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We study the existence of guided acoustic modes in layered structures whose phase velocity is higher than that
of bulk waves in a solid substrate or an adjacent fluid half space, which belong to the class of bound states in the
radiation continuum (BICs). We demonstrate that in contrast to the electromagnetic case, non-symmetry-protected
BICs exist in isotropic layered systems without periodic structures. Two systems supporting non-symmetry-
protected sagittally polarized BICs have been identified: (i) a supported solid layer yields BICs whose phase
velocity is higher than the transverse velocity of the substrate but lower than the longitudinal velocity; (ii) a
supported solid layer loaded by a fluid half space supports BICs whose velocity is higher that the bulk velocity
of the fluid but lower than acoustic velocities of the substrate. The latter case is a unique example of BICs in the
sense that it does not involve an evanescent field in the fluid half space providing the radiation continuum. In
either case, BICs are represented by isolated points in the dispersion relations located within “leaky” branches.
We show that these BICs are robust with respect to small perturbations of the system parameters. Numerical
results are provided for realistic materials combinations. We also show that no BICs exist in all-fluid layered
structures, whereas in solid layered structures there are no shear horizontal BICs and no sagittally polarized BICs
whose velocity exceeds the longitudinal velocity of the substrate.

DOI: 10.1103/PhysRevB.97.014108

I. INTRODUCTION

Guided waves, such as light in an optical fiber or a surface
acoustic wave (SAW) in a solid, are generally slower than
bulk waves in an adjacent unbounded medium; otherwise they
become leaky due to the radiation of energy into the bulk.
However, there are isolated nonradiating guided modes exem-
plifying embedded or bound states in the radiation continuum
(BICs). The existence of BICs was originally demonstrated by
Wigner and von Neumann for a model quantum-mechanical
system [1], but to date, while there have been some reports of
realistic quantum-mechanical models that exhibit BICs, see,
e.g., Refs [2–4], it is in classical systems, primarily in optics
and acoustics, where they have generally been encountered (see
Ref. [5] for a recent review). Oftentimes BICs are protected by
symmetry: for example, SAW in the [110] direction on the
basal plane of cubic crystals such as silicon and germanium
propagates faster that the bulk slow transverse mode but cannot
radiate because in the SAW particles move in ellipses contained
in the vertical (sagittal) plane, whereas the slow transverse
wave is polarized in the horizontal direction orthogonal to
that symmetry plane [6]. As soon as the wave vector deviates
from [110], symmetry incompatibility is lifted and the mode
becomes leaky. Such symmetry-protected BICs are trivial
and not considered in this paper. Much more interesting is
the existence of non-symmetry-protected BICs encountered
at inconspicuous combinations of system parameters yielding
an “accidental” cancellation of the radiation loss. The recent
discovery of such non-symmetry-protected robust embedded
guided modes in photonic crystal slabs [7,8] has stimulated
renewed interest in the subject. Embedded guided modes
associated with periodic structures have also been identified

in solid-state acoustics [9,10], in a discrete mechanical system
[11], and with water waves [12].

In solid-state acoustics, non-symmetry-protected embed-
ded guided modes exist in many anisotropic solids without
periodic structures. For example, the same leaky SAW branch
that yields a symmetry-protected SAW in the [110] direction
on the basal plane of many cubic crystals often contains
another isolated embedded mode in a totally inconspicuous
direction [13], or sometimes two such modes [14]. These
non-symmetry-protected supersonic SAWs are of substantial
practical importance as they are employed in SAW filters
fabricated on rotated Y -Z cuts of the crystals LiTaO3 and
LiNbO3 [15,16], which are widely used in telecommunica-
tions devices. Non-symmetry-protected BICs have also been
identified in film-substrate systems, both for isotropic films
on anisotropic substrates [16,17] and for anisotropic films on
isotropic substrates [18,19].

