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ABSTRACT
An approach to analyzing the security of a cyber-physical
system (CPS) is proposed, where the behavior of a physical
plant and its controller are captured in approximate mod-
els, and their interaction is rigorously checked to discover
potential attacks that involve a varying number of com-
promised sensors and actuators. As a preliminary study,
this approach has been applied to a fully functional water
treatment testbed constructed at the Singapore University
of Technology and Design. The analysis revealed previously
unknown attacks that were confirmed to pose serious threats
to the safety of the testbed, and suggests a number of re-
search challenges and opportunities for applying a similar
type of formal analysis to cyber-physical security.

Keywords: Cyber-physical system, security, model check-
ing, attack generation.

1. INTRODUCTION
Cyber-physical systems (CPSs) are the next frontier for

security engineering, as malicious actors will seek opportuni-
ties to wreak havoc in our civic infrastructure for water, elec-
tricity, transportation, etc. Most research in CPS focuses
on their distinguishing qualities. For example, the physical
components exhibit continuous behaviors, which are tradi-
tionally modeled by engineers using differential equations,
and are thus hard to integrate with the discrete methods
familiar to computer scientists (such as static analysis and
model checking).

Clearly, addressing such qualities will be essential to ob-
tain full analysis. Nevertheless, we believe that much can
be achieved by taking a simpler approach, in which conven-
tional discrete methods are applied directly, and continuous
behaviors are approximated by discrete transitions. Our aim
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Figure 1: Secure Water Treament (SWaT) testbed

is to develop simple but effective methods that can be read-
ily applied in practice, and which leverage computation to
find security vulnerabilities in such systems.

To explore this idea, we have been experimenting with an
initial analysis approach on a particular CPS. This system
is a water treatment plant constructed as a testbed at the
Singapore University of Technology and Design (shown in
Figure 1). It is a complete, working plant [1] with all the
elements of a full-blown industrial plant; the only key differ-
ences are that an industrial plant would have multiple paths
for increased capacity, and larger versions of the individual
components.

The analysis approach is a form of parameterized model
checking. We extract a model of the software from the code;
currently this is done manually, but we believe it would be
straightforward to automate it. We then construct a model
of the physical plant, as accessed by the software through
the sensors and actuators. This model describes, for exam-
ple, the physical properties of a tank or a UV filtration unit,
but in a simple, discrete way. The values of each physical
variable are partitioned into ranges and a proposition as-
sociated with each variable being within a given range. A
safety condition (for example, that a tank does not over-
flow) is specified, along with an attack model (for example,
that an attacker can inject fake sensor readings or send bad
commands to actuators).

A model checker is then used to find attack scenarios in
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Figure 2: Portion of the SWaT testbed studied in this paper.

which the safety condition is violated on the assumption that
some limited number of sensors or actuators is compromised.
The resulting counterexamples are then examined. As the
compromise number rises, more attacks generally become
possible; the most worrying cases are those vulnerabilities
that require only very few compromises.

This paper describes a case study in which the above ap-
proach was applied. The analysis revealed some serious
vulnerabilities that had not been known previously to the
engineers who maintain the testbed system nor to the re-
searchers who have been applying various kinds of simula-
tion and analysis to it. These vulnerabilities were validated
for feasibility by executing them on the actual system, and
were thus found to be real concerns.

We believe that this case study provides some evidence
that existing methods when appropriately applied can have
real impact in this domain. The model was written in the Al-
loy language, which was chosen for ease of expression; since
the model is finite state, the analysis is actually decidable
and could be encoded in the input language of many different
analysis tools. On the other hand, the case study highlights
a variety of opportunities for improvement, suggesting some
interesting research challenges (such as automatic derivation
of abstractions).

The reminder of the paper is organized as follows. Sec-
tion 2 provides the system overview and threat model, and
Section 3 presents the proposed analysis approach. Section 4
describes a formal model of the testbed in the Alloy mod-
eling language. Sections 5 and 6 present the analysis and
validation of potential security issues on the SWaT system,
respectively. Section 7 discusses the benefits and limitations
of our approach, and Section 8 presents the related work.
The paper concludes with future work in Section 9.

