Towards Robust Interval Solid Modeling of Curved Objects
by
Chun-Yi Hu

M.S. in Naval Architecture and Marine Engineering, M.1.T., July 1993
M.S. in Mechanical Engineering, M.1.T., July 1993
B.S. in Naval Architecture and Marine Engineering,
National Cheng-Kung University, R.O.C., June 1985

Submitted to the Department of Ocean Engincering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1995

(© Massachusetts Institute of Technology 1995. All rights reserved.

Author............ Ex e e e e e
Department of Ocean Engineering

May 1, 1995

Certified by .. .ve e e

Nicholas M. Patrikalakis
Associate Professor of Ocean Inginecering
Thesis Supervisor

Acce tedlg)(r P
MASSRCHUS S INSTITUTE ‘ o
OF TECHNOLOGY ——A—DBeuglas-¥armichacl

Chairman, Departmental Committee on Graduate Students
JUL 281395

L{BRARIES ARCHIVES

Towards Robust Interval Solid Modeling of Curved Objects
by
Chun-Yi Hu

Submitted to the Department of Ocean Engineering
on May 1, 1995, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

Solid modelers have been used in computer aided design and manufacturing for more than
one decade. However, current solid modelers based on Boundary Representation still en-
counter numerical instability and theoretical difficulties for ill-conditioned geometric com-
putations involving intersections.

In this thesis, numerically robust geometric representations and algorithms for numer-
ically robust geometric interrogations, including ill-conditioned geometric intersections are
developed. Interval polynomial objects are proposed for robust geometrical representa-
tions. A robust algorithm (solver) for solving unbalanced non-linear polynomial equation
systems is developed. Based on this solver, a robust unified algorithm for general geometric
intersections, including overconstrained intersections, is developed. For the effective and
robust detection of intersection curve loops, a direct algorithm is developed to determine
collinear normal points and isolated tangential contact points of two surfaces. Theory and
algorithms are developed for ill-conditioned intersections, such as tangential intersections
of curves, overlarping of curves and surfaces, and overlapping of surfaces. The End Point
Theorem is presented to verify that if two ideal Bézier patches tangentially intersect along
an open curve, the curve must start from and end at boundaries of either of the two patches.
This theorem is extended to general C* surface patches, and is followed by a corollary for
surface overlapping.

An nD novel non-manifold data structure for interval polynomial objects (points, curves,
and surfaces) is developed to permit Boundary Representation of interval objects. It sep-
arates the manifold from the non-manifold parts of the object, and categorizes nodes into
six types for Boolean operations. This separation allows the effective use of a new point
classification algorithm for non-manifold objects. Based on the robust interval geometrical
representations and computations and data structures, algorithms for Boolean operations
are developed first for 2D manifold curved regions and then extended to 3D manifold curved
solids. These algorithms are further extended to 2D and 3D non-manifold curved objects
resulting from Boolean operations. In order to represent the geometric objects, such as
trimmed surfaces, resulting from Boolean operations, the Extreme Orientation Theorem is
introduced to determine the orientation of a piecewise smooth simple planar closed curve by
an extreme point and its derivative at that point. Finally, examples illustrate the robustness
and efficiency of the algorithms for geometric intersections and Boolean operations.

Thesis Supervisor: Nicholas M. Patrikalakis
Title: Associate Professor of Ocean Engineering

Acknowledgements

This thesis is dedicated to my parents Chi-Kuan Fu and Tze-Lian Show, who are not only
great architects in Taiwan, but also the great architects of my life. Also to my fiancée,
Cherilyn Ho, who is always of the source of encouragement and support to me.

I like to thank the chairwoman, Mrs. Chia-Yun Lee, of the Bethany Children’s Home.
She encouraged and helped me to pursue graduate studies in America in many ways. I
also thank all teachers in the Bethany Children’s Home, especially Mrs. and Mr. Chia-
Ping Ying, ex-chairwoman and her husband. They instructed and took care of me during
my childhood. Many brothers and sisters in the Church of New Garden City in Taipei
county, have been supporting me through their prayers and financial assistance. Some
people support me financially; I know them only by their names or through a few meetings.
I cannot thank any one of them enough for their goodwill and trust. I can only thank them
by passing their deeds on to others like me.

I would like to express my gratitude to Professor N. M. Patrikalakis, my thesis super-
visor, for his encouragement, his wisdom and especially his expertise, and Professor C.
Chryssostomidis, Professor D. C. Gossard, Dr. T. Maekawa and Dr. X. Ye for serving on
my thesis committee, their comments, guidance and patience.

I also thank Prof. Franz-Erich Wolter for providing me with useful ideas in the early
stages of my work, Dr. Leonidas Bardis for his early implementation of the cell-tuple
structure as a directed graph, Dr. Erik Brisson for useful discussions on data structure
issues in the early stages of this work, Mr. Michael S. Drooker, Design Laboratory manager,
for supplying me with a stable hardware environment, and Mr. Stephen L. Abrams for his
programming assistance. Design Laboratory fellows such as Dr. Séamus T. Tuohy, Dr.
Evan C. Sherbrooke, and Ms. Jingfang Zhou provided me with many opportunities for
stimulating discussions and often encouraged me in my work.

This work was supported, in part, by the M.I.T. Sea Grant College Program, the Office
of Naval Research and the National Science Foundation under grant numbers NA9OAA-D-
SG-424; N00014-91-1-1014 and N00014-94-1-1001; and DMI-9215411.

Contents

Abstract 2
Acknowledgements 3
Contents 4
List of Figures 8
List of Tables 13
1 Introduction 15
1.1 Problem Statement e 15
1.2 Previous Work e e e 17
1.2.1 Robust Geometrical Representation and Computation 18

1.2.2 Methods for Solving Systems of Non-Linear Polynomial Equations . 20

1.3 Objectivesof the Thesis 21
1.4 Organization of the Thesis 22

2 Robust Interval Geometric Representations 24
2.1 Introduction i i e e e 24
22 AnExample. e 25
2.3 Interval and Rounded Interval Arithmetic 26
2.3.1 Interval Arithmetic. o o 26

2.3.2 Rounded Interve! Arithmetic 26

2.3.3 The Improvement of Efficiency for Rounded Interval Arithmetic .. 27

2.4 Interval de Casteljau Algorithm 29
2.5 Robust Representation of Interval Polynomial Splines 32
2.5.1 Interval Polynomial Splines 32

2.5.2 Interval Polynomial Splines vs. Polynomial Splines 33

3 Robust Solver of Non-Linear Polynomial Systems 35
3.1 Introduction. e 35
3.2 Rounded Interval Projected-Polyhedron Algorithm 36
3.2.1 Projected-Polyhedron Algorithm for Unbalanced and Balanced Systems 36

3.2.2 Projected-Polyhedron for Unbalanced Polynomial Systems

3.2.3 The Advantage of the Extended IPP Solver
3.24 Consolidationof Roots,
Examination of the Leftover Boxes by Subdivision Methods
3.3.1 Four Cases for Leftover Boxes
[ll-Conditioned Convex Hulls for Subdivision Methods
3.4.1 Brief Review of Bézier Clipping Method
3.4.2 Counterexamples of Subdivision Methods
3.4.3 Analysis of the Counterexamples
Implementation of (‘onvex-Hull-Cross-Axes Check
Correctness of the Convex-Hull-Cross-Axes Check
3.6.1 Proof for One-Dimensional Systems
3.6.2 Proof for m Dimension Systems

Robust Unified Intersection Algorithm

4.1
4.2

4.3

4.4
4.5
4.6

4.7

4.8

Introduction e
A General Unified Algorithm for Intersection Problems
4.2.1 The General Unified Algorithm
4.2.2 Advantages of the General Unified Algorithm
Point-to-Point Intersection
4.3.1 Incidenceof Points
4.3.2 Transitivity of Incidence of Points
Point-to-Curve Intersection
Point-to-Su-face Intersection o o
Planar Curve-to-Curve Intersection
4.6.1 Transversal Intersection
4.6.2 Tangential Intersection.
4,6.3 Overlapping e
3D Curve-to-Curve Intersection
4.7.1 Tangential and Overlapping Intersection of Curves
Curve-to-Surface Intersection o oo,
4.8.1 Tangential Intersection of Curve and Surface
4.8.2 CurveonaSurface e
Surface-to-Surface Intersection o
4.9.1 Critical Points of Surface to Surface Intersection
4.9.2 Collinear Normal Points of Surfaces
4.9.3 Marching on Intersection Curves from Significant Points
4.9.4 Tracing of Tangential Intersection Curve of Surfaces
4.9.5 Overlap of Two Surfaces

38
39
41
41
12
4
44
46
46
18
19

n6

7?2
73
73
73
71
76
7
Rl

5 Data Structure

5.1 Introduction o i it e e
5.2 Cell-Tuple Structuret
5.3 Characteristics and Categorizatior.s of Nodes for Interval Solid Models .
5.3.1 Characteristics of Nodes for Interval Splines
5.3.2 Categories of Nodes in Data Structure
5.4 Data Structure for Non-Manifold Interval Objects

6 Two Dimensional Boolean Operations

6.1 Introduction. e
6.2 Definition of Boolean Operations
6.3 Manifold Boolean Operations
6.3.1 General Algorithm for Manifold Boolean Operations
6.3.2 Intersection Operation,
6.3.3 Difference Operation
6.3.4 Union Operation
6.4 Non-Mianifold Boolean Operations

7 Three Dimensional Boolean Operations

7.1 Introduction v v i v i it e e e e e e e e e e e e
7.2 Procedures for 3D Boolean Operations
7.3 Intersection of the Boundaries
7.4 Refinement of 1D (Curve) Nodes
7.5 Refinement for 2D (Patch) Nodes
7.5.1 Subpatches of Bounding Surfaces
7.5.2 Refining Patches,
7.6 Refinement for 3D (Shell) Nodes
7.6.1 Loopsfor3DModels
7.6.2 Shell Identification
7.7 Boolean Operationso i i v i v i it v
7.8 Rendering Trimmed Patches
8 Numerical Results
8.1 Examples for 2D Objects o
8.2 Examples for 3D Objects,
8.2.1 Curve-to-Surface Intersection
8.2.2 Critical Points e e
8.2.3 Surface-to-Surface Intersection
8.2.4 3D Boolean Operations

83
83
83
86
86
87
39

..........................

..........................

9 Conclusions and Recommendations
9.1 Summary
9.2 Contributions
9.3 Future Research

..........................

A Orientation of a Smooth Simple Planar Closed Curve

A.1 Introduction.
A.2 Orientation of a SSPC Curve
A.3 Extreme Orientation Theorem

B Point Classification
C Implementation Issues

Bibliography

..........................

..........................

164
164
164
165
167
167
167
172
175
179

183

List of Figures

1-2
1-3
1-4

2-1

2-3
2-4
2-5
2-6
2-7
2-8
2-9

A point p is considered to be on line L, if the distance of p and L is less than €. 16

An example of incidence asymmetry., 17
An example for incidence intransitivity. 17
An example of topology violation, 17
Curves y = z* and y = 0 contact tangentially at the origin. 25
IEEE format for binary representation of double-precision floating-point num-

0= 27
The bit operations for the ulp of a double-precision number 29
The de Casteljau algorithm 30
Affinemap e e e 31
An example of an interval polynomial curve. 32
An example of an interval polynomial surface patch. 32
A Bézier curve bounded by an interval Bézier curve. 33
(a) Idealized Boundary Representation of a triangular face; (b) Actual nu-

merical Boundary Representation in current CAD/CAM systems with gaps
and inappropriate intersections; (c¢) Conceptual sketch of proposed general-
ized Boundary Representation in terms of interval polynomial curves / surfaces. 34

Projecting the polyhedra of (z,y,z2 + y* — 1) and (z,y,322 - 34 - }). . 39
Projecting the polyhedra of (z,y,2% + y* — 1), (z,9,322 — 33> - 1) and

(T e AP = 1) oo 40
Examples of four casesof e-boxes 43
A convex hull of control points intersects u-axis at one point 45
Projections of explicit surfaces g! and g2 and their convex hulls. 47

Although the leftover region is smaller than the tolerance, the corresponding
convex hull of the associated chopped Bézier curve does not cross the u-axis. 48

The corresponding Bézier curve R(u) of graph (w, f(u)) 51
The slopes of_g_lif_",l,Pf"l), (PI"I,P,T;})_aP_Sl (PP n 53
The slope of DE lies between the slopes ABand BC. 53

3-10 The slopes of the subdivided graphs are equal to or smaller than slope of the

original graph.
3-11 The maximum value of slope of graph (u, f(u))
3-12 Magnified area around I: |f(I)—-0j| < 2nP
4-1 TIlustration of incidence transitivity of 2-D interval points.
4-2 Two convex hulls projected onto uw-plane for the example of y = z* parametrized

byuand y=0byw.
1-3 Three convex hulls projected onto uw-plane for the example of y = a4

parametrized by v and y=0byv.

64

67

67

4-4 Four convex hulls projected onto uw-plane for the example of y = z* parametrized

byuand y=0bywv. e
4-5 Two cubic Bézier curves AB and CD overlap each other along CB.
4-6 The bounding boxes of computing intersection of two overlapping curves . .
4-7 An example of pathological case of curve to curve intersection
4-8 An example of pathological case of curve to curve intersection
4-9 A pair of collinear normal points for two surfaces
4-10 The occurrence of a pair of collinear normal curve between a parabola surface
andaplane. L e e
4-11 The direction of tangent of the intersection curve of two surfaces.
4-12 A parabola surface and a plane intersect tangentially along a line.
4-13 The tangential intersection curve of two cylinder contains loops..
4-14 It is impossible for two curves to overlap along their common segment and
toseparateat some point.o
4-15 It is impossible for two surfaces to contact along a non-closed tangential curve
(indicated by pq) in the middle of both surfaces.
4-16 (a) Surfaces overlap across boundaries of both patches; (b) One surface fully
overlaps within the other surface.

5-1 Examples of invalid subdivided 2-manifold: (a), (b) and (c), and examples
of valid subdivided 2-manifold, (d)and (e).,
5-2 (a) is an example of subdivided 2D manifold @Q; (b) lists all cell tuples for @
and demonstrates the operator switch;; (c) is an incidence graph for Q; (d)
shows an relationship between cell-tuples via switch; where ¢ = 0,1,2. . . .
5-3 The intersection of a 2D bounded manifold with a 2D non-manifold models.

5-4 Six types of nodes in our data structure.
5-5 Data structures for a 2D non-manifold model
5-6 A non-manifold model and its data structure.

69
70
70
72
72
74

76
77
78
78

79

80

81

85
87
88
90
91

6-1 (a) The regular compact sets, A and B; (b) the union of A and B, and its
boundary: 5(AU B) = (bAN¢B)U (bB N cA); (c) the intersection of A and
B, and its boundary: b(AN B) = (bANiB)U (bBNiA); (d) the difference of
A minus B, and its boundary: b(A — B) = (bANcB)U(bBNiA).
6-2 Finding the three independent cycles in a graph; step 1, in partition process,
two intersection 0D nodes, n1 and n2 are added; edge €2 is subdivided into
two edges w1l and w2, so are edges e3, e4, e5; step 2, complete loops include
loopl: {n2, w2, vl,el. v2, wl, nl, w5, v4, w7, n2 }; loop2: {n2, w4, v3, w2,
nl, w5, v4, w7, n2}; loop3: {nl, w2, v3, w4, n2, w8, v5, €6, v6, w6, n1}. . .
6-3 Examples of intersection loops for partitions of two manifold objects.
6-4 Examples of difference loops for partitions of two manifold objects.

7-1 The common intersection curve does not divide the surfaces into separate

TEEIONS. . . . v i e e e e e
7-2 Two 3D regular compact objects, AandB.
7-3 Refine 1D nodecwithODnodenp..

7-4 An example of “merging” method and “refining” method for two curves. (a)
and (b) are data structures for two curves; (c) and (d) are respectively the

resulting data structure using merging and refining methods.
7-5 The boundary curve bc is intersected by two intersection curves 7 and j. .
7-6 Patch A has only one intersection curve with another patch, B.
7-7 A bounding surface is subdivided into n 4+ 1 subpatches by n intersection

O Y-
7-8 (a) A loop is formed by the intersection curves on patch A; (b) two loops are

formed by the intersection curveson patch B.

7-9 A patch with intersecting loop and curves from boundaries to boundaries. .
7-10 Patch A has multiple intersection curves (dash-dotted lines) with patch B
andpatch C.
7-11 Orientations of an triangle.
7-12 Imposing the ordering of a surface on its edges; the orderings of four edges
form the same ordering of theface.
7-13 (a) A tetrahedron; (b) its resulting planar representation split at vertex B;
(c) its incidence graph (data structure).
7-14 (a) A tetrahedron; (b) oriented faces and edges of the tetrahedron; (c) the
loop consisting of edges and faces for the tetrahedron; (d) the path, indicated
by arrows, of the loop in (c) from its (incidence graph) data structure. . . .
7-15 (a) A cube; (b) its oriented faces and edges; (c) the loop consisting of edges
and faces for thecube. o
7-16 (a) A cube; (b) its resulting planar representation split at edge K J. Starting

with AB, we will not return to AB by employing the loop-finding procedure.

10

93

97
99
99

103
104
106

107
108
110
110

111
111

114
115

116

116

117

118

118

-17

-1

8-8

8-9

8-10

8-11

8-12

S-13

On the difference shell of (A - B). patches p1, p2 and p3 are nodes of B inside
A: the rest of the patches are nodes of Aoutside B..
On the intersection shell of models A and B, i1, 2, 3, 1. i5 and 6 are
intersection nodes (curves). They form a loop on a surface of an intersection
shell. On one side of the loop, there are only nodes.inp such as pi. p5 and
p6; on the other side of the loop, there are only nodesg;, 4 such as pl, p2 and

On the difference shell of models A and B, il, 2, i3, i1, {5 and G are
intersection nodes (curves). They form a loop on a surface of a difference
shell. On one side of the loop, there are only nodesgi, 4. like pl, p2 and p3:
on the other side of the loop, there are only nodessoup.
On the union shell of models A and B, i1, {2, i3, i-4, i5 and 6 are intersection
nodes (curves). They form a loop on a surface of a union sheli. On one side
of the loop, there are only nodespyua; on the other side of the loop, there
are only nodesqoutB. - « « « v v v e o e e e e

Two transversally intersecting curves.
Curves intersect tangentially and transversely.
An example of manifold Boolean operations on two manifold models. . . .

An example of non-manifold Boolean operations for one non-manifold and
onemanifold models. L o o o
Difference operations for models M3 and M4 in Figure8-4(a).
A non-manifold object resulting from union of two manifold objects at rela-
tively loose tolerance. L oo oo
Curve C1 intersects surface S1 tangentially at one point. (a) and (b) show
the same objects from different views.
Curve C2 intersects plane P2 at both tangential and transversal points. (a)
and (b) show the same objects from different views.
Curve C3 is lying on surface S3. (a) and (b) show the same objects from
different views. L . o e e e e e e
The bounding boxes in the parameter domain of surface S3 parametrized by
u, v, for the overlap withcurve C3.o oo
Two surfaces which are almost parallel to cach other have a critical point in
the middle of both surfaces. (z) and (b) show the same objects from different
VIOWS, L . e
Tangential intersection of parabolic cylinder S6 and plane P3. (a) and (b)
show the same objects from different views.
The hounding boxes for tangential intersection curve of parabolic cylinder
$6 parametrized by u, v, and plane P3 parametrized by t, w. (a) shows the
u-p parameter domain, (b) the t-w parameter domain.

11

120

120

123

8-14 Transversal intersection curve of two surfaces.
8-15 Surface $3 and surface S7 overlap partially. (a) and (b) show the same objects
from different views. (c) shows the overlapping patch and surface 53. (d)
shows the overlapping patch alone.
8-16 The hounding boxes for the trimming loop of the overlap hetween surface S}
parametrized by u, v, and surface S7 parametrized by ¢, w. (a) shows the

(u-v) parameter domain of S3. (b) shows the (-w) parameter domain of S7.

8-17 A cube and its data structure..o
8-18 A tetrahedron and its data structure.o oL
8-19 The original coi.figur- tion of the cube and the tetrahedron.
8-2(: The union of the ciibe in Iligure 8-16 and a tetrahedron in Figure 8-17 and
its corresponding data structure. Lo
%-21 The differ:nce of the cibe from the tetrahedron and its data structure. Note
that there is an passage in the center (shown as white space) due to the
subtraction of the tetrahedron. 0L
8-22 One of shell of the difference of the tetrahedron in Figure 8-17 from the cube
in Figure 8-16, and its corresponding data structure.
8-23 Another shell of the difference of the tetrahedron in Figure 8-17 from the
cube in Figure 8-16 and its corresponding data structure.
8-24 Intersection of the cube in Figure 8-16 and the tetrahedron in Figure 8-17
and its data structure. e e

A-1 Two orientations of a circle: (a) CCW orientation and (b) CW orientation.

A-2 (a) points p and q on the unit circle C; (b) their neighborhoods N, and N,.

A-3 p, alimit point of , is directly above S and q is directly under 5.
A-4 (a) M, is on the top of N with p; (b) M, is on the bottom of N with p; (c)
no component is on the top or bottomof N withp.
A-5 For a SSPC curve, points with derivatives toward the left are always locally
directly above the inside of the curve, while points with derivatives toward
the right are always directly locally under the inside of the curve.
A-6 Shaded areas represent inside of closed curve U..

B-i The integral of the angle withrespecttop.
~ B-2 An example of a ray and its complement ray.
B-3 An example of a point or the bounding curve..
B-4 Ray test for non-manifold: although point A is in inside model M, the number

of the intersection of ray with the edgesis2 {even)..

C-1 Two data structures for a manifold object, which one is wrong?

12

151

153

161
162
168

169
170

171

171
173

175
176
177

List of Tables

3.1
3.2
4.1
4.2

8.1

8.2

8.3
8.4
8.5

8.6

8.7

Dataofdf;andd?; 45
Results of two methods used to find the root of the system for a counterexample. 46
Intersections of geometric objects of different dimensions. 61
The box shrinking processes of three methods for intersecticn between y = z*

parametrized by uand y=0bywv. 68

Intersections of two Bézier curves for differert tolerances e. In (b) and (c),
only the first three roots in (a) areshown. 131
List of root numbers, computation time and final root regions of three meth-
ods with various tolerances for intersection between y = z# parametrized by
u and y = 0 by ». Root number is the number of roots resulting from the
polynomial systems solvers for one actualroot. 132
Intersections of curves A (parametrized by u) and B (by v) intersecting tan-
gentially and transversely. o 133
Intersections of interval curves A (parametrized by u) and B (by v). 133
(a) lists the computation time for some of examples. (b) shows the results
from various tolerances for Example 8.1; (c) shows the results from various
tolerances for three methods of Example4.1 137
List of root numbers, computation time and final root intervals of two meth-
ods with various tolerances for intersection between surface S1 parametrized
by u, v and curve C1 by t. Root number is the number of roots resulting from
the polynomial systems solvers for one actual root; interval roots reported
are after consolidation. oo 140
List of root numbers, computation time and final root intervals of two meth-
ods with various tolerances for intersection between plane P2 parametrized
by u, v and curve C2 by t. They intersect tangentially at another point and
transversally at one point. Root number is the number of roots resulting from
the polynomial systems solvers for one actual root. Interval roots reported
are after consolidation. o oo 142

8.8 Solution fo the overlap between surface S3 parametrized by u, v, and curve

C3 parametrized by t. o oo 144
8.9 Critical point for intersection of surfaces S4 and S5. 146
8.10 Solution for tangential intersection curve of parabolic cylinder S6 parametrized

by u, v, and plane P3 parametrized by t, w. 148

8.11 Solution for four pieces of overlapping curves to form a trimming loop for
the surface overlap between surface S3 parametrized by u, v, and surface S7
parametrized by ¢, w. L 152

14

Chapter 1

Introduction

1.1 Problem Statement

Solid modelers have been used in computer aided design and manufacturing for more than
one decade. Boundary representation (B-rep) is the most commonly used scheme in solid
modeling systems. However, current B-rep solid modelers still have the problem of lack
of robustness. They encounter numerical instability and theoretical difficulties for geomet-
rical computations. Those difficulties for geometrical computations can occur in Boolean
operations, such as ill-conditioned geometrical intersections.

In current B-rep solid modelers, geometric entities (e.g., points, curves, and surfaces) are
considered to be ideal mathematical objects. Nonetheless, ideal mathematical objects rarely
exist in computer representations. Only a very small fraction of mathematical objects can
be represented exactly in computer representations. For example, to represent the real line
R, floating point is used in the comnputer. However, floating point can only represent finitely
many real (in fact rational) numbcrs, while any interval of the real line R has uncountable
number of real numbers in it.

