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Physical modeling translates measured data into a physical model. Physical modeling is a major objective in
physics and is generally regarded as a creative process. How good are computers at solving this task? Here, we
show that in the absence of physical heuristics, the inference of optimal quantum models cannot be computed
efficiently (unless P = NP). This result illuminates rigorous limits to the extent to which computers can be used
to further our understanding of nature.
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A characterization of a physical experiment is always at
least twofold. On the one hand, we have a description

S = (description of the state)

of the state of the physical system. For instance,S can contain a
few paragraphs of text with detailed instructions for preparing
that state experimentally in the laboratory, or for finding it in
nature.

The second part of the characterization of an experiment is
the description of the measurement that is performed. As for
the state, the measurement may be described in terms of a short
text,

M = (description of the measurement).

M may be a complete manual for constructing the measure-
ment device we use.

Both M and S can specify temporal and spatial informa-
tion, e.g., the desired state is the state resulting from a particular
initial state after letting it evolve for 1 μs. Every experimental
paper must provide M and S .

Performing the measurement M results in a measurement
outcome. We denote by Z the number of different measurement
outcomes. Each of the outcomes may again be characterized
in terms of a few paragraphs of text,

Oz = (description of zth measurement outcome),

for all z ∈ [Z] := {1, . . . ,Z}. Here, we assume without loss of
generality that the description Oz also specifies M, i.e., it both
fully specifies the measurement device and the way it signals
outcome z has been measured to the observer.

Oftentimes we do not only consider a single state S and
a single measurement (Oz)z∈[Z] but X states (Sx)x∈[X] and Y

measurements (Oyz)z∈[Z] (y ∈ [Y ]). For instance, we could be
interested in measuring the spin of an electron in different
directions and at different times. Repeatedly measuring the
state Sx with the measurement My we are able to collect
empirical frequency distributions (fxyz)Zz=1 for that particular
sequence of measurements, that is, fxyz = �{z|xy}/Nxy , where
Nxy denotes the number of times we measure Sx with My and
where �{z|xy} denotes the number of times we see outcome
Oyz during these runs of the experiment.

To describe the experiment quantum mechanically we need
to translate the descriptions Sx and Oyz into quantum states
ρx and measurement operators Eyz. This corresponds to the
task of modeling. The assignment of matrices to Sx and Oyz

must be such that the quantum mechanical predictions are
compatible with the previously measured data fxyz. By Born’s
rule, tr(ρxEyz) is the probability for measuring outcome z

if we measure state Sx with the measurement My . Hence,
achieving compatibility between the theoretical model ρx,Eyz

on the one hand and the experimental description Sx,Oyz on
the other hand requires searching for states and measurements
satisfying tr(ρxEyz) ≈ fxyz for all (x,y,z) ∈ �. Here, � ⊆
[X] × [Y ] × [Z] marks the particular combinations (x,y,z)
that we have measured experimentally. Combinations in the
complement (x,y,z) ∈ �c are unknown. A common pitfall to
avoid is overfitting, that is, finding an excessively complicated
model that perfectly fits the data but has no predictive power
over future observations. To avoid overfitting we need to search
for the lowest-dimensional model satisfying tr(ρxEyz) ≈ fxyz.
In fact, if we placed no restriction on the dimension, then
we could fit every data set exactly with a finite-dimensional
quantum model that does not allow for the prediction of future
measurement outcomes. For instance, we could fit the mea-
sured data with an X-dimensional model where ρx = |x〉〈x|
and Eyz = ∑X

x=1 fxyz|x〉〈x|. Indeed, tr(ρxEyz) = fxyz. On the
other hand, if a subsystem structure (e.g., two independent
parties Alice and Bob) is imposed, then there are circumstances
where data sets cannot be modeled by finite-dimensional
quantum models [1,2].

In the remainder we are going to assume that the em-
pirical frequencies fxyz are equal to the probabilities pxyz

for measuring outcome Oyz given that we prepared Sx and
measured My . This condition is met if we can measure states
Sx with measurements My an unbounded number of times
(Nxy → ∞). We will see that inference is NP-hard even in this
noiseless setting where we want to solve

minimize d

such that ∃ d-dimensional states and measurements

satisfying pxyz = tr(ρxEyz) ∀(x,y,z) ∈ �. (1)
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We call problem (1) MinDim; it describes the task of learning
effective quantum models from experimental data. Our result
that MinDim is NP-hard implies that computers are not capable
of computing optimal quantum models describing general
experimental observations (unless P = NP).

NP-hardness is a term from computational complexity
theory which aims at classifying problems according to their
complexity. The relevant complexity measure depends on the
particular application. Here, we focus on time complexity
which measures the time it takes to solve a problem on
a computer (deterministic Turing machine). A particularly
important family of problems are decision problems. These are
problems whose solution is either yes or no. The 3-coloring
of graphs is a famous example. In 3-coloring (3col) we are
given a graph with vertices specified by a vertex set V and
with edges specified by an edge set E. Our task is to decide
whether or not it is possible to assign colors red, green, or blue
to vertices v ∈ V in such a way that vertices v,v′ are colored
differently whenever the edge (v,v′) with endpoints v,v′ is an
element of E. In this example, the specification of V and E

forms the problem instance and the criterion for the solution yes
(i.e., yes, this graph is 3-colorable) is the so-called acceptance
condition. A decision problem is specified by an acceptance
condition and by a set of problem instances.

