
MIT Open Access Articles

Resummed photon spectra for WIMP annihilation

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Baumgart, Matthew et al. "Resummed photon spectra for WIMP annihilation." Journal 
of High Energy Physics 2018 (March 2018): 117 © 2018 The Author(s)

As Published: http://dx.doi.org/10.1007/JHEP03(2018)117

Publisher: Springer International Publishing AG

Persistent URL: http://hdl.handle.net/1721.1/114413

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/114413
http://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
3
(
2
0
1
8
)
1
1
7

Published for SISSA by Springer

Received: January 11, 2018

Accepted: March 13, 2018

Published: March 20, 2018

Resummed photon spectra for WIMP annihilation

Matthew Baumgart,a,b Timothy Cohen,c Ian Moult,d,e Nicholas L. Rodd,f

Tracy R. Slatyer,f Mikhail P. Solon,g Iain W. Stewartf and Varun Vaidyah

aDepartment of Physics, Arizona State University, Tempe, AZ 85287, U.S.A.
bNew High Energy Theory Center, Rutgers University, Piscataway, NJ 08854, U.S.A.
cInstitute of Theoretical Science, University of Oregon, Eugene, OR 97403, U.S.A.
dBerkeley Center for Theoretical Physics, University of California, Berkeley, CA 94720, U.S.A.
eTheoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A.
fCenter for Theoretical Physics, Massachusetts Institute of Technology,

Cambridge, MA 02139, U.S.A.
gWalter Burke Institute for Theoretical Physics, California Institute of Technology,

Pasadena, CA 91125, U.S.A.
hTheoretical Division, MS B283, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.

E-mail: Matt.Baumgart@asu.edu, tcohen@uoregon.edu, ianmoult@lbl.gov,

nrodd@mit.edu, tslatyer@mit.edu, mpsolon@caltech.edu, iains@mit.edu,

vvaidya@lanl.gov

Abstract: We construct an effective field theory (EFT) description of the hard photon

spectrum for heavy WIMP annihilation. This facilitates precision predictions relevant for

line searches, and allows the incorporation of non-trivial energy resolution effects. Our

framework combines techniques from non-relativistic EFTs and soft-collinear effective the-

ory (SCET), as well as its multi-scale extensions that have been recently introduced for

studying jet substructure. We find a number of interesting features, including the si-

multaneous presence of SCETI and SCETII modes, as well as collinear-soft modes at the

electroweak scale. We derive a factorization formula that enables both the resummation

of the leading large Sudakov double logarithms that appear in the perturbative spectrum,

and the inclusion of Sommerfeld enhancement effects. Consistency of this factorization is

demonstrated to leading logarithmic order through explicit calculation. Our final result

contains both the exclusive and the inclusive limits, thereby providing a unifying description

of these two previously-considered approximations. We estimate the impact on experimen-

tal sensitivity, focusing for concreteness on an SU(2)W triplet fermion dark matter — the

pure wino — where the strongest constraints are due to a search for gamma-ray lines from

the Galactic Center. We find numerically significant corrections compared to previous re-

sults, thereby highlighting the importance of accounting for the photon spectrum when

interpreting data from current and future indirect detection experiments.
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1 Introduction

The discovery of the dark matter (DM) particle(s) is one of the central goals of the high

energy physics program. While the Weakly Interacting Massive Particle (WIMP) paradigm

with DM masses of order the electroweak scale ∼ 100 GeV has received the most attention,

it is also a reasonable possibility that the WIMP could be much heavier. The canonical

example is the neutral component of a new Majorana SU(2)W triplet fermion — this wino

DM will be the concrete example studied here, although many of the results presented
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below will hold for a wide class of heavy WIMPs. Assuming no other new states are present,

the wino mass is the only free parameter in this model. The wino is a prototypical heavy

WIMP: a calculation of the relic density for winos annihilating to electroweak gauge bosons

(including the impact of the charged wino states via the Sommerfeld enhancement [1–5])

yields a mass of around 3 TeV. The wino as DM is motivated both from a “complete”

theory perspective in the context of split supersymmetry [6–13], but it is also interesting

due to its economy, i.e., minimal DM [5, 14–17].

Multi-TeV WIMPs are unobservable at the LHC: 14 TeV projected limits on winos

are in the few hundred GeV range, and they will even be challenging to find at a future

collider [18, 19]. Furthermore, the cross section at direct detection experiments suffers an

accidental cancellation between the spin-0 and spin-2 contributions, yielding a rate that is

near the neutrino floor [20–22]. The one known channel that holds promise for detecting

multi-TeV winos is via astrophysical searches for their annihilation products. Annihilation

to photons could provide a very clean signal visible to ground-based air Cherenkov array

telescopes [5, 23, 24], and constraints from the observed flux of antiproton cosmic rays can

also be relevant, but require modeling of cosmic-ray propagation and backgrounds [25].

In particular, a search for line photons by the HESS experiment [26] provides a powerful

constraint for thermal winos with mass near 3 TeV, although this is subject to large un-

certainties from the unknown shape of the DM density profile in the inner Galaxy [23].

Furthermore, there are many upcoming experimental searches which could discover heavy

WIMPs via indirect detection of gamma rays, including new data from HESS [27, 28],

HAWC [29–31], CTA [32], VERITAS [33–35], and MAGIC [36, 37]. We would therefore

like to have reliable theoretical predictions for the particle physics contribution to the cross

section over a wide range of DM masses. One key feature of these ground-based experi-

ments is that their resolution for line searches is not particularly sharp, implying that finite

bin effects should be accounted for when making a precise prediction of the annihilation

cross section. A main goal of the present work is to address this.

It is by now well understood that the calculation of the annihilation rate is compli-

cated by the presence of multiple hierarchical scales, namely mW and Mχ. For models

with Mχ � mW , this separation of scales invalidates the standard perturbative expansion,

introducing a number of effects that must be treated to all orders, in particular Sommer-

feld enhancement, which resums terms of the form (αWMχ/mW )k [2, 3, 5, 38, 39], and

Sudakov double logarithms αW log2(Mχ/mW ) [40–46]. These can be conveniently treated

using effective field theory (EFT) techniques, which allow for a systematic expansion in

mW/Mχ � 1, and the identification of universal behavior in this limit. This has attracted

recent attention, resulting in calculations from different groups, with differing assumptions.

Two groups [42, 43, 46] resummed the logarithms that appear assuming the final state was

specified as γ γ or γ Z (referred to here as exclusive), while [41, 44, 45] calculated a re-

summed cross section using the operator product expansion (OPE) and assuming a γ +X

final state (referred to here as inclusive). Due to these differing assumptions, distinct

conclusions were reached on the importance of the logarithmically enhanced terms.

In reality, the situation is more subtle and lies somewhere in between these two ex-

tremes. Due to the finite energy resolution of the detector, the state X recoiling against the
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detected photon, which we take to have energy Eγ , is not forced to be a single electroweak

boson. However, X is constrained to lie near the light cone, namely it is a jet. In this

region it is well known that the standard OPE breaks down, and a more complicated fac-

torization, describing the dynamics of the radiation within the jet, is required. Explicitly,

this introduces another small parameter (1 − z)� 1, where

z =
Eγ
Mχ
∈ [0, 1] , (1.1)

controls the distance from the endpoint, thereby further complicating the perturbative

structure. In particular, large logarithms of (1 − z) appear. We will refer to these as

endpoint logarithms since they become important as z → 1. The importance of these

endpoint logarithms in the DM case was noticed in [45] where an attempt was made to

extend the OPE based expansion beyond its region of validity into the endpoint region.1

However, this framework did not provide a way to exponentiate these logarithms. Their

resummation is one of the goals of this paper.

In this paper we develop a comprehensive EFT framework to compute the photon

spectrum for annihilating (or decaying) DM. We use the soft-collinear effective theory

(SCET) [52–54], and its recent extensions developed for treating similar multi-scale prob-

lems in jet substructure, to factorize the dynamics at the scales mW (electroweak breaking

scale), Mχ(1 − z) (soft scale), Mχ

√
1− z (jet scale), and Mχ (hard scale). In order to

perform the resummation, we will need to refactorize the cross section using techniques

for multi-modal field theories [55–59]. All large logarithms present in the cross section

are then captured by renormalization group evolution between the relevant scales. The

end result is a completely factorized description that allows for systematically improvable

calculations of the photon spectrum. In this paper we will use this framework to compute

the resummed spectrum for pure wino annihilation. The extension to Higgsinos and more

general representations will be left for future work.

An example of the result from our calculation is shown in figure 1. Here we have

plotted the cumulative spectrum,

σ(zcut) =

1∫
zcut

dz
dσ

dz
. (1.2)

A value of zcut = 0 corresponds to the fully inclusive case, and zcut = 1 to the fully exclusive

case. As a benchmark, we have taken the wino mass to be 3 TeV — a wider range of masses

are presented below in section 6. Here we see the impact of resumming the endpoint

logarithms: there is the known factor of 2.2 difference between the exclusive and inclusive

calculations, and when we take zcut ∼ 0.8–0.9 (which is motivated by the HESS energy

resolution), we find that the prediction falls almost half way between the inclusive and

exclusive limits. This demonstrates the importance of the study presented below.

1Similar effects have also been seen in fixed order calculations of χχ → W+W−γ in the WIMP DM

literature [47–51].
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Figure 1. The resummed cross section as a function of the experimental resolution parameter

zcut for a 3 TeV wino, showing the transition between the fully inclusive (zcut = 0) and the fully

exclusive (zcut = 1) cases. For zcut ∼ 0.8–0.9, as relevant for the HESS experiment, the prediction

is half way between the two limiting cases, emphasizing the importance of properly treating zcut.

An outline of this paper is as follows. In section 2 we carefully review the kinematics

of indirect detection, highlighting the different regions of the photon spectrum, the appro-

priate field theoretic techniques that are required for their description, and the differing

approximations made in previous presentations. In section 3 we review the different effec-

tive theories that we will make use of in our analysis, namely non-relativistic DM effective

theory (NRDM) and SCET. In section 4 we present our factorization formula for the region

mW �Mχ(1− z)�Mχ. We describe in detail the multi-step matching procedure used in

its derivation, and the physical role of the different functions appearing in the factorization.

In section 5 we perform the LL resummation, and derive a compact analytic expression for

the resummed spectrum. In section 5.3 we show that our EFT reproduces the resummation

in both the OPE region, and the exclusive endpoint by taking appropriate limits, hence

tying together different results in the literature. In section 6 we present numerical results

for the case of wino DM, comparing with previous results obtained using the exclusive

and inclusive calculations, allowing us to demonstrate that properly accounting for the

finite resolution has a numerically significant effect. In section 7 we estimate the impact

of our newly derived predictions on indirect detection constraints using a simplified mock

analysis of the HESS data. We conclude in section 8. Two appendices are provided: in

appendix A, we provide many technical aspects of the one-loop calculations presented in

the text, and appendix B demonstrates the minimal impact of photons from cascade decays

(e.g. χχ→W+W− → many γs) on our mock reanalysis of the HESS data.
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Guide for the reader. We anticipate that our audience’s interests span from the techni-

cal aspects of the EFT-based calculation to an interest in the implications for the indirect

detection experimental predictions. We therefore provide two road maps for navigating

this paper, depending on the expertise of the reader. For the EFT enthusiasts, the main

technical details of the factorization are presented in sections 3–5. While we have at-

tempted to make the presentation as self contained as possible, in particular by reviewing

the relevant technology, these sections necessarily assume a higher level of familiarity with

EFT techniques, and are as such more mathematically intensive. These sections provide

the details which yield the final prediction, but can be skipped without affecting one’s big

picture understanding of this work.

For the reader interested primarily in the results, and the resolution of previous dif-

fering approximations and conclusions in the literature, we recommend section 2.1 and

sections 6–7. Section 2.1 emphasizes the physical differences between the different ap-

proximations previously made in the literature, and explains the necessity of pursuing our

approach to derive a complete understanding for the range of parameters of interest to

current and future experiments. The main results of our study are shown in graphical form

in section 6, where we highlight the numerical impact of the resummation of logarithms of

zcut, and compare with numerical results from previous approximations. This clearly illus-

trates the importance of properly including the finite resolution of the experiments. Finally,

the impact of our updated numerical results on DM exclusions are given in section 7.

2 Kinematics for heavy WIMP annihilation

In this section, we discuss in detail the kinematics of heavy DM decay or annihilation

to photons as relevant for indirect detection. We carefully analyze all relevant scales,

identifying regions where large ratios of scales exist, which will give rise to logarithms

that need to be resummed. This analysis will also make clear the differences between the

previous studies in the literature. We will also highlight how collinear-soft modes appear in

the broken theory, highlighting the distinction with the case of the naively similar B → Xsγ

that has been thoroughly treated in the literature (see e.g. [60–64]). The discussion of this

section is completely independent of the details of the DM, allowing us to simultaneously

consider decay and annihilation, and depends only on the kinematics of indirect detection.

2.1 Three effective field theory regimes

We consider for concreteness the annihilation of two nearly stationary DM particles of mass

Mχ decaying to γ + X, where the γ is assumed to be detected by the experiment. Here

X denotes all final state radiation apart from the photon. The case of DM decay for a

particle of mass 2Mχ is identical. We use a dimensionless variable z to characterize the

energy fraction of the photon

Eγ = Mχ z , (2.1)

or equivalently,

m2
X = 4M2

χ(1− z) , (2.2)

– 5 –
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(a) (b) (c)

Figure 2. (a) Fully exclusive production, which contributes only at the endpoint where z = 1.

Only virtual corrections are present. (b) Operator Product Expansion for γ + X with mX ∼ Mχ.

Here the state X has a large invariant mass and can be integrated out. (c) The endpoint region,

mX � Mχ. Here the measurement on the final state X constrains it to have a small invariant

mass. This implies that X cannot be integrated out and must be treated as a dynamical object

in the EFT. In all cases, the dashed lines dressing the annihilating DM represent the Sommerfeld

enhancement.

where mX is the invariant mass of the final state X. The result of the calculation will be a

differential cross section as a function of z, which will be integrated from z = zcut → 1. De-

pending on the value of zcut, a number of different field theoretic descriptions are required:2

• Exclusive final state ((1 − zcut) = 0) [42, 43, 46]: here the final state is exactly

specified, either γ γ or γ Z, and we have zcut = 1. Electroweak Sudakov double

logarithms, log2(2Mχ/mW ), appear in the perturbative expansion. See figure 2a.

• Inclusive final state ((1 − zcut) ∼ 1) [41, 44, 45]: here the final state is γ + X, and

the final state X is fully inclusive. This implies that mX is large, such that the state

X can be integrated out using a local OPE [67]. See figure 2b.

• Endpoint region (0 < (1 − zcut) � 1): in this region, the invariant mass of the

final state mX → 0 and as such it cannot be integrated out using a local OPE.

The photon of interest is taken to lie along one lightcone. Then X consists of colli-

mated high energy radiation along an orthogonal light cone, with transverse spread

pT ∼Mχ

√
1− z, as well as isotropic soft radiation with E ∼ Mχ(1 − z). The stan-

dard OPE approach is not sufficient, and a more complicated factorization theorem

describing the dynamics of the soft and collinear radiation is required [68]. Deriving

an analogous factorization for the case of WIMP annihilation is one of the main re-

sults of this paper. In this region, Sudakov double logarithms, log2(1− z) appear in

addition to electroweak Sudakov double logarithms log2(2Mχ/mW ). See figure 2c.

2At this level of discussion, namely the description of kinematics, the different regions are identical to

those for B → Xsγ and related processes. In the B-physics literature, the endpoint region, which will be

the focus of this paper, is also referred to as the shape function region [60, 65, 66].

– 6 –



J
H
E
P
0
3
(
2
0
1
8
)
1
1
7

We can now determine which of the above regions are most relevant to model the

input photon spectrum for a search for DM lines. In principle, if the energy resolution

of the detector is sufficiently precise, the appropriate cross section would only include the

exclusive final state consisting of a photon and a single recoiling electroweak boson. In

this case, the kinematics dictate that this condition is equivalent to requiring z & 0.99

(0.9999) for Mχ ∼ 500 GeV (10 TeV). The corresponding energy resolution is well beyond

the capabilities of existing detectors. For example, translating the Gaussian width of the

resolution quoted in the HESS line search [28] to a hard cut, would naively imply that zcut

varies from 0.83 to 0.89 as Mχ goes from 500 GeV to 10 TeV. This range additionally implies

that we are outside the inclusive region, such that factors of log2(1 − z) are potentially

large and resummation should be performed. We conclude then that the theory which

best describes the line observations made by air Cherenkov telescopes has a state X that is

recoiling against the photon with mX �Mχ, i.e., the endpoint region EFT. The theoretical

descriptions of the matching to the exclusive region, as well as the OPE region, are also

important for a complete description of the spectrum. We will see that these limits arise

naturally from our endpoint EFT.

2.2 Kinematics of the endpoint region

Having determined that experimental considerations drive us to focus on the endpoint re-

gion, next we describe the relevant kinematics. This will expose the corresponding modes

that will be required to construct the EFT description. These modes are shown schemat-

ically in figure 3, along with their virtualities and rapidities. Our goal in this section is

twofold. First, this discussion will motivate the EFTs introduced in section 3. Second, it

will allow us to provide context and highlight the new features of the factorization needed

here in a physical manner, motivating the technical discussion of section 4. The later

sections will then provide a comprehensive mathematical treatment, to complement the

simple picture that follows from kinematic arguments.

We begin with the kinematics of the initial state, namely the annihilating DM. The DM

in the halo has a typical velocity v ∼ 10−3, so a non-relativistic description is appropriate.

The DM will be modeled as heavy sources (in analogy with heavy quark EFT or non-

relativistic QCD) emitting ultra-soft radiation, as shown in figure 3a. There is one well

known complication in the heavy mass limit. Winos carry electroweak charge such that

the Sommerfeld enhancement due to the exchange of electroweak gauge bosons must be

included. This can be appropriately accounted for in the non-relativistic DM (NRDM)

EFT by including the relevant potentials, see section 3.1. A feature of the NRDM EFT is

that it allows a factorization of the Sudakov corrections from the Sommerfeld effects.

The final state is more complicated, and a full characterization will require a multi-

modal EFT. Recapping the discussion above, as zcut → 1 the final state consists of both a

jet of collimated energetic particles and wide angle low energy radiation. As is well known,

this can be captured by SCET. However, due to the multi-scale nature of the problem, we

will show that additional modes, illustrated in figure 3, will be required to fully factorize

all the logarithms. The origin of the multi-modal structure, and its complexity compared

to that seen in previous approaches to heavy WIMP annihilation, can be understood from

– 7 –
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Figure 3. (a) A schematic depiction of the relevant modes in the effective theory for DM an-

nihilation near the endpoint. Modes which are sensitive to the mass of the electroweak bosons

(broken theory) are in zig-zag, while those that behave as effectively massless (unbroken theory)

are curvy. (b) Rapidities and virtualities of the modes describing the final state. The complicated

modal structure of the EFT is driven by the simultaneous presence of the scales Mχ, and mW , as

well as the constraint on the mass of the final state.

kinematic arguments. Specifically, logarithms appear due to two types of phase space

restrictions:

• Kinematic restrictions on final states of massless particles:3 These include kinematic

restrictions via event shape observables, such as thrust, or restrictions from kinemat-

ics that force one into an endpoint region, as in B → Xsγ, and have been discussed

above. EFT descriptions in these cases typically involve three scales: the hard scale,

which in our case will be Mχ; the scale of the transverse momenta of particles in

the jet (whose modes are called collinear), namely Mχ

√
1− z; and the energy scale

of soft radiation, namely Mχ(1 − z). This class of problems is well understood and

can be treated using SCETI, discussed in section 3.2. The radiation in the final state

is factorized into energetic modes, referred to as collinear (c), which comprise the

dynamics of the jet, and wide angle low energy radiation, referred to as ultrasoft

(us). Decomposed into light cone coordinates (n · p, n̄ · p, p⊥) (see eq. (3.7)), along

the direction of the jet, these modes have momentum scaling as4

pc ∼Mχ

(
1, λ2, λ

)
, pus ∼Mχ

(
λ2, λ2, λ2

)
; λ =

√
1− z . (2.3)

3Here we mean massless in perturbation theory, as relevant for scales appearing in logarithms in the weak

coupling expansion. Other mass scales can appear non-perturbatively, for example, hadron mass effects in

QCD event shapes have been studied in [69, 70].
4Note that here and throughout the text, when we describe the scaling of modes we indicate only the

parametric scaling as a function of the relevant scales in the problem, namely Mχ, mW , and 1 − z. Any

O(1) numerical factors do not modify this scaling, and are therefore neglected.