Typically, a geometric object is usually specified by the coordinates of its degree of free-
dom represented by floating point numbers, and processed based on floating point arith-
metic. Unfo:tunately, as has been pointed out, numerical data represented by floating
point numbers are generally only approximate, especially for irrational numbers. There-
fore, strictly speaking, representations of geometric objects in floating point are inaccurate.
This inaccuracy has the origin in the finite precision of floating point arithmetic. The
discrete representations in the computer are used for continuous geometric entities. The
consequences of this inaccuracy are (1) unreliability in geometrical computations and in-
terrogations, such as Boolean operations; and (2) inconsistency between the geometry and
topology of geometric objects.

Take the intersection problem for example. Like many other geometrical interrogation

CHAPTER 1. INTRODUCTION 16

Figure 1-1: A pcint p is considered to be on line L, if the distance of p and L is less than e.

problems, it can also be converted to solving non-linear polynomial equation systems. The
non-linear polynomial solver usually operates in floating point arithmetic. Due to the
floating point errors in the computation, the roots might be missed. A typical example of
this is the solution of ill-conditioned intersection problems, such as tangential intersections
and overlaps. Such ill-conditioned problems are very sensitive to the input (e.g., starting
point) and computation errors. A small perturbation of the input, as well as an increase and
decrease of the numerical precision, may change the result dramatically. The increase of
numerical precision can improve the root-finding process, but still cannot solve the problem.
In fact, even with today’s high precision computers, solid modelers are missing intersection
points, such as tangential contact points, from time to time. This can sometimes lead to
system crash, which is at least frustrating to users and might result in costly expense, too.

Another reason for the lack of robustness of solid modelers is unreliable methods used
in geometrical computations and interrogations. Take again the tangential intersection
problem for example. Contact points are most probably missed when using conventional
balanced nonlinear polynomial solvers.

As has been pointed out by Hoffmann [22], there are three kinds of geometrical failures
arising from floating point arithmetic (1) incidence asymmetry, (2) incidence intransitivity,
(3) topological violation.

Figure 1-2 shows an example of incidence asymmetry [22]. In this example, L, L, L.
and Ly are four lines. Point p is the intersection of L, and Ly; q is the intersection of L. and
L4. Point q is incident to point p, but point p is not incident to point q. This is caused by
the fact that, in computer programming, a threshold ¢ > 0 is used for determining a small
real number as zero. In this manner, a point is considered to be on a line if it is distant from
the line less than ¢. See Figure 1-1 for illustration. Therefore any point in the rectangular
areas with width 2¢, and line L, and L, as center line, respectively, is considered as their
intersection point, (see Figure 1-2). Similarly, any point in the diamond area generated
by lines L. and Ly is considered as their intersection point. Point q is in the shaded area
formed by lines L, and Lj, but point p is not in the shaded area formed by lines L. and Lg.
Hence point q is incident to point p, while point p is not incident to point q. Therefore,
this is an example of incidence asymmetry.

Figure 1-3 gives an example for incidence intransitivity, a, b and c are three points,

CHAPTER 1. INTRODUCTION 17

a=>b; (|a-b| < €)
b=c; (|b-c|] <¢g)
aXc; (|a-c| X €)

Figure 1-3: An example for incidence intransitivity.

where a = b since |[a — b| < ¢; b = c since |b—¢| < ¢; but a # ¢, since [a —¢| > .

Figure 1-4 gives an example of the problem for topology violation. An ideal closed region
in Figure 1-4(a) is not truly closed when rcpresented in the computer (Figure 1-4(b)). It
is because there are gaps between curves (edges) and points (vertices) stemming from thc
inaccurate representation of floating point numbers in computer.

1.2 Previous Work

Robustness of solid modelers has been ciearly identified since late 1980, see Hoffmann [23].
There is a great amount of research on robust geometrical representations and computations.
Section 1.2.1 summarizes the research on those two topics. This section also summarizes
the research for solving systems of non-linear polynomial equations, because it is essential
for geometrical computations and interrogations from which robustness problems arise.

A A

(b)

Figure 1-4: An example of topology violation

CHAPTER 1. INTRODUCTION 18

1.2.1 Robust Geometrical Representation and Computation
Robust Geometrical Representation

Ottmann, Thiemt and Ullrich [48] use exact arithmetic to achieve robust algorithms for
intersecting line segments. They only use those linear objects which can be represented
exactly and perform their computations with exact numbers. Thus, not only are their
geometric entities limited to linear objects, but their representations of linear objects are
discrete.

Greene and Yao [18] use the idea of transforming continuous domains into discrete
domains to avoid invalid solutions of geometrical computations. In their algorithm, all
intersection points and segment vertices are shifted to specified floating point numbers to
achieve unambiguous solutions.

Sugihara and Iri [73] employ the same idea but shift the endpoints of segments to grid
points. They recognize that the sign of a number can be determined without error if the
number is defined from a finite number of computations on finite-bit data. Therefore, in
their polyhedral modeler, the plane equations az + by + ¢ + d = 0 only take integers
for coefficients a,b,c and adapt arbitrary bits for d as pr. :ision is required to maintain
robustness.

Milenkovic [41] presents data normalization and hidden variable methods for robust
geometrical computations. The data normalization method changes the structure and pa-
rameter of geometric entities accordingly so that all numerical tests are confirmably correct.
The hidden variable method chooses a data structure such that the topology of geometric
entities will be consistent for geometrical interrogations. Milenkovic calls it the hidden
variable method because the topology of the ideal geometric entities is known but their
numerical values are not.

Salesin [59], and Salesin, Stofi and Guibas (58], propose e-geometry as a framework for
robust geometrical algorithms. Their algorithm finds the range of perturbation for input
data in which all perturbed geometries have consistent answers.

Stewart [70] proposes the idea of local robustness which is a weaker criterion than robust-
ness and applies it to polyhedral intersections. Local robustness means an algorithm has a
consistent set of decisions for all input consisting of exactly the same incidence relationship
of points, lines and planes.

Fang, Bruderlin and Zhu use a tolerance-based intuitionistic approach to ensure robust-
ness in solid modeling [15). They define tolerance-based geometries, for which geometry is
represented as tolerance regions which include the space close to the ideal geometry and
exclude the space clearly distant from the ideal geometry. The space between these two
regions is an ambiguous (undecided) region. Their tolerances can be dynamically changed
if ambiguity arises for any geometrical interrogation.

Benouamer, Michelucci and Peroche [3] use lazy rational arithmetic to handle numerical
errors in geometrical computation. In their algorithms, only the necessary precise compu-
tations are performed without the algorithm having to foresee these computations. They
present an error-free boundary evaluation method via lazy rational arithmetic for polyhedral

CHAPTER 1. INTRODUCTION 19

solids.

Most of the above research however focuses on linear objects, such as line segments and
planes, except Fang, Bruderlin and Zhu {15] who apply their method to quadric and planar
surfaces. None of them can treat general free-form Bézier or B-spline curves and surfaces
generally used in B-rep solid modeling systems. This thesis attacks this problem based on
interval arithmetic.

Robust Geometrical Computation

The problem of lack of robustness for solid modelers in geometrical computations has been
widely studied. Geometrical computations are especially sensitive to ill-conditioned geo-
metrical interrogation, such as the computation of the tangential contact points of a curve
with a surface, or of two surfaces.

Much literature deals with the computation of singular points in intersection problems,
such as [40], [24], [25], [31], [82]. In [40], collinear normal points are used to find the
singular points of the intersection of two surfaces. The set of collinear normal points of two
surfaces is a superset of the singular points of the intersection of two surfaces. In the end,
if the surface distances at collinear normal points are zero, then these points are the actual
singular points.

Collinear normal points are also useful for the discovery of intersection loops of two
surfaces [64], [62). Cones and pyramids permit the application of surface subdivisions so
that no internal loops exist in subdivided patches, [32], [62], [30]; see Patrikalakis [49] for
an overview. Zhou et al [82] use the squared distance functions to compute the stationary
points. The set of collinear normal points is a subset of the stationary points of distance
functions of two patches, since the distances of the patches at collinear normal points are sta-
tionary. However, it includes also the intersection points. Therefore, this is not an efficient
method to compute the collinear normal points. Furthermore, in the above literature, prob-
lems of curve or surface overlap are not studied. Finally, most of the numerical robustness
of above algorithm in floating point was not considered and studied. This thesis develops
efficient methods for computing collinear normal points, tangential contact point, tangential
intersection curves and overlapping using a robust solver based on interval arithmetic.

The Use of Interval Arithmetic in Geometrical Computation

Interval arithmetic has been applied in geometric modeling, CAD and robotics. For ex-
ample, Mudur and Koparkar [44], Toth [74], Enger [14], Duff [13] and Snyder [69] applied
interval algorithms to geometry processing, and Sederberg and Farouki [63], and Sederberg
and Buehler [61] applied interval methods to approximation problems. Tuohy and Pa-
trikalakis [76] applied interval methods to the representation of functions with uncertainty,
such as geophysical property maps. Tuohy, Maekawa and Patrikalakis [75] and Hager [21]
applied interval methods in robotics. Bliek [4] studied interval Newton methods for de-
sign automation and inclusion monotonicity properties in interval arithmetic for solving the
consistency problem associated with a hierarchical design methodology.

CHAPTER 1. INTRODUCTION 20

Maekawa and Patrikalakis [36], [37] extend the interval arithmetic to rounded interval
arithmetic. They also apply it to the computation of singularities of offset curves and of
intersections of two offsets of two planar curves [36]. The rounded interval arithmetic is
also used in this thesis as the base for geometrical representations and computations.

1.2.2 Methods for Solving Systems of Non-Linear Polynomial Equations

In computer aided design and computer graphics, free-form curves and surfaces are typically
represented parametrically by piecewise polynomials. The governing equations for geomet-
ric processing and shape interrogation, in general, reduce to solving systems of non-linear
polynomial equations or irrational equations involving non-linear polynomials and square
roots of polynomials. Geometrical interrogations can often be converted to solving systems
of non-linear polynomial equations. The square root arises, for example, from the normal-
ization of the normal vector and from the analytical expressions of curvatures. The problem
involving irrational equations can be reduced to solution of systems of polynomial equations
of higher dimensionality through the introduction of auxiliary variables, see Mackawa and
Patrikalakis [37], [36]. Alternatively, squaring methods can convert irrational equations to
polynomial equations cf hizher degrees.

Examples of application of non-linear polynomial solver include: (1) to ray trace the
offset of trimmed NURBS surfaces(see Hu [26]); (2) to ray trace trimmed rational surface
patches (see Nishita et al. [47]); (3) to compute the singular points of silhouette curves in
the visual screen (see Hu [26]) and distance function computations (see Zhou et al. [82]);
(4) to represent and interrogate functions with uncertainty (see Tuohy et al. [76], [75]); (5)
to compute extrema of curvatures of parametric polynomial surface patches (see Maekawa
and Patrikalakis [37]), the self-intersection of offset curves and intersections of two offset
curves (see Maekawa and Patrikalakis [36}, [35]).

There is numer::us literature about solving non-linear polynomial equations using global
methods, see Kearfott [27], Kearfott [28], Bliek [4], Neumaier [46], Manocha [38] [39],
Buchberger [7], Canny [8], Garcia et al.[17], Zangwill [81], Nishita et al. [47], Vafiadou
and Patrikalakis [77], Sherbrooke and Patrikalakis [67].! These methods can be classified
into three categories: algebraic geometry techniques, homotopy techniques and subdivision
based-techniques. For more details regarding of categorizations, see [67], [38], and [27].

Among these approaches, subdivision based techniques are preferred for their elegant
simplicity and robustness which guarantee to discard regions not containing roots. In partic-
ular, they can be easily combined with interval arithmetic to improve numerical robustness.
For a summary and applications of subdivision techniques to intersection problems, sec
Patrikalakis [49]. Following is a brief review of two subdivision methods: Bézier Clipping
and Projected-Polyhedron methods.

'There also exists a number of local numerical techniques which employ some variation of Newton-Raphson
iteration or numerical optimization. However, they typically require good initial approximations to roots;
such approximations are usually obtained through some sort of global search like sampling, a process which
cannot provide full assurance that all roots have been found.

CHAPTER 1. INTRODUCTION 21

Nishita, et al. [47] develop an adaptive subdivision method, called Bézier Clipping to
solve non-linear polynomial systems with two equations and two unknowns. Apart from
numerical robustness problems which will be addressed in this thesis, the Bézier Clipping
Method presented in [47] works well for well-conditioned non-linear polynomial systems.
However for ill-conditioned cases it might report extraneous roots which are not even ap-
proximate roots. For counterexamples, see section 3.4.2.

Sherbrooke and Patrikalakis [67] develop the Projected-Polyhedron algorithm and the
Linear-Programming to solve systems of n non-linear polynomial equations and n unknowns.
They also perform a comprehensive complexity and convergence analysis. However, in gen-
eral, subdivision methods do not guarantee not missing any roots arising from numerical
errors, if floating point arithmetic is used. Maekawa and Patrikalakis [36], [37] coupled
Bernstein subdivision with rounded interval arithmetic to enhance the robustness of a gen-
eral solver. These methods guarantee not to miss solutions and are very attractive from
the reliability point of view. They are only a constant factor more expensive than plain
floating point counterparts. They are also far more efficient than rational arithmetic imple-
mentations, and provide a formalized method for conservative rounding of exact operations.
Patrikalakis et al. [50] suggest the use of the solver as a core to build a robust solid modeler.

Other interval techniques have received significant attention for the solution of non-
linear systems. Among those are primarily interval Newton methods operating in rounded
interval arithmetic, combined with bisection to ensure convergence, see Kearfott [28], and
Neumaier [46].

This thesis develops a solver for unbalanced non-linear polynomial equation systems.
This solver can solve overconstrained non-linear polynomial equations directly and simul-
taneously.

1.3 Objectives of the Thesis

The overall object of this thesis is to build a framework for a robust solid modeler for curved
manifold and non-manifold objects, both in the geometrical representations and operations
of geometrical interrogations.

To achieve this goal, the following three intermediate objects are considered: (1) numer-
ically robust geometrical representations, (2) algorithms for numerically robust geometrical
interrogations, including ill-conditioned geometrical intersections, and (3) algorithms for
Boolean operations for 2D and 3D manifold and non-manifold geometric objects.

Interval polynomial objects are proposed in this thesis for robust geometric representa-
tions. A robust algorithm (solver) is developed for the solutions of unbalanced non-linear
polynomial equation systems. This solver leads to a robust general unified algorithm for
geometrical intersection problems. For surface intersections, a direct algorithm is developed
to determine collinear normal points and isolated tangential contact points of two surfaces.
Collinear normal points is used for the effective detection of intersection curve loops.

Theory and algorithms are developed for ill-conditioned intersection problems, such as
tangential intersection of curves and surfaces, overlapping of curves and surfaces. A theorem

CHAPTER 1. INTRODUCTION 22

(referred to as End Point Theorem) is presented to verify that if two ideal Bézier patches
tangentially intersect along a non-closed curve, the tangential intersection curve must start
from a boundary and end at a boundary of either of the two patches. This theorem is
extended to any two C'™® continuous patches, and is followed by a corollary for surface
overlapping.

An n-D novel non-manifold data structure for interval polynomial objects (points,
curves, surfaces) is developed. It separates the manifold from the non-manifold parts of
the object, and categorizes nodes into six types for Boolean operations. This separation
allows the effective use of a new point classification algorithm for non-manifold objects.
Based on the robust interval geometrical representations and computations and data struc-
ture, algorithms for Boolean operations are developed first for 2D manifold curved solids
and then extended to 3D manifold curved solids. These algorithms are further extended to
2D and 3D non-manifold curved solids. In order to represent the geometric objects result-
ing from Boolean operations, such as trimmed surfaces, a theorem (referred to as Extreme
Orientation Theorem) and a related algorithm are developed to determine the orientation
of a simple planar closed smooth curve by an extreme point and the curve’s derivative. The
smoothness can be relaxed to piecewise smoothness.

1.4 Organization of the Thesis

For robust geometrical representations, Chapter 2 explores interval arithmetic and interval
geometries, such as interval Bézier curves and Bézier surfaces.

In order to perform geometrical computation robustly, Chapter 3 discusses robust solver
for non-linear polynomial equations. In addition, Chapter 3 improves the numerical robust-
ness of the Interval Projected-Polyhedron (IPP) algorithm and extends it to overconstrained
and underconstrained non-linear polynomial equation systems.

Based on the solver in Chapter 3, Chapter 4 presents a unified robust algorithm for
geometrical intersections. We also discuss ill-conditioned cases, such as computation of
tangential contact points of curves and surfaces, and overlapping of curves and surfaces.

Based on the cell-tuple structure, a non-manifold data structure for representing the
topology of interval geometries is presented in Chapter 5.

With this data structure, Chapter 6 develops algorithms for non-regularized 2 Boolean
operations. This 2D Boolean operators can handle both manifold 2D objects and non-
manifold 2D objects.

Chapter 7 further extends 2D Boolean operations to 3D Boolean operations. The 3D
Boolean operators can handle manifold 3D objects and non-manifold 3D objects resulting
from tangential intersections.

Chapter 8 shows some numerical results for robust intersection algorithms, especially for
ill-conditioned tangential intersections and overlappings. It also presents numerical results
for Boolean operations on 2D and 3D manifold and non-manifold objects.

Finally, Chapter 9 presents conclusions and recommendations for future research, fol-
lowed by Appendix A, B and C.

CHAPTER 1. INTRODUCTION 23

Appendix A presents a theorem and an algorithm to decide the orientation of planar
simple closed curves. The orientation of planar simple closed curves is used for representing
and visualizing trimmed patches. A point ciassification algorithm for non-manifold trimmed
objects is proposed in Appendix B for Boolean operations. In Appendix C, some issues
regarding our implementation experience are discussed.

Chapter 2

Robust Interval Geometric
Representations

2.1 Introduction

All state-of-the-art solid modeling systems for free-form objects operate in floating point
arithmetic. Usually, a solid object bordered by free-form surface patches is described with
a Boundary Representation scheme. The boundary curves and surfaces are frequently ex-
pressed in terms of non-uniform rational B-spline (NURBS). NURBS is favored because of
its flexibility, generality and its explicit incorporation in data exchange standards. How-
ever, assembling a collection of surface patches (of limited precision) to create boundaries
of solids frequently yields gaps in boundary parts. These gaps further yield ambiguities in
the definition of point sets contained in the interior of the solid, see Figure 2-9(b). This
is an example of geometrical failure in current solid modeling systems. As indicated in
Chapter 1, this geometrical failure causes topology violation.

The ultimate reason for this failure is the practically limited precision of most geometri-
cal representations. This poses theoretical restrictions even for linear objects, see Hoffmann
[22] (23]. This thesis adopts interval spline objects for robustly modeling curved solids. In-
terval spline objects, primarily interval Bézier curves and patches, can retain the advantages
offered by Boundary Representations and simultaneously maintain robust representations
and geometric processing.

Section 2.2 shows the motivation for searching robust geometrical representations. Sec-
tion 2.3 reviews the Interval and rounded interval arithmetic for they are the basis for the
class of interval spline objects. Section 2.4 discusses the Interval de Casteljau algorithm,
because it plays an important role in subdivision methods for solving polynomial systems.
Section 2.5 presents the approach for robust curved geometric representations.

24

CHAPTER 2. ROBUST INTERVAL GEOMETRIC REPRESENTATIONS 25

2.2 An Example

This scction shows one example that motivate the interval geometric representations.
y

Figure 2-1: Curves y = z* and y = 0 contact tangentially at the origin.

Example 2.1 Suppose we have a degree four planar Bézier curve whose control points are
given by

(—0.5,0.0625), (—0.25,-0.0625), (0,0.0625). (0.25,—0.0625), (0.5,0.0625) (2.1)
as shown in Figure 2-1.

This Bézier curve is equivalent to the explicit curve y = z% (—0.5 < z < 0.5). Apparently
the curve intersects with z-axis tangentially at (z,y) = (0,0). However, if the curve has
been translated by +1 in the y direction and translated back to the original position by
moving by —% three times during a geometric processing session, the curve will generally
not be the same as the original curve in the context of floating point arithmetic (FPA). For
illustration, let us assume a decimal computer with a four-digit normalized mantissa, and
the computer rounds off intelligently rather than truncating. Then the rational number
—:‘-, will be stored in the decimal computer as —0.3333 x 10°. After the processing the new
control points will be

(-0.5,0.0631), (-0.25,—0.0624), (0,0.0631), (0.25,-0.0624), (0.5,0.0631) (2.2)

If we evaluate the curve at parameter value t = 0.5, we obtain (0, 0.00035) instead of (0,0).
Therefore there exists a numerical gap which could later lead to inconsistency between
topological structures and geometric representations. For example, if these new control
points are used for computing intersections with the z-axis, the computer will return no
solutions when the tolerance is smaller than 0.00035. The above problem illustrates the
case when the error is created during the formulation of the governing equations by various
algebraic transformations.

CHAPTER 2. ROEUST INTERVAL GEOMETRIC REPRESENTATIONS 26

2.3 Interval and Rounded Interval Arithmetic

This section briefly reviews interval and rounded interval arithmetic. It then precents the
work on improvement of efficiency for rounded interval arithmetic. This is necessitated by
our experience that rounded interval arithmetic often increases the computation time over
the floating arithmetic by one order of magnitude.

2.3.1 Interval Arithmetic

An interval is a set of real numbers defined by [42]:
[a,b] = {z]e < z < b} (2.3)

The interval [a, b] is said to be degenerate if « = b. Two intervals [a, b] and [c, d] are said to
be equal if a = ¢ and b = d. The intersection of two intervals is empty or [a,b] N [¢,d] = 0,
if either @ > d or ¢ > b. Otherwise, [a,b] N [c, d] = [maz(a,c), min(b,d)]. The union of the
two intersecting intervals is [a,b] U [c,d] = [min(a,c), maz(b,d)]. An order of intervals is
defined by [a,b] < [c,d] if and only if b < c. The width of an interval [a,b] is b — a and the
absolute value is |[2,bll = maz(|al, |b]).

The interval writhmetic operations are defined by [42]

[a,b]o[c,d] = {z oy |z € [a,b) and y € [c,d]}. (2.4)

where o represents an arithmetic operation o € {+,—,,/}. Using the end points of the two
intervals, we can rewrite equation (2.4) as follows

[a,b] + [c,d] = [a + ¢, b+ d]

(a,6] — [c,d] = [a — d,b— c]

[a,b] - [c,d] = [min(ac, ad,be,bd), maz(ac,ad, be,bd))

(a,b)/[c,d] = [min(a/c,a/d,b]ec,b/d),maz(a/c,a/d,blc,b/d)] (2.5)

provided 0 ¢ [e,d] in the division.

2.3.2 Rounded Interval Arithmetic

If floating point arithmetic is used to evaluate interval arithmetic equations (2.5), there
is no guarantee that the roundings of the bounds are conducted conservatively. Floating
numbers are represented in the computer by a fixed length. The nvinber of bytes to represent
a floating point number depends on the precision of the variable. For example, the IEEE
standard for a double-precision has 64 bits, 8 bytes wordsize, and is stored in a binary form
(£)m - 2°%P, where m is the mantissa (0.5 < m < 1) and exp is the ezponent. Figure 2-2
illustrates how data is stored in the binary form; a single bit for sign, 11 bits for exponent
and 52 bits for mantissa. Since the mantissa is restricted to the range 0.5 < m < 1, the
bit for 27! is not used. The exponent is 1022 biased to ensure the stored exponent is

CHAPTER 2. ROBUST INTERVAL GEOMETRIC REPRESENTATIONS 27

always positive. For example the number -0.125 is stored as 1011111111000---0. Mos:
left bit represents the sign —, next 11 bits 01111111100 is the biased exponent which is
1020-1022 = -2 and the rest of 52 bits which are all zero represents the mantissa 0.5. Hence
—0.5-2"2 = —0.125. If x and 2z’ are consecutive positive double-precision numbers, they
differ by an amount ¢ called ulp (one Unit in ihe Last Place), so that € = 2753.9¢exp — Qexp—53,
Now it is possible to carry out the operation of interval arithmetic with rounding, so that
the computed end points always contain the exact interval as follows

[a,b] + [c,d]=[a+c—€,b+d+ €]

[a,0] — [c,d]=[a—d—€e,b—c+¢]

[a,b] - [c,d] = [min(ac, ad, be,bd) — €, maz(ac, ad. be,bd) + €]

[a,b)/[c,d] = [min(a/c,a/d,bfec,b/d) — ¢, maz(a/c,a/d,bfc,b/d)+ (] (2.6)
Each ¢ in the equations can be obtained by € = 257733 where exp is extracted from each

computed lower or upper bound. We refer to the definitions given in equations (2.6) as
rounded interval arithmetic.

