
MIT Open Access Articles

Tardis: Time Traveling Coherence
Algorithm for Distributed Shared Memory

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Yu, Xiangyao, and Srinivas Devadas. "Tardis: Time Traveling Coherence Algorithm
for Distributed Shared Memory." 2015 International Conference on Parallel Architecture and
Compilation (PACT), 18-21 October, 2015, San Francisco, California, IEEE, 2015, pp. 227–40.

As Published: http://dx.doi.org/10.1109/PACT.2015.12

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/114457

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/114457
http://creativecommons.org/licenses/by-nc-sa/4.0/

Tardis: Time Traveling Coherence Algorithm for
Distributed Shared Memory

Xiangyao Yu
CSAIL, MIT

Cambridge, MA, USA
yxy@mit.edu

Srinivas Devadas
CSAIL, MIT

Cambridge, MA, USA
devadas@mit.edu

Abstract—A new memory coherence protocol, Tardis, is pro-
posed. Tardis uses timestamp counters representing logical time
as well as physical time to order memory operations and enforce
sequential consistency in any type of shared memory system.
Tardis is unique in that as compared to the widely-adopted
directory coherence protocol, and its variants, it completely
avoids multicasting and only requires O(logN) storage per
cache block for an N -core system rather than O(N) sharer
information. Tardis is simpler and easier to reason about, yet
achieves similar performance to directory protocols on a wide
range of benchmarks run on 16, 64 and 256 cores.

Index Terms—coherence; timestamp; scalability; sequential
consistency;

I. INTRODUCTION

Shared memory systems are ubiquitous in parallel com-
puting. Examples include multi-core and multi-socket pro-
cessors, and distributed shared memory systems (DSM). The
correctness of these systems is defined by the memory con-
sistency model which specifies the legitimate interleaving of
operations from different nodes (e.g., cores or processors).
The enforcement of a consistency model heavily relies on
the underlying coherence protocol. For a shared memory
system, the coherence protocol is the key component to ensure
performance and scalability.

When the data can be cached in the local memory of a
node, most large-scale shared memory systems today adopt
directory based coherence protocols [1], [2]. Examples include
many-core systems with large core count [3], [4], coherence
between multi-socket systems like Intel’s QPI [5] and AMD’s
HyperTransport [6], and coherence of distributed shared mem-
ory systems like IVY [7] and Treadmarks [8]. A well known
challenge in a directory coherence protocol is latency and
scalability. For example, these protocols keep a list of nodes
(sharers) caching each data and send invalidations to sharers
before the data is modified by some node. Waiting for all
invalidation requests to be acknowledged may take a long time
and storing the sharer information or supporting broadcasting
does not scale well as the number of nodes increases.

We propose a new coherence protocol, Tardis, which is
simpler and more scalable than the simplest directory proto-
col, but has equivalent performance. Tardis directly expresses
the memory consistency model by explicitly enforcing the
global memory order using timestamp counters that represent
logical as opposed to physical time; it does this without

requiring a globally synchronized clock unlike prior timestamp
coherence schemes (e.g., [9], [10]), and without requiring
multicast/broadcast support unlike prior directory coherence
schemes (e.g., [11], [12]). In Tardis, only the timestamps
and the owner ID need to be stored for each address for a
O(logN) cost where N is the number of processors or cores;
the O(N) sharer information of common directory protocols
is not required. The requirement of storing sharers is avoided
partly through the novel insight that a writer can instantly jump
ahead1 to a time when the sharer copies have expired and
immediately perform the write without violating sequential
consistency. A formal proof that Tardis satisfies sequential
consistency can be found in [13].2

We evaluated Tardis in the context of multi-core proces-
sors. Our experiments showed that Tardis achieves similar
performance to its directory counterpart over a wide range of
benchmarks. Due to its simplicity and excellent performance,
we believe Tardis is a competitive alternative to directory
coherence for massive-core and DSM systems.

We provide background in Section II, describe the basic
Tardis protocol in Section III, and optimizations to the basic
protocol in Section IV. We evaluate Tardis in Section VI,
discuss related work in Section VII and conclude the paper
in Section VIII.

II. BACKGROUND

In this section, we provide some background on memory
consistency and coherence.

A. Sequential Consistency

A memory consistency model defines the correctness of a
shared memory system. Specifically, it defines the legitimate
behavior of memory loads and stores. Although a large number
of consistency models exist, we will focus on sequential
consistency due to its simplicity.

Sequential consistency was first proposed and formalized by
Lamport [14]. A parallel program is sequentially consistent if
“the result of any execution is the same as if the operations
of all processors (cores) were executed in some sequential
order, and the operations of each individual processor (core)

1hence the name Tardis!
2The proof corresponds to a slightly simplified version of the protocol

presented here.

appear in this sequence in the order specified by its program”.
If we use <p and <m to denote program order and global
memory order respectively, sequential consistency requires the
following two rules to be held [15]:

Rule 1: X <p Y =⇒ X <m Y
Rule 2:

Value of L(a) = Value of Max<m{S(a)|S(a) <m L(a)}
where L(a) is a load to address a and S(a) is a store to address
a; the Max<m operator selects the most recent operation in
the global memory order.

Rule 1 says that if an operation X (a load or a store) is
before another operation Y in the program order of any core,
X must precede Y in the global memory order. Rule 2 says
that a load to an address should return the value of the most
recent store to that address with respect to the global memory
order.

B. Directory-Based Coherence

In practical systems, each core/processor has some private
local storage to exploit locality. A memory coherence protocol
is therefore used to support the consistency model.

Although both snoopy and directory protocols are used in
small systems, virtually all large-scale shared memory systems
today use some variant of the basic directory-based coherence
protocol. The directory is a software or hardware structure
tracking how the data are shared or owned by different
cores/processors. In a directory protocol, the second rule of
sequential consistency is achieved through the invalidation
mechanism; when a core/processor writes to an address that is
shared, all the shared copies need to be invalidated before the
write can happen. Future reads to that address have to send
requests to the directory which returns the value of the last
write. This mechanism essentially guarantees that reads that
happen after the last write with respect to physical time can
only observe the value of the last write (the second rule of
sequential consistency).

The directory needs to keep the sharer information of
each address in order to correctly deliver the invalidations.
If the system has N cores/processors, the canonical protocol
requires O(N) storage per address, which does not scale well
when the system gets bigger. Alternative solutions to avoid
O(N) storage do exist (cf. Section VII) but either require
broadcasting, incur significant additional complexity, or do not
perform well.

III. BASIC PROTOCOL

We present a new coherence protocol, Tardis, which only
requires O(logN) storage per cacheline and requires neither
broadcasting/multicasting support nor a globally synchronized
clock across the whole system. Tardis works for all types of
distributed shared memory systems and is compatible with
different memory consistency models.

In this paper, we present the Tardis protocol for sequential
consistency in the context of a multi-core processor with
shared last level cache (LLC). Our discussion applies equally
well to other types of shared memory systems.

A. Timestamp Ordering

In a directory protocol (cf. Section II-B), the global memory
order (<m) is enforced through the physical time order. i.e., if
X and Y are memory operations to the same address A and
one of them is a store, then

X <m Y =⇒ X <pt Y

In Tardis, we break the correlation between the global
memory order and the physical time order for write after
read (WAR) dependencies while maintaining the correlation
for write after write (WAW) and read after write (RAW)
dependencies.

S1(A) <m S2(A) =⇒ S1(A) <pt S2(A)

S(A) <m L(A) =⇒ S(A) <pt L(A)

L(A) <m S(A) 6=⇒ L(A) <pt S(A)

Tardis achieves this by explicitly assigning a timestamp to
each memory operation to indicate its global memory order.
Specifically, the global memory order in Tardis is defined as
a combination of physical time and logical timestamp order,
i.e., physi-logical time order, which we will call physiological
time order for ease of pronunciation.

Definition 1 (Physiological Time Rule):

X <m Y := X <ts Y or (X =ts Y and X <pt Y)

In Definition 1 the global memory order is explicitly
expressed using timestamps. Operations without dependency
(e.g., two concurrent read operations) or with obvious relative
ordering (e.g., accesses to private data from the same core)
can share the same timestamp and their global memory order
is implicitly expressed using the physical time order.

Using the physiological time rule, Rule 1 of sequential con-
sistency becomes X <p Y ⇒ X <ts ∨(X =ts Y ∧X <pt Y).
Assuming a processor always does in-order commit, we have
X <p Y ⇒ X <pt Y . So Tardis only needs to guarantee
that X <p Y ⇒ X ≤ts Y , i.e., operations from the same
processor have monotonically increasing timestamps in the
program order. For Rule 2 of sequential consistency, Tardis
needs to guarantee that a load observes the correct store in the
global memory order as defined by Definition 1. The correct
store is the latest store – either the one with the largest logical
timestamp or the latest physical time among the stores with
the largest logical timestamp [13].

We note that the physiological timestamp here is different
from Lamport clocks [16]. In Lamport clocks, a timestamp is
incremented for each operation while a physiological times-
tamp is not incremented if the order is implicit in physical
time. That said, the physiological timestamp does share some
commonality with the Lamport clock. In a sense, Tardis
applies Lamport/physiological timestamp to distributed shared
memory systems.