2. SYSTEM OVERVIEW
Secure Water Treatment (SWaT [1]) is a testbed system

located at the iTrust Center at the Singapore University of
Technology and Design. The testbed is a scaled-down but
fully functional version of a modern water treatment plant
found in cities, and is used to investigate responses to cyber
attacks and experiment with novel defense mechanisms.

The treatment process in SWaT consists of six differ-
ent stages, starting with raw water and undergoing vari-

ous chemical treatments to output filtered water in the last
stage. For our preliminary experiment in this paper, we
focused on the first three stages, which are outlined in Fig-
ure 2. In each stage, the system employs various sensors
and actuators that monitor and manipulate the state of a
physical process (e.g., a water tank). A programmable logic
controller (PLC) sits between these sensors and actuators,
and has an ability to activate or deactivate an actuator de-
pending on the value received from its sensors. For instance,
if the value from the sensor LIT101 indicates that the water
level in the Raw Water Tank is above a desirable thresh-
old, PLC1 sends a command to deactivate the valve MV101,
stopping the flow of water into the tank.

Sensor values and actuator commands are communicated
to and from a PLC via network links. PLCs are located
in a separate location from the physical processes, and so
these communication links are established through a wireless
network. This network is password-protected, but due to the
limited computational resources on sensors and actuators,
data packets are unencrypted; as a result, the network may
be vulnerable to eavesdropping and packet injection attacks.

The system also contains one or more monitors that are
used to ensure that the states of the physical processes re-
main within an acceptable operational boundary (e.g., the
level of a water tank does not overflow). If a monitor de-
tects that a physical process has crossed this boundary, it
will trigger an alarm and alert the human operator.

Threat Model.

We assume that the attacker has an ability to compromise
a communication link between a PLC and a sensor or an
actuator. When a link to a link is compromised, the attacker
may inject an arbitrary packet to represent the sensor value,
so the value read by PLC may differ from the actual state
of the associated physical process. If an actuator link is
compromised, the attacker may inject an arbitrary command
into this link, gaining an ability to activate or deactivate the
actuator independently of the PLC; in addition, the state of
the actuator as detected by the PLC may be different from
its actual state.

The system is assumed to be designed with a reasonable
amount of physical protection; that is, the attacker cannot
arbitrarily tamper with physical processes in the system.
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Figure 3: Overview of the proposed approach.

In addition, PLCs are also considered trusted, in that they
always send an appropriate command to an actuator given
an input sensor value (i.e., the PLC code cannot be modified
by the attacker).

3. APPROACH
Figure 3 shows an overview of our approach to the security

analysis of a CPS. The engineer begins by building a model
of the system, and providing an attack specification that de-
termines the overall capabilities of the attacker. Given these
two inputs, an analysis tool is used to automatically gener-
ate an attack scenario that describes how the system may
end up in an unsafe state. The attack planner then converts
this scenario into a validation sequence, which is a series of
control inputs that is intended to simulate the effects of the
generated attack; currently, this step is performed manually
by an engineer of the system. The validation sequence is
then performed on the actual testbed, confirming that the
attack is indeed feasible, or that it describes an invalid be-
havior of the system; in the latter case, the engineer may
refine the system model in order to rule out the spurious
scenario. The entire process may be carried out repeatedly
until the analyzer fails to detect any further attacks on the
system.

System Model.

In our approach, a system is modeled as consisting of four
types of components, as shown in Figure 4: Physical pro-
cesses, sensors, actuators, and controllers. A physical process
represents a mechanical or physical entity that the system
is designed to control (e.g., water tank). Each physical pro-
cess is connected to a sensor, which periodically performs
a reading of its state, and one or more actuators, which di-
rectly manipulate the physical process to alter its state. A
controller performs actions to activate or deactivate an actu-
ator, depending on the information received from its sensors.

Analysis.