1 bit 11 bits 52 bits
— l|< >{¢ »
;5| Piesed 5150 9| mantissa 0
exponent |
sign bit 2 =2 2_53

Figure 2-2: IEEE format for binary representation of double-precision floating-point number

When performing standard operations for interval numbers, we always make the lower
bound to include its previous consecutive number, which is smaller than the lower bound
by ulp, and the upper bound include its next consecutive number. We enlarge the result of
interval operators by two ulp numbers, so the result will be reliable in subsequent operations.
Consequently, we can compute the result of interval operations in the least conservative
fashion.

2.3.3 The Improvement of Efficiency for Rounded Interval Arithmetic

Rounded interval arithmetic can enhance robustness, yet in our experience, generally com-
putation time increases by a factor of ten to forty over the use of floating point arith-
metic. This section introduces bit operators to improve the efficiency for rounded interval

CHAPTER 2. ROBUST INTERVAL GEOMETRIC REPRESENTATIONS 28

arithmetic. In our exneriments, rounded interval arithmetic with bit operators could save
two-thirds of computation time of standard rounded interval arithmetic.

Routines l1dexp and frexp are called to extract the ulp of a double-precision and
computer-representable number. frexp is used mainly to extract exponent expt of d. The
mantissa man is ignored. ldexp is used to compute the ulp of d. The routine that carries
out the extraction is:

#include <math.h>

double ulp (double d)
{
double man, ulp;
int expt;

frexp(d, &expt);
ldexp(0.5, expt - 52);

man
ulp

return ulp;

The most significant difference between floating point and rounded interval arithmetic
is the extraction in ulp of a double-precision number for interval arithmetic, see also Hu
[26]. This extra routine dramatically slows down overall performance of programs adopt-
ing interval arithmetic. Therefore, if we can improve the efficiency in extracting ulp from
a double-precision and computer-representable number, we can make significant improve-
ments in the use of rounded interval arithmetic in various applications.

In the ulp routine, we clearly see excessive work, because of the extraction of the
mantissa. Furthermore, the routine ldexp is a general one. In our particular case, the
mantissa of “ulp” is always 0.5, the hidden bit is always 1, and bits for mantissa of ulp of
d are all zero. We could take advantage of this knowledge to save computation time.

In fact, the only work which is useful for us from this routine is to extract the exponent
of d and subtract 52 from it, and put the result into exponent bits of ulp. The rest of bits
of ulp are fixed, since ulp is always positive and the mantissa bits are all zeros, except the
hidden one, which is always 1. See fig. 2-3.

Bit operators are among the fastest operations for the computer. So working on bits
instead of calling 1dexp and frexp can save substantial amount of computation time.

Here, the way we present how to compute ulp with bit operators is only good for IEEE
standard 754 double-precision floating-point arithnietic. Nevertheless, it could easily be
adopted with minor modifications for triple-precision or quadruple-precision floating-point
arithmetic.

CHAPTER 2. ROBUST INTERVAL GEOMETRIC REPRESENTATIONS 29

1 bit 11 bits 52 bits
sign exponent mantissa
bits for a4

lI oxXp Il I e o a2

bits for round of 4

0| exp — 52 |0|00)

Figure 2-3: The bit operations for the ulp of a double-precision number

2.4 Interval de Casteljau Algorithm

In this section, de Casteljau algorithm is summarized and coupled with rounded interval
arithmetic, because it is used to evaluate and subdivide interval polynomial splines. It also
plays an important role in the IPP solver in Chapter 3.

The de Casteljau algorithm [16] is a repeated application of affine map of two points:

Supoouse bo,by,...,b, € R3 and teR.

Let
b (t) = (1 - t)b]~}(t) + tbi;}(t) {: - 1,...,n (2.7

where
bl(t) = bi(i =0,1,...,n).

Then bj(t) is the point with parameter value ¢ on the Bézier curve.

b; (i = 0,1,...,n) are control points. The control points form the control polygon.
Figure 2-4 illustrates a cubic Bézier curve. The intervening coefficients can be arranged
into a triangular array of points, the de Casteljau scheme. In equation 2.8 we take the

CHAPTER 2. ROBUST INTERVAL GEOMETRIC REPRESENTATIONS 30

b1 b
bl 1 2
Q-
bl
) 2
b3
0
1 2
b b
0 0
b3
b
0

Figure 2-4: The de Casteljau algorithm

cubic case for example.
b
b; b}
b, b! b}
bs; bl b? b}

(2.8)

Subdivision of Bézier Curves: The de Casteljau algorithm can also provide the control
points of subdivided Bézier curves [16]. This subdivision algorithm is heavily used in the
IPP solver, as discussed in Chapter 3.

Let t be the variable of a Bézier curve and ranging from 0 to 1,ie.,0 <t < 1. If we
subdivide a Bézier curve of degree n at t = 1y, 0 < to < 1. Then the control points c;
(j =0,1,...,n) of the Bézier curve associated to the range [0, 1] are:

¢c; = bi(to) j€{0,...,n} (2.9)
And the control points c; of the Bézier curve associated to the range [to, 1] are:
c; =b?(to) je€{0,...,n} (2.10)

The interval de Casteljau algorithm is a repeated linear interpolation of two interval
points (rectangles or boxes), illustrated in Figure 2-5. In Figure 2-5, we can observe that
the interpolated interval control points can be obtained by linear interpolation of the corner
points of the original intervals with a slightly larger area denoted by dotted line, which is
the result of rounded interval arithmetic.

CHAPTER 2. ROBUST INTERVAL GEOMETRIC REPRESENTATIONS

Figure 2-5: Affine map

31

CHAPTER 2. ROBUST INTERVAL GEOMETRIC REPRESENTATIONS 32

tp2} (p3]

1
ipl) (p6)

Figure 2-6: An example of an interval polynomial curve.

Figure 2-7: An example of an interval polynomial surface patch.

2.5 Robust Representation of Interval Polynomial Splines

Geometrical representations in the context of floating point arithmetic often yield geomet-
rical failure, as discussed in Section 2.1. To overcome these geometrical failures, we use the
following interval polynomial objects in the solid modeler.

2.5.1 Interval Polynomial Splines

Interval polynomial objects (curves and surfaces) are polynomial curves/surfaces with in-
terval coefficients. Usually, they are represented by Bézier curves/surfaces with interval
control points (see Figures 2-6 and 2-7).

Hence interval polynomial objects differ from polynomial splines in that the real numbers
representing control point coordinates are replaced by intervals. That means, the classical
control points are replaced by rectangle or boxes. Consequently, interval Bézier curves
represent slender tubes and interval patches represent volumes typically as thin Bézier
shells, if the intervals chosen are small.

In general the control points of the given curve are given in floating point numbers which
can be initially treated as degenerate (zero-width) intervals. By using rounded interval

CHAPTER 2. ROBUST INTERVAL GEOMETRIC REPRESENTATIONS 33

-
N —_—=

X

Figure 2-8: A Bézier curve bounded by an interval Bézier curve.

arithmetic in the geometric processing proceeds, the width of the interval grows gradually
so that the interval always contain the exact result.

In the remaining of this section, we explain how the interval polynomial spline rep-
resentations achieve the robustness. The concept of interval polynomial spline comes up
naturally when formalizing computational accuracy on computing machinery. Remember
that a patch of interval spline is not a true 2D object, but rather an object enclosed by a
shell containing a family of patches, whose representations fulfill the error bounds controlled
by floating point arithmetic. Figure 2-8 illustrates the bounding interval Bézier curve of
the original Bézier curve whose control points are given by (2.1). (In this figure, the height
of the interval control points is exaggerated by the factor of 20.) In the computation of
the intersection of the curve with the z-axis is computed if the interval curve is used, the
algorithm will capture the intersection point. See Figure 2-9(c) for an illustration.

In Figure 2-9 the thickness of sealing boundaries is exaggerated for illustration but
in general it may be of the order of 107 to 1072 when operating in double precision
arithmetic. Topological violations can also be avoided by using interval polynomial objects
Figure 2-9.

2.5.2 Interval Polynomial Splines v.s. Polynomial Splines

Interval polynomial splines inherit the advantages of polynomial splines, such as (1) eco-
nomical memory space (only twice as much), (2) representability of large class of free-form
objects, (3) acceptability as international standard for data exchange and representation.

It also has the following advantages over polynomial splines (1) automatical control of
computation errors, (2) avoidance of topological violation, (3) ability to solve ill-conditioned
geometric interrogation problems.

Although the use of interval polynomial splines results in robust geometrical represen-
tation, it also destroys some properties of spline objects. This section discusses two issues
for interval polynomial splines: one is dimensionality and the other is incidence of interval
objects.

One of the issues if the dimensionality of interval objects, as interval objects are of the

CHAPTER 2. ROBUST INTERVAL GEOMETRIC REPRESENTATIONS 34

OO

(a) Ideal (b) State of the art (c) My method

Figure 2-9: (a) Idealized Boundary Representation of a triangular face; (b) Actual numer-
ical Boundary Representation in current CAD/CAM systems with gaps and inappropriate
intersections; (c) Conceptual sketch of proposed generalized Boundary Representation in
terms of interval polynomial curves / surfaces.

same dimensionality, regardless of their original one. For instance, in 3D space, interval
points, curves and surfaces are all volumetric.

However, in some situations, the differentiation of dimensionality of an object is still
important. Take point classification for example. We have to find the number of intersection
“points” of a ray with the boundary in order to decide whether a point is inside a bounding
curve. Another example is the computation of the Euler Formula; we have to distinguish
vertices, edges, and faces from each other.

Therefore, in this thesis, the dimensionality of interval objects is defined by the dimen-
sionality of their original objects. This will be further discussed in Chapter 5.

Another issue is the incidence of interval objects. We will discuss this definition in
Chapter 4.

Chapter 3

Robust Solver of Non-Linear
Polynomial Systems

3.1 Introduction

Many geometrical computations can be transformed to solving a system of non-linear poly-
nomial equations, either balanced (the number of equations and unknowns are the same)
or unbalanced systems. An unbalanced system could be underconstrained (the number of
equations is less than the number of unknowns) or overconstrained (the number of equations
is larger than the number of unknowns). A balanced system is the most common form in
geometric modeling problems. There are plenty of algorithms to solve balanced systems,
see Section 1.2.2.

The traditional way to solve overconstrained systems is to convert them to many bal-
anced systems which can be solved sequentially by appropriate algorithms.

For instance, to solve the intersection problem of two planar parametric curves can be
converted to a system with two equations and two unknowns. It is a balanced system,
and can be solved many algorithms to solved either by generic algorithms [67] [36] [29] [27]
(38] [4] or special algorithms [60] [65] (66] [26]. However, solving for the intersection of two
parametric curves in 3D space is relatively rarely addressed in the literature, partly, because
it is an overconstrained system with three equations and two unknowns.

Such overconstrained systems are solved by converting them (1) into a sequence of
balanced and underconstrained problems, or (2) into minimization problems, e.g., see [82]
by Zhou, Sherbrooke and Patrikalakis.

The remaining of the chapter is organized as follows. Section 3.2 presents a general
solver for unbalanced and balanced non-linear polynomial systems. This solver is used
as a kernel for our robust geometrical computations. It also describes the essential idea
behind the extension from solving balanced systems to solving unbalanced systems. By the
nature of the subdivision methods, the solver might report multiple roots for one actual
root. Hence, a method for consolidating those multiple roots intc one root is also discussed.
Section 3.3 examines those leftover boxes by the previous subdivision methods, such as

35

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 36

Projected-Polyhedron algorithm and Bézier clipping method. We examine those leftover
regions because the previous subdivision methods mistake some extranecous roots as actual
roots for some ill-conditioned cases. Section 3.4 gives two such ill-conditioned examples for
subdivision methods. One is for 1D and the other is for 2D. An analysis of the failure of
subdivision methods for those two examples by the Bézier clipping method is given in the
same section. Section 3.5 presents a Convez-Hull-Cross-Azes check to overcome this failure.
Section 3.6 proves the correctness of this check.

3.2 Rounded Interval Projected-Polyhedron Algorithm

This section presents a robust solver for unbalanced and balanced non-linear polynomial
systems.

Maekawa and Patrikalakis [37] [36] extended the Projected-Polyhedron (PP) algorithm
[67] to operate in rounded interval arithmetic for numerical robustness. In fact the PP al-
gorithm implemented in rational arithmetic is robust but unacceptably slow for high degree
and high dimensional cases. A floating point implementation of the PP algorithm, despite
the use of the Bernstein basis, is not always robust when dealing with ill-conditioned roots.
Without the cost of rational arithmetic, rounded interval arithmetic, on the other hand, can
be considered as a method of conservative rounding of rational arithmetic. Algorithm for
Interval Projected Polyhedron (IPP) solver described in this section is an extension of the
algorithm described in [36] from solving balanced systems to solving unbalanced systems.

3.2.1 Projected-Polyhedron Algorithm for Unbalanced and Balanced Sys-
tems

Suppose we solve a system of nonlinear polynomial equations f = (f1, f2,..., fa) = 0 over
the box $ € R™ (n > m, n = m, n < m) where 5 is defined by

S = [al,b]] X [az,bgl X...X [(lm,bm]. (31)
That is, we wish to find all u € S such that
fi(w) = folw) = ... = fu(u) = 0. (3.2)

By making the affine parameter transformation [16] u; = a; + zi(b; —a;) fori = 1,---m, we
convert the problem to determining all x € [0,1]™ such that

Hi(x)= fo(x) =...= fa(x) = 0. (3.3)

Now furthermore suppose that each of the fi is polynomial in the independent parameters
T1,T2,...,Zm. Let dgk) denote the degree of fi in the variable z;; then fi can be written

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 37

in the multivariate Bernstein polynomials:

FONF O
i)=Y Y Y wl B (@B, g(m). B, golem). (34)

11=01i2=0 im=0

where B is the i-th Bernstein polynomial. The notation in (3.4) can be simplified by
letting I = (i1,42,...im), D¥) = (d(k) d(") .,ds,f)) and writing (3.4) in the equivalent form
(67].

D(k)

fix) = Y 0l B) po(x). (3.5)
1

Here we have merely rewritten the product of Bernstein polynomials as a single Bernstein
multinomial By p(x)(x). Bernstein polynomials have a useful identity called linear precision
property, i.e., t can be expressed as the weighted sum of Bernstein polynomials with coeffi-
cients evenly spaced in the interval [0, 1]. Using this property, we can rewrite equation (3.5)

as follows:
Dk

Fi(x)= Y vi¥ By p(x) (3.6)
1

where

ik _ i bm_ (KNT
(d(k)vd(k)a dg:)swl) . (37)

These vSk)s are called the control points of F;. Now the algebraic problem of finding
roots of systems of polynomials has been transformed to the geometric problem involving
intersection of hypersurfaces. Because the problem is now phrased geometrically, we can
use the convez hull property of the multivariate Bernstein basis to bound the set of roots.
We can structure a root-finding algorithm as follows [51]:

1. Start with an initial box of search.

2. Scale the box and, as we did in converting between equations (3.2) and (3.3), perform
an appropriate affine parameter transformation to the functions fi, so that the box
becomes [0, 1]™. However, keep track of the scaling relationship between this box and
the initial box of search. This transformation can be performed with multivariate De
Casteljau subdivision.

3. Using the convex hull property, find a sub-box of [0, 1]™ which contains all the roots.
The essential idea behind the box generation scheme in this algorithm is to transform
a complicated (m + 1)-D problem into a series of m 2D problems, as follows:

(a) Project the vy’) of all of the F into m different ordinate planes; specifically, the
(Z1, Tm+1)-plane, the (22, Zm+1)-plane, and so on, up to the (2, Tm41) plane.

(b) In each one of these planes,

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 38

i. Construct n 2D convex hulls. The first is the convex hull of the projected
control points of F}, the second is from F and so on, up to Fy.

ii. Intersect each convex hull with the horizontal axis (that is, z,,4+1 = 0). Be-
cause the polygon is convex, the intersection may be either a closed interval
(which may degenerate to a point) or empty. If it is empty, then no root of
the system exists within the given search hox.

iii. Intersect the intervals with one another. Again, if the result is empty, no
root exists within the given search box.

(c) Construct an m-dimensional box by taking the Cartesian product of each one of
these intervals in order. In other words, the z; side of the box is the interval
resulting from the intersection in the (z;, Zm41)-plane, and so forth.

4. Using the scaling relationship between our current box and the initial box of search,
see if the new sub-box represents a sufficiently small box in R™. If it does not, then
go to step 5. If it does, then check the convex hulls of the hypersurface in the new
box. If the convex hulls cross each variable axis, conclude that there is a root or an
approximate root in the new box, and put the new box into a root list. Otherwise the
new box is discarded.

5. If any dimension of this sub-box are not much smaller than 1 unit in length (i.e., the
box has not decreased much in size along one or more sides), split the box evenly
along each dimension which is causing trouble. Continue on to the next iteration with
several independent sub-problems.

6. If none of the box is left, then the root-finding process is over. Otherwise, go back to
step 2, and perform it once for each new box.

The above root-finding algorithm differs form its previous counterpart in [51] [35] in that
(1) the number of Bézier hypersurfaces projected in Step 3 are more (or less), for we have
here an unbalanced system. We will discuss the feasibility in bSection 3.2.2; (2) previous
Projected-Polyhedron algorithm will sometimes report extraneous roots. We developed an
additional check, called convex-hull-cross-axes check, to delete those extraneous roots. The
check is shown is Step 4. We will discuss this in Section 3.5.

3.2.2 Projected-Polyhedron for Unbalanced Polynomial Systems

In the algorithm described in Section 3.2.1, if we have more equations, we just project more
Bézier hypersurfaces onto each (z;, zpn4+1) plane. In fact, the more Bézier hypersurfaces we
have, the tighter the feasible regions will be for each round of projections, if these equations
are independent. Take the example in Figure 3-1. It involves a balanced system with two
equations and two unknowns as follows:

24y -1=0 (3.8)

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 39

0 - X 0 A
(1, 0)
~——_Circle projected
polyhedron

N~ Eyperbola projected —;\-\

/ polyhedron \

Figure 3-1: Projecting the polyhedra of (z,y,z% + y? — 1) and (z,y,52% — §3° - 3).

5 5 54, 1
7% T 5Y 2—0 (3.9)

Thus two polyhedra are projected onto (z;,z3)-plane, (z3 = z in Figure3-1) to shrink the
feasible range, as indicated in Figure 3-1. By adding one more equation fo that system as

follows:
2

3:4—+4y2— 1=0 (3.10)

the new system becomes an overconstrained system with three equations and two unknowns
(intersecting a circular arc, a hyperbolic arc and an elliptical arc). Figure 3-2 shows the
shrinkage of the feasible range for the overconstrained system. As we can see from Figure 3-
2, the projection of the elliptical convex hull does help in eliminating part of the y-axis, while
in Figure 3-1 no part of the x-axis can be eliminated from the projection of circular and
elliptical convex hulls. In this manner, solving more equations than unknowns accelerates
the root finding process.

If the intersection of the projected convex hulls with the i-th axis does not shrink to
80% or less of the previous i-th interval [67], then each hypersurface is binarily subdivided
in i-th direction. Otherwise, the process is reiterated for each direction until the interval
box satisfies the tolerance condition [67].

3.2.3 The Advantage of the Extended IPP Solver

The IPP has been implemented in C++ and has been tested extensively. It has three
advantages: (1) theoretical and numerical robustness; (2) a global solution method without

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 40

) z A

z Ellipse projected

-7 / polyhedron \ i
| /
| i
|
|
|
|
A

L&
(1, 0)

“*I————Circle projected
L polyhedron

j\ Hyperbola projected ——\
/ polyhedron \

| B

Figure 3-2: Projecting the polyhedra of (z,y,z2+y%~1), (z,y, 322 - $y2 - }) and (<, y, ’4—2 +
4y% - 1).

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 41

initial root approximation; (3) solution of overconstrained, underconstrained, and balanced
systems of non-linear polynomials.

One example to use the extended root solver, is to compute the tangential intersection
of a curve with a surface. The old root solver will take 2530u CPU time to compute the
result. By adding one more equation imposing the tangential contact constraint, i.e., the
normal of the surface is perpendicular to the tangent of the curve at the intersection point,
we have a system of four equations with three unknowns. It only took 15.3u CPU time to
compute that one point. The difference in computation time is a factor of 165.4.

Real Solutions of Underconstrained Systems: In underconstrained systems, we have
less equations than variables. In the previous subsection, we know that it is possible to
project more hypersurfaces than variable planes to find real roots for overconstrained sys-
tems. It is also possible to project less hypersurfaces than variable planes onto (i, Tm41)-
planes. The only interaction between those hypersurfaces is the intersection of their pro-
jected convex hulls in each (z;,z;n4+1)-plane. Therefore, we can use the following corollary
to conclude the extension of Projected-Polyhedron algorithm to soive underconstrained sys-
tfems.

Corollary 3.1 Let S be an underconstrained polynomial system with m equations and n
variables, where m < n. If an e-box satisfies the tolerance condition [67], and the final
convez hull check, then the ¢-bozx contains at least approzimate roots.

Proof: This proof can be done by the same procedures as in Theorem 3.1 in Section 3.6.2.
a

3.2.4 Consolidation of Roots

We may want to consolidate several roots, which have approximately the same value, to one
root since the solver might report many roots for one actual root due to the nature of the
subdivision method. This is important when we deal with topological interrogations, e.g.,
to identify a point as being outside or inside of a closed region by employing the ray-test
method. This consolidating procedure is crucial to the solid modeling system. It can simply
be described as follows: for a system of n equations and m variables, if two root intervals
overlap in every z;-axis, for i = 1,...,m, then we consolidate these two roots to one root.

3.3 Examination of the Leftover Boxes by Subdivision Meth-
ods

Let us call the leftover boxes from the subdivision methods as e-hoxes. The goal of this
section is to analyze these e-boxes. Section 3.5 will describe the implementation of Convez-
Hull-Cross-Azes check, to determine which ¢-boxes contain roots. Section 3.6 will prove the
correctness of the Convez-Hull-Cross-Azes check.

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 42

The essence of the Projected-Polyhedron Algorithm [67] is to exclude those regions wi.ich
contain no roots. It is an iterative method in which boxes which may contain roots satisfy
tolerance conditions. That means all sizes of such boxes are smaller than the prescribed
tolerance e. Theoretically what the Projected-Polyhedron algorithm achieves is to determine
that there exists a neighborhood W for each e-box: €-B, such that there is absolutely no
possibility for a root to be in W \ e-B 1. However, it never tells us where the root is.

Section 3.3.1 examines e-boxes because for sorue ill-conditioned cases, e-boxes may not
contain root at all.

3.3.1 Four Cases for Leftover Boxes

In the previous version of the Projected-Polyhedron algorithm, when the bounding box’s
sizes are smaller than the prescribed tolerance in each dirmension, the algorithm stops further
subdividing the domain, and assumes that the bounding box contains a root. However, the
leftover bounding boxes reported by the Projected-Polyhedron algorithm could be of four
cases: (case 1) true roots (for transversal cases), or (case 2) multiple roots (for tangent
cases), or (case 3) approximate roots (for nearly tangent cases), or (case 4) no root at all,
not even approximate roots (for pathological cases).

In Figure 3-3, examples of all four cases are skown. An example of a transversal case is
shown in Figure 3-3(1). This is the most benign case for using subdivision methods, such
as the Bézier ("ipping method or the Projected-Polyhedron algorithm. That is because
each e-box in this case contains one true root. An example of a tangent case is shown
in Figure 3-3(2). In this case, it is appropriate to use the Bézier Clipping method or
the Projected-Polyhedron algorithm but troublesome. The true tangent root will surely be
enveloped by an e-box, but so will be points around its neighborhood, as long as e-boxes pass
the tolerance conditions. This case usually produces a lot of e-boxes around the tangent root
and results in the use of tremendous time and memory space to complete the computation.
In the example of a nearly tangent case, which is shown in Ficure 3-3(3), an e-box might
contain approximate roots, depending on the tolerar~_. If the tolerance is loose. zu e-box
might be reported as an approximate root. However, if the tolerance is set iight enough,
then nc e-box will be held. This is acceptable because a user can set the tolerance according
to the resolution needed in his/her work. In Figure 3-3(4), we show the pathological case,
which is similar to the counterexample of Figure 3-4. The e-box contains no root at all (not
even an approximate one). The following section shows two counterexamples for subdivision
methods to illustrate case 4.

In this thesis, our goal is to identify an e-box containing at least approximate roots.