Thus the presence of either periodic structures or elastic
anisotropy might appear to be essential for the existence of
guided acoustic modes embedded in the radiation continuum
[20]. Indeed, in optics it was found that a periodic structure
(photonic crystal) is necessary for the existence of BICs in
a layered system [8]. The purpose of the present paper is to
challenge this premature conclusion and demonstrate that in
contrast to the optical case, non-symmetry-protected acoustic
BICs do exist in layered structures without periodicity or
anisotropy. We start with a discussion of control parameters
which are necessary but not sufficient for the existence of
non-symmetry-protected BICs. We show that where a BIC is
found in a given system, an analysis of control parameters
and radiation channels allows us to determine whether or
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FIG. 1. The physical system under consideration.

not the BIC is robust, i.e., structurally stable with respect to
small perturbations of the system. We then consider fluid,
solid, and solid-fluid layered systems and set out either to
prove that BICs do not exist or to demonstrate examples of
their existence in each specific case. We identify two cases
when non-symmetry-protected BICs do exist, both involving
sagittally polarized waves: (i) solid layer-substrate system,
with BIC phase velocity between transverse and longitudinal
velocities of the substrate; (ii) fluid-loaded solid layer-substrate
system, with BIC phase velocity between the sound velocity
in the fluid and the transverse velocity in the substrate. In both
cases BICs are found to be robust to perturbations of the system
parameters. We will also show that non-symmetry-protected
BICs in a solid plate immersed in a fluid have been in fact
known [21] even if not reported as such.

II. CONTROL PARAMETERS AND RADIATION
CHANNELS

The system we consider consists of a semi-infinite medium
occupying a half space z < 0, with a layer of different material,
or any number of layers, on top of it, as shown in Fig. 1. Above
the top layer there can be vacuum or a rigid wall. We will also
consider a solid layered structure on a solid substrate loaded by
a fluid half space. (However, only one semi-infinite medium
is needed to provide a radiation continuum of bulk waves.)
BICs in our system are guided modes propagating in the x

direction whose phase velocity is larger than the lowest bulk
wave velocity in the half space (in a liquid medium there is only
one bulk velocity for pressure waves; in a solid medium the
transverse velocity is the lowest). Since in an isotropic system
the xz plane is a symmetry plane, the waves propagating in
the layered structure can be separated into modes polarized
in the xz plane (sagittal plane) and modes polarized along y,
which can only propagate in a solid medium and are often
referred to as shear horizontal (SH) waves. A trivial example
of a symmetry-protected BIC is a SH wave in a solid plate
immersed in a nonviscous fluid: it is totally decoupled from
bulk waves in the fluid even if its phase velocity is higher than
the speed of sound in the fluid.

Non-symmetry-protected BICs in planar structures are
parametric [5]; that is, the cancellation of radiation losses
occurs at a certain combination of control parameters such
as the acoustic wave vector, material properties, and layer
thickness. The availability of control parameters is a necessary
but not sufficient condition for the existence of BICs. To find
out the required number of control parameters we need to
determine the number of radiation channels. A guided mode
in a planar structure attached to a half space with a given
in-plane wave vector can radiate into a single bulk (pressure)
wave in a fluid half space or into up to two bulk waves in a
solid half space: A sagittally polarized mode can radiate both

longitudinal and transverse waves, whereas a SH wave can
only radiate into a single transverse mode [22].

The amplitude of a radiated bulk wave is generally a
complex quantity and it takes two control parameters to make
it vanish. However, it has been shown [8] that if the system
conforms to C2 rotational symmetry with respect to the z axis
(which is always the case for isotropic materials), then the
amplitude of a radiated bulk wave can be considered a real
quantity. Therefore, a BIC within a leaky branch radiating onto
N bulk waves requires N control parameters. For example, a
system comprising a fluid layer on a fluid half space has one
radiation channel and three control parameters, i.e., the ratios
of the densities and the speeds of sound of the layer and the half
space as well as the layer thickness (or the acoustic wave vector,
as the acoustic mode pattern is entirely determined by the
product of the wave vector and thickness kh). For a solid layer
on a solid half space the number of control parameters increases
to five (Poisson’s ratios of both media should be added) while
the number of radiation channels does not exceed two. Thus,
even for simple layered systems we will typically have more
than enough control parameters to make the existence of BICs
a plausible possibility.

