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Oxygen self-diffusion mechanisms in monoclinic ZrO2 revealed and quantified by density functional
theory, random walk analysis, and kinetic Monte Carlo calculations
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In this work, we quantify oxygen self-diffusion in monoclinic-phase zirconium oxide as a function of
temperature and oxygen partial pressure. A migration barrier of each type of oxygen defect was obtained by
first-principles calculations. Random walk theory was used to quantify the diffusivities of oxygen interstitials
by using the calculated migration barriers. Kinetic Monte Carlo simulations were used to calculate diffusivities
of oxygen vacancies by distinguishing the threefold- and fourfold-coordinated lattice oxygen. By combining the
equilibrium defect concentrations obtained in our previous work together with the herein calculated diffusivity
of each defect species, we present the resulting oxygen self-diffusion coefficients and the corresponding
atomistically resolved transport mechanisms. The predicted effective migration barriers and diffusion prefactors
are in reasonable agreement with the experimentally reported values. This work provides insights into oxygen
diffusion engineering in ZrO2-related devices and parametrization for continuum transport modeling.
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I. INTRODUCTION

Oxygen self-diffusion in zirconium oxide has long been
a topic of interest [1–4] in studying the oxidation kinetics
of zirconium alloys, which are used as cladding of nuclear
fuel in light water cooled nuclear reactors [5]. Zirconium
oxide is also widely used in heterogeneous catalysis [6,7],
and more recently it was examined for high-k dielectrics in
metal-oxide-semiconductor field-effect transistor (MOSFET)
devices [8,9] as well as resistive switching devices [10,11].
In all of these technologically important applications, under-
standing the defect chemistry and transport properties is key
to better material design, device engineering, and performance
modeling. In particular, such knowledge could guide design
by, e.g., aliovalent doping and controlling operating environ-
mental conditions. Experimental [12–14] and computational
[15–20] studies have been carried out to atomistically resolve
the structure, valence states, and defect chemistry in ZrO2.
Zirconium-oxygen system phase stability has been examined
by first-principles studies, and a range of suboxide structures
with oxygen dissolved into the metal phase have been identified
[20]. To date, many aspects of ZrO2 remain unexamined
atomistically in the multidimensional space of temperature,
oxygen partial pressure, extrinsic doping, strain, and mi-
crostructure. In our previous work, we predicted oxygen self-
diffusion kinetics in tetragonal-ZrO2 (t-ZrO2) by combining
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first-principles calculations with random walk theory [21],
resulting in good agreement with experimental measurements.
Monoclinic-ZrO2 (m-ZrO2) is the stable phase below 1440 K
[22] and is also relevant in the applications mentioned above.
In m-ZrO2, the oxygen sublattice is distorted compared to the
tetragonal phase, leading to two inequivalent sites for oxygen
in the unit cell: one bonds with four zirconium atoms (O4) and
one bonds with three zirconium atoms (O3). This inequivalence
of oxygen sites makes the random walk model inapplicable.
There exist first-principles studies of oxygen defect migration
barriers in HfO2, which bears the same structure as m-ZrO2

[23]. However, no comprehensive work predicting overall
oxygen diffusion coefficients has been performed for oxides
of this structure.

In this study, we present a systematic examination of
oxygen transport properties in bulk, near-stoichiometric mon-
oclinic ZrO2 under different thermodynamic conditions. In
previous work, by combining first-principles-based point-
defect calculations with statistical thermodynamics, we were
able to predict equilibrium defect concentrations at various
temperatures and oxygen partial pressures both in tetrag-
onal [24] and monoclinic ZrO2 [16]. Here we calculated
the migration barriers of different oxygen defect types and
migration paths by first-principles calculations. The results
show that migration barriers corresponding to different oxygen
vacancy migration paths categorized by O4 and O3 sites could
differ by more than 1 eV. To distinguish this inequivalence
of lattice oxygen sites, we quantified the oxygen vacancy
diffusivity with kinetic Monte Carlo (kMC) simulations. On
the other hand, random walk theory was sufficient to obtain
the oxygen interstitial diffusivities. We arrive at the total
oxygen self-diffusion coefficients by combining the defect
equilibria and diffusivity for each of these oxygen defects
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over a wide range of temperature and oxygen partial pres-
sure.