'W\e-B={z|lzt € W and z ¢ ¢-B}

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 43

A £-axis

\

transversal case tangential case
(1) (2)

lr f-axis

J | P
} >
A uraxis

nearly tangential case pathological case
(3) (4)

Figure 3-3: Examples of four cases of ¢-boxes

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 44

3.4 Ill-Conditioned Convex Hulls for Subdivision Methods

In this section, we show two examples in which ¢-box leftover by the Projected-Polyhedron
algorithm is far from containing a root. However, no matter how small the tolerance is,
the intersection of the projected polyhedron of hypersurfaces with variable axes will satisfy
the tolerance condition. Thus, in practice, the subdivision methods will always mistake the
leftover interval region for an approximate root. These two counterexamples can be applied
to other subdivision methods too, such as Bézier clipping method. The next Section 3.4.1
briefly reviews Bézier clipping method. Section 3.4.2 presents these two counterexamples
for subdivision methods.

3.4.1 Brief Review of Bézier Clipping Method

In reference [47], Nishita et al. solved a non-linear polynomial system with two equa-
tions and two unknowns to compute ray-patch intersections. They use the convex-hull-
intersection technique to clip away those impossible-to-contain-root regions until the region
is small enough to satisfy tolerance conditions. Then they treated that region as an inter-
section point, see reference [47] page 342. Nevertheless to pass the tolerance condition is
only a necessary condition, but not a sufficient condiiion. The necessary condition means
any region of parameter domain excluded by the tolerance condition does not contain any
root. It is not a sufficient condition because a region passing the tolerance condition does
not guarantee to contain a root. A counterexample of the using Bézier Clipping method to
solve 2D nonlinear polynomial system is shown in the following subsection.

3.4.2 Counterexamples of Subdivision Methods

Here, we show two counterexamples for subdivision methods, in which subdivision methods
will report an extraneous root. The first example is of a 1D system. The second example
is of a 2D system.

Example 3.1 The first ezample is a system with one equation and one unknown with degree
2, and 1is shown in Figure 3-4.

In Figure 3-4, the convex hull of the control points will always intersect the u-axis at
exactly one mathematical point. (But, the curve itself can be far away from the u-axis.)
Therefore, the Projected-Polyhedron algorithm can never discard that point, no matter
how small the tolerance is. Accordingly, in the program, that point will be mistaken as one
approximate root. Yet it is not a root or an approximate root.

In [47], the 2D Bézier Clipping method is used to solve a system with two equations
and two unknowns (see equation 17 in [47]). They convert the two equations Dy = D, =
0 into two explicit Bézier surfaces with parameters (s,t) in (s,f, D) coordinate system.
To find the root in s direction, they project these two explicit Bézier surfaces onto s-d
plane, and intersect their convex hulls with s-axis. If the intersection interval satisfies
tolerance conditions, then take that interval region as a root, (see [47], section 3.2 page

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 45

£(u)

u-axis

Figure 3-4: A convex hull of control points intersects u-axis at one point

H d; 1j=0]j=1]j=2 l a2 |j=0]j=1]j=2]
i=0[-1 | 2]-25 i=0]-06] -2 | -2
i=1] 1 [2125 [i=1]04] -1] 1
Hi=2 0 | -1]-15 i=2]04] -1 [1 |

Table 3.1: Data of d}'j and d?,j

342). Otherwise, they clip these two explicit surfaces and repeat the procedure again, until
no intersection area is left or the intersection area satisfies tolerance condition. The same
procedure is applied to find root in ¢-direction.

Example 3.2 Here is a 2D ezample, with two equations and two unknowns in Bernstein
form:

2 2
D'(s,t) =" B}(s)Bi(t)d}; =0 (3.11)
=0 j=0
2 2
D¥(s,t) =YY " B}(s)B:(t)d}, =0 (3.12)
i=0 ;=0

where the data of d} ; and d?; are shown in Table 3.1.

To find the root for the system, we used two methods: Bézier Clipping and Bézier
Clipping with convex-hull-cross-axes check.(It is denoted by BCWCHCA and incorporated
in Step 4 in Section 3.2). The result is shown in Table 3.2.

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 46

Bézier Clipping Method | BCWCHCA
| root (s,t) = (1.0, 0.0) No Root

Table 3.2: Results of two methods used to find the root of the systemn for a counterexample.

When we substitute (s,t) = (1.0,0.0), the solution set found by the Bézier Clipping
method, back into the system, we find that

D*(1.0,0.0) = 0.0

D?%(1.0,0.0) = 0.4

Obviously, (s,t) = (1.0,0.0) is not a root for the system.
The Bézier Clipping method mistook (s,t) = (1.0,0.0) for a root, while the convex-hull-
cross-axes check screens out this root.

3.4.3 Analysis of the Counterexamples

Here we analyze the reason why the Bézier Clipping method fails to identify roots correctly
and how our proposed convex-hull-cross-axes check works properly.

Let us analyze s-direction first, by referring to Figure 3-5. The convex hull of the
projection g! on s-d plane is shown in Figure 3-5 (1). It only iatersects the s-axis at exactly
one point s = 1.0. Similarly, the convex hull of the projection g? on s-d plane is shown
in Figure 3-5(3). It intersects with the s-axis with an interval range containing s = 1.0.
When intersecting these two convex hulls at the s-axis, one gets a resulting intersection set
as one point {s | s = 1.0}. Therefore, no matter how small the tolerance ¢ is, the resulting
intersection set will satisfy the tolerance condition.

Similarly, for the t-direction, the resulting intersection set of two convex hulls and t-axis
is {t | t = 0.0}. Again, no matter how small the tolerance is set, it will satisfy the tolerance
condition. Hence the Bézier Clipping method will treat (s,¢) = (1.0,0.0) as a root.

Indeed, the result will nullify D!(s,t), equation 3.11. When we use the convex-hull-
cross-axes check, D?(s,t) will fail to pass the check. That is because d values of the control
points of the chopped explicit surface g? are (0.4), which will not pass either the s-axis or
the t-axis. So, this result is discarded.

3.5 Implementation of Convex-Hull-Cross-Axes Check

This section describes the implementation of the Convez- hull-cross-azres check. The check
is to confirm where the roots are.

The basic idea behind convex-hull-cross-axes method is to check the convex hull of the
control points of each chopped hypersurface corresponding to the ¢-boxes to determine

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS

d-axis 8 a-axis
.0
l-lxil t-axis
-1
-2
-3
The projection of g" on The projection of gl on
s-d plane and its convex hull t-d plane and its convex hull
(1) (2)
d-axis
0 ﬁ .0
0 0=5 1.0 = >
: U s-axis t-axis
-1 o
-2
-3
The projection of gz on The projection of .'2 on
s-d plane and its convex hull t-d plane and its convex hull
(3) (4)

Figure 3-5: Projections of explicit surfaces g! and g? and their convex hulls.

47

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 48

convex hull of control points of
clipped Bezier curve corresponding
to leftover interval

leftover interval (< tolerance)

Figure 3-6: Although the leftover region is smaller than the tolerance, the corresponding
convex hull of the associated chopped Bézier curve does not cross the u-axis.

whether each projected convex hull intersects each i-axis for each dimension.

At the final stage of the Projected-Polyhedron algorithm, the e-box, with size of interval
in each dimension smaller than the tolerance ¢, is held. According to the De Casteljau
algorithm [16], the control points of each chopped hypersurface (of each equation in the non-
linear polynomial system) corresponding to the bounding box could be computed. Project
control points of the chopped Bézier hypersurface ontc (z;,Z;m41) plane, for 0 < ¢ < m.
Check whether the convex hull of those control points crosses z; axis. We claim that if it
crosses all of the z; axis, then e-box contains at least approximate roots or true roots.
Note that we do not claim e-box guarantee to contain actual roots because in the example of
Figure 3-3(3), e-box can only contain approximate root. We prove this claim in section 3.6.2.

The implementation is to check whether the ordinates of the projected 2D convex hull
for the i-th dimension are not all positive or negative. If they are not all positive or positive,
then that convex hull crosses the z; axis. Otherwise, that convex hull does not cross the z;
axis. If edges of the projected convex hull do cross each i-th axis, then the e-box contains
at least approzimate roots. Otherwise, it contains no root at all and should be discarded.

Take the Bézier curve in Figure 3-4 for instance. The leftover region is of a size smaller
than the tolerance. Nevertheless the convex hull of the control points of the chopped curve
does not cross the u-axis at all. Therefore, it will be screened out by the Convex-hull-cross-
axes check. See Figure 3-6 for detail.

3.6 Correctness of the Convex-Hull-Cross-Axes Check

In this section, we prove the correctness of the convex-hull-cross-axes check. Essentially, we
prove that, for a system with m equations and m unknowns, an e-box contains at least an

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 49

approximate root, if the e-box passes the convex-hull-cross-axes check for all dimensions.
Otherwise, e-box contains no roots and should be discarded.

First, Section 3.6.1 presents Lemmas 3.1 and 3.2 to prove the correctness of the convex-
hull-cross-axes check for 1D systems. Lemma 3.2 has a tighter bound than Lemma 3.1.
However, they use different approaches for proof: Lemma 3.2 uses mathematical analysis
methods presented in [67] by Sherbrooke and Patrikalakis; Lemma 3.1 employs the geometry
of Bézier hypersurfaces. Hence, we show both lemmas.

Then, Section 3.6.2 presents Theorems 3.1 and 3.3 to prove the correctness of the convex-
hull-cross-axes check for m-D systems. Like Lemmas 3.1 and 3.2, Theorem 3.3 has a tighter
bound than Theorem 3.1. For the same reason as the one for Lemmas 3.1 and 3.2, we show
both theorems.

For the convenience of the proofs, let us first define the following notation. Let M =
{1,...,m}. According to reference [67], to solve a system in Bernstein form with m equa-
tions f = 0,7 € M and m unknowns U = (uy,...,Um),

P =3 Y By () By (um) =0 GE{lm} (313)

;=0 tm=0

we first convert each equation fi(U) = 0 of the system into a graph g/ = (U, f7). These
graphs g7,j € M are represented by hypersurfaces:

J
ny

nl
8= PON= Y 35 Vi By () By g (m) G € {Loocm) (314
i1=0 1m=0
where v/ = 11;’;, :'12;, ”f.?"p{u---.im)' Note that g7 is a hypersurface in (m + 1)-D space
2 m

R™+!, Let us denote each axis of R™*! as i-th axis for i € M and f-axis fori = m + 1.
For each i-th axis, i € M, the control points v/ of all m hypersurfaces are projected into
the plane W; spanned by i-th ax’s and f-axis. Then the m convex hulls of those projected
control points are intersected with an i-th axis to find the bounding boxes to bound the
solutions.

3.6.1 Proof for One-Dimensional Systems

We start with the simplest system, one equation with one unknown.
Let f(u) = 0 be a non-linear polynomial equation of one variable u in Bernstein basis:

f(u) =Y piBin(u) =0 (3.15)

=0

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 50

Let R be the graph (u, f(u)):
R(u) = 3 PiBin(u) (3.16)
rd

where P; = (%,p;)T (T denotes transpose). R(u) is a 2D Bézier curve as indicated in
Figure 3-7.

Lemma 3.1 For a system with one variable u and one equation expressed in equation 3.15,
if an interval I, = (l,,h,) left over by the Projected-Polyhedron algorithm with tolerance
€ > 0 and passes the convez-hull-cross-azis check, then there ezists a constant C' > 0 such
that

—(Cx€) < f(L) < (Cxe) (3.17)

This lemma means that f(I,) will converge to zero according to the tolerance e. As stated
before, this lemma does not guarantee Ip to contain a root for tangential cases, see Figure 3-
3(3). The proof for Lemma 3.1 is presented later in this section.

The following lemma has tighter bounds than Lemma 3.1.

Lemma 3.2 Let f(u), I, = (l,,h,) and € > 0 be defined as before, then there ezisis a
constant C > 0 such that
—(C*x) < f(I,) < (C*¢€) (3.18)

Proof: Let R be the subdivided graph of R according to I,. Let R be represented as follows:
— n —
R(u) =) _ PiBia(v) (3.19)
s
where P; = (£,p;)7.

Let pmaz be maz{p;} and pmin be min{p;}. From Theorem 5.8 in [67], we know that
there exists a constant kK > 0,

— k€2 < f(1) = Prmin < ke? (3.20)
— K€% < f(1) = Pmar < KE (3.21)

By triangular inequality, we get
Iﬁmaz - ﬁminl < 2ké? (3.22)

Since I, pass the convex-hull-cross-axes check, so we know

Pmin < 0 < Prmazx (3.23)

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 51

ri-uln, pi)

Figure 3-7: The corresponding Bézier curve R(u) of graph (u, f(u))

By convex hull property, we know
Pmin < f(¥) < Pmaz (3.24)
From equations 3.22 to 3.24, we have
|f(w)] < 2k€ (3.25)

We complete the proof by taking C = 2x. O

To prove Lemma 3.1, we use the geometrical properties of Bézier hypersurfaces. Let
us first define some terminology. We denote the slope of two planar pcints P and Q as
slope(P, Q). Therefore (see Figure 3-7),

slope(P;—y, P;) = 5’—:—5’—-]1 =n*(p;i—pi-1) for i€{l,...,n} (3.26)
1 1—

The slope of the planar Bézier curve R(u), denoted by slope(R), is defined by the maximum

of the absolute of the slopes of its control polygon lines, i.e. (see Figure 3-7),

slope(R) = maz{|slope(P;—1, P;)|; i=1,...,n} (3.27)

To subdivide Bézier curves, we apply the de Casteljau algorithm, which is a recursive
application of linear interpolations of two points. Let us rewrite the de Casteljau algorithm
(operated at a parameter u) for graph R(u):

r

P} =(1-wP{™' +uPi { i (3:28)

nn
o
=
\J
-

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 52

where
P! =P,

= (uf,p!) is the r-th level of intermediate points; Py = (u?,p?) are original control
points and P} is the point R(u), see Figure 3-10 for illustra.tlon The slope of the two
intermediate points P7 and PI_,, based on the fact that uf —u]_; = &, can be easily
computed as follows (see Figure 3-10):

.—pt

slope(Pi_1, Pf) = Lr— = = n+ (5] = pl-1) (3.29)
-1

1

The following lemma gives the relationship between the slope of a Bézier curve and its
subdivision curves.

Lemma 3.3 Let P; be the control points of graph R(u) = (u, f(u)), in equation 3.16. With
the de Casteljau algorithm, R(u) is subdivided at u = ug, 0 < ug < 1. Let Gy(u) and Ga(u)
be the two resulting subdivided graphs; Gy(u) corresponds to variable ragne u : [0, uo], and
G(u) to u : [ug, 1] (see Figure 3-8). Then the slope of Gy and G are less than or equal to
the slope of R, i.e.,

slope(G,) <= slope(R); slope(G2) <= slope(R)

Proof:
We prove the first claim. The second one can be similarly proven. If R is a line, then the
slopes of R and G are the same slope of the line. In this case, the lemma holds trivially.
The following proof is for the case of n > 1.

Let PT be the intermediate control points from R(ug), defined in equation 3.28 (see
Figure 3-8). We can prove this lemma by proving the following claim: (see Figure 3-8)

|slope(P_,, P?)| < maz{|slope(P7Z}, Pi7)|, |slope(PI~', PI 1)} (3.30)

The equality of equation 3.30 occurs when slope(PI=},PI™!) = slope(P] ™, P} o). 2

We can verify the claim of equation 3.30 by the following self-evident fact: given any

three points, (see Figure 3-9), A, B and C, distributed along z-axis in 2D, pick one point

D on AB excluding end points (i.e., A and B) and another point E on BC excluding end

points; then the slope of segment CD will be between the slopes of segments AB and BC;
i.e. (see Figure 3-9),

min{|slope(AB)|, |slope(BC)|} < |slope(DE)| < maz{|slope(AB)|, |slope(BC)|}

Therefore

2The equality of equation 3.30 will also occur if up = 0.0 or = 1.0, which has been excluded by the
hypothesis.

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS

£(u)
r-1
Py
r r
Pisi 7 NGt
’r—l r-1
L. Pg ¢ i-1 Pl
| | | ! -
] I | | axt
r-1 u- s
u r-1 r-1
0 i-1 uy Ui 1

Figure 3-8: The slopes of (PIZ},P[™Y), (P]™',Pi;}) and (P}_,, P}).

y-axis *

—i-

x-axis

Figure 3-9: The slope of DE lies between the slopes AB and BC.

53

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 54

£(u)

The original contzol points: = .
The first level of intermediate points: --------.
The second level of intermediate points; ——-—-=—-

Figure 3-10: The slopes of the subdivided graphs are equal to or smaller than slope of the
original graph.

|slope(DE)| < maz{|slope(AB)|, |slope(BC)|}

Hence the claim of equation 3.30 is proven. O

The above lemma also indicates that the control points of a subdivided Bézier hyper-
surface will fluctuate less along u-axis than the original control points, see Figure 3-10 for
illustration.

We now prove Lemma 3.1 for the correctness of convex-hull-axes-check algorithm.

Proof of Lemma 3.1:
It is obvious the slope of R(z) = (u, f(u)), in equation 3.16, defined in equation 3.26. is less
than or equal 2nP, where P = maz{| p; |}. This can be seen clearly from equation 3.27.

n

Let Q(u) = 2(7;,q;)TB.-,n(u) be the chopped 2D Bézier curve in the leftover interval
I=[l,hA) Then,i?r‘:)m Lemma 3.3 the slope of Q(u),u € [I, h] is no greater than 2n * p.
slope(Q) < slope(R) < 2nP (3.31)
By the hypothesis, the leftover interval I = (h,l) has width less than ¢, i.e.,
(I-h)<e (3.32)

From equations 3.31 and 3.32, we conclude that the control points of the chopped 2D
Bézier curve has the ordinate span of no greater than € *2nP, i.e. (see Figure 3-12),

maz{¢;} — min{¢;} < e2nP (3.33)

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 55

((i-1)/n, P) {((3*1)/n, P)
i/a .--- \ / ceee 3
(i/n, P) (3/a, P)

p = -utlpil)

Figure 3-11: The maximum value of slope of graph (u, f(u))

By convex hull property, we know that
min{q¢:} < f(lo) < maz{q;} (3.34)
The assumption that I passes the convex-hull-cross-axis check implies that
min{g;} <0 < maz{q;} (3.35)
From equations 3.32 to 3.34, we have
| f(Jo) IS €C (3.36)

where C = 2nP. We complete the proof for Lemma 3.10
The following Lemma proves that for an interval region which does not pass the convex-
hull-cross-axis check, there is no root inside that region.

Lemma 3.4 Let R(u) be the 2D Bézier curve in equation 3.15. An interval I = (I,h) C
[0,1] is a leftover region by the Projected-Polyhedron method and does not pass the convez-

hull-cross-azxis check, then
f(I)>0 or f(I)<0 (3.37)

Proof: This lemma can be easily provided by the convex hull property of Bézier curves[16].
The fact that I = [, k] does not pass the convex-hull-cross-axis check indicates that the
coordinates of the convex hull of the chopped 2D Bézier curve according to the Interval |
Q(u) are all positive or negative. Since convex hulls envelops their corresponding Bézier
curve, f(I) is entirely positive or negative.O

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 56

flw

H< 2nPse u—axits

Figure 3-12: Magnified area around I: |f(]) — 0| < e2nP

3.6.2 Proof for m Dimension Systems

In this section, similar to the previous section 3.6.1, we present two theorems to prove that
the e-bexes left over by the Projected-Polyhedron algorithm irndeed contains at least an
approximate root for a system with m equations with m unkrowns. Theorem 3.3 has a
tighter bound than Theorem 3.1. However, they use different approaches for proof: The
proof for Theorem 3.3 is a direct extension of the one for Lemma 3.2 based on mathematical
analysis method [67] by Sherbrooke and Patrikalakis. Theorem 3.1 emploies the geometry
of Bézier hypersurfaces. ‘Therefure we present buth theorems.

The convex-hull-cross-axes check is used to complete subdivision methods, such as
Projected-Polyhedron algorithm and Bézier Clipping method. Here, we prove that any -
box which satisfies the convex-hull-cross axes condition contains at least approximate roots
(this is used to identify locations of the roots). We also prove that any e-Box which does
not pass the convex-hull-cross-axes check will never contain 2 root, no matter how small
the tolerance € is, (this is u. =.d to further discard regions not containing a root, in Step 4 of
IPP algorithm in Section 3.2).

Theorem 3.i For a system with m unknowns U = (u;) i € {1,...,m} and m equations

]
m

"y
fJ(U) = Z con Z pg].-oqimBl'l,ﬂ';(ul)'..Bim,n':n(um) = 0

;=0 im=0

where j € {1,...,m}. If an e-box B™ = ((;, hi))ie(1,...m} passes the convez-hull-cross-azes
check for each dimension, then there ezists a constant C > 0 such that

—(Cxe)< fA(B™)<(C*¢) for je{l,...,m} (3.38)

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 57

Proof: Let gi be the hypersurface of f7 in equation 3.14.
We first prove that for each k-th axis k € M = {1,...,m}, there exists an constant Cy > 0
such that _

—(Cr*xe) <msp(g'(B™) < (Crxe) jeEM (3.39)

where 7 is the projection function of (m + 1)D hypersurface g’ on f-axis.

For an k-th axis, k € M, and for each j-th hypersurface g’: let cg] denote the projection
of the control points of g/ onto the plane W}, spanned by k-th axis and f-axis. cgj, contains
points spread on the 2D plane W;. However, those points will not be scattered all over
W without any order. Rather, they are posed on node lines {u“ = }le{o nl} O0 Wi.

On one node line u,” = -, there are control points Sk, = {p} llix = 1} on it, see

L3 RN Jm

Figure 3-5 for exa.mples The maximum absolute value of slopes of these line segments

on the span between u;; = n—, and u} ., = ‘—:',—1- will not be greater than 2nkP where
k k

P = maz{| p,’q ok |2 Jokil € {1,...,m}}, since | (usy=p) |< (P + P) + nl, where
nd
k
Pi+1 € 5k1+1apl € Skl
Let CHy{g’) be the set of line segments between consecutive points in cgk, see Figure 3-5
for examples. The slope of C Hi(g’), denoted by slopek, is defined by the maximum of the
slopes of all the line segments in it. It is obvious that 3lopek < 2n{‘P Therefore, the maxi-

mum absolute value of the slopes of m sets C Hy(g?), denoted by slope; = maz{slope k} JEM>
is not grea.'nr than 2n, P, where n; = mam{nk, et
Let §;m be the chopped j-th graph g’ according to B™. Note that this implies

7/(8hm) = 74(g'(B™)) (3.40)

Let CH ‘,'c pgm be the set of line segments between consecutive points in the projection of

gB,,, on W;. We claim that for each k-th graph g/, the slope of C'Hk pm is nnt greater than
that of C Hi(g’). Like the argument in Lemma 3.3, by the property of Bézier hypersurface,
the control points of a subdivided Bézier hypersurface will approximate the hypersurface
more than the original control points. Therefore, the control points of a subdivided Bézier
hypersurface will fluctuate less along each k-axis than the original control points. Hence,

the slope of CHk gm is smaller than that of C'Hi(g?), which is not greater than 2n,P.
Since tl:e slope of CHk'Bm is not greater than 2n P (from Step 2.), and mx(B™) < ¢

(from hypothesis)3, hence the interval ordinate of _CT{'{;'BH, on plane Wy is less than or equal

to € * 2n P. Let Q) be the set of the control points of the projection of E{Bm on Wy. Then,

3xk() is the projection function of (m + 1) tuple on k-th axis, k € M = {1,...,m}

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 58

the ordinates of points in '67{.'3". on Wy are O{, = {7s(qx)|lgx € Q«}. This means that
BT <ex2niP (3.41)
where 7{. = min 0{_ and), = maz Oi By convex hull property, we know that
B < ny(@hm) < i (3.42)
The hypothesis that B™ passes the convex-hull-cross-axis check means that
P<o<h (3.43)
Therefore, from equations 3.41, 3.42 and 3.43, we have
— (e#2nP) < 7y(Epm) < (€% 20k P) (3.44)
By taking C) = 2n;P, and from equations 3.40 and 3.44 we obtain equation 3.39.

We now complete the proof of this theorem. Since equation 3.39 is valid for each k € M,
we take C' = maz{Cj}rem, then

—(Cx€) < my(g'(B™)) < (Cxe) for je{l,...,m}

From equation 3.14, we know that fi(B™) = n;(g’(B™)).0

Theorem 3.2 For a system with m unknowns U = (u;) i € {1,....m} and m equations
, n nho
£ = Z . Z P{;,....imBil,n{(ul) . "Bim.n{,.(u"‘) =0 (3.45)
i1=0 tm=0

where j € {1,...,m}. If an interval region I™ = ((l;, hi))ieq1,...m} C [0,1]™ does not pass
the convez-hull-cross-azes check, then there erists j, such that

™ >0 or fi(I")<0jeM (3.46)

This theorem is a direct extension of Lemma 3.4 to the (m+1)D case. It can be similarly
proven.