TABLE I
TIMESTAMP MANAGEMENT IN THE TARDIS PROTOCOL WITHOUT PRIVATE

MEMORY

Request Type Load Request Store Request
Timestamp
Operation

pts⇐Max(pts,wts)
rts⇐Max(pts, rts)

pts⇐Max(pts, rts + 1)
wts⇐ pts
rts⇐ pts

B. Tardis without Private Cache

In Tardis, timestamps are maintained as logical counters.
Each core keeps a program timestamp (pts) which is the
timestamp of the last operation in the program order. Each
cacheline keeps a read timestamp (rts) and a write timestamp
(wts). The rts equals the largest timestamp among all the loads
of the cacheline thus far and the wts equals the timestamp of
the latest store to the cacheline. Tardis keeps the invariant
that for a cacheline, its current data must be valid between
its current wts and rts. The pts should not be confused with
the processor clock, it does not increment every cycle and is
not globally synchronized. The directory structure is replaced
with a timestamp manager. Any load or store request to the
LLC should go to the timestamp manager.

For illustrative purposes, we first show the Tardis proto-
col assuming no private cache and all data fitting in the
shared LLC. Each cacheline has a unique copy in the LLC
which serves all the memory requests. Although no coherence
protocol is required in such a system, the protocol in this
section provides necessary background in understanding the
more general Tardis protocol in Section III-C.

Table I shows one possible timestamp management policy
that obeys the two rules of sequential consistency. But other
policies also exist. Each memory request contains the core’s
pts before the current memory operation. After the request,
pts is updated to the timestamp of the current operation.

For a load request, the timestamp manager returns the value
of the last store. According to Rule 1, the load timestamp must
be no less than the current pts. According to Rule 2, the load
timestamp must be no less than wts which is the timestamp of
the last store to this cacheline. So the timestamp of the load
equals Max(pts,wts). If the final pts > rts, then rts bumps
up to this pts since the rts should be the timestamp of the last
read in the timestamp order.

For a store request, the last load of the cacheline (at rts) did
not observe the value of the current store. According to Rule
2, the timestamp of the current store must be greater than the
rts of the cacheline (the timestamp of the last load). So pts
becomes Max(pts, rts + 1). wts and rts should also bump up
to this final pts since a new version has been created.

Both Rule 1 and Rule 2 hold throughout the protocol: the
pts never decreases and a load always observes the correct
store in the timestamp order.

C. Tardis with Private Cache

With private caching, data accessed from the LLC are stored
in the private cache. The protocol introduced in Section III-B
largely remains the same. However, two extra mechanisms
need to be added.

Timestamp Reservation: Unlike the previous protocol
where a load happens at a particular timestamp, timestamp
reservation allows a load to reserve the cacheline in the private
cache for a period of logical time (i.e., the lease). The end
timestamp of the reservation is stored in rts. The cacheline
can be read until the timestamp expires (pts > rts). If the
cacheline being accessed has already expired, a request must
be sent to the timestamp manager to extend the lease.

Exclusive Ownership: Like in a directory protocol, a
modified cacheline can be exclusively cached in a private
cache. In the timestamp manager, the cacheline is in exclusive
state and the owner of the cacheline is also stored which
requires log(N) bits of storage. The data can be accessed
freely by the owner core as long as it is in the exclusive state;
and the timestamps are properly updated with each access. If
another core later accesses the same cacheline, a write back
(the owner continues to cache the line in shared state) or flush
request (the owner invalidates the line) is sent to the owner
which replies with the latest data and timestamps.

Note that in the private cache, the meanings of rts for shared
and exclusive cachelines are different. For a shared cacheline,
rts is the end timestamp of the reservation; for an exclusive
cacheline, rts is the timestamp of the last load or store. The
state transition and the timestamp management of Tardis with
private cache are shown in Table II and Table III. Table II
shows the state transition at the private cache and Table III
shows the state transition at the shared timestamp manager.
Table IV shows the network message types used in the Tardis
protocol where the suffix REQ and REP represent request and
response respectively.

In the protocol, each cacheline (denoted as D) has a write
timestamp (D.wts) and a read timestamp (D.rts). Initially, all
pts’s and mts’s are 1 and all caches are empty. Some network
messages (denoted as M or reqM) also have timestamps
associated with them. Each message requires at most two
timestamps.

We now discuss different cases of the Tardis protocol shown
in both tables.

1) State Transition in Private Cache (Table II):
Load to Private Cache (column 1, 4, 5): A load to

the private cache is considered as a hit if the cacheline is in
exclusive state or is in shared state and has not expired (pts ≤
rts). Otherwise, a SH REQ is sent to the timestamp manager
to load the data or to extend the existing lease. The request
message has the current wts of the cacheline indicating the
version of the cached data.

Store to Private Cache (column 2, 4, 5): A store to the
private cache can only happen if the cacheline is exclusively
owned by the core. Same as directory coherence, EX REQ is
sent to the timestamp manager for exclusive ownership. The
rts and wts of the private data are updated to Max(pts, rts+1)
because the old version might be loaded at timestamp rts by
another core.

Eviction (column 3): Evicting shared cachelines does
not require sending any network message. The cacheline can
simply be invalidated. Evicting exclusive cachelines is the

TABLE II
STATE TRANSITION IN PRIVATE CACHE. TM IS THE SHARED TIMESTAMP MANAGER, D IS THE DATA, M IS THE MESSAGE, reqM IS THE REQUEST

MESSAGE IF TWO MESSAGES ARE INVOLVED. TIMESTAMP TRANSITION IS HIGHLIGHTED IN RED.

States Core Event Network Event
Load Store Eviction SH REP or

EX REP
RENEW REP or
UPGRADE REP

FLUSH REQ or
WB REQ

Invalid send SH REQ to TM
M.wts⇐0,
M.pts⇐pts

send EX REQ to TM
M.wts⇐0

Fill in data
SH REP
D.wts⇐M.wts
D.rts⇐M.rts
state⇐Shared
EX REP
D.wts⇐M.wts
D.rts⇐M.rts
state⇐Excl.

Shared
pts ≤ rts

Hit
pts⇐Max(pts,
D.wts)

send EX REQ to TM
M.wts⇐D.wts

state⇐Invalid
No msg sent.

RENEW REP
D.rts⇐M.rts
UPGRADE REP
D.rts⇐M.rts
state⇐Excl.

Shared
pts > rts

send SH REQ to TM
M.wts⇐D.wts,
M.pts⇐pts

Exclusive Hit
pts⇐Max(pts,
D.wts)
D.rts⇐Max(pts,
D.rts)

Hit
pts⇐Max(pts,
D.rts+1)
D.wts⇐pts
D.rts⇐pts

state⇐Invalid
send FLUSH REP
to TM
M.wts⇐D.wts,
M.rts⇐D.rts

FLUSH REQ
M.wts⇐D.wts
M.rts⇐D.rts
send FLUSH REP to TM
state⇐Invalid
WB REQ
D.rts⇐Max(D.rts,
D.wts+lease, reqM.rts)
M.wts⇐D.wts
M.rts⇐D.rts
send WB REP to TM
state⇐Shared

TABLE III
STATE TRANSITION IN TIMESTAMP MANAGER.

States SH REQ EX REQ Eviction DRAM REP FLUSH REP or
WB REP

Invalid Load from DRAM Fill in data
D.wts⇐mts
D.rts⇐mts
state⇐Shared

Shared D.rts⇐Max(D.rts,
D.wts+lease, reqM.pts+lease)
if reqM.wts=D.wts
send RENEW REP to requester
M.rts⇐D.rts
else
send SH REP to requester
M.wts⇐D.wts
M.rts⇐D.rts

M.rts⇐D.rts
state⇐Excl.
if reqM.wts=D.wts
send UPGRADE REP to
requester
else
M.wts⇐D.wts
send EX REP to requester

mts⇐Max(mts,
D.rts)
Store data to
DRAM if dirty
state⇐Invalid

Exclusive send WB REQ to the owner
M.rts⇐reqM.pts+lease

send FLUSH REQ to the owner Fill in data
D.wts⇐M.wts,
D.rts⇐M.rts
state⇐Shared

same as in directory coherence; the data is returned to the
timestamp manager (through a FLUSH REP message) and the
cacheline is invalidated.

Flush or Write Back (column 6): Exclusive cachelines in
the private cache may receive flush or write back requests from
the timestamp manager if the cacheline is evicted from the
LLC or accessed by other cores. A flush is handled similarly to
an eviction where the data is returned and the line invalidated.
For a write back request, the data is returned but the line
becomes shared.

2) State Transition in Timestamp Manager (Table III):
Shared Request to Timestamp Manager (column 1): If

the cacheline is invalid in LLC, it must be loaded from DRAM.
If it is exclusively owned by another core, then a write back
request is sent to the owner. When the cacheline is in the
Shared state, it is reserved for a period of logical time by
setting the rts to be the end timestamp of the reservation, and
the line can only be read from wts to rts in the private cache.

If the wts of the request equals the wts of the cacheline

in the timestamp manager, the data in the private cache must
be the same as the data in the LLC. So a RENEW REP is
sent back to the requester without the data payload. Otherwise
SH REP is sent back with the data.

