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Abstract This paper presents a space-time adaptive

framework for solving porous media flow problems, with

specific application to reservoir simulation. A fully un-

structured mesh discretization of space and time is used

instead of a conventional time-marching approach. A

space-time discontinuous Galerkin finite element method

is employed to achieve a high-order discretization on

the anisotropic, unstructured meshes. Anisotropic mesh

adaptation is performed to reduce the error of a speci-

fied output of interest, by using a posteriori error esti-

mates from the dual weighted residual method to drive

a metric-based mesh optimization algorithm. The space-

time adaptive method is tested on a one-dimensional

two-phase flow problem, and is found to be more effi-

cient in terms of computational cost (degrees-of-freedom

and total runtime) required to achieve a specified out-
put error level, when compared to a conventional first-

order time-marching finite volume method and the space-

time discontinuous Galerkin method on structured meshes.
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1 Introduction

Numerical simulation has become an essential tool for

analyzing and predicting the performance of reservoirs.

In the context of hydrocarbon reservoirs in particular,

computational fluid dynamics (CFD) models are used

to investigate flow processes, assess the viability of dif-

ferent oil recovery methods, and ultimately predict the

overall performance of the reservoir under different op-

erating conditions. Results of these numerical simula-

tions greatly influence engineering and management de-

cisions, hence their accuracy and reliability are of sig-

nificant importance.

A CFD model typically utilizes a mesh to discretize

the domain of interest and approximates the flow solu-

tion on this mesh. The resolution of the mesh controls
both the accuracy and the cost (e.g. degrees of freedom)

of the numerical solution. Increasing the mesh resolu-

tion by adding more elements is a common approach to

improve the solution fidelity. However, this approach

is often limited by available computing power. Even

with recent advances in parallel computing, the most

powerful reservoir simulators are only just entering the

regime of billion-cell models [17,34]. Finer meshes allow

the CFD solution to capture features such as saturation

fronts, gas breakthroughs and regions of trapped oil,

all of which contribute to the performance of the reser-

voir. These prominent solution features often arise due

to the multi-scale nature of the problems, heterogene-

ity of the geology, and the nonlinearity of the govern-

ing equations; hence, determining the size, location and

orientation of these features beforehand is a non-trivial

task. Therefore, the objective of this work is to develop

an adaptive method that can autonomously modify the

discrete mesh according to the nature of the solution,

to produce a more reliable and accurate output.



2 Savithru Jayasinghe et al.

1.1 Space-time methods

Typically, an unsteady partial differential equation (PDE)

is first discretized in space to produce a set of ordi-

nary differential equations that are then discretized in

time, following what is often referred to as a method

of lines approach. Most reservoir simulations use first

or second order accurate temporal discretizations, such

as the Backward Euler method [5,37,39]. However, an

alternative is to apply the finite element method along

the temporal axis as well. The idea of using this “space-

time finite element method” dates back to the 1960s,

to the work of Oden [35], Argyris and Scharpf [3], and

Fried [21].

In the conventional approach, the same temporal

discretization is applied to all the ordinary differential

equations resulting from the spatial discretization, pro-

ducing a structured space-time discretization. From a

space-time perspective, this is equivalent to a tensor-

product space-time mesh, where each space-time ele-

ment is a tensor-product of a spatial element and a

time-interval. However, as discussed in [23], the poten-

tial of the space-time finite element method lies in the

use of unstructured space-time meshes, where arbitrar-

ily oriented, anisotropic space-time elements can cap-

ture solution features more efficiently compared to more

constrained tensor-product elements.

Hughes and Hulbert solved the second-order hyper-

bolic elastodynamic PDE using a space-time method

with a continuous Galerkin (CG) method in space and

a discontinuous Galerkin (DG) method in time [23,

24]. Their method partitions the space-time domain

into decoupled time-slabs, which are solved sequentially

by employing the solution at the end of the current

time-slab as the initial condition for the next. How-

ever, they allow the space-time mesh to be unstructured

within each time-slab, making their method attractive

for space-time adaptive schemes. More recently, Chen

et al. [13] developed a DG method in both space and

time to solve a single-phase porous media flow prob-

lem using a quadrilateral (though unstructured) mesh.

In both Hughes and Hulbert and Chen et al, a specific

space-time adaptive algorithm is not proposed. In [45],

Yano and Darmofal proposed a space-time DG method

with fully-unstructured anisotropic mesh adaptation,

and demonstrated that it can significantly improve the

error-to-degrees-of-freedom efficiency of solving wave-

propagation problems for one and two-dimensional spa-

tial domains, compared to tensor-product space-time

mesh adaptation. In this paper, we extend the Yano

and Darmofal approach to porous media flows prob-

lems, specifically in the context of reservoir simulations.

The demonstrations in this paper are one-dimensional

spatial problems and therefore are small enough to be

solved in a single space-time domain (i.e. a single time-

slab). However, for the larger problems that will arise

for two and in particular three-dimensional spatial do-

mains, our fully-unstructured adaptive method can be

applied on time-slabs as suggested by Hughes and Hul-

bert.

1.2 Solution adaptive methods

In this work, the space-time adaptive DG method of

Yano and Darmofal is applied to two-phase porous me-

dia flow problems. A key feature of this method is output-

based error estimation and mesh adaptation. The gen-

eral outline of the output-based solution adaptation

framework is depicted in Figure 1. The process begins

with a problem statement, which includes the initial

mesh, the PDE to be solved, boundary conditions, ini-

tial conditions, output function, desired error tolerance

and typically a parameter to denote the amount of com-

putational resources available (i.e. maximum number

of CPU hours). The PDE is then solved on this initial

mesh and the output error estimates are computed. If

the error estimate is larger than the specified tolerance,

the adaptation algorithm will utilize localized error es-

timates to generate a new mesh. The process is then

repeated on the new adapted mesh until the output er-

ror estimates meet the tolerance criterion or the solver

runs out of the allocated time.

Problem
definition

Compute
flow and
outputs

Estimate
output
errors

?
Output

+

Error est.

Adapt mesh

to
reduce error

E ≤ Emax

t ≥ tmax

Fig. 1 General outline of adaptation framework

A variety of approaches exist for determining where

adaptation should occur based upon the solution on the

current mesh. For example, the magnitude of solution

gradients can be used to identify important features [7,

12,14]. Another approach, based on the magnitude of

the residual, has been demonstrated for porous media

flows by Klieber using the DG method in [28] and by

Amaziane et al. using the finite volume method in [1].

Our output-based adaptive method utilizes the dual-

weighted residual (DWR) approach proposed by Becker

and Rannacher [10,11] to obtain both global and local
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error estimates, which are then used to drive the mesh

adaptation.