Theorem 3.3 Let U, fi(U), B™ be defined as in Theorem 3.1, then there erists a constant
C > 0 such that

—(C*E@)< fH(B™) < (C*e?) for je{l,...,m} (3.47)

CHAPTER 3. ROBUST SOLVER OF NON-LINEAR POLYNOMIAL SYSTEMS 59

The theorem is a direct extension of Lemma 3.2 and can be similarly proven.

Chapter 4

Robust Unified Intersection
Algorithm

4.1 Introduction

The solutions for geometric intersections of different entities are essential to Boolean op-
erations. In this chapter, we discuss our robust algorithm to solve the following geomet-
ric intersection problems: point-to-point, point-to-curve, point-to-surface, curve-to-curve,
curve-to-surface, and surface-to-surface problems. In the remaining chapters, geometric
entities are interval objects, unless explicitly mentioned otherwise.

Based on the improved and extended IPP solver, this Chapter develops a general unified
algorithm to solve various types of intersection problems for both well-conditioned and ill-
conditioned cases. The well-conditioned problems include the computation of transversal
intersections. The ill-conditioned problems include tangential intersections and overlapping.

This chapter is organized as follows. Section 4.2 presents the general unified algorithm
for geometrical intersection problems which can be converted to balanced or overconstrained
systems. Section 4.3 defines the incidence for interval objects, such as point-to-point in-
cidence. It also resolves two geometrical failures stemming from floating point arithmetic.
Section 4.4 discusses point-to-curve intersection. Section 4.5 discusses point-to-surface in-
tersection. Section 4.6 discusses planar curve-to-curve intersection. It also demonstrates
the advantage of the use of overconstrained system solver. Seciion 4.7 discusses 3D curve-
to-curve intersection. Section 4.8 discusses curve-to-surface intersection, which is usually
employed to find the starting point for surface-to-surface intersection. Section 4.9 discusses
surface-to-surface intersection, which crucial to solid modeling for curved objects. Sec-
tion 4.9 also resolves surface overlapping problem. To solve the surface cverlap, a theorem
is developed, referred to as End Point Theorem, to describe the condition for two surfaces
tangentially intersecting along a non-closed curve. From the End Point Theorem, a corollary
is derived to describe the condition for surface overlap.

60

CHAPTER 4. ROBUST UNIFIED INTERSECTION ALGORITHM 61

point | curve | surface
point pP-p
curve p-c c-c
surface | p-s s-C S-S

Table 4.1: Intersections of geometric objects of different dimensions.

4.2 A General Unified Algorithm for Intersection Problems

Geometric entities include points, lines/curves, and polygons/surfaces for solid modeling.
Since we deal with curved objects, we only discuss curves and surfaces in this thesis. The
types of their intersection problems are listed in Table 4.1. Geometrical intersection prob-
lems can usually be converted to the computation of the solution for non-linear polynomial
equation systems. All non-trivial intersection problems, p-c, p-s, c-c, and s-c in Table 4.1,
are either balanced or overconstrained except for surface-to-surface intersections, which is
underconstrained.

Usually, various algorithms are used to solve various geometrical intersection problems.
Therefore, geometry engines for solid modeling systems are full of different routines for
different algorithms for different intersection problems. This will enlarge the overall mod-
eling systems and complicate the software maintenance. In addition, surface intersection
problems alone are difficult enough. Hence, very few geometry engines for curved ob ject
intersections in the existing solid modeling systems are well developed in the commercial
CAD industry.

Here, we provide a solution to untangle the complication for various intersection prob-
lems: the general unified algorithm (GUA). This GUA can solve various intersection prob-
lems by using one solver, as long as those intersection problems can be formulated to bal-
anced or overconstrained polynomial equation systems. Sections 4.3 to 4.9 discuss various
formulations of different intersection problems.

The GUA uses the improved and extended IPP solver, developed in Chapter 3, as a
kernel for the computation of non-linear polynomial equation systems. It only requires
different routines to formulate different intersection problems into non-linear polynomial
eqnation systems, but uses one solver to solve them. Section 4.2.1 describes the GUA in
detail and Section 4.2.2 summarizes the advantages of the GUA.

4.2.1 The General Unified Algorithm

The GUA adopts the following two steps to solve a geometrical interrogation problem P:

1. Derive an interrogation system Wp of non-linear polynomial equations with n equa-
tions and m unknowns, which are sufficient and necessary for P;

2. Solve the interrogation system Wp directly.

CHAPTER 4. ROBUST UNIFIED INTERSECTION ALGORITHM 62

As mentioned before, the GUA employs the improved and extended IPP solver, developed
in Chapter 3, as a kernel for the computation of non-linear polynomial equation systems.
Based on the IPP solver, we devise a high level pseudo-code for the GUA to solve all those
p-c, p-s, c-c, and s-c intersection problems (see Table 4.1):

ntersect_two_geometries(geometry geom_1, geometry geom_2)
> assuming geom_1 is of no higher dimension than geom_2
. if geom_1 and geom_2 are both points
system_of_polynomials = formulation_pp(geom_1, geom_2);
else if geom_1 is a point and geom_2 is a curve
system_of_polynomials = formulation_pc(geom_1, geom.2);
. else if geom_1 is a point and geom_2 is a surface
system_of_polynomials = formulation_ps(geom_1, geom 2);
. else if geom_1 is a curve and geom.2 is a curve
system_of_polynomials = formulation_cc(geom_1, geom 2);
10. else if geom_1 is a curve and geom_2 is a suiface
11. system_of_polynomials = formulation_cs(geom_1, geom.2);
12. else if geom_1 and geom_2 are both surfaces
13. system.of_polynomials = formulation_ss(geom_1, geom_2);
14. roots = solve_by IPP(systems_of_polynomials);
15. return roots;

In the above pseudo-code, formulation_pp() is a subroutine that formulates the in-
tersection system of two points. Similarly, formulation_pc() is for a point and a curve;
formulation_ps() is for a point and a surface; formulation_cc() is for a curve and another
curve; formulation_cs() is for a curve and a surface; formulation_ss() is for two surfaces.
Those formulations are discussed in the following sections. The system_of_polynomials can
be implemented as a class in C++. The data, such as number of equations, variables,
degrees, coefficients of the polynomial system, can be hidden in the class. Finally, the
subroutine solve_by IPP() solves a system by calling the IPP solver.

I R

©

4.2.2 Advantages of the General Unified Algorithm

The GUA has the following advantages that it is (1) numerically robust, (2) of a global
solution method, (3) general for intersection problems, and (4) efficient. The listed advan-
tages 1 and 2 are directly inherited from the IPP solver. Here, We want to explain the
advantages 3 and 4 in more detail.

Prior to this thesis, there is no scheme to solve overconstrained non-linear polynomial
equation systems directly and simultaneously. There are two standard methods to solve
overconstrained systems: one is minimization method and the other is splitting method.
Minimization method is to convert overconstrained systems into minimization problems.
Thus minimization method is not a direct method. Splitting method is to split overcon-
strained systems into a series of balanced systems and solve them sequentially. Hence,

CHAPTER 4. ROBUST UNIFIED INTERSECTION ALGORITHM 63

splitting method does not solve overconstrained systems simultaneously. Different schemes
must be adopted to solve balanced and overconstrained systems for existing solid modelers.
On the other hand, the GUA can solve balanced and overconstrained systems by one solver.
Therefore, the GUA is general for intersection problems.

The GUA is more efficient than minimization and splitting methods. Minimization
methods require initial approximation value, and they can only find root close to the initial
approximation value. On the other hand, GUA does not require initial value, and it can
find all roots.

The splitting method splits the over-onstrained system into several balanced systems
and solves them sequentially. Tn general the first system of the splitting method will con-
tain extraneous roots, since the first system provides a superset of the actual solutions.
Take the computation of singlar points of surface-to-surface intersection for instance (see
Section 4.9.1). The first system provides the collinear normal points. Singular points are
collinear normal points, but collinear normal points are not generally singular points. On
the other hand, the GUA uses all equations as constraints simultaneously, so it works only
on the actual roots.

The idea of GUA can be easily extended to more general geometrical interrogation and
computation problems.

4.3 Point-to-Point Intersection

We first define the incidence of points and discuss our solution to incidence asymmetry and
incidence intransitivity.

4.3.1 Incidence of Points

The incidence of two interval points is defined by the existence of a real point common to
both of them as follows:

Definition 4.1 Two interval points
A= ([1'alv xau]$ [yals yau]s [zala 3au])

B = ([zb1, Tou)s [Ybls Ybu], 2515 2bu])

are said to be incident (denoted as A = B), if ANB # 0, that is to say, there is a point
¢ =(z,y,z) such that c € ANB, or z € [Tal, Tau) N [Tot, Tbu], ¥ € [Yals Yau] N (Yt You)s and
z € [zaty Zau) N (2615 2bu]-

Hoffmann [23] raised a problem of incidence asymmetry. This means that a point can
be incident to another point but not vice versa. The above definition of incidence of two
interval points will prevent incidence asymmetry of any two interval points. Since, if an
interval point A is incident to an interval point B, then there is a real point ¢ € AN B, so
B is also incident to A.

CHAPTER 4. ROBUST UNIFIED INTERSECTION ALGORITHM 64

—-—»

Figure 4-1: Illustration of incidence transitivity of 2-D interval points.

4.3.2 Transitivity of Incidence of Points

One classic geometric failure arising from the floating point error is the incidence intran-
sitivity, see Figure 1-3 for an example. However, the incidence intransitivity problem of
interval points can be solved by updating the upper bound and lower bound of two inci-
dent interval boxes. When two interval points are determined to be incident, we replace
these two interval points by a new interval point which is the smallest interval to cover
these two incident points. For example, the interval a = [1.00001,1.00012] is incident to
b = [1.00011,1.00013] since 1.000115 € aNb # @. As soon as we determine a = b, the new
interval ¢ = [1.00001,1.00013] will substitute a and b; i.2., o’ = b’ = ¢ = [1.00001,1.00013].
Therefore, any interval d incident to a or b is certainly incident to a’ = b’ = ¢. This process
is illustrated in Figure 4-1.

4.4 Point-to-Curve Intersection

Given a point p = (z, Yp, 2), and a parametric polynomial curve C' = C(u) = (z(u), y(u), 2(u)),
their intersection is the solution of the following equation system:

r(u) =z, (4.1)
ylu)=yp (4.2)
2(u) =z (4.3)

This is an overconstrained polynomial equation system and can be solved by the extended
IPP solver.

4.5 Point-to-Surface Intersection

Given a poiat p = (Tp,Yp, Zp), and a parametric polynomial surface patch 5 = S(u,v) =
p p prUpr %p ,
(z(u,v), y(u,v),2(u,v)), their intersection is the solution of the following equation system:

T(u,v)=1xp (4.4)
y(u1 v) = Yp (45)
2(u,v) = 2p (4.6)

This is an overconstrained polynomial system and can be solved by the extended IPP solver.

CHAPTER 4. ROBUST UNIFIED INTERSECTION ALGORITHM 65

4.6 Planar Curve-to-Curve Intersection

For simplicity, the underlying planar interval curve is assumed to be an interval integral
Bézier curve.

Extension to the interval rational Bézier curve and the interval non-uniform rational
B-spline (INURBS) curve, although tedious and involving higher degree problems during
geometric processing, does not present conceptual difficulties. In general, the control points
of the given curve are given in single floating point numbers which can be initially treated
as zero-width intervals. As the geometric processing proceeds, the widths of the intervals
grow gradually so that the interval always contains the exact result, provided that rounded
interval arithmetic is used for all arithmetic operations.

4.6.1 'Transversal Intersection

If we denote the two interval Bézier curves as p(u) = (zp(u), yp(2)) and q(v) = (z4(v), Yo(v)),
then the intersection of two interval Bézier curves can be formulated using the identity con-
dition, i.e.,

zp(u) — z4(v) =0 (4.7)

yp(u) - yq('”) =0 (4.8)

Equations 4.7 and 4.8 are two simultaneous bivariate polynomial equations, and can be
solved by our IPP solver. In the absence of tangential intersection or overlapping of two
curves, they are in general well-conditioned and can be solved efficiently.

4.6.2 Tangential Intersection

When the two curves intersect at a point where they have the same tangent, the rate of
convergence of the solver [36] drops significantly due to an extensive amount of binary
subdivision. An additional equation representing the tangential contact constraint can be
added to the system. This additional equation plays an important role in shrinking the
width of interval boxes and hence accelerating the convergence rate. It can be expressed as
follows:

—yp(u)zi(v) + 23, (u)yy(v) = 0 (4.9)

The equation system now becomes overconstrained (with three equations and two un-
knowns). However, it can be solved by the extended IPP solver. Furthermore, if the
two curves intersect each other with second order contact (i.e., same signed curvature) [34],
we can further impose the curvature condition and so the system of the equations now
involves four equations with two unknowns. The signed curvature of a regular planar curve

r(t) = (z.(t),y:()) is given by

zh(t)yl(t) = = (t)y(t)
((zh(£))2 + (y.(1))2)?

Ke(t) = (4.10)

CHAPTER 4. ROBUST UNIFIED INTERSECTION ALGORITHM 66

where the term regular signifies that |r'(¢)] # 0, where ()’ denotes derivative. Thus, if the
two curves p(z) and q(v) intersect with second order contact, their signed curvatures should
be equal, i.e. K,(u) = Kq(v):

zp(w)yp(u) — zp(u)yp(w) _ zo(v)y,(v) — z{,’(v)y.’,(:’)
3 . 3
[((z5(w))? + (yp(u))?]? [(z5(v))? + (y5(v))?)2
Equation 4.11 involves square roots of polynomials and hence we can not use the convex

hull property of the Bernstein polynomial directly to solve the system. However, we can
eliminate the square root by squaring out equation 4.11. Therefore equation 4.11 becomes

[z (w)yp () = zp(w)yp(w)*[(25(v))* + (v5(v))] =
[z (v)yg (v) — 2 (0)y(V)P[(25(w))? + (wp(w))?]° (4.12)

(4.11)

Example 4.1 We illustrate the higher order contact by intersecting a superbola y = z?

with the straight line y = 0, which has third order contact at (0,0), see Figure 2-1.

We solved the intersection problem by treating it respectively as a position, first and second
order contact problems, i.e., to solve the system of two variables with two, three and four
equations. Figure 4-2 shows the two convex hulls of control points projected in the uw-plane,
(w here and in Figure 4-2 represents the value of y). In Figure 4-2, the solid convex hull
corresponds to equation 4.7, and the dashed convex hull corresponds to equation 4.8. The
asterisk shows the location of the root. It can be seen from the figure that the common region
of the two convex hulls on the horizontal axis w=0 extends from u=0.125 to 0.875. Figure 4-
3 shows three convex hulls of control points projected in the uw-plane, where the additional
dotted convex hull corresponds to equation 4.9. We can see from this figure that the common
region of the three convex hulls on w = 0 extends from 2=0.1667 to 0.8333. Thus the third
equation (i.e. the tangent condition) played a role in reducing the initial interval from 75%
to 67% of the initial domain. Figure 4-4 shows four convex hulls of projected control points
in uw-plane where the additional dot dashed convex hull corresponds to equation 4.12. Now
the convex hull based on the fourth equation (i.e. the curvature condition) intersects with
w=0 at u=0.175 and 0.825, and reduces the interval from 67% to 65%. Table 4.2 shows the
results of our extended IPP algorithm. This particular example was run with a tolerance of
1073, For presentation purposes only, the intervals are truncated at fourth decimal places
in Table 4.2. Note that all the equations are normalized so that -1 < w < 1. If we
compare the bounding box for each iteration, we can recognize that the hounding box of
four equations is always smaller or equal to that of three equations, and that the bounding
box of three equations is always smaller than that of two equations. We can also see from
Table 4.2 that it takes 24, 18 and 9 iterations, with two, three and four equations to reach
the required tolerance.

CHAPTER 4. ROBUST UNIFIED INTERSECTION ALGORITHM 67

\
-0.33 A \ //
\ /
\\ /
i \ //
\ /
\ //
\ /
-1.00 o [yY———_——— - —_——-———————]]
0.00 0.25 0.50 0.76 1.00
u
Figure 4-2: Two convex hulls projected onto uw-plane for the example of y = !
parametrized by z and y = 0 by v.
1.00 -\:— —————————— -7 ————— —_— e e e
/ ¥
\ i
\ B o
-\ B 1
\ A
\ K S
s \\ ': l"/
o. - K ,
\ 5 S
w \ : , //
S " S
7 fal ’ 4
\ Ky
X K
;)
SN /’
-0.33 - g \ E //
\ Fa
K \ . /
i \ K
; \ S
l" " /
. \ ; /
\ g /
-1.00 4T o----- o= =- y—m————————————— =t —— ' '
0.00 0.26 0.50 0.76 1.00
u
Figure 4-3: Three convex hulls projected onto uw-plane for the example of y = Al

parametrized by u and y = 0 by v.

CHAPTER 4. ROBUST UNIFIED INTERSECTION ALGORITHM

68

" €=10"3 Two Equations Three Equations Four Equations
| Iter u v u v u v
R [0.0, 1.0] 0.0, 1.0 [0.0, 1.0] [0.0, 1.0] [0.0, 1.0] [0.0, 1.0]
e [0.125,0.875] | [0.5,1.0] | [0.1666,0.8333) [0.5,1]]70.175,0.825] [(0.5, 1]
{E [0.5, 0.78125] | [0.5, 0.875] 0.5, 0.7222 0.5, 0.8333) | [0.5,0.7113] | [0.5, 0.825]
4 0.5,0.7109] | [0.5,0.7812] | [0.5, 0.6481 0.5,0.7222] | [0.5,0.5634] | [0.5,0.7113
5 0.5,0.6582] | [0.5, 0.7109] | [0.5, 0.5988 0.5,0.6481] | [0.5,0.519] [[0.5,0.5634
6 0.5, 0.6186] | [0.5,0.6582] | [0.5, 0.5658 n.5,0.5988] | [0.5,0.5057] | [0.5, 0.519)
7 0.5, 0.5889] | [0.5,0.6186] | [0.5, 0.5439 0.5, 0.5658] | [0.5, 0.5017] | [0.5, 0.5057
8 0.5, 0.5667] | [0.5,0.5889] | [0.5, 0.5293 0.5, 0.5439] | [0.5, 0.5005] | [0.5,0.5017
TE 0.5, 0.5500] | [0.5, 0.5667] [[0.5, 0.5195 0.5,0.5293] | 0.5, 0.5005] [{0.5, 0.5008
10 0.5, 0.5375] | [0.5,0.5500] | [0.5, 0.513] 0.5, 0.5195
It 11 0.5, 0.5281] | [0.5, 0.5375] | [0.5, 0.5087 [0.5,0.513]
12 0.5, 0.5211] | [0.5, 0.5281] [[0.5, 0.5058] | [0.5, 0.5087
[13 0.5, 0.5158] [[0.5,0.5211] | [0.5, 0.5039 0.5, 0.5058
hl 14 0.5, 0.5118] | [0.5, 0.5158 0.5, 0.5026] | [0.5, 0.5039
15 0.5, 0.5089] | [0.5, 0.5118 0.5, 0.5017 0.5, 0.5026
16 0.5, 0.5066] | [0.5, 0.5089] | [0.5, 0.5011 0.5, 0.5017
17 0.5, 0.5050] | [0.5, 0.5066] | [0.5, 0.5008 0.5, 0.5011
18 0.5, 0.5037) | [0.5, 0.5050] | [0.4999, 0.5008] | [0.5, 0.5009
19 0.5, 0.5028] | [0.5, 0.5037
[20 0.5,0.5021] | [0.5, 0.5028
[21 0.5, 0.5015) | [0.5, 0.5021
[22 0.5, 0.5011] | [0.5, 0.5015]
23 0.5, 0.5008] [[0.5, 0.5011]
H7 24 0.5, 0.5008] | [0.5, 0.5009

Table 4.2: The box shriuking processes of three methods for intersection heiween y = «
parametrized by u and y = 0 by v.

4

CHAPTER 4. ROBUST UNIFICD INTERSECTION ALGORITHM 69

1.00

0.33

-0.33

-1.00

Figure 4-4: Four convex hulls projected onto uw-plane for the example of y = =z
parametrized by u and y = 0 by v.

4.6.3 Overlapping

If the two curves overlap vartially as illustrated in figure 4-5, the rate of convergence becomes
much worse than the tangential intersection cases. Since the curvatures of the two curves
are the same for overlapping portions, we can inipose the tangent and curvature conditions
so that the system of the equations becomes four equations with two unknowns as in the
case for intersection of superbola and straight line.

Exatﬂ)_!e 4.2 We will illustrate this overlapping case using two cubic Bézier curves AB
and CD whose control points are given by (0,0), (0.8,0.8), (1.6,0.32), (2.4,6.608) and
(0.6,0.392), (1.4,0.68), (2.2,0.2), (3,1).

We first run the solver with a fairly coarse level of accuracy, for example € = 1072 or 1073,
If we observe a number of boxes overlap one another, as shown in figure 4-6, it is very likely
that overlap exists. Figure 4-6 shows the bounding boxes of the two curves with ¢ = 1072,
We can observe that the curve AB overlaps with curve CD from u = 0.25 to u = 1 and the
curve CD overlaps with curve AB from v = 0 to v = 0.75.

General Algorithm for Curve Intersections Since initially the algorithm does not
know if the two curves overlap, tangentially intersect or transversally intersect. we should
start solving the problem with the overconstrained system of four equations with two un-
knowns to check for the overlapping case first. If there exists an overlapping region, we can
find the overlapping region by the method discussed in Section 4.6.3. We split one of the

CHAPTER 4. ROBUST UNIFIED INTERSECTION ALGORITHM 70

.....
......
~.

Figure 4-5: Two cubic Bézier curves AB and CD overlap each other along CB.

1.00

0.67 -

0.33 A

0.00 T P T T
0.00 0.25 0.50 0.75 1.00
u

Figure 4-6: The bounding boxes of computing intersection of two overlapping curves

CHAPTER 4. ROBUST UNIFIED INTERSECTION ALGORITHM 71

curves into non-overlapping and overlapping segments. Then we use the overconstrained
system of three equations with two unknowns to check for the tangential intersection for
the non-overlapping segments with the other curve which is not subdivided. If there exists
a tangential intersection, we split the segment into two segments at the tangential intersec-
tion point. Finally, by using two equations with two unknowns, we check the transversal
intersection for all segments. In trimming the curves around tangential contact points, we
do not have to use the de Casteljau algorithm; instead we just specify the range of parame-
ter values of those subdivided curves so that those ranges will be away from the tangential
points.

4.7 3D Curve-to-Curve Intersection

The system for solving the intersection of two parametric curves in 3D space is an overcon-
strained syst~m with three equations and two unknowns. As mentioned in Section 4.2, it is
relatively rarely addressed in the literature. However, it can be solved by our IPP solver.

Given a parametric polynomial curve Cy(s) = (X¢,(s),Yc,(s), Zc,(s)), and another
parametric polynomial curve Cz(t) = (Xc,(t),Yr,(1)), Zc,(1)), their intersections satisfy
the following equation system:

X, (8) = Xc,(t) (4.13)
Yc,(s) = Y,(1) (4.14)
Zc,(8) = Zc,(1) (4.15)

4.7.1 Tangential and Overlapping Intersection of Curves

Two curves might intersect tangentially. Two examples of tangential curve intersection in
the context of interval arithmetic are shown in Figures 4-7 and 4-8. In the example of
Figure 4-7, part of the curve is inside of the other; in Figure 4-8, edges of the interval curves
cross each other partially. For these pathological cases, the IPP solver might subdivide
both curves many times in the area around the tangential contact point(s). Sometimes
those fruitless subdivisions in turn increase the computation time by more than 100 times.

For those tangential intersection cases, their tangents are parallel to each other. We can
impose the tangential condition to help solve those pathological intersection problems.

For two curves overlapping entirely or partially, we can impose the same condition to
solve it. Seemingly the curvature condition can help in this case, but we do not suggest to
use it. The reason is that the ¢:rvature condition will not speed up the process overall. It
might be because the burden of solving one more equation (for curvature condition) offsets
the effect of the root shrinking process, (see Section 8.1).

CHAPTER 4. ROBUST UNIFIED INTERSECTION ALGORITHM 72

Figure 4-7: An example of pathological case of curve to curve intersection

Figure 4-8: An example of pathological case of curve to curve intersection

4.8 Curve-to-Surface Intersection

The curve to surface intersections are used to find the intersections of border curves of one
surface patch with the other surface, and vice versa. Those intersections serve as seed points
to trace the intersection curves of two surfaces, as discussed in Section 4.9.