– 8 –
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• Exclusive final states of massive particles: these include the classic massive Sudakov

form factor [71], and more recently, exclusive electroweak production [72–77], and

the exclusive approximation for DM annihilation discussed above [42, 43, 46]. Here

there are two relevant mass scales, namely the hard (h) scale Mχ, and the scale of the

massive boson, mW . Problems of this type can be treated using an SCETII theory,

discussed in section 3.2. The relevant modes in the effective theory are collinear (c)

and soft (s) modes. Decomposed into light cone coordinates (see eq. (3.7)), along the

direction of the jet, these modes have momentum scaling as

pc ∼Mχ

(
1, λ2, λ

)
, ps ∼Mχ

(
λ, λ, λ

)
; λ =

mW

Mχ
. (2.4)

Note the distinction in scaling between the ultrasoft and soft modes. While in this

case the collinear and soft modes are at the same virtuality p2 ∼ M2
χλ

2, they are

separated in rapidity.5 This explains the appearance of the rapidity axis in figure 3b.

The annihilation of WIMP DM in the endpoint region is a more complicated problem,

since it involves the physics of both types of restrictions. There is both a constraint on the

final state radiation, as well as the presence of the mass scale of the electroweak bosons

and the measurement of just the photon state from among the SU(2) × U(1) gauge bosons.

Indeed, we will find that all the scales (in both rapidity and virtuality) present in both

individual cases will appear. This is illustrated in figure 3b, which shows the modes that

live at each of these mass and rapidity scales. We will show how to factorize the dynamics

at each of these scales when large hierarchies are present, thereby facilitating resummation.

The final form involves a component where the gauge boson can be treated as massless, so

that the scale is set by the final state kinematic restriction, and a component where the

relevant scale is mW . For example, the description of the final state jet will be split into a

massless jet function, described using standard techniques in SCETI, as well as a function

describing the dynamics at the scale mW , using SCETII.

In addition to these SCETI and SCETII ingredients, we will show that an extra mode

is required to achieve the fully factorized result. This mode has a virtuality µ2 ∼ m2
W ,

but it has a large momentum component along the direction of the recoiling photon of size

Mχ(1− z) (the momentum scale of the soft function):

pcs ∼Mχ(1− z)
(
λ2, 1, λ

)
, λ =

mW

Mχ(1− z)
. (2.5)

In the case that both Mχ(1− z)�Mχ and mW/(Mχ(1− z))� 1, these modes are neither

(ultra)soft, or collinear, i.e., they do not appear in either SCETI or SCETII EFTs, but

are instead an example of collinear-soft modes, see section 3.2. Our factorization formula

allows for the separate treatment of these collinear-soft modes, which allows us to resum

all large logarithms, but also ensures continuity of the cross section as we move away from

the endpoint region, where these modes are no longer distinguishable from the standard

5We will typically use a dimensionful rapidity, ν, as in figure 3b. This should be thought of in anal-

ogy with the dimensional regularization scale, µ, and is introduced in section 3.2 where we discuss the

regularization of rapidity singularities.

– 9 –



J
H
E
P
0
3
(
2
0
1
8
)
1
1
7

soft modes. It is the simultaneous presence of the scales Mχ(1− z) and mW that gives rise

to the presence of these collinear-soft modes — they would not appear if only a subset of

the scales were present.6 The structure of the results presented below shares similarities

with the factorization formulae for jet substructure observables, where a measurement in

addition to the mass has been performed [55–59, 78–80].

The complete description of the final state therefore combines the SCETI collinear

and ultrasoft modes with the SCETII soft and collinear modes in the direction of the jet,

along with the collinear-soft modes describing additional radiation along the direction of

the photon. Each of these will yield distinct functions in our factorization formula eq. (4.1),

implying that each of these functions has a clear physical origin in terms of the scales of

the problem. This seemingly complicated description is in fact a significant simplification,

since the description of the dynamics at any one of these scales has been reduced to its

elemental form. In the next section, we will introduce the EFT ingredients, and in section 4

we give the technical details of the factorization.

3 Review of relevant effective field theories

In this section we briefly review the different EFTs that we will use, primarily to establish

our notation. Our use of non-relativistic (NR) field theories will be standard in the context

of QCD [81–83] (for reviews, see [84–86]), and will focus on aspects relevant for annihilating

DM (for applications of NRDM EFT to the scattering of DM with nucleon targets, see [20,

21, 87, 88]). As we review SCET, we will highlight necessary extensions that are perhaps

less familiar.

3.1 Non-relativistic dark matter effective theory

In the NRDM EFT, large fluctuations of the DM field χ about a particular velocity v are

integrated out. The non-relativistic DM is described by a field χv with a label velocity v,

just as in heavy quark EFT [89, 90]. Here v is a dimensionless four vector describing the

velocity of the DM, which for concreteness we will take to be v = (1, 0, 0, 0). The freedom

in the choice of v is represented in the EFT as a symmetry known as reparametrization

invariance [91, 92]. The dynamics of χv describe the residual fluctuations of the heavy

state, as in non-relativistic QCD. The EFT captures the interactions of the non-relativistic

particles whose momenta pµ = (E, ~p ) scale as soft (Mχv,Mχv), ultrasoft (Mχv
2,Mχv

2),

and potential (Mχv
2,Mχv). The ultrasoft modes describe radiation, while the soft modes

give rise to the running of potentials.

The leading power interactions of the heavy DM particle(s) with the ultrasoft radiation

can be eliminated using a field redefinition χ
(r)
v → S

(r)
v χ

(r)
v [41–46], where

S(r)
v (x) = P exp

ig 0∫
−∞

ds v ·Aaus(x+ sv)T a(r)

 , (3.1)

6Here we have argued for the existence of collinear-soft modes based only on kinematics. The fact that

these modes are actually required is also related to the fact that there are external states with electroweak

charges, as will be discussed in section 4.2.
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where P denotes path ordering, g is the relevant gauge coupling, and T a(r) is the generator

for the DM representation r. Furthermore, soft radiation is not required at the order

to which we work. This implies that all dynamical radiation in NRDM is completely

captured by Wilson lines along the directions of the heavy particles, greatly simplifying

the field theory treatment.

After decoupling the soft radiation, the leading power Lagrangian is given by

L(0)
NRDM = χ†v

(
i v · ∂ +

~∇2

2Mχ

)
χv + V̂

[
χv, χ

†
v

]
(mW,Z), (3.2)

which describes the interactions of the heavy particles as the sum of a kinetic and potential

term. The potential V̂ describes potential exchanges of the W,Z, γ, and its explicit form

can be found in ref. [4]. Note that going to higher orders and powers is well understood

in the context of NRQCD (see e.g. refs. [93, 94]). The dynamics of the heavy particles are

governed by low energy matrix elements evaluated with the above Lagrangian. Since this

is a non-relativistic description, the number of heavy particles is fixed, and there exists

an associated Schrödinger equation. These low energy matrix elements give rise to the

Sommerfeld enhancement, which must be included when computing the DM cross section.

We will therefore briefly review the structure of the low energy matrix elements and the

Sommerfeld factors.

3.1.1 Sommerfeld factors

Since we have chosen to work with pure wino DM, the model includes a Majorana fermion

DM candidate χ0, and an electrically charged fermion χ±. For the calculation of the

Sommerfeld factors, we include a mass splitting, that is neglected when performing the

Sudakov resummation. Including this splitting is important as it plays a role in determining

the positions of the Sommerfeld resonances. For winos, electroweak corrections yield a mass

splitting δ ≡Mχ± −Mχ0 ' 164.4 MeV [95].

In our formalism, the Sommerfeld enhancement will be captured by low energy matrix

elements of the heavy annihilating particles. As discussed in section 4 where we derive the

factorization formula, the following matrix elements appear

F a
′b′ab =

〈(
χ0χ0

)
S

∣∣∣(χa′Tv iσ2 χ
b′
v

)†∣∣∣0〉〈0
∣∣∣(χaTv iσ2 χ

b
v

)∣∣∣(χ0χ0
)
S

〉
, (3.3)

where T denotes transpose, σ2 is the second Pauli matrix, and the external state is given

by the S-wave combination (χ0χ0)S . Here the color indices a, b, a′, b′ = 1, 2, 3, and we have

the usual relations χ0 = χ3 and χ± = (χ1 ∓ iχ2)/
√

2. In terms of the charge eigenstates,

we will find that the relevant components of F a
′b′ab are〈

0
∣∣∣χ3T

v iσ2 χ
3
v

∣∣∣(χ0χ0
)
S

〉
= 4
√

2Mχ s00 , (3.4)〈
0
∣∣∣χ+T

v iσ2 χ
−
v

∣∣∣(χ0χ0
)
S

〉
= 4Mχ s0± ,

where the Sommerfeld enhancement is captured by the factors s00 and s0±, which must

be evaluated non-perturbatively. In practice we do this by numerically solving the asso-

ciated Schrödinger equation. We summarize some of the most important aspects here; a
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detailed discussion can be found in appendix A of [23]. For other detailed studies of both

phenomenological and formal aspects of Sommerfeld enhancement, we refer the reader to

refs. [96–100].

The first step in solving for the Sommerfeld factors is to compute a wavefunction
(
ψi
)
j
,

where the index i labels the asymptotic state and j is the component index for the resulting

solution, and the indices i, j = 1, 2 refer to the (00), (+−) states respectively. A discussion

of the relevant boundary conditions can be found in ref. [23]. Once the solutions ψ have

been obtained, the Sommerfeld enhancement matrix is

sij =
(
ψi(∞)

)
j
. (3.5)

In practice, one must choose a velocity when computing sij . As is well known, the Som-

merfeld enhancement saturates at low velocities, and we have checked that this occurs

for the range relevant for DM annihilations, i.e., v . 10−3, for the wino mass range of

interest. Therefore, we can neglect any velocity profile dependence, and treat all velocity

dependence as constant for the parameter range of interest.

Once we know sij , using eq. (3.4) we can then determine the relevant components of

F a
′b′ab given in eq. (3.3). From this point, the annihilation cross section can be computed as

σ =
∑
a′b′ab

F a
′b′ab σ̂a

′b′ab(zcut) , (3.6)

where σ̂a
′b′ab(zcut) denotes the resummed perturbative cross section as a function of zcut,

whose computation is the subject of this paper (see eq. (4.1) below).

As a final comment, we note that we have glossed over the fact that we will be working

in a theory with a spontaneously broken gauge symmetry, as opposed to standard NRQCD.

There will several manifestations of this fact. First, and most trivially, it impacts the

Sommerfeld enhancement calculation, as well as the color algebra, due to the identification

of a color index for the external photon. More non-trivially, a significant portion of this

paper (see in particular section 4) will relate to the refactorization of the function describing

wide angle soft radiation, including that from the incoming DM particles. This is required,

since mW introduces another scale for the soft radiation in addition to that imposed by the

final state measurement.

3.2 Soft-collinear effective theory

Soft-Collinear Effective Theory (SCET) [52–54] will provide the framework for describing

radiation in the final state. SCET describes the dynamics of soft and collinear radiation in

the presence of a hard scattering. While originally developed for applications to QCD with

massless gauge bosons, the formalism was extended to the electroweak sector with massive

gauge bosons in [72–74]. In what follows, we will provide a brief review of the features of

SCET that will be used for our heavy DM annihilation process (along with a few more

general comments).
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3.2.1 Modes, fields, and Wilson lines

SCET is a theory of both soft and collinear particles. Collinear particles have a large mo-

mentum along a particular light-like direction, while soft particles have a small momentum,

and no preferred direction. For each relevant light-like direction, we define two reference

vectors nµ and n̄µ such that n2 = n̄2 = 0 and n·n̄ = 2. The typical choice of nµ = (1, 0, 0, 1)

and n̄µ = (1, 0, 0,−1) will be used below. The freedom in the choice of n, as in the case

of v for non-relativistic EFTs, is represented in the EFT through a reparameterization

invariance [101, 102]. Any four-momentum p can be decomposed with respect to nµ as

pµ = n̄·p n
µ

2
+ n·p n̄

µ

2
+ pµ⊥ . (3.7)

The SCET expansion is defined by a formal power counting parameter λ� 1, which is

determined by the measurements or kinematic restrictions imposed on the radiation. Then

the momenta for the different particles in the EFT scale as

Collinear :
(
n·p, n̄·p, p⊥

)
∼ Q

(
λ2, 1, λ

)
,

Soft :
(
n·p, n̄·p, p⊥

)
∼ Q

(
λ, λ, λ

)
, (3.8)

Ultrasoft :
(
n·p, n̄·p, p⊥

)
∼ Q

(
λ2, λ2, λ2

)
,

where Q is a typical scale of the hard interaction. A theory with collinear and ultrasoft

modes is typically referred to as SCETI, while that with collinear and soft modes is referred

to as SCETII [103].7

In order to expand the full theory fields around a particular direction, the momenta

are decomposed into label p̃µ and residual kµ components

pµ = p̃µ + kµ = n̄·p̃ n
µ

2
+ p̃µ⊥ + kµ . (3.9)

Then for a collinear particle, n̄ · p̃ ∼ Q and p̃⊥ ∼ λQ, while k ∼ λ2Q describes small

fluctuations about the label momentum. EFT modes with momenta of definite scaling

are obtained by performing a multipole expansion of the full theory fields. SCET involves

independent gauge bosons8 for each collinear direction An,p̃(x), which are labeled by their

collinear direction n and their large label momentum p̃, as well as (ultra)soft gauge boson

fields A(u)s(x). Independent gauge symmetries are enforced for each set of fields. Overlap

between different regions is removed by the zero-bin procedure [106]. This ensures that

there is no double counting of momentum regions.

The leading power SCET Lagrangian takes the form

LSCET = Lhard + Ldyn = L(0)
hard + L(0) + L(0)

G . (3.10)

Here L(0)
hard contains the hard scattering operators and is determined by an explicit matching

calculation. The Lagrangian L(0) describes the universal leading power dynamics of the

7In the presence of Glauber modes, soft modes are always required to run the Glauber potentials [104,

105]. Whether or not ultrasoft modes are required depends on the physical observable in question.
8The standard formalism also incorporates collinear scalars and fermions as well. These are not required

for the calculation presented here, so we will not discuss them.
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soft and collinear modes and can be found in refs. [52–54]. Finally, L(0)
G is the leading

power Glauber Lagrangian [104], which describes the leading power coupling of soft and

collinear degrees of freedom through potential operators. We will not need to consider it

in this paper.

Hard scattering operators involving collinear fields are constructed out of products

of collinear gauge invariant fields [52, 53]. The gauge invariant gauge boson operator is

given by

Bµn⊥(x) =
1

g

[
W †n(x) iDµ

n⊥Wn(x)
]
. (3.11)

Here Dn⊥ is the collinear gauge covariant derivative, and Wn is a collinear Wilson line9

Wn(x) =

[ ∑
perms

exp
(
− g

n̄ · P n̄ ·An(x)
)]

, (3.12)

where Pµ is an operator that returns the label momentum. The collinear Wilson line,

Wn(x), is localized with respect to the residual position x so that Bµn⊥(x) can be treated as

local gauge boson fields from the perspective of the ultrasoft degrees of freedom. For the

leading power calculation presented here, ultrasoft and soft fields will not appear explicitly

in our hard scattering operators, other than through Wilson lines via the field redefinition

Baµn⊥ → Y ab
n Bbµn⊥ , (3.13)

which is performed in each collinear sector. For a general representation, r, the ultrasoft

Wilson line is defined by10

Y (r)
n (x) = P exp

ig 0∫
−∞

ds n ·Aaus(x+ sn)T a(r)

 , (3.14)

where as before P denotes path ordering. This so-called BPS field redefinition has the

effect of decoupling ultrasoft and collinear degrees of freedom at leading power [111]. We

will also need soft Wilson lines,

S(r)
n (x) = P exp

ig 0∫
−∞

ds n ·Aas(x+ sn)T a(r)

 . (3.15)

9Note that when the label momentum is large compared to the virtuality of the EFT modes, it is

convenient to use a mixed position/momentum space representation space Wilson line, where the label is

in momentum space and the residual fluctuations are in position space. Otherwise, Wilson lines will be

written in position space, e.g. eq. (3.1). It is also possible to formulate SCET entirely in position space, see

e.g. refs. [107, 108], although we will not use the position space formalism here.
10Here we give the explicit result for an incoming Wilson line. Depending on whether particles are

incoming our outgoing, different Wilson lines must be used. When done correctly, the BPS field redefinition

accounts for the full path of the particles [109, 110].
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Finally, the refactorization of the soft sector (see section 4.2.3 below) will require the

inclusion of collinear-soft modes from SCET+ [55–59]. Collinear-soft modes have both a

collinear and soft scaling

pcs ∼ Q λ̃
(
λ2, 1, λ

)
, (3.16)

where λ and λ̃ are distinct power counting parameters. Such modes first appeared in

calculations of jet substructure when multiple simultaneous measurements are made on a

jet [55–59]. This introduces additional scales, implying the need for both λ and λ̃. For

contrast, the measurement of a single observable, such as the mass of a jet, only introduces

a single scale; the mass can either fix the angular spread of the mode, resulting in a

collinear mode, or it can fix the energy of the mode, resulting in soft or ultrasoft modes,

but it cannot fix both, as required for collinear-soft modes. In our case, the collinear-soft

modes will arise due to the presence of both the mass scale of the final state mX , and the

mass scale of electroweak symmetry breaking mW . Our study provides a new application

of collinear-soft modes.

Since the collinear-soft modes arise from a refactorization of the soft sector, they couple

eikonally and their interactions can be absorbed using additional Wilson lines defined as

X(r)
n (x) = P exp

ig 0∫
−∞

ds n ·Aacs(x+ sn)T a(r)

 , (3.17)

and

V (r)
n (x) = P exp

ig 0∫
−∞

ds n̄ ·Aacs(x+ sn̄)T a(r)

 . (3.18)

This notation is chosen to reflect that the X Wilson lines will arise from a BPS field

redefinition, similar to the Y Wilson lines in SCETI (and X precedes Y in the alphabet),

and the V Wilson lines are generated by integrating out interactions with particles in the n̄

direction, similar to the W Wilson lines that accompany the collinear fields (and V precedes

W in the alphabet). As with (ultra) soft fields, at the order to which we work, collinear-

soft fields will appear only in Wilson lines. For example, they will arise from the BPS field

redefinition, which allows the all orders decoupling of interactions between collinear-soft

and collinear particles. This is identical to the transformation in eq. (3.13) but with a

collinear-soft Wilson line. For a more detailed discussion of the BPS field redefinition for

collinear-soft fields, see [55].