This work focuses on h-adaptation, which involves

changing the size and shape of elements in the mesh

to control the total output error. A widely used strat-

egy is to perform isotropic mesh refinement where se-

lected elements are uniformly refined to decrease the er-

ror, as seen in [28,1,14] for flows through heterogeneous

porous media. However, for problems involving highly

anisotropic features, including the model reservoir flow

applications in this work, anisotropic adaptation will

be significantly more efficient. To combine output er-

ror estimates with anisotropic adaptation, we use the

Mesh Optimization via Error Sampling and Synthesis

(MOESS) algorithm proposed by Yano and Darmofal

[45].

1.3 High-order methods

Reservoir simulations are often computed with low-order

discretizations based on the finite volume method (FVM)

[5,33] and finite difference methods (FDM) [37], where

the term “low-order” typically refers to numerical meth-

ods that have at most second-order accuracy in space

and time [43]. However, in recent years, high-order meth-

ods are being applied to porous media flow problems.

Finite element methods, such as the DG method, of-

fer a means to obtain high-order accurate solutions by

increasing the order of the polynomial basis functions,

and have been successfully applied to single phase, multi-

phase and linear transport flow problems [40,38,39].

Additionally, properties such as local mass conserva-

tion and ease of implementation on unstructured grids
make the DG method a competitive alternative to the

conventional low-order methods.

The use of a space-time DG discretization in this

work also allows for high-order temporal discretizations,

without being restricted to the first-order time-marching

schemes that are largely used in practice. For smooth

problems, the higher convergence rates allow high-order

methods to achieve a given level of accuracy with fewer

degrees of freedom compared to low-order methods [6].

However for problems with low regularity, the efficiency

gains of high-order methods may not be realized with-

out also utilizing mesh adaptation.

1.4 Applications to two-phase flow

The existing literature on the use of high-order DG fi-

nite element methods for solving two-phase flow prob-

lems is mostly focused on the decoupled pressure - sat-

uration formulation. This technique, also known as the

IMPES (implicit pressure, explicit saturation) method,

is particularly attractive for incompressible flows be-

cause it allows the coupled system of equations to be

separated into a purely elliptic “pressure” equation and

an advection-dominated (nearly) hyperbolic “satura-

tion” equation [5]. DG methods have been used to solve

the pressure and saturation equations sequentially, as

demonstrated by Rivière in [38] and Klieber in [28].

There also exist recent work where the pressure - satu-

ration system is solved in a coupled, fully implicit man-

ner, such as the work of Epshteyn in [20,19].

In this work, we abandon the sequential pressure-

saturation approach and simultaneously solve the com-

pressible mass conservation equations for each phase

in a coupled and fully implicit manner. Solving the

equations in mass conservation form avoids forming the

global pressure equation, and is consistent with most in-

dustrial practices. The methods and results presented

in this paper stem from the Master’s thesis work of the

first author [26].

1.5 Outline of paper

Section 2 introduces the compressible two-phase flow

equations in mass conservation form, and gives a space-

time formulation of the equations that is discretized us-

ing the space-time DG method described in Section 3.

Section 4 briefly reviews the DWR method for output

error estimation and the MOESS algorithm for mesh

adaptation. Section 5 demonstrates the space-time adap-

tive framework on a 1D spatial test problem, and com-

pares the adapted results with those from a conven-

tional time-marching finite volume method, and the

space-time DG method on structured meshes. Although

the formulation introduced in Sections 2 - 4 are appli-

cable to 3D spatial problems (and therefore 4D space-

time problems), the application in Section 5 of this pa-

per is to a 1D spatial problem (2D space-time prob-

lem). The conclusion section contains a brief discussion

of the challenges involved in extending the proposed

framework to multi-dimensional problems. Further, the

computational cost of the entire mesh adaptation algo-

rithm is compared with the cost of solving the primal

PDE in Appendix B, showing that the proposed ap-

proach scales in a computationally feasible manner to

multi-dimensional problems.

2 Governing equations for two-phase flow

The governing partial differential equations for two-

phase flow are statements of mass conservation for each

of the two phases in the porous medium, where the
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non-wetting phase pressure (pn) and the wetting phase

saturation (Sw) are chosen to be the primal solution

variables. The coupled, nonlinear system of equations

under negligible gravitational effects is given by Eq. (1)

below:

∂

∂t
(ρwφSw)−∇ ·

(
ρw

Kkrw
µw

(∇pn −
∂pc
∂Sw
∇Sw)

)
= ρwqw

∂

∂t
(ρnφ(1− Sw))−∇ ·

(
ρn

Kkrn
µn
∇pn

)
= ρnqn,

∀~x ∈ Ωs, t ∈ I, (1)

where ρw and ρn are the phase fluid densities (with sub-

scripts w and n denoting the wetting and non-wetting

phases, respectively), φ is the rock porosity, K is the

rock permeability tensor, krw and krn are the relative

permeability functions, µw and µn are the fluid vis-

cosities, pc is the capillary pressure, and qw and qn
are source terms. The spatial domain is denoted by

Ωs ⊂ Rd, and I = [0, T ] is the time interval of inter-

est. The underlying porous medium is assumed homoge-

nous, i.e. the permeability field K is constant through-

out the spatial domain. The following closure relations

for the pressure and saturation variables are also re-

quired:

pw + pc = pn (2)

Sw + Sn = 1. (3)

The constitutive relationships for the densities, poros-

ity, relative permeabilities and capillary pressure are

problem dependent, hence they are defined in Section

5 along with the description of the test problem.

2.1 Space-time formulation

The d-dimensional unsteady conservation laws in Eq. (1)

are recast as (d+1)-dimensional conservation laws, yield-

ing the following space-time formulation of the two-

phase flow equations:

d+1∑
j=1

∂

∂x̂j
F̂adv
j (u)−

d+1∑
j=1

∂

∂x̂j
F̂diff
j (u,∇u) = S(u, ~̂x),

∀~̂x ∈ Ω, (4)

where u = [pn, Sw]T ∈ Rm=2 and ~̂x = [~x, t] ∈ Rd+1 is

the augmented space-time coordinate in the space-time

domain Ω = Ωs × I ⊂ Rd+1. The space-time advective

flux ~̂F
adv

∈ Rm×(d+1), diffusive flux ~̂F
diff

∈ Rm×(d+1),

and source term S ∈ Rm are given by:

F̂adv
i (u) =

(
0

0

)
, for i = 1, .., d (5)

F̂adv
d+1(u) =

(
ρwφSw

ρnφ(1− Sw)

)
(6)

