality then the autocorrelation function is
as shown in Figure 9 and an optimum ambiguity surface (i.e. having a com-
pletely uniform volume spread with time) will have been achieved. Equation

(19) can be rewritten

2 T
§ * Tn-1 zZn
and since L = A
n-1 average
20
average .
———== >n. (22)

Finally, since the average prf should exceed the doppler spread
1

X > £
Taverage

DMax
>n (23)

If we were to limit the train duration bandwidth product to 5000 by limit-
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Fig9 AUTOCORRELATION FUNCTION OF OPTIMUM NON UNIFORMLY
SPACED TRAIN OF n PULSES

Fig 10 NON UNIFORMLY SPACED TRAIN WITH n PULSES
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ing the train duration, T, to 5 milliseconds and the pulse width, 8, to 1.0

usec then

6

(2)5,000x10"
1x107°

n < '/
N

= 100 pulses
max —

or -4O db. In

and the best sidelobe performance achievable is

~ (100)?
this case
100 (1x10'6)
FAN : = 50 psecond
average — 2
and
% = 20 keps > T
average

However, this performasnce, as will now be shown, cannot be actually
achieved. First the spacings necessary to achieve a uniform volume spread
will be calculated. Second, it will be shown that optimum pulse trains
with more than four pulses afe impossible.

Consider the train of n pulses shown in Figure 10. The total time du-
ration of this train (in time units normalized to &, the pulse width)* is

i=n=-1

S

T = /} Xi where the Xi's are different integer multiples of &.
—

1=1

*This normalization will be generally used throughout this thesis.
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But from equation (19) to achieve a uniform volume spread

_ n(n-1)
T = 2
i=n-1
. T
\ _ n{n-1)
) % = =3 (24)
i=1 )
However
J=n-1
;ﬂ 5= n(n-1)
A 2
J=1

Therefore the Xi‘s must be the first n-l integers, since any other series

of n-1 differing positive integers must have a higher sum than Eig:ll,

=

Therefore to achieve a uniform volume distribution with time the
spacings between pulses must be some arrangement of the first n-1 integers
such that no two pulses are the same distance apart as any other’pair of
pulses. A simple consideration of how theée spacings can be arranged will
gshow that for n >4, this is impossible.

Consider somewhere in the sequence of interpulse spacings the spacing

equal to 1. If the adjacent spacing is any integer except n~1 then the sum

of these two adjacent spacings will be equal to another spacing and two
sidelobes will occur at the same time. Therefore not only must the unit
spacing be adjacent to the n-1 spacing but it must also be the first
spacing since no spacing other than n-1 can be adjacent to it without

causing an equality.
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Since the spacings from i through n-1 must be used and the spacing
between the first and third pulse is n, then all additional sums must be
greater than n. The number 2, when summed with any number from 1 through
n-1, will be greater than n only when that number is n-l. Therefore the
two unit spacing must be also adjacent to the n-l unit spacing. Since all
the integers from 1 to n-1 must be used, the sequence, if it is to include

2, must terminate with 2. Consequently the maximum optimum sequence is a

train of four pulses with the spacings and autocorrelation function shown

in Figure 11.

ﬂ; 3.2 Approaches to Non Optimum Pulse Trains

Since optimum ambiguity surfaces with a completely uniform volume
spread cannot, in general, be generated using these non-uniformly spaced
pulse trains three alternative approaches to further study suggest them-
selves:

a) relax the unit sidelobe level constraint and investigate achievable

uniformity of volume spread using the spacings 1 - n-1;

b) retain the unit sidelcbe level constraint, make use of the spacings

from 1 » m > n-1, and determine which spacings yield n pulses with the
minimum TW/2x;

c) retain the unit sidelobe level constraint, make use of the spacings

A= A+ n-2 and examine the limits on n vs A and TW/2x.
Alternative (a) presents several difficulties, in particular the pro-
blem of determining what makes a reasonable criterion for uniformity of

volume spread. The significance of using the spacings 1 - n-1 can also be

~lo-
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guestioned since they relate only to the optimum pulse train.

Alternative (b) is a reascnable approach to finding waveforms with as
high a performance as possible (n maximum) for as small a price as possible
(TW/Eﬁ minimized.) A limitation of this approach is that the large varia-
tion in interpulse period may result in a poorer spectrum than could be
achieved with a more nearly uniform spacing.

Alternative (c) is equivalent to requiring, in addition to the unit
sidelobe constraint, that the minimm TW/2x be achieved given that the
Tirst sidelobe can be no closer to the central response than A. This is
often important when closely spaced targets are to be examined and it is
desired that these adjacent targets not interfere with one another. In
radar astronomy the examination of a diffuse plasma might suggest such a
requirement. With a reasonable selection of A, the clear area of the ambi-
guity surface (the area of infinite contrast) is virtually the same as for
a uniform pulse train. Further, the addition of A to all spacings tends to
make the train more uniform and improves the response along the doppler
axis.

Considering the advantages inherent in the last of the three alterna-
tives and the reasonableness of the additional constraint this analysis
‘will be limited to that sub-class of possible spacings.

It should be clear that there will often be more than one waveform, or
sequence of pulse spacings, which are optimum in the sense that, a) théy
have the smallest TW/Eﬂ consistent with a clear distance A to the first
sidelobe and, b) they have non-overlapping or interfering.sidelobes in

time.
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Three of the more obvioué approaches to generating a non uniformly
spaced pulse train with this constraint are shown in Figure 12. The mono-
tonic increases in interpulse period and the alternating increase in inter-
pulse period shown in this Figure could just as easily have been decreases.
This would merely have required redefining A -(n-2) as A7, A -(n-3) as &/ + 1,
ve veeeey Das A + (n-2).

Which of several possible trains should be used would be determined
by, &) the spectrum ¥(0,w); 0 < w < 2x/A, b) the approach to the design of

the matched filter, c) the sensitivity to errors and hardware limitations,

and d) the possibility of increased freedom from interference by greater

igolation of time sidelobes. These considerations will be discussed later.

3.3 Results for Trains with Few Pulses

Before discussing general approaches to obtaining the variations in
interpulse period and the limits to the performance achievable with each of
these gpproaches, it is interesting to examine the performance actually
achievable for pulse trains short enough to permit an exténsive examination
of all combinations of spacings. Figure 13 shows a plot of the TW/Eﬁ ac-
tually required for several values of n, the minimum (but generally un-

5/2

2
‘realizable) TW/2x and the functions EH__ ang BHR2

vs the number of
pulses, n. The values of TW/Eﬁ actually required for several values of n

and the sequence of spacings required are shown in Figure 1h.
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Fig 12 THREE APPROACHES TO GENERATING NON-UNIFORMLY
SPACED PULSE TRAINS
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n (TW/Zﬁ)optimum (TW/ZW)required Seduence [gloer;llailslezivicgghf’
2 1 1

3 3 1,2

4 6 : 1,3,2

5 10 14 2,4,3,5

6 15 20 2,6,5,4,3

7 21 33 4,7,5,8,6,3

8 28 49%* 7,4,8,5,9,6,10

9 36 68% 6,7,8,9,10,12,11,5

12 66 110% 5,12,8,15,11,7,14,10,6,13,9

14 91 195% 9,14,19,11,16,21,13,18,10,15,20,12,17

Figure 14: Tabulation of TW /2T and sequence
of spacings for small values of n

% These values are the best achievable after an extensive but not exhaustive
search.
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CHAPTER IV
ANATYSIS OF TWO SPECIFIC APPROACHES TO SELECTION OF INTERPULSE SPACINGS

4.1 The General Approach

To determine, in the general case, how the Xi’S should be chosen to
ensure non-overlap of time sidelobes it is necessary to compute the loca-
tion of each of the time sidelobes. Figure 15 shows one approach to an
orderly handling of this problem. The "matrix" of nunbers is the time dif-
fefence between all pulses in the train shown in Figure 12c. The times be-~
tween adjacent pulses are located, sequentially, in column 1, the time be-
tween alternate pulses in column 2, the time between evefy third pulse in
column 3, etc. With n pulses there will be n-1 first differences, and con-
sequently n-1 numbers in column 1. There will be n-2 second differences
and so n-2 numbers in column 2, etc., and in column n-l there will be only
one number, equal to the total time between the first and last pulses.