3.2.2 Renormalization group evolution

SCET allows for the resummation of large logarithms through the renormalization group

(RG) evolution of matrix elements of collinear, (ultra)soft, collinear-soft fields. Since we

will use both SCETI and SCETII, this RG evolution can be either in virtuality, µ, or
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rapidity, ν [112–114]. We use the regulator of [113, 114], modifying the Wilson lines as

Sn(x) =

[ ∑
perms

exp

(
− g

n · P
ω |2Pz|−η/2

ν−η/2
n ·As(x)

)]
, (3.19)

Wn(x) =

[ ∑
perms

exp

(
− g

n̄ · P
ω2 |n̄ · P|−η/2

ν−η/2
n̄ ·An(x)

)]
. (3.20)

Here ν is a rapidity scale, analogous to µ in dimensional regularization, η is the regulating

parameter, and Pz returns the z-component of the label momentum. This allows us to

define a dimensional regularization-like RG in terms of ν. Here ω is a formal bookkeeping

parameter which satisfies

ν
∂

∂ν
ω2(ν) = −η ω2(ν) , lim

η→0
ω(ν) = 1 . (3.21)

For convenience, we set ω = 1 throughout our calculations since it can be trivially re-

stored. Rapidity divergences for the collinear-soft modes will also be regulated with the

appropriately modified versions of eqs. (3.19) and (3.20).

In our factorization, we will encounter functions that satisfy both multiplicative and

convolutional renormalization group equations. For a function F (µ, ν) which is renormal-

ized by a multiplicative factor ZF (µ, ν), we have

F bare = ZF (µ, ν)F (µ, ν) , (3.22)

from which we derive the RG equations

d

d log µ
F (µ, ν) = γµF (µ, ν)F (µ, ν) ,

d

d log ν
F (µ, ν) = γνF (µ, ν)F (µ, ν) , (3.23)

with

γµF (µ, ν) = − 1

ZF (µ, ν)

d

d log µ
ZF (µ, ν) , γνF (µ, ν) = − 1

ZF (µ, ν)

d

d log ν
ZF (µ, ν) . (3.24)

Convolutional renormalization in a variable τ takes the form

F bare(τ) =

∫
dτ ′ZF (τ − τ ′;µ, ν)F (τ ′;µ, ν) , (3.25)

giving rise to the RG equations

d

d log µ
F (τ ;µ, ν) =

∫
dτ ′ γµF (τ − τ ′;µ, ν)F (τ ′;µ, ν) , (3.26)

d

d log ν
F (τ ;µ, ν) =

∫
dτ ′ γνF (τ − τ ′;µ, ν)F (τ ′;µ, ν) , (3.27)

where the anomalous dimensions are given by

γµF (τ ;µ, ν) = −
∫

dτ ′ Z−1
F (τ − τ ′;µ, ν)

d

d log µ
ZF (τ ′;µ, ν) , (3.28)

γνF (τ ;µ, ν) = −
∫

dτ ′ Z−1
F (τ − τ ′;µ, ν)

d

d log ν
ZF (τ ′;µ, ν) . (3.29)
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Convolutional RG equations are most easily treated in a conjugate space (we will use

Laplace space below), in which they are multiplicative.

The RG evolution can be used to run functions from their natural scale, where all

large logarithms are minimized, to an arbitrary scale. The independence of the RG path

is guaranteed by the fact that the anomalous dimensions sum to zero, schematically∑
F

γFµ = 0 ,
∑
F

γFν = 0 , (3.30)

where the sum is over the functions F that appear in the factorization formula, along with

the fact that evolution in µ and ν commutes:[
d

d log µ
,

d

d log ν

]
= 0 . (3.31)

The consistency of the anomalous dimensions will provide a strong check on our calculation.

We will use the path independence to choose a particularly simple path to resum all large

logarithms in the EFT, see figure 6 below.

4 Factorization formula for the endpoint region

In this section, we present the factorization formula for the endpoint region of heavy WIMP

annihilation — this is one of the main results of this paper. We focus here on the short-

distance component of the cross section, denoted σ̂(zcut) in eq. (3.6). As discussed below,

the long-distance contributions, i.e., the Sommerfeld enhancement, also arise naturally

from the factorization of the matrix elements presented in this section; we refer the reader

to section 3.1.1 for the details of how these factors are (numerically) computed.

In section 4.1, we present the factorization formula, and discuss each of its components

in turn. This section is aimed at readers without a technical EFT background, and as such

emphasizes the physical content of each ingredient. In section 4.2, we provide the technical

discussion of the multi-stage matching used to derive the factorization formula, emphasizing

the operator definitions for the functions and key aspects of the refactorization. Tree level

and one-loop results for all functions in both the intermediate and final EFT, as well as

details of the calculations can be found in appendix A.

4.1 Factorization overview

The main result of this section is a factorization formula for the photon spectrum in the

endpoint region. We find that the differential cross section for the heavy WIMP annihilation

χχ→ γ +X factorizes in the limit that z → 1 as

dσ̂LL

dz
H(Mχ, µ) Jγ(mW , µ, ν) Jn̄(mW , µ, ν)S(mW , µ, ν)

×HJn̄(Mχ, 1− z, µ)⊗HS(Mχ, 1− z, µ)⊗ CS(Mχ, 1− z,mW , µ, ν) , (4.1)

where z is defined in eq. (2.1), and we use⊗ to denote a convolution between the functions in

the second line, as explained in detail below. Here σ̂ denotes the short-distance component
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Figure 4. A schematic of the multistage matching procedure used to derive the factorization

formula for heavy WIMP annihilation in the endpoint region. The jet and soft functions appearing

in the first stage of matching are refactorized into components that depend either on mW , or on

the phase space restriction implemented by z.

of the cross section in eq. (3.6) with suppressed initial/final state indices. The indices

are to be contracted with the matrix element F a
′b′ab in eq. (3.3). This function also

arises naturally when considering the factorization of the cross section, but to keep our

discussion focused on the Sudakov factors, we will not consider F a
′b′ab in this section.

When we present the final cross section results in section 5.2, F a
′b′ab will be included.

The LL superscript indicates that this factorization as written is only true for the leading

logarithmic contributions. Beyond this order additional functions are required, as will be

described in this section.

The iterative matching procedure used to derive this result is shown schematically in

figure 4. In the first stage, we match onto a standard SCET theory, leading to the standard

factorization into functions that describe the underlying hard scattering (H), the collinear

radiation along the jet (J ′n̄) and photon (Jγ) directions, and soft radiation (S′). In the

second stage, we match onto a (electroweak symmetry breaking) theory with massive soft

and collinear modes. In particular, this manifests as a refactorization of the soft function

S′ into the functions HS , S and CS , and of the jet function J ′n̄ into the functions HJn̄ and

Jn̄ — these additional functions are described below.

The final EFT description consists of a collection of independent sectors, each corre-

sponding to the functions appearing in the factorization formula eq. (4.1). The procedure

for factorizing the full cross section into these functions is illustrated in figure 4. The

interpretation of each of the functions is discussed in the following, which is organized by

the characteristic scale µ for these sectors. In particular, we separate it into two classes of

functions, namely those that depend on mW , and those that do not.
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The first class of functions depend on scales far above the electroweak scale, µ� mW ,

and are thus independent of electroweak symmetry breaking effects.

• H(Mχ, µ) describes the underlying hard scattering process of χχ → γ γ, γ Z, and

includes contributions from modes with virtuality µ ∼Mχ.

• HJn̄(Mχ, 1− z, µ) describes collinear radiation along the jet direction with virtuality

µ ∼Mχ

√
1− z such that it contributes to the final state mass.

• HS(Mχ, 1 − z, µ) describes soft wide-angle radiation with virtuality µ ∼ Mχ(1 − z)

such that it contributes to the final state mass.

The second class of functions encode electroweak symmetry breaking effects, and have

µ ∼ mW , so that the gauge fields are treated as massive. Additionally, these functions all

depend on a rapidity renormalization scale ν.

• Jγ(mW , µ, ν) describes the final state photon, and results purely from modes with

energy Eγ and virtuality µ ∼ mW . This function receives only virtual corrections,

since the final state is exactly specified.

• S(mW , µ, ν) describes homogenous soft radiation with virtuality µ ∼ mW such that

it does not contribute to the final state mass.

• CS(Mχ, 1− z,mW , µ, ν) describes radiation that is simultaneously soft and collinear

to the photon direction. The momentum for this radiation has collinear scaling,

virtuality µ ∼ mW , and contributes to the final state mass.

• Jn̄(mW , µ, ν) describes collinear radiation along the jet direction with virtuality µ ∼
mW such that it does not contribute to the final state mass.

This full factorization simultaneously involves functions from NRDM, SCETI, SCETII, and

SCET+, and resummation requires RG evolution in both virtuality and rapidity.

For the analysis here, we will be interested in resumming only the leading logs (LL).

Our approach to the factorization persists at higher logarithmic order. However, as written,

the refactorization of the soft function S′ is only valid at LL order. The origin of this effect,

as well as the mechanism for disentangling these scales, is akin to the case of non-global

logarithms (NGLs), and is discussed in section 4.2.3.

While we will present the factorization formula using the concrete example of an

SU(2)W triplet of Majorana fermions, this choice merely affects the particular spin and

charge structure of the operators involved, and as such the main features of the factoriza-

tion and the relevant modes are universal. The same factorization will also apply, e.g. to

the annihilation of heavy SU(2)W doublets or the decay of a heavy dark bound state [115].

Furthermore, some of the structure is generic to situations where event shape observables

are measured on jets of massive radiation, and thus variants of eq. (4.1) may find applica-

tions for future high energy colliders [116, 117].
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4.2 Multi-stage matching

In this section, we discuss the derivation of the factorization formula given in eq. (4.1). In

section 4.2.1 we present the first stage of matching, including the structure of the hard scat-

tering operators, the factorization of the Hilbert space and measurement function for soft

and collinear modes, and the matrix element definitions of the functions. In section 4.2.2

and section 4.2.3 we present the details for the second stage of matching, namely the refac-

torization of the collinear and soft sectors. For the soft sector, we give a detailed discussion

of the relevant soft and colinear-soft modes.

4.2.1 Soft-collinear factorization

We begin by determining the hard scattering Lagrangian in SCET, denoted by Lhard in

eq. (3.10). This is done through matching the full theory consisting of the Standard Model

and an SU(2)W triplet of Majorana fermions onto SCET, and is identical to the fully

exclusive case [42, 43, 46]. The Lagrangian describing the hard scattering is

L(0)
hard =

2∑
r=1

Cr(Mχ, µ)Or

=

2∑
r=1

Cr(Mχ, µ)
(
χaTv iσ2 χ

b
v

)(
Y abcd
r Bicn⊥ Bjdn̄⊥

)
i εijk(n− n̄)k , (4.2)

with the Wilson line structures

Y abcd
1 = δab

(
Y ce
n Y de

n̄

)
, Y abcd

2 =
(
Y ae
v Y ce

n

)(
Y bf
v Y df

n̄

)
, (4.3)

obtained through the BPS field redefinition. The Wilson coefficients Cr are IR finite, and

independent of the scale mW . Performing a tree-level matching at the scale µ ∼Mχ, we find

C1(µ) = −C2(µ) = −π αW (µ)

Mχ
. (4.4)

The Cr(µ) encode the underlying hard scattering process and determine the hard function

H(Mχ, µ) appearing in our factorization formula, as will be defined in eq. (4.9). Together

with Ldyn in eq. (3.10), the hard scattering operators in eq. (4.2) describe the annihilation

at scales µ .Mχ.

The factorization formula for the cross section for χχ→ γ+X depends on the squared

matrix elements of these hard scattering operators. For contrast, in the exclusive case there

are only virtual contributions, and thus the factorization can be done at the level of the

amplitude [42, 43, 46]. In the present analysis, there are both real and virtual contributions

that are sensitive to mW as well as the scales imposed by the endpoint restrictions though z.

These low-energy dynamics are not yet factorized at this stage.

First, we consider the factorization of the Hilbert space for the final state |X〉. Since

the soft and collinear modes are decoupled, the final state can be written as∣∣X〉 =
∣∣Xs

〉 ∣∣Xc

〉
. (4.5)

– 20 –



J
H
E
P
0
3
(
2
0
1
8
)
1
1
7

Next, we expand out the contributions to the final state mass m2
X ,

(1− z) =
1

4M2
χ

m2
X =

1

4M2
χ

(∑
i∈Xs

pµi +
∑
i∈Xc

pµi

)2

=
2

4M2
χ

(∑
i∈Xs

pµi

)
·
(∑

i∈Xc

pµi

)
+

1

4M2
χ

(∑
i∈Xc

pµi

)2

+O(λ4)

=
2

4Mχ

∑
i∈Xs

n̄ · pi +
1

4M2
χ

(∑
i∈Xc

pµi

)2

+O(λ4)

≡ (1− zs) + (1− zc) +O(λ4) , (4.6)

which shows that contributions to the final state radiation from soft and collinear modes

can be separated to leading power. The last line in eq. (4.6) defines the contributions

from the soft and collinear modes as (1 − zs) and (1− zc), respectively, and demonstrates

the factorization of the final state restriction. This allows us to define soft and collinear

measurement operators, M̂s and M̂c, as

M̂s

∣∣Xs

〉
=

1

2Mχ

∑
i∈Xs

n̄ · pi
∣∣Xs

〉
, M̂c |Xc〉 =

1

4M2
χ

(∑
i∈Xc

pµi

)2 ∣∣Xc

〉
. (4.7)

These measurement operators can be written in terms of the energy momentum tensor of

either the full or effective theories [118–120]. Here their role will simply be to return the

value of the observable for a particular perturbative state in momentum space.

With the above ingredients, we can algebraically manipulate the cross section into a

factorized form involving matrix elements of either soft or collinear fields. These matrix

elements will be coupled together both through color indices and the convolutions that are

present as a result of enforcing the measurements. This procedure is standard (see, e.g.

the review [121]) and we simply give the final result. At the first stage of matching, the

differential cross section with factorized dynamics in SCET is given in terms of the hard

function H, the jet functions J ′n̄ and Jγ for X and the photon respectively, and the soft

function S′ as

dσ̂

dz
=

∫
dzs dzc δ(1 + z − zc − zs)Hij(Mχ) J ′n̄(Mχ, 1− zc,mW ) Jγ(mW )S′ij(1− zs,mW )

≡ Hij(Mχ) Jγ(mW ) J ′n̄(Mχ, 1− z,mW )⊗ S′ij(1− z,mW ) , (4.8)

where we have suppressed the color indices and the dependence on the RG scales µ and

ν for simplicity. As in eq. (4.1), we have used ⊗ to denote the convolution in z. The

convolution arises due to the fact that the total invariant mass of the final state is a sum

over the soft and collinear sectors, see eq. (4.6).

The functions labeled with a superscript prime are those that require further factor-

ization. Note that the J ′n̄ and S′ functions still depend on both the mW and (1− z) scales.

This complication did not occur for the fully exclusive case, where the above factorization
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was sufficient since there is no intermediate scale (1−z). The refactorization of the jet and

soft functions will be discussed in section 4.2.2 and section 4.2.3.

Next, we provide field-theoretic definitions for the functions appearing in eq. (4.8). The

hard function is defined in terms of the Wilson coefficients of the hard scattering operators

in eq. (4.2) as

Hij = CiCj . (4.9)

The soft function is a vacuum matrix element of the soft Wilson lines Yr in eq. (4.2),

S′ij(1− zs,mW , µ, ν) =
〈

0
∣∣∣ T̄Y †i (0) δ

(
(1− zs)− M̂s

)
TYj(0)

∣∣∣0〉, (4.10)

where the color indices are suppressed, T and T̄ denote time ordering and anti-time ordering

respectively, and the Yr factors are the products of Wilson lines defined in eq. (4.3). The

components of the soft function with explicit color indices are

S′ a
′b′ab

11 =

〈
0

∣∣∣∣ (Y 3k
n Y dk

n̄

)†
δ
(

(1− zs)− M̂s

)(
Y 3j
n Y dj

n̄

)∣∣∣∣ 0〉 δa′b′δab ,
S′ a

′b′ab
22 =

〈
0

∣∣∣∣ (Y 3f ′
n Y dg′

n̄ Y a′f ′
v Y b′g′

v

)†
δ
(

(1− zs)− M̂s

)(
Y 3f
n Y dg

n̄ Y af
v Y bg

v

)∣∣∣∣ 0〉 ,
S′ a

′b′ab
12 =

〈
0

∣∣∣∣ (Y 3k
n Y dk

n̄

)†
δ
(

(1− zs)− M̂s

)(
Y 3g
n Y df

n̄ Y ag
v Y bf

v

)∣∣∣∣ 0〉 δa′b′ ,
S′ a

′b′ab
21 =

〈
0

∣∣∣∣ (Y 3f ′
n Y dg′

n̄ Y a′f ′
v Y b′g′

v

)†
δ
(

(1− zs)− M̂s

)(
Y 3k
n Y dk

n̄

)∣∣∣∣ 0〉 δab , (4.11)

where the color indices are explicit, but we have dropped the arguments and scale depen-

dence of the functions for simplicity. Here, as well as in the expressions below, we keep the

time ordering convention and the dependence on x = 0 implicit. Note that the color index

3 corresponds to the photon final state.

The indices i, j in the hard and soft functions span the space of the operators given in

eq. (4.2) and are contracted with each other as HijS
′
ij . To reduce the number of indices

appearing in later formulas, we introduce the following notation:

H1 ≡ H11 , H2 ≡ H22 , H3 ≡ H12 = H21 ,

S′1 ≡ S′11 , S′2 ≡ S′22 , S′3 ≡ S′12 + S′21 ,
(4.12)

such that HijS
′
ij = HiS

′
i.

The jet functions for the recoiling jet X and the photon are color-singlet matrix ele-

ments of collinear fields. Explicitly, we have

J ′ dd
′

n̄

(
Mχ, 1− zc,mW , µ

)
=
〈

0
∣∣∣Bd′

n̄⊥ δ
(

(1− zc)− M̂c

)
δ
(
2Mχ − n̄ · P

)
δ2
(
~P⊥
)
Bd
n̄⊥

∣∣∣0〉 ,
Jγ
(
mW , µ, ν

)
=
〈

0
∣∣∣Bc

n⊥

∣∣∣γ〉〈γ∣∣∣Bc
n⊥

∣∣∣0〉 , (4.13)

where ~P⊥ returns the perpendicular component of the label momentum. As discussed

above, this is the final form for Jγ , but the jet function for X will require further factor-

ization — we turn to this in the next section.
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4.2.2 Refactorization of the jet sector

As currently formulated, the jet function J ′n̄ in eq. (4.8) results from dynamics at both the

scale Mχ

√
1− z and the scale mW . To be able to resum logarithms of mW/(Mχ

√
1− z ),

which can become large as we move towards the endpoint, we must factorize these two

scales. This factorization is similar to that performed in the fully exclusive case, where one

is separating Mχ from mW using a hard matching coefficient that is independent of the IR

scale mW , along with jet and soft functions which describe the dynamics at the scale mW .

Here we will write the jet function J ′n̄(Mχ, 1 − z,mW , µ, ν) as a hard matching coefficient

HJn̄(Mχ, 1− z, µ), and a jet function Jn̄(mW , µ, ν).

The collinear state, Xc, factorizes into two types of collinear modes as∣∣Xc

〉
=
∣∣Xcz

〉 ∣∣XcW

〉
, (4.14)

where cz is in the Hilbert space containing the collinear modes that are sensitive to the

measurement enforced as a function of z, while cW is in the Hilbert space that contains

the modes with mass mW . This follows from the same logic as the standard hard-collinear

factorization. Here the cz modes which contribute to the jet mass measurement have the

standard scaling for an SCETI collinear mode associated with the mass measurement,

pcz ∼Mχ

(
λ2, 1, λ

)
, λ =

√
1− z . (4.15)

The modes sensitive to the mW scale are standard SCETII collinear modes at the scale

mW , with scaling

pcW ∼Mχ

(
λ2, 1, λ

)
, λ =

mW

Mχ
, (4.16)

and do not contribute to the mass of the final state at leading power.