F̂diff
i (u, ∇̂u) =

(
ρw

krw
µw

Kij(
∂pn
∂x̂j
− ∂pc

∂Sw
∂Sw
∂x̂j

)

ρn
krn
µn

Kij
∂pn
∂x̂j

)
(7)

for i = 1, .., d

F̂diff
d+1(u, ∇̂u) =

(
0

0

)
(8)

S(u, ~̂x) =

(
ρwqw
ρnqn

)
. (9)

The diffusive flux is also assumed to be a linear function

of ∇̂u, and is decomposed as:

~̂F
diff

(u, ∇̂u) = ~̂A(u)∇̂u. (10)

The boundary conditions are imposed using an operator

B defined as:

B(u, ~̂F
adv

(u) · ~̂n, ~̂F
diff

(u, ∇̂u) · ~̂n, ~̂x;BC) = 0,

∀~̂x ∈ ∂Ω, (11)

where ~̂n is the space-time unit normal vector and BC

represents the boundary condition data. The initial con-

dition of the original unsteady conservation law is trans-

formed by the above formulation into a Dirichlet bound-

ary condition at the t = 0 boundary of the space-time

domain Ω. This “temporal” boundary condition is im-

plemented like any other spatial boundary condition

using B.

Note that in Eq. (4)-(11), hat accents have been

used (i.e. ∇̂(·)) to distinguish (d+1)-dimensional space-

time vectors, fluxes and operators from their d - dimen-

sional spatial counterparts. The rest of this paper as-

sumes a space-time formulation, hence, the hat accents

will be omitted for clarity.

3 Space-time DG discretization

The discontinuous Galerkin discretization seeks a solu-

tion in a finite dimensional function space Vh,p, which

is defined as:

Vh,p ≡
{
v ∈ [L2(Ω)]m : v|κ ∈ [Pp(κ)]m,∀κ ∈ Th

}
.

(12)

Vh,p represents the piecewise discontinuous solution space

of pth-order polynomials on each element of Th, where

Th is a triangulation of the space-time domain Ω into

non-overlapping elements κ of characteristic size h.
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Multiplying Eq. (4) by a test function vh,p ∈ Vh,p
and integrating by parts yields the weak formulation of

the governing equation. Solving this weak formulation

involves finding a solution uh,p ∈ Vh,p that satisfies:

Rh,p(uh,p,vh,p) = 0, ∀vh,p ∈ Vh,p, (13)

where the semi-linear weighted residual Rh,p : Vh,p ×
Vh,p → R is composed of three terms:

Rh,p(uh,p,vh,p) = Radv
h,p (uh,p,vh,p) (14)

+Rdiff
h,p(uh,p,vh,p)

+Rsource
h,p (uh,p,vh,p).

Radv
h,p (uh,p,vh,p),Rdiff

h,p(uh,p,vh,p) andRsource
h,p (uh,p,vh,p)

represent the contributions of the advective, diffusive

and source terms to the weighted residual, respectively.

3.1 Advective flux discretization

The DG discretization of the advective flux term is

given by:

Radv
h,p (u,v) =−

∑
κ∈Th

∫
κ

∇vT · ~Fadv(u) dΩ (15)

+
∑
f∈ΓI

∫
f

(v+ − v−)TH(u+,u−;~n+) dΓ

+
∑
f∈ΓB

∫
f

v+THB(u+,uB(u+;BC);~n+) dΓ,

where (·)+ and (·)− denote the trace values evaluated

from opposite sides of a face f and ~n+ is the unit nor-

mal vector pointing from the (+) side to the (−) side

of a face. ΓI and ΓB represent the set of interior and

boundary faces, respectively. H and HB are the numer-

ical flux functions on the interior and boundary faces,

respectively. In this work, H takes the form:

H(u+,u−, ~n+) =

{
Fadv
d+1(u+) · n+

t , if n+
t ≥ 0,

Fadv
d+1(u−) · n+

t , otherwise,
(16)

where n+
t denotes the temporal component of the space-

time normal vector ~n+. The advective flux in the tem-

poral direction is evaluated using the solution in the

direction of decreasing time (i.e. in the past), in ac-

cordance with the laws of causality. At the domain

boundaries, the numerical flux HB is evaluated using

a boundary state uB , which itself is a function of both

the interior state u+ and the user-specified boundary

condition data BC. For problems containing spatial ad-

vective fluxes, H and HB need to be modified to per-

form an upwinding of the spatial fluxes as well [45,26].

3.2 Diffusive flux discretization

In most of the previous work where a pressure-saturation

formulation of the two-phase flow equations is consid-

ered [38,28,20,19], the diffusive fluxes in the pressure

equation are discretized using either the Oden-Baumann-

Babuska (OBB) method [36], or a generalized form of

the non-symmetric interior penalty Galerkin method

(NIPG) [41], the symmetric interior penalty Galerkin

method (SIPG) [4,44] and the incomplete interior penalty

Galerkin method (IIPG) [16]. In this work, the diffusive

flux terms are discretized using the second method pro-

posed by Bassi and Rebay (BR2) [8,9]. For simplicity

of notation, the jump J·K and average {·} operators are

defined for a scalar s and a vector ~v on an interior face

as:

{s} =
1

2
(s+ + s−), {~v} =

1

2
(~v+ + ~v−) (17)

JsK = s+~n+ + s−~n−, J~vK = ~v+ · ~n+ + ~v− · ~n−

The diffusive flux discretization can then be written as

follows:

Rdiff
h,p(u,v) = (18)∑

κ∈Th

∫
κ

∇vT ·
(
~A(u)∇u

)
dΩ

−
∑
f∈ΓI

∫
f

{
~AT (u)∇v

}T
· JuK dΓ

−
∑
f∈ΓI

∫
f

JvKT ·
{
~A(u)∇u

}
dΓ

−
∑
f∈ΓI

∫
f

JvKT ·
{
~A(u)ηf~rf (JuK)

}
dΓ

−
∑
f∈ΓB

∫
f

(
~AT
B∇v+

)T
·
(
u+ − uB

)
· ~n+ dΓ

−
∑
f∈ΓB

∫
f

(
v+~n+

)T · ~AB∇uB dΓ

−
∑
f∈ΓB

∫
f

(
v+~n+

)T · ~ABηf~rf ((u+ − uB)~n+) dΓ,

where the boundary fluxes are set using uB(u+;BC),
~AB(uB ;BC), and ∇uB(∇u+;BC). The lifting opera-

tor ~rf : [Vh,p(f)]d+1 → [Vh,p]
d+1, essentially penalizes

jumps in the solution across a face, and is defined as

follows for an interior face f :∑
κ∈κf

∫
κ

~τT ·~rf (~q) dΩ = −
∫
f

{~τ}T · ~q dΓ, (19)

∀~τ , ~q ∈ [Vh,p]
d+1
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where κf is the set of elements sharing the face f . For

boundary faces, the lifting operator is defined as:∫
κB

~τT ·~rf (~q) dΩ = −
∫
f

~τ+T · ~q dΓ, (20)

∀~τ , ~q ∈ [Vh,p]
d+1

where κB is the element containing the boundary face.