Exclusive Request to Timestamp Manager (column 2):
An exclusive request can be either an exclusive load or
exclusive store. Similar to a directory protocol, if the cacheline
is invalid, it should be loaded from DRAM; if the line is
exclusively owned by another core, a flush request should be
sent to the owner.

If the requested cacheline is in shared state, however, no
invalidation messages need to be sent. The timestamp manager
can immediately give exclusive ownership to the requesting
core which bumps up its local pts to be the current rts + 1 when
it writes to the cacheline, i.e., jumps ahead in time. Other cores
can still read their local copies of the cacheline if they have
not expired. This does not violate sequential consistency since
the read operations in the sharing cores are ordered before the
write operation in physiological time though not necessarily

A
B

Core 0, pts=1 Core 1, pts=0

0 0 0 B

Core 1, pts=0

0 11 0

A 1 1 1

Owner = C0 A
B

Core 0, pts=0 Core 1, pts=0

0 0 0
0 0 0

Core 0, pts=1

A 1 1 1
B 0 11 0

A
B

Core 1, pts=12

Owner = C1

Core 0, pts=1

A 1 1 1
B 0 11 0

(1) A = 1 @ Core 0 (2) load B @ core 0 (3) B = 1 @ core 1

B 12 12 1

A
B

Core 1, pts=12

1 22 1
Owner = C1

Core 0, pts=1

A 1 22 1
B 0 11 0

(4) load A @ core 1

B 12 12 1

A Owner = C0 Owner = C0

A 1 22 1

(0) Initial State

Time Cacheline Format: wts rts data

Fig. 1. An example program running with Tardis (lease= 10). Cachelines in private caches and LLC are shown. The cacheline format is at the top of the
figure.

TABLE IV
NETWORK MESSAGES. THE CHECK MARKS INDICATE WHAT

COMPONENTS THE MESSAGE CONTAINS.

Message Type pts rts wts data

SH REQ
√ √

EX REQ
√

FLUSH REQ
WB REQ

√

SH REP
√ √ √

EX REP
√ √ √

UPGRADE REP
√

RENEW REP
√

FLUSH REP
√ √ √

WB REP
√ √ √

DRAM ST REQ
√

DRAM LD REQ
DRAM LD REP

√

in physical time. If the cacheline expires in the sharing cores,
they will send requests to renew the line at which point they
get the latest version of the data.

If the wts of the request equals the wts of the cacheline
in the timestamp manager, the data is not returned and an
UPGRADE REP is sent to the requester.

Evictions (column 3): Evicting a cacheline in exclusive
state is the same as in directory protocols, i.e., a flush
request is sent to the owner before the line is invalidated. For
shared cachelines, however, no invalidation messages are sent.
Sharing cores can still read their local copies until they expire
– this does not violate timestamp ordering.

DRAM (column 3, 4): Tardis only stores timestamps
on chip but not in DRAM. The memory timestamp (mts) is
used to maintain coherence for DRAM data. mts is stored per
timestamp manager. It indicates the maximal read timestamp
of all the cachelines mapped to this timestamp manager but
evicted to DRAM. For each cacheline evicted from the LLC,
mts is updated to be Max(rts,mts). When a cacheline is
loaded from DRAM, both its wts and rts are assigned to be
mts. This guarantees that accesses to previously cached data
with the same address are ordered before the accesses to the
cacheline just loaded from DRAM. This takes care of the case
when a cacheline is evicted from the LLC but is still cached
in some core’s private cache. Note that multiple mts’s can be
stored per timestamp manager for different ranges of cacheline
addresses. In this paper, we only consider a single mts per
timestamp manager for simplicity.

Flush or write back response (column 5): Finally, the
flush response and write back response are handled in the same
way as in directory protocols. Note that when a cacheline is

exclusively owned by a core, only the owner has the latest rts
and wts; the rts and wts in the timestamp manager are invalid
and the bits can be reused to store the ID of the owner core.

3) An Example Program: We use an example to show how
Tardis works with a parallel program. Fig. 1 shows how the
simple program in Listing 1 runs with the Tardis protocol. In
the example, we assume a lease of 10 and that the instructions
from Core 0 are executed before the instructions in Core 1.

Listing 1. Example Program
initially A = B = 0

[Core 0] [Core 1]
A = 1 B = 1
print B print A

Step 1 : The store to A misses in Core 0’s private cache
and an EX REQ is sent to the timestamp manager. The store
operation should happen at pts = Max(pts,A.rts + 1) = 1
and the A.rts and A.wts in the private cache should also be
1. The timestamp manager marks A as exclusively owned by
Core 0.

Step 2 : The load of B misses in Core 0’s private cache.
After Step 1, Core 0’s pts becomes 1. So the reservation end
timestamp should be Max(rts, wts+lease, pts+lease) = 11.

Step 3 : The store to B misses in Core 1’s private cache.
At the timestamp manager, the exclusive ownership of B is
immediately given to Core 1 at pts = rts + 1 = 12. Note that
two different versions of B exist in the private caches of core
0 and core 1 (marked in red circles). In core 0, B = 0 but
is valid when 0 ≤ timestamp ≤ 11; in Core 1, B = 1 and
is only valid when timestamp ≥ 12. This does not violate
sequential consistency since the loads of B at core 0 will be
logically ordered before the loads of B at core 1, even if they
may happen the other way around with respect to the physical
time.

Step 4 : Finally the load of A misses in Core 1’s private
cache. The timestamp manager sends a WB REQ to the owner
(Core 0) which updates its own timestamps and writes back
the data. Both cores will have the same data with the same
range of valid timestamps.

With Tardis on sequential consistency, it is impossible for
the example program above to output 0 for both A and B,
even for out-of-order execution. The reason will be discussed
in Section III-D.

D. Out-of-Order Execution
So far we have assumed in-order cores, i.e., a second

instruction is executed only after the first instruction commits

and updates the pts. For out-of-order cores, a memory instruc-
tion can be executed before previous instructions finish and
thus the current pts is not known. However, with sequential
consistency, all instructions must commit in the program order.
Tardis therefore enforces timestamp order at the commit time.

1) Timestamp Checking: In the re-order buffer (ROB) of an
out-of-order core, instructions commit in order. We slightly
change the meaning of pts to mean the timestamp of the
last committed instruction. For sequential consistency, pts still
increases monotonically. Before committing an instruction, the
timestamps are checked. Specifically, the following cases may
happen for shared and exclusive cachelines, respectively.

A shared cacheline can be accessed by load requests. And
there are two possible cases.

1) pts ≤ rts. The instruction commits. pts⇐Max(wts, pts).
2) pts > rts. The instruction aborts and is restarted with the

latest pts. Re-execution will trigger a renew request.

An exclusive cacheline can be accessed by both load
and store requests. And the accessing instruction can always
commit with pts ⇐ Max(pts,wts) for a load operation and
pts⇐Max(pts, rts + 1) for a store operation.

There are two possible outcomes of a restarted load. If the
cacheline is successfully renewed, the contents of the cacheline
do not change. Otherwise, the load returns a different version
of data and all the depending instructions in the ROB need
to abort and be restarted. This hurts performance and wastes
energy. However, the same flushing operation is also required
for an OoO core on a baseline directory protocol under the
same scenario [17]. If an invalidation happens to a cacheline
after it is executed but before it commits, the load is also
restarted and the ROB flushed. In this case, the renewal failure
in Tardis serves as similar functionality to an invalidation in
directory protocols.

2) Out-of-Order Example: If the example program in Sec-
tion III-C3 runs on an out-of-order core, both loads may be
scheduled before the corresponding stores making the program
print A = B = 0. In this section, we show how this scenario
can be detected by the timestamp checking at commit time and
thus never happens. For the program to output A = B = 0
in Tardis, both loads are executed before the corresponding
stores in the timestamp order.

L(A) <ts S(A), L(B) <ts S(B)

For the instruction sequence to pass the timestamp checking,
we have

S(A) ≤ts L(B), S(B) ≤ts L(A)

Putting them together leads to the following contradiction.

L(A) <ts S(A) ≤ts L(B) <ts S(B) ≤ts L(A)

This means that at least at one core, the timestamp checking
will fail. The load at that core is restarted with the updated
pts. The restarted load will not renew the lease but return the
latest value (i.e., 1). So at least at one core, the output value
is 1 and A = B = 0 can never happen.

E. Avoiding Livelock

Although Tardis strictly follows sequential consistency, it
may generate livelock due to deferred update propagation. In
directory coherence, a write is quickly observed by all the
cores through the invalidation mechanism. In Tardis, however,
a core may still read the old cached data even if another core
has updated it, as long as the cacheline has not expired. In
other words, the update to the locally cached data is deferred.
In the worst case when deferment becomes indefinite, livelock
occurs. For example, if a core spins on a variable which is set
by another core, the pts of the spinning core does not increase
and thus the old data never expires. As a result, the core may
spin forever without observing the updated data.

We propose a very simple solution to handle this livelock
problem. To guarantee forward progress, we only need to make
sure that an update is eventually observed by following loads,
that is, the update becomes globally visible within some finite
physical time. This is achieved by occasionally incrementing
the pts in each core so that the old data in the private cache
eventually expires and the latest update becomes visible. The
self increment can be periodic or based on more intelligent
heuristics. We restrict ourselves to periodic increments in this
paper.

F. Tardis vs. Directory Coherence

In this section, we compare Tardis to the directory coherence
protocol.