The factorization of the measurement function is trivial since, at leading power, the

low-energy collinear modes have an invariant mass p2
cW
∼ m2

W � M2
χ(1 − z), and do not

contribute to the mass of the final state. We therefore only have

M̂cz

∣∣Xcz

〉
=

1

4M2
χ

 ∑
i∈Xcz

pµi

2 ∣∣Xcz

〉
. (4.17)

The separation of collinear modes through eqs. (4.14) and (4.17) allows us to fully

factorize the jet function as

J ′n̄
(
Mχ, 1− z,mW , µ, ν

)
= HJn̄

(
Mχ, 1− z, µ

)
Jn̄
(
mW , µ, ν

)
+O

(
mW

Mχ

√
1− z

)
. (4.18)

This factorization is a power expansion in mW/(Mχ

√
1− z ). The matching coefficient HJn̄

can be evaluated in the unbroken theory with massless electroweak bosons, and is IR finite

due to the mass measurement. The dependence on the electroweak scale is completely

captured by the function Jn̄(mW , µ, ν).
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4.2.3 Refactorization of the soft sector

Next, we turn to the refactorization of the soft function S′. The goal is to have separate

EFTs for the dynamics at scales µ ∼Mχ(1−z) and µ ∼ mW . Comparing to the discussion

of the jet refactorization in the previous section, the physics of the soft sector is more

interesting, as logarithms due to collinear-soft modes appear.

Consider the possible classes of soft modes with virtuality µ2 ∼ m2
W . The virtuality

of the soft modes with scaling pS′ ∼ Mχ(1 − z)(1, 1, 1) can be lowered uniformly to yield

modes with pS ∼ (mW ,mW ,mW ). When acting on these states, the measurement function

in eq. (4.10) can be expanded as

δ
(

(1− zs)− M̂s

)
= δ (1− zs) +O

(
mW

Mχ(1− z)2

)
. (4.19)

We conclude that these soft modes do not contribute to the measurement, which allows a

simplification of the operator structure. As an explicit example, the soft functions S′1 and

S′2 become

S′ a
′b′ab

1 → Sa
′b′ab

1 = δa
′b′δab δ(1− zs) , (4.20)

S′ a
′b′ab

2 → Sa
′b′ab

2 = δ(1− zs)
(
δa
′b′
〈

0
∣∣∣ (Y †n̄ )e3 Y ae

v Y bf
v Y 3f

n̄

∣∣∣0〉
+ δab

〈
0
∣∣∣ (Y †n̄ )e3 Y a′e

v Y b′f
v Y 3f

n̄

∣∣∣0〉) , (4.21)

where we have used the unitarity of the Wilson lines. These new functions Si are now

independent of mW . Physically, the simplification (collapse) of the Wilson lines occurs

because the measurement operator has been expanded away, implying that the refactorized

soft functions are now inclusive. However, we are still specifying the photon as the final

state, and therefore violate the assumptions of the Bloch-Nordsieck [122] or KLN [123, 124]

theorems, as originally pointed out in [125–127]. This explains why the Wilson lines in S2

do not completely simplify, as compared to S1 where the Wilson line dependence has

collapsed to the unit operator leaving behind only color and kinematic factors.

It is clear from the collapse of the Wilson lines that the modes pS are not sufficient

to complete the picture. In particular, the divergences associated with mW , for example

in S′1, should be reproduced after factorization, but the function S1 in eq. (4.20) does not

have such a divergence. Interestingly, however, there is a second possibility for lowering

the virtuality of the soft modes down to the scale mW : keep their momentum component

along the photon direction fixed, but decrease their angle (increase their collinearity) with

respect to the photon. These modes are shown schematically in figure 5. Such modes then

have the scaling

pcS ∼Mχ(1− z)
(
1, λ2, λ

)
, λ =

mW

Mχ(1− z)
. (4.22)

These modes have a virtuality µ2 ∼ m2
W , but, like the original soft modes with momentum

pS , have a large momentum component Mχ(1− z). This is an example of the collinear-soft
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Figure 5. (a) The refactorization of the soft function into collinear-soft and soft functions at

different rapidity scales. (b) The relevant modes required for the refactorization of the soft function

are collinear-soft modes, which are collimated along the direction of the photon, and wide angle

soft modes, which are isotropic.

modes discussed in section 3.2, which arise from the simultaneous presence of the two scales

Mχ(1− z) and mW .

These arguments imply that the Hilbert space of the soft sector factorizes into soft

modes with uniform scaling and collinear-soft modes as∣∣XS′
〉

=
∣∣XS

〉 ∣∣XcS

〉
. (4.23)

The soft modes do not contribute to the measurement, while the collinear-soft modes are

sensitive to a measurement function

M̂cS

∣∣XcS

〉
=

1

2Mχ

∑
i∈XcS

n̄ · pi
∣∣XcS

〉
. (4.24)

The most interesting aspect of these collinear-soft modes is that they contribute to the

measurement of the final state mass through their large component, which is independent

of their virtuality. To our knowledge, this type of collinear-soft mode has not previously

appeared in the literature. For example, in the case of thrust [128] or other SCETI event

shapes, the definition of the measurement guarantees that it is always the small component

of the momentum of a particle that is measured.

Using the measurement function in eq. (4.24), the Wilson lines that make up the

collinear-soft function do not collapse, but are instead expanded assuming the momentum

scaling for the collinear-soft modes. Since the collinear-soft modes are boosted along the

photon’s direction n, the v and n̄ Wilson lines appear to collapse down to the n̄ direction.

The collinear-soft function is therefore given as a product of Wilson lines

CS
(
Mχ, 1− zc,mW , µ, ν

)
=
〈

0
∣∣∣(XnVn

)†
δ
(

(1− zc)− M̂cS

)
XnVn

∣∣∣0〉 , (4.25)

where the X and V Wilson lines were defined in section 3.2, and implicitly include rapidity

regulators. We have suppressed color indices for simplicity. Explicit expressions with color
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indices will be given below. To regulate rapidity singularities for the collinear-soft Wilson

lines, we do not expand the regulator, using the full |2 kz|−η dependence. Performing

the naive power expansion of the regulator yields unregulated rapidity divergences in the

collinear-soft sector. This choice of regulator defines the zero-bin structure [106] of the

collinear-soft sector, and we find that non-trivial zero-bins are present, which must be

correctly incorporated to remove overlap. This is described in more detail in appendix A.

Strict power counting can be preserved by introducing a boost parameter β, and using the

regulator |2 kz|−η → |k+ + β k−|−η [104].

Having discussed the modes that are required to describe the physics at the scale mW ,

we next explain how to refactorize the soft function into a matching coefficient that de-

scribes the dynamics at the scale Mχ(1 − z), and a soft and jet function that describe

the dynamics at the scale mW . This is more complicated than for the jet function. The

complication emerges due to the existence of a hierarchy in energy but not in angle for the

homogeneous soft modes that live at the scales mW and Mχ(1−z). Hence, any emission at

the scale Mχ(1−z), which can be at an arbitrary angle, eikonalizes from the perspective of

the emissions at the scale mW , and is described as a new Wilson line source. In this way, an

infinite number of operators is generated in the matching (although only a finite number

appear at any order in αW ). This situation is familiar from the case of NGLs [129], where

there exist multiple hierarchical soft scales. Due to the generation of these new sources, the

resummation of NGLs is governed by the non-linear BMS equation [130]. In the present

case, however, the measurement function for the modes at the scale mW is expanded, and

what is generated are Bloch-Nordsieck or KLN violating NGLs. We are not aware of these

appearing previously in the literature. While it is possible that these take a simple form, or

completely cancel, they first contribute at NLL order. Here we restrict ourselves to LL accu-

racy, and so we will not discuss this higher order structure any further. We leave the study

of them using existing formulations of NGLs in factorization [58, 131–134] for future work.

At LL order, we do not need to consider the generation of additional Wilson lines in

the matching. Nevertheless, the general structure of the refactorized function can become

complicated since four Wilson lines appear in each of the soft and collinear-soft functions,

and mixing between these color structures can be generated beyond tree-level. In the most

general case, the refactorization takes the form

S′ aba
′b′

i

(
Mχ,1−z,mW ,µ,ν

)
=HS,ij

(
Mχ,1−z,µ

)[
CS
(
Mχ,1−z,mW ,µ,ν

)
S
(
mW ,µ

)]aba′b′
j

×
[
1+O

(
mW

Mχ(1−z)

)]
. (4.26)

This refactorization, along with the scales of each of the functions, is shown in figure 5. The

functions CS and S each carry eight color (triplet) indices. Two of these sixteen color indices

are identified as carrying the quantum number of the photon, and the rest are contracted as

to leave the overall indices aba′b′, which are contracted with the initial state wavefunction

factors. In eq. (4.26), we are using the notation introduced in eq. (4.12); the index i

enumerates the color structures in the soft function before refactorization, i.e., i = 1, 2, 3.

The index j sums over the color structures in the soft function after refactorization.

– 26 –



J
H
E
P
0
3
(
2
0
1
8
)
1
1
7

Instead of writing down a complete basis, we construct the color structures explicitly

from the top down by explicitly refactorizing the soft function S′. This requires us to

supplement the operators written in eq. (4.11) above with those that appear at one-loop,

to ensure that the RG closes. Fortunately, only a limited basis of color structures is required

at this order. The color structures are derived in appendix A.2. Here we simply state the

results for the refactorization of the soft functions. We denote the combined collinear-soft

and soft functions as

S̃ aba′b′
j =

(
CS S

)aba′b′
j

, (4.27)

and they are

S̃ aba′b′
1 =

〈
0
∣∣∣ (X3f ′

n V dg′
n

)†
δ
(

(1− zs)− M̂cS

)(
X3f
n V dg

n

) ∣∣∣0〉 δf ′g′δa′b′δfgδab ,
S̃ aba′b′

2 =
〈

0
∣∣∣ (Xce

n V
Ae
n

)†
δ
(

(1− zs)− M̂cS

)
Xc′g′
n V A′g′

n

∣∣∣0〉〈0
∣∣∣ [S3c

n S
3c′
n Sa

′A′
v SaAv

] ∣∣∣0〉 δbb′ ,
S̃ aba′b′

3 =
〈

0
∣∣∣ (Xce

n V
B′e
n

)†
δ
(

(1− zs)− M̂cS

)
Xc′g′
n V A′g′

n

∣∣∣0〉
×
(〈

0
∣∣∣ [S3c

n S
3c′
n Sa

′A′
v Sb

′B′
v

] ∣∣∣0〉 δab +
〈

0
∣∣∣ [S3c

n S
3c′
n SaA

′
v SbB

′
v

] ∣∣∣0〉 δa′b′) . (4.28)

Here we have made the color structure explicit, but we have dropped the arguments and

scale dependence of the functions for simplicity. The collinear-soft function reproduces the

mW dependent IR divergences of the soft function. Additionally, for the RG to close we

will need the following operator

S̃ aba′b′
4 =

〈
0
∣∣∣ (X3f ′

n V df ′
n

)†
δ
(

(1− zs)− M̂cS

)(
X3f
n V df

n

)∣∣∣0〉 δa′aδb′b , (4.29)

which has a vanishing tree-level matching coefficient, but will appear in the mixing that

results as we RG evolve the functions. The refactorized functions S̃ aba′b′
1 and S̃ aba′b′

4 have

a trivial soft sector, while the functions S̃ aba′b′
2 and S̃ aba′b′

3 have non-trivial collinear-soft

and soft components. The final result is the factorization formula in eq. (4.26) with index

j summed over j = 1, 2, 3, 4. In section 5 the hard coefficients HS from tree-level matching

will be given explicitly.

5 Leading log resummation for the endpoint region

Having stated the factorization formula, and discussed the physical intuition that un-

derlies it, this section tackles the resummation of large logarithms of mW/(Mχ(1 − z)),

mW/(Mχ

√
1− z), and mW/Mχ. In section 5.1, we present the one-loop anomalous dimen-

sions obtained by computing the real and virtual corrections to the factorized functions

presented in the previous section. We also check consistency conditions for these anoma-

lous dimensions (namely that they sum to zero), thus verifying our factorization formula

at the one-loop level. In section 5.2, we describe a simplified resummation path sufficient

for LL order and then solve the RGEs and collect all the resummation factors necessary

for obtaining the final resummed cross section. The culmination of this work is eq. (5.30).

Explicit calculations are given in appendix A. In section 5.3, we demonstrate that our

result recovers both the exclusive and inclusive limits.
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5.1 One-loop anomalous dimensions and factorization consistency

In the results for the anomalous dimensions presented below, we only keep the double log

pieces that are required for resummation at LL accuracy. The hard function Hi(Mχ, µ)

only has a µ anomalous dimension,

γHµ,ij = −8CA α̃W log

(
µ2

(2Mχ)2 z

)
δij , (5.1)

where CA is the SU(2)W quadratic Casimir invariant for the adjoint representation (explic-

itly CA = 2), i, j = 1, 2, 3, and the structure of the RGE is diagonal. Here, and throughout

this section we will use α̃W = αW/(4π) to simplify the results. Furthermore, we can set

z → 1 to leading power, so that the hard function is independent of the infrared mea-

surement. The same anomalous dimension, but derived at the level of the amplitude, was

obtained for exclusive heavy WIMP annihilation [42, 43, 46].

The photon jet function Jγ(mW , µ, ν) consists of only virtual diagrams, and is com-

puted in the broken theory. An example diagram is

. (5.2)

Here the dashed line indicates the final state cut, which puts the single identified photon

on shell. We find that the µ and ν anomalous dimensions are given by

γ
Jγ
µ = 8CA α̃W log

(
ν

2Mχ

)
, γ

Jγ
ν = 8CA α̃W log

(
µ

mW

)
. (5.3)

For the recoiling jet function Jn̄(mW , µ, ν), the low scale matrix element is fully inclu-

sive. Examples of real and virtual diagrams are

+ . (5.4)

Due to its fully inclusive nature, we find that it has no anomalous dimension in µ or ν.

Instead, these dependences are entirely captured by the matching coefficient HJn̄(Mχ, 1−
z, µ), which is described by the same diagrams but at the high scale. The dashed line

again represents the final state cut, which at NLO can contain one or two particles. Since

the one-loop correction to the jet function is a plus distribution, the RG evolution takes a

simpler form in Laplace space. We will use s to denote the Laplace variable conjugate to

Mχ(1− z). We find its anomalous dimension to be

γ
HJn̄
µ = 8CA α̃W log

(
µ2 s

2Mχ

)
. (5.5)
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For the soft function, the relevant one-loop diagrams are represented by

, (5.6)

where the electroweak boson can attach to any of the crosses, and the double lines denote

Wilson lines. We have drawn the two v Wilson lines, which correspond to the annihilating

heavy WIMPs, as distinct directions for visual clarity. The collinear-soft function has a sim-

ilar structure, except the incoming Wilson lines are contracted to lie in the same direction

. (5.7)

As discussed in section 4.2.3, the general case is complicated by a proliferation of color

structures that mix beyond tree-level. For simplicity, we will consider, by top-down con-

struction, only the functions that appear in our analysis at LL order. The µ RGE for the

S̃ functions is a matrix equation

d

d log µ
S̃ = γ̂S̃µ S̃ , (5.8)

where S̃ denotes the vector S̃i. The explicit form of the anomalous dimension matrix at

one-loop is given by

γ̂S̃µ = 4CA α̃W


−2 log ν s 0 0 0

0 3 log µ s− 2 log ν s 0 − log µ s

− log µ s 0 3 log µ s− 2 log ν s 0

0 0 0 −2 log ν s

 , (5.9)

which exhibits a non-trivial mixing structure. The ν RGE is given by

d

d log ν
S̃ = γ̂S̃ν S̃ , (5.10)

where the matrix is diagonal

γ̂S̃ν = −8CA α̃W log

(
µ

mW

)
1 . (5.11)

The interpretation of the scales appearing in the function S̃ = CSS requires some care

since this is a combined object. While both the CS and S functions have a natural scale

µ = mW (see the ν anomalous dimension given in eq. (5.11)), the scale µ = 1/s appears

in the logarithms of the µ anomalous dimension in eq. (5.9). This can be understood from

the consistency of the RG, since the µ running of CS and S must combine to yield the

natural scale of HS , namely µ = 1/s. Despite its confusing appearance, this appearance of

1/s provides a non-trivial check on our refactorization.

– 29 –



J
H
E
P
0
3
(
2
0
1
8
)
1
1
7

One further important feature of the anomalous dimensions in eq. (5.10) is that at LL

order, all rapidity anomalous dimensions vanish for µ = mW . We will exploit this feature

in section 5.2 by choosing a resummation path where all rapidity evolution is done at the

scale µ = mW , eliminating the need for a non-trivial rapidity evolution.

For the matching coefficients HS,ij of the soft sector we have

d

d log µ
HS,ij = γHSµ,jkHS,ik , (5.12)

where the explicit results at one-loop order are

d

d log µ
HS,11 = 0 , (5.13)

d

d log µ
HS,22 = −12CA α̃W log(µ s)HS,22 ,

d

d log µ
HS,24 = 4CA α̃W log(µ s)HS,22 ,

d

d log µ
HS,31 = 4CA α̃W log(µ s)HS,33 ,

d

d log µ
HS,33 = −12CA α̃W log(µ s)HS,33 .

Now we are in the position to verify our factorization formula by checking consistency

relations among the anomalous dimensions. For the anomalous dimensions of the functions

before the refactorization of the jet and soft functions, we have the relations

γ
Jγ
ν +

1

3
γS
′

ν,ii = 0 ,

1

3
γHµ,ii + γ

Jγ
µ + γ

J ′n̄
µ +

1

3
γS
′

µ,ii = 0 , (5.14)

which involves the anomalous dimensions for the soft and jet functions before refactoriza-

tion, given by

γS
′

µ,ij = −8CA α̃W log(ν s)δij ,

γS
′

ν,ij = −8CA α̃W log

(
µ

mW

)
δij ,

γ
J ′n̄
µ = 8CA α̃W log

(
µ2 s

2Mχ

)
. (5.15)

As in the case of the hard function, the RG structure for the soft functions S′i is diagonal.

Using the anomalous dimensions in eqs. (5.1), (5.3), and (5.15), one can check that the

relations in eq. (5.14) are indeed satisfied.

For the anomalous dimensions after refactorization, we have the consistency relations

γ
J ′n̄
µ = γ

HJn̄
µ ,

1

3
γS
′

µ,ii δkl = γS̃µ,kl + γHSµ,lk ,

1

3
γS
′

ν,ii δkl = γS̃ν,kl , (5.16)

where k, l = 1, 2, 3, 4. One can check that these relations are satisfied using eqs. (5.5), (5.9),

(5.10), (5.13), and (5.15).

– 30 –



J
H
E
P
0
3
(
2
0
1
8
)
1
1
7

Figure 6. A schematic of the resummation path in the (µ, ν) plane used to perform the resum-

mation. We choose to run all functions to (µ, ν) = (mW , 1/s). This particular choice of path

eliminates the need to separately run the soft and collinear-soft functions in rapidity at LL order.

This independence in rapidity at the scale mW is depicted by the light blue box.

5.2 Analytic resummation formula

We now have all the necessary ingredients to provide an analytic expression for the re-

summed spectrum at LL accuracy. As discussed in section 3.2, the resummation can be

simplified by making a judicious choice of path in the (µ, ν) plane. Our choice is illustrated

in figure 6.