With the time difference matrix written in this form it is evident
that within the first column no two numbers will be the same if all the X's
are different; within the second column no two will be the same if the sums
of consecutive X's, taken two at a time, are different; within the third
column if the sums of consecutive X's taken three at a time are different;

" within the fourth,column if taken four at a time; etec. Further, 1f the
mubers within each of the columns are different then it is clear that some
A is large enough to ensure that the maximum number in every column is
smaller than the minimum number in the next higher column. Conseguently,

if the numbers within a column are unequal and the columns are ordered soO
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that all numbers in column 1 ére less than all numbers in column 2, which
in turn are less than all numbers in column 3, ete. then no two numbers
will be alike and non-overlap of sidelobes will be assured.

The difference matrix also points up the fact that the numbers in suc-
cessive columns are not independent of one another. If all the numbers in
- column 1 are different then all adjacent numbers within every other column
are also different. If all the numbers in columm 2 are different then all
glternate numbers within each column are different. In general if all the
numbers in column ] are different, then all the elements j numbers apart

within all the other columns are different. Consequently if the numbers

a
2

of the columns are also different. The number of independent comparisons

within columns 1 through = are different then the numbers within the rest
actually necessary to assure no equality within any of the columns can be
rapidly determined.

Assume that A has been chosen so that the maximum number in each col-
umn is less than the minimum number in the next higher column or that

Colum (2) Maximm < Column (a+l) Minimum  for [n-1 >a > 0]

There are (n-1) terms in the Ffirst column. For all terms to be com-

pared requires a total number of comparisons equal to

@}
i

(n-2) + (n-3) + (n-4) + ..... + (1)

i

(n-2) . (n-22+ 1) _ (n—l)e(n-Q

There are n~2 terms in the second column. Inequality of all first column
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terms guarantee inequality of all adjacent second column terms. Therefore,

for all unproven terms to be compared requires

«Q
i

(n-4) + (0n-5) + (n=6) + ..... + (1)

(n-b) (n“l*z+ 1y o (n-3)2(n-u)

Similarly with the n-3 terms in the third column, all adjacent terms are
unequal due to the first column comparison and all alternate terms unequal.
due to the second column comparison. Therefore, the number of comparisons

required is

Q
L]

(n-6) + (n-7) + (n-8) + ..... + 1

]

-6 + 1 -5 -6
(n-6) (A& x2) _ (n-5) (no6)

Therefore, in Column (a)

¢ = (n-2a + 1) (n-pa)
a = 2

and when a = % or = C =0

As was indicated before the numbers in the columns from % to n-1l are dif-
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ferent providing the first 2 are different.

2
Finally
i=%M§x G=n/2
_ _ (n-22+1) (n-2a)
’ Cp = )_, G = Z 5
=1 d=1
_ EE _ n _n__ n(n+l/2) (n-2) (25)
Cp=i5-8% "15° )

With this nunber of computations necessary to guarantee that no two
numbers within any of the columns are equal, a cut-and-try approach, for
example, choosing the X's at random and then making the necessary compari-
sons, is extremely impractical. Consequently some constraint must be
brought to bear on the sequence of X's to permit an orderly examination of

the limits on n as a function of Tw/eﬁ and A.

L.2 Train with an Arithmetic Increase in Interpulse Spacing

4.2l Limits on TW/2x and A vs n

Figure 16 shows the time difference matrix for the pulse train having
an arithmetic increase in interpulse spacing, shown in Figure 12a., Since
the numbers within each coluﬁn are monotonically increasing, they cannot be
equal. Consequently no two numbers in the difference matrix have the same
value (and no two sidelobes occur at the same time) if A is selected so
that the maximum value in column (a) is less than the minimum value in col~-

wmn (a+l) for n-1 >a >0,
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Therefore if

Column (a) Maximm < Column (a+l) Minimum (26)
then
.3tea _3ra+l
alts + k 5 ]MaX < (a+l) [A+ k 5 ]Min
ald+n - 32E2) < (an1) [+ (an) - 2EEES
and
A
n < z + a + 2
for n-1 >a >0
) ) For any A, the tightest bound on n occurs when
il A
a-é: [ g + 8 + 2 ] =0
or a = \/ A (27)

~and for this value of (a) the lowest value of n, n, is

nL<Jé_—_- + [a +2-_-ej'a +2<n +1
&




or

5.2 S1.2
<%2 )<A5<%2 ) (28)
Since
n-1
TW/2x = —Ts- = Z [ A+ (i-1) 1= (n-1) A + (n-lggn-Q) (29)
i=1

- oy 2f (1) (ng-2) 1 (a 1)(n -2)
. (n-1) ({2 ) + 5 < mifex < (n;-1) (%-—-) + 0 - Oy

n (n, -1)(n -2) (o -1)(nS -3)
L pn

< TW/2x <

(30)
and for nL >> 1

3

o

~[— = TW/ex (31)
Equation (30) bounds the minimum number of pulses obtainable for any

Tw/ 2n, using this approach to synthesizing non uniformly spaced pulse

trains. To bound the maximum number of pulses achievable with this ap-
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proach it is necessary to insure not only that the maximum in one column
exceeds the minimum in the next but that a number in one column equals a
number in another column. The monotonic increase by (a) of successive num-
bers in column (a) limits the maximum increase in the value of n. t£o no

more than (a) before an equality is assured.

Consequently
nU = I’LL + a
and
nU<2lf”2x+2+a5nU+1
or
nU < 3\[& +2< nU + 1
| nU -2 N\ nU -1\
and consequently <—-3—-— <A< (\-——3“—) (32)
Using equation (29) this results in
(n_-2)(n . -1)(n+2 1/2) (n,-1)(n. 2 + 2 1/2 n_-8)
R ey D2 /D Ly e
and for ny >> 1
3
i ~ TW/2n ' (34)
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Consequently, for large n, the bound on n2 , the maximum sidelobe level, is

( oTW/ 2% >2/3 >n® > ( LTw/2x >2/3 (35)

whefe ‘ .‘ﬂ%_@_)_ > Y(t,w) for |t| >8& (15)
. n

Plots of n vs A and TW/2rn for the upper and lower limits obtained
here, as well as for the actual maximum values calculated for several
values of n are shown in Figures 17 and 18. A detailed examination, after
many such calculations, shows the lower bound on n to be a closer bound and
probably a better index of actual performance than the upper bound.

The performance for a monotonically decreasing spacing between pulses

is virtually the same as for the monotonic increase, with

n (n -1)(n -2) (0 -1)(n,® + 1)
T T

< TW/2n < (36)
and for o 4 >> 1 also results in
2
3 2
—n:;’— > mi/2x > ?-Tg— (37)

The uniformity of volumn spread can be determined by comparing the

=58~
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performance achieved with the optimum performance achievable.