The predicted diffusion coefficient profiles show a valley
shape as a function of oxygen pressure at different temper-
atures. The oxygen interstitial dominates in the high oxygen
partial pressure regime, and the oxygen vacancy dominates
in the low oxygen partial pressure regime, leading to a diffu-
sion minimum at intermediate oxygen partial pressures. Our
predicted values are in good agreement with experimentally
measured diffusion coefficients under relevant thermodynamic
conditions. Finally, we discuss the implications of this study
on engineering oxygen transport in zirconium oxide.

II. METHODS

The climbing image nudged elastic band (CI-NEB) method
[25] was used to calculate migration barriers using three to
five intermediate images as implemented in Transition State
Tools (VTST) [25]. The energies of each image were calculated
using density functional theory (DFT) with Vienna Ab initio
Simulation Package (VASP) [26–29] with a 2 × 2 × 2 supercell
and a 2 × 2 × 2 k-point grid. The generalized gradient
approximation (GGA) with a Perdew-Burke-Ernzerhof (PBE)
functional [30,31] is used. 4s24p64d25s2 electrons for zirco-
nium and 2s22p4 for oxygen are treated as valence electrons.
The plane-wave cutoff energy was set to 450 eV. Details
of calculating the defect formation energies and equilibrium
defect concentrations can be found in Refs. [24,16,32].

For oxygen interstitials, DFT calculations were performed
with different initial guesses for the interstitial sites. Oxygen
vacancies can take either O4 or O3 sites. On the other hand,
the interstitial oxygen always occupies the same type of
site in the relaxed, low-energy configurations. This finding
validates the applicability of the random walk theory for
oxygen interstitials, as we reported earlier for oxygen diffusion
in t-ZrO2 [21]. In principle, random walk theory produces the
same outcome as kinetic Monte Carlo simulations for oxygen
interstitials, given that there are no inequivalent sites for them
in m-ZrO2. Therefore, the diffusivity for each oxygen intersti-
tial species was calculated by the random walk model [33] with

D
q

Oi
=

∑
k

νd2
k exp

(
− Ek

kBT

)
, (1)

where the attempt frequency ν is taken as 5 THz. q represents
the different charged states of oxygen interstitials (0, −1, and
−2). Ek and dk are the migration barrier and hopping distance
for the corresponding migration path. kB is the Boltzmann
constant and T is the temperature. Kröger-Vink notation for
defects is used throughout this paper.

The calculated migration barriers for oxygen vacancies
were fed into an on-lattice kinetic Monte Carlo model [34]
to account for the threefold- and fourfold-coordinated oxygen
site network. Simulations were performed at each temperature
for 106 kMC steps. The simulation cell has one defect in the
ZrO2 lattice with a periodic boundary condition, starting from
a random initial configuration. The diffusivity is calculated
from the mean-square displacement with Einstein’s theory of
Brownian motion [35],

〈r(t)2〉 = 6D
q

VO
t. (2)

Here r(t) is the position of the defect referenced to the
initial site at time t , and D

q

VO
is the calculated diffusivity

for the specific defect species V
q

O at that temperature. The
calculation of D

q

VO
from the kMC trajectory involves the

following. For each defect species, one trajectory of N steps is
obtained from the kMC run. This single trajectory is broken
into N/n trajectories with n steps. For each n-step trajectory,
an associated diffusivity Dn is calculated by Dn = �r2

n/6tn,
where �r2

n represents the total mean-squared displacement
of this trajectory, and tn represents the total time. Due to the
nature of kMC, tn is different for each n-step trajectory. The
final diffusivity is calculated by averaging Dn from the (N/n)
trajectories. In this work, N = 106 and n = 5 × 103 were used.
Convergence of the simulations with these parameters is shown
in the Supplemental Material [36]. Defect-defect interactions
are ignored in all calculations under the assumption of a dilute
limit, which is reasonable for undoped monoclinic ZrO2, which
does not exhibit significant deviation from stoichiometry
[16,37].