Due to the refactorization of the soft function S′ into the soft and collinear-soft func-

tions, each of which have a complicated color structure, and whose renormalization will

involve color mixing, the renormalization group structure is quite complicated for a generic

path. However, this can be avoided by noting that at µ = mW , the rapidity anomalous

dimensions of the soft and collinear-soft functions given in eq. (5.10) vanish at LL or-

der. Hence, we take the functions at their natural scale — H with µ = Mχ, HJn̄ with

µ =
√

2Mχ/s, and HS with µ = 1/s — and run them all down to µ = mW . Finally, at

µ = mW , we can then trivially run the soft, collinear-soft, and jet functions to the same

rapidity. This choice of path provides a significant simplification since we can simply com-

pute the µ anomalous dimensions for the functions H, HJn̄ and HS . Beyond LL accuracy,

this is no longer possible, and the full factorization that we have developed in this paper

must be utilized.

There is one additional subtlety regarding the evolution structure that has been glossed

over in figure 6, but that requires care to reproduce the correct behavior in the limit z → 1.

Recall that in deriving our factorization, which is summarized in figure 4, we have assumed

the hierarchy

Mχ(1− z)�Mχ

√
1− z � mW , (5.17)

which allows us to factorize the dynamics at the scale mW from that at the scales Mχ

√
1− z

and Mχ(1 − z). However, at z = 1 −mW/(2Mχ) the soft scale hits the scale mW and at
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z = 1−m2
W/(2Mχ)2 the jet scale hits the scale mW . In this small region near the endpoint,

our EFT is technically speaking invalidated. Physically, the constraint on the final state

becomes so restrictive that the jet is composed of a single boson. Due to the intrinsic IR

cutoff set by electroweak symmetry breaking, it is unphysical for these scales to go below

the scale mW . Instead, we must introduce a Θ-function in the RG evolution, which ensures

that the running only contributes in the region where the scales are above mW . As we

will see, with this modification, our EFT will correctly transition to the exclusive endpoint

calculation. This choice of scales is implemented in (1 − z) space. Therefore, in Laplace

space we take arbitrary scales µHJn̄ and µHS (µH can be set to its canonical value since it

is z independent) transform to cumulative space where we can implement our scale setting

as a function of (1− zcut), and then differentiate to obtain the resummed spectrum. Note

that in the following, we will always use zcut when discussing the cumulative space, as per

the definition of eq. (1.2).

The RG equations can now be solved in the usual manner. For the hard functions H

and HJn̄ , we derive the evolution kernels

UH
(
2Mχ,mW

)
= exp

(
−8CA α̃W log2

(
mW

2Mχ

))
, (5.18)

UHJn̄
(
µHJn̄ ,mW

)
= exp

(
8CA α̃W

(
log2

(
mW

√
s

2Mχ

)
− log2

(
µHJn̄

√
s

2Mχ

)))
,

where the first and second arguments of the kernels denote the scales we are running

between, starting from the natural scale of the relevant function, and ending at µ ∼ mW .

For the hard function HS , we need to solve the system of RG equations in eq. (5.13) in

order to run from µ = µHS down to µ = mW . We find that

HS,11(mW ) = HS,11(µHS ) ,(
HS,33(mW )

HS,31(mW )

)
=

(
UHS (µHS ,mW ) 0

2 (1− UHS (µHS ,mW ))/3 1

)(
HS,33(µHS )

HS,31(µHS )

)
,(

HS,22(mW )

HS,24(mW )

)
=

(
UHS (µHS ,mW ) 0

(1− UHS (µHS ,mW ))/3 1

)(
HS,22(µHS )

HS,24(µHS )

)
, (5.19)

where

UHS
(
µHS ,mW

)
= exp

(
−6CA α̃W

(
log2 (mW s)− log2 (µHS s)

))
. (5.20)

These kernels resum all leading double logarithms.

To put together the resummed cross section, we need the tree-level values of the hard

function H, see eq. (4.12),

Htree
1 =

π2 α2
W

M2
χ

, Htree
2 =

π2 α2
W

M2
χ

, Htree
3 = −π

2 α2
W

M2
χ

, (5.21)

the hard-soft functions HS , see eq. (4.26),

Htree
S,11 = 1 , Htree

S,22 = 2 , Htree
S,33 = 1 , (5.22)
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and collinear-soft functions S̃, see eq. (4.27),(
S̃aba

′b′
1

)tree
= δa

′b′δab ,
(
S̃aba

′b′
2

)tree
= δa3δa

′3δbb
′
,(

S̃aba
′b′

3

)tree
= δa3δb3δa

′b′ + δa
′3δb

′3δab ,
(
S̃aba

′b′
4

)tree
= δa

′aδbb
′
.

(5.23)

In order to express the final result, we need to include one final piece, the Sommerfeld

enhancement which is encoded in the wavefunction factor F a
′b′ab introduced in eq. (3.3).

The required contractions are(
S̃aba

′b′
1

)tree
F a
′b′ab = 16M2

χ

∣∣√2 s00 + 2 s0±
∣∣2 ,(

S̃aba
′b′

2

)tree
F a
′b′ab = 32M2

χ

∣∣s00

∣∣2 ,(
S̃aba

′b′
3

)tree
F a
′b′ab = 16M2

χ

(√
2 s00 + 2 s0±

)∗ ×√2 s00 + c.c. ,(
S̃aba

′b′
4

)tree
F a
′b′ab = 32M2

χ

∣∣s00|2 + 32M2
χ

∣∣s0±|2 , (5.24)

where we have used the tree-level values of the functions S̃i and the expressions for the wave-

function factor F a
′b′ab in terms of the Sommerfeld factors s00 and s0± (see eq. (3.5) in sec-

tion 3.1.1). Upon expanding the product Hi(mW )HS,ij(mW ) S̃j(mW ) in terms of the evolu-

tion kernels in eq. (5.18) and eq. (5.19) and using the tree-level results in eqs. (5.21), (5.22),

(5.23), we find

1

z

dσLL

dz
=
π α2

W sin2 θW
Mχ v

LP−1

{
UH(2Mχ,mW )UHJn̄ (µHJn̄ ,mW )(

4

3
|s00|2

(
1− UHS (µHS ,mW )

)
+ 2 |s0±|2

(
1 + UHS (µHS ,mW )

)
+

2
√

2

3
(s00 s

∗
0± + s∗00 s0±)

(
1− UHS (µHS ,mW )

))}
. (5.25)

Here LP−1 denotes the inverse Laplace transform. The prefactors are determined by tree-

level matching to full theory, and we have suppressed the arguments of the evolution kernels.

At LL accuracy, the cumulative distribution,

σLL(zcut) =

1∫
zcut

dz
dσLL

dz
, (5.26)

can be obtained setting s = 1/(2Mχ(1−zcut)) in the Laplace space expression for the cross

section, and inserting a 1/(2Mχ) for the measure. At the level of the cumulative, we can

now explicitly set our canonical scales as

µHJn̄ = 2Mχ

√
1−zcut Θ

(
2Mχ

√
1−zcut−mW

)
+mW Θ

(
mW−2Mχ

√
1−zcut

)
,

µHS = 2Mχ(1−zcut) Θ
(

2Mχ(1−zcut)−mW

)
+mW Θ

(
mW−2Mχ(1−zcut)

)
. (5.27)
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This implements the physical constraint that the jet and soft scales never go below the

scale mW . For a more sophisticated analysis, smooth transition functions could be used

instead of Θ-functions. This is often done to transition from resummation to fixed order,

where the smooth transition functions are referred to as profiles [135]. Here we content

ourselves with this simple choice of scales. This simple choice of profiles also allows us to

give a closed form analytic result for the differential spectrum involving the Θ-functions.

With this choice of scale, the evolution kernels appearing in the cross section, now also

explicitly involve the Θ-functions that cut off their evolution as appropriate. For example,

for the jet function evolution kernel, we have

UHJn̄
(
µHJn̄ ,mW

)
= exp

(
8CA α̃W log2

(
mW

2Mχ
√

1− zcut

))
Θ
(
2Mχ

√
1− zcut −mW

)
+ Θ

(
mW − 2Mχ

√
1− zcut

)
, (5.28)

which becomes unity for mW ≥ 2Mχ
√

1− zcut. The soft function evolution kernel is

completely analogous.

Combining all the ingredients, we arrive at the final expression for the cumulative cross

section at LL accuracy

σLL(zcut) = 4 |s0±|2σtreee−2Γ0 α̃W L2
χ Θ(1−zcut)

+σtreee−2Γ0 α̃W L2
χ

{(
−F0+F0 e

2Γ0 α̃W L2
J (zcut)

)
Θ

(
1− m2

W

4M2
χ

−zcut

)
+
(
−F1+F1 e

2Γ0 α̃W L2
J (zcut)

)
Θ

(
zcut−1+

mW

2Mχ

)
Θ

(
1− m2

W

4M2
χ

−zcut

)
+
(
−F1+F1 e

2Γ0 α̃W (L2
J (zcut)− 3

4
L2
S(zcut))

)
Θ

(
1− mW

2Mχ
−zcut

)}
. (5.29)

Here the Θ-functions explicitly enforce that none of the functions are RG evolved below

the scale mW , as emphasized above, and are a crucial part of the final result. Each of

the functions appearing in this expression, as well as their physical significance will be

defined shortly.

We can now obtain the differential spectrum by taking the derivative of eq. (5.29)

with respect to (1− zcut). The differentiation of the cumulative result must be performed

carefully due to the presence of the Θ-functions, which when differentiated give rise to

δ-functions. However, all the δ-functions explicitly cancel, except for the δ-function for the

fully exclusive contribution. Carefully performing the differentiation, we obtain the final

result for the differential spectrum:

dσLL

dz
= 4 |s0±|2 σtree e−2 Γ0 α̃W L2

χ δ(1− z)

+ 4σtree e−2 Γ0 α̃W L2
χ

{
CA α̃W F1

(
3LS1 (z)− 2LJ1 (z)

)
e 2 Γ0 α̃W

(
ΘJL

2
J (z)− 3

4
ΘSL

2
S(z)
)

− 2CA α̃W F0 LJ1 (z) e 2 Γ0 α̃W L2
J (z)

}
. (5.30)
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This simple formula provides the resummation of all logarithmically enhanced terms to the

spectrum at LL accuracy.

As before, to simplify the notation, we have written this expression with α̃W =

αW/(4π). This result is composed of several pieces with clear physical significance, each

of which we now explain. The tree-level cross section

σtree =
π α2

W sin2 θW
2M2

χ v
, (5.31)

appears as an overall multiplicative factor, as does the standard massive Sudakov form

factor with logarithm

Lχ = log

(
mW

2Mχ

)
. (5.32)

The double logarithmic asymptotics is governed by the cusp anomalous dimension [136],

in this case at one-loop,

Γ0 = 4CA , (5.33)

where we recall that CA is the Casimir of the adjoint representation of SU(2). Explicitly, in

our normalization, CA = 2. In eq. (5.30) we have written Γ0 in the exponent to emphasize

that it is the cusp that controls the anomalous dimensions, but used the explicit form of

eq. (5.33) in the prefactors.

The first term in the eq. (5.30) is localized at z = 1. Only the Sommerfeld factor

|s0±|2 appears since the tree-level process is the annihilation of the charged states χ±. The

second term describes the non-trivial z dependence. Here the combination of Sommerfeld

factors

F0 =
4

3

∣∣s00

∣∣2 + 2
∣∣s0±

∣∣2 +
2
√

2

3

(
s00 s

∗
0± + s∗00 s0±

)
,

F1 = −4

3

∣∣s00

∣∣2 + 2
∣∣s0±

∣∣2 − 2
√

2

3

(
s00 s

∗
0± + s∗00 s0±

)
, (5.34)

appear. The perturbative dynamics are controlled by the two logarithms

LJ(z) = log

(
mW

2Mχ

√
1− z

)
, LS(z) = log

(
mW

2Mχ(1− z)

)
, (5.35)

associated with the jet and soft scales, respectively. For convenience, we have also defined

Θ functions associated with the range of the soft and collinear scales

ΘJ = Θ

(
1− m2

W

4M2
χ

− z
)
, ΘS = Θ

(
1− mW

2Mχ
− z
)
. (5.36)

In addition to the Sudakov logarithms, the z dependence is controlled by the functions

LJ1 (z) =
LJ

1− z ΘJ , LS1 (z) =
LS

1− z ΘS , (5.37)
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which capture the power divergence in 1−z, and the subscript is standard notation denoting

that these contain a single power of the logarithm. The presence of the 1/(1−z) factor gives

the expected leading power scaling for the cross section. The power divergence for the soft

logarithm is cutoff at z = 1−mW/(2Mχ) and for the jet logarithm at z = 1−m2
W/(2Mχ)2.

These physical cutoffs arise from the value of z at which the soft and jet scales hit the scale

mW , where the running must be turned off, as has been discussed above. We note that in

the massless theory, the power law divergences would be regulated as plus distributions.

Instead, here mW explicitly cuts off the divergence at a finite distance from the endpoint.

There is a physical interpretation for each of the different terms in eq. (5.30). The first

term, which is localized at the endpoint, corresponds to the fully exclusive cross section,

while the other terms describe deviations from the endpoint associated with either soft

or collinear radiation. With this understanding of the correct treatment of the scales as

we transition to the fully exclusive endpoint, and how they are implemented in our final

factorization formula, in the next section we show that our LL expression in the endpoint

region correctly reproduces the LL in both the exclusive and OPE regions. Firstly, however,

note that expanding eq. (5.30) to fixed order, setting the Sommerfeld factor to its tree-level

result |s00|2 = 1, and dropping Θ-functions, we find

dσ

dz
=

4α3
W sin2 θW
M2
χ v

log
(

2Mχ (1−z)
mW

)
1− z +O(α4

W ) . (5.38)

This result agrees with the O(α3
W ) logarithm derived in the fixed order calculation of [50].

5.3 Reproducing the exclusive and inclusive cross sections

In this section, we demonstrate that our EFT acts as a mother theory which includes

both the exclusive (zcut → 1) and inclusive (zcut → 0) results as limiting cases of our

resummed expression eq. (5.30). It is important to note that the expansions performed

here differ from previous calculations such that power corrections are not expected to be

identical. However, this complication is avoided here due to the simple structures that are

present at LL order. The focus of this section will be showing how to take these two limits

analytically. Section 6 will provide a numerical study of the theoretical error that results

from scale variation.

5.3.1 Inclusive limit

To obtain the inclusive limit of the total cross section, we simply integrate the differential

cross section given in eq. (5.30) from z = 0 to the endpoint z = 1. Explicitly,

σincl =

1∫
0

dz
dσ

dz
=

1∫
0

dz 4 |s0±|2σtree e−2Γ0 α̃W L2
χ δ(1−z)

+

1∫
0

dz 4σtree e−2Γ0 α̃W L2
χ

{
CA α̃W F1

(
3LS1 (z)−2LJ1 (z)

)
e2Γ0 α̃W

(
ΘJL

2
J (z)− 3

4
ΘSL

2
S(z)
)

−2CA α̃W F0LJ1 (z)e2Γ0 α̃W L2
J (z)

}
. (5.39)
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Performing the integral, we have

σincl = σtree
(
F0 + F1e

− 3
2

Γ0 α̃W L2
χ

)
= σtree

(
4

3
|s00|2f− + 2|s0±|2f+ +

2
√

2

3

(
s00 s

∗
0± + c.c

)
f−

)
, (5.40)

where in the last line we have introduced the notation of [41]

f± = 1± e− 3
2

Γ0 α̃W L2
χ . (5.41)

This is precisely the result obtained in [41, 44, 45], demonstrating that we reproduce the

inclusive limit to LL order.

5.3.2 Exclusive limit

Note that the signature of interest for experiments like HESS, where the experimental

resolution has a width σ � m2
W/(4M

2
χ), includes a contribution from the exclusive line

and the endpoint spectrum. It is therefore important that we are also able to reproduce the

resummed fully exclusive cross section from our factorization. This can be accomplished

by integrating eq. (5.30) from z = 1 − m2
W/(4M

2
χ) to z = 1, which corresponds to a

kinematic requirement such that only the exclusive final state is possible since both the jet

and soft scales are set by the electroweak boson mass.11 This demonstrates that for the

case where the experimental resolution has a width δ � m2
W/(4M

2
χ), we have provided

the complete description as relevant experimentally (with the additional caveats discussed

in appendix B).

When integrating from z = 1−m2
W/(4M

2
χ) to the endpoint both LJ1 and LS1 are zero.

Therefore, we can we trivially integrate the δ(1− z) dependent term to find

σexcl =

1∫
1−

m2
W

4M2
χ

dz
dσ

dz
= 4 |s0±|2 σtree e−2 Γ0 α̃W L2

χ . (5.42)

This agrees with the exclusive calculation at leading log accuracy performed in [42, 43].

The fact that we reproduce this result makes it straightforward to convolve the resummed

photon spectrum with the experimental resolution — no merging between different results

is required. In this sense, our EFT acts as a mother theory that completely describes the

photon spectrum for heavy WIMP annihilation at LL order.

11Note that for z > 1−m2
W/(4M

2
χ), eq. (5.30) is proportional to a delta function for exclusive production,

namely δ(1−z). It is important to note that we have power expanded away any mass dependence that would

lead to kinematic differences between the γ γ and γ Z final states. We therefore are implicitly assuming

that the finite resolution function sufficiently smears these differences such that they are not experimentally

relevant.
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6 Numerical results and scale variation

In this section, we provide a numerical study of our final prediction for the spectrum by

evaluating eq. (5.30) for wino DM. This allows us to explore the relative contributions

from the line annihilation and the endpoint spectrum for different choices of the DM mass.

We will also show the cumulative spectra, as given to LL accuracy in eq. (5.29), which

provides intuition for the finite bin effects that are relevant to realistic experiments. Then

in section 7 we will provide a mock reanalysis of the HESS line search, and will convolve

our predicted spectrum with the Gaussian line shape assumed by HESS.

As shown explicitly in section 5.3, our resummed spectrum analytically reproduces

the fully exclusive and the fully inclusive limits, so that we can additionally study the

transition between these approximations. This clarifies the disparate conclusions that

have been drawn using these different approaches. In particular, the exclusive calculations

of [42, 43, 46] claimed a reduction factor of ∼ 2.2 when compared with the tree-level cross

section for a 3 TeV wino. For contrast, the inclusive calculation of [41, 44, 45] found a

reduction of only a few percent. Physically, this results from the fact that an increasingly

exclusive constraint on the final state implies there will be less cancellation between the

virtual and real corrections (for discussions in the context of electroweak logarithms, see

e.g. [137, 138]). The proper interpretation of the experimental limits depends on how

rapidly the transition between the exclusive and inclusive cross sections occurs. Our EFT

analysis provides a complete and decisive resolution of this issue. Interestingly, we find

that the experimental values of current interest to the HESS line search, zcut ∼ 0.8–0.9,

lies right in a transition region between the two limiting cases. This emphasizes the need

to properly treat the impact of finite resolution, as we will do in the next section. However,

before moving to our mock reanalysis of the HESS search, we will provide some numerical

results along with an estimate of the impact of scale uncertainty.

In figure 7 we show the differential spectrum z2 d〈σv〉/dz for several values of the

DM mass. The delta function contribution from the exclusive process is not included.

We see that the endpoint tracks the mass of the DM as expected. Furthermore, the

contribution from the resummed continuum grows as the DM mass is increased. However,

this effect is mitigated by the strong mass dependence of the overall cross section, both due

to Sommerfeld enhancement and the overall 1/M2
χ scaling, which explains why the 3 TeV

result lies above both the 1 TeV and 10 TeV results. The kink in the 1 TeV distribution

is a result of the Θ-functions appearing in the choice of scales, as discussed in section 5.2

(in reality, there are kinks in all the distributions, but they are only visible by eye for the

1 TeV distribution). This kink is ultimately unphysical and could be removed by a smooth

choice of scales, but is well within our uncertainty bands.