For AsﬁSE and TW/Qﬁ Q‘E , a completely uniform volume spread corresponds

to

0,0 0,0)  ¥(0,0
Wew) < Bgtd i n L - (ns !
TR s

But the actual performance is

ﬂ%’(‘)‘l > Y(T,w)
n

for |[t] > B (15)

Consequently the efficiency of this technique towards achieving a uniform

volume spread is

=
il
sl

(38)

4 .22 The Spectrum

The .spectrum, H(w), of a train of n impulses, with an arithmetic in-

crease (or decrease) in interpulse spacing (shown in Figure 19) is

(o}

H(w) = f 2 { u(v+9) +u (s -8  «

-515



A= | A A+ | —— A+2 A+3

-4 4 L in RO
Al > o .3 50+ 250 +3 b+ 6

Fig.19 Part of a pulse train with an arithmetic
increase in interpulse spacing.
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Jw

.38 s 587 .
+ [ eJm 2 Jw 2 o3

TA L TA
[ oI 3 jw e3w6

+ + e 2
+ ees n-2
2
.l ) .
“\ . o
+ !"eJm f )A+e-3w<-—-—-21- ) _' I >_» K
N k=0

The only difference between the spéctrum of this train and the spectrum of
a pulse train with a constant interpulse period is the introductibn of an

- equal phase shift, of the form eijk, fo symmetrically spaced pulses. This
phase shift vs n is shown in Figure 20. For w = 0 all the phase terms are
l[gi andvthe spectrum is identical to that for a constant interpulse period
train. As long as w is small enough so that the maximum variation in phase
'is less than * % from the average phase across the pulse train we may ex-

pect the two spectrums to be virtually indistinguishable. This requires

that
n-2
2
. T
D > 7
—_— <
) W<y
k=0

-l



MAX

Fig.20. Differential phase shift due to arithmetic increase in spacing
as a function of pulse position for a train with n pulses.
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or

-2 = Bn(n-2)

L3

[~ |

i
o

Since n Rﬁ@j LASS

then for large n

o
A
o
Do
o
]
Bl

Since, in the design of these waveforms it is reasonable to set AT 7 L )
D Max
then
1 D Max
T, < 50377 y = 5 (40)
7D Max

Hence we would expect a virtually exact correspondence in spectral response
between a uniformly spaced train and a monotonically varying train as far
ags one-half of the distance to the first doppler ambiguity. This corres-
pondence can be seen in Figure 21 which shows the actual spectrum of a
train of 16 pulses with an arithmetic increase in interpulse spacing, and
the spectrum of a uniformly spaced train of 16 pulses having the same dura-

tion.
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An analogy can be drawn betweén the effect of the non-uniform spacing
on the spectrum and the effect of a linear sweep in frequency, coupled with
an amplitude tapering of the low frequency (large interpulse spacing) com-
ponents.

To determine the actual extent of the non uniformity consider the

fractional variation in interpulse spacing.

-2

=}

Az~ Yin _ [Dgin * (n-2)] - &y
AMin ) AI\i’in

Bl

P

Consequently the larger the value of n the smaller the fractional variation
in interpulse period (and the smaller the equivalent frequency sweep and
amplitude taper) and consequently the more nearly uniform the pulse train
becomes. TFor n > 16 a spectrum even more like that of a uniform train will

result.

%,3 Train with Interpulse Spacing Arithmetically Increasing from Center

%.31 Limits on TW/2x and A vs n

The nunber of pulses achievable for any & of TW/Eﬂ, can be increased,
‘using the pulse train spacing shown in Figure 12b rather than the arithme-
tic increase of interpulse period. Figure 22 shows the time difference
matrix for this pulse train. The general term for the minimum in each col-

won is

forn>a >0
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i

The general term for the maximum in each column is
[&-(a+1)+k] for  Z > >0.

The elements within any column are clearly unequal. Then no two elements

in the difference matrix have the same value if

column (a) Meximum < Column (a+l) Minimum (26)

CLala-(a+ 1) +nl<(adl) b+ (a”l'l; (21) [a < 3]
n < é’_+ % (a + 1)
When
%g [ é + % (a+1) 1 =0
‘OI'
2= (212 (1)

then n is most tightly bound.
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3
and n<,\f6a+25_nL+1

or (m-%) (%z) | (42)

and since ' ™W/2n = (n-1) & + iﬁl?-%-@;}—)— (29)

e <%*>(“f‘33> (mgn) (2 s oy )
: S z

< TW/2n < (43)
»For n. >} 1 -
3 .
n—%‘— ~ TW/2n - (44)

-The upper bound on the performance of this approach can be evaluated 1f,

as before,

o te = ny

-1~



or since

3, [2afallesl2]s3
nu<,\f6A+2+,\[3A—,\/A ['\i6+'\[§_l+25nu+l

or

1
<acg (%-£~> (45)
T |

N
&
t
win ojw

L (n-l)£3n2 + 7o - 25-1/4) < mifen < (n-l)(3n2 + 13n - 31-1/4) (46)

32 32
and for nU >> 1
3
By omw
— ~ 3 (&7)
lOg

Consequently for large n the bound on n2, the maximum sidelobe level is

2/3 2/3
< 10% TW/ 25 /\ > n° _>_< 6T/ 2 ) (48)

For a > % the previously derived limits on A are not valid. For these

larger values of (a} the general term for the maximum is:

for k even:

-T2



c=k-1 c2=2a-k-l

bl =

ah + ZJ cy + Z} C,
c=]l Even c2=0 0dd

General Term for Maximum

]

k(k-2) . (2a-k)°

k2 k(2a4+1) + 2a°

= al + 5

for k odd:

=~1: Ce=28. k-1

> ¥ } c,
=1

Odd C _O Even

General Term for Maximum

(x-1)° | [(2a-k)° -
al + Ah -+ ( = I

k% -k (2a + 1) + 28

2

2
al +

Since both are the same only one inequality need be examined namely

Column (&) Maximum < Column (a+1) Minimum

n® - n{2a+l) + 28°

alh + >

< (a+l) A + éﬁ%iil

or

(n-a)2 é (n+a) <A

=73~




The left hand side of the inequality is largest when a is smallest. 3But

the minimum value of a for which this limit is wvalid is 2 and so

2
n\2 n
A>(n"§) -+ 3) 2 gy
2 - <}
But the limit on A when a < % is
\/6A + % >n
or
n2 - 3n + %
A > z
and since
2 9
n -3n+}z S n2-12n
-6 8

2
2

(41) through (43) are valid for all (a). Figures 23 and 24 show plots of

for all n, then the tightest limit on A occurs when a < 3, and equations

n vs A and TW/Zﬁ, respectively for the upper and lower limits as well as

for the actual maximum values calculated for several values of n.
Detailed examination of these two figures shows that, as before, the

lower bound is a slightly better index of actual performance. Again, as
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was true before, the performance for an alternate decrease in spacing is
virtually the same as that derived for an alternate increase and goes to
the same limits for n >> 1. The efficiency of this approach toward a-

chieving a uniform volume distribution, is

3
n

Nl

or an improvement of 3:2 over the previously examined train.