The stability of the DG discretization requires that

the BR2 stabilization parameter, ηf , is greater than or

equal to the number of faces in an element [22]. For the

triangular and quadrilateral meshes used this work, ηf
is set to values of 3 and 4 respectively.

3.3 Source discretization

The discretization of the source terms is as follows:

Rsource
h,p (u,v) =

∑
κ∈Th

∫
κ

vTS(u, ~x) dΩ. (21)

3.4 Solution method

Expressing the solution uh and the test function vh
in terms of an element-wise discontinuous polynomial

basis yields a discrete nonlinear system of equations,

which is then solved using Newton’s method with a line

search algorithm, employing the UMFPACK [15] sparse

direct solver. A more detailed discussion of the solution

method is given in [26].

4 Output error estimation and mesh adaptation

4.1 Output error estimation

Let the exact value of the output of interest be denoted

by:

J = J (u), (22)

where J : V → R is the output functional of interest

and u ∈ V is the exact solution to the governing PDE.

This is usually expressed as an integral quantity over a

surface, such as the mass flow across a boundary, or over

a volume, such as the average pressure in the domain.

Since the exact solution is not available, an approxi-

mation to the exact output can be computed using the

discrete DG solution uh,p ∈ Vh,p as:

Jh,p = Jh,p(uh,p), (23)

where Jh,p : Vh,p → R is the discrete output func-

tional. The true error between the exact output and its

approximation is given by:

Etrue = J − Jh,p = J (u)− Jh,p(uh,p). (24)

Since Etrue cannot be directly computed in general,

the goal of output error estimation is to approximate

this true error in the output functional. In this work,

the dual-weighted residual (DWR) method proposed by

Becker and Rannacher [10,11] is used.

The DWR method represents the true output error

as:

Etrue = J (u)− Jh,p(uh,p) = −Rh,p(uh,p,ψ), (25)

where ψ ∈ W ≡ V + Vh,p is the true adjoint solution

that satisfies:

R′h,p[u,uh,p](w,ψ) = J ′h,p[u,uh,p](w), ∀w ∈W,
(26)

where R′h,p[u,uh,p] : W ×W → R and J ′h,p[u,uh,p] :

W → R are the mean-value linearizations defined as:

R′h,p[u,uh,p](w,v) ≡∫ 1

0

R′h,p [(1− θ)u + θuh,p] (w,v) dθ,

(27)

J ′h,p[u,uh,p](w) ≡
∫ 1

0

J ′h,p [(1− θ)u + θuh,p] (w)dθ.

(28)

R′h,p[z](·, ·) and J ′h,p[z](·) denote the Fréchet deriva-

tives of Rh,p(·, ·) and Jh,p(·) with respect to the first

argument, evaluated about z.

The true output error may also be expressed using

the definition of the mean-value linearized residual as

Etrue = −R′h,p[u,uh,p](u− uh,p,ψ −ψh,p), (29)

which shows that the true output error is a function of

the error in the primal solution, u−uh,p, as well as the

error in the adjoint solution, ψ −ψh,p.
The true adjoint ψ is not computable in general

since it lives in an infinite dimensional space W , and its

computation requires the true primal solution. Hence,

the true adjoint solution is approximated by a finite

dimensional adjoint ψh,p̂ ∈ Vh,p̂ (for p̂ > p) which is

obtained by solving a dual problem linearized about

uh,p:

R′h,p̂[uh,p](vh,p̂,ψh,p̂) = J ′h,p̂[uh,p](vh,p̂), ∀vh,p̂ ∈ Vh,p̂.
(30)
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The DWR error estimate of the output is obtained by

substituting this approximate adjoint into Eq. (25):

Etrue ≈ −Rh,p(uh,p,ψh,p̂). (31)

The approximate adjoint ψh,p̂ needs to exist in a space

that is richer than that of the approximate primal so-

lution uh,p (i.e. Vh,p̂ ⊃ Vh,p), else the DWR estimate

yields zero due to Galerkin orthogonality. In this work,

the polynomial order of the adjoint approximation is

chosen to be one order higher than that of the primal

solution, i.e. p̂ = p+ 1.

A global estimate of the output error is not sufficient

for mesh adaptation since it needs to identify regions in

the domain with large and small contributions to the

error. Therefore, a localized error estimate ηκ, associ-

ated with element κ, is obtained by an element-wise

restriction of the adjoint weight as follows:

ηκ ≡ |Rh,p(uh,p,ψh,p̂|κ)| . (32)

A bound of the error estimate can be obtained by sum-

ming the local error estimates over all elements:

E ≡
∑
κ∈Th

ηκ. (33)

4.2 Mesh adaptation

The MOESS algorithm used in this work relies on the

duality between a continuous Riemannian metric field

M = {M(~x)}~x∈Ω , consisting of (d+ 1)× (d+ 1) sym-

metric positive definite tensors M(~x), and a discrete

mesh Th. A mesh is said to be metric-conforming if all

its edges are close to unit length as measured under

the Riemannian metric fieldM. Following the work of

Loseille and Alauzet [30], the mesh adaptation problem

can be posed as a continuous optimization problem that

seeks an optimal metric fieldM∗:

M∗ = arg inf
M
E(M) s.t. C(M) ≤ Cmax, (34)

where E and C are the error and cost functionals, respec-

tively. This work considers the cost to be the number

of degrees of freedom in the solution, hence, the cost

functional is defined as:

C(M) =

∫
Ω

cp
√

det(M(~x))d~x, (35)

where cp is the number of degrees of freedom (DOF)

in the reference element, normalized by its size. Cmax

is the maximum DOF count, often set by the amount

of available computational resources. Furthermore, the

MOESS algorithm assumes that the total output error

is the sum of elementwise local error contributions ηκ,

and that each local contribution ηκ is also a function

of the elemental metric tensor Mκ. Hence, the error

function E is approximated as:

E(M) ≈
∑
κ∈Th

ηκ(Mκ). (36)

Since the form of the local error function ηκ(Mκ) is not

known a priori, surrogate models of these functions are

constructed using the following sampling procedure:

for all κ0 ∈ Th,

1. Compute the elemental metric tensor Mκ0 and the

local error estimate ηκ0 ≡ |Rh,p(uh,p,ψh,p̂|κ0)|.
2. Consider a set of local configurations, {κi}

nconfig

i=1 ,

each of which is obtained by splitting one or multiple

edges of element κ0. The solution on each new local

configuration is computed via local solves, where the

solution outside of the refined element is fixed. The

new elemental metrics and local error estimates are

computed for each local configuration and stored as

pairs {Mκi , ηκi}
nconfig

i=1 .