By combining the contribution to diffusion by oxygen
vacancies from kMC calculations and by oxygen intersti-
tials from random walk theory, we obtain the total oxygen
self-diffusion coefficient at different partial pressures and
temperatures,

Dtot =
∑

q

[
V

q

O

]
D

q

VO
+

∑
q

[
Oq

i

]
D

q

Oi
. (3)

Here [d] is the concentration of respective defect. Dtot

defined here is the isotropic diffusion coefficient of oxygen
averaged over all crystallographic directions. This value is then
compared with experimental values in Sec. III.

III. RESULTS AND DISCUSSION

The considered pathways of oxygen vacancy migration are
shown schematically in Fig. 1. Two types of oxygen sites exist
in monoclinic ZrO2, one type bonded with four zirconium
ions (O4) and the other with three (O3). The migration paths

FIG. 1. Migration paths for oxygen vacancies in m-ZrO2. Large,
green spheres represent Zr ions. Small red and gray spheres represent
threefold-coordinated and fourfold-coordinated oxygen ions, respec-
tively. This figure is generated with visualization software VESTA [38].
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TABLE I. The calculated migration paths and migration barriers
(in units of eV) of oxygen vacancies in m-ZrO2. The indices of each
migration path are labeled in Fig. 1. The paths are categorized by
O4 and O3 oxygen sites, and how many Zr ions the two O sites
share a bond with. For paths between O4 and O3 sites, forward
and backward barriers are different due to asymmetry of the initial
and final configuration. For O4-O4 and O3-O3 paths, forward and
backward barriers are equal. For O4-O4 paths, migration on the ab

plane and the c direction are further distinguished.

Path From-To Shared Zr ion V ×
O V •

O V ••
O

1 O4-O3 2 forward 1.94 0.91 0.06
backward 1.84 1.28 0.78

2 O4-O3 1 forward 2.23 1.64 1.01
backward 2.12 2.00 1.80

3 O4-O4, c 2 2.48 1.54 0.86
4 O4-O4, ab 2 2.03 1.20 0.33
5 O3-O3 2 2.20 1.58 0.77
6 O3-O3 1 1.32 1.11 0.73

are further categorized by the number of zirconium ions that
simultaneously share bonds with the two oxygen sites between
which the migration takes place. The details of each migration
path and the corresponding migration barriers are summarized
in Table I, and the energy profiles are shown in Fig. 2. For each
migration path, the barrier for oxygen vacancies with 0, +1,
and +2 charges are calculated.

Based on the calculated migration barrier, it is clear that for
each migration path, the higher-charge-state oxygen vacancies
have lower migration barriers. This can be rationalized by
the fact that the diffusive jump of V ×

O involves the transport
of the two electrons associated with the vacant site in a
direction opposing the jump of the oxide ion. This opposition

FIG. 2. Energy profiles for oxygen migration paths labeled in
Fig. 1. Red dots are images calculated using the CI-NEB method.
Fitted spline curves are produced with the VTST tools [25].

is accompanied by Coulombic repulsion and elevation of the
activation barrier. In the case of V •

O, there is only one electron
opposing the migrating oxide ion, and finally in V ••

O there
are no electrons to oppose the oxide ion. A similar trend has
also been observed in tetragonal ZrO2 [21] and other oxides
[39]. It is also notable that the forward migration barrier for
O4-O3 sharing bonds with Zr ions is as low as 0.06 eV, which
seemingly indicates very fast oxygen diffusion. However, it is
shown from kMC simulations that, although oxygen hopping
between these two types of sites is frequent, oxygen atoms
need to go through other high-barrier migration paths in order
to complete long-range diffusion.

For oxygen interstitials, octahedral interstitial sites were
found to be the low-energy sites [16]. DFT calculations
show that all octahedral oxygen interstitials are energetically
equivalent in the ZrO2 unit cell. Migration barriers for the direct
exchange mechanism were found to be too high (>5 eV) and
therefore only interstitialcy migration hops were considered
[23]. The calculated migration barriers are 0.672, 0.365, and
0.530 eV, respectively, for O×

i , Oi
′, and Oi

′′. These results in-
dicate that oxygen interstitials have higher mobility compared
to oxygen vacancies, consistent with previous experimental
observation [1].