1) Protocol Messages: In Table II and Table III, the ad-
vantages and disadvantages of Tardis compared to directory
protocols are shaded in light green and light red, respectively.
Both schemes have similar behavior and performance in the
other state transitions (the white cells).

Invalidation: In a directory protocol, when the direc-
tory receives an exclusive request to a Shared cacheline,
the directory sends invalidations to all the cores sharing the
cacheline and waits for acknowledgements. This usually incurs
significant latency which may hurt performance. In Tardis,
however, no invalidation happens (cf. Section III-C) and the
exclusive ownership can be immediately returned without
waiting. The timestamps guarantee that sequential consistency
is maintained. The elimination of invalidations makes Tardis
much simpler to implement and reason about.

Eviction: In a directory protocol, when a shared cacheline
is evicted from the private cache, a message is sent to the
directory where the sharer information is stored. Similarly,
when a shared cacheline is evicted from the LLC, all the
copies in the private caches should be invalidated. In Tardis,
correctness does not require maintaining sharer information
and thus no such invalidations are required. When a cacheline
is evicted from the LLC, the copies in the private caches can
still exist and be accessed.

Data Renewal: In directory coherence, a load hit only
requires the cacheline to exist in the private cache. In Tardis,
however, a cacheline in the private cache may have expired and
cannot be accessed. In this case, a renew request is sent to the
timestamp manager which incurs extra latency and network

traffic. In Section IV-A, we present techniques to reduce the
overhead of data renewal.

2) Scalability: A key advantage of Tardis over directory
coherence protocols is scalability. Tardis only requires the
storage of timestamps for each cacheline and the owner ID
for each LLC cacheline (O(logN), where N is the number of
cores). In practice, the same hardware bits can be used for both
timestamps and owner ID in the LLC; because when the owner
ID needs to be stored, the cacheline is exclusively owned and
the timestamp manager does not maintain the timestamps.

On the contrary, a canonical directory coherence protocol
maintains the list of cores sharing a cacheline which requires
O(N) storage overhead. Previous works proposed techniques
to improve the scalability of directory protocols by introducing
broadcast or other complexity. They are discussed in Sec-
tion VII-B.

3) Simplicity: Another advantage of Tardis is its conceptual
simplicity and elegance. Tardis is directly derived from the def-
inition of sequential consistency and the timestamps explicitly
express the global memory order. This makes it easier to argue
the correctness of the protocol. Concretely, given that Tardis
does not have to multicast/broadcast invalidations and collect
acknowledgements, the number of transient states in Tardis is
smaller than that of a directory protocol.

IV. OPTIMIZATIONS AND EXTENSIONS

We introduce several optimizations in the Tardis protocol in
this section, which were enabled during our evaluation. The
evaluation of the extensions described here is deferred to future
work.

A. Speculative Execution

As discussed in Section III-F, the main disadvantage of
Tardis compared to directory coherence protocol is the renew
request. In a pathological case, the pts of a core may rapidly in-
crease since some cachelines are frequently read-write shared
by different cores. Meanwhile, the read-only cachelines will
frequently expire and a large number of renew requests are
generated incurring both latency and network traffic. Observe,
however, that most renew requests will successfully extend the
lease and the renew response does not transfer the data. This
significantly reduces the network traffic of renewals. More
important, this means that the data in the expired cacheline
is actually valid and we could have used the value without
stalling the pipeline of the core. Based on this observation, we
propose the use of speculation to hide renew latency. When a
core reads a cacheline which has expired in the private cache,
instead of stalling and waiting for the renew response, the core
reads the current value and continues executing speculatively.
If the renewal fails and the latest cacheline is returned, the
core rolls back by discarding the speculative computation that
depends on the load. The rollback process is almost the same
as a branch misprediction which has already been implemented
in most processors.

For processors that can buffer multiple uncommitted instruc-
tions, successful renewals (which is the common case) do not

hurt performance. Speculation failure does incur performance
overhead since we have to rollback and rerun the instruc-
tions speculatively executed. However, if the same instruction
sequence is executed in a directory protocol, the expired
cacheline should not be in the private cache in the first place;
the update from another core should have already invalidated
this cacheline and a cache miss should happen. As a result,
in both Tardis and directory coherence, the value of the load
should be returned at the same time incurring the same latency
and network traffic. Tardis still has some extra overhead as it
needs to discard the speculated computation, but this overhead
is relatively small.

Speculation successfully hides renew latency in most cases.
The renew messages, however, may still increase the on-chip
network traffic. This is especially problematic if the private
caches have a large number of shared cachelines that all expire
when the pts jumps ahead due to a write or self increment.
This is a fundamental disadvantage of Tardis compared to
directory coherence protocols. According to our evaluations
in Section VI, however, Tardis has good performance and
acceptable network overhead on real benchmarks even with
this disadvantage. We leave solutions to pathologically bad
cases to future work.

B. Timestamp Compression

In Tardis, all the timestamps increase monotonically and
may roll over. One simple solution is to use 64-bit timestamps
which never roll over in practice. This requires 128 extra bits
to be stored per cacheline, which is a significant overhead.
Observe, however, that the higher bits in a timestamp change
infrequently and are usually the same across most of the times-
tamps. We exploit this observation and propose to compress
this redundant information using a base-delta compression
scheme.

In each cache, a base timestamp (bts) stores the common
high bits of wts and rts. In each cacheline, only the delta
timestamps (delta ts) are stored (delta wts = wts − bts and
delta rts = rts − bts). The actual timestamp is the sum of the
bts and the corresponding delta ts. The bts is 64 bits to prevent
rollover; and there is only one bts per cache. The per cacheline
delta ts is much shorter to reduce the storage overhead.

When any delta ts in the cache rolls over, we will rebase
where the local bts is increased and all the delta ts in the cache
are decreased by the same amount, i.e., half of the maximum
delta ts. For simplicity, we assume that the cache does not
serve any request during the rebase operation.

Note that increasing the bts in a cache may end up with
some delta ts being negative. In this case, we just set the
delta ts to 0. This effectively increases the wts and rts in
the cacheline but it does not violate the consistency model.
Consider a shared LLC cacheline or an exclusive private
cacheline – the wts and rts can be safely increased. Increasing
the wts corresponds to writing the same data to the line at
a later logical time, and increasing the rts corresponds to a
hypothetical read at a later logical time. Neither operation
violates the rules of sequential consistency. Similarly, for

a shared cacheline in the private cache, wts can be safely
increased as long as it is smaller than rts. However, rts can
not be increased without coordinating with the timestamp
manager. So if delta rts goes negative in a shared line in a
private cache, we simply invalidate the line from the cache.
The last possible case is an exclusive cacheline in the LLC.
No special operation is required since the timestamp manager
neither has the timestamps nor the data in this case.

The key advantage of this base-delta compression scheme
is that all computation is local to each cache without coordi-
nation between different caches. This makes the scheme very
scalable.

It is possible to extend the base-delta scheme to wts and
rts to further compress the timestamp storage. Specifically,
wts can be treated as the bts and we only need to store the
delta rts = rts−wts which can be even shorter than rts−bts.
We defer an evaluation of this extension to future work.

The scheme discussed here does not compress the times-
tamps over the network and we assume that the network mes-
sages still use 64-bit timestamps. It is possible to reduce this
overhead by extending the base-delta scheme over the network
but this requires coordination amongst multiple caches. We
did not implement this extension in order to keep the basic
protocol simple and straightforward.

C. Private Write

According to Table II, writing to a cacheline in exclusive
state updates both wts and pts to Max(pts, rts+1). If the core
keeps writing to the same address, the pts will keep increasing
causing other cachelines to expire. If the updated cacheline is
completely private to the updating thread, however, there is
actually no need to increase the timestamps in order to achieve
sequential consistency. According to our definition of global
memory order (Definition 1), we can use physical time to order
these operations implicitly without increasing the pts.

Specifically, when a core writes to a cacheline, the modified
bit will be set. For future writes to the same cacheline, if the
bit is set, then the pts, wts and rts are just set to Max(pts, rts).
This means that pts will not increase if the line is repeatedly
written to. The optimization will significantly reduce the rate
at which timestamps increase if most of the accesses from a
core are to thread private data.

This optimization does not violate sequential consistency
because these writes with the same timestamp are ordered
correctly in the physical time order and thus they are properly
ordered in the global memory order.

D. Extension: Exclusive and Owned States

In this paper, MSI has been used as the baseline directory
coherence protocol. MSI is the simplest protocol and optimized
ones require E (Exclusive) and/or O (Owned) states. The
resulting protocols are MESI, MOSI and MOESI. In this
section, we show that Tardis is compatible with both E and O
states.

Similar to the M state, the E state allows the cacheline to
be exclusively cached upon a SH REQ if no other sharers

exist. The core having the cacheline can update the data
silently without notifying the directory. In the directory, M
or E cachelines are handled in the same way; an invalidation
is sent to the core exclusively caching the line if another core
requests it. In Tardis, we can support the E state by always
returning a cacheline in exclusive state if no other cores seem
to be caching it. Note that even if other cores are sharing
the line, it can still be returned to the requester in exclusive
state. The argument for this is similar to the write after shared
argument in Section III-C2; i.e., the lines shared and the line
exclusively cached have different ranges of valid timestamps.
However, this may not be best for performance. Therefore,
we would like to return a cacheline in exclusive state only if
the cacheline seems to be private. We can add an extra bit
for each cacheline indicating whether any core has accessed
it since it was put into the LLC. And if the bit is unset, the
requesting core gets the line in exclusive state, else in shared
state. E states will reduce the number of renewals required
since cachelines in E state will not expire.