A system is said to be in an unsafe state when one of its
physical processes exceeds its operational boundary. The
goal of our analysis is to check whether there exists a system
trace that results in an unsafe state, given that some subset
of components have been compromised by the attacker; this
subset is called an attack configuration.

A distinguished feature of our analysis is in the para-
metricity of attack configurations. Instead of requiring the
user to explicitly specify which components are compro-
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Fig. 1: CPS as a state transformer. In a water treatment
system, actuators include pumps and motorised valves, while
the sensors include level sensors, pH meters, chlorine sensors,
and ORP (Oxidation Reduction Potential) meters. The dark
blob indicates attack points considered in this work.

sensors and PLCs and among the PLCs. Once any
communications link has been compromised, an attacker
could use one of several strategies to send fake state data
to one or more PLCs. Unless the defense mechanism of
the attacked CPS is highly robust, such attacks could
cause an undesirable response from the CPS that may
lead to system shutdown and/or device damage. Exam-
ples of such strategic attacks are given in Section IV-C.
Thus, it becomes imperative for engineers to understand
the response of a CPS to a variety of strategic cyber
attacks and assess the robustness of its defense mech-
anism. An investigation like the one briefly described
here is also critical in identifying errors in the control
algorithms used by the PLCs though detection of such
errors is not considered in this work.

Problem setting: It is assumed that a design consisting
of various CPS components, and their interconnections,
is available. For example, for a water treatment plant
used in a case study, the physical subsystem of such a
design would consist of pumps, tanks, valves, sensors,
chemicals, etc., and the connecting pipes. The cyber
component would consist of communications networks
and various computing devices such as PLCs and other
computing infrastructure. At this stage only the design
of the physical system is available, and the control
algorithms have not yet been coded. Prior to the actual
construction of the CPS, and coding the control algo-
rithms, it is desirable to know how would the system
respond to cyber attacks. Thus, the problem can be stated
briefly as follows.

(a) Using its design, determine how would a CPS
respond to a set of potential cyber attacks and (b) how
would the responses so obtained affect the design of
the physical system and the control algorithms so as to
improve its resilience to cyber attacks ?

Contributions: (a) A scalable and automatable security-
by-design procedure to understand the response of a
Cyber Physical System to attacks on its communications
infrastructure. (b) Dynamic State Condition Graph (D-
SCG) as a formal modeling device for sensor-actuator
constraints in a CPS.

Organization: The remainder of this work is organised
as follows. Section III presents a step by step process for
security by design of CPS. Section IV presents a general
CPS architecture, attacker models, and the DSCG. This
section also contains examples to illustrate a procedure
based on DSCGs for impact analysis of cyber attacks.
Section V presents a case study to demonstrate how an
DSCG-based procedure can be applied to analyze the
defense mechanism of an operational water treatment
system. Questions regarding the novelty, automation, and
scalability of the proposed approach are discussed in
Section VI. Related research and how it differs from that
presented here is in Section II. A summary, discussion,
and next steps in this research appear in Section VII.

II. RELATED WORK

A large body of work focusing on the modeling and
analysis of CPS systems is available. Given that this
work is concerned with using special kind of graphs
to construct a formal design procedure, in this section
works related to graphs in CPS is considered.

Topological vulnerability analysis: Jajodia et. al. [12]
proposed a detailed procedure for modeling cyber sys-
tems using attack graphs. Such graphs model practical
vulnerabilities in distributed networked systems. While
attack graphs model vulnerabilities, DSCGs do not. In
fact DSCGs simply model conditions required to control
a component in a CPS; vulnerabilities, if any, are dis-
covered through an analysis procedure described in this
paper. The attack graphs and DSCGs are similar in the
sense that both model all paths through a system. Note
that while DSCGs are specifically designed to model
CPS, attack graphs are not.
Control flow integrity Abadi et. al [1] propose a control-
flow integrity (CFI)approach to mitigating cyber attacks
on software. They claim that CFI “ ...can prevent such
attacks from arbitrarily controlling program behavior.”
CFI differs from DSCGS in many ways. First, CFI
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Figure 4: Relationship between major types of com-
ponents in a system.

mised, our analysis will automatically explore all possible
attack configurations and enumerate ones that lead the sys-
tem into an unsafe state. If desired, the user can also tune
possible attack configurations by providing an optional spec-
ification that limits the number of components in a config-
uration, or requiring a particular component to be included
in or excluded from a configuration.