3. Fit the data in the metric-error pairs to a local error

model of the form:

ηκ(Mκ(Sκ)) = ηκ0
exp(tr(RκSκ)), (37)

where Sκ is a (d + 1) × (d + 1) symmetric “step”

tensor that is defined as:

Sκ(Mκ) ≡ log(M−
1
2

κ0 MκM
− 1

2
κ0 ). (38)

Rκ is a (d + 1) × (d + 1) symmetric “rate” tensor

that is computed by performing the following least-

squares regression on the data from the metric-error

pairs:

Rκ = arg min
Q∈Sym(d+1)

nconfig∑
i=1

(fκi − tr(QSκi(Mκi)))
2
,

(39)

where fκi = log
(
ηκi
ηκ0

)
.

The step tensor Sκ characterizes the change in the

metric fromMκ0
toMκ. Therefore, the rate tensor Rκ

can be thought of as a generalization of the convergence

rate for isotropic scaling to anisotropic changes.

A single iteration of the mesh adaptation algorithm

detailed in [46] can be summarised as follows:

1. Given a mesh, determine the primal solution uh,p
and adjoint solution ψh,p̂.

2. Construct the local surrogate error models via local

sampling.
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3. Use a nonlinear optimization method to obtain the

metric field that minimizes the error for a given

maximum cost.

4. Generate a new mesh that conforms to the obtained

metric field.

This work utilizes the globally-convergent method-of-

moving-asymptotes (MMA) algorithm [42] implemented

in NLopt [27] to solve the optimization problem. The

adapted meshes are generated using a metric-conforming

mesher developed by Loseille and Löhner [31,32].

5 Application

5.1 Test problem

The test problem considered in this work involves a 1D

reservoir of length L = 2000 ft, containing a 1000-ft

trapped oil region in the center, and aquifers on either

side. A production well of length Ls = 10 ft is located at

the center of the domain, extracting fluid according to a

specified well model. The objective of the problem is to

accurately compute the recovery factor of the reservoir

over a production duration of T = 1000 days.

The governing equations are given by Eq. (1), with

the initial condition set up to reflect the presence of the

trapped oil and aquifer regions of the reservoir:

pn(x, 0) = 2500 psi, ∀x ∈ [0, L] (40)

Sw(x, 0) =

{
0.1, 0.25L ≤ x ≤ 0.75L

1.0, x < 0.25L or x > 0.75L.
(41)

The boundary conditions at the left and right ends of

the reservoir are Dirichlet pressure and saturation con-

ditions, which model an influx of water, replenishing

the aquifers as the production well draws out fluid:

pn(0, t) = pn(L, t) = 2500 psi, ∀t ∈ [0, T ] (42)

Sw(0, t) = Sw(L, t) = 1.0, ∀t ∈ [0, T ]. (43)

In particular, the boundary state uB used in Eq. (15)

and (18) is set from the BC data above, and the bound-

ary state gradient ∇uB is set from the interior state

gradient ∇u+.

The production well is modeled by the source terms

qw(x, t) and qn(x, t) which are defined for each phase

as follows:

qα = −Kkrα
µα

pn − pb
0.25L2

s

z(x), for α = {w, n}, (44)

where z(x) is a smooth weighting function defined as:

z(x) =



0, 0 ≤ x ≤ 992.5

3ξ2
1 − 2ξ3

1 , 992.5 < x < 997.5

1, 997.5 ≤ x ≤ 1002.5

1− (3ξ2
2 − 2ξ3

2), 1002.5 < x < 1007.5

0, 1007.5 ≤ x ≤ 2000,

(45)

where,

ξ1 =
x− 992.5

5
, (46)

ξ2 =
x− 1002.5

5
. (47)

The volumetric flow rate of each phase at the extraction

well depends on the specified bottomhole pressure pb,

and also on the solution variables pn and Sw. Note that

appropriate unit conversions are applied to the quan-

tities given above to make the equations dimensionally

consistent. The relevant constitutive relationships for

densities, porosity, relative permeabilities and capillary

pressure are given below:

ρα = ραref
ecα(pα−pref) for α ∈ {w, n},

φ = φref e
cφ(pn−pref),

krw = S2
w,

krn = S2
n = (1− Sw)2,

pc = pcmax(1− Sw),

where,

φref = 0.3, pref = 14.7 psi,

ρwref
= 62.4 lbf/ft

3
, ρnref

= 52.1 lbf/ft
3
,

cw = 5× 10−6 psi−1, cn = 1.5× 10−5 psi−1,

cφ = 3× 10−6 psi−1, K = 200 md,

µw = 1 cP, µn = 2 cP,

pcmax = 5 psi, pb = 2350 psi.

The output functional of interest is the oil recovery fac-

tor:

J =
Qnout
VOIP

, (48)

where Qnout is the total volume of oil extracted over

T days, and VOIP is the total volume of oil-in-place at

t = 0, defined as follows:

Qnout =

∫ T

0

∫ L

0

−qndxdt, (49)

VOIP =

∫ L

0

φ(pn(x, 0))(1− Sw(x, 0))dx = 272.0206 ft.

(50)
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5.2 Numerical results

This section presents the results of the two-phase flow

problem defined above, solved using the space-time DG

method on unstructured adapted meshes, as described

in Section 3. The results are compared with those ob-

tained using the space-time DG method on structured

quadrilateral meshes, and also with a time-marching

first-order finite volume method using a two-point flux

approximation and a Backward-Euler temporal scheme.

The specific nature of the structured meshes used for

both space-time DG and time-marching FV is described

in Appendix A.

Figures 2 and 3 are space-time plots of the non-

wetting phase pressure and wetting phase saturation

obtained from a piecewise quadratic (P2) adapted space-

Fig. 2 Contour plot of non-wetting phase pressure (pn)
from a third-order (P2) adapted space-time DG solution with
25,000 DOF per primary variable (final mesh overlaid).