4,32 The Spectrum

The spectrum, H(w), of & train of n impulses, with an alternating in-
crease in interpulse spacing is

o]

H(w) = Jp ejwt ‘[r

~-CO

u (t

.z.é «‘--é
(o) ' 2) * uo(b 2)

1 1
+ uo(t +150+ 1) + uo(t -1358- 2)
1 1
+ uo(t rReso+ L) + uo(t -25b - €)
'+u(t+3-—]1A+9)+u(t-°—]-'-A-12)
o 2 ) © 2
F o veees +
. j:n j:
n-1 N\ n-1 ;ﬁ ,\
+uo<t+ 2A+ LJ>+uo(t EA- “—Jj/ dt
J=0dd J=even
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AN
—Jw —

Jw 5

A 4
. . Hw) =e 2+ e

e 1 ol
L el s e+ 1]l | -jull 5+ 2]

1

. ' . 1
+ er{Q E'A-+ 4] + E~Jw[2

§A+6]

ra L e L
L w35 A+ 9] w334+ 12]

J=nr2 - J=n-2
( n-1 \ ] . [ n-1 N l
vl | TF A 24‘]4+er£__2[‘3+ ZJ 5
J=o0dd j=even

Finally,

LA VAN . ogad . o gt
H(w) = er 2 + e™I¥ 2 + eaw(lQ &+ 1) + est er(12 A+ 1)

o ral . il
. e”w(2§ A+ L) 4 oJwad er(22 A+ k)

. 7L . 1
+ er(3§A +9) + ewgé er(3§A +9) + ...

. f n-1ly ° n-3
+ e %"("'2") A+ > 3 j!
j=odd
n-3
. n-2 <
» 3000 { Ear ) g (19)
’ j=odd
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n-3
' T 2
£ %A» ZJ 3 =(§ﬁ?-)
J:Odd
2 2
(n-1) . _(n-1) =n (n-2)
i e e

or n>>1

then the only perturbation is the phase term effecting one of the pair of
almost symmetrically located pulses. But the maximum value of this phase

tmm,%%x,is

p ) Wy (njél
Max 2
and since
~ 20 12n
“p = ey S AN 5
n
127 n-2 6
then fex=3 - (F ) =g
For n = 16 g =~ 70°
Max

Figure 25 compares the spectrum of a 16 pulse non-uniformly spaced tfain

and a 16 pulse uniformly spaced train of‘équal duration. The correspon-

dence between these spectra is very close at least half way to the doppler

ambiguity. Since all these phase perturbations decrease with n it can be

expected that for larger values of n the spectrum will be even more like
Sin nx

the =in % of a uniformly spaced train and the correspondence will remain

close for even larger doppler shifts.
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CHAPTER V
A PSEUDO-RANDOM SELECTION OF THE INTERPULSE SPACING

5.1 Evaluation of Conditions for Worst Performance and Best

In‘ one sense it should not be surprising to find that an alternating
increase in spacing yields 'better performance than a monotonic increase.
Tt can be shown that of all the arrangements of the (n-1) numbers from A
thréugh A + (n-2) which result in a non-overlapping of sidelobes, the
arrangeﬁent yielding the worst performance is a monotonic increase or de-
crease. Consider the criterion which determined A.

1. Column 1 Maximum < Column 2 Minimum

A+ Xi <25 + Xj + X where X, is the largest number in

k B .
column I and (xj + Xk) is the

or Xi - <Xj + Xk) <A smallest pmnber in column 2.

2. Column 2 Maximum < Column 3 Minimum

208 + X +Xm<3A+Xn+XO+X

, where (Xﬁ + /(m) is the largest

b
number in column 2 and (Xn»+ Xg *
or (X, +% ) - (X_ +X_ +X%X)<A %) is the smallest number in
£ m n o P he)
column 3.

a. Colum {a) Meximum < Column (a+1) Minimum

kt+a-1 i=j+a Koo
o o e
ah + ) X, < {a+l) & + 2 % where > X; is the largest number
* S S in colum a, and
i=k i=] i=k
k+a -1 i=j+a .
X, - ) % <A ) %, is the smallest number
= et i, in column (a+l).
i=k i=] i=J
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But the largest sum of (a) consecutive X's is maximized and the smallest
sum of (a+l) consecutive X's is minimized when the X's are chosen to be the
arithmetic progression 0,1,2,3 ..... n-2. When the X's are chosen this way
then A is maximized for any value of n and the result is the worst perfor-

mance possible. In this case

k+a -1 1=n-2
roo 1 . o [ 7
] = ) W o= o= - 2 - !
Max ] )_,, Xy |- /_J X 5| 2n - 3 aﬁj,
i=k i=n-a-1
and
i=J+a i=a
T w T
\ _ a(a+l)
Min Z_l Xl | 2._1 X = 2
iz ] i=
a [ 2n-3-a 1 - ﬁiﬁi&l <A
2 ] | 2
a { n-a-2 } < A
i A
~and

2
(n-2) . _n-2
T < A which occurs for a = 5

But if an arithmetic increase in interpulse period results in the lar-

gest A and consequently the largest duration bandwidth product, what ap-
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proach results in the smallest duration-bandwidth product? The answer ap-
pears to lie in the fact that A (and consequently TW/2r) is controlled by
the difference between greatest and smallest numbers in adjacent columas.
Consequently a reasonable approach is to try to minimize the highest num-
ber and maximize the lowest number within each column*. This can be done
by distributing the high and low values of X more uniformly through the
pulse train. However, if the distribution is too uniform then the sums of
several adJjacent spacings in different parts of the pulse train will tend
to be the same. Consequently a not-too-uniform sequence of the integers
from O through n-2 is required. The difficulty with a random selection,
as; for example, from a table of random numbers, is that there is no guar-
antee that two elements within a particular column will not be equal. No
Juggling of A can eliminate such an equality.

Perhaps the best approach is to use a reasonable technique for gener-
ating the integers O through n-2 and examine what limitations are imposed
on this technique by the requirement for non-eguality within any column of

the time difference matrix.

7N is actually only bounded by the difference between maxima and minima in
adjacent columns. Interleaving of the numbers in adjacent columns is cer-
tainly permissible. However, when the density of sidelobes is fairly high,
the probability of equality occuring as the columns are overlapped in-
creases rapidly. The additional reduction in A under these circumstances

will be quite small.
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5.2 Use of the Complete Set of Least Residues Modulo (n-1)

5.21 Conditions on (n-1)
Let us consider, as the Xi’s for the pulse train shown in Figure 12c,

the sequence of (n-1) integers

X = [Xo + iq] modulo (n-1) (50)

for i=0,1, 2 ... n-2
If n-1 and g are relatively prime then the first n-1 numbers in the se-

guence will_be some ordering of the integers from O to n-2. If we denote

any number in column 1 as Xi then the sequence of successive numbers will

be (from left to right)

Xi-i-l;q

Xi + 3q - or

X + 29 or Xy Lg-(n-1)
X +q or Xy + 3q-(n-1) or

Xy or X+ 2q-(n-1) or Xy + hg-2(n-1) etc

X+ g-(n-1) or X+ 3g-2(n-1) or

X+ 2q-2(n-1) or X, + bg-3(n=1)
Xy o+ 3g-3(n-1) or

X+ hg-b{n-1)
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We know that all numbers in the first column are different due to the
generating technique and the fact that n-1 and @ are chosen relatively
prime, Every number in the second column of the time difference matrix,

being the sum of two adjacent first column terms, can be written as

2Xi + g
or 2%, + g-{(n-1)
Clearly if 2X, + q # 2y +a i
# exj + g-(n-1) ii
and
X, + m-(n-1) # zxj +q iii
# 2% + q-(n-1) 1111

for all i and j then no two second column numbers can be equal.