The uncertainty bands in figure 7 are the result of varying the renormalization scales

corresponding to the natural scales of the functions appearing in our factorization. Due to

our choice of renormalization path, we simply vary the µ scale of the different functions by

a factor of two about their natural scales.

An alternative numerical representation of our results is provided in figure 8, where we

plot the cumulative cross section as a function of the zcut, for several values of the DM mass.
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Figure 7. The z2 weighted differential endpoint cross section as a function of z for three choices of

the wino mass. Note that the delta function contribution due to the exclusive annihilation process

is not included for clarity of presentation. The error bands are due to scale variation as discussed

in the text.
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Figure 8. The cumulative cross section as a function of zcut for three choices of the wino mass.

The exclusive contribution is included here. The error bands are due to scale variation as discussed

in the text.

Here we do include the delta function contribution that yields the exclusive annihilation

process, which accounts for the finite value when zcut = 1. The uncertainty bands are

computed using the same prescription for the scale variation performed for figure 7.
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The two endpoints, namely zcut = 1 and zcut = 0, correspond to the fully exclusive

and fully inclusive limits, respectively. Interestingly, for the experimentally relevant range

zcut ∼ 0.8–0.9, the cumulative cross section takes an intermediate value approximately

midway between the two extremes. This implies that for these values of zcut, logarithms

of the resolution are playing an important role, in keeping with the conclusions of the

fixed order calculation in the inclusive limit [45]. Theoretically robust results require the

all-orders resummation of logarithms from finite bin effects, as has been done here for the

first time.

7 Impact on indirect detection constraints

The resummed photon spectra derived above have clear implications for heavy DM line

searches. In particular, thermal wino annihilations would produce TeV scale photons.12

When these photons strike the Earth’s atmosphere, they initiate a detectable shower of

particles that persists to the surface. Exactly reconstructing the energy of the incident

photon from the resultant shower is impossible, and as such any real instrument will need

to account for finite energy resolution effects associated with the spread of possible recon-

structed energies given a single true energy.

As discussed at the outset, the strongest constraints on the wino are due to HESS

observations of the Galactic Center [26, 28]; updated limits are expected shortly involving

the full HESS I dataset [139, 140]. Line searches are typically designed to be model-

independent, and thus assume that only the line emission is relevant (although some specific

non-line hard spectra have also been tested [28, 141]). As we demonstrated in figure 8 above,

photons away from the endpoint contribute to a finite bin at a non-trivial level. This is

especially true for HESS, where the effective zcut ∼ 0.8–0.9 depending on the incident

energy. Furthermore, the line analysis of HESS is not a bin-based counting experiment but

requires subtraction of an unknown background, which is modeled by a smooth function.

The presence of signal photons at even lower energies may bias the data-driven background

model if this signal spectrum is not correctly modeled, further modifying the limit.

The goal of this section is to estimate how much including the correct shape and

normalization of the resummed spectrum would be expected to change the HESS limit,

relative to the case of a pure line.

It is important to emphasize that the results presented in this section are approximate,

and should not be taken as updated limits on the wino. At issue is that the full dataset

HESS used to construct their limits in ref. [28] is not public. What we will show are results

from a simplified mock version of that analysis, using a Gaussian likelihood rather than

the full likelihood, which has been validated to yield comparable limits when assuming

exclusive line emission. We can then explore how the various conclusions are modified

when we include the endpoint emission spectrum. The conclusion is that the additional

emission should strengthen limits on the wino by a O(1) factor. This provides motivation

for future experimental analyses to include these contributions when determining limits.

12Another case where a careful treatment of endpoint contributions will be relevant is Higgsino DM, as

demonstrated in [45]. We leave this study to future work.

– 40 –



J
H
E
P
0
3
(
2
0
1
8
)
1
1
7

This section contains three parts. First, we review how to map from DM model

parameters, including the relevant astrophysical inputs, to a prediction for the number of

photons that HESS would observe. Then we apply this formalism to demonstrate the range

of parameters that HESS can constrain. Finally, we outline our mock analysis procedure

and present approximate results showing the impact of our resummed spectra on current

constraints.

7.1 Predicting the indirect detection flux

In order to determine the sensitivity to wino DM, we need a prediction for the number of

photons that should arrive at an experiment as a function of the DM parameters. This can

be derived using the canonical indirect detection formula, which specifies the differential

energy flux arriving at the detector,

1

ΩROI

dΦγ

dE
= J

〈σv〉
8πM2

χ

dNγ

dE
, (7.1)

where ΩROI ≡
∫

ROI dΩ.

The particle physics contribution 〈σv〉/(8πM2
χ) dNγ/dE depends on the velocity av-

eraged total annihilation cross section 〈σv〉, which is summed over all final states involv-

ing a photon, and the average photon spectrum per annihilation, dNγ/dE, which can be

written as13

dNγ

dE
=
∑
f

Brf
dNf

γ

dE
, (7.2)

where the f index refers to the different final states with associated branching fractions Brf
and photon spectra dNf

γ /dE. Since the spectrum here is the result of resumming multiple

electroweak final states (not including the photons that result from decay of unstable W±

and Z bosons, see appendix B for a discussion), we will only refer to the total averaged

quantity dNγ/dE for the remainder of this section.

The remaining ingredient is the so-called J-factor, which is an astrophysical input.

It is determined by the distribution of the DM along the line of sight in the region of

interest (ROI) under consideration. It additionally accounts for the fact that two particles

must find each other for annihilation to occur; the J-factor depends on the number density

squared as

J =

∫
ROI ds dΩ ρ2

DM(s,Ω)

ΩROI
, (7.3)

where ρDM is the Milky Way DM mass distribution, s is the distance from Earth along the

line of sight, and Ω gives the coordinates on the sky within the ROI. Note that as written,

the J-factor has units of TeV2 · cm−5, and in particular there are no units of sr due to the

denominator in eq. (7.3). We caution, however, that a number of other conventions are

in use.14

For a fixed ROI, J is then in principle determined by the Milky Way DM profile.

Unfortunately, the shape of ρDM is very uncertain near the Galactic Center, see e.g. [143],

13This is sometimes defined as the spectrum per DM particle, which differs by a factor of 2.
14For a recent review of the conventions used for indirect detection, see appendix A of [142].
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and in particular within the ROI of the HESS search of ref. [28]. For the case of the wino,

once the mass is fixed the cross section is fully specified. Therefore, one can translate limits

on wino annihilations into a constraint on J , as done in figure 10 below.

It is also of interest to fix a prototypical value for J and then set a limit on the

annihilation cross section, since this is how these constraints are typically presented. For

this purpose we adopt the Einasto profile, the default profile assumed in the HESS analyses,

which is given by

ρEinasto(r) ∝ exp

[
− 2

α

((
r

rs

)α
− 1

)]
, (7.4)

where r is the distance from the center of the halo, and following [144], by default we

take α = 0.17, rs = 20 kpc, and then normalise the profile so that we reproduce the

local DM density of 0.39 GeV cm−3 at our location which is 8.5 kpc from the Galactic

Center. Another frequently invoked DM distribution is the Navarro-Frenk-White (NFW)

profile [145], which takes the form

ρNFW(r) ∝ 1

(r/rs)(1 + r/rs)2
, (7.5)

where again we take rs = 20 kpc. We will also make use of the NFW profile (including the

possibility of a non-trivial core) when interpreting our results below.

Finally, putting this all together results in the differential energy flux arriving at the

detector, 1
ΩROI

dΦγ
dE , which has units of photons · cm−2 · s−1 · TeV−1 · sr−1. This quantity

can be converted into a predicted number of photons (per unit area per unit time) arriving

at the experiment from DM annihilation by first multiplying by the solid angle of the

considered ROI, ΩROI, and then integrating over the energy range determined by the

experimental search. This photon flux Φγ has units of photons · cm−2 · s−1. Converting

this to the actual number of photons depends on the experimental effective area and time

over which the ROI is observed; a larger detector and longer observations will result in

more observed photons. For HESS, the effective area is ∼ 109 cm2 at 1 TeV and current

searches make use of 112 hours of observations of the Galactic Center, yielding sensitivity

to fluxes ∼ 10−14 cm−2 s−1. We can then constrain the DM model using this prediction

for the number of photons as an input to a likelihood analysis.

7.2 From predictions to constraints

Before we give the details of and results from our mock analysis, it is useful to discuss

how we are mapping from the theory prediction to the experimental constraints. The

subtlety arises because the original search was performed under the assumption that the

annihilation signature is a line; in this case, by definition all photons have the same energy.

The spectrum of a typical WIMP can be decomposed into two contributions

dNγ

dE
∼ line + continuum . (7.6)

The line is due to exclusive annihilations to γ γ and γ Z. Since our interest here is in heavy

WIMPs, we will neglect the fact that the finite Z mass causes Eγ = Mχ−m2
W/(4Mχ) < Mχ
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for the photons that result from the γ Z process, and will combine these line contributions

using

〈σv〉line ≡ 〈σv〉γγ +
1

2
〈σv〉γZ , (7.7)

with Eγ = Mχ for all line photons.

The continuum receives many contributions. In the DM literature, this is usually

separated into photons from “internal bremsstrahlung” [47–51], as well as final and initial

state radiation, on one hand, and those photons that result from the cascade decay chain

of unstable particles on the other hand. The decay processes can yield many final state

photons with a broad energy spectrum. Our endpoint calculation for winos resums the non-

decay perturbative processes, and as such it does not include the additional continuum

photons that result from the decay of the W± and Z. However, this contribution is

demonstrated to have little impact on the limits for heavy winos in appendix B. This

conclusion is intuitive since the photons from the W±/Z cascade decays are much lower

energy than the exclusive and endpoint contributions. Therefore, we model the continuum

as only being due to the endpoint contributions, which we denote with E(E), and using

eq. (5.30) the LL result is given explicitly by

ELL(E) =
1

〈σv〉line

d〈σv〉
dE

− 2 δ
(
E −Mχ

)
(7.8)

=
2

|s0±|2Mχ

{
CA α̃W F1

(
3LS1 (z)− 2LJ1 (z)

)
e 2 Γ0 α̃W

(
L2
J (z)− 3

4
(LS1 (z))2(1−z)2

)
− 2CA α̃W F0 LJ1 (z) e 2 Γ0 α̃W L2

J (z)

}
,

where as usual, z = E/Mχ. The resulting spectrum per annihilation is

dNγ

dE
=
〈σv〉line

〈σv〉
(

2 δ(E −Mχ) + E(E)
)
, (7.9)

such that 〈σv〉line/〈σv〉 is the branching fraction to line photons. Note that our calculation

predicts not only the shape of the endpoint contribution, but also the relative normalization

of this with respect to the line spectrum. Putting these details together, we arrive at the

theory prediction (
dΦγ

dE

)
ideal

=
J ΩROI 〈σv〉line

8πM2
χ

[
2 δ(E −Mχ) + E(E)

]
, (7.10)

which is idealized in the sense that it neglects experimental effects.

As such we are still missing one ingredient, which is the fact that we need to con-

volve this with the experimental energy resolution. We can describe the energy resolution

via a convolution function Σ(E − E′), where E′ is the true photon energy and E is the

reconstructed value, and the spectrum an experiment would measure is(
dΦγ

dE

)
smeared

=
J ΩROI 〈σv〉line

8πM2
χ

∫ Mχ

0
dE′Σ

(
E′ − E

)[
2 δ
(
E′ −Mχ

)
+ E

(
E′
)]
. (7.11)

– 43 –



J
H
E
P
0
3
(
2
0
1
8
)
1
1
7

The HESS collaboration has published a model for Σ(E−E′) which we use here, a Gaussian

that is peaked near the true energy with a width that varies from 17% at 0.5 TeV and 11%

at 10 TeV. We interpolate in between these values using the log of the energy, and find a

width ∼15% at 3 TeV.

HESS can constrain the overall normalization of eq. (7.11); in terms of the theory

prediction, this can be interpreted as a constraint on the quantity

CHESS =
J ΩROI 〈σv〉line

8πM2
χ

. (7.12)

However, it is critical to specify the assumed energy spectrum E(E) (in addition to a line

contribution) when deriving a HESS constraint on the cross section. For the following

comparisons, we will use the LL endpoint spectrum computed in this work, so that(
dΦγ

dE

)
HESS

= CHESS

∫ Mχ

0
dE′Σ

(
E′ − E

)[
2 δ
(
E′ −Mχ

)
+ ELL

(
E′
)]
, (7.13)

where CHESS is the coefficient that is constrained using the HESS data, we take ELL
(
E′
)

from eq. (7.8), and Σ(E′ − E) is as discussed above. In the next section, we will interpret

the HESS data as a constraint on CHESS using a mock analysis, and will then convert this

into an approximate constraint on winos using eq. (7.12). We will either use eq. (5.42) to

predict 〈σv〉line for a given mass in order to set a constraint on J , or we will assume the

Einasto profile which gives us J and then constrain the cross section 〈σv〉line. We will also

provide a constraint on the core size, using the NFW profile modified to include a core.

Note that we can test the effects of ignoring the non-line endpoint contributions by

simply setting E(E) = 0; up to the approximations in our analysis required by not having

the full likelihood available, this should reproduce the limits stated in ref. [28]. This allows

us to directly compare constraints on the line only and the line plus endpoint spectrum,

thereby highlighting the impact of our main result eq. (5.30). The next section outlines

the details of our mock analysis and provides approximate constraints on either the cross

section or the J-factor.

7.3 Approximate constraints

Using the procedure described in the previous section, one can in principle interpret the

HESS data as a constraint on wino DM annihilations. As the data collected by the instru-

ment is not public, we are not able to provide a full and precise update of the constraints

on winos. Instead, we will perform a simplified mock version of the HESS analysis in

order to estimate the impact of the corrections calculated here on the resulting limits.

Our mock analysis can roughly recover the published line limits in the case where we take

E(E) = 0 above. We will then extend the analysis to include the endpoint contributions,

demonstrating that they strengthen the limits by an O(1) factor.

Our mock analysis is based on a simplified version of the analysis performed in ref. [28].

Figure 1 of that work provides the measured flux and the associated uncertainty as a

function of energy in their ROI near the Galactic Center. We digitized this dataset and

used it as the input to a Gaussian likelihood analysis. We note that since HESS is an

– 44 –



J
H
E
P
0
3
(
2
0
1
8
)
1
1
7

instrument that counts the number of incident photons, the Poisson likelihood should in

principle be used. However, the number of counts cannot be exactly reconstructed from the

publicly released flux data. The non-Gaussian nature of this dataset is made manifest by

the asymmetric error bars that are particularly clear at higher energies. We approximately

included the asymmetry in the likelihood by using the upper error bars to determine the

likelihood contribution from bins where our model prediction exceeded the data, and the

lower error bars for bins where our model prediction fell below the data. We found that

this approach gave better agreement with the published HESS results than symmetrizing

the error bars.

The dataset di is defined using energy bins with associated index i, where the digitized

HESS flux gives a central value µi and error σi, chosen (between the upper and lower error

bars) in the manner described above. The prediction mi(θ) is a function of the model pa-

rameters θ. The DM-signal contribution to the model is computed using eq. (7.11). We will

treat this theory flux as being a function of the DM mass, Mχ, the line photon cross section,

〈σv〉line, and the J-factor. As emphasized above, given Mχ we can either calculate 〈σv〉line

and then constrain J , or assume a value of J and turn this into a constraint on 〈σv〉line.

Even in the most optimistic DM scenario, the events collected by HESS will not be

solely due to DM annihilation. Firstly, there is a substantial flux of cosmic rays colliding

with the atmosphere, which can mimic gamma-ray signals. Secondly, there will be genuine

gamma-rays due to high-energy astrophysical processes, such as protons in the inner galaxy

colliding with gas and producing energetic neutral pions which decay to gamma-rays. The

expected flux from cosmic-rays and astrophysical sources of gamma-rays is not well un-

derstood in the HESS energy range, and as such ref. [28] parametrized the background

contribution using the following seven parameter model:(
dΦγ

dE

)
bkg

= a0

(
E

1 TeV

)−2.7 [
P

(
log10

[
E

1 TeV

])
+ β G

(
log10

[
E

1 TeV

])]
,

P (x) ≡ exp(a1 x+ a2 x
2 + a3 x

3) ,

G(x) ≡ 1√
2π σ2

x

exp

[
−(x− µx)2

2σ2
x

]
.

(7.14)

The background is then specified by the seven parameters θbkg = {a0, a1, a2, a3, β, µx, σx}.
Combining the signal and background, we arrive at our full model prediction of

mi(θ) =

[(
dΦγ

dE

(
Mχ, 〈σv〉line, J

))
Smeared

+

(
dΦγ

dE
(θbkg)

)
bkg

]∣∣∣∣∣
E=Ei

, (7.15)

so that the model is specified by three signal and seven background parameters. From

here, given the HESS dataset described above, d = {di} = {µi, σi}, we can write down our

assumed Gaussian likelihood function as

L
(
d|θ
)

=
∏
i

1√
2π σ2

i

exp

[
−(mi(θ)− µi)2

2σ2
i

]
. (7.16)
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In order to restrict our likelihood to be a function of only the signal parameters, we eliminate

the nuisance parameters using the profile likelihood method,

L
(
d|θsig

)
= L

(
d|θsig, θ̂bkg

)
, (7.17)

where the hat indicates evaluating the function at the values of θbkg that maximize the

likelihood (see [146] for a review).

With this reduced likelihood, we can then define a test statistic for upper limits as

a function of Mχ on either 〈σv〉line or J . To begin with, we can fix J and set a limit on

〈σv〉line. To determine the fixed value of J , we use eq. (7.3) assuming an Einasto profile

as given in eq. (7.4). The ROI for this dataset was a 1◦ circle around the Galactic Center,

with the Galactic plane masked for latitudes less than 0.3◦, which yields

J ' 7.39× 1018 TeV2 cm−5 . (7.18)

Fixing this value, we define the test statistic as

q〈σv〉line
(Mχ) ≡

{
2
[
logL(d|Mχ, 〈σv〉line)− logL(d|Mχ, 〈̂σv〉line)

]
〈σv〉line ≥ 〈̂σv〉line

0 〈σv〉line < 〈̂σv〉line

,

(7.19)

where again a hat denotes the value that maximizes the likelihood. Using this test statistic,

the 95% limit on 〈σv〉line is then determined by solving for q〈σv〉line
(Mχ) = −2.71, and is

shown in figure 9. In this figure we have also shown the prediction for the wino cross

section — if these were exact limits and if the DM distribution followed an Einasto profile

in the inner galaxy, then the wino would be excluded when this prediction is above the

mock limit curve.

This figure also contains the published HESS limits, taken from figure 4 of [28]. The

extent to which our line-only limits disagree with the published values highlights that our

mock analysis is not exact and thus should not be taken as the true limit on wino DM.

Nevertheless the figure does make it clear that the addition of the endpoint contributions

can lead to a non-trivial enhancement on the sensitivity. For this reason, the effects calcu-

lated in this work represent an important contribution that should be included in future

searches for heavy DM annihilation.