Equilibrium defect concentrations as a function of PO2

at 600 and 1200 K are reproduced in Figs. 3(a) and 3(b).
Details of how these profiles are constructed can be found
in Ref. [16]. At 600 K, the dominant oxygen-related defect is
oxygen interstitial over the entire PO2 range, with the dominant
charge state changing from −2 to 0 at 1 atm. At 1200 K, the
dominant oxygen defect transitions from an oxygen vacancy
with different charge states for PO2 < 10−12 atm to a doubly
charged oxygen interstitial Oi

′′ at higher, more oxidizing PO2 .
The total oxygen self-diffusivity profiles as well as con-

tributions of individual oxygen defect species at the two
temperatures display different features [Figs. 3(c) and 3(d)],
following the defect transitions noted above. In the low-
temperature case, PO2 dependence can be categorized into two
regimes. In the low PO2 regime (<10−20 atm), the dominant
charged defects are holes compensated by electrons. This
results in a 1/2 slope for the concentration of the dominant
oxygen defect Oi

′′, and consequently the same slope for the
log10Dtot profile. In the high PO2 regime (>10−10 atm), holes
are charge-balanced by zirconium vacancies VZr

′′′′. Here the
defect reaction is 1

2 O2(g) → O×
O + 1

2V ′′′′
Zr + 2h•, leading to

[h•] = 1
4 [V ′′′′

Zr ] ∝ PO2
1/5. The concentration of Oi

′′ is related
to [h•] via the defect reaction 1

2 O2(g) → Oi
′′ + 2h• and thus

exhibits the 1/10 slope as shown in the log10Dtot curve.
At high temperature, the intermediate PO2 regime (10−15 −

10−10 atm) has the same electron-hole compensation mecha-
nism and the same dominant oxygen defect Oi

′′ as discussed
above, and thus, log10Dtot exhibits 1/2 slope. However, in
the low PO2 regime, the two dominating types of charged
defect are electrons and positively charged oxygen vacancies.
A −1/6 log10Dtot slope is predicted by the law of mass
action under the approximate charge neutrality nc ≈ 2[V ••

O ],
but a small discrepancy from this prediction was present in
the calculated curve. This is because V •

O also contributes
non-negligibly to the charge-neutrality condition. At very
low PO2 , V •

O and V ×
O predominate over V ••

O in concentration,
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FIG. 3. Equilibrium concentrations of electronic and ionic defects, [d] at (a) 600 K and (b) 1200 K, as a function of oxygen partial pressure.
Oxygen self-diffusivity, D, calculated for each oxygen defect species and total diffusion coefficient, Dtot , with varying oxygen partial pressure
at (c) 600 K and (d) 1200 K.

but the diffusivity is still contributed mainly by V ••
O due to

its lower migration barrier. In the high PO2 regime, pv ≈
2[Oi

′′]. 1
2 O2(g) → Oi

′′ + 2h• is the dominant defect reaction,
and a 1/6 slope is shown as predicted by the law of mass
action.

To examine the gradual transition from the low-temperature
behavior to the high-temperature behavior, we plot the PO2

dependence of the total self-diffusion coefficient at different
temperatures in Fig. 4(a). There is a clear appearance of a
diffusion coefficient minima, or valley, as marked by the dashed
line. This marks the transition from the V ••

O -dominated regime
to the Oi

′′-dominated regime. At low temperatures (<700 K),
the entire PO2 range is dominated by oxygen interstitials. At
higher temperatures, there is a transition between the V ••

O -
dominated regime at low PO2 and the Oi

′′-dominated regime at
high PO2 . The oxygen partial pressure at which this transition
occurs increases with increasing temperature.

To compare with experiments, the high-temperature data are
replotted in Fig. 4(b) as isobaric diffusion coefficient curves as
a function of 1/T. At high PO2 (>10−5 atm), the isobaric curves
are perfectly Arrhenius. This is because the entire profile is
sampled in regimes where oxygen interstitials are compen-
sated by holes. At intermediate PO2 (10−10 − 10−5 atm), non-
Arrhenius behavior starts to appear, where the compensation
mechanism transitions to electrons compensated by holes.

At even lower PO2 , the Arrhenius behavior is restored again
because now the entire region is within the vacancy-dominated
regime.