Therefore if X, # X5 i, iiii

and |x, - xj[ ,é-n—é-l- Cai, ddd

no second columnm terms are alike. Xi and Xj are both first coclumn terms

and cannot be equal; if n-1 is odd, then Eéi is not an integer and

n-1
Xi—xj' # - -

-85~




Therefore for all second column numbers to be different

(n-1) modulo 2 # 0 (51)

Every number in the third column of the time difference matrix is the
distance between every third pulse, or the sum of three adjacent first col-

umn terms, and can be written as

3%, + 39
3%, + 3g-(n-1)

3xi + 3g-2(n-1)

or 3%, + 3g-3(n-1)
If
éxi + 3m % g 3xj + 3m |
3%, + 3m~(n-1) g y g 3xj + 3m-(n-1)
3 3m-2({n-1) g E 3xj + 3m-2(n-1)
) (

3%; + 3m-3(n-1) 3y + 3m-3(n-1)

then inequality of all third column numbers is assured.
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Therefore if

1
E 0x E§~
( 1x n-1

xi-x|,4§ 3
( 2x n-l
( 3
( n-1
|

or {since X, = Xj < (n-l)] if (n-1) modulo 3 £ O (52)

then all third column numbers are unequal.
In a similar way it can be shown that the condition for inequality of

all colum (a) numbers is

(n-1) modulo a £ 0 ' (53)
Since this must be true for all (a) up to g , then
(n-1) modulo 2,3,%,5 ..... g £0 (54)
or
(n-1) must be a prime nunber. (55)
Therefore 1f the X's are selected as
Xy o= [ Xg * ig] modulo (n-1) (50)
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where (n-1) is a prime number then inequality of the numbers within all
columns is assured. Since there are a total of n-l1 numbers with which to
begin the sequence, and a total of n-2 different values of ¢, then there

n-2)(n- . * . .
2% L different sequences , all of which have no two numbers alike

are
within the same column of the time difference matrix. [These ﬁE:g%iE;ll
sequences do not include all possible arrangements having this desired
characteristic. Among the n! total arrangements.possible, many other sat-
isfactory ones may exist. ]

5.22 Selection of Xo

It will be shown that the minimum values of A and TW/2x, for any g,
will vary only slightly with Xo’ Further, while the explicit dependence of
A and Tw/zﬁ on Xo is, at present, unknown, there is a straight forward ap-
proach for obtaining the Xo resulting in the smallest A and TW/Eﬂ for any
particular q.

Figure 26 shows the time difference matrix for (n-1) = 11, q = & and
X, = 1. Note that this is also the time difference matrix for (n-1) = 11,
g=7, and X_ = g, [This can be most easily seen by reversing the se-
quence of numbers within each of the columns.] Given this matrix a bound

on A can be obtained by finding the largest value in each column and the

“smallest value in the next higher column. An upper bound to A is the lar-

*Each sequence appears twice, once as XO, Xl’ X2, sy X and once as

n-2
Xn-e’ Xn-3’ seay Xe, Xl, Xo.
#¥In general the matrix for [n-1; q'; XO'] is also the matrix for

[n-1; n-1-q'; (n-1-q' + xd'.,) modulo (n-1)].
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gest difference plus one. Inﬁerweaving of the columns can be accomplished
by determining if a value less than the upper bound will still not result
in an equality of two nuwbers within the matrix.

To determine the minimum A for any value of XO, given g, it 1s neces-
sary to compute the complete time difference matrix, shown in Figure 27 for
n-1=7; ¢ = 2,5. Although the number of computations is doubled, the
minimum A for two values of ¢ and all values of Xo can be determined. The
lowest matrix, within the solid lines, is for g = 2; XO =0, or g = 5;

Xo = 5. The next matrix, although different from the first by only one
line, is for q = 2; XO =2, or g = 5; XO = 0., The next, different from the
first by two lines, different from the second by only one line, is for

a

il

2; X = 4 or q = 5; X, = 2, ete. Consequently all the matrices for

[

q 2 and 5 are avallable and can be evaluated.

With the high correlation between these matrices for successlve values
of X, and for q' and (n-1-q'), there will undoubtedly be a high correla-
tion for the values of A and TW/2x computed for each of these cases. Con-
sequently it is reasonable to expect only a slight variation in A and Tw/zﬁ
with a variation in XO.

5.23 Selection of g

Using the procedure just outlined, it would be necessary to calculate

n-2

and evaluate of these complete time difference matrices to completely
exhaust all possible sequences and to determine the minimum A and TW/Eﬁ and
the values of ¢ and XO which achieve this result. Since it is not possible,

at present, to bound A, the calculation and evaluation of at least one time
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Columnl Column 2 Column 3 Column 4 Column 5 Column 6 Column 7

3 4 10 14 16 16 21
1 7 11 13 13 18 21
6 10 12 12 17 20 21
4 6
P 2 T M0 ) AT
: 0 5
115 8
: 3 4
111 7
e 10
5 ! —
. /'/ 2//,’ 2
LI
::‘i 0
{‘:};

Figure 27: Complete time difference matrix for (n-1)=7;q9=2,5
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difference matrix is necessary to assure a proper value of A. To reguire
doubling this effort is conceivable. To require multiplying this effort by
Eég is not.

However this additional effort is not required to achieve a low W/ 2x,
but only to achieve the minimum. Aﬁ examination of the effect of g on the
minimum Tw/en for (n-1l) = 11 and 13, and on the randomness of the sequence
of X's, indicates a reasonsble approach for selecting a value of g result-
ing in a low (if not minimum) TW/2x.

Figure 28 shows a plot of the minimum TW/2x vs ¢ for (n-1) = 11, 13
gnd for XO = 0. The general shape of these curves is reésonably represen-
_tative. The symmetry expected about g = Eéi due to the high correlation
between the numbers in the matrices for ¢' and in the matrices for n-l-g'
is evident.

It should not be surprising, at this point, that the sequence for ¢ = 1
results in the highest TW/Eﬂ. This sequence of interpulse spacings,

A; M1, M2, M3, ete, 1s identical to the sequence analyzed in 4,2 and
shown in 5.1 to yield the worst performance. However it may be surprising
that the best performance is not achieved for q = g , or its complement
E%E , since these values might be expected to result in the most random
ordering of the falues of X. However these particular values of g result
in a decided non-random distribution of the large and small values of X, as
is shown for the sequence of Xi‘s for n-1 = 11; q = 5 3 Xo = 0, where

X.'s =0, 6,1, 7,2, 8, 3,9, 4 10, 5,
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Fig.28.  Minimum TW/27 as a function of q for n-1= |l and I3.
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There are in faclt several values of g, in particular g = 1,

o

n
:E;
n n . . - . ot
IEEST etc. and their complements, which similarly yield a sufficlently
ordered. sequence of numbers that makes 1t possible to determine the rela-

tionship between A, Tw/eﬂ, g, and n for them. In these specific cases 1t

turns out that

A n3/2 (562)
™ . .5/2 :
o n (5()b)
for q = nl/g (56c)

What is misleading aboubt these results (which are offered without
proof) is that they do not represent the conditions for achieving the mini-
mum TW/Qﬂ, Tt is the same orderliness and non-randomness of the seguence
of X's which enables the limits to be determined, that also limits the
achievable performance. However the good results achievable even with
these parﬁicular sequences, should be a lower limit to the performance at-
tainable in general.

Tt appears, From Figure 28, thaet the minimum TW/2n does not vary slg-
> > 3 i P oY

s o , X n-1 - . ca s
nificantly for the values of g R:¢5~ . Consequently it is reasonable to
conclude that the selection of
 n=1 e
q 5= (57)
b
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: *
will result in a TW/2x reasonably close to the minimum .