The O state allows a cacheline to be dirty but shared in the
private caches. Upon receiving the WB REQ request, instead
of writing the data back to the LLC or DRAM, the core can
change the cacheline to O state and directly forward the data
to the requesting core. In Tardis, the O state can also be
supported by keeping track of the owner at the timestamp
manager. SH REQs to the timestamp manager are forwarded
to the owner which does cache-to-cache data transfers. Similar
to the basic Tardis protocol, when the owner is evicted from
the private cache, the cacheline is written back to the LLC or
the DRAM and its state in the timestamp manager is changed
to Shared or Invalid.

E. Extension: Remote Word Access

Traditionally, a core loads a cacheline into the private cache
before accessing the data. But it is also possible to access the
data remotely without caching it. Remote word access has
been studied in the context of locality-aware directory coher-
ence [18]. Remote atomic operation has been implemented
on Tilera processors [19], [20]. Allowing data accesses or
computations to happen remotely can reduce the coherence
messages and thus improve performance [21].

However, it is not easy to maintain the performance gain of
these remote operations with directory coherence under TSO
or sequential consistency. For a remote load operation (which
might be part of a remote atomic operation), it is not very easy
to determine its global memory order since it is hard to know
the physical time when the load operation actually happens. As
a result, integration of remote access with directory coherence
is possible but fairly involved [22].

Consider the example program in Listing 1 where all
memory requests are remote accesses. If all requests are issued
simultaneously, then both loads may be executed before both
stores and the program outputs A = B = 0. It is not easy
to detect this violation in a directory protocol since we do
not know when each memory operation happens. As a result,

INV(A) Resp

A
B

0

0

S

state
data

Core 0 Core 1
L(B) Req nop

A
B

A
B

L(B) Resp

B 0S
S(B) Req

A
B

B 0S
S(A) Req

A
B

S(A) resp
S(B) ReqFL(B) Req FL(B) Resp S(B) Req

A 1E

A
B

L(A) hit S(B) Resp

A 1E

B 2E

A
B

L(B) req

A 1E

B 2E
L(A) Req

A
B

A 1E

B 2E

L(A) ReqL(B) Req
WB(B) ReqWB(A) Req

A
B

A 1S

B 2S

L(A) ReqL(B) Req
WB(A) Resp WB(B) Resp

A
B

A 1S

B 2S

L(A) RespL(B) Resp

B 2S

A 1S

A
B

A 1S

B 2SB 2S

A 1S

S(A) req S(B) Req

A
B

A 1S

B 2SB 2S

A 1S

INV(A) Req
S(B) ReqS(A) Req

INV(B) Req

A
B

A 1S

B 2S

S(B) ReqS(A) Req

INV(B) Resp

A 3E

B 4E

UP(B) RespUP(A) Resp

A
B

S

sharer/owner

0S

0S

0S

0S 0

0S

0S 0

E

0S

0n/a

n/a

n/a

n/a

n/a n/a

n/a

n/a

E

n/aE

0

1

n/a E

n/aE

0

1

n/a E

n/aE

0

1

n/a S

2S

0

1

1 S

2S

0,1

0,1

1

S

2S

0,1

0,1

1 S

2S

0,1

0,1

1 S

2S

0

1

1 E
n/aE

0

1

n/a

Initial State Cycle 1 Cycle 2 Cycle 3 Cycle 4

Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Cycle 10 Cycle 11 Cycle 12 Cycle 13

Fig. 2. Execution of the case study program with a directory coherence protocol.

A
B

pts=0 pts=0

0 00

state wts data

S

0 00S

rts

A
B

pts=0 pts=0

0 00S

0 00S

Core 0 Core 1
L(B) Req nop

A
B

pts=0 pts=0

0 00S

0 010S

L(B) Resp S(B) Req

B 0 010S

A
B

pts=0 pts=11

0 00S

owner=1E

S(A) Req S(B) Resp

B 0 010S B 11 211E

A
B

pts=1 pts=11

owner=0E

owner=1E

L(A) Req
B 0 010S B 11 211E

S(A) resp

A 1 11E

A
B

pts=1 pts=11

owner=0E

owner=1E

L(A) Req

B 0 010S B 11 211E
L(A) hit

A 1 121S

WB(A) Req A
B

pts=1 pts=11

owner=1E

L(A) Req

B 0 010S B 11 211E
L(B) hit

A 1 121S

WB(A) Resp 1 121S A
B

pts=1 pts=11

owner=1E

B 0 010S B 11 211E
S(A) Req

A 1 121S

1 121S

L(A) Resp

A 1 121S

A
B

pts=22 pts=11

owner=1E

B 0 010S B 11 411E

A 22 322E

S(B) Hit

A 1 121S

UP(A) Resp

owner=0E

Initial State Cycle 1 Cycle 2 Cycle 3 Cycle 4

Cycle 5 Cycle 6 Cycle 7 Cycle 8

Fig. 3. Execution of the case study program with Tardis protocol.

either the remote accesses are sequentially issued or additional
mechanisms need to be added [22].

In Tardis, however, memory operations are ordered through
timestamps. It is very easy to determine the memory order
for a remote access since it is simply the timestamp of the
operation. In Tardis, multiple remote accesses can be issued
in parallel and the order can be checked after they return. If
any load violates the memory order, it can be reissued with the
updated timestamp information (similar to timestamp checking
in an out-of-order core).

F. Other Extensions

Atomic operations in Tardis can be implemented the same
way as in directory protocols. Tardis can be extended to
relaxed consistency models such as Total Store Order (TSO)
implemented in Intel x86 processors [23]. Tardis can work
with both private Last Level Cache (LLC) or shared LLC.

V. CASE STUDY

In this section, we use an example parallel program as a
case study to compare Tardis with an MSI directory protocol.

A. Example
Listing 2 shows the parallel program we use for the case

study. In this program, the two cores issue loads and stores to
addresses A and B. The nop in Core 1 means that the core
spends that cycle without accessing the memory subsystem.
The program we use here is a contrived example to highlight
the difference between Tardis and a directory coherence pro-
tocol.

Listing 2. The case study parallel program
[Core 0] [Core 1]
L(B) nop
A = 1 B = 2
L(A) L(A)
L(B) B = 4
A = 3

Fig. 2 shows the execution of the program on a directory
coherence protocol and Fig. 3 shows how it is executed on
Tardis. A cacheline is either in shared (S) or exclusive (E)
state. For Tardis, a static lease of 10 is used. Initially, all private
caches are empty and all timestamps are 0. We will explain
step by step how Tardis executes the program and highlight
the differences between Tardis and the directory protocol.

Cycle 1 and 2: Core 0 sends a shared request to address B in
cycle 1, and receives the response in cycle 2. The cacheline is
reserved till timestamp 10. Core 1 sends an exclusive request
to address B at cycle 2. In these two cycles, both the directory
protocol and Tardis have the same network messages sent and
received.

Cycle 3: In Tardis, the exclusive request from core 1 sees
that address B is shared till timestamp 10. The exclusive
ownership is instantly returned and the store is performed at
timestamp 11. In the directory protocol, however, an invali-
dation must be sent to Core 0 to invalidate address B. As a
result, the exclusive response is delayed to cycle 5. At this
cycle, core 0 sends an exclusive request to address A.

Cycle 4: In both Tardis and the directory protocol, address
A’s exclusive ownership can be instantly returned to core 0
since no core is sharing it. The pts of core 0 becomes 1
after performing the store. Core 1 performs a shared request
to address A which needs to get the latest data from core 0
through write back. So the shared response returns in cycle 7.
The same L(A) instruction in the directory protocol incurs the
same latency and network traffic from cycle 6 to 9.

Cycle 5 and 6: In cycle 5, the L(A) instruction in core 0 hits
in the private cache and thus no request is sent. Also in core
0, the write back request increases address A’s rts to 21 since
the requester’s (core 1) pts is 11 and the lease is 10. In cycle
6, the L(B) instruction in core 0 hits in the private cache since
the pts is 1 and the cached address B is valid till timestamp
10. In the directory protocol, the same L(B) instruction is also
issued at cycle 6. However, it misses in the private cache since
the cacheline was already invalidated by core 1 at cycle 4. So
a write back request to core 1 needs to be sent and the shared
response returns at cycle 9.

Cycle 7 and 8: At cycle 7, core 0 sends an exclusive
request to address A and core 1 gets the shared response to
address A. At cycle 8, the exclusive ownership of address
A is instantly returned to core 0 and the store happens at
timestamp 22 (because addresss A has been reserved for
reading until timestamp 21). In the directory protocol, the same
S(A) instruction happens at cycle 10 and the shared copy in
core 1 must be invalidated before exclusive ownership is given.
Therefore, the exclusive response is returned at cycle 13. Also
in cycle 8 in Tardis, core 1 stores to address B. The store hits
in the private cache. In the directory protocol, the same store
instruction happens at cycle 10. Since core 0 has a shared copy
of address B, an invalidation must be sent and the exclusive
response is returned at cycle 13.