4. MODEL OF THE SWAT TESTBED
We constructed a model of SWaT in Alloy, a modeling lan-

guage based on first-order relational logic [2, 3]. We chose
Alloy as our modeling notation for two reasons: (1) its ex-
pressiveness, which allowed us to capture both structural
(architectural connections between components) and behav-
ioral (state transition rules) aspects of the system within
a single model, and (2) its backend tool, the Alloy Ana-
lyzer, which supports an automated simulation and asser-
tion checking of an input model.

Figure 5 shows a fragment of the SWaT model in Alloy.
The Alloy keyword sig introduces a signature, which defines
a set of elements in the universe. A signature may contain
one or more fields, each introducing a relation that maps the
elements of the signature to the field expression; for exam-
ple, field process in PhysicalProcess is a binary relation
that maps each Sensor object to the physical process that it
monitors (line 5). The keyword extends creates a subtyping
relationship between two signatures; an abstract signature
has no elements except those belonging to its extensions,
and one sig introduces a signature that contains only one
element. The first part of the model contains a generic def-
inition of system components and their relationships (lines
1-11), and the rest describes the SWaT-specific components.

The dynamic aspect of the system is modeled using a stan-
dard Alloy idiom in which a system trace is represented as
a sequence of global ticks, and each dynamic entity is asso-
ciated with exactly one state at each tick [2]. To do this, we
introduce a set of totally ordered elements called Tick, and
append it to the last column of relations that are considered
mutable; for example, the field state in PhysicalProcess

(line 4) keeps track of states of the physical process at dif-
ferent points in the system execution.

At each tick, a PLC reads state information from every
one of its sensors and actuators (line 10). The accuracy
of the readings, however, depends on whether or not the
respective sensor or actuator has been compromised by the
attacker. To model this attacker behavior, we first designate
some subset of sensors and actuators to be compromised
(line 11). Then, we introduce an Alloy fact– a constraint



1 open util/ordering[Tick] // Create a total ordering of global ticks
2 sig Tick {}
3 /** Generic part of a system model **/
4 abstract sig PhysicalProcess { state : PhysicalState one -> Tick }
5 abstract sig Sensor { process : PhysicalProcess }
6 abstract sig Actuator { state : ActuatorState one -> Tick }
7 abstract sig PLC {
8 sensors : set Sensor , actuators : set Actuator , processes : set PhysicalProcess ,
9 // At every tick , PLC reads state information from its sensors and actuators

10 reads : (Sensor + Actuator) -> (State one -> Tick) }
11 sig Compromised in Sensor + Actuator {} // Some of the sensors and actuators are compromised
12

13 /** SWaT -specific part of the model **/
14 one sig On, Off extends ActuatorState {}
15 abstract sig LevelState extends PhysicalState {} // State of water level in a tank
16 one sig UF, LL, L2, L1, L, H, H1, H2, HH, OF extends LevelState {} // UF = underflow , OF = overflow
17 // SWaT components for Stage P1
18 one sig RawWaterTank extends PhysicalProcess {}
19 one sig LIT101 extends Sensor {}{ process = RawWaterTank }
20 one sig P101 , MV101 extends Actuator {}
21 one sig PLC1 extends PLC {}{
22 sensors = LIT101 + FIT101 and actuators = P101 + MV101 and processes = RawWaterTank }
23 // Describes how the state of the water tank changes given the status of actuators
24 pred transition_RawWaterTank[t, t’: Tick] {
25 let pre = state.t, post = state.t’ {
26 MV101.pre = On and P101.pre = On implies this.post = this.pre
27 MV101.pre = On and P101.pre = Off implies this.post = increaseLevel[this.pre]
28 MV101.pre = Off and P101.pre = On implies this.post = decreaseLevel[this.pre]
29 MV101.pre = Off and P101.pre = Off implies this.post = this.pre } }
30 // Describes how the state of MV101 changes given PLC1 sensor readings
31 pred transition_MV101[t, t’: Tick] {
32 let plc1readings = PLC1.reads.t, pre = state.t, post = state.t’ {
33 plc1reading[LIT101] = H implies MV101.post = Off
34 plc1readings[LIT101] = L implies MV101.post = On
35 else MV101.post = MV101.pre } }
36 fact CompromisedBehavior {
37 // Sensor reading matches the actual state of the physical process if sensor is not compromised
38 all s : Sensor , p : PLC , t : Tick | s not in Compromised implies (p.reads.t)[s] = s.process .(state.t)
39 // Reading from the actuator matches its actual state if it is not compromised
40 all a : Actuator , p : PLC , t : Tick | a not in Compromised implies (p.reads.t)[a] = a.state.t
41 // MV101 follows expected state changes if it is not compromised
42 all t : Tick - last | let t’ = t.next | MV101 not in Compromised implies transition_MV101[t, t’] }
43