Fig. 3 Contour plot of wetting phase saturation (Sw) from a
third-order (P2) adapted space-time DG solution with 25,000
DOF per primary variable (final mesh overlaid).

time DG solution, containing approximately 25,000 de-

grees of freedom (DOF) for each primary variable. The

final adapted mesh after 25 adaptation iterations is

overlaid over both plots. The pressure pn starts from

the constant initial condition of 2500 psi, but quickly

transitions to a nearly piecewise linear profile due to

the action of the production well at the center of the

domain. The pressure profile is symmetric about the

center of the domain and reaches a minimum pressure

equal to the specified bottomhole pressure, pb = 2350

psi, as expected. The pressure gradients set up by the

production well cause two saturation fronts, originat-

ing from the initial Sw discontinuities at x = 500 ft

and x = 1500 ft respectively, to propagate inwards at

a constant speed towards the well. Figure 3 shows that

the water breakthrough time (the time at which the two

Fig. 4 Contour plot of a fourth-order (P3) adjoint ψw com-
puted using a third-order (P2) adapted DG primal solution
with 25,000 DOF per primary variable (final mesh overlaid).

Fig. 5 Contour plot of a fourth-order (P3) adjoint ψn com-
puted using a third-order (P2) adapted DG primal solution
with 25,000 DOF per primary variable (final mesh overlaid).
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combined rarefaction-shock waves intersect) is around

t = 750 days.

Figures 4 and 5 show the behavior of the adjoint so-

lutions, ψw and ψn, corresponding to each primal equa-

tion. The adjoint solutions are of order p̂ = p + 1 = 3,

which are computed as a part of the error estimation

process using the P2 primal solutions discussed above.

Both adjoint plots contain a distinct triangular feature

that is symmetric about the center of the domain. This

triangular region can be identified to be the domain of

influence for all adjoint characteristics that propagate

backwards in time from the interior adjoint boundary

condition along the x = 1000 ft line. Further insight

into the nature of the adjoint solutions can be found in

[25], which presents a theoretical analysis of the adjoint

equations and boundary conditions for the compressible

two-phase flow equations in mass conservation form.

Fig. 6 Contour plot of pn zoomed in on the first 10 days to
show the initial transient behavior, with final mesh overlaid.

Fig. 7 Contour plot of Sw zoomed in on the first 10 days,
with final mesh overlaid.

Since the error estimates depend upon the approxi-

mation errors of both primal and adjoint solutions, the

mesh adaptation algorithm focuses on regions where

these errors are large. The dense anisotropic adaptation

of the mesh along the production well, saturation fronts,

bottom (t = 0) boundary, and also along the x = 500

ft and x = 1500 ft lines are consistent with this view,

since the large third and higher order primal/adjoint

derivatives present in those regions cannot be captured

accurately by a piecewise quadratic solution without

adaptation. The adaptation occuring along the bottom

boundary is driven by a short initial pressure transient,

arising from the parabolic nature of pn, which is a re-

sult of the equations being slightly compressible. The

zoomed-in view of pn given in Figure 6 illustrates the

initial pressure transient, where the elements in the fi-

nal mesh are observed to be clustered in the tempo-

ral direction. Furthermore, Figures 7 - 9 contain simi-

Fig. 8 Contour plot of ψw zoomed in on the first 10 days,
with final mesh overlaid.

Fig. 9 Contour plot of ψn zoomed in on the first 10 days,
with final mesh overlaid.
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Fig. 10 Initial space-time mesh, with the P2 Sw solution.

Fig. 11 Space-time mesh after 2 iterations of the adaptive
algorithm, with the P2 Sw solution.

lar zoomed-in views of Sw, ψw and ψn respectively, but

none of them exhibit a transient behavior.

Figure 10 shows the initial space-time mesh used

for the adaptive process, with the corresponding P2 Sw
solution. The initial mesh is structured, with a total

of 22 spatial divisions (including 2 small divisions near

the production well) and 25 temporal divisions. The in-

termediate space-time meshes obtained after 2, 8 and

15 iterations of the adaptive algorithm are shown in

Figures 11, 12 and 13, respectively. These figures show

that the adaptive algorithm immediately improves the

mesh resolution in the vicinity of the production well

(i.e. around the x = 1000 ft line) and the saturation

fronts, since those regions are the most sensitive to the

errors in the output. This is also reflected in Figure

14, which shows the history of the output error esti-

mate, where a sharp decrease in output error is ob-

served in the first few iterations. Changes to the mesh

Fig. 12 Space-time mesh after 8 iterations of the adaptive
algorithm, with the P2 Sw solution.

Fig. 13 Space-time mesh after 15 iterations of the adaptive
algorithm, with the P2 Sw solution.

Adaptation Iteration
0 5 10 15 20 25

lo
g
10
(E

/
J
)

-6

-4

-2

Fig. 14 Adaptation history of the output error estimate.

become smoother and subtler towards the latter part of

the adaptive process, where most of the work involves

coarsening the mesh in unimportant regions (e.g. aqui-

fier regions at each end) so that more DOFs can be

allocated to where needed. The error estimate curve in

Figure 14 flattens out to a value that is about 4 orders

of magnitude smaller than the initial error, as the mesh

approaches its optimal configuration.
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Fig. 15 Output J vs. h comparison between the different
discretizations.

Figure 15 shows a comparison of the oil recovery

factors (Jh,p) predicted by the space-time DG method

on adapted and structured meshes as well as the finite

volume method on structured meshes. For the purpose

of comparing the fidelity of the different solutions, a

dimensionless average mesh size h is defined as follows:

h =

√
1

N
, (51)

where N is the total number of space-time degrees of

freedom in the solution. The high-order space-time DG

results (solid lines) converge to the exact functional

value as h is decreased, while also incurring much smaller

errors for a given h value, compared to the first-order

finite volume results (dashed lines). The adapted DG

results are well within the ±0.1% error interval marked

by the dashed horizontal lines, even for the coarsest

meshes. The coarsest space-time DG result on struc-

tured quadrilateral meshes has an output error of about

0.5%, but reaches ±0.1% after a few uniform mesh re-

finements. Although the FV meshes contain the same

cell spacing distribution as the space-time structured

meshes in the x-direction, the FV method requires many

more refinements to achieve comparable levels of accu-

racy.

The ratio of spatial to temporal spacing has an im-

pact on the efficiency of the structured mesh calcula-

tions. This spacing ratio is characterized using the CFL

number C (see Appendix A for the specific definition

used). The two FV curves in Figure 15 illustrate this,

where the C ≈ 1.3 refinement curve (red dashed line)

represents a near-optimal behavior, as described in Ap-

pendix A.