Symbols in Fig. 4(b) represent experimentally measured
values at different oxygen partial pressures as noted in the
legend [1–3]. It is clear from Fig. 4(b) that experimental
measurements have considerable disagreement between each
other. In particular, the trend of Dtot varying with oxygen
partial pressure is not consistent when comparing values from
different studies. Here we discuss a few factors that may lead
to this discrepancy. First, all experimental studies listed here
were not conducted on single-crystal ZrO2. References [1] and
[2] measured conductivity via an 18O diffusion experiment on
ZrO2 spheres, and Ref. [3] by measuring the oxidation rate of
nonstoichiometric ZrO2 powder to stoichiometric ZrO2. It is
hard to eliminate the contribution of voids, grain boundaries, or
other types of extended defects. Second, all diffusion models
used to fit experimental profiles and obtain Dtot assume that the
rate-limiting step in the oxygen exchange/oxidation process
is oxygen diffusion. This simplified assumption may lead to
errors in the fitted result. This point is partially verified by
Ref. [1], where the authors found that diffusivities obtained at
equivalent oxygen partial pressure by CO/CO2 mixture and O2

gas are not consistent, indicating that surface exchange kinetics
also influences the result. Third, none of these studies considers
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FIG. 4. Calculated total oxygen self-diffusion coefficient plotted as a function of oxygen partial pressure and temperature. Dotted lines in
(b) show experimentally measured values from Refs. [1] (0.92 atm), [2] (0.39 atm), and [3] (0.13 and 0.03 atm).

the contribution to oxygen diffusion under an electric field in
an intrinsically formed space-charge layer at the oxide surface.
Our study shows that the major contribution to the diffusion
coefficient comes from charged defects, and the space-charge
effect should be taken into consideration [32].

Lastly, it is worth mentioning that experimental specimens
must contain aliovalent cation impurities. For example, Al3+
and Nb5+ are two common impurity species; one is an acceptor
and the other is a donor. These aliovalent cations could
compensate for each other and make the oxide behave closer
to intrinsic. However, even a small amount of n-type or p-type
doping could change the dependence of defect chemistry to

oxygen partial pressure. In particular, the compensating mech-
anism transition pressure could change due to the impurity
dopants. In other words, the same defect chemistry could be
achieved at different PO2 with different impurity contents. This
could explain in part the inconsistency of the PO2 dependence
between prior experimental studies. The trend in diffusivity
change from 0.03 to 0.13 atm in Ref. [3] is more reliable
considering the measurements were performed on samples
with the same impurity level. In Ref. [3] we see that Dtot

increases with oxygen partial pressure, which hints at an
oxygen-interstitial-dominated mechanism and is in agreement
with our prediction.

FIG. 5. (a) Activation energies and (b) diffusion prefactors at different oxygen partial pressures fitted to Dtot = D∗ exp(−Q/kBT ) by using
the simulated data in the high-temperature regimes in Fig. 4(b).
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TABLE II. Activation energy and diffusion prefactor comparison between this work and experimental measurements.

This work This work This work Ref. [1] Ref. [2] Ref. [3] Ref. [3]

PO2 (atm) 1 0.1 0.01 0.92 0.39 0.13 0.03
Q (eV) 2.04 2.05 2.05 1.96 2.43 2.46 2.46
D ∗ (cm2/s) 6.50 × 10−3 4.76 × 10−3 3.16 × 10−3 2.34 × 10−2 9.73 × 10−3 1.82 9.00 × 10−2

To compare quantitatively with experimentally measured
values, we calculate the effective activation energies Q and
effective prefactors D∗ by fitting the total self-diffusivity
Dtot to Dtot = D∗ exp(−Q/kBT ). The outcome values are
plotted in Fig. 5 and summarized in Table II. It is not a
coincidence that both the activation energy and the diffusion
prefactor curves display a valley at intermediate oxygen partial
pressure. This valley again corresponds to the same transi-
tion from the V ••

O -dominated regime at low PO2 to the Oi
′′-

dominated regime at high PO2 . The effective activation barrier
predicted at PO2 = 1 atm is 2.04 eV. This is in reasonable
agreement with experimentally measured values (1.96 eV [1],
2.43 eV [2], and 2.46 eV [3], respectively). This consistency
indicates that all the values we are comparing with from
experiments should be in the same Oi