The next question is whether BICs, if found, will be robust,
i.e., structurally stable with respect to small perturbations of
the system. For example, non-symmetry-protected supersonic
SAWs on the basal plane of cubic crystals are robust to
perturbations of elastic constants [14] but not robust with
respect to perturbations of the surface orientation [23,24]. In
order to determine whether a BIC will be robust, we need to
distinguish between control parameters perturbing the physical
system (such as material properties and layer thicknesses) and
nonperturbing parameters, i.e., the direction and magnitude of
the wave vector. In the vicinity of a BIC, the amplitudes of
radiated bulk waves are given by

An =
M∑
i=1

cni(αi − αi0)+
L∑

i=1

dnj (βj − βj0), (1)

where αi are nonperturbing parameters and βj are perturbing
parameters, and subscript “0” refers to the parameter values
yielding the BIC. One can see that the BIC is robust as long
as the number of nonperturbing parameters M is equal or
greater than the number of the radiation channels N : In this
case, for any small change of a perturbing parameter there
is a combination of nonperturbing parameters that makes the
amplitudes of the radiated waves vanish.

In general, the in-plane wave vector in a planar waveguide
structure supplies two nonperturbing parameters, the wave-
vector direction and magnitude; all other control parameters
are perturbing. However, in the isotropic case the wave-vector
direction is irrelevant; therefore, we have a single nonperturb-
ing control parameter, i.e., the wave-vector magnitude, for a
structure involving at least one layer of finite thickness, or
no nonperturbing parameters otherwise (e.g., for a single half
space or two half spaces in contact). Thus, the answer to the
robustness question is simple: In the typical case when at least
one layer of a finite thickness is present, a BIC, if found, will
be robust if there is only one radiation channel, and not robust
in the presence of two or more radiation channels. All BICs
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TABLE I. The existence of non-symmetry-protected BICs in various classes of layered systems.

System Existence of non-symmetry-protected BICs

Fluid No
Solid, Love (SH) waves No
Solid, Rayleigh-Lamb waves Yes, between the transverse and longitudinal velocities of the substrate
Fluid-loaded solid, Rayleigh-Lamb waves Yes

demonstrated below involve a single radiation channel and,
consequently, are robust.

III. EXISTENCE OF BICS IN LAYERED STRUCTURES

The availability of control parameters is a necessary but
not a sufficient condition for the existence of BICs. There
are structures in which many control parameters are available
yet BICs do not exist. Consider, for example, SH waves
in a structure comprising any number of solid layers on a
semi-infinite solid half space. A solid layer on a substrate may
support guided SH waves, termed Love wave [25], whose phase
velocity is lower than the transverse acoustic velocity of the
substrate ct0. A guided mode with a phase velocity above ct0

would be a BIC embedded in the continuum of bulk modes in
the substrate. We will now show that such a BIC cannot exist
in a structure with an arbitrary number of layers, even though
the number of control parameters (i.e., thicknesses and elastic
properties of the layers) is unlimited. In a guided SH mode
with wave vector k directed along x, the displacement field is
given by uy(z) exp(ikx − iωt),where the substrate is assumed
to occupy the half space z > 0, and uy(z) → 0 at z → ∞.
From the elasticity equations for an isotropic material, we find
that the displacement field in each layer and in the substrate
should take the form

uy = (Aie
−iγi z + Bie

iγiz)eikx−iωt , γi =
√

ω2/c2
t i − k2,

(2)

where cti is the transverse velocity in the ith layer. γi can
be either real or imaginary depending on whether the phase
velocity ω/k exceeds the transverse velocity in a given layer.
In the substrate, however, γ0 must be real for the guided wave
to be a BIC. Consequently, the condition of vanishing uy(z)
at infinity can be satisfied only if A0 = B0 = 0, i.e., when the
displacement field in the substrate is identically zero. Let us
now consider the boundary conditions at the interface between
the substrate and the first layer, requiring the displacement
uy and the stress component σyz be continuous across the
interface. It is easy to see that if the field in the substrate is
zero, boundary conditions require that the displacement field
in the first layer be identically zero as well. Applying boundary
conditions at the next interface and so on, we find that the field
must be identically zero in every layer; consequently, a shear
horizontal BIC in a layered structure cannot exist.

A similar consideration shows that BICs cannot exist in
a system of liquid layers bounded by a liquid half space
[26]. Acoustic waves of sagittal polarization in a solid layered
structure (guided waves of this kind are often referred to as
Rayleigh-Lamb waves) present a more interesting case. Now

the acoustic field in each layer comprises four partial waves,
two longitudinal and two transverse. If the phase velocity of
a guided wave ω/k exceeds the longitudinal velocity of the
substrate cl0, then all partial waves in the substrate have real
wave vectors, and the only way to make the field in the substrate
vanish at infinity is to require that it be identically zero. Then,
by applying boundary conditions at interfaces we can prove
that such a guided wave cannot exist. However, if the phase
velocity lies between transverse and longitudinal velocities of
the substrate, ct0 < ω/k < cl0, one of transverse partial waves
in the substrate becomes evanescent, with a z dependence in
the form of exp[−(k2 − ω2/c2

t0)1/2z]. Now the “nonexistence
proof” used above does not apply because a BIC can have an
evanescent field in the substrate that helps satisfy the boundary
conditions.