Given a parametric polynomial curve C(t) = (Xc¢(t),Yc(t), Zc(t)), and a parametric
polynomial surface patch S(u,v) = (Xs(u,v),Ys(u,v), Zs(u, v)), their intersections have to
satisfy the following system:

Xc(t) = Xs(u,v) (4.16)
Ye(t) = Ys(u,v) (4.17)
Zc(t) = Zs(u,v) (4.18)

It is a balanced system with three equations and three unknowns. We can solve the
system by the IPP solver.

4.8.1 Tangential Intersection of Curve and Surface

A curve might intersect a surface at point(s) where the tangent of the curve is orthogonal
to the normal vector of the surface. For this pathological case, the IPP algorithm might
subdivide the surface and curve many times in the area around the tangential contact

CHAPTER 4. ROBUST UNIFIED INTERSECTION ALGORITHM 73

point(s). We can add the tangential condition to accelerate the root-finding process. At
the tangential intersection point, the normal vector of the surface is perpendicular to the
tangent of the curve. Let the normal vector of a suiiace be (Xn(u,v),Yn(u,v), Zn(u,v)),
then

Xn(u,v)Xe(t) + Ya(u, v)YE(t) + Zw(u,v)Z¢(t) = 0 (4.19)

where the 7/(1) means the first derivative of n with respect to parameter 1.

4.8.2 Curve on a Surface

A curve might lie on a surface. The IPP solver can find such intersections. However, we can
add the tangential condition (equation 4.19) to the above system to speed up the process.

4.9 Surface-to-Surface Intersection

The intersection of two parametric polynomial surface patches R(u,v) and S(¢{, w) can be
described as follows:
R(u,v) = S(t,w) (4.20)

It is a underconstrained system with three equations and four unknowns. We can use the
IPF solver to solve this system. However, it is too slow when small tolerances are used.

Another method is to use the marching method to find out intersection curves of two
parametric surfaces [31), [43], [49]. In order to trace the intersection curve, we have to
compute the starting points. An intersection curve branch can be traced if its pre-image
starts from the parametric domain boundary in either parameter domain. In Section 4.8,
we discussed how to find the border points by intersecting a curve and a surface. How-
ever, it is more difficult to find starting points for tracing intersection curve when they
are closed in both parametric domains, or the two closed loops degenerate to an isolated
point, i.e., the two surfaces intersects by a point. Section 4.9.1 discusses how to find such
points. Section 4.9.2 discusses how to find the collinear normal points of two surfaces. Sec:
tion 4.9.3 discusses the non-isolated collinear normal points and how to trace a coilinear
normal curve. Section 4.9.4 discusses tangential intersection curves of surface patches and
presents a method to locate the starting point of tangential intersection curves. We refer
it as end pnint theorem, because it specifies how a non-closed tangential intersection curve
end for surface patches. Section 4.9.5 derives Corollary 4.2 from End Point Theorem to
describe the condition for surface overlap.

4.9.1 Critical Points of Surface to Surface Intersection

In this section we will show how to compute critical (or significant) points of the intersection
of two surfaces. The necessary and sufficient condition for critical points of two surfaces
R(u,v) and S(t,w) is as follows:

R(u,v)=S(l. w) (4.21)

CHAPTER 4. ROBUST UNIFIED INTERSECTION ALGORITHM 74

Figure 4-9: A pair of collinear normal points for two surfaces

(Ry(u,v) x Ry(u,v)) 0 Sy(t,w) = 0 (4.22)
(Ru(u,v) X Ry(u,v)) e Sy(t, w) = 0 (4.23)

The first (vector) equation 4.21 states that the roots are intersection points. The last two
equations 4.22 and 4.23 state that at the intersection points, the two surfaces have the same
normal direction. Equations 4.21 to 4.23 form an overconstrained system (five equations and
four unknowns). It is traditionally broken into two steps [24], [25], [40] (splitting method).
The first step is to find the collinear normal points, which is a superset of singular points;
the second step is to pick up the actual singular points from the collinear normal points
by checking the distance of surfaces at those collinear normal points. However. this system
can ce solved by our IPP solver.

4.9.2 Collinear Normal Points of Surfaces

For two surfaces, if there is a line normal to both surfaces, the intersection points of surfaces
with this line are called collinear normal points of the two surfaces, and this line is called a
co-normal line, (see Figure 4-9).

The computation of collinear normal points of two surfaces is crucial for finding the
critical points for surface-to-surface interseciion problems. It is also important in detecting
the occurrences of intersection loops of these two patches, for if two surfaces intersect along
a loop, then they must contain collinear normal points. There are several papers on loop
detection, [52], [68], [64], [62], [10], [33]. In this section, we present a robust method to
compute collinear normal points of two interval Bézier surface patches.

Necessary and Sufficient Conditions for Collinear Normal Points

In the following Lemma, we point out that the condition for the stationary points of the
squared distance function of two patches [82] cannot be used to determine collinear normal
points efficiently.

CHAPTER 4. ROBUST UNIFIED INTERSECTION ALGORITHM 75

Lemma 4.1 If a pair of points (p,q) on two distinct parametric surfaces are collinear
normal points, then they are the stationary points of the squared distance function of the
two patches, but not the reverse (necessary but not sufficient condition for collinear normal
points).

Proof: Proof of the necessity (=>): by the definition of collinear normal points, the distance
vector pg are normal to both tangent planes of surfaces at p,¢. Thus, pg is normal to any
tangent of surfaces passing through p or ¢. Hen.e the inner products of distance vector pg
and any tangent of the surfaces passing through p or ¢ must be zero. Therefore, they are
the stationary points of the squared distance function of the two patches. L

The above condition is not sufficient. This becomes obvious if we consider non-tangential
intersection points of two patches, in which case, the distance function is minimized to zero.
)}

From Lemma 4.1, we know that employing the stationary point condition for the dis-
tance conditicn to find the collinear normal points of two distinct surfaces will encounter
difficulties when two surfaces intersect along a curve or a loop (infinite roots). We have to
appeal to other conditions to extract true collinear normal points effectively.

The following Lemma 4.2 presents the necessary and sufficient conditions for collinear
normal points of two surfaces. The proof of the lemma is straightforward by the definition
of collinear normal points.

Lemma 4.2 Given two C' parametric surfaces R and S, a pair of points R(u,v) and
S(t, w) are collinear normal points of R and S, if and only if the following equations hold:

Ru(u,v) e (Si(t,w) X Su(t,w))=0 (4.24)

R,(u,v) e (Si(t,w) x Sy(t,w))=10 (4.25)
and

(R(u,v)—S(t,w))e R, (u,v) =0 (14.26)

(R(u,v) - S(t,w))eRy(u,v) =0 (4.27)

then, normals of surfaces at the pair of points are aligned.

To find collinear normal points, Sederberg et al. [62] used an interval type method to
bound the feasible region fo: existence of collinear normal points. For those regions which
possibly possess collinear normal points, they simply subdivided the two surfaces, and re-
test the new system until a feasible interval region is small enough or no feasible region is
left. Consequently, this test needs expensive computation for tangencies [62].

Instead, we solve the equation systera 4.24 to 4.27, by our IPP solver. We test our
method by a rigorous example in which two surfaces are almost parallel to each other and
have a tangential contact point. The result is shown in example 8.9 in Section 8.2.2.

In the case where there is a collinear normal curve between two surfaces, the equation
system 4.24 to 4.27 has infinite roots. One such example is a ; arabola surface parallel to a
plane; see Figure 1-10 for illustration of the collinear normal curve.

CHAPTER 4. ROBUST UNIFIED INTERSECTION ALGORITHM 76

Figure 4-10: The occurrence of a pair of collinear normal curve between a parabola surface
and a plane.

4.9.3 Marching on Intersection Curves from Significant Points

In this section, we will discuss how to find the intersection curves of two surfaces by tracing
from those significant points. Given two parametric surfaces R(u,v) = (Xgr(u,v), Yr(%,v),
Zr(u,v)) and S(t,w) = (X3(t,w), Ys(t, w), Zg(t, w)), their intersections satisfy the follow-
ing equation system:

Xgp(u,v) = Xs(t,w) (4.28)
Yr(u,v) = Ys(t, w) (4.29)
Zr(u,v) = Zg(t, w) (4.30)

For the transversal intersection case, we can find the direction of the tangent of the
intersection curve by taking the cross product of normals of two surfaces. The reason is
because the intersection curve is on both surfaces, so the tangent of the intersection curve is
perpendicular to both normals of the surfaces along the intersection curve (see Figure 4-11
for illustration). This direction is used in the tracing process. The starting points for the
tracing is obtained by intersection points of one surface with boundaries of the other surface.
The direction used for the tracing process is a unit vector T tangent to both intersecting

surfaces, defined by 7 = (::S:‘):(u:R“) . Therefore, equations for u, », ¢ and 1w, (where

(o) denotes derivatives with respect to s along the intersection curve parametrized with arc
length), can be derived from this vector in a standard manner, as for example in Mortenson
[43] (Section 7.4.4). These equations are

. R, xT1 .

u—Ruva (4.31)
R,

p= X7 (4.32)

R, xR,

CHAPTER 4. ROBUST UNIFIED INTERSECTION ALGORITHM 77

8S(t,w)

R(u,v)

(ths") X(R xR_)

Figure 4-11: The direction of tangent of the intersection curve of two surfaces.

. Sy XxXT

1= S x5 (4.33)
. St XT)

b =gog (4.34)

These equations form a system of four interval ordinary differential equations (IODE). This
system is solved by an interval fourth-order Runge-Kutta method developed specially for
this work, Press et al. [54]. The output of this Runge-Kutta IODE integrator is a set of
boxes each of which encloses a small segment of the interval intersection curve.

Nevertheless, when two surfaces intersect tangentially along a curve, the normals of the
two surfaces are parallel on that curve, and their cross product of normals is zero. So the
direction of the tangent can not be decided by their normals. We discuss how to trace the
tangential intersection curve of two surfaces in the next subsection.

4.9.4 Tracing of Tangential Intersection Curve of Surfaces

A tangeniial intersection curve of two surfaces is in fact also a collinear normal curve of the
surfaces, (See Figure 4-12).

Ir order to trace the tangential intersection curve of surfaces, we have to first find the
starting points. In this subsection, we prove a theorem stating that a non-closed tangential
intersection curve of two Bézier patches must start from a border point and end at another
horder point as well. We refer this theorem as end point theorem. We also give two
examples in which the tangential intersection curves contain loops. The first example is a
torus and a plane on the top of the torus. Their tangential intersection curve is a circle.
The second example is for two cylinders, which have the same radius. One is spaced along
z-axis; the other along z-axis. Their tangential intersection curve is shown in Figure 4-13
(with darker line).

Before we prove the end point theorem, we need a commonly known fact described
in the following lemma.

CHAPTER 4. ROBUST UNIFIED INTERSECTION ALGORITHM 78

Figure 4-12: A parabola surface and a plane intersect tangentially along a line.

Figure 4-13: The tangential intersection curve of two cylinder contains loops.

CHAPTER 4. ROBUST UNIFIED INTERSECTION ALGORITHM 79

separation point

overlapping segment

Figure 4-14: It is impossible for two curves to overlap along their common segment and to
separate at some point.

Lemma 4.3 If two C* continuous curve segments Cy and C, overlap along their common
part of their segment, they must overlap everywhere. Otherwise, they end at boundary points.

This lemma means it is impossible that two curves overlap along their common segment
and separate from each other at one point, as illustrated in Figure 4-14.

Proof:

We prove this theorem contrapositively. Assume that there exist two C'™ curves C, and
C,, overlap partially. This means that there is a point p (referred to as separation point)
that ends the overlapping segment of C; and C,, as illustrated in Figure 4-14.

Any curve can have two orientations. We parametrize two curves by the arc length
appropriately, so they have the same orientations.

Since these two curves are C'™ continuous, their overlapping segment should be C>
continuous, too. Therefore, from the Taylor expansion theorem, we know that there exists
an € > 0 for a neighborhood N, p, such that any point ¢ € Np, it lies on both of the two
curves. Therefore, p cannot be the interior point. Hence, we have proven the theorem. O

We now prove the end point theorem.

Theorem 4.1 (End Point Theorem): If a tangential contact curve of two ideal Bézier
patches does not contain a loop, then it must start from a border point and end at another
border point as well.

Proof:

We prove this theorem contrapositively. Assume that the theorem is wrong. That means,
there exists a tangential contact curve pq of two Bézier patches R and S, which does not
march from border points to border points of surface patches, as illustrated in Figure 4-15.

We can easily extend curve pq to get a C™ continuous curve C; on one patch because
Bézier patches are C'™. Likewise, we can get a ("™ continuous curve on C, containg pq on

CHAPTER 4. ROBUST UNIFIED INTERSECTION ALGORITHM 80

R

Figure 4-15: It is impossible for iwo surfaces to contact along a non-closed tangential curve
(indicated by pq) in the middle of both surfaces.

the other patch. Then C; and C; overlap only partially (along pq) and separate at p and
q. This contradicts Lemma 4.3. O.

This end point theorem can help us locate a starting point to trace the tangential contact
curve of Bézier patches by intersecting boundary curves of one patch with the other.

If the tangential contact curve of two Bézier patches is a loop, then inside the loop, there
must be a collinear normal point which is not an intersection point of those two patches.
We can subdivide these two patches at that collinear normal point to eliminate tangential
contact loops.

The tangential contact curve of surfaces must satisfy the following conditions: (1) equa-
tion 4.20, (2) the system of equations 4.24 to 4.27, (3) the Hessian of the system in (2) is
singular. Condition (1) makes sure that they are iutersection points. Condition (2) guaran-
tees that they are indeed collinear normal points. Condition (3) tells us that those points
are very likely to be degenerate critical points of the system in condition (2), i.c. a collinear
normal curve. The fact that if the collinear normal curve exists, then the direction of the
tangent to the collinear normal curve can be derived from condition (3) [82] by singular
value decomposition (SVD) [71].

The End Point Theorem can be extended to any two C'* continuouvs patches.

Corollary 4.1 If a tangential contact curve of two C™ continuous patches does not contain
a loop, then it must start from a border and cnd at another border as well,

The proof for Corollary 4.1 is similar to the one in End Point Theorem,

In summary, to find the starting point of the tangential contact curve of two polynomial
surface patches, we can use the boundary curve of one surface to intersect the other surface
as starting points and end points. The Jacobian of the system of equations 4.24 to 4.27,
is used for two purposes: (1) to detect the occurrence of tangential intersection curve [87).

(2) to find the direction of the tangent to the tangential contact curve to march.

CHAPTER 4. ROBUST UNIFIED INTERSECTION ALGORITHM 81

>

(a) (b)
Figure 4-16: (a) Surfaces overlap across boundaries of both patches; (b) One surface fully
overlaps within the other surface.

4.9.5 Overlap of Two Surfaces

The overlap of two surfaces is a degenerate singular case of one order higher than that
of tangential intersection curve. There is a certain degree of misconception about surface
overlap in the CAD community. For example, Sinha et al. [68] shows a figure indicating
that two surfaces may overlap over an interior region. That is impossible for such surfaces
as quadrics, superquadrics and Bézier patches, whereas this may be possible for general
Coons patches and B-spline patches in certain special configurations.

In this subsection, we prove that if two ideal Bézier surface patches overlap, the overlap
patch must be bounded by the boundaries of the two Bézier patches, as illustrated in
Figure 4-16.

Corollary 4.2 Given two ideal Bézier patches, if they overlap over a region, then the over-
lap region must be bounded by boundaries of Bézier patches. In other words, the overlap
region cannot end in the middle of both Bézier patches.

Proof:

Again we prove this corollary contrapositively. Suppose the corollary is not true. Then
there exists an overalp region of two Bézier patches that ends in the middle of both Bézier
patches.

Let p be an end point of the overlap region and p is not on the boundaries of cither
patch. On the overlap region, we can draw a non-self-intersection curve C that starting
from p and end on the other point on the overlap region other than p. € is a tangential
intersection curve of the two patches, and contains no loop. Yet one end point p of C is
not on the boundaries of either patch. This contradicts ['heorem .1. O

For a point py on overlap of two surfaces, we anticipate that the Jacobian of the equation
system equations 4.24 to 4.27 at po, to have nullspace of rank 2. (It is possible on rare
occasions that there is an overlap part of two surfaces containing po but the Jacobian at
po has null space of rank more than 2. This problem might occur if the first-order Taylor
expansion of the equation system of equations 4.24 to 4.27 has zero 2nd order derivatives
see [53] for details). Fortunately, these cases are extremely rare in practice.

CHAPTER 4. ROBUST UNIFIED INTERSECTION ALGORITHM 52

If we find (by singular value decomposition (SVD) [71]) that for several intersection
points, the Jacobians have nullspaces of rank 2, then we can practically assume that an
overlap of two surfaces occurs.

From Corollary 4.2, we can use the method in Section 4.8 o find the boundaries lying
on the other surface. Those boundaries should form a loop. Then we can use this loop as
trimming loop to specify the overlapping ideal patch via a trimmed surface. This trimmed
surface can come from either of the two involved surface patches,

An example of surfuce overlapping is shown in Example 8.12 in Section 8.2.3.

Chapter 5

Data Structure

5.1 Imcroduction

Data structures are devised to represent topological information of geometric objects. To
develop a proper data structure for solid modelers is an important issue in solid modeling.
B-rep is a natural way to represent solids. It represents a solid by its bounding entities,
such as vertices, edges, and faces. The principal use of data structure in B-rep modelers is
to store incidence information and provide adjacency between geometric entities. There is a
great amount of literature about data structures for B-rep modelers. A review of them can
be found in Bardis and Patrikalakis [2]. Since, the geometries in thesis are interval objects,
the data structure has to be fit in this context.

The remaining of this chapter is organized as follows. Section 5.2 briefly reviews the
cell-tuple data structure developed by Brisson [5] [6] first. Section 5.3 discusses the char-
acteristics and categorizations for nodes of interval objects. Section 5.4 extends this data
structure to represent non-manifold interval objects. This data structure can be easily
adjusted to represent general n—dimensional interval objects.

5.2 Cell-Tuple Structure

In the cell-tuple structure, a d-manifold M is subdivided into k-cells (k < d) € C such that
(1) each k-cell is homeomorphic to opeu k-disk, (2) each boundary of k-cell is homeomorphic
to boundary of open k-disk, (3) each boundary of k-cell is a finite collection of a-cells,
(a <k). Two valid examples of subdivided 2-manifold are shown in Figure 5-1 (d) anc e):
Three invalid examples are shown in Figvre 5-1 (a), (b) and (c).

For two cells ¢; and ¢g, ¢; < ¢z denotes that ¢; is incident to ¢;, and that ¢ is exact
one dimension lower than ¢;. Cell tuples of d-manifold (M, C') are:

Trm = {(€ags - Cay)lCa, € Crag < oo < Cay}

Examples of cell tuples are shown in Figure 5-2. Figure 5-2(a) is a subdivided 2-manifold

83

CHAPTER 5. DATA STRUCTURE 84

(c)

Figure 5-1: Examples of invalid subdivided 2-manifold: (a), (b) and (c), and examples of
valid subdivided 2-manifold, (d) and (e).

Q. Figure 5-2(b) lists all cell tuples for @, and displays 4 cell-tuples. If t € Ty, then t
denotes the k-cell of the k-th tuple of ¢.

If (M,C') is a subdivided d-manifold, t € Tpy and 0 < k < d, then there is a unique
t' € Ty and a unique k, (0 < & < d), such that

t # U .
ti=1t; foralli#k

In other words, for au, cell-tuple t in Tjy, there is a unique cell-tuple t' in Ty, such that ¢
and t’ only difter by one cell. See Figure 5-2(b) for exan .cs.
Based on this fact, operator switch; is defined as below:
switch; : Thy — Tas such *hat
switch;(t) = t', where

t£tit, = forall k #1

The incidence graph of subdivided 2-maaifold in Figure 5-2(a) is shown in Figure 5-2(c).
Since the cell-tuple d=ta structure and the incidence graph can be derived from one to the
other, it is implemented by its cori2sponding incidence graph.

Properties of ti-» Cell-Tuple Dara Structure are listed below:

e Cells are mutually exclnsive;

Cells have different dimensions;

Only manifolds are representable;

Only closed objects are representable;

> Internal k-loops of n-object are not representabie for k<n;

CLAPTER 5. DATA STRUCTURE 85

(b) (4)

Figure 5-2: (a) is at example of subdivided 2D marifold Q; (b) lists all cell tuples for
@ and demonstrates the operator switch;; {c) is an incidence graph for Q; (d) shows an
relationship between cell-tuples via switch; where i = 0,1,2.

CHAPTER 5. DATA STRUCTURE 86

e Artificial cuts are required to represent objects with genus more than 0;

e Ordering information can be derived from the data structure.

5.3 Characteristics and Categorizations of Nodes for Inter-
val Solid Models

In this section, we first discuss the characteristics of nodes for interval objects. We then
categorize nodes into different types.

5.3.1 Characteristics of Nodes for Interval Splines

In data structures, each geometrical entity, e.g. vertex, edge, face, or volume is represented
by a node. Geometrical description and incidence information are stored in nodes. Con-
ventionally, nodes are classified according to their dimensionalities (Weiler [78], Brisson
[6]). The term adjacency, the topological counterpart of incidence, is stored in the data
structure, since it is fundamental and essential to solid modelers. Other relations such as
ordering information can be derived[6] from it. The objects in our modeler start as interval
objects ! and are expanded to larger interval objects via rounding processes.

For the sake of clarity, irterrogation convenience aund reducing incidence pointers of
data structure, distinguishing dimensionalities of nodes is an advantage. The problem is
how to determine dimensionality for each node. One way is from their representations.
For instance, an interval point is represented by Curtesian coordinates specified by interval
numbers; a free-form curve is represented by a series of interval control points; a free-form
tensor-product surface is represented by a grid of interval control points.

There are two alternatives to decide node’s dimensionality. One is to check elongations
of geometrical entities. For instance, to decide whether to relegate a range to an interval
point or an interval curve, if the ratio of elongations in one direction to the other direction of
the range is bigger than a pre-defined constant real number (say -1.0), the range is assigned
to the class of curves, otherwise it is relegated to an interval point. The other is to check
end points of intervai objects. For example, for a surface-to-surface intersection problem,
how can we decide the solution set to be a interval point or an interval curve? (Assume that
the solution set does not contain loops; loops can be detected and subdivided by collinear
normal points, see Chapter 4). We check two end points of the interval intersection points
whether they overlap or not. If they overlap, then the solution set should be consolidated
to be an interval point. Otherwise, they should be relegated to an interval curve becaue
two end points cannot envelop the solution set.

Issues in developing B-rep data structure for interval polynomial curves and surfaces
include:

o All cells (vertices, edges. faces) are topologically equivalent;

'Recall that in the context of interval arithmetic, every object in 3D is enveloped by a 3D volume

CHAPTER 5. DATA STRUCTURE

(c)

Figure 5-3: The intersection of a 2D bounded manifold with a 2D non-manifold models.

o Cells are not mutually exclusive;

¢ Data structure should permit representation of non-manifold objects;
e Data structure should permit representation of objects with loops;

¢ Data structure should permit representation of objects with genus.

(d)

5.3.2 Categories of Nodes in Data Structure

8

-

Non-manifold objects lead to more complicated topological problems than manifold objects
2, For example, the difference of object O; in Figure 5-3(b) minus the object Oy, in Figure 5-
3(a) is not homeomorphic to an open disk, or a line segment, or a point, as indicated in
Figure 5-3(d). The reason is the following: we can add one point to the middle of the
intersecting spike so that the difference will not be contractible to one point, while an open
disk will always be contractible to one point when adding one point to it. Therefore, we

need more kinds of nodes for non-manifold objects. They are classified as follows:

2In this thesis, the concept of manifold means both manifold and manifold with boundary [6]

CHAPTER 5. DATA STRUCTURE 8K

'/):-—'_\. ',""\,
O), i)
\i=: \._./

(active) (active) inactive
positive negative manifold
manifold manifold node

aode node
(a) (b) (e)
-~
N =N /
) (@))
N/ N2 N7
(active) (active) inactive
positive negative non-manifold
non-manifold non-manifold node
node node
(d) (o) (f£)

Figure 5-4: Six types of nodes in our data structure.

e active node

—~ positive noue; elements composing one model;

— negative node: elements deleted from one model;
e inactive node: elements not belonging to a model;

Inactive nodes stand for entities which are nonexistent teiuporarily and can be recalled
later on. Negative nodes stand for entities which are trimmed from models and they can
usually be applied to trimmed surfaces and the resulting non-manifold Boolean difference
operations (e.g. the example in Figure 5-3(d)).