′′-dominated regime
as we predicted. This is because the formation energy of
V ••

O alone exceeds 3.5 eV in this PO2 range, and an even
higher activation barrier should be expected if V ••

O were the
dominant species. When it comes to diffusion prefactors, the
difference between this work and experimental values, and the
difference among the reported experimental values, is more
pronounced. D∗ predicted in this study is 6.50 × 10−3 cm2/s
at PO2 = 1 atm and 4.76 × 10−3 cm2/s at PO2 = 0.1 atm. The
calculated values in Refs. [1–3] are 2.34 × 10−2 cm2/s at 0.92
atm, 9.73 × 10−3 cm2/s at 0.39 atm, 1.82 cm2/s at 0.13 atm,
and 9.00 × 10−2 cm2/s at 0.03 atm. However, we can also see
from Fig. 5(b) that D∗ changes over orders of magnitude with
varying oxygen partial pressures. This observation is consistent
with the different impurity argument we discussed above.
Acceptor-type impurity could increase the concentration of
Oi

′′ and hence create the discrepancies among D∗.
Lastly, we comment on the implication of these findings

on the oxidation rate of zirconium metal. Oxygen diffusion
through the oxide passive film is known as one of the
rate-limiting steps in the oxidation process [40]. To design
corrosion-resistant zirconium alloys, lower oxygen diffusivity
is desirable. Looking at the isothermal curves in Fig. 4(a), the
lowest oxygen diffusion coefficient is always achieved in an
intermediate pressure range where the dominating species are
electrons and holes. Going to the high (low) end of oxygen
partial pressure, the oxygen interstitial (oxygen vacancy)
becomes the dominant defect species that compensates with
holes (electrons), and thus increases total oxygen conductivity.
This leads to the conclusion that, to engineer oxygen transport
through the oxide film, it is desirable to suppress the dominant
oxygen defect. Doping is one of the possible means to achieve
this goal. In the high PO2 region, a +3 dopant could compensate
with the hole, reducing the oxygen interstitial concentration
and thus suppressing oxygen transport. A +5 dopant has a
similar effect in the low PO2 region in compensating with

electrons and reducing oxygen vacancy. This finding provides
guiding rules for different alloying elements that can dissolve
into the growing oxide and change the oxygen defect equi-
libria in the relevant temperature and oxygen partial pressure
space.

In light of our findings, we offer a few possible improve-
ments on the modeling method used in this work. First, we
ignored defect-defect interactions throughout this study. If
we look at Fig. 3(b), the calculated defect concentrations are
generally below 10 ppm, which shows that this approximation
is reasonable within the thermodynamic regime considered
here. However, if a high concentration of extrinsic doping
or a higher temperature and lower oxygen pressure regime
is of interest, it will be important to include defect-defect
interactions. Second, extended defects in the oxide struc-
ture can significantly change its transport properties, as we
have demonstrated recently, for example, for secondary phase
particles embedded in a ZrO2 matrix [32]. The effects of
surface, grain boundaries, and interfaces on oxygen diffusion
are also worth exploring, and this is necessary for constructing
accurate higher-level transport models as well as informing
microstructure engineering for oxide materials.

IV. CONCLUSION

In this study, we modeled oxygen self-diffusion in
monoclinic-ZrO2 by combining density functional theory cal-
culations, random walk theory, and kinetic Monte Carlo simu-
lations. The oxygen diffusion coefficient shows a clear tran-
sition from an oxygen-vacancy-dominated transport regime
at low oxygen partial pressure to an oxygen-interstitial-
dominated regime at high oxygen partial pressures. The re-
sults demonstrate a diffusivity minimum, i.e., a valley at the
transition point. The effective migration barriers and diffusion
prefactors are in reasonable agreement with those found from
experimental studies. This study provides an atomistic under-
standing of the oxygen diffusion mechanism in monoclinic
ZrO2, and the findings can guide the design of zirconium oxide
for different applications in which oxygen transport properties
at different functional conditions are of interest.
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