44 /** Safety property **/
45 // True iff system detects overflow or unexpected level changes in the raw water tank
46 pred alarm_tankMonitor[t : Tick] {
47 let t0 = t.prev , readings = (PLC1.reads.t0), level = readings[LIT101], level ’ = (PLC1.reads.t)[LIT101] |
48 (level ’ = HH) or // reading indicates that water is about to overflow
49 (readings[MV101] = On and readings[P101] = On and level ’ != level) or
50 (readings[MV101] = On and readings[P101] = Off and level ’ != increaseLevel[level]) or
51 (readings[MV101] = Off and readings[P101] = On and level ’ != decreaseLevel[level]) or
52 (readings[MV101] = Off and readings[P101] = Off and level ’ != level) }
53 // True iff water overflows and no alarm is triggered
54 pred unsafe[t : Tick] { RawWaterTank.state.t = OF and no alarm_tankMonitor[t.prevs] }
55 // System should never reach an unsafe state
56 assert SystemIsSafe { no t : Tick | unsafe[t] }

Figure 5: A fragment of the SWaT model in Alloy.

that holds for every satisfying instance of the model–to state
that a sensor or actuator reading reflects the actual state if
it has not been compromised (lines 37-40); in other words,
once compromised, the device may output an arbitrary state
value (as selected by the attacker).

The state of the raw water tank in Stage 1 is modeled as
being in one of 10 different levels of water (line 16). The
state of the tank evolves over time depending on the status
of valve MV101 (which, when turned on, allows water to
flow into the tank) and P101 (which is used to pump water
out of the tank). This behavior is captured by the transition
predicate (line 24): When both MV101 and P101 are turned
on or off at the same time, the water level in the tank remains
stable; if only the valve is in the active status, it will cause
the water level to rise an increment in the next tick (e.g.,
from H to H1); similarly, if only the pump is active, the water

level in the tank will decrease by a set amount (e.g, from H1

to H).
During every tick, a PLC may alter the state of its actua-

tors, given the latest readings from its sensors. For example,
the transition predicate for MV101 describes how the valve
may be closed or opened by PLC1 depending on the cur-
rent reading from level sensor LIT101 (line 31). However, if
the actuator has been compromised, the attacker may inject
an arbitrary command to change the state of the actuator,
meaning it will no longer follow the normal transition rules;
this is described by the last constraint in the fact Compro-

misedBehavior (line 42).
Transition rules that describe the behavior of a PLC (i.e.,

how it controls the state of an actuator given an input sen-
sor value) were directly transliterated from the actual PLC
code running on the system. A more challenging task was
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0 L L Off Off

1 L L On Off

2 H L On Off
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4 H2 L On Off
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Figure 6: A potential attack scenario on the SWaT.

capturing the dynamics of the physical processes; that is,
how the state of a process evolves over time depending on
the status of its actuators. For this task, we consulted the
engineer and operator of the system, and constructed an
approximate, discrete model that describes how the water
level of the tank rises or falls depending on whether MV101
pump P101 is activated.