Let us now consider a solid layered structure bounded by
a nonviscous fluid half space. Pressure waves in the fluid
cannot be excited by SH waves in the solid due to symmetry
constrains. Consequently, shear horizontal Love waves with
a phase velocity higher than the speed of sound in liquid
cannot radiate acoustic energy into the fluid thus representing
symmetry-protected BICs. A more interesting situation arises
for Rayleigh-Lamb waves in this system, which can couple
to bulk acoustic waves in the fluid. A sagittally polarized
BIC whose phase velocity exceeds the speed of sound in the
fluid requires, again, that the acoustic field in the fluid be
identically zero. There are three boundary conditions at the
solid-liquid interface: the vertical displacement uz and stress
component σzz are continuous across the interface while the
stress component σxz should be zero. If the field in the fluid is
zero, the three boundary conditions do not suffice to determine
the amplitudes of the four partial waves in the solid layer
adjacent to the liquid half space. Hence it is not required that
the acoustic field in the layer be zero: It might be possible to
satisfy the boundary conditions with a nonzero field, but the
displacement in the solid at z = 0 must be horizontal. Thus in
this case we cannot prove that a BIC does not exist.

Table I summarizes our findings. In a number of cases we
can prove that BICs do not exist. In two cases we were not
able to prove this: for Rayleigh-Lamb waves in a solid layered
structure with a phase velocity between the transverse and
longitudinal velocities of the substrate, and in the case of a
liquid-loaded solid structure. In the following two sections we
will show that in these two cases BICs are indeed found to
exist.

IV. BICS IN A SUPPORTED SOLID LAYER

We consider the simplest layered structure, i.e., an isotropic
elastic layer on an isotropic elastic half space. If the acoustic
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FIG. 2. Gray-scale map of ImG11 for a gold layer on a fused silica
substrate. Below the transverse threshold ct0 of the substrate, ImG11

is identically zero except for delta functions corresponding to the
discrete spectrum of guided modes; these are shown by solid lines.
Above the transverse threshold, leaky modes yield resonances of a
finite width except at isolated points marked by arrows where leaky
modes transform into BICs.

velocities in the layer are smaller than those in the substrate
(slow-on-fast system), it supports an infinite number of guided
Rayleigh-Lamb modes whose phase velocities are below the
transverse velocity of the substrate [27]. Above the substrate
transverse velocity threshold, these modes become leaky, i.e.,
they radiate acoustic energy into the substrate and are no
longer true guided modes. If we consider the in-plane wave
vector k (or the dimensionless product kh, where h is the
layer thickness) as a control parameter, then, according to
the analysis in Secs. II and III, leaky branches might contain
isolated points at certain values of kh, where the leakage
vanishes and the leaky mode becomes a BIC. However, our
analysis has given us no hints as to how to look for those
isolated points other than that they can only be encountered in
the range ct0 < ω/k < cl0. Hence, we set out to investigate
leaky branches of slow-on-fast systems using the Green’s
functions method [28] in a hope to stumble upon a BIC.

We found that BICs are routinely encountered for many
common materials combinations. For example, Fig. 2 shows
dispersion of guided and leaky modes in a gold layer (ρ1 =
19 300 kg/m3, ct1 = 1200 m/s; cl1 = 3240 m/s) on a fused
silica substrate (ρ0 = 2200 kg/m3, ct0 = 3764 m/s; cl0 =
5.968). We are plotting the imaginary part of surface Green’s
function ImG11 as a function of the dimensionless wave vector
kh and the phase velocity ω/k. The imaginary part of Green’s
function yields the power dissipated by a horizontal force act-
ing on the surface of the gold layer and having a spatiotemporal
distribution exp(ikx − iωt). (ImG33 representing the power