The performance achlevable under these circumstances should be approx-

imately
23/
A= g (58a)
and
5/2
TW/ex ~ T (580)
but it appears unreascnable to expect to achieve
n
A= p log, n (5%.)
and
n2
TW/2n =~ ; log, n (59b)

Figure 13 shows a plot of equations (58b) and (59b) vs n, with the

actually required TW/2n for several values of n also shown.

5.3 Conclusion
The use of the complete set of least residues modulo (n-1)
where

(n-1) is a prime number (55)

will yield a sequence of X's resulting in non-equality of the numbers with-

¥Por large n, neither-% nor Eég are suitable values for g.
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in the columns of the time difference matrix. Although the best perfor-

’

mance achievable with this approach is not yet adequately bounded it can be

expected that when

q~ S5 ' (57)
then /
3/2
Am T (582)
5/2
and TW/2n =~ EFE~ (580)

can be realized. The initial value of the sequence of X's'does not appear

to have much affect on the value of TW/2x achieved.
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CHAPTER VI

COMBINATION OF NON-UNIFORM SPACING WITH
VARTATION IN OTHER PULSE TRAIN PARAMETERS

6.1 Amplitude and Density Tapering

The use of an smplitude taper with a non-uniformly spaced pulse train
to reduce the frequency sidelobes has an undesirable effect on the time
sidelobes. Despite the fact that the signal-to-noise ratio is reduced only
1db bj a cosine taper the time sidelobe level increases by 4 db. The use
of a more severe amplitude taper, such as (cosine)g, results in only a .
l% db drop in signal-to-noise but a 6 db increase in the time sidelobe
level. This is a high price to pay.

If the reduced frequency sidelobe level is of extreme importance it
can be achieved by use of an energy density taper. With an energy density
taper the pulse spacings are not varied from A through A + n-2, but are
varied proportional to the desired amplitude taper, with small spacings
correéponding to large amplitudes and vice versa. Consequently, the spac-
ings in an energy density tapered train will be smaller in the middle of
the train and larger at the ends, resulting in a higher concentration of
energy in the middle of the train. The resultant spectrum is similar to
that achievable with a direct amplitude taper.

Due to the large variation in spacing necessary to achieve a substan-
tial taper the distance to the first sidelobe in time will have to be much
less than could otherwise be achieved. Consequently, the area of infinite‘
contrast is reduced. Even more limiting is that there are no presently

known general approaches to achieving satisfac%ory energy density tapers.



The use of the symmetrical increase in interpulse spacing, evaluated in
4.3, does not actually result in much of a taper. The height of the pedes-

tal, h, for this approach is

.
AMin nég) 1

h = B et ~
Bax [ ( 2

To achieve a pedéstal as modest as 0.5, there can be only 8 pulses in the
train. Any reasonable density taper can be tried but only trial-and-error
can guarantee the uniformly low time sidelobes.

An orderly?Abut inefficient, approach to density tapering can be a-
chieved by pulse dropping. A signal with low TW/Eﬂ can be designed by the
approach outlined in Chapter V. Then some fraction of these pulses, per-
heps one-third, can be symmetrically dropped in accordance with the desired
energy density taper. However, reducing the number of pulses by one-third
results in a 2 db reduction in energy per pulse (and consequently in
signal-to-noise ratio) and a 4 db increase in time sidelobe level.

AConsequently the use of this approach to reducing the frequency side-
lobes results in approximately the same loss in overall performance as
would be expected from a direct amplitude taper of the original waveform.
However the greater efficiency inherent in density tapering makes it the

more attractive approach.
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6.2 Selective Pulse Dropping

A more important use of pulse dropping is the selective dropping of
pulses on transmit or receive to completely eliminate sidelobe interfer-
ence. This technique requires altering the ambiguity surface so that the
response at the time corresponding to an interferring target is absolutely
Zero.

Figure 29 shows the three possible locations of any two sidelobes in
close proximity. When the two sidelobes overlap at the -6 db points, as
shown in Figure 29 the two pulses which created these two sidelcbes must
be dropped to create a zero over this region. For the relationéhip shown
in Figure 29b only one pulse ever need be dropped, unless errors in systen
timing result in some overlap in which case two pulses might have to Dbe
dropﬁed. For the situation shown in Figure 29¢, only one pulse would ever
have to be dropped to provide zero response, While for large pulse trains
the sidelobe overlap shown in Figure 29a will be the least likely of the
three, to guarantee that it never occurs would require designing the wave-
form for s 20 pulse width, but using a & pulse width. This may require
doubling the signal TW/ 2.

Clearly, only a few pulses can be dropped before the pulse train spec-
trum begins to be adversely affected. The number of interfefing targets
which can be rejected will depend on the sidelobe structure of the ambi-
guity surface and tﬁe acceptable level of degradation in spectrum.

The most significant feature of this technique is that no knowledge of

the amplitude, phase, or velocity and only approximate knowledge of the

-99-



NIVY1L 3SINd 030VdS ATWHO4INN-NON Vv ¥04 S3807301S LN3OVIrdV 40 NOILISOd :6< 614

S m P

S m o —

,,,,,,, o Y —

~
e |

- _].Q,O-Q




range of the interfering target is necessary. Further, this technique can
even be applied in non-real time to the recorded (but unfiltered) signal

return since the pulse dropping can be performed in the receiver as well as

the transmitter.

6.3 Pulse-to-Pulse Frequency Shifts

A pulse-to-pulse frequency shift can be combined with the use of non-
uniform spacing. The combination has many advantages but it also has all
the disadvantages inherent in the use of a pulse-to-pulse frequency shift.

The most obvious sequence of frequencies, a linear shift in frequency

by % , results in

HO0) 5 y(r,u) (60)

(km)

where k is the number of spectral widths between signal and filter. This
yields a minimum reduction in sidelobe level of 10 db. However, because of
the inevitable range-doppler coupling the facility for resolving in veloc-
ity, or even measuring velocity, is lost. While the use of a sufficiently
random seguence of these same frequencies may be able to eliminate this
coupling, as was pointed out before in 206, frequency Jjumping does not al-
ter the volume under the central region of the ambiguity surface and conse-
quently does not increase the resolution between two targets close in range
and velocity. DNonetheless, if % is sufficiently large to assure satisfac-

tory resolution between two neighboring targets, a random seguence of
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frequencies can be used to reduce the overall Interference.

6.4 Modulation of the Individual Pulses

The use of a repetitive sequence of modulated pulses does provide a
convenient way to reduce the interference volume within the central region
and to increase the resolﬁtion of the waveform. Further, the use of modu-
lation on each of the pulses is not restricted by the doppler bandwidth,
since the pulse width is normally much less than A. Consequently the
pulses themselves are operating in a narrow doppler enviromment, and any
modulation techniques which were previously rejected for their inability to
perform adequétely in the presence of a large doppler shift can be useful
here. The use, for example, of the Barker code of order 13 provides an in-
terésting opportunity to achieve doppler resolution, fine resoclution in
range, and also the transmission of a pulse longer than the range resolu-
tion. With the use of this code on the individual pulses of a non uni-

formly spaced train

Eigégl > y(7,0) for |t] >® (15)
n
and
iigigl > (7,w) for | | >’ (61)
13

where &/ =

J
l—-‘l o
w
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Most important is that the frequency response of the 12 sidelobe peaks are
miniature replicas of the central peak. Consequently, when the spectrum is
23 db down from the peak response these sidelobes are also 23 db down from
the sidelobe ﬁeak or more than 45 db down from the peak response.