The complexity classes P and NP have been introduced to
classify problems according to their complexity. The complex-
ity class P is the set of all decision problems whose complexity
is a polynomial in the size of the problem instances (e.g.,
the number of vertices in case of 3col). The class NP is
the set of problems with the following property. Every yes
instance admits a proof that can be checked in polynomial
time. For example, in the case of 3col, we can prove that a
graph is 3-colorable by providing an explicit 3-coloring of
that graph; the correctness of that coloring can be verified by
checking that for all (v,v′) ∈ E, the verticesv andv′ are colored
differently.

Intuitively, a problem A is clearly harder to solve than a
problem B if any polynomial-time algorithm for A can be used
to solve B in polynomial time (we might use the algorithm
for A as a subroutine in another algorithm to solve B). This
intuition is rigorously captured in the notion of reductions. We
say that problem B is reducible to A if there exists an algorithm
A (polynomial-time) that maps problem instances i for B to
problem instances A(i) for A in such a way that

i “yes” for B ⇔ A(i) “yes” for A.

Therefore, if there exists a polynomial-time algorithm to
solve A, then this algorithm induces via A a polynomial-time
algorithm to solve B. A problem A is NP-hard if all problems
C ∈ NP are reducible to A. For example, 3col is NP-hard [3].

A natural decision version of MinDim is the problem
Dim-d.

Dim-d. Instance: X,Y,Z ∈ N, � ⊆ [X] × [Y ] × [Z], and
scalars (pxyz)x,y,z∈�

. Acceptance condition: There exist d-
dimensional states ρx and measurements (Eyz)z∈[Z] such that
px;yz = tr(ρxEyz) for all (x,y,z) ∈ �.

We note that Dim-d outputs yes if and only if the optimal
solution dMinDim of MinDim satisfies dMinDim � d. Hence,
MinDim is NP-hard if Dim-3 is NP-hard. In this Rapid

Communication, we prove the latter by reduction from 3col.
Thus, we are arriving at our main result, Theorem 1.

Theorem 1. MinDim is NP-hard.
Every experiment can be described in terms of (Sx)x and

(O)yz. Therefore, problem (1) does not make any assump-
tions about the underlying quantum model. Often, however,
we accept some side information about the physical sys-
tem we wish to analyze. A common postulate is that we
measure a global state with local measurements [4–7]. In
this setting we want to solve the following modification of
MinDim,

minimize d

such that ∃ a d2-dimensional state ρ and d-dimensional

measurements (Eyz)z and (Fyz)z satisfying

pyzy ′z′ = tr(ρEyz ⊗ Fy ′z′ ) ∀(yzy ′z′) ∈ � (2)

(for some � ⊆ [Y ] × [Z] × [Y ′] × [Z′]). We are referring to
problem (2) in terms of MinDim(AB); the label (AB) references
two parties, usually called Alice and Bob. Here, we prove NP-
hardness of MinDim(AB) by showing that the natural decision
problem Dim-3(AB) (see the Supplemental Material [8]) of
MinDim(AB) is NP-hard.

Theorem 2. MinDim(AB) is NP-hard.
Theorems 1 and 2 assume that the measurement probabil-

ities pxyz and pyzy ′z′ are known exactly. Hence, Theorems 1
and 2 do not allow one to draw rigorous conclusions about
situations where pxyz are only known approximately. When
does a physical theory qualify to be a good physical theory?
Answers provided are sometimes vague. However, there is
a consensus that predictive power is a necessary criterion a
good physical theory needs to satisfy. This criterion is satisfied
if models drawn from that theory (e.g., quantum theory)
allow for the prediction of future measurement outcomes,
i.e., estimates of probabilities pxyz associated to pairings
(Sx,Oyz) that have not been measured yet [i.e., (x,y,z) �∈ �

in problem MinDim]. For example, if x enumerates the states
of a system at different times, then we would like to be able to
predict future measurement outcomes. Therefore, considering
Theorem 1 in the scenario where all probabilities pxyz were
measured beforehand (i.e., � = [X] × [Y ] × [Z]) would not
be very sensible because there would not be anything left to
predict. Results of hardness in this setting are, however, of
interest in mathematical optimization where people study the
optimal runtime of semidefinite program formulations of linear
optimization problems [9–13].

Surprisingly, problem MinDim has only been studied
sporadically [6,14–22]. Related to MinDim is the problem
of estimating quantum processes in a way that is robust
to prepare and measure errors [23–28]. Moreover, MinDim
realizes a noncommutative version of topic models which one
may want to call quantum topic models [29]. In relation to
inference of dynamics, previous seminal work [30] showed that
the identification of dynamical laws is NP-hard. In contrast,
our work does not assume Markoviantity. Non-Markovian
dynamics has been intensively investigated in the past years;
see, e.g., Refs. [31,32]. Theorem 5.6 of Ref. [11] would be
sufficient to prove NP-hardness of MinDim if we were given
an a priori promise that the considered data set (pxyz)xyz was
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FIG. 1. Successive reduction from problems in NP to Dim-3.

generated by measuring pure states with rank-1 measurements.
Distinguishing these data sets from general data sets is an
interesting open problem.