FIG. 3. (a) Gray-scale map of ImG11 in the vicinity of one of the
BICs from Fig. 2. (b) Displacement amplitude in the transverse wave
radiated into the substrate normalized to the horizontal displacement
amplitude at the surface in the leaky wave in the vicinity of the BIC
point. (c) Phase of the radiated transverse wave.

dissipated by a vertical force could be used as well.) Our model
has no material losses; therefore, energy can be dissipated
only by radiating acoustic waves into the substrate. Below
the transverse threshold ω/k < ct0 radiation into the substrate
cannot occur; hence, ImG11 is identically zero everywhere
except at guided Rayleigh-Lamb modes where it yields delta
functions. In Fig. 1(a), these delta functions are represented
by solid lines. Above the transverse threshold of the substrate,
the modes become leaky and delta functions are replaced by
resonances of a finite width. However, at several isolated points
between the transverse and longitudinal thresholds, marked
by arrows in the figure, the width of the resonance becomes
infinitely small (as far as can be assessed within the machine
precision) and the leakage disappears, indicating that these
points correspond to BICs [29]. As one can see in Fig. 2, BICs
are encountered in many but not all leaky branches between
transverse and longitudinal thresholds. As expected, no BICs
are observed above the longitudinal threshold.

We now consider a leaky branch containing one such
BIC point shown in Fig. 3(a) and calculate the displacement
field pattern in the leaky wave produced by the source used
for the Green’s function calculation. Figures 3(b) and 3(c)
show the amplitude and phase of the transverse wave radiated
into the substrate as a function of kh along the leaky branch
(with the amplitude normalized to the horizontal displacement
amplitude at the surface, equal to the modulus of G11). One
can see that at the BIC point the radiated wave vanishes while
its phase jumps by π . Figure 4 shows the full displacement
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FIG. 4. Gray-scale maps of horizontal (a), (c) and vertical (b), (d)
displacement components in the BIC (a), (b) and at the point X (c),
(d) in the leaky branch indicated in Fig. 3(a).

field pattern at the BIC point and at an arbitrarily selected
point X in the leaky branch indicated in Fig. 3(a). In the latter
case one can clearly see the transverse wave radiated into the
substrate, whereas at the BIC point only the evanescent field
in the substrate is present.

We find that the BIC points are indeed robust: When elastic
properties of the layer or the substrate are varied, a BIC
moves along a leaky branch. However, a BIC can disappear
at the transverse or longitudinal threshold. We also observe
that two BICs can “annihilate,” as was previously found for
electromagnetic BICs in photonic crystal slabs [30]. Figure 5

FIG. 5. (a)–(c) Annihilation of two BICs (marked by arrows)
occurring in a light layer (with properties typical for a polymer
material) on a gold substrate as the longitudinal velocity of the layer
varies from 2300 to 2500 m/s. Other material properties of the layer:
ρ1 = 1000 kg/m3, ct1 = 1400 m/s. Plotted is a gray-scale map of
(ImG11)2 + (ImG33)2. (d) Dispersion curves of guided modes for a
layer with the same properties as in (a) on a rigid substrate.

shows an example of such annihilation for a light layer (with
properties typical for a polymer material) on a gold substrate
[31]. Since the substrate is much denser than the layer, the leaky
modes shown in Figs. 5(a)–5(c) resemble the two lowest guided
modes of a layer on a rigid substrate (i.e., a clamped-free layer)
whose dispersion is shown in Fig. 5(d) for a reference. A leaky
branch in Fig. 5(a) contains two BICs marked by red arrows. As
the longitudinal velocity of the layer increases, the two BICs
move closer together and annihilate, with no BICs present
in Fig. 5(c). Interestingly, the annihilation of BICs seems to
be accompanied by a bifurcation of the leaky branches. We
note that the notion of BIC’s topological charge invoked in
Ref. [30] is not strictly required to explain BIC’s robustness
and annihilation: in our case the wave-vector space is one-
dimensional, since there is no dependence on the direction of
the wave vector.

V. BICS IN A FLUID-LOADED SUPPORTED LAYER

Rayleigh-Lamb waves in solid systems are normally faster
than the speed of sound in a typical liquid. Then, if a solid
is loaded by a fluid half space, Rayleigh-Lamb waves radiate
acoustic energy into the fluid and become leaky. Unlike in
the previous section, in this case we know how to look for
BICs within these leaky branches: We should look for isolated

FIG. 6. (a) Dispersion curves of Rayleigh-Lamb waves for a
polystyrene layer on fused silica with regions of different chirality
of the surface motion indicated for each mode; these regions are
separated by points at which the polarization is either pure vertical
or pure horizontal. (b) A similar plot for gold on silica, no change in
chirality within a single mode.