The volume within the central region of the ambiguity surface can be

shown to be significantly less as the result of the use of this phase code.

hid
2x

L r
ff V(T,w) dt dw/2x = %’ 1 (1)2 + 12( % 2 _!:: 1.07 _Ta_'

o}

Q

FWF‘
)
=l o

(62)

Consequently there has been a 12:1 reduction in the interference volume.
With the use of this phase code the sidelobe structure of the ambi-
guity surface has been altered. There are still the same number of peaks

with an amplitude of éﬁ , but their null-width has been reduced from 26 to
25/13. Further, in tge space between sidelobe peaks there is a plateau
whose amplitude is l/lBth of the sidelobe peak, or about 22 db below the
sidelobe peaks. Consequently there will be four different contrast ratios
if the non uniform spacing and this phase code are combined; a) an infinite
contrast ratio for A 2}T|> % and at other points where there are no side-
lobes, b) a contrast ratio of (’ ) occuring at 6n(n-1) points, c) a
contrast ratio of (‘ :ﬁ occuring at n{n-1) points, and d) a contrast ratio
of | 13 ) for & >]r]> 3 -
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6.5 Conclusions

The use of an amplitude taper with non uniformly spaced pulse tra;ns
increases the time sidelobe level and should be avoided. An energy density
tapervshould be considered if reduction of frequency sidelobes is impor-
tant. Elimination of interference through the use of pulse dropping should
be used if the radar system is capable of adapting to each new target en-
vironment.

When a modulation is used on the pulses in the train the entire band-
width of the signal must be handled, both on transmit and receive, in~
stantaneously. When the frequency is jumped pulse to pulse the bandwidth
can be handled piecemeal. However, it appears that it is the instantane-
ously used bandwidth which determines the interference volume within the
central region of the ambiguity surface and consequently controls the res-
olution achievable. For enhanced resolution between two targets close in
raﬁge and velocity, modulation of the pulses should be used rather than
frequency Jumping. If sufficient resolution exists between close targets
then frequency jumping should be used to provide a general reduction in

interference.
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CHAFTER VII
TARGET -AND EQUIPMENT -IMPOSED LIMITATIONS TO THE SIGNAL TW/2x

7.1 Target Limitations

It is important to examine the limitations imposed on the waveform de-
sign by the target. A fundamental limit to the train duration is the time
interval over which the target parameters are "stationary." This is equi-
valent to requiring that the quality or gquantity being measured remain con-
stant, or be varying in a known manner, during the measurement interval.
Consequently in certain target environments the ability to generate, pro-
cess, and record signals with large Tw/2n, but of low bandwidth and long
duration, may not really represent useful capability. For this reason
large bandwidths are often necessary to achieve useful large duration-
bandwidth products.

When a signal ejwC is sent out and strikes a moving target the re-

(1 + )t . s
c is usually considered to be doppler shifted by

kturned signal e
the amount %X w. But w is rarely a single frequency. If Af is the band-
width of the transmitted signal then the frequencies at the edges of the
band, w * AT, will suffer the maximum differential doppler frequency shift
of * %3 aAf. The seriousness of this doppler spread is determined by the
frequency resolution of the signal. Certainly when this spread equéls the

resolution in frequency the narrow band approximation is no longer valid.

Therefore

H
o2
2
5
WAN
H

(63)

Hja
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or 2V

1
o MSE (6x)
for the narrow band assumption to hold.
. 2V "'l
.. TAf:Tw/ex_g(E—) (65)

This can be given a different interpretation by rewriting equation (64) as

2y

<
c ———

(66)

Bl

Since %f is the‘time resolution of the signal, and 2%1 is the difference in
the actual duration of the returned train as a result of the velocity v,
for equation (66) to be satisfied the differential compression of the re-
turned train due to target motion must be less than a resolution element in
range (8 for a pulse train.)

For typical satellite velocities (= 3.6 n. miles/sec)
/25 < 23,000. (67)

While énalytically it is only a little harder to handle wide-band signals
the actual matched filter becomes more complex.

The equipment-imposed limits to the signal duration-bandwidth product
can be determined by examining three different har&ware approaches using
analog circultry to the design of the matched filter for these non uniform-

‘ly spaced pulse trains.
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7.2 Use of Delay Lines and Phasing Matrix

Figure 30 shows the block diagram of a éommonly used approach to the
matched filter using a set of deley lines and a phasing matrix. With this
approach each return from the target is delayed in time so that the n re-
turns from the n pulses come out from the delay line and receiver simul-
taneously. At this point they are treated as samples of a continuous siné-
wave, where the effect of the doppler frequency is simply a constant phase
shift pulse~to-pulse. A bank of filters is required to insure that all
possible or expected doppler frequencies are covered. Using this approach
no apriori knowledge of range or doppler frequency is required since all
ranges and frequencies are examined.

The most critical elements to this approach are the delay lines them-
selves. Among the delay media possible are lumped constant, distributed
constant, magnetostrictive, mercury, quartz and glass delay lines, coaxial
cable, wavegulde and a tape loop. ILumped constant and distributed constant
delay lines have limited delay-to-rise time ratios and‘magnetostrictive de~-
lay lines have limited bandwidth capability. With a tape loop there is the
problem of head spacing. To achieve a l/h" differential spacing for the
heads, at the unachieved head-to-tape speed of 5000 inches/sec, the minimum
delay required must exceed 50 psec. Waveguide and coaxial cable aré not
used for large duration signals because of the large physical size and
length required to achieve even short delays; approximately 800' of wave-
guide or cagble is required for each microsecond of delay. Of the three re-

maining techniques [mercury, quartz and glass delay lines] mercury delay
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lines have the highest temperéture coefficient, the lowest bandwidth and
the shortest time delay achievable of the three. Quartz which has been
used extensively in this application has the capability for large bandwidth
as well as large time delay but is unfortunately characterized by a fairly
high temperature coefficlent. Glass delay lines have been develoﬁed with
temperature coefficients an order of magnitude smaller than quartz but the
spurious responses and the attenuation are significantly higher and the de-
lays presently achievable significantly smaller. Since quartz is widely
used, and has proven to be a practical delay medium, it is reasonable to
consider it as representative of the best delay medium available for large
bandwidth, large Tw/eﬂ signals, and to calculate the maximum TW/En for a
system using these lines.

It 1s generally accepted that the maximum bandwidth of a system con-
sisting of quartz delay lines, transducers, drivers and amplifiers is
W/2ﬁmax ~ O.hfo, where f_ is the center frequency of the line., The temper-
ature coefficient of quariz is approximately 75 ppm/oc and the present
state-of-the-art limitation in short term temperature control is approxi-
mately O.OlOC variation within the temperature controlled oven.

.‘. AT = T(.01L x 75 x 10'6) = 0.75 x 10-6T. To achieve coherent addition

‘out of the lines the maximum differential change in phase, due to the dif-

it
9

ferential temperature should be small, hopefully less than = or 20°,

Consequently

en(20f ) < /9
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or
1

‘o= T
Since ¥ <o.ur
2n — o
) 0.4 0.4T ~
- Tifen ST g < ~ 30,000 (68)

18 x .75 x 10" o1

If glass delay lines can achieve lower attenuation, greater length snd re-
duction of the spurious responses without sacrifice of temperature coeffi-

cient then their use will raise this limitation by an order of magnitude.