B. Discussion

In this case study, the cycle saving of Tardis mainly comes
from the removal of invalidations. While a directory protocol
requires that only one version of an address exist at any point
in time across all caches, Tardis allows multiple versions to
coexist as long as they are accessed at different timestamps.

The pts in each core shows how Tardis orders the memory
operations. At cycle 3, core 1’s pts jumps to 11. Later at cycle
4, core 0’s pts jumps to 1. Although the operation from core 0
happens later than the operation from core 1 in physical time,
it is the opposite in global memory and physiological time
order. Later at cycle 8, core 0’s pts jumps to 22 and becomes
bigger than core 1’s pts.

In Tardis, a load may still return a old version of an address
after it is updated by a different core, as long as sequential
consistency is not violated. As a result, Tardis may produce
a different instruction interleaving than a directory protocol.
Listings 3 and 4 show the instruction interleaving of the
directory protocol and Tardis, respectively, on our example
program.

Listing 3. Instruction interleaving
in directory protocol

[Core 0] [Core 1]

L(B)

A = 1 B = 2

L(A) L(A)

L(B) B = 4

A = 3

WAR

RA
W

WAR WA
R

Listing 4. Instruction interleaving
in Tardis

[Core 0] [Core 1]

L(B)

A = 1 B = 2

L(A) L(A)

L(B) B = 4

A = 3

WAR

WA
R

WA
R

In the directory protocol, the second L(B) instruction from
core 0 is between the two stores to address B from core 1
in the global memory order. In Tardis, however, the same
L(B) instruction is ordered before both stores. Such reordering
is possible because Tardis enforces sequential consistency in
physiological time order which can be different from physical
time order.

VI. EVALUATION

We now evaluate the performance of Tardis in the context
of multi-core processors.

A. Methodology

We use the Graphite [24] multi-core simulator for our
experiments. The default hardware parameters are listed in
Table V. The simplest directory protocol MSI is used as the
baseline in this section.3 This baseline keeps the full sharer
information for each cacheline and thus incurs non-scalable
storage overhead. To model a more scalable protocol, we use
the Ackwise [11] protocol which keeps a limited number of

3Other states, e.g., O (Owner) and E (Exclusive) can be added to an MSI
protocol to improve performance; such states can be added to Tardis as well
to improve performance as described in Section IV-D.

TABLE V
SYSTEM CONFIGURATION.

System Configuration
Number of Cores N = 64 @ 1 GHz
Core Model In-order, Single-issue

Memory Subsystem
Cacheline Size 64 bytes
L1 I Cache 16 KB, 4-way
L1 D Cache 32 KB, 4-way
Shared L2 Cache per Core 256 KB, 8-way
DRAM Bandwidth 8 MCs, 10 GB/s per MC
DRAM Latency 100 ns

2-D Mesh with XY Routing
Hop Latency 2 cycles (1-router, 1-link)
Flit Width 128 bits

Tardis Parameters
Lease 10
Self Increment Period 100 cache accesses
Delta Timestamp Size 20 bits
L1 Rebase Overhead 128 ns
L2 Rebase Overhead 1024 ns

FMM
BARNES

CHOLESKY

VOLREND
OCEAN-C

OCEAN-NC FFT
RADIX LU-C

LU-NC

WATER-NSQ

WATER-SP
AVG

0.7

0.8

0.9

1.0

1.1

No
rm

. T
hr

pu
t.

0

1

2

3

4

No
rm

. T
ra

ffi
c

Ackwise TARDIS w/o Speculation TARDIS

Fig. 4. Performance of Tardis at 64 cores. Both throughput (bars) and network
traffic (dots) are normalized to baseline MSI.

sharers and broadcasts invalidations to all cores when the
number of sharers exceeds the limit.

In our simulation mode, Graphite includes functional cor-
rectness checks, where the simulation fails, e.g., if wrong
values are read. All the benchmarks we evaluated in this
section completed which corresponds to a level of validation
of Tardis and its Graphite implementation. Formal verification
of Tardis can be found in [13].

Splash-2 [25] benchmarks are used for performance evalu-
ation. For each experiment, we report both the throughput (in
bars) and network traffic (in red dots).

1) Tardis Configurations: Table V also shows the default
Tardis configuration. For load requests, a static lease of 10
has been chosen. The pts at each core self increments by
one for every 100 cache accesses (self increment period). The
Base-delta compression scheme is applied with 20-bit delta
timestamp size and 64-bit base timestamp size. When the
timestamp rolls over, the rebase overhead is 128 ns in L1
and 1024 ns in an LLC slice.

Static lease and self increment period are chosen in this
paper for simplicity – both parameters can be dynamically
changed for better performance based on the data access
pattern. Exploration of such techniques is left for future work.

B. Main Results

1) Throughput: Fig. 4 shows the throughput of Ackwise
and Tardis on 64 in-order cores, normalized to baseline MSI.
For Tardis, we also show the performance with speculation
turned off. For most benchmarks, Tardis achieves similar
performance compared to the directory baselines. On average,
the performance of Tardis is within 0.5% of the baseline MSI
and Ackwise.

FMM
BARNES

CHOLESKY

VOLREND
OCEAN-C

OCEAN-NC FFT
RADIX LU-C

LU-NC

WATER-NSQ

WATER-SP
AVG

10-6
10-5
10-4
10-3
10-2
10-1
100 Renew Rate Misspeculation Rate

Fig. 5. Renew and misspeculation rate of Tardis at 64 cores. Y-axis is in
log scale.

If the speculation is turned off, Tardis’s performance be-
comes 7% worse than MSI. In this case, the core stalls while
waiting for the renewal, in contrast to the default Tardis where
the core reads the value speculatively and continues execu-
tion. Since most renewals are successful, speculation hides a
significant amount of latency and makes a big difference in
performance.

2) Network Traffic: The red dots in Fig. 4 show the network
traffic of Ackwise and Tardis normalized to the baseline MSI.
On average, Tardis with and without speculation incurs 19.4%
and 21.2% more network traffic. Most of this traffic comes
from renewals. Fig. 5 shows the percentage of renew requests
and missspeculations out of all LLC accesses. Note that the
y-axis is in log scale.

In benchmarks with lots of synchronizations (e.g.,
CHOLESKY, VOLREND), cachelines in the private cache fre-
quently expire generating a large number of renewals. In
VOLREND, for example, 65.8% of LLC requests are renew
requests which is 2× of normal LLC requests. As discussed
in Section III-F, a successful renewal only requires a single flit
message which is cheaper than a normal LLC access. So the
relative network traffic overhead is small (36.9% in VOLREND
compared to baseline MSI).

An outlier is WATER-SP, where Tardis increases the net-
work traffic by 3×. This benchmark has very low L1 miss
rate and thus very low network utilization. Even though Tardis
incurs 3× more traffic, the absolute amount of traffic is still
very small.

In many other benchmarks (e.g., BARNES, WATER-NSQ,
etc.), Tardis has less network traffic than baseline MSI. The
traffic reduction comes from the elimination of invalidation
and cache eviction traffic.

From Fig. 5, we see that the misspeculation rate for Tardis
is very low, less than 1% renewals failed on average. A
speculative load is considered a miss if the renew fails and a
new version of data is returned. Having a low misspeculation
rate indicates that the vast majority of renewals are successful.

3) Timestamp Discussion: Table VI shows how fast the pts
in a core increases, in terms of the average number of cycles
to increase the pts by 1. Table VI also shows the percentage
of pts increasing caused by self increment (cf. Section III-E).

Over all the benchmarks, pts is incremented by 1 every 263
cycles. For a delta timestamp size of 20 bits, it rolls over
every 0.28 seconds. In comparison, the rebase overhead (128
ns in L1 and 1 µs in L2) becomes negligible. This result also
indicates that timestamps in Tardis increase very slowly. This
is because they can only be increased from accessing shared
read/write cachelines or self increment.

On average, 26.6% of timestamp increasing is caused by self

TABLE VI
TIMESTAMP STATISTICS

Benchmarks Ts. Incr. Rate Self Incr. Perc.
(cycle / timestamp)

FMM 322 22.5%
BARNES 155 33.7%

CHOLESKY 146 35.6%
VOLREND 121 23.6%
OCEAN-C 81 7.0%

OCEAN-NC 85 5.6%
FFT 699 88.5%

RADIX 639 59.3%
LU-C 422 1.4%

LU-NC 61 0.1%
WATER-NSQ 73 12.8%
WATER-SP 363 29.1%

AVG 263 26.6%

FMM
BARNES

CHOLESKY

VOLREND
OCEAN-C

OCEAN-NC FFT
RADIX LU-C

LU-NC

WATER-NSQ

WATER-SP
AVG

0.7

0.8

0.9

1.0

1.1

No
rm

. T
hr

pu
t.

0

1

2

3

4

No
rm

. T
ra

ffi
c

Ackwise TARDIS w/o Speculation TARDIS

Fig. 6. Performance of Tardis on 64 out-of-order cores.

increment and the percentage can be as high as 88.5% (FFT).
This has negative impact on performance and network traffic
since unnecessarily increasing timestamps causes increased
expiration and renewals. Better livelock avoidance algorithms
can resolve this issue; we leave this for future work.