014108-5



A. A. MAZNEV AND A. G. EVERY PHYSICAL REVIEW B 97, 014108 (2018)

FIG. 7. Maps of (ImG11)2 + (ImG33)2 for a polystyrene layer on fused silica loaded by a fluid half-space with different fluid densities. BICs
are marked by arrows.

point in the Rayleigh-Lamb dispersion curves when the vertical
component of the surface displacement vanishes. The ratio of
the horizontal to vertical displacement amplitudes is termed
the ellipticity of the Rayleigh-Lamb wave. This quantity plays
an important role in seismology and has been investigated in
that context [32,33].

For a Rayleigh wave in a homogeneous isotropic elastic
half space, the ellipticity varies between about 0.5 and 0.95
depending on the Poisson ratio [32]. Thus, in this case the
surface displacement always contains a vertical component;
consequently a fluid-loaded solid half space supports no BICs.
However, in Rayleigh-Lamb waves in a layer-substrate system
the ellipticity may become both infinite or zero [32,33]. As an
example, Fig. 6(a) presents dispersion curves of guided modes
for a polystyrene layer (ρ1 = 1050 kg/m3, cl1 = 2350 m/s,
ct1 = 1120 m/s) on a fused silica substrate, with indicated
sections of clockwise and counterclockwise sagittal particle
motion at the surface. We observe that in each mode the
motion may be clockwise or counterclockwise depending on
the wave vector; at the points where the chirality of the surface
motion changes, the polarization is either pure horizontal or
pure vertical, indicated by vertical and horizontal arrows in
the figure. For comparison, in Fig. 6(b) we show dispersion
curves for gold on fused silica (the same dispersion curves as
in Fig. 2 below the transverse threshold of the substrate); in
this case there is no change of chirality within a single mode
and the points of pure vertical or horizontal polarization are
absent.

Now if the polystyrene layer on silica is loaded by a fluid
half space, we expect that the points of the pure horizontal
polarization will yield BICs, and this indeed turns out to be the
case. Figure 7 shows maps of (ImG11)2 + (ImG33)2 for fluids
having the acoustic velocity of water (1484 m/s) and different
densities, from a very low density to that of water. In the lowest
fluid density case, the leaky modes closely resemble those
shown in Fig. 4(a), and one can see that at the points of the pure
horizontal polarization the resonances narrow down to a zero
width, indicating that leaky modes transform into BICs. As the
fluid density increases, the leaky mode resonances broaden and
the dispersion curves change shape and even bifurcate, but they
remain pinned at the BIC points which are not affected by the
fluid loading.

Another example of BICs in a fluid-loaded system is
provided by Lamb waves in a plate immersed in a nonviscous
fluid. It is known that the normal component of the surface
displacement in Lamb modes may vanish [34,35]. This hap-
pens, for example, when dispersion curves of symmetric Lamb
modes cross the line corresponding to the longitudinal velocity
[34]. Freedman [21] has shown that for a plate immersed in
a lossless fluid, the resonance width associated with Lamb
waves becomes zero at these isolated points. Thus, Lamb wave
BICs in immersed plates have been in effect known even if
not reported as such and not appreciated by other researchers
working on BICs in optics and acoustics [5,36].

VI. CONCLUSIONS

We have presented a general analysis of existence criteria
for non-symmetry-protected acoustic BICs in layered isotropic
structures and provided numerical examples of their occur-
rence. We have demonstrated that in acoustics, in contrast to
optics, BICs can exist in simple structures without periodicity
such as a solid layer on a solid substrate. There are at least two
important differences between the acoustic and electromag-
netic systems: (i) in solid-state acoustics, there are transverse
and longitudinal waves. Consequently, a BIC with a phase
velocity between the transverse and longitudinal velocities of
the substrate may involve an evanescent longitudinal field in
the substrate, which makes it possible for a BIC to satisfy
the boundary conditions. (ii) The special case of acoustic
boundary conditions between a solid and a fluid has no analogs
in optics. These boundary conditions can be satisfied even
if the acoustic field in the fluid is identically zero, provided
that the displacement at the solid surface is purely horizontal.
This enables a unique kind of BICs which do not involve
an evanescent field in the fluid half space that provides the
radiation continuum.