Another way to classify nodes is their manifoldness. A node is manifold if its corre-
sponding geometric entity is manifold, while a node is non-manifold if its geometrical entity
is non-manifold. So overall, we have six types of nodes: (active) positive manifold nodes,
(active) negative manifold nodes, inactive manifold nodes, (active) positive non-manifold
nodes, (active) negative non-manifold nodes and inactive non-manilold nodes. When repre-
senting data structure graphically, we distinguish them by different symbols for correspond-
ing type of nodes; see Figure 5-4 for illustration. The most commonly used type of node,
i.e., the (active) positive manifold node is denoted by a solid circle, (see Figure 5-4(a)).
An (active) negative manifold node is denoted by double concentric dashed dottec circles
(Figure 5-4(h)), and it is the least used node. An inactive manifold node is denoted by a
dashed dotted circle (Figure 5-4(c)). An (active) positive non-manifold node is denoted by
double concentric dashed circles (Figure 5-4(d)). An (active) negative non-mnanifold node is
denoted by triple concentric dashed circles (Figure 5-4(e)). An inactive non-manifold node
is denoted by a dashed circle (Figure 5-4(f)).

CHAPTER 5. DATA STRUCTURE 89

5.4 Data Structure for Non-Manifold Interval Objects

We also develop in this thesis data structure for non-manifold interval objects. which is an
extension of incidence graphs from manifold to non-manifold objects. Because the usual
definition of incidence is modified, the limitation for cells to be homeomorphic to n-sphere
(as in [6)) is relaxed, and the types of nodes are augmented. Also, in the data stiructure,
manifold and non-manifold parts of a object are separated to assist the effective use of
non-manifold point classification algorithm, (see Appendix B).

As has been pointed out, two objects are incident if they intersect. Cells in nodes are
not necessarily homeomorphic to n-sphere. Cells could include *holes’, or handles’ (i.c.
objects with genus). Two more types of nodes are added to the incidence graph; they are
negative nodes and inactive nodes. as discussed in Section 5.3.2. Nodes are also classified
according to their manifoldness.

A list is assigned to each node for storing those nodes higher by one dimension incident
to it in the counterclockwise order. Another list is assigned for storing those nodes lower
by one dimension in the counterclockwise order.

We can always <ubdivide non-manifold objects into non-manifold parts and manifold
parts. In 2D space, the non-manifuid parts are usually one-diniensionar curves or zero-
dimension vertex. In Section 5.3.1, we mentioned that interval ohjects are all areas in 2D,
thus we can treat interval curve segments or interval points as interval areas in 2D. In
other vords, an iuierval curve in 2D becomes a curved strip; an interval point becomes a
rectangle. Similurly, in 3D space, we treat every interval objects as volume .ric entity.

If the non-manifold part is an interval curve, we assign one 1D active non-manifold node
to it as usual and one 2D inactive non-manifold node to it. Take the non-manifold model in
Figure 5-5(a) for example: a triangle with a dangling edge attached to the top vertex. The
data structure of the non-manifold model is shown in Figure 5-5(b). The numbers on the
left hand side in Figure 5-5(b) stand for the dimensionalities of each rank; e.g. edges ¢, f,
g and h are of one dimension *. In Figure 5-5(a) dangling edge h is the non-manifold part
for this model, therefore onz 1D active non-manifold node denoted by single dotted circle
is assigned to h and so is one 2D inactive non-manifold node denoted by two dotted circles
(see Figure 5-5(b)). The inactive 2D non-manifold node h in Figure 5-5(b) on'; serves the
role to access non-manifold part, while the active 1D non-manifold node h actually contains
the geometrical and topological information for dangling edge h in Figure 5-5(a).

Non-manifold models may be formed by some manifold models connected at some ver-
tices. For example, in the the model in Figure 5-6(a), the non-manifold model is composed
by two manifold models at the vertex v3. For the 9D non-manifold interval point v3, we
have inactive non-manifold nodes in dimensions 2 and 1, and an «active non-manifold node
in dimension 0. See Figure 5-6(h) for illustration, the 0D active non-manifold can be traced

3In Figure 5-5(b), there are three abstract nodes, indicated by two solid concentric circles for the graph
of data structure: firstly, the abstract node in dimension 3 connotes the whole 2D space; secondly, the one
in dimcasion 2 denotes the compiement of the model; thirdly, the one in dimension -1 denotes the empty
set. This is unnecessary, but useful for manipulating the incidence graph.

CHAPTER 5. DATA STRUCTURE 90

(a) (b)

Figure 5-5: Data structures for a 2D non-manifold model

up to be incident to the inactive non-manifold node in dimension 2.

This data structure is easy to comprehend and implement. In addition, the extraction
of manifold parts from the data structure is very easy for the use of point classification
algorithm for a nor-manifold object (see Appendix B).

The difficulty of implementii - a data structure fo, non-manifold B-rep modeler is much
greater than for a manifold one. However, thanks to the advent of Objected-Oriented pro-
gramming languages such as C'+ +, this difficulty can be greatly mitigated. The coaceptual
complexity of the problem can be further mitigated by implementing the incidence graphs
from non-manrifold objects.

CHAPTER 5.

DATA STRUCTURE

Figure 5-6: A non-manifold model and its data structure.

91

Chapter 6

Two Dimensional Boolean
Operations

6.1 Introduction

Boolean operations, including Boolean operations for manifold and non-manifold objects,
are the core operations of solid modeling systems. They have been discussed for example
by Requicha [55], Rossignac and Requicha [57] and Giirséz, Choi and Prinz [20]. Boolean
operations are always implemented based on the data structure. Current data structures
are only for idealized mathematica!l objects, see [78] [19] {56].

This chapter describes non-regularized Boolean operations for 2D manifold and non-
manifold objects. The algorithms of this Chapter are extended to Boolean operations for
more complicated 3D manifold and non-manifold objects in Chapter 7.

We have in Section 5.3 developed a non-manifold data structure for interval objects based
on incidence graphs and separation of manifold from non-manifold parts. This separation
is useful in solving the point classification problem which is essential to Boolean operations
for non-manifold objects (see Appendix B). Based on this data structure, after briefly
reviewing the Boolean operations in Section 6.2. Section 6 3 presents algorithms for 2D
manifold Boolean operations. Section 6.4 extends the 2D manifold to 2D non-manifold
operators.

6.2 Definition of Boolean Operations

Let A, B denote regular, compact sets in R, as shown in Figure 6-1(a). Boolean oper-

ations can be defined as:
b(AUB)=(hANcB)U(bBNcA) (6.1)

b(AnB)=(bANiB)U(bBNiA) (6.2)

92

CHAPTER 6. TWO DIMENSIONAL BOOLEAN OPERATIONS 93

s

(a)

(b)

s

(c)

3

(d)

Figure 6-1: (a) The regular compact sets, A and B; (b) the union of A and B, and its
boundary: b(AU B) = (bAN¢B) U (bB N cA); (c) the intersection of A and B, and its
boundary: b(AN B) = (bANiB) U (bB N iA); (d) the difference of A minus B, and its
Loundary: b(A — B) = (bANcB)U (bBNiA).

CHAPTER 6. TWO DIMENSIONAL BOOLEAN OPERATIONS 94

bA-B)=(bAc .)U(bBNiA) (6.3)

where bX is the boundary of the set X, i X is its interior and cX is its complement, (see
Figure 6-1 (b), (c) and (d)).

The above defined Boolean operations are set-theoretic operations. They differ from
the conventional regularized Boolean operations in that lower-dimensional structures are
allowed in the objects i.e., they can be applied to both manifold and non-manifold objects.
As has been pointed out in [22], although eliminating the lower-dimensional structures by
regularized Boolean operations is desirable for defining solids/regions, in some applications,
it is also desirable to retain them, possibly even in the interior objects. For example, when
considering solids as domainsin finite element analysis, interior lower-dimensional structures
might represent certain constraints on how to discretize the domain, or might define the
domain discretization outright.

It should be pointed out here that the above definition of Boolean operations arc >uitable
for objects with any dimensionality, including 2D and 3D, which cases will be discussed in
this and the later chap*rs, respectively.

6.3 Manifold Boolean Operations

In this section, we assume that the input objects and the results of the Boolean operations
are 2D, manifold, bounded, and the intersections of the boundari.s are finitely many “point
boxes”. The case in which the input models are manifold and the output models are non-
manifold will be handled in Section 6.4.

6.3.1 General Algorithm for Manifold Boolean Operations

The following three steps are used to perform 2D manifold Boolean operations (union,
intersection and difference) of two given 2D manifold objects A and B.

1. Intersect A and B and identify the inside or outside status of individual entities
(vertices and edges):

2. Refine AU B;

3. Execute operator-specific operations.

The first step involves intersecting the boundaries of models A and B and identifying
the inside or outside status of individual entities (vertices and edges), by point classification
algorithms (Appendix B). The second step is to refine the resulting intersection of models,
i.e. subdivide models into several sub-models according to their intersection points.

The following steps are used to refine AU B in Step 2:

e Start from the intersection points;

e Find all the closed paths such that each of them

CHAPTER 6. TWO DIMENSIONAL BOOLEAN OPERATIONS 95

— do not connect the subdivided segments,
— only choose the original non-intersecting vertices once,

— do not pick all non-intersecting vertices;
¢ Remove duplicate cycles.
The result of the refining process is a so-calied partition defined as follows:

Definition 6.1 A partition of an object M is a collection C of subscts of M such that
the union of the elements of C' is M and each pair of elements of C' have disjoint interiors.

Since the 2D region is bounded by interval curves and interval points, we have to redefine
the interior of a 2D region. Let us redefine the interior point of the region A, first.

Definition 6.2 Civen a region A bounded by interval curves {C;}ic; and interval points
{B;}jeJ, a point p of the region A is culled an interior point of the region A, if there exists
a neighborhood N, of p such that NyNC; =0 (fori€) and NyNB; =0 (for j€ J).

Now, we define the interior of a 2D region by its interior point.

Definition 6.3 Given a region A bounded by interval curves {C;}ier and interval points
{B;}jes, the interior of A is the set of all the interior points of A.

With the help of Definition 6.3, Definition 6.1 will also hold for 2D regions bounded by
interval curves and interval points. Since two incident regions share the same boundaries
which are composed of interval curves and interval points, and their interior set will not
have any point in common. Therefore, regions have disjoint interiors.

The third step performs the following operator-specific operations:

e AU B: output all the closed regions.

e AN B, output those regions which have edges from B but inside A and edges from A
but inside B.

e A — B, output those regions whose boundaries are either subdivided from A or sub-
divided from B but inside A.

e B — A, the same as the above procedure, but interchange A and B.
The following terminology is defined for convenience:

Definition 6.4 Given two planar models A and B, a vertex v is denoted as vaing, if it
belongs to A and is inside B, and it is called a vertex of A inside B. A vertcr v is denoted
as VaoutB, if it belongs to A and is outside B, and is is called a vertex of A outside B. If
two curves are subdivided from one parent curve, we call those nodes for these two curves
brother edge nodes.

CHAPTER 6. TWO DIMENSIONAL BOOLEAN OPERATIONS 96

The following procedure is to find cycle paths in a graph of the partitions of My and M,
with identified intersection points. For the sake of clarity, we take the models in Figure 6-2
for example to expiain the procedures.

Algorithm 6.1 /. Start from intersection points;

¢ Example: in Figure 6-2(b) nl and n2 are both intersection points, so we can
start from nl or n2 to search loops. Let us take nl.

2. Find the incident objects in an alternative sequence of 1D nodes (edges) and 01 nodes
(vertices);

¢ Example: Starting from nl (see Figure 6-2(b)), the next node to be inserted
into a loop can be one of four 1D nodes wl, w2, w5 or w6. Let us take w6. Then
the next incident node to be chosen has only one choice v6. We can continue the
similar procedure to insert those nodes into the searching loop {nl, w6, v6, €6,
v5, w8, n2 } until we reach n2. We have three nodes w3, w4 and w7 to choose
from as the next alternative node incident to n2. The next step shows how to
choose the next node from them.

3. Choose nodes other than brother edge node (see Definition 6.4) , when an edge
node encounters its brother edge node through their common vertex;

¢ Example: Taking the previous searching loop {nl, w6, v6, ¢6, v5, w8, n2 } for
example. From the three candidate nodes w3, w4 and w7 (see Figure 6-2)(b),
we will choose either w3 or w4, but not w7 as the next alternative node incident
to n2, since w7 is a brother edge of w8. Let us take wd. So the scarching loop
becomes {nl1, w6, v6, €6, v5, w8, n2, wd}.

4. Do not pick up any-vas,oum, node, once a scarching loop picks up one vag i, node,
and vice versa, where (i # 3,1,7 = 1,2);

5. Complete one searching loop, when the starting point is re-visited;

» Example: If we continue the previous searching loop, searching loop becomes
{n1, w6, v6, €6, v5, w8, n2, wi, v3, w2, nl}. Since nl is the starting point, we
complete this searching loop.

6. Go to step 1, until all options for candidate loops are exhausted.

o Example: Pick n2 and start the slep | again.

In the above Algorithm 6.1, Step 4 can help make the resulting loops to be the difference
or the intersection or the union of the two involved models.

Given a partition of objects M; and M generated by intersecting their boundaries
and for each node (see Figure 6-2), we use point classification (as in the Appendix B)

CHAPTER 6. TWO DIMENSIONAL BOOLEAN OPERATIONS 97

—
partition

(a) (b)

Figure 6-2: Finding the three independent cycles in a graph; step 1, in partition process,
two intersection 0D nodes, nl1 and n2 are a. ded; edge e2 is subdivided into two edges wl
and w2, so are edges e3, e4, e5; step 2, complete loops include loop!: {n2, w3, v1, el, v2,
wl, nl, w5, v4, w7, n2 }; loop2: {n2, w4, v3, w2, nl, w5, v4, w7, n2}; loop3: {nl, w2, v3,
w4, n2, w8, v5, e6, v6, w6, n1}.

to determine their inside or outside status of the other model for each active node. For
example, in Figure 6-2(b), vertices v4,v3 and edges w2, w4, w5, w7 are of inside status,
while vertices v1, v2, v5, v6 and edges w3, el, wl, w6, €6, w8 are of outside status.

Let us denote V’ as the vertex set of vps,inn,. Take Figure 6-2(b) for example, V2 =
{v3}, V3 = {v4}.

If an edge has both verticesin V2, or has one vertex in V;? and the other as an intersection
vertex, then that edge belongs to the boundary of the intersection of M, and M,; for instance
since w5 in Figure 6-2(b) has one end vertex v4 € V' and the other is the intersection vertex
nl, w5 is one boundary of the intersection of M, and Ma, so are w2, w4 and w7.

Similarly, we can denote the vertex of one model, which is outside of the other model.

Let us denote U,’ as the vertex set of 1, qu. p,; for instance, U = {vl,v2}, U} =
{v5, v6}.

If an edge has both vertices in U’, it belongs to the Houndary of the difference of M;
from M;. For example, since €6 has both vertices in U3, 6 belongs to the difference of M>
from M,. If an edge has one vertex in UJ and the other vertex is an intersection vertex, it
also belongs to the boundary of the dlﬂ'erence of M; from M;. For example, since w6 has
one vertex v6 in U} and the other vertex is the intersect’on vertex nl, w6 belongs to the
difference of M, from M;.

After the loops are found, we can use ihem to complete the Boolean operations. This
will be discussed in the following Sections.

CHAPTER 6. TWO DIMENSIONAL BOOLEAN OPERATIONS 98

6.3.2 Intersection Operation

Given two planar models M; and M- and their partition loops, the following Corollary is
used to identify which loops are the intersection loops.

Corollary 6.1 A loop derived from Algorithm 6.! is an intersection loop of My and M.,
if and only if

1. It has one verter vp,inM,, where i # j, or

2. All of its vertices are intersect.on vertices and the interior of the loop has a vertex
common to M;, i € {1,2}.

Proof. The proof of the sufficiency (<) is obvious. It follows from Step 4 of Algorithm 6.1
that no loop of the partition loops generated by Algorithm 6.1 will consist of both kinds of
vertices va,inpf, and vam,outM,, # 4,4, = 1,2. For a loop ! with a vertex vasinM,, 1 # J,
there are two cases in which this can occur: either (case 1) no edges of [intersect M;, as
indicated in Figure 6-3(a), or (case 2) some edges of loop [intersect M;, as indicated in
Figure 6-3(b). For case 1, the loop [is the boundary of M;, which is inside M;, so the loop
[is the intersection of M; and M;. For case 2, it only consists of the intersection vertex
and vps,inM,. Any edge between those vertices is in both AM; and M,.

A loop ! can have all vertices as intersection vertices, without va,inp,, as in Figure 6-
3(c). From the assumptions, loop [has a point p of its interior common to both M; and M,,
so this loop must be one of the boundaries of the intersection of M; and M;. Therefore,
loop ! is an intersection loop. This completes the proof for the sufficiency.

We prove its necessity (=) by proving its contrapositive. Suppose a loop !’ contains no
UM,inM,, Where i # j, then I' is composed of vas,.uras, and intersection points, or intersection
points only. If I’ contains one UM, outM, » then it does not belong to M;, therefore !’ can not be
the intersection loop. If I’ comprises only intersection, it has no vertex of interior common
to both M; and M, by hypothesis; therefore, I’ can not be an intersection loop either. This
completes the proof for the necessity. O.

6.3.3 Difference Operation
Given two planar models M; and M5 and their partition loops, the following Corollary is
used to identify which loops are the difference loops.

Corollary 6.2 A loop derived from Algorithm 6.1 is a difference loop of My from M,, if
and only if

1. it has one vertex opoun,, where i £ j, or

2. all of its vertices are intersection vertices and the interior of the loop has no point
common to M;, i € {1,2}.

The proof of Corollary 6.2 is similar to Corollary 6.1. T'igure 6-4(a) is used for the proof
of Corollary 6.2 as the counterpart for Figure 6-3(a) in the proof of Corollary 6.1; so are
Figure 6-4(b) for Figure 6-3(b), Figure 6-4(c) for Figure 6-3(c).

CHAPTER 6. TWO DIMENSIONAL BOOLEAN OPERATIONS

(a) (b) (c)

Figure 6-3: Examples of intersection loops for partitions of two manifold objects.

\\\\\\\\\\‘.
\\:\\\\\\
§§§§§

A

(a) (b) (c)

Figure 6-4: Examples of difference loops for partitions of two manifold objects.

99

CHAPTER 6. TWO DIMENSIONAL BOOLEAN OPERATIONS 100

6.3.4 Union Operation

Similar to Corollary 6.1 and 6.2, we can have a Corollary for the union of AM; and AM,.
In fact, the union of My, and M, is the set of all the loops so that each loop contains only
vertices which either are in U} and U}, or are of intersection vertices. Take the the loop {
n2,w3,vl, el,v2, wl,nl, w6, v6,e6, v5, w8,n2 } in Figure 6-2 for example. Any edge with
both vertices being intersection vertices is either inside AM;, 7 € 1,2 (see Figure 6-3(c)), or
outside M;, i € 1,2 (see Figure 6-4(c)).

6.4 Non-Manifold Boolean Operations

Non-manifold Boolean operations require slightly different approaches than manifold Boolean
operations. since subdivided regions in the refinement in Algorithm 6.1 may not be manifold
regions. They might be a line segment or a point, thus we can not employ loop-searching
to carry out the refinement process.

Algorithm 6.1 for manifold Boolean operations requires small changes to fit the non-
manifold Boolean operations. The first step of Algorithm 6.1 for intersecting processes and
identifying inside or outside status for each 0D and 1D cell remains unchanged The second
step for refining processes is also needed. However, as has been pointed out, it necessitates
modifications for the collections of nodes with the same in or out status. Since subdivided
parts might comprise non-manifold objects. We discuss them for each Boolean operation
separately.

Intersection: Since the non-manifold model results from intersection of two manifold
models M; and My, it might consist of manifold regions, curve segments, points or combi-
nations of manifold regions with curve segments. We need to find thein out. The approach
to find them is as follows:

¢ Find closed intersection loops from the intersection points (manifold parts);
¢ Find intersectingline segments or tangentially intersecting points (non-manifold parts);

o Integrate them into one model, if any non-manifold part is connected to manifold
parts.

Difference: A distinct approach is used to extract differences of two models. We unify
two intersecting models as one model, then refine the unified model if new regions arise.
Afterwards, we remove those elements which are either the intersections of two models or
parts of the subtracting model.

Union: To find the union of two models, an approach similar to the one for difference
operation is employed. After the boundaries are intersected with each other, the unified
model is refined according to the intersections of these two models. Those intersection

CHAPTER 6. TWO DIMENSIONAL BOOLEAN OPERATIONS 101

nodes which belong to one model and are inside the other model are then removed, and the
remaining elements make up the union of the original two models.

Chapter 7

Three Dimensional Boolean
Operations

7.1 Introduction

Until now, we have developed (1) a robust geometrical representation, (2) a robust non-
linear polynomial equations solver, (3) a robust and unified algorithm for well- and ill-
conditioned intersections problems, (4) an nD non-manifold data structure for interval ob-
jects, and (5) algorithms for 2D Boolean operations. By employing all of these, this chapter
will develop algorithms for 3D Boolean operations for manifold objects, and extend them
to non-manifold objects resulting from ill-conditioned intersections.

The remaining of the chapter is organized as follows. Section 7.2 presents an overview
of the procedures for 3D Boolean operations. Section 7.3 discusses the surface intersection
algorithm for Boolean operations. It also summarizes the difference of our methods from
other methods. Sections 7.4 to 7.6 develop algorithms to refine various nodes, such as
0D, 1D, 2D and 3D nodes. Section 7.7 summarizes the algorithms for Boolean operations.
Section 7.8 discusses the method for rendering trimmed surfaces.

7.2 Procedures for 3D Boolean Operations

Given two 3D manifold models A and B, the general procedures for 3D manifold Boolean
operations can be described as follows:

1. Intersect the boundaries of A and B;

2. Create new nodes for each intersection curve and refine the boundary curves of bound-
ing surfaces of models A and B;

3. Refine each bounding surface of A and B;
4. Refine A B into different shells;

102

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 103

- -

Figure 7-1: The common interseziion curve does not divide the surfaces into separate
regions.

5. Perform specified operations for union, intersection and difference.

Steps 1 and 2 create new 0D and 1D nodes for intersection curves. In the event of occurrences
of boundary intersections, step 2 assigns new nodes to those subdivided bounding surfaces
and curves.

In the 2D modeler discussed in Chapter 6, when two curves intersect transversally, we
simply subdivide the involved curves at their intersection points. However, in the 3D mod-
eler, we cannot simply subdivide involved surfaces along their intersection curves, because
their intersection curves might not divide those surfaces into two separate regions; (see
Figure 7-1). Therefore, we cannot subdivide surfaces into separate subpatches until all
surface-to-surface intersections are found.

The refinement in Step 2 involves subdivision of boundaries of the two models, based
on the intersections of each bounding surfaces of A and B. This refinement is essential to
the Boolean operations. It is discussed in detail in Section 7.4.

Step 3 creates new 2D nodes for subdivided surfaces. In this step, we refine the bounding
surfaces of models A and B. Because in Step 1, we have already embedded 1) nodes for
intersection curves and 0D nodes for their end points into their data structures, we can
now identify their intersection nodes from their data structures. A bounding surface can
be separated into several regions by intersection curves with other surfaces and its original
boundary curves; see Figure 7-8 and Figure 7-10 for examples. In Figure 7-10, surface A is
separated into two regions by the intersection curves and its boundary curves. In Figure 7-8,
surface A is separated into two regions. One region is bounded only by intersection curves.
New 2D nodes are created for those newly divided regions and are incorporated into the
data structure.

Step 4 creates new 3D nodes for subdivided shells. In this Step, we refine the AU B
into several shells. The bounding surfaces of each shell are identified. The shell can be a
shell of difference, intersection, or union of A and B. Take Figure 7-2 for example. We can
have four resulting shells: (1) the difference of hexahedron A and hexahedron B, (2) the

CHAPTER 7. THRLE DIMENSIONAL BOOLEAN OPERATIONS 104

Figure 7-2: Two 3D regular compact objects, A and B.

intersection of A and B, (3) the difference of B and A, and (4) the union of A and B.
Finally, in Step 5, we finish the Boolean operation according to the shells identified from
Step 4.

7.3 Intersection of the Boundaries

Geometric intersection is the core issue in Boolean operations. We have described the geo-
metric intersection in detail Chapter 4. Among all the boundary-boundary intersections, the
most common intersection is surface-to-surface intersection [31]. We discuss our geometric
intersection method for 3D regular compact objects as in Figure 7-2 in this section.