5. ANALYSIS
A safety property can be stated by specifying what it

means for a system to be in an unsafe state, and then assert-
ing that the system never reaches that state. In Figure 5,
the SWaT system is considered to be in an unsafe state (line
54) if the state of the raw water tank reaches an overflow
at a certain point (tick t), and the system fails to trigger
an alarm during the previous executions steps (represented
by t.prevs). The conditions for raising an alarm is defined
in terms of the sensor and actuator readings by PLC1 (line
46). In particular, PLC1 will raise an alarm if the LIT101
reading indicates that the water is about to overflow (line
48), or the change in the water level does not follow the ex-
pected pattern (e.g., it does not rise when the valve is on
and the pump is off, as described on line 50).

The Alloy Analyzer is a general-purpose constraint solver;
given a set of relations and constraints over them, it at-
tempts to find a satisfying assignment of tuples to those re-
lations1. Assertion checking, for example, can be phrased as
the problem of satisfying the conjunction of the constraints
describing the system behavior and the negation of a given
assertion (S ∧ ¬P ); a satisfying instance, if exists, would
correspond to a counterexample to the assertion.

The constraint-based analysis can be further exploited to
not only generate an unsafe trace, but also to find a partic-
ular subset of sensors and actuators that would need to be
compromised in order for that trace to be a feasible behavior
of the system (i.e., an attack configuration). More precisely,
the analysis problem can be phrased as finding a satisfying
instance to S ∧ C ∧ ¬P , where C is a partial specification
of attack configurations, written as a constraint over the set
Compromised (line 12, Figure 5).

By default, when no attack specification is provided (i.e.,
C = true), the analyzer will explore all possible attack con-
figurations. In general, however, the system engineer may
make certain assumptions about the extent of an attack, and
design an appropriate defense mechanism based on them (af-
ter all, if every component in the system is compromised,

1The analyzer itself relies on a first-order model finder called
Kodkod [4], which, in turn, uses an off-the-shelf SAT solver
to generate an instance.

Compromised No. Ticks Duration (min)
LIT101 10 42
MV101, LIT101 7 35
P101, LIT101 11 39

Figure 7: Attack scenarios validated on the SWaT.

then no defense mechanism is likely to be sufficient). The
specification can be used to state such an assumption and
tune the analysis accordingly by, for example, limiting the
number of compromised components (#Compromised <= 2)
or requiring a particular component to be included in or
excluded from this set (MV101 ∈ Compromised or P201 /∈
Compromised).

For our preliminary analysis of the SWaT model, we started
by generating single-point attacks (#Compromised = 1), and
then moved onto finding attacks that involve compromising
multiple components (#Compromised = 2). The analyzer
discovered 4 distinct attack scenarios (2 single-point, and 2
multi-points), describing how the attacker may be able to
cause the tank to overflow without triggering the alarm in
the system. On average, the analyzer took around 6 seconds
to generate an attack scenario.

One of the potential attack scenarios, involving MV101
and LIT101 as compromised components, is shown in Fig-
ure 6. It begins with the water level being low (L), and both
MV101 and P101 being turned off. In the next step, the
attacker injects a command to activate MV101, and at the
same time, prevents PLC1 from being aware that the valve
is active by displaying a false reading of Off. In the fol-
lowing steps, the actual level of water in the tank continues
to rise, but the attacker keeps these state changes unknown
to PLC1 by continually injecting a false reading of L into
LIT101. PLC1 fails to trigger an alarm during this execu-
tion, since based on its readings, it observes that the valve
has been deactivated (thus, no flow into the tank), and the
water level remains stable as expected. Eventually, the tank
overflows, leading to a violation of the safety property.

6. VALIDATION
An attack scenario generated by the Alloy Analyzer is a

sequence of component states and readings at the abstract
modeling level, as shown in Figure 6. The process of vali-
dating an attack then involves (1) converting each abstract
concept (e.g, L for the water level) into an appropriate con-
crete value, and (2) replaying the concretized version of the
attack scenario on the actual system, eventually resulting in
an unsafe state as defined in the model. If step (2) is not
possible, then the attack scenario is considered infeasible,
likely hinting at an inaccuracy in the system model.