In quantum state tomography we aim at inferring a quantum
state ρ after having postulated the Hilbert space dimension and
the measurement representations Eyz. Research on quantum
state tomography is more mature than research on MinDim:
Efficient algorithms are known and it is possible to report
confidence regions in situations where ρ has been measured
a finite number of times [33,34]. Model selection [35–37] has
been applied widely to overcome assumptions underlying state
tomography. It is an interesting open problem to analyze these
model selection methods from the perspective of computa-
tional complexity theory

Sketch of the proof. We prove Theorem 1 by showing that
Dim-3 is NP-hard. Figure 1 sketches the strategy of our proof.
We construct a sequence of reductions whose composition
reduces 3col to Dim-3. This suffices to prove Theorem 1
because 3col is known to be NP-hard [3]. Analogously, we
prove Theorem 2 by showing that the associated decision
problem Dim-3(AB) is NP-hard.

Thus, to prove Theorem 1, we need to find a polynomial-
time algorithm A that maps instances for 3col to instances
of Dim-3 such that an instance i for 3col is a yes instance
for 3col if and only if A(i) is a yes instance for Dim-3.
As suggested by Fig. 1, the reduction A is the composition
of several partial reductions, i.e., A = A3 ◦ A2 ◦ A1. Each
of the parts A1,A2,A3 are defined in the remainder of this
section. The reduction A0 from any problem in NP to 3col
is introduced in Ref. [3]. Consequently, reductions A ◦ A0

reduce any problem in NP to Dim-3.
In the Supplemental Material [8] we provide the analysis

of the algorithms Aj and the formal proof of Theorem 1.
Similarly, to prove Theorem 2 we provide a reduction A′ =
A′

3 ◦ A2 ◦ A1 from 3col to Dim-3(AB). Here, the subreductions
A1 and A2 are identical to the subreductions used in the
proof of Theorem 1. Only the last subreduction A3 requires
modification. That modification A′

3 and its discussion are
provided in the Supplemental Material [8].

In the remainder we provide a short sketch of the individual
parts of the proof of Theorem 1. Following Ref. [38], we say a
matrix A ∈ C|V |×|V | fits a graph G = (V,E) if (i) Ajj = 1 for
all j ∈ V , and if (ii) Aij = 0 for all (i,j ) ∈ E.

Using a key theorem from Ref. [38] we can show in Lemma
5 (↔ reduction A1) of the Supplemental Material [8] that
a graph G is 3-colorable if and only if a graph �(G′) (a
transformation of G) can be fitted by a Gram matrix A with
matrix rank �3.

Subsequently, we show in Lemma 6 (↔ reduction A2) that
this Gram matrix A exists if and only if there exist three-
dimensional vectors ψj such that the matrix with elements
pij := |ψ̄T

i ψj |2 fits �(G′).
The transformation �(G′) of G is chosen such that these

vectors ψj exist if and only if there exists a three-dimensional
quantum model with the following property: The matrix
[tr(ρxEyz)]x;yz

fits �(G′). This is observation forms the content
of Lemma 7 (↔ reduction A3). Checking whether or not there
exists a three-dimensional quantum model fitting �(G′) is a
special instance of Dim-3.

We thus conclude that a polynomial-time algorithm for
Dim-3 can be used for checking (in polynomial time) whether
or not a graph G is 3-colorable. The proof of Theorem 2
proceeds along the same lines. We only need to modify the
reduction A3.

Conclusions. We have shown that optimal quantum models
cannot be computed efficiently from measured data. We proved
this claim in both the natural 1-party (cf. Theorem 1) and
the natural 2-party setting (cf. Theorem 2). We proved NP-
hardness by reducing 3-coloring to the inference of quantum
models.

What other questions remain in this field? In both Theorems
1 and 2 we search for a quantum model which reproduces
the measured probabilities exactly. Does the hardness result
extend to situations where we are satisfied with only approx-
imating the measured probabilities? And which classes of
data (pxyz)(xyz)∈� admit efficient inference? In regard of the
latter question, it appears important to illuminate the tradeoff
between (i) the relevance of the class of considered data sets
{(pxyz)(xyz)∈�} and (ii) the computational hardness of inference
associated to those data sets.

The hardness of the classical analog of MinDim turns out
to be easier to prove as it directly reduces from the problem of
computing the so-called non-negative rank which is known to
be NP-hard [39].

Note added. Recently, we became aware of Shitov’s inde-
pendent seminal work [40]. Shitov’s paper proves NP-hardness
of the real psd rank (i.e., the psd factors have real matrix
entries). If Shitov’s proof can be generalized to the complex
setting, then Theorem 1 can be derived as a simple corollary;
see Lemma 17 in Ref. [41].
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