In many solid modelers, the bottom-up approach is used to intersect geometries [9] for
bounding surfaces of models. In this approach the intersections of lower-dimension geome-
tries are performed before those of higher-dimension geometries. For example, curve-to-
surface intersections are executed before surface-to-surface intersections. The main purpose
of the bottom-up method [9] is to reduce inconsistencies arising from floating point error.
On the other hand, it complicates and duplicates the intersection procedure, especially in
handling of parameters of parametric entities. Take curve-to-curve intersection for example.
Since each curve is incident to two surfaces, each curve has two parametrizations. These
two parametrizations might be different. In this case, the resulting parametric values for
the intersection points might be different. For instance, for curves A and B, A has two
parametrizations A, and Ap; B has two parametrizations By, and Bp. The resulting
intersection of A, with By is different from that of Ay, with By;. Therefore, to fully
investigate the intersection of two curves A and B, we have to intersect four times; Ay
with By, Ap1 with Bpg, Apy with By, and Ayy with By, The bookkeeping for those four
results is significant.

In our work, the inconsistency problems are solved by the combination of interval poly-
nomial objects (Chapter 2) and IPP solver (Chapter 3), which make our geometric com-
putations robust. Hence, for our interval solid modeler, we do not use the bottom-up

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 105

approach.

We attach one parameter attribute which specifies the parameter information of a node
to its associated 2D nodes. The addition of parameter attributes in each 0D, 1D nodes
will greatly simplify the topological tracing process. It will also expedite the collection
of parameter information of trimming loops to refine surfaces (Section 7.5) for each 0D
and 1D node. Take a vertex incident to three surfaces for example. This vertex can be
geometrically located from its three incident surfaces via associated parameters. Therefore,
in the case, the parameter attribute for this 0D node (vertex) is a list which stores the
associated parameters for its three incident surfaces (see Figure 7-3).

There are two kinds of boundary curves for bounding surfaces: one is the original
boundary curves of surfaces; the other is the intersection curves of surfaces. The former are
usually iso-parametric curves along the boundary surfaces, and their parameter attributes
can be specified by two end points in the associated surface’s parameter plane. However, for
an intersection curve, as in the latter case, we have to keep a list of points in the parameter
domain of the associated surfaces.

After all geometrical intersections are executed for the two involved models, we refine
these two models according to their intersection set. In the refining procedure, we adopt the
idea of the bottom-up approach. We refine the lower dimensional entities before the higher
dimensional ones. For example, we first refine 1D entities (Section 7.4), which are boundary
curves of bounding surfaces of models. Then, we refine 2D entities (Section 7.5), which are
the bounding surfaces of models. Finally, we refine 3D entities (Section 7.6), which are the
shells of models.

7.4 Refinement of 1D (Curve) Nodes

This section discusses the refinement of 1D nodes required in step 2 of the procedures
described in Section 7.2.

During the process of surface-to-surface intersection, the intersection curves will be
stored at both intersecting surfaces. After all surface-to-surface intersections are executed,
we then recall e.ch intersection curve from bounding patches to refine models. Generally
speaking, A 1D node will be created and assigned to each inversection curve. Two 0D nodes
will be created and assigned to its two end points.

If a boundary curve of one model is intersected with a bounding surface of the other
model at one point, then that boundary curve must be split at that intersection point. At
the same time, we have to add one 0D node for that intersection point, two D nodes for
two subdivided segments, and eliminate the original 1D node. Those new nodes have to be
incorporated into the data structure of the model. See Figure 7-3 for an illustration.

An intersection curve comes from two surfaces of two models. Hence, one intersection
curve will be used twice to refine both surfaces of two models. This raises the following
question: should one or two nodes be assigned to the intersection points? Different answers
to this question lead to different data structure.

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 106

» () (3 ENONC
refine 1D
node c
ip Q —- 1D @ e
o (=) o ©

Figure 7-3: Refine 1D node ¢ with 0D node np.

Merging and Refining: If only one new node is assigned to an intersection curve, then
both models will have the same intersection curve node. This method is referred to as
“merging” method. The data structures are merged through those intersection curve nodes.
Alternatively, two nodes are assigned for the same intersection curve to their data structures.
This method is referred to as “refining” method.

When using refining method, the data structures of the two models are refined individ-
ually. The refining method can still access the connection of two nodes for one intersection
curve by adding one attribute to those two nodes. The attribute is called “same_node”. The
attribute "same_node” of a node is a pointer to the other node which has the same geometry
of that node. To illustrate the difference between “merging” and “refining” methods, see
the example shown in Figure 7-4. In Figure 7-4, two original models have two curves. Their
data structures are shown in Figure 7-4(a) and (b) respectively. They intersect at one point,
thus they both have to be split at the intersection point. Figure 7-4(c) and (d) show the
resulting data structure of the “merging” and “refining” methods, respectively. Note that
in Figure 7-4 (d), node np and node np’ are the same.

Both “merging” and “refining” methods can work. There is no significant advantage
of one over the other. In our implementation of the interval solid modeler, we used the
“refining” method. We did so because the refining method keeps those data structures
clear for the two models. For example, when point classification is called to identify vertices
of a refined model to be inside or outside the other model, we have to know which model
consists of which surfaces. If the data structures are merged, it is troublesome to recognize
which node belongs to which original model.

Refining boundary curves with intersection curves of surfaces raises another problem,
which is illustrated in Figure 7-5.

To demonstrate the problem, let a boundary curve be of bounding surfaces intersect
two different intersection curves at one point. These two intersection curves come from two
surfaces incident through that boundary curve be (see Figure 7-5).

In Figure 7-5, the boundary curve be is incident to both patches @ and R. The inter-

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 107

q2 p2 q2 P2
B2
Intersect A2
—>
pl A B pl np\ B1
ql ql

(a) (b)

(¢) merging method

by @ DD

) @ @ @@

(d) refining method

Figure 7-4: An example of “merging” method and “refining” method for two curves. (a)
and (b) are data structures for two curves; (c) and (d) are respectively the resulting data
structure using merging and refining methods.

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 108

Figure 7-5: The boundary curve bc is intersected by two intersection curves ¢ and j.

section curve j comes from patches R and A; the intersection curve ¢ comes from patches
Q and A. Both intersection curves ¢ and j intersect the boundary curve be at point p. The
question now is: should the boundary curve bc be split twice by ¢ and j at p?

The answer is clearly “no”. The second splitting at the same point for a boundary
curve should be avoided, because it is unnecessary and harmful to the implementation. To
prevent that from happening, we check the geometry of the splitting point. Each time
before assigning a 0D node to an end point p of the intersection curve, we check whether
there is an existing 0D node which has the same gecometry as p. If there is such a 0D node,
instead of creating a new node for point p, we can associate that node to the point p.

Surfaces might intersect tangentially. For example, two surfaces might come into tan-
gential contact at one point or along a curve. In the former case, we have to create a
0D node for that vertex. That 0D node is non-manifold for the union of the two models
involved. In the latter case, the tangential intersection curve must be a collinear normal
curve for both surfaces (see Chapter 4), and a 1D node must be assigned to the tangential
intersection curve.

7.5 Refinement for 2D (Patch) Nodes

This section discusses step 3 in Section 7.2 in more detail.

As mentioned in Section 7.2, for a 3D modeler, tihe complete subdivision of one surface
into separate subpatches may involve several surfaces from the other model. Therefore,
in 3D modelers, we have to complete all surface intersections first, and then identify the
separate regions for each bounding surface.

To refine each bounding surface of involved 3D models, first we have to identify individ-
ual subpatches of that bounding surface. Then, we refine bounding surfaces into separate
subpatches. We will discuss the relationship of the separated subpatches with the inter-
section curves of the bounding surfaces in Section 7.5.1 and the refinement procedures for
bounding surfaces of 3D models in Section 7.5.2

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 109

7.5.1 Subpatches of Bounding Surfaces

The following is a list of the relations of subpatches of one bounding surface according
to its intersection curves or points, assuming intersection curves for surfaces have no self-
intersections:

1. If a bounding surface has several discrete intersection points with other surface(s), then
add vertices as many as intersection points to that surface (this will not subdivide the
surface into separate subpatches);

2. If a bounding surface S, has a simple! intersection curve with the other surface S,
from the boundary to the boundary of the surface 5, then subdivide the former
surface into two separate subpatches, and these two separate subpatches are bounded
by the original boundary of the surface .5; and the intersecting curve;

Similarly, if a bounding surface has n simple intersecting curves which all cross from
the boundary to the boundary of that surface, then subdivide that surface into n + 1
separate subpatches;

3. If a bounding surface has n intersecting curves which form a loop, then subdivide that
surface into two separate subpatches. One subpatch is a trimmed patch bounded by
the loop, while the other subpatch is bounded by the loop and the houndary curves
of the surface.

Similarly, if a bounding surface has several intersecting curves which form m loops,
then subdivide the surface into m + 1 separate subpatches;

4. As aresult of cases 2 and 3, if a bounding surface has several intersecting curves which
from m loops and n intersecting curves crossing from its boundary to other boundary,
then subdivide the surface into m + n + 1 separate subpatches.

In the first case, if the intersection points are not in the boundaries of both bounding
surfaces, then it is a degenerate case where two surfaces tangentially contact at several
points. Those intersection points are critical points whose computation is very sensitive to
the numerical errors, and thus are difficult to find by using floating point arithmetic. In
Chapter 4 we discuss how to compute those critical points robustly and efficiently by using
interval arithmetic. In this case, both surfaces will not be subdivided into subpatches for
those intersection points.

In the second case, if a bounding surface has only one simple intersection curve, the
intersection curve must separate the bounding surface into two subpatches, see Figure 7-
6 for an example. In Figure 7-6 patch A has ouly one intersection curve with patch B3,
Similarly, if a hounding surface is crossed by n simple intersection curves from its boundary
to boundary, as shown in Figure 7-7, the intersection curve must separate the bounding
surface into (n+1) subpatches, see Figure 7-7 for an example.

1«Simple” curve means a curve without self-intersection.

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 110

Figure 7-7: A bounding surface is subdivided into n+ 1 subpatches by n intersection curves.

In the third case, if a bounding surface has intersection curves forming a loop,(see Fig-
ure 7-8(a)), then the bounding surface (Figure 7-8(a)) has two subpatches; one is bounded
by the loop, and the other bounded by the loop and its own boundary curves.

If a bounding surface has multiple loops formed by its intersection curves, see Figure 7-
8(b), where m = 2, then surface (Figure 7-8(b)) has three subpatches.

In the fourth case, a bounding surface has m loops and n intersecting curves crossing
from boundary to boundary. See Figure 7-9 for an example, in which m = 2, n = 1. Each
loop will create one subpatch for the bounding surface. Similarly, so does each intersection
curve crossing the bounding surface from boundary to boundary. Therefore, the resulting
subpatch is m + n 4 1.

The above list is not exhaustive for the intersection of bounding surfaces. For example,
a bounding surface might have a tangential contact curve as an intersection curve. However,
that tangential contact curve wil! not separate surfaces into subpatches. This tangential
contact curve will result in non-manifold objects from Boolean operations, so we have to
assign a non-manifold 1D node to it. In this section, we are only interested in cases which
will subdivide bounding surfaces into subpatches, because one of the applications of the list
is to check the results of refining bounding surfaces. For instance, if a bounding surface has
1 loop and 1 intersecting curve crossing boundary to boundary, we expect that the refining
result for that bounding surface will have three subpatches.

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 111

. A B
././ \‘ o — —f
7 \‘ '/' \
[R . PAERY ‘ - —J
b)

Figure 7-8: (a) A loop is formed by the intersection curves on patch A; (b) two loops are
formed by the intersection curves on patch B.

’
4

/

A // r7
/. \ / / /
“—-—2 / {——-4

Figure 7-9: A patch with intersecting loop and curves from boundaries to boundaries.

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 112

7.5.2 Refining Patches

To illustrate a refining nrocess for a patch, we first take the simplest example, i.e., refining
a patch with only one intersection curve, see Figure 7-6. Then we extend the method to
refine the general case, i.e., surfaces with multiple intersection curves.

Refine a patch with one intersection curve: To refine a patch A, as in Figure 7-6,
execute the following steps:

1. Take a vertex of the intersection curve and check if it has been created:

(a) If it has not yet been created,

i. create a vertex node for that vertex;

ii. subdivide the boundary edge upon which the vertex lies;
iii. update the parameter attributes of that vertex node;
iv. update the parameter attributes of those subdivided edges
v. update the incidences of that vertex node;
vi. update the incidences of those subdivided edges;

(b) Otherwise:
i. update the parameter attributes of that vertex node;
ii. update the incidences of that vertex node;

(c) If there is a vertex for an intersection curve left, go to step 1, otherwise proceed
to the next step;

2. Create one edge node for the intersection curve;

(a) update a parameter attribute of the intersection curve;

(b) update the incidences of the intersection curve;
3. Subdivide patch A into two subpatches:

(a) collect independent trimming loops via data structure;
(b) create a 2D node for each trimming loop;
(c) assign a trimmed surface for each 2D node;

(d) associate parameter attributes of 0D and 1D nodes in a trimming loop to its
newly created 2D node;

(e) update the incidences of the new 2D nodes.
If an intersection curve touches an isoparametric boundary edge, we refer to that touch-

ing point as an edge vertez. Otherwise, it is a non-edge vertez. For instance in Figure 7-10
point p is an non-edge vertex, but points ¢ and r are edge vertices.

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 113

Refine a patch with multiple intersection curves: Here, we refine those patches
which have multiple intersection curves, see Figure 7-10:

1. Check two ends of each intersection curve. A vertex can be either an edge vertex or
an non-edge vertex.
For an edge vertex:
(a) If a vertex node of an intersection curve has been created from the adjacent and
previously processed patch:

i. update the parameter attributes of that vertex and the two edges incident
to this vertex.

ii. update the incidences of the vertex node;
(b) Otherwise:

i. create a vertex node for the edge vertex;
ii. subdivide the edge incident to this edge vertex;
iii. update the parameter attribute of the vertex node;
iv. update the parameter attributes of the two newly subdivided edges;
v. update the incidences of the vertex node;
vi. update the incidences of the two newly subdivided edges.

For a non-edge vertex:

(a) If a vertex node has been created from another intersection curve:

i. update its incidences;
ii. update its parameter attribute;

(b) Otherwise:

i. create a vertex node for the the non-edge vertex;
ii. update its incidences;
iii. update its parameter attribute;

2. Create edge node for each intersection curve;

(a) update its parameter attributes;

(b) update its incidences with its end points;

(c) If there is any intersection curve left, retrieve it and go to Step 1, otherwise
proceed to the next step;

3. Separate the patch into several regions:

(a) collect independent trimming loops via its data structure;

(b) create a 2D node for each trimming loop;

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 114

Figure 7-10: Patch A has multiple intersection curves (dash-dotted lines) with patch B and
patch C.

(c) assign a trimmed surface for each 2D node;

(d) associate parameter attributes of 0D and 1D nodes in a trimming loop to its
newly created 2D node;

(e) update incidences of new 2D nodes.

Parameter attributes of 2D nodes are lists of its 1D nodes and their parameter values.
They are used to derive trimming loops. We have to detect those patches in which the
intersection curves form a loop or loops, since those holes will result in some trimmed
surfaces with inner and outer trimming loops, see Figure 7-8. Those issues are important
to rendering the trimmed patches, which is discussed in Section 7.8.

7.6 Refinement for 3D (Shell) Nodes

This section discusses step 4 in Section 7.2 in more detail. The refinement procedures for
3D shells are much more complicated than that for 2D loops.

In the 2D modeler, a 2D manifold has the property that its incident 0D nodes (vertices)
and 1D nodes (edges) from a loop, see Figure 6-2 for examples.

While in the 3D case, a manifold shell consists of 1D nodes (edges) and 2D nodes
(patches). The question now is: do the 1D and 2D nodes of 3D manifold form a loop? The
answer is “no” in general. We discuss this issue in Section 7.6.1, because it is relevant to
search the bounding patches for shells. In Section 7.6.2, we develop a general algorithm te
search the bounding patches for various shells, such as intersection, difference and union
shells.

7.6.1 Loops for 3D Models

In the 3D case, a loop for 3D manifold shells consists of 1D nodes (edges) and 2D nodes
(faces). In some situations, 3D loops can be found starting from any 1D node (edge) or 2D
node (face) via orientations of faces and edges. Two examples are shown for such loops.

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 115

vy Vi
(a) (b)

Figure 7-11: Orientations of an triangle.

However such a loop-finding procedure does not work in general. One counter example is
given in Figure 7-16.

Orientation of Faces and Edges

Let us review the orientations of faces and edges. For a face with edges and vertices on the
boundary, we define two orderings of its vertex set to be equivalent if they differ from one
another by an even permutation [45). The orderings of the vertices of the surface ther fall
into two equivalence classes. Each of these classes is called an orientation of the surface.
We often represent an orientation of a surface by drawing a circular arrow. Take an triangle
with vertices { vp, v, v2} for instance as shown in Figure 7-11. In fact, we can check that
{vo, v1, v2} and {v;, v2, vo} are indicated by the same clockwise arrow. Similarly, we can
define the orientations of an edge. We define two orderings of its vertex set to be equivalent
if they differ from one another by an even permutation. The orderings of the vertices of an
edge also fall into two equivalence classes. We often represent the orientation of an edge by
drawing an arrow from one vertex to the other.

For convenience, we define the following orderings for a face of a 3D manifold object by
using the right hand to circle the ordering of a surface: we decide the orientation of a face
by crossing fingers of the right hand.

Definition 7.1 The ordering of a surface on the boundary of a 3D manifold object is called
inward ordering, if the thumb points toward the inside of the 3D manifold object. By the
same loken, the ordering is called outward ordering, if the thumb points toward the outside
of the 3D manifold object.

Imposing an ordering of a surface on ils edges means that orderings of edges form the same
ordering as that of the surface. See Figure 7-12 for an example. Conversely, we can also
impose the ordering of an edge to its incident surface.

Let us see two examples of loops for 3D manifold objects; one is a tetrahedron, the other
is a hexahedron. A tetrahedron with vertices { A, B, C, D } is shown in Figure 7-13(a)

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 116

A B

Figure 7-12: Imposing the ordering of a surface on its edges; the orderings of four edges
form the same ordering of the face.

()

Figure 7-13: (a) A tetrahedron; (b) its resulting planar representation split at vertex B; (c)
its incidence graph (data structure).

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 117

(a) b)

AD — 11— DC —+2—+ CB—s3 —s BA —= ¢

Figure 7-14: (a) A tetrahedron; (b) oriented faces and edges of the tetrahedron; (c) the
loop consisting of edges and faces for the tetrahedron; (d) the path, indicated by arrows, of
the loop in (c) from its (incidence graph) data structure.

and its four planes are named in Figure 7-13(b). Its incidence data structure is shown in
Figure 7-13(c). If we expand the tetrahedron on the 2D plane by splitting vertex B and
edges BA, BD, BC, the resulting tetrahedron is illustrated in Figure 7-13(b). The task now
is to find a loop consisting of 1D nodes (edges) and 2D nodes (faces) for the tetrahedron;
no node is included more than once in such a loop.

Let us begin by taking an edge (1D node) and one of its incident faces (2D node). By
assigning an inward ordering on a face, we also obtain the imposing ordering of that face
to its edges. For example, we take the edge AD and its incident face 1 (see Figure 7-14(b)
for illustration). Now the loop consists of { AD, 1}. Take the next edge incident to face
1, in the direction of the ordering of face 1 from { AD, 1}), i.e., edge DC. Impose the
ordering of face 1 to the edge DC. Take the next face incident to the edge DC’; that is face
2. Impose the ordering of the edge DC to the face 2. (Now the loop consists of { AD, 1,
DC, 2}). If we continue this process, the loop will search back to the starting edge AD,
(see Figure 7-14(c)). Surprisingly, the last face (face 4) added to the loop imposes the same
ordering on the starting edge (AD), as indicated in Figure 7-14(b). The resulting loop is
shown in Figure 7-14(c). The corresponding path in the incidence data structure of the
tetrahedron is shown in Figure 7-14(d).

This procedure will result in a loop including all four planes of the tetrahedron auto-
matically, no matter which edge we start with.

The same procedure can find a loop for a cube from its data structure, see Figure 7-15.

Unfortunately, this procedure does not work for general cases. See Figure 7-16 for a

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 118

(a}

1+~ GE-=3=ED*1*DA >4 > AR5 =37 > {=TFC

t

(e)

Figure 7-15: (a) A cube; (b) its oriented faces and edges; (c) the loop consisting of edges
and faces for the cube.

K G 3 g
c
| | G r
| |
| l — r
| i ¢ B
L | fu ID
| | p 2 .
’----——f.___ L B
/ J / F B E o
/ H
/ /
/ / 1
|V Vi L =
I E A
K J r
(a) (b)

Figure 7-16: (a) A cube; (b) its resulting planar representation split at edge I J. Starting
with AB, we will not return to AB by employing the loop-finding procedure.

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 119

counter-example. If we start with AB, by employing the aforementioned procedure, we will
not return to AB.

From our experience, this procedure only works for models in which each bounding patch
has the same number of edges, such as tetrahedra and cubes. In the next Section 7.6.2, we
discuss a way to find the bounding patches for manifold shells for general cases.

7.6.2 Shell Identification

In this section, we assume that the common parts of the two manifold models are also
manifold. The case, in which two manifold models intersect at points or along tangential
curves introduces non-manifold nodes, will not be discussed here.

In the 3D Boolean operations, after step 3 in Section 7.2, two models are combined into
one through their intersection curves. This section discusses how to identify different shells
by finding their bounding patches. Shells can be (1) the difference of model A and model
B, (2) the intersection of model A and model B, (3) the difference of model B and model
A, and (4) the union of model A and model B.

Nodes for intersection curves are called intersection nodes. Non-intersection nodes can
be either inside or outside the other model. The inside or outside status of nodes can be
found by the point classification algorithm in Appendix B. The inside or outside status is
important for identifying different shells. For example, an intersection shell is comprised
of intersection nodes and inside non-intersection nodes. A union shell is comprised of
intersection nodes and outside non-intersection nodes.

We need to define some terminology for describing different shells. In Definition 6.4,
vAinB denotes a vertex of model A inside model B for 2D case. By the same token, we can
define node nd p;,p for 3D case.

Definition 7.2 Given two 3D models A and B, a node nd is denoted as ndpinp, if it
belongs to A and is inside B, and is called a node of A inside B. Similarly a node nd is
denoted as nd g outB, if it belongs to A and is outside B, and is called a node of A outside
B. If nodes are subdivided from one parent node, we call those nodes brother nodes.

The brother nodes can be 1D nodes or 2D nodes, since edges and patches can be subdivided.

Definition 7.3 Two nodes are referred to as (1) complement nodes, if they belong to the
same model and have a different inside or outside status; (2) counter rodes, if they belong
to different models but have the same inside or outside status; (3) complement-counter
nodes, if they belong to different models and have different inside or outside status.

For example, nd,,.,8 and nd4;,g are complement nodes to each other, and so are ndp;,4
and ndgoyia. ndaoup and ndgyuq are counter nodes to each other, and so are nd,p
and ndgjna. ndouta and ndyi,p are complement-counter nodes to each other, and so are
ndgoup and ndgina.

A difference shell of model A and model B is comprised of intersection nodes and nodes
of A outside B, i.e. ndpguip and their complement-counter nodes, i.e. ndpjpa. Sce
Figure 7-17 for an example.

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 120

.....................

Figure 7-17: On the difference shell of (A - B), patches pl, p2 and p3 are nodes of B inside
A; the rest of the patches are nodes of A outside B.

intersection
of A and B

(a) »

(b)

Figure 7-18: On the intersection shell of models A and B, i1, i2, 13, i4, i5 and 6 are
intersection nodes (curves). They form a loop on a surface of an intersection shell. On one
side of the loop, there are only nodesainp such as p4, p5 and p6; on the other side of the
loop, there are only nodespin4 such as pl, p2 and p3.

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 121

Intersection Shells: An intersection shell of models A and B consists of 1D intersection
nodes, 1D nodesainpg, 1D nodesgina, 2D nodesinp and 2D nodespin4. See Figure 7-18
for an example. Note that 2D node 4,5 and 2D nodepina are incident through only 1D
intersection nodes; see Figure 7-18 for illustration.

This is useful to find bounding patches of intersection siiells of refined models. For
instance, to search for the next bounding patch from one patch p, patch p’sincident 1D nodes
are used. If an incident 1D node of patch p is an intersection node, then the next bounding
patch should be a counter patch of p; (recall Definition 7.3 for the meaning of counterpatch).
Take the intersection shell in Figure 7-18 for example. In search of the next bounding from
patch p2 through i3, p4 is the right candidate, not its brother node (refer to Definition 7.3
for brother node), since p4 is a counter patch of p2 through ¢3. Therefore, we can get the
next patch of intersection shells