Figure 16 compares how the output error, E ≡ J −
Jh,p, behaves with the mesh size h for the time-marching

FV method, space-time DG method on uniformly re-

fined structured meshes, and the space-time DG method

log10 (h)
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Fig. 16 Output error E vs. h comparison between the differ-
ent discretizations.
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Fig. 17 Output error E vs. runtime comparison between the
different discretizations.

with output-based mesh adaptation. Since the true out-

put, J , is not known analytically, it is estimated using

a space-time adapted DG solution containing approxi-

mately 50,000 degrees of freedom for each primary vari-

able. The number next to each data point on the figure

represents the total number of space-time DOF for that

particular solution. The finite volume results, shown by

the dashed lines, have first order convergence as ex-

pected. For a given value of h, the high-order space-

time method on structured meshes achieves lower er-

rors in comparison to FV, while also exhibiting higher

convergence rates. The error convergence rate increases

with the polynomial order of the solution as expected,

but both P2 (brown) and P3 (light blue) curves con-

tain plateau regions within which the error convergence

rate is locally small. The space-time DG adaptive re-

sults (solid black and blue lines) are clearly the most

efficient, since they consistently achieve errors that are

at least two orders of magnitude smaller than the struc-

tured DG spacetime results, for the same h.
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Figure 17 shows the total time (in minutes) taken

by each method to achieve a given output error E . The

runtimes given for the space-time adaptive method in-

clude the time taken to generate multiple intermediate

meshes, solve the primal and adjoint problems, and also

perform error estimation. The FV and structured space-

time results only represent the times taken to compute

the primal solution and output. All simulations were

run as single thread processes on a computer with an

Intel i7-5930K (3.5 GHz) processor, 15MB cache and

32GB of RAM. The runtime results closely reflect the

trends seen previously in Figure 16, with the space-time

adaptive method being the most efficient by achieving

orders of magnitude smaller errors in comparison to

the FV and space-time structured results, for a given

amount of computational time.

These results show that although high-order dis-

cretizations, particularly in the temporal direction, have

an advantage over low-order methods such as the FV

scheme used here, their benefits are fully realized only

when coupled with mesh adaptation.

6 Conclusion

This paper presented an output-based mesh adaptation

framework for solving a general unsteady conservation

law, using a space-time discontinuous Galerkin formu-

lation. This adaptive method was applied to the com-

pressible two-phase flow equations in mass conservation

form, with the oil recovery factor as the output of in-

terest. Grid convergence studies were performed and

the adaptive results were compared with results gen-

erated by a conventional 1D time-marching finite vol-

ume method with first order spatio-temporal accuracy,

and a high-order space-time DG method on structured

meshes.

The space-time adaptive method consistently achieved

output errors that were orders of magnitude smaller

compared with the other two methods, while using the

least number of degrees of freedom and computational

time of all three methods tested.

Although this paper only demonstrates a 1D appli-

cation, the formulation is applicable to arbitrary spa-

tial dimensions, and our current work is focused on 2D

and then 3D applications. The simplified cost analysis

presented in Appendix B shows that the overhead of

performing h-adaptation relative to the primal solve is

expected to decrease as the problem becomes more com-

plex and multi-dimensional. Extending the framework

to 2D spatial problems with simple domains would be

relatively straightforward, since the generation of 3D

space-time meshes at each adaptation iteration can be

performed with existing 3D metric-based meshing soft-

ware. However, the 4D meshing capabilities required to

solve 3D spatial problems is largely an uncharted do-

main. Furthermore, the multi-dimensional extension of

this work will require or greatly benefit from the devel-

opment of more efficient solution methods (e.g. precon-

ditioners) for solving the large nonlinear systems arising

from the space-time DG discretizations.

A Optimal finite volume results

Figure 18 shows the space-time mesh corresponding to the
coarsest FV case in Figure 16, where a symmetric, non-uniform
cell spacing is used in the x-direction to allocate a larger frac-
tion of the cells near the center of the domain. The mesh has
40 cells in the spatial direction, resulting in an average cell
length of ∆x = 50 ft. The lengths of the cells in the right
half of the domain, between x = 1000 ft and x = 2000 ft, are
given by:

∆xi =

{
7.5× 1.19073i, for 0 ≤ i ≤ 14

100, for 15 ≤ i ≤ 19.
(52)

The spatial cell distribution specified above is also used to
generate the coarsest structured space-time mesh for DG in
Figure 16. In the temporal direction, the mesh uses a con-
stant time-step ∆t corresponding to a CFL number C ≈ 1.3.
All finer structured meshes are uniform refinements of the
coarsest one.

Fig. 18 A structured space-time mesh at a near-optimal
CFL number, C ≈ 1.3 (∆x = 50 ft, ∆t = 100 days).

The first order spatial and temporal accuracy of the time-
marching FV method used in this work implies that the FV
errors can be modeled using the following relation:

E = α
∆x

L
+ β

∆t

T
, (53)

where ∆x is the average length of FV cells, ∆t is the size of
the time-step, L and T are the domain sizes, and α and β
are constants to be determined. Next, a CFL number C is
defined as follows:

C =
U∆t

∆x
, (54)
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where U is a characteristic speed based on Darcy’s equation
for the wetting phase:

U = −
1

φ

K

µw

∆p

0.5L
= 0.6328 ft/day, (55)

and the pressure drop from the left boundary to the produc-
tion well is ∆p = −150 psi. Using the definition of h given
by Eq. (51), and the definition of C from above, Eq. (53) is
rewritten as:

E = z(C) · h, (56)

where,

z(C) =

(
α
√
C

+ β
L

UT

√
C

)√
UT

L
. (57)

The optimal error vs. h curve is one that minimizes z(C), thus
producing the minimum error for a fixed value of h. A series
of FV simulations with different ∆x and ∆t combinations
were computed, and linear regression was performed on the
resulting errors to produce the following estimates for α and
β:

α = 2.3614 (58)

β = 0.5492. (59)

The optimal CFL number C∗ is found by minimizing z(C),
yielding:

C∗ =
αUT

βL
≈ 1.36, (60)

which corresponds to a ∆t
∆x

ratio ≈ 2.1. However, for purposes

of running FV simulations, a slightly sub-optimal ∆t
∆x

ratio
of 2 is chosen. Figure 19 shows the output error vs. h curves
for a series of different FV simulations, where either ∆x is
fixed and ∆t is refined (solid lines), or ∆x and ∆t are refined
together at a fixed CFL number (dashed lines). The C ≈ 1.3
curve is observed to lie along the optimal front of the meshes
producing the lowest error for a given h.
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Fig. 19 Output error E vs. h for time-marching FV method

B Cost analysis

In the interest of fairly comparing computational costs be-
tween different spatial dimensions d, the mesh resolution is
assumed to be fixed and characterized by an average mesh
size h < 1 in each dimension, with the volume of the space-
time domain being equal to 1. The number of (d+ 1)-simplex
elements in the space-time mesh is given by:

Nelem ∼
1

Vsimplex(d+ 1) · hd+1
, (61)

where Vsimplex(d) represents the volume of a unit d-dimensional
regular simplex:

Vsimplex(d) =
1

d!