Alternatively, for limits on J , we fix 〈σv〉line to the exclusive wino prediction appro-

priate for that mass using eq. (5.30), and in a similar notation to [147], define our test

statistic as

qJ (Mχ) ≡
{

2
[
logL

(
d|Mχ, J

)
− logL

(
d|Mχ, Ĵ

)]
J ≥ Ĵ

0 J < Ĵ
. (7.20)

As for the cross section, this test statistic allows us to establish the 95% limit at a given

mass through the relation qJ (Mχ) = −2.71, and the result is shown in figure 10. In this

case we have repeated the analysis with and without the endpoint contributions calculated

in this work, with the impact of our calculation being as much as a factor of 3 improvement

in the limit, and a factor of ∼1.5 at the thermal mass.
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Figure 9. The approximate constraints on the line annihilation cross section as a function of the

DM mass for the Einasto profile using our mock reanalysis of the HESS line search. The dotted line

assumes the line-only spectrum and the dashed line assumes the full endpoint + line spectrum. We

additionally provide the LL resummed prediction (including the Sommerfeld enhancement) for the

line annihilation. Under these assumptions, the wino would be excluded when the LL prediction is

above the HESS full constraint. We also show the published HESS line limit in dots to demonstrate

the extent to which our line-only analysis reproduces their result.
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Figure 10. The approximate constraints on the J-factor as a function of the DM mass, assuming

the line only spectrum and the full endpoint + line spectrum, as derived from our mock reanalysis

of the HESS line search.
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Figure 11. The NFW core size required to save the wino as derived using our mock analysis. This

figure follows from the J-factor constraints given in figure 10. At a given mass, the constraint on

J can be converted into a core size limit by calculating the corresponding cored NFW J-factor in

the HESS analysis ROI. For a thermal wino at 3 TeV the estimated constraints improve from 0.70

to 0.99 kpc when including the endpoint contributions. This core size is beginning to be probed

in both numerical and astrophysical settings. We again emphasize that these constraints should be

only taken as an estimate.

The results above demonstrate that updating the wino limits to include the endpoint

contribution can easily lead to O(1) improvements in the limits on 〈σv〉line or the Galactic

Center J-factor. Finally, we emphasize that the search for the wino is reaching a level of

sensitivity such that O(1) factors are important. One way to see this, is by converting the

limits into a statement on how large a core in the Milky Way DM density profile is required

to save the wino from the HESS constraints.

For concreteness, we use a cored version of the NFW profile, following [24]. For

r > rcore, we take the NFW profile as defined in eq. (7.5); when r ≤ rcore, we set the

profile to a constant value ρNFW(rcore), such that the density profile is flat within the core

radius. Restricting ourselves to cores smaller than 8.5 kpc, the presence of a core reduces

the associated J-factor of the halo. In this way we can directly convert J-factor limits into

a corresponding constraint on rcore, which we show in figure 11. From this, we can see that

for a thermal wino at exactly 3 TeV, the estimated core constraint increases from 0.70 kpc

to 0.99 kpc when including the additional photons from the endpoint spectrum.

The values constrained in figure 11 turn out to be at the edge of the core sizes that

are beginning to be probed by a combination of numerical simulations and data. On the

numerical side, it was shown that recent simulations of Milky Way-like halos in simulations

including the effects of baryons, can potentially contain cores up to O(1) kpc [148]. The

total DM mass in the Galactic Bulge region can be estimated from observations of stars
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in the Bulge [149], and disfavors a canonical NFW profile with a core size larger than ∼2

kpc [150]. The core sizes needed for the thermal relic wino to survive indirect detection

bounds are thus beginning to be constrained by stellar observations; accounting for the

detailed endpoint spectrum is an important component when drawing this conclusion.

8 Conclusions

In this paper we have developed a comprehensive effective field theory framework to com-

pute the photon spectrum for annihilating (or decaying) DM. We provided a new fac-

torization formula, which allows for a resummation of all large logarithmic contributions,

properly treating the effects due to electroweak symmetry breaking, the experimental res-

olution on the γ + X final state, and the Sommerfeld enhancement. We have computed

the relevant one-loop anomalous dimensions, showing the consistency of the factorization

formula at this order. We have shown that the contribution from the spectrum has a

numerically important effect for experimental searches of interest, e.g. gamma-ray line

searches from the HESS telescope. Our final result is a compact analytic expression for

the differential spectrum at LL accuracy, which can easily be convolved with experimental

resolution functions to provide realistic predictions.

Our EFT can be interpreted as a mother theory that includes as particular limits the

fully exclusive and fully inclusive cases. The framework presented here correctly describes

the transition between these two limits, allowing us to understand how Sudakov double

logarithms impact the spectrum as a function of the experimental resolution. It also allows

us to assess the extent to which a fully exclusive or fully inclusive approximation, as had

been previously considered in the literature, is appropriate. Interestingly, we find that

for the range of resolution parameters applicable for current and near future experiments,

the result is intermediate between the fully exclusive and fully inclusive predictions. This

resolves the differing conclusions obtained in the literature, and provides a unifying picture

of the importance of Sudakov resummation for indirect detection searches. We have esti-

mated the impact on the interpretation of current searches by providing a mock reanalysis

of the HESS data, and we find that we are probing core sizes in a region where precise

calculations of the particle physics components are relevant.

Now that this paper has established an EFT framework for describing the photon

spectrum resulting from DM annihilation, one can extend this work in a number of future

directions. It would be of formal interest to understand the structure of the factoriza-

tion and resummation at higher logarithmic order. Although the electroweak couplings are

small, significantly improved uncertainties have been observed at NLL [42, 43, 46], implying

that NLL is likely the highest order that is relevant. Additionally, the explicit NLO calcula-

tions provided in [42, 46] demonstrate that higher order terms that are not logarithmically

enhanced are numerically unimportant, justifying our choice to neglect them.

There are also additional phenomenological applications. One could extend these re-

sults to other heavy DM models, e.g. a thermal Higgsino, a mixed wino-higgsino, or minimal

DM candidates. In many of these cases, the constraints can be different [24, 151, 152], im-

plying that a dedicated analysis is warranted. From the point of view of extending the
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work presented here, the underlying EFT is unchanged, but one must modify the Sommer-

feld calculation and the explicit values for the hard matching coefficients and anomalous

dimensions.

A simple heavy DM candidate provides a viable and phenomenologically relevant ex-

planation for the observed relic abundance that could show up in current or future indirect

detection searches. This work casts the prediction for the photon spectrum that can result

from this class of models in a theoretically robust setting, where perturbation theory can

be maintained by performing resummation of all large double logarithms. If a signal of

heavy DM annihilation appears, this work will be critical to interpreting it.
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A One-loop calculations

In this appendix we provide details of the calculation of the one-loop anomalous dimensions

for the different functions appearing in the factorization formula, or provide references

where they can be obtained from known results. Details of the refactorization are provided,

and relevant integrals used in the calculation are also collected.

A.1 One-loop calculation and anomalous dimensions: intermediate EFT

We begin by giving details related to the calculation of the anomalous dimensions for the

intermediate EFT, before refactorization. This will help to make clear how these anomalous

dimensions, and the associated divergences, are split in the refactorized description.

Hard function. The hard function is independent of the infrared measurement made on

the final state. It can therefore be extracted directly from the literature. Although we will

only consider the LL resummation in this paper, we give the NLL anomalous dimension

for completeness. The anomalous dimension matrix for (C1 C2)T can be written in terms

of a diagonal and a non-diagonal component as

γ̂ = 2 γWT
1 + γ̂S . (A.1)
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Explicit results for γWT
and γ̂S were given in [43], namely

γNLL
WT

=
αW
4π

Γ0 log

(
2Mχ

µ

)
− αW

4π
b0 +

(αW
4π

)2
Γ1 log

(
2Mχ

µ

)
, (A.2)

and

γ̂NLL
S =

αW
π

(1− iπ)

(
2 1

0 −1

)
− 2αW

π

(
1 0

0 1

)
. (A.3)

The constants appearing in these expressions are the SU(2) Casimir CA = 2, the one-loop

β-function b0 = 19/6, and the relevant cusp anomalous dimensions are Γ0 = 4CA and

Γ1 = 8
(

70
9 − 2

3 π
2
)
.

Photon jet function. The photon jet function, which has a single photon as its final

state, is defined in eq. (4.13) as

Jγ =
〈

0
∣∣∣Bc

n⊥(0)
∣∣∣γ〉〈γ∣∣∣Bc

n⊥(0)
∣∣∣0〉 . (A.4)

Evaluating this function at one-loop yields

Jγ = −2− 2CA
αW
π

(
µ

mW

)2 ε( ν

2Mχ

)η Γ(ε)

η

+
αW
2π

Γ(ε)

(
µ

mW

)2 ε [11

3
CA −

4

3
nf C(R)

]
+O

(
α2
W

)
, (A.5)

where µ and ν are the virtuality and rapidity renormalization scales respectively. Here nf
denotes the number of fermion flavors. We take nf = 5 in our numerical results. The µ

and ν anomalous dimensions can immediately be extracted from this result, and we find,

γnµ = 2CA
αW
π

log

(
ν

2Mχ

)
, (A.6)

γnν = 2CA
αW
π

log

(
µ

mW

)
. (A.7)

Recoiling jet function. When computing the recoiling jet function, all IR divergences

are explicitly regulated by the measurement of the final state mass. This is unlike the

photon jet function, where the scale mW acts as a regulator. To compute the anomalous

dimensions, it is therefore sufficient to expand away the scale mW from the beginning,

simplifying the calculation. The inclusive recoiling jet function is then defined as

J ′n̄(k+) =
∑
XC

〈
0
∣∣∣Bd

n̄⊥(0) δ
(
k+ − P+

)
δ
(
Mχ − P−/2

)
δ2
(
~P⊥
)∣∣∣XC

〉〈
XC

∣∣∣Bd
n̄⊥(0)

∣∣∣0〉 . (A.8)

We can rewrite this jet function as

J ′n̄(p) =
∑
XC

∫
d4x

(2π)4
ei p·x

〈
0
∣∣∣Bd

n̄⊥(0)
∣∣∣XC

〉〈
XC

∣∣∣Bd
n̄⊥(x)

∣∣∣0〉 . (A.9)
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with p = (2Mχ, k
+, 0) in order to enforce the δ-function measurement constraints. Written

in this form, the function is completely inclusive. Therefore, we can use the optical theorem

to write this as the imaginary part of the forward scattering amplitude

J ′n̄(p) =
1

2
Im

∫
d4x

(2π)4
ei p·x

〈
0
∣∣∣T Bd

n̄⊥(0)Bd
n̄⊥(x)

∣∣∣0〉 . (A.10)

This jet function has been evaluated in the literature [153–155]; the one-loop result is

J ′n̄(p2) = δ(p2) +
αW
4π

(
4CA log(p2/µ2)− b0

p2

)
+

+O
(
α2
W

)
, (A.11)

where the subscript plus denotes a plus distribution, see e.g. [156] for an extensive review of

its properties. The kinematics for heavy DM annihilation imply that p2 = 2Mχ k
+, so that

J ′n̄(k+) = δ
(
2Mχ k

+
)

+
αW
4π

1

µ2

(
4CA log

(
2Mχ k

+/µ2
)
− b0

2Mχ k+/µ2

)
+

+O
(
α2
W

)
. (A.12)

To expose the simple renormalization group structure, we transform to Laplace space,

where the Laplace conjugate variable of k+ is taken to be s. Keeping only the leading log

term, we find

J ′n̄(s) =
1

2Mχ
+ 2CA

αW
4π

1

2Mχ
log2

(
µ2 s eγE

2Mχ

)
+O

(
α2
W

)
, (A.13)

where γE is the Euler-Mascheroni constant. Finally, we extract the µ anomalous dimension

γn̄µ = 2CA
αW
π

log

(
µ2 s eγE

2Mχ

)
. (A.14)

This function has no rapidity anomalous dimension as it is a SCETI type function.

Ultrasoft function. There are four operators that contribute to the ultrasoft function

in the EFT: S′12, S′21, S′11, S′22, see eq. (4.11) above. Using the expressions below, we can

then extract the LL µ and ν anomalous dimensions. We will find that each operator yields

the same result,

γS
′

µ = −2CA
αW
π

log
(
ν s
)
,

γS
′

ν = −2CA
αW
π

log

(
µ

mW

)
. (A.15)

This calculation will also expose additional IR divergent contributions, which is the sign

that refactorization is necessary.

The one-loop results will be expressed in terms of several integrals, denoted in bold

and labeled with V and R for virtual and real respectively, which are defined and evaluated

below. These integrals are evaluated using dimensional regularization as an IR regulator,
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and with the rapidity regulator as defined in section 3.2. The integrals that we will require

in our calculation are defined as follows. The nn̄ integrals are

IR
nn̄ = −g2

W

∫
dd`

(2π)d−1

2 δ+
(
`2 −m2

W

)∣∣`+ − `−∣∣−η/2δ(q+ − `+)

`+ `−

= −αW
2π

(
µ

mW

)2 ε(ν q+

m2
W

)η/2
Γ[ε+ η/2]

q+
, (A.16)

IV
nn̄ = δ

(
q+
)
g2
W µ2 ε νη/2

∫
dd`

(2π)d
−2 i

(`2 −m2
W + i0)

∣∣`+ − `−∣∣−η/2
(`+ + i0) (`− − i0)

= −δ
(
q+
)2αW
π

(
µ

mW

)2 ε( ν

mW

)η/2 2−η/2

η

Γ[ε+ η/4]Γ[1/2− η/4]

Γ[1/2]
, (A.17)

the nv integrals are

IV
nv = g2

W µ2 ε νη/2
∫

dd`

(2π)d
−2 i

(`2 −m2
W + i0)

∣∣`+∣∣−η/2
(`+ + `− − i0) (`− − i0)

= −αW
π

(
µ

mW

)2 ε( ν

mW

)η/2 Γ[ε+ η/4]Γ[1− η/4]

η
, (A.18)

IR
nv = −g2

W

∫
dd`

(2π)d−1

2δ+
(
`2 −m2

W

)
δ
(
q+ − `+

)
(`+ + `−) `−

= −αW
π

1

q+
log

(√
(q+)2 +m2

W

mW

)
, (A.19)

and the n̄v integrals are

IV
n̄v = δ

(
q+
)
g2
W µ2 ενη/2

∫
dd`

(2π)d
−2 i

(`2 −m2
W + i0)

∣∣`+ − `−∣∣−η/2
(`+ − i0) (`+ + `− − i0)

= −δ
(
q+
)αW
π

(
µ

mW

)2 ε( ν

mW

)η/2 Γ[ε+ η/4]Γ[1− η/4]

η
, (A.20)

IR
n̄v = −g2

W

∫
dd`

(2π)d−1

2 δ+
(
`2 −m2

W

)
δ
(
q+ − `+

)∣∣`+ − `−∣∣−η/2
(`+ + `−) (`+)

= IR
nn̄ − IR

nv . (A.21)

Next, we consider each of the four ultrasoft functions in turn. First we provide the oper-

ator definition, followed by the tree-level and one-loop evaluation in order to compute the

anomalous dimensions for the different color structures of the ultrasoft function. Since we

are doing this in the EFT before refactorization, we will refer to these as ultrasoft func-

tions and the corresponding states as |XUS〉. These ultrasoft functions will ultimately be

refactorized.

• S′11 is defined as

S′ aba
′b′

11 =
∑
XUS

〈
0
∣∣∣ (Y 3f ′

n Y dg′

n̄

)†
(0)
∣∣∣XUS

〉
×
〈
XUS

∣∣∣δ(q+ − P+)
(
Y 3f
n Y dg

n̄

)
(0)
∣∣∣0〉 δf ′g′δa′b′δfgδab . (A.22)
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Evaluating at tree-level in Laplace space yields(
S′ aba

′b′
11

)tree
= δabδa

′b′ , (A.23)

and at one-loop yields(
S′ aba

′b′
11

)1-loop
=− δabδa′b′ 2CA

(
IR
nn̄ − IV

nn̄

)
−−−−→
Laplace

− δabδa′b′ 2CA
αW
2π

(
µ

mW

)2 ε

Γ[ε]

(
2

η
+ log

(
ν s
))

, (A.24)

where the second line is expressed in Laplace space. Extracting the LL anomalous

dimensions from these results yields eq. (A.15).

• S′12 and S′21 are defined as

S′ aba
′b′

12 =
∑
XUS

〈
0
∣∣∣ (Y 3f ′

n Y dg′

n̄

)†
(0) δ

(
q+ − P+

)∣∣∣XUS

〉
×
〈
XUS

∣∣∣ (Y 3g
n Y df

n̄ Y ag
v Y bf

v

)
(0)
∣∣∣0〉 δf ′g′δa′b′ ,

S′ aba
′b′

21 = S′ a
′b′ab

12 . (A.25)

Evaluating at tree-level in Laplace space yields(
S′ aba

′b′
12

)tree
= δb3δa3δa

′b′ , (A.26)

and at one-loop yields(
S′ aba

′b′
12

)1-loop
=− δa′b′

[(
− δa3δb3 − δab

)(
IV
nn̄ − IR

nn̄

)
+
(
δab − 3δa3δb3

)(
IV
nv + IR

nv + IV
n̄v − IR

n̄v

)]
−−−−→
Laplace

− δa′b′δa3δb3 2CA
αW
2π

µ2 ε Γ[ε]

(
2

η
+ log

(
ν s
))

+ δa
′b′
(
δab − 3 δa3δb3

)αW
π

log2
(
mW s

)
, (A.27)

where the second line is expressed in Laplace space. Extracting the LL anomalous

dimensions from these results yields eq. (A.15).

This result manifests the same UV virtuality and rapidity divergences as in the case of

the S′11 operator which is why it yields the same anomalous dimension as S′11. However,

we see an additional IR divergence appears in the form of log2
(
mW s

)
. This results from

the non-singlet nature of this operator. In order to factorize this new double log, we

need to match this ultrasoft operator onto an EFT below the scale s. This allows us to

separate the scales s and mW , yielding our final fully factorized result.

• S′22 is defined as

S′ aba
′b′

22 =
∑
XUS

〈
0
∣∣∣ (Y 3f ′

n Y dg′

n̄ Y a′f ′
v Y b′g′

v

)†
(0) δ

(
q+ − P+

)∣∣∣XUS

〉
×
〈
XUS

∣∣∣ (Y 3f
n Y dg

n̄ Y af
v Y bg

v

)
(0)
∣∣∣0〉 . (A.28)
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Evaluating at tree-level in Laplace space yields(
S′ aba

′b′
22

)tree
= δa3δa

′3δbb
′
, (A.29)

and at one-loop yields(
S′ aba

′b′
22

)1-loop
=
(
−δa3δb3δa

′b′ + δa3δb
′3δa

′b − δa′3δb′3δab + δb3δa
′3δab

′
)(

IV
nn̄ − IR

nn̄

)
+
(
δa3
{
− 2 δa

′3δbb
′ − δb′3δa′b + δb3δa

′b′
}

+ δa
′3
{
− 2 δa3δbb

′ − δb3δab′ + δb
′3δab

})(
IV
n̄v − IR

n̄v + IV
nv

)
−−−−→
Laplace

2CA δ
a3δa

′3δbb
′ αW

2π
µ2 ε Γ[ε]

(
2

η
+ log

(
ν s
))

+ δbb
′(
δaa
′ − 3 δa3δa

′3
)αW
π

log2
(
mW s

)
. (A.30)

where the second line is expressed in Laplace space. Extracting the LL anomalous

dimensions from these results yields eq. (A.15). Note that although the result appears

not to be symmetric in the color structure, the wavefunction F a
′b′ab defined in eq. (5.24)

is symmetric under the interchange a, a′ ↔ b, b′.

A.2 Calculations in the refactorized theory

Having presented the calculations for the anomalous dimensions in the intermediate EFT,

in this section we discuss some details related to the refactorization that were skipped in

the text, and present the anomalous dimensions in the refactorized theory.