C. Sensitivity Study

1) In-order vs. Out-of-Order Core: Fig. 6 shows the per-
formance of Tardis on out-of-order cores. Compared to in-
order cores (Fig. 4), the performance impact of speculation is
much smaller. When a renew request is outstanding, an out-of-
order core is able to execute independent instructions even if it
does not speculate. As a result, the renewal’s latency can still
be hidden. On average, Tardis with and without speculation
is 0.2% and 1.2% within the performance of baseline MSI
respectively.

The normalized traffic of Tardis on out-of-order cores is
not much different from in-order cores. This is because both
core models follow sequential consistency and the timestamps
assigned to the memory operations are virtually identical. As
a result, the same amount of renewals is generated.

2) Self Increment Period: As discussed in Section III-E, we
periodically increment the pts at each core to avoid livelock.
The self increment period specifies the number of data cache
accesses before self incrementing the pts by one. If the
period is too small, the pts increases too fast causing more
expirations; more renewals will be generated which increases
network traffic and hurts performance. Fast growing pts’s also
overflow the wts and rts more frequently (cf. Section VI-C4)
which also hurts performance. If the period is too large,
however, an update at a remote core may not be observed
locally quickly enough, which degrades performance.

Fig. 7 shows the performance of Tardis with different
self increment period. The performance of most benchmarks
is not sensitive to this parameter. In FMM and CHOLESKY,
performance goes down when the period is 1000. This is

FMM
BARNES

CHOLESKY

VOLREND
OCEAN-C

OCEAN-NC FFT
RADIX LU-C

LU-NC

WATER-NSQ

WATER-SP
AVG

0.4
0.6
0.8
1.0
1.2
1.4

No
rm

. T
hr

pu
t.

0
1
2
3
4
5

No
rm

. T
ra

ffi
c

period=10 period=100 period=1000

Fig. 7. Performance of Tardis with different self increment period.

FMM
BARNES

CHOLESKY

VOLREND
OCEAN-C

OCEAN-NC FFT
RADIX LU-C

LU-NC

WATER-NSQ

WATER-SP
AVG

0.7

0.8

0.9

1.0

1.1

No
rm

. T
hr

pu
t.

0

1

2

3

4

No
rm

. T
ra

ffi
c

Ackwise Tardis period=100

(a) 16 Cores

FMM
BARNES

CHOLESKY

VOLREND
OCEAN-C

OCEAN-NC FFT
RADIX LU-C

LU-NC

WATER-NSQ

WATER-SP
AVG

0.7
0.8
0.9
1.0
1.1
1.2

No
rm

. T
hr

pu
t.

0
1
2
3
4
5

No
rm

. T
ra

ffi
c

Ackwise Tardis period=10 Tardis period=100

(b) 256 Cores
Fig. 8. Performance of Tardis on 16 and 256 cores.

because these two benchmarks heavily use spinning (busy
waiting) to synchronize between threads. If the period is too
large, the core spends a long time spinning on the stale value
in the private cache and cannot make forward progress.

Having a larger self increment period always reduces the
total network traffic because of fewer renewals. Given the
same performance, a larger period should be preferred due
to network traffic reduction. Our default self increment period
is 100 which has reasonable performance and network traffic.

Ideally, the self increment period should dynamically adjust
to the program’s behavior. For example, the period can be
smaller during spinning but larger for the rest of the program
where there is no need to synchronize. Exploration of such
schemes is deferred to future work.

3) Scalability: Fig. 8 shows the performance of Tardis on
16 and 256 cores respectively.

At 16 cores, the same configurations are used as at 64 cores.
On average, the throughput is within 0.2% of baseline MSI and
the network traffic is 22.4% more than the baseline MSI.

At 256 cores, two Tardis configurations are shown with
self increment period 10 and 100. For most benchmarks,
both Tardis configurations achieve similar performance. For
FMM, CHOLESKY, however, performance is worse when the
period is set to 100. As discussed in Section VI-C2, both
benchmarks heavily rely on spinning for synchronization. At
256 cores, spinning becomes the system bottleneck and period
= 100 significantly delays the spinning core from observing
the updated variable. It is generally considered bad practice to
heavily use spinning at high core count.

On average, Tardis with period = 100 performs 3.4% worse
than MSI with 19.9% more network traffic. Tardis with period
= 10 makes the performance 0.6% within baseline MSI with
46.7% traffic overhead.

Scalable storage is one advantage of Tardis over directory
protocols. Table VII shows the per cacheline storage overhead
in the LLC for two directory baselines and Tardis. Full-map
MSI requires one bit for each core in the system, which is
O(N) bits per cacheline. Both Ackwise and Tardis can achieve

TABLE VII
STORAGE OVERHEAD OF DIFFERENT COHERENCE PROTOCOLS (BITS PER

LLC CACHELINE) WITH 4 SHARERS FOR ACKWISE AT 16/64 AND 8
SHARERS AT 256 CORES.

cores (N) full-map MSI Ackwise Tardis

16 16 bits 16 bits 40 bits
64 64 bits 24 bits 40 bits

256 256 bits 64 bits 40 bits

FMM
BARNES

CHOLESKY

VOLREND
OCEAN-C

OCEAN-NC FFT
RADIX LU-C

LU-NC

WATER-NSQ

WATER-SP
AVG

0.90

0.95

1.00

1.05

1.10

No
rm

. T
hr

pu
t.

0

1

2

3

4

No
rm

. T
ra

ffi
c

14 bits 18 bits 20 bits 64 bits

Fig. 9. Performance of Tardis with different timestamp size.

O(logN) storage but Ackwise requires broadcasting support
and is thus more complicated to implement.

Different from directory protocols, Tardis also requires
timestamp storage for each L1 cacheline. But the per cacheline
storage overhead does not increase with the number of cores.

4) Timestamp Size: Fig. 9 shows Tardis’s performance with
different timestamp sizes. All numbers are normalized to the
baseline MSI. As discussed in Section IV-B, short timestamps
roll over more frequently, which degrades performance due
to the rebase overhead. According to the results, at 64 cores,
20-bit timestamps can achieve almost the same performance
as 64-bit timestamps (which never roll over in practice).

5) Lease: Finally, we sweep the lease in Fig. 10. Similar to
the self increment period, the lease controls when a cacheline
expires in the L1 cache. Roughly speaking, a large lease is
equivalent to a long self increment period. For benchmarks
using a lot of spinning, performance degrades since an update
is deferred longer. The network traffic also goes down as the
lease increases. For most benchmarks, however, performance
is not sensitive to the choice of lease. However, we believe
that intelligently choosing leases can appreciably improve
performance; for example, data that is read-only can be given
an infinite lease and will never require renewal. We defer the
exploration of intelligent leasing to future work.

VII. RELATED WORK

We discuss related works on timestamp based coherence
protocols (Section VII-A) and scalable directory coherence
protocols (Section VII-B).

A. Timestamp based coherence

To the best of our knowledge, none of the existing times-
tamp based coherence protocols is as simple as Tardis and
achieves the same level of performance as Tardis. In all of
these protocols, the timestamp notion is either tightly coupled
with physical time, or these protocols rely on broadcast or
snooping for invalidation.

Using timestamps for coherence has been explored in both
software [26] and hardware [27]. TSO-CC [28] proposed a
hardware coherence protocol based on timestamps. However,
it only works for the TSO consistency model, requires broad-
casting support and frequently self-invalidates data in private
caches. The protocol is also more complex than Tardis.

FMM
BARNES

CHOLESKY

VOLREND
OCEAN-C

OCEAN-NC FFT
RADIX LU-C

LU-NC

WATER-NSQ

WATER-SP
AVG

0.90

0.95

1.00

1.05

1.10

No
rm

. T
hr

pu
t.

0

1

2

3

4

No
rm

. T
ra

ffi
c

lease=5 lease=10 lease=20

Fig. 10. Performance of Tardis with different lease.

In the literature we studied, Library Cache Coherence (LCC)
[9] is the closest algorithm to Tardis. Different from Tardis,
LCC uses the physical time as timestamps and requires a glob-
ally synchronized clock. LCC has bad performance because a
write to a shared variable in LCC needs to wait for all the
shared copies to expire which may take a long time. This
is much more expensive than Tardis which only updates a
counter without any waiting. Singh et al. used a variant of LCC
on GPUs with performance optimizations [10]. However, the
algorithm only works efficiently for release consistency and
not sequential consistency.

Timestamps have also been used for verifying directory
coherence protocols [29], for ordering network messages in
a snoopy coherence protocol [30], and to build write-through
coherence protocols [31], [32]. None of these works built
coherence protocols purely based on timestamps. Similar to
our work, Martin et. al [30] give a scheme where processor and
memory nodes process coherence transactions in the same log-
ical order, but not necessarily in the same physical time order.
The network assigns each transaction a logical timestamp and
then broadcasts it to all processor and memory nodes without
regard for order, and the network is required to meet logical
time deadlines. Tardis requires neither broadcast nor network
guarantees. The protocol of [31] requires maintaining absolute
time across the different processors, and the protocol of [32]
assumes isotach networks [33], where all messages travel the
same logical distance in the same logical time.