√
d+ 1

2d
. (62)

For a space-time DG discretization, the number of degrees of
freedom per element, M , is given by:

M(d, p) =
(p+ d+ 1)!

p! (d+ 1)!
Nstate, (63)

where p is the polynomial order of the DG solution and Nstate

is the number of state variables. Therefore, the total number
of degrees of freedom on a space-time mesh with Nelem ele-
ments is given by:

N(d, p) = M(d, p) ·Nelem, (64)

For simplicity, it is assumed that the complexity of the linear
solver can be modeled as O(kM3Nrelem), where k is a con-
stant that captures the nonlinearity and the conditioning of
the physical problem. Highly nonlinear, poorly conditioned
problems result in larger k values. The cubic power on M is
a result of the dense coupling of DOFs within each element,
which produces a dense matrix block of size M × M that
needs to be solved for each element. However, since the DG
discretization has sparse interactions between elements, the
Jacobian matrix has a block sparse structure that can be ex-
ploited by sparse matrix solvers to produce a more efficient
scaling on Nelem. Thus, the exponent r typically takes val-
ues in the range 1 ≤ r ≤ 2 for well preconditioned iterative
solvers of sparse systems. Therefore, the cost of solving the
primal problem is given by:

Cprimal = O
(
kprimal · (M(d, p))3 · (Nelem)r

)
. (65)

Similarly, the cost of solving the adjoint problem in the richer
(p+ 1) space is:

Cadjoint = O
(
kadjoint · (M(d, p+ 1))3 · (Nelem)r

)
(66)

= O
(
kadjoint ·

(
M(d, p) ·

p+ d+ 2

p+ 1

)3

· (Nelem)r
)

(67)

Cadjoint

Cprimal

∼
kadjoint

kprimal

·
(
p+ d+ 2

p+ 1

)3

. (68)

Although the cubic term in Eq. (68) suggests that the ad-
joint solve may be more expensive compared to the primal
solve, the linearity of the adjoint problem compensates for
this via the kadjoint/kprimal ratio, often making the adjoint
solve cheaper than solving the nonlinear primal problem. The
relative cost of the adjoint solve further diminishes with in-
creasing p.
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In the local sampling step of the MOESS algorithm, each
local configuration is obtained by splitting an edge of an ele-
ment to produce two sub-elements. The cost of performing a
single local solve to compute the solution on these two sub-
elements is given by:

Cconfig = O
(
klocal · (M(d, p))3

)
. (69)

Therefore, the cost of all local solves is given by:

Clocal = Cconfig ·Nconfig ·Nelem, (70)

where Nconfig is the number of split configurations per ele-
ment, which is equal to the number of edges in the (d + 1)-
simplex element:

Nconfig =
1

2
(d+ 1)(d+ 2). (71)

Hence, the cost of local solves simplifies to:

Clocal = O
(
klocal · (M(d, p))3

)
·

1

2
(d+ 1)(d+ 2) ·Nelem

(72)

= O
(
klocal · (M(d, p))3 · (Nelem)r

)
· (d+ 1)(d+ 2) · (Nelem)1−r (73)

Clocal

Cprimal

∼
klocal

kprimal

· (d+ 1)(d+ 2)

·
(
Vsimplex(d+ 1) · hd+1

)r−1
(74)

If r > 1, the exponential decrease of Vsimplex(d + 1) · hd+1

with d ensures that the cost of all the local solves is cheaper
compared to the primal solve at higher dimensions. Further-
more, each of the local problems are generally less nonlinear
and better conditioned than the global problem. This is also
observed in practice, where the primal solve typically takes
O(10) nonlinear iterations whereas each local solve takes only
O(1) nonlinear iterations. Therefore, even for the worst-case
of r = 1 and d = 3, the (d+ 1)(d+ 2) factor in Eq. (74) can
be compensated by the klocal/kprimal ratio, making the local
sampling procedure cheaper than the primal solve.

The cost of generating a space-time mesh may be approxi-
mated by the complexity of computing a Delaunay triangula-
tion of n points in d+1 dimensions, which is known to beO(n)
in the expected case and O(nd(d+1)/2e) in the worst-case [2,
18]. The relationship between n and Nelem for an isotropic
space-time mesh can be approximated by the following rela-
tion:

n ≈ ξ(d+ 1) ·Nelem, (75)

where ξ(d) is ratio between the number of vertices per d-
simplex and the average number of regular d-simplices around
a vertex, S(d),

ξ(d) =
d+ 1

S(d)
. (76)

Under the assumption of an isotropic mesh, a good approxi-
mation for S(d) is the ratio:

S(d) ≈
Θsphere(d)

Θvertex(d)
, (77)

where Θsphere(d) is the solid angle subtended by the surface
of the d-dimensional unit ball at the origin, and Θvertex(d) is

the solid angle subtended by a face of the regular d-simplex
at its opposite vertex. Using the formula for the solid angular
content at each vertex of a regular simplex given in [29], the
above ratio can be written as:

Θsphere(d)

Θvertex(d)
=

2d

d! Fd
(
1
2

sec−1(d)
) , (78)

where Fd(α) is the recursive Schläfli function defined in Sec-
tion 7.2 of [47]. Table 1 contains evaluations of the above
ratios up to d = 4.

d S(d) ξ(d)
1 2 1
2 6 0.5
3 22.795 0.175
4 102.200 0.049

Table 1 Numerical values of S(d) and ξ(d)

By assuming the expected linear complexity of the Delau-
nay triangulation, the cost of mesh generation relative to the
primal solve is given by:

Cmesh = O (ξ(d+ 1) ·Nelem) (79)

Cmesh

Cprimal

∼
ξ(d+ 1)

kprimal · (M(d, p))3 · (Nelem)r−1
(80)

Cmesh

Cprimal

∼
ξ(d+ 1) ·

(
Vsimplex(d+ 1) · hd+1

)r−1

kprimal · (M(d, p))3
(81)

If r > 1, the decrease of the hd+1 term in Eq. (81) domi-
nates (since h < 1), and causes Cmesh to be smaller relative
to Cprimal as d increases. The ratio ξ(d + 1)/M(d, p)3 also
decreases with increasing d. Thus, even for an optimally scal-
ing primal solver (i.e., r = 1), the mesh generation cost is a
decreasing fraction of the primal solve cost as d increases.
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