Photon jet function. The photon jet function Jγ is only sensitive to a single scale mW ,

and therefore is unmodified under the refactorization procedure.

Recoiling jet function. As discussed in section A.1, although in the intermediate the-

ory the recoiling jet function is sensitive both to the scale Mχ

√
1− z set by the final state

measurement, as well as to the scale mW , the final state measurement regulates all singu-

larities, and could therefore be expanded to begin with. Combining this result with the

structure of the factorization

J ′n̄
(
Mχ,
√

1−z,mW ,µ
)

=HJn̄

(
Mχ,
√

1−z,µ
)
Jn̄
(
mW ,µ,ν

)
+O

(
mW

Mχ

√
1−z

)
, (A.31)

we find that the one-loop result for the matching coefficient in Laplace space (Mχ

√
1−z→s)

is given by

HJn̄(Mχ, s, µ) =
1

2Mχ
+ 2CA

αW
4π

1

2Mχ
log2

(
µ2 s eγE

2Mχ

)
+O

(
α2
W

)
. (A.32)

This then implies that

d

d log µ
J ′n̄
(
Mχ,
√

1− z,mW , µ
)

=
d

d log µ
HJn̄

(
Mχ,
√

1− z, µ
)
, (A.33)
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which is given in eq. (A.14), and

d

d log µ
Jn̄
(
mW , µ, ν

)
= 0 . (A.34)

To the order that we work, we need just the tree level value for Jn̄, which is

J tree
n̄

(
mW , µ, ν) = 1 . (A.35)

Anomalous dimensions for the refactorized ultrasoft function. Unlike for the jet

functions, the refactorization of the ultrasoft function is significantly more involved. As

given in the text, the general form of the refactorization is

S′aba
′b′

i

(
Mχ,1−z,mW ,µ,ν

)
=HS,ij

(
Mχ,1−z,µ

)[
CS
(
Mχ,1−z,mW ,µ,ν

)
S
(
mW ,µ

)]aba′b′
j

×
[
1+O

(
mW

Mχ(1−z)

)]
. (A.36)

The goal of this section will be to describe this refactorization in more details, and derive

the required anomalous dimensions.

Before considering the structure of the anomalous dimensions, we must first derive the

color structures of the collinear-soft and soft functions, which were only stated without

derivation in the main body of the text. The structure of the Wilson lines in the soft and

collinear-soft functions can be derived by performing the BPS field redefinition iteratively.

We therefore return to the two amplitude level operators (see eq. (4.2) above)

O1 =
(
χaTv iσ2 χ

b
v

)
Bcn⊥Bdn̄⊥ δabδcd ,

O2 =
(
χaTv iσ2 χ

b
v

)
Bcn⊥Bdn̄⊥ δacδbd . (A.37)

Next we iteratively perform the BPS field redefinition for both the collinear-soft modes

and refactorized soft modes,

O1 =
[
δAB V Dc

n XCc
n

] [
SĀAv SB̄Bv SD̄Dn̄ SC̄Cn

] (
χĀTv iσ2 χ

B̄
v

)
BC̄n⊥BD̄n̄⊥ ,

O2 =
[
δBD V Ac

n XCc
n

] [
SĀAv SB̄Bv SD̄Dn̄ SC̄Cn

] (
χĀTv iσ2 χ

B̄
v

)
BC̄n⊥BD̄n̄⊥ . (A.38)

We can now derive the soft and collinear-soft functions in the standard way, by squaring

the amplitude level operators and setting D̄ = D̄′, C̄ = C̄ ′ = 3. We find

S̃11 =
〈

0
∣∣∣[V dc

n XCc
n

][
V dc′
n XC′c′

n

]
×
[
S3C′
n S3C

n

]
δĀB̄δĀ

′B̄′
∣∣∣0〉 ,

S̃12+S̃21 =
〈

0
∣∣∣[V B′c

n XCc
n

][
V A′c′
n XC′c′

n

]
×
[
S3C
n SĀ

′A′
v SB̄

′B′
v S3C′

n

]
δĀB̄+

{
Ā, B̄↔ Ā′, B̄′

}∣∣∣0〉 ,
S̃22 =

〈
0
∣∣∣[V B′c

n XCc
n

][
V A′c′
n XC′c′

n

]
×
[
S3C
n SĀ

′A′
v SĀB

′
v S3C′

n

]
δB̄B̄

′
∣∣∣0〉 . (A.39)

To simplify the notation and focus on the color structures, we have suppressed the mea-

surement function.
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One additional complication that arises in the refactorization of the ultrasoft function,

is that there are non-trivial zero-bins [106] that must be correctly incorporated. We there-

fore briefly discuss the structure of these zero-bins, and their dependence on our choice of

regulator, showing through two examples how the factorization correctly reproduces the

structure of integrands once the zero bin is included. We consider one example of a virtual

integral and one example of a real integral, arising from the S′11 integrand.

• Consider the virtual integral (see eq. (A.17) for the evaluation of the unexpanded integral)

IV
nn̄ = δ

(
q+
)
g2
W µ2 ε νη/2

∫
dd`

(2π)d
−2 i

(`2 −m2
W + i0)

∣∣`+ − `−|−η/2
(`+ + i0) (`− − i0)

. (A.40)

Let us now consider the collinear-soft limit (`+ � `−) of this integral. It would appear

that according to the power counting the only effect is to drop `− from the rapidity

regulator term |`+ − `−|η/2. Since the rest of the integrand is unchanged, this would

lead to an unregulated divergence as `− → ∞. We would then be forced to introduce

a new regulator to counter this divergence. While there are several ways to do this (a

∆-regulator [157], for instance), the simplest way is just to keep the original form of the

rapidity regulator. The choice of the regulator we use will affect the zero-bin subtraction

that will be needed.

If we do not expand out the regulator, then the collinear-soft and soft limits of eq. (A.40)

are identical to the full US integral. The soft-bin subtraction is implemented in the

collinear-soft (CS) sector by subtracting out the soft limit of the CS integral. With this

subtraction

IV,CS
nn̄ = 0 ,

IV,S
nn̄ = IV

nn̄ , (A.41)

so that we recover the full US virtual contribution.

• Now, consider the real emission integral (see eq. (A.16) for the evaluation of the unex-

panded integral)

IR
nn̄ = −g2

W

∫
dd`

(2π)d−1

2 δ+
(
`2 −m2

W

)∣∣`+ − `−∣∣−η/2δ(q+ − `+
)

`+ `−
. (A.42)

The soft limit is

IR,S
nn̄ = −δ

(
q+
)
g2
W

∫
dd`

(2π)d−1

2 δ+
(
`2 −m2

W

)∣∣`+ − `−∣∣−η/2
`+ `−

. (A.43)

The CS limit is identical to the full integral. Applying the zero-bin subtraction to this

(which turns out to be the same as the soft integral), we are left with

IR,CS
nn̄ = IR

nn̄ − IR,S
nn̄ . (A.44)

Thus, once again we recover the full US real contribution adding together the CS and

soft limits. The zero-bin subtraction scheme then is to simply subtract the soft limit of

the CS integrals from the CS sector.
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The analysis of these integrals provides a non-trivial check that our factorization is indeed

correct, and that the infrared is completely reproduced by our factorized description.

Having understood the operator basis and the structure of the zero-bin subtractions, we

can now compute the anomalous dimensions of the functions arising after the factorization

of the ultrasoft function. Here we can considerably simplify the calculation by using the

choice of resummation path described in section 5.2 and shown in figure 6. In particular,

for this path it is not necessary to separately run the collinear-soft and soft functions. We

can therefore simplify our refactorization to

S aba′b′
ij = HS,ijkl

(
CAS,k S

B
l

)aba′b′
= HS,ijkl

(
S̃kl

)aba′b′
, (A.45)

and only compute the anomalous dimensions for the functions HS,ijkl and
(
S̃kl
)aba′b′

. This

drastically simplifies the calculation, since the structure of the color mixing for the collinear-

soft and soft operators is quite involved. In the remainder of this appendix we give the

explicit results for the anomalous dimensions for HS,ijkl and
(
S̃kl
)aba′b′

for all relevant color

channels appearing in our factorization.

For ease of notation, as in the body of the text, we will define our ultrasoft operators

as, see eq. (4.12),

S′1 ≡ S′11 S′2 ≡ S′22, S′3 ≡ S′12 + S′21 . (A.46)

In this notation, the refactorization of the ultrasoft function is given by, see eq. (4.26),

S′ aba
′b′

i = HS,ikl

(
CAS,kS

B
l

)aba′b′
= HS,ij

(
S̃j

)aba′b′
. (A.47)

The tree-level, and one-loop results, along with the µ and ν anomalous dimensions for the

H and S̃ functions appearing in the factorization are as follows:

• S̃1 is defined as

S̃ aba′b′
1 =

∑
XcS

〈
0
∣∣∣ (X3f ′

n V dg′
n

)†
(0)
∣∣∣XcS

〉
×
〈
XcS

∣∣∣δ(q+ − P+
) (
X3f
n V dg

n

)
(0)
∣∣∣0〉 δf ′g′δa′b′δfgδab , (A.48)

where the soft sector Wilson lines have contracted to the identity. By inspection, the

anomalous dimension for this operator is identical to Saba
′b′

1 , implying that HS,11 = 1 is

the only non-zero matching coefficient.

• S̃3 is defined as

S̃ aba
′b′

3 =
∑
XcS

〈
0
∣∣∣[Xce

n V
B′e
n δ(q+−P+)

∣∣∣XcS

〉〈
XcS

∣∣∣Xc′g′
n V A′g′

n

][
S3c
n S

3c′
n Sa

′A′
v Sb

′B′
v

]
δab
∣∣∣0〉

+
(
a,b↔ a′, b′

)
. (A.49)

At tree-level in Laplace space we have(
S̃ aba′b′

3

)tree
= δa

′3δb
′3δab +

(
a, b↔ a′, b′

)
, (A.50)

– 58 –



J
H
E
P
0
3
(
2
0
1
8
)
1
1
7

and at one-loop in Laplace space, we have(
S̃ aba′b′

3

)1-loop
= −4 δa

′3δb
′3δab

αW
2π

(
µ

mW

)2 ε 1

ε
log
(
ν s
)

+ δab
(
δa
′b′ − 3 δa

′3δb
′3
) αW
π

(
−2 log

(
µ

mW

)
log
(
µ s
)

+ log2

(
µ

mW

))
+
(
a, b↔ a′, b′

)
. (A.51)

The second line here is essentially the IR piece of the term log2
(
mW s

)
. Extracting the

LL anomalous dimensions yields

d

d log µ
S̃ aba′b′

3 =
(
−2CA

αW
π

log
(
ν s
)

+ 3CA
αW
π

log
(
µ s
))
S̃ aba′b′

3

− CA
αW
π

log
(
µ s
)
S̃ aba′b′

1 , (A.52)

which shows a mixing between S̃3 and S̃1, along with

d

d log ν
S̃ aba′b′

3 = −2CA
αW
π

log

(
µ

mW

)
S̃ aba′b′

3 . (A.53)

We can now read off the matching coefficients

HS,33 = 1− 3
αW
π

log2 (µ s) ,

HS,31 =
αW
π

log2 (µ s) , (A.54)

which immediately tells us that

d

d log µ
HS,33 = −3CA

αW
π

log
(
µ s
)
HS,33 ,

d

d log µ
HS,31 = CA

αW
π

log
(
µ s
)
HS,33 . (A.55)

• S̃2 is defined as

S̃ aba
′b′

2 =
∑
XcS

〈
0
∣∣∣[Xce

n V
Ae
n δ(q+−P+)

∣∣∣XcS

〉〈
XcS

∣∣∣Xc′g′
n V A′g′

n

][
S3c
n S

3c′
n Sa

′A′
v SaAv

]
δbb
′
∣∣∣0〉 .

(A.56)

At tree-level in Laplace space we have(
S̃ aba′b′

2

)tree
= δbb

′
δa
′3δa3 , (A.57)

and at one-loop in Laplace space, we have(
S̃ aba′b′

2

)1-loop
= −4 δbb

′
δa
′3δa3 αW

2π

(
µ

mW

)2ε 1

ε
log
(
ν s
)

(A.58)

+ δbb
′(
δaa
′ − 3 δa

′3δa3
)αW
π

(
−2 log

(
µ

mW

)
log
(
µ s
)

+ log2

(
µ

mW

))
.
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From the color structure of this result, it is clear that another operator has been induced

at loop level, namely

S̃ aba′b′
4 =

∑
XcS

〈
0
∣∣∣ (X3f ′

n V df ′
n

)†
(0)
∣∣∣XcS

〉〈
XcS

∣∣∣δ(q+ − P+
) (
X3f
n V df

n

)
(0)
∣∣∣0〉 δaa′δbb′ ,

(A.59)

which is similar to S̃ a′b′ab
1 but with a different color structure. Evaluating this operator

at tree-level in Laplace space yields(
S̃ aba′b′

4

)tree
= δaa

′
δbb
′
, (A.60)

and at one-loop in Laplace space yields(
S̃ a′b′ab

4

)1-loop
= −δaa′δbb′ 2CA

αW
2π

(
µ

mW

)2 ε 1

ε

(
2

η
+ log

(
ν s
))

. (A.61)

Recall that the matching coefficient for this operator is 0 at tree-level, since it did not

appear in our original basis. Extracting the LL anomalous dimensions for this operator

yields

d

d log µ
S̃ aba′b′

4 = −2CA
αW
π

log
(
ν s
)
S̃aba

′b′
4 ,

d

d log ν
S̃ aba′b′

4 = −2CA
αW
π

log

(
µ

mW

)
S̃aba

′b′
4 . (A.62)

We can use these results to extract the anomalous dimension for S̃2,

d

d log µ
S̃ aba′b′

2 =
(
−2CA

αW
π

log
(
ν s
)

+ 3CA
αW
π

log
(
µ s
))
S̃ aba′b′

2

− CA
αW
π

log(µ s)S̃ aba′b′
4 ,

d

d log ν
S̃ aba′b′

2 = −2CA
αW
π

log

(
µ

mW

)
S̃ aba′b′

2 . (A.63)

We can then extract the Wilson coefficients,

HS,22 = 1− 3
αW
π

log2
(
µ s
)
,

HS,24 =
αW
π

log2
(
µ s
)
, (A.64)

and their anomalous dimensions

d

d log µ
HS,22 = −6

αW
π

log
(
µ s
)
HS,22 ,

d

d log µ
HS,24 = 2

αW
π

log
(
µ s
)
HS,22 . (A.65)

This provides the complete set of ingredients required for the LL resummation in the

endpoint region.
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B Impact of continuum photons from cascade decays

In the main body of this work we presented a calculation of the internal bremsstrahlung

(+ initial/final state radiation), or endpoint, contribution to the wino annihilation spec-

trum. As we mentioned there, another source of photons arises from the final state decay

products of the unstable particles that are produced by DM annihilations, such as the W±

and Z bosons. In this appendix we estimate the contribution from these additional final

states, and show that they have a small impact on the HESS constraints for the ther-

mal wino. However, they could be interesting for instruments searching for lower energy

photons such as Fermi.

In order to estimate these contributions, we have added to the line and endpoint spec-

tra the spectrum coming from the decay of W± and Z bosons. The spectrum of photons

that arises from their decay is determined using PPPC4DMID [158] with electroweak cor-

rections turned off,15 whereas the branching fraction is evaluated differently for the two

cases. For annihilation to W+W−, the branching fraction is given by the Sommerfeld-

enhanced tree-level cross section for this final state [3, 4].16 Radiative corrections to this

cross section, which have been shown to be small [40], are not included. To determine the

Z production cross section, we use the leading log cross section, which is given by eq. (5.42)

reweighted by c2
W/s

2
W .

In figure 12, we show the impact on the photon spectrum from DM, after convolving it

with the HESS energy resolution, when this continuum contribution is added, for two DM

masses. Generically, as we approach Eγ ∼Mχ, this continuum emission is a sub-dominant

effect. However, at lower energies it can have substantial impact (note this spectrum

is multiplied by E2.7 which downweights the flux at lower energies). Nevertheless, such a

contribution over many energy bins is hard to distinguish from the 7 parameter background

model used by HESS. These background parameters are profiled over, so that we would

not expect this additional emission to make a sizable impact. Indeed, in figure 13 we

demonstrate this point, by repeating the analysis from section 7.3 with the inclusion of

the additional continuum photons. We note the effect of including the continuum becomes

more important at higher masses, but is almost always subdominant to the impact of

adding in the endpoint emission. Further, the broad nature of the continuum emission can

lead to a non-trivial interplay with the background model in fits to the data, and in fact

lead to weaker limits for some masses. For example, near Mχ = 9 TeV in figure 13, the

Sommerfeld resonance leads to an enhancement in the continuum emission. This additional

emission at lower energies drives down the best fit background model, resulting in a reduced

background prediction near the dark matter mass where the line and endpoint contributions

dominate, and accordingly a weaker limit.

15The electroweak corrections in PPPC4DMID include a partial accounting of the endpoint corrections

that we determined in the main body, which they include following [159], and so we remove them to avoid

double counting. We thank Marco Cirelli for confirming this point. This choice means we are missing the

electroweak corrections from the remainder of the continuum spectrum, however we have confirmed these

effects are small by directly comparing the spectra to the predictions of Pythia 8.219 [160–162], which

includes electroweak showering [163].
16Note that there is a factor of 2 missing in the off-diagonal terms of ΓW+W− in eq. (28) in ref. [3], which

is corrected in ref. [4].
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(b)

Figure 12. The differential photon flux observed at HESS for the wino at (a) 3 TeV; and (b)

10 TeV. In each case we show, progressively, the contribution from the line only case, the endpoint

contribution calculated in the main body, and finally the continuum arising from the decay of the

produced W and Z bosons. In all cases the contributions have been smeared by the HESS energy

resolution.

– 62 –



J
H
E
P
0
3
(
2
0
1
8
)
1
1
7

0.5 1.0 3.0 5.0 10.0

Mχ [TeV]

10−27

10−26

10−25

10−24

〈σ
v
〉 lin

e
[c

m
3 /s

]

Estimated Limits Line (HESS Published)

Line (this ref)

+ endpoint (this ref)

+ continuum (this ref)

LL 〈σv〉line

(a)

0.5 1.0 3.0 5.0 10.0

Mχ [TeV]

1015

1016

1017

1018

1019

1020

J
-f

ac
to

r
[T

eV
2 /c

m
5 ]

Estimated J-factor Constraint

Line (this ref)

+ endpoint (this ref)

+ continuum (this ref)

(b)

Figure 13. As in figures 9 and 10, but showing the impact of adding the continuum contribution

from W and Z decays in addition to the endpoint on the constraints. In general these contributions

have a much smaller impact than that already resulting from adding in the endpoint spectrum. The

exception is near the Sommerfeld resonances, where the associated enhanced continuum emission

is imprinted on the limits. We caution once more that these are only estimated limits.
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Finally we note in passing that the large contribution from the continuum may be rel-

evant to lower energy instruments such as Fermi -LAT. The advantage of such an approach

is that we can look at a number of different potential astrophysical sources of DM flux,

each associated with partially uncorrelated systematics on their J-factors. In this way we

can extend the search beyond the Galactic Center and its large uncertainties to look at

potentially cleaner environments such as the Milky Way Dwarfs [164, 165] or even galaxy

clusters [142, 166]. However, note that the effective area of Fermi -LAT drops sharply at

TeV energies. This implies that if the DM mass is multi-TeV, the HESS constraints are

generally stronger than those from Fermi. Even accounting for the astrophysical uncer-

tainties, the HESS dataset continues to be the best probe of the gamma-rays from thermal

wino DM.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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[160] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05

(2006) 026 [hep-ph/0603175] [INSPIRE].
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