For the two situations listed above, BICs are found in simple
layered systems involving commonly encountered materials
combinations. We have shown that the BICs we identified are
robust with respect to small perturbations of material properties
or the layer thickness. We have also identified cases such as
shear horizontal waves in a solid layered structure or pressure
waves in a fluid layered structure, in which BICs do not exist
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similarly to the optical case. The absence of sagittally polarized
BICs whose velocity exceeds the longitudinal velocity of the
substrate has been proved as well.

Acoustic BICs are not just a peculiarity attracting the
attention of theoreticians. Surface acoustic BICs found on
anisotropic substrates are already widely used in SAW de-
vices [15,16]. There, the control parameters that are used
to eliminate the acoustic radiation into the substrate are the
surface orientation and the wave-vector direction [23]. The
use of BICs in layered structures will create more options
for the design of SAW devices. BICs in fluid-loaded systems
have implications for acoustic microscopy: Unlike regular
Rayleigh-Lamb waves, BICs cannot be probed by the V (z)
method [37]. At the same time, the existence of Rayleigh-Lamb
modes not subject to the radiative loss in the fluid environment
may be of interest for the designers of SAW sensors.

Finally, we anticipate that an approach similar to that
developed in this work may lead to the discovery of optical
BICs without photonic crystals in a layered structure on an
optically anisotropic substrate, in which case the existence
of two bulk eigenmodes with different phase velocities may
enable a BIC between these two velocity values.
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los, and M. Soljačić, Bloch surface eigenstates within the
radiation continuum, Light Sci. Appl. 2, e84 (2013).

[9] A. G. Every, Guided elastic waves at a periodic array of thin
coplanar cavities in a solid, Phys. Rev. B 78, 174104 (2008).

[10] A. A. Maznev and A. G. Every, Surface acoustic waves in
periodically patterned layered structure, J. Appl. Phys. 106,
113531 (2009).

[11] D. Trzupek and P. Zielinski, Isolated True Surface Wave in a
Radiation Band on a Surface of a Stressed Auxetic, Phys. Rev.
Lett. 103, 075504 (2009).

[12] R. Porter and D. V. Evans, Embedded Rayleigh–Bloch surface
waves along periodic rectangular arrays, Wave Motion 43, 29
(2005).

[13] G. I. Stegeman, Normal-mode surface waves in the pseudo-
branch on the (001) plane of gallium arsenide, J. Appl. Phys.
47, 1712 (1976).

[14] A. G. Every, Supersonic surface acoustic waves on the 001 and
110 surfaces of cubic crystals, J. Acoust. Soc. Am. 138, 2937
(2015).

[15] K. Yamanouchi and K. Shibayama, Propagation and amplifica-
tion of Rayleigh waves and piezoelectric leaky surface waves in
LiNbO3, J. Appl. Phys. 43, 856 (1972).

[16] O. Kawachi, S. Mineyoshi, G. Endoh, M. Ueda, O. Ikata, K.
Hashimoto, and M. Yamaguchi, Optimal cut for leaky SAW on
LiTaO3 for high performance resonators and filters, IEEE Trans.
Ultrason. Ferroelectr. Freq. Control 48, 1442 (2001).

[17] A. A. Maznev, A. Akthakul, and K. A. Nelson, Surface acoustic
modes in thin films on anisotropic substrates, J. Appl. Phys. 86,
2818 (1999).

[18] M. Benetti, D. Cannatà, F. Di Pietrantonio, V. I. Fedosov, and
E. Verona, Gigahertz-range electro-acoustic devices based on
pseudo-surface-acoustic waves in AlN/diamond/Si structures,
Appl. Phys. Lett. 87, 033504 (2005).

[19] E. Glushkov, N. Glushkova, and C. Zhang, Surface and pseudo-
surface acoustic waves piezoelectrically excited in diamond-
based structures, J. Appl. Phys. 112, 064911 (2012).

[20] However, the occurrence of a BIC in a model involving an
infinitely thin layer with a nonzero bending modulus on an
isotropic substrate with a negative Poisson’s ratio has been
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