B. Scalable directory coherence

Some previous works have proposed techniques to make
directory coherence more scalable. Limited directory schemes
(e.g., [34]) only track a small number of sharers and rely
on broadcasting [11] or invalidations when the number of
sharers exceeds a threshold. Although only O(logN) storage
is required per cacheline, these schemes incur performance
overhead and/or require broadcasting which is not a scalable
mechanism.

Other schemes have proposed to store the sharer information
in a chain [35] or hierarchical structures [36]. Hierarchical
directories reduce the storage overhead by storing the sharer
information as a k-level structure with logkN bits at each
level. The protocol needs to access multiple places for each
directory access and thus is more complex and harder to verify.

Previous works have also proposed the use of coarse
vectors [37], sparse directory [37], software support [38] or
disciplined programs [39] for scalable coherence. Recently,
some cache coherence protocols have been proposed for 1000-
core processors [40], [12]. These schemes are directory based
and require complex hardware/software support. In contrast,
Tardis can achieve similar performance with a very simple

protocol.

VIII. CONCLUSION

We proposed a new memory coherence protocol, Tardis,
in this paper. Tardis is directly derived from the sequential
consistency model. Compared to popular directory coherence
protocols, Tardis is simpler to implement and validate, and
has better scalability. Tardis matches the baseline directory
protocol in performance in the benchmarks we evaluated.
For these reasons, we believe Tardis to be a competitive
coherence protocol for future massive-core and large-scale
shared memory systems.

REFERENCES

[1] L. M. Censier and P. Feautrier, “A new solution to coherence problems
in multicache systems,” Computers, IEEE Transactions on, vol. 100,
no. 12, pp. 1112–1118, 1978.

[2] C. Tang, “Cache system design in the tightly coupled multiprocessor
system,” in Proceedings of the June 7-10, 1976, national computer
conference and exposition. ACM, 1976, pp. 749–753.

[3] “Tile-gx family of multicore processors,” http://www.tilera.com.
[4] Intel, “Intel Xeon Phi Coprocessor System Software Developers Guide,”

2014.
[5] D. Ziakas, A. Baum, R. A. Maddox, and R. J. Safranek, “Intel R©

quickpath interconnect architectural features supporting scalable system
architectures,” in High Performance Interconnects (HOTI), 2010 IEEE
18th Annual Symposium on. IEEE, 2010, pp. 1–6.

[6] D. Anderson and J. Trodden, Hypertransport system architecture.
Addison-Wesley Professional, 2003.

[7] K. Li and P. Hudak, “Memory coherence in shared virtual memory
systems,” ACM Transactions on Computer Systems (TOCS), vol. 7, no. 4,
pp. 321–359, 1989.

[8] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel, “Treadmarks:
Distributed shared memory on standard workstations and operating
systems,” in USENIX Winter, vol. 1994, 1994.

[9] M. Lis, K. S. Shim, M. H. Cho, and S. Devadas, “Memory coherence
in the age of multicores,” in Computer Design (ICCD), 2011 IEEE 29th
International Conference on. IEEE, 2011, pp. 1–8.

[10] I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and T. M. Aamodt,
“Cache Coherence for GPU Architectures,” in Proceedings of the 2013
IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA), 2013, pp. 578–590.

[11] G. Kurian, J. Miller, J. Psota, J. Eastep, J. Liu, J. Michel, L. Kimerling,
and A. Agarwal, “ATAC: A 1000-Core Cache-Coherent Processor with
On-Chip Optical Network,” in International Conference on Parallel
Architectures and Compilation Techniques, 2010.

[12] D. Sanchez and C. Kozyrakis, “SCD: A scalable coherence directory
with flexible sharer set encoding,” in High Performance Computer
Architecture (HPCA), 2012 IEEE 18th International Symposium on.
IEEE, 2012, pp. 1–12.

[13] X. Yu, M. Vijayaraghavan, and S. Devadas, “A Proof of Correctness
for the Tardis Cache Coherence Protocol,” CoRR, vol. abs/1505.06459,
May 2015. [Online]. Available: http://arxiv.org/abs/1505.06459

[14] L. Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess programs,” Computers, IEEE Transactions on,
vol. 100, no. 9, pp. 690–691, 1979.

[15] D. L. Weaver and T. Germond, “The SPARC Architecture Manual,”
1994.

[16] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[17] K. Gharachorloo, A. Gupta, and J. Hennessy, “Two Techniques to
Enhance the Performance of Memory Consistency Models,” in In Pro-
ceedings of the 1991 International Conference on Parallel Processing,
1991, pp. 355–364.

[18] G. Kurian, O. Khan, and S. Devadas, “The locality-aware adaptive cache
coherence protocol,” in Proceedings of the 40th Annual International
Symposium on Computer Architecture. ACM, 2013, pp. 523–534.

[19] T. David, R. Guerraoui, and V. Trigonakis, “Everything you always
wanted to know about synchronization but were afraid to ask,” in Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles. ACM, 2013, pp. 33–48.

[20] H. Hoffmann, D. Wentzlaff, and A. Agarwal, “Remote store program-
ming,” in High Performance Embedded Architectures and Compilers.
Springer, 2010, pp. 3–17.

[21] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker, “Staring
into the Abyss: An Evaluation of Concurrency Control with One
Thousand Cores,” Proceedings of the VLDB Endowment, vol. 8, no. 3,
pp. 209–220, 2014.

[22] G. Kurian, “Locality-aware Cache Hierarchy Management for Multicore
Processors,” Ph.D. dissertation, Massachusetts Institute of Technology,
2014.

[23] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen, “x86-
TSO: a rigorous and usable programmer’s model for x86 multiproces-
sors,” Communications of the ACM, vol. 53, no. 7, pp. 89–97, 2010.

[24] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal, “Graphite: A Distributed Par-
allel Simulator for Multicores,” in International Symposium on High-
Performance Computer Architecture, 2010.

[25] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Consider-
ations,” in International Symposium on Computer Architecture, 1995.

[26] S. L. Min and J.-L. Baer, “A timestamp-based cache coherence scheme.”
Citeseer, 1989.

[27] S. Nandy and R. Narayan, “An Incessantly Coherent Cache Scheme for
Shared Memory Multithreaded Systems.” Citeseer, 1994.

[28] M. Elver and V. Nagarajan, “TSO-CC: Consistency directed cache
coherence for TSO,” in International Symposium on High Performance
Computer Architecture, 2014, pp. 165–176.

[29] M. Plakal, D. J. Sorin, A. E. Condon, and M. D. Hill, “Lamport clocks:
verifying a directory cache-coherence protocol,” in Proceedings of the
tenth annual ACM symposium on Parallel algorithms and architectures.
ACM, 1998, pp. 67–76.

[30] M. M. Martin, D. J. Sorin, A. Ailamaki, A. R. Alameldeen, R. M.
Dickson, C. J. Mauer, K. E. Moore, M. Plakal, M. D. Hill, and D. A.
Wood, “Timestamp snooping: an approach for extending SMPs,” ACM
SIGOPS Operating Systems Review, vol. 34, no. 5, pp. 25–36, 2000.

[31] R. Bisiani, A. Nowatzyk, and M. Ravishankar, “Coherent Shared Mem-
ory on a Distributed Memory Machine,” in In Proc. of the 1989 Int’l
Conf. on Parallel Processing (ICPP’89), 1989, pp. 133–141.

[32] C. Williams, P. F. Reynolds, and B. R. de Supinski, “Delta Coherence
Protocols,” IEEE Concurrency, vol. 8, no. 3, pp. 23–29, Jul. 2000.

[33] P. F. R. Jr., C. Williams, and R. R. W. Jr., “Isotach Networks,” IEEE
Trans. Parallel Distrib. Syst., vol. 8, no. 4, pp. 337–348, 1997.

[34] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, “An evaluation of
directory schemes for cache coherence,” in 25 years of the international
symposia on Computer architecture (selected papers). ACM, 1998, pp.
353–362.

[35] D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal, “Directory-based
cache coherence in large-scale multiprocessors,” Computer, vol. 23,
no. 6, pp. 49–58, 1990.

[36] Y.-C. Maa, D. K. Pradhan, and D. Thiebaut, “Two economical di-
rectory schemes for large-scale cache coherent multiprocessors,” ACM
SIGARCH Computer Architecture News, vol. 19, no. 5, p. 10, 1991.

[37] A. Gupta, W.-D. Weber, and T. Mowry, “Reducing memory and traffic
requirements for scalable directory-based cache coherence schemes,” in
International Conference on Parallel Processing, 1990.

[38] D. Chaiken, J. Kubiatowicz, and A. Agarwal, “LimitLESS Directories:
A Scalable Cache Coherence Scheme,” in Proceedings of the Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS IV), 1991, pp. 224–234.

[39] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand,
S. V. Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo:
Rethinking the memory hierarchy for disciplined parallelism,” in Parallel
Architectures and Compilation Techniques (PACT), 2011 International
Conference on. IEEE, 2011, pp. 155–166.

[40] J. H. Kelm, M. R. Johnson, S. S. Lumetta, and S. J. Patel, “WAYPOINT:
scaling coherence to thousand-core architectures,” in Proceedings of the
19th international conference on Parallel architectures and compilation
techniques. ACM, 2010, pp. 99–110.

http://www.tilera.com
http://arxiv.org/abs/1505.06459