In Step (1), converting an abstract state of a component
into its actual value involves devising a concretization rela-
tion that relates values of abstract and concrete domains [5].
In our case, coming up with such a relation was straight-
forward, because the testbed engineers had already been
working with their own discretization of continuous physical
domains. For example, in the SWaT operational manual,
water levels are partitioned into a finite number of intervals
and assigned discrete labels (L for 500mm to 800mm); these
are then used to refer to different stages of the water tank
throughout the manual, instead of the actual level values.



For our modeling purpose, we adapted the same discretiza-
tion used by the engineers.

To support research and experiments on the SWaT, the
engineers have developed a flexible scripting tool (called
SWaTAssault [6]) that allows one to programmatically over-
ride and manipulate control signals between PLCs, sensors,
and actuators. For Step (2) of the validation process, we
used this tool to simulate the behavior of a compromised
sensor or actuator. The most challenging part of this step
was determining the duration of elapsed time for each pair of
adjacent ticks in the model; this was done manually, by al-
tering the state of an actuator (e.g., turning on a valve) and
observing the changes in a physical plant (e.g., gradual rise
of water level) until it reaches the state that is depicted in
the attack scenario. This meant that a human engineer had
to be physically present at the scene to observe the system
during the validation process. We believe that a worthwhile
research problem would be to automate (partially) this part
of the validation, possibly by augmenting the concretization
step with information about the expected duration of state
changes of the plant.

Out of the 4 attack scenarios generated by the Alloy Ana-
lyzer, we were able to validate 3 of them. Figure 7 shows the
minimum number of ticks required to represent an attack in
the model, and the total duration elapsed to successfully val-
idate the attack; for instance, the attack involving MV101
and LIT101 took around 35 minutes from the initial tank
state (L) to overflow. One of these attacks (involving P101
and LIT101) had been manually discovered by the SWaT en-
gineers prior to our analysis; the other two were previously
unknown attacks.

The 4th scenario, a single-point attack involving LIT101,
was found to be infeasible, because the model used for analy-
sis did not, at the time, include information about the water
tank monitor (lines 46-51 in Figure 5). As a result, dur-
ing the validation process, the PLC detected an unusual
change in the water level, raising an alarm and preventing
the system from ending up in an unsafe state. Based on this
outcome, we refined the model by adding the behavior of
the monitor, after which an analysis no longer produced the
same attack scenario.

7. DISCUSSION
Our preliminary study has shown that the proposed ap-

proach is promising in helping engineers automatically dis-
cover and explore attacks on a CPS. However, based on our
experience, we believe that there are a number of research
challenges that merit further investigations in order to es-
tablish an analysis framework that is truly effective and ap-
plicable to a wider range of CPSs.

One current limitation of our approach is the approximate
nature of the model of physical processes, whose behaviors
are often continuous in nature. To our surprise, however,
we found that a discrete model can still be quite effective in
discovering realistic attacks. The SWaT engineers found our
model intuitive to understand, as they themselves already
work with a discrete abstraction of the system (this is, in
part, because the continuous dynamics of water flow and
its chemical properties is considerably complex; in fact, the
engineers are yet to come up with an accurate nonlinear
model of the system dynamics).

Even then, choosing an appropriate discrete abstraction
for continuous behavior is still largely an ad-hoc, manual

process. If the chosen abstraction is too coarse, then the
analysis may produce infeasible attack scenarios; on the
other hand, if the abstraction is unsound, then it may fail to
detect actual attacks on the system. Various techniques for
constructing suitable abstractions have been successfully de-
veloped for program verification, but it is not clear whether
the same types of techniques are applicable to a CPS, where
coming up with a “ground truth” model of the continuous
behavior itself is a challenging task.