T-3 Use of Range Gates and Narrow-band Filters

The second approach, shown in Figure 31, involves the gating of the re-
ceived IF signal into a bank of narrow band filters. The gate has a width
of ® and is opened n times. If a target return from each of the pulses in
the train is in each of the gates then the narrow band filters coherently
integfate these.returns. The use of a bank of filters insures that one of
the filters is close to a match to the returned signal regardless of the
doppler shift. The noise free input and output of this filter with time is
‘also shown in Figure 31. A useful feature of this approach is that the
narrow band filters store the signal output for a long time after the sig-
nal is gone. Consequently the resolution inherent in a bandwidth of 1/5 is
- achieved but the data can be read out of the filter at a much lower band-

width. The price paid for this is the requirement that the target appear
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in the range gate. Consequently a series of range gates, spaced in time,
must be provided to guarantee that targets over a given range of interest

can be observed. The number of gates required is

time extent of target

N = ) .

Tt can be shown that the Q of the integrating filter limits the maxi-
mmum duration -bandwidth product that can be reasonably used with this ap-
proach.

For each integrating filter at frequency fo with bandwidth Af if
TAT < 0.4 then the loss in signal-to?noise due to non-zero bandwidth of the
integrating filter is less than 1 db. Further it is essential that Sfo >2
to provide at least two cycles of the carrier frequency within the pulse

envelope. Gating, mixing and filtering become extremely difficult with

fewer cycles.

| iy
Since TW/2n = % < ==
and fo = AfQ
then /2n < T(Ag x Q) _ Q(E‘M) <0.29 (69)

For frequencies up to a few hundred keps the highest Q is obtained with

magnetostrictive filters while at higher frequencies’crystal filters g~
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chieve the highest Q. Both of these have a maximum Q of approximately

2 x lOu and result in a limit of
TW/2% < 4000 (70)

7.4 Use of Recirculating Delay Lines

The use of a recirculating delay line for a uniform pulse train with a
constant interpulse period A requires a single line of length A. With the
non-uniformly spaced trains there must be the capability of having sequen-
tial delays, pulse-to-pulse, covering the interpulse intervals ranging from
A to Ahax' The approach shown in Figure 32 is one way to achieve this re-
sult. The length of the total delay is sequentially altered by the use of
(n-1) short lines or a single line with (n-1) taps, and an electronic com-
mutator which is stepped in accordance with the transmitted signal. Since
the recirculating delay line shown in Figure 32 will coherently integrate
returns at one frequency, a bank of n such lines is required to cover all
expectéd frequencies. Because the smallest interpulse period is A the
range extent over which targets can be observed is also A. Consequently if
observation is required over a greater range extént several banks of these
filters would be required.

The limitations to the successful use of this approach are the pro-
blems of temperature control of the quartz line and the difficulty of a-
chieving a flat frequency response in the gquartz lines and extra dela&

lines over the signal bandwidth. Since the first pulse recirculates for
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n-1 times, the 1 db points of the delay line response become the (n-1) db
points for this pulse. The difficulty of achieving feedback ratios near
unity, without causing oscillation will result in a further degredation in

gignal~to-noise.

7.5 Digital Approach

It is entirely possible to digitize the IF signals first and then per-

form the filtering inside a computer. As mentioned earlier the limitation

4o the usefulness of this approach will be the time the target is "sta-
tionary," the maximum sampling rate of analog to digital converters

(= 30 x l@g bits/sec at present), and the maximum input data rate to a col
puter. The IBM 7090 can handle a maximum information rate (bandwidth) of
about 200 Ke with sbout 6-bits of quantization. This can represent all the
dote from a single 200 Ke bandwidth channel or, with a suitable buffer
shorage, 10% of the data from a 2 megacycle bandwlidth channel. In a target

enviromment limited in terms of mumber of targets of interest this approach

can prove very useiul.

7.6 Compensation Tor Timing Ervors and Pulse Distortion

Tn the design of these non-uniformly spaced pulse tralns it has been
assumed that the signal was a sequence of rectangular pulses

Tt was further sgsumed thet the error in the time of transmission was zero.

Tor these assumptions a variation of & in the interpulse spacings is suf-

cient to ensure that no sidelobes are ever closer together than (a
gshown in Pigure 29a). However, it would be wise to compensate for expected
timing errors in the transmitter and for widening of the pulse due to

limited transmitter and receiver bandwidth. In o well designed systenm
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equivalent broadening of the pulse due to these factors will be less than
* % . Consequently a 25% increase in all the interpulse spacings should be

adequate. TIf the complete isolation of all time sidelobes is required (as

ghovn in Figure 20b) the train should be designed with a 2% 8 variation in

interpulse spacing.
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CHAPTER VIII
SUMMARY AND CONCLUSIONS
Non-uniformly spaced pulse trains with n pulses having a uniformly low

sidelobe level, or

0:0) > y(x,u) 7] >3 (15)
n

will be generated when the sequence of interpulse spacings are

A =D+ B [xo + 1iq] modulo (n-1) (50)

where i =0,1,2,..., n-2
n = the number of pulses in the train
n-1>qg >0
n-1>% >0
o-—-
n-l = a prime number ' (55)
35 = the pulse width

The duration of the train will be .

T=(n-l)§TA+5<I%-2—>:E. (29)
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The minimum interpulse spacing A, which is also the distance to the Ffirst
time sidelobe, will be

3/2
Aw %;/— (58a)

and the duration-bandwidth product of the signal generated can be expected
to be

5/2
/2 ~ 9-5—/—— (580)

Optimum waveforms, which would require

2
W/ 25 ~ = (21)
2

are impossible for n > L,

For a pulse train with 100 pulses the maximum sidelobe level will be
-LO db and the required TW/2x ~ 25,000. TFor a pulse train with 140 pulses
the maximum sidelobe level will be -43 db and TW/2x =~ 60,000.

The characteristics of the target ensemble will undoubtedly limit the
maximum duration of the waveform. PFurther, for the narrow-band approxima-

tion to be walid

iw/z:: < < -2% ) : (65)
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or for targets wifh satellite velocities
TW/2n < 23,000 (67)

When TW/Eﬁ increases beyond the point where the narrow band approximation
is valid an increase in the difficulty of constructing the matched filter
must be expected.
Analog approaches to realizing the matched filter for these pulse
trains are presently limited by
a) the temperature coefficient of quartz delay lines and the present
state-of-the-art capability of providing a uniform temperature
enviromment ;
b) the maximum @ available from crystal or magnetostrictive filters.
For these approaches (and the present state-of-the-art)

the limits on Tw/zn are, respectively,

a) TW/2x < 30,000 (68)

b)  TW/2x < 0.2 < k4,000 (69, 70)

Consequently, given these limits to the maximum duration-bandwidth
product it is reasonable to design non-uniformly speced trains with 100
pulses having a -4O db sidelobe level and requiring a duration-bandwidth of
the order of 25,000, Achievement of another 3 db reduction in sidelobe

level will come dearly.
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.CHAPTER X
RECOMMENDED AREAS FOR FURTHER STUDY

The use of non-uniform interpulse spacing having a greater density of
pulses in the center of the train than at the ends will result in a signi-
ficant reduction in the close-in sidelobes in doppler with no increase in
the time sidelobes. However, no'general approach now exists for selecting
“ the interpulse spacings in this manner which simultaneously assures a non-
overlapping of time sidelobes. It remaing a cut-and-try process. A tech-
Vnique for realizing a cosine or (cosine)2 density taper, which assures uni-
formly low sidelobe levels in time without requifing an exhorbitant Tw/ex,
would be extremely useful.

The limits to the performance achievable with the use of the complete
set of least residues modulo (n-1) are, at present, unknown. A detailed
study from a Number Theory point of view should provide these limits and
indicate the value of the parameter, q, which yields the best performance.
Also, this approach can be used only if there is a prime.number close to
the desired number of pulses. It would be useful to have another approach
which would yield equivalent or superior performance and was not similarly

bound.
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