Another approach would be to construct a hybrid model,
where some parts of the system are described in a contin-
uous manner, while the rest remains discrete. While this
approach has potential to provide a more accurate analysis,
it has its own set of challenges, especially in (1) scaling the
computationally intensive analysis of continuous dynamics,
and (2) accurately capturing the transition from a continu-
ous to a discrete part of the system (and vice-versa). Hybrid
system analysis is an active area of research [7, 8, 9], and as
techniques in this field continue to improve, we believe that
it will play a critical role in cyber-physical security.

A different aspect of the proposed approach that deserves
further attention is the automation of the validation process.
As discussed in Section 6, validating an attack scenario re-
quires a considerable amount of human intervention, to en-
sure that the actual system behavior matches the behavior
depicted in the scenario. It is conceivable that a significant
part of this process may be automated, by, for example,
augmenting the model with information about timing, and
allowing the SWaTAssault script to use this information to
drive the replay of the attack. Another area for improve-
ment is achieving a tighter interplay between the modeling
and validation steps: If an attack scenario is found to be
infeasible, observations made during the validation may be
leveraged to (semi-)automatically refine the model to rule
out the scenario.

8. RELATED WORK
Any complex CPS is likely to contain a mix of components

built by software and system engineers, but the tools that
they use for modeling and analysis are significantly different.
System engineers have long been constructing a mathemat-
ical model of a physical system and analyzing its proper-
ties using computer-aided tools such as MATLAB [10] and
Simulink [11]. Applying the same types of tools to the se-
curity of a CPS faces challenges in two dimensions: (1) the
“cyber” aspect of the system, which is more amenable to dis-
crete analysis typically not supported by these tools, and (2)
incorporating the behavior of an attacker, who may operate
across multiple layers of abstraction (e.g., software architec-
ture and network, instead of just the physical layer). Our
aim in this project is to develop and experiment with an
approach that provides complementary strengths to these
existing methods, ultimately arriving at a design framework
that can be used by both groups of engineers.

An increasing body of work exist on techniques for verifi-
cation of CPSs, including ones that employ model checking
or constraint solvers [12, 13, 14]. Most of these techniques
focus on the challenge of scaling the state-based analysis to
a hybrid model. On the other hand, relatively little work
has been done on modeling malicious behavior, and allow-
ing the engineer to explore the consequences of different as-
sumptions on the attacker’s capabilities. In this respect, our
work is more closely related to traditional safety engineering



techniques such as FMEA [15] and fault tree analysis [16],
where some subset of system components are assumed to be
faulty, and an analysis is performed to assess their impact on
the overal safety of the system. On a different note, Zheng
and his colleagues [17] provide an extensive survey of tools
and techniques for CPS verification, suggesting various re-
search challenges (some of which we have also discussed in
this paper).

Two authors of this paper have previously explored vari-
ous attacks on the SWaT testbed [18, 19]. However, in these
efforts, the attacks were discovered manually through an in-
formal though-process; as the authors realized, manual ex-
ploration of all attack possibilities proved to be tedious and
error-prone, thus motivating a more automated approach
like the one proposed in this paper. Indeed, two of the at-
tacks that were discovered by our analysis in this paper were
previously unknown to the engineer and researchers working
on SWaT.

9. CONCLUSION
This paper proposed an approach to analyzing the security

of a CPS, where the behaviors of a physical plant and its
controller is captured in approximate, discrete models, and
their interaction is rigorously analyzed to discover attacks
that involve a varying number of compromised sensors and
actuators. The paper also described our experience applying
this approach to a fully functional water treatment system,
and suggested new research challenges and opportunities for
developing tools for cyber-physical security.

The analysis of the SWaT system is an actively ongoing
project. As a next step, we plan to extend our model to
include the rest of the water treatment process (6 PLCs in
total), and consider other types of attacks beside the ones
described in this paper, such as compromising a communica-
tion link between PLCs. In addition, we have yet to touch
upon other significant aspects of the system: (1) SCADA
and potential vulnerabilities that arise from its connection
to the web, and (2) safe distribution of water to households
and other critical endpoints. We plan to investigate how our
approach can be extended to model and analyze these types
of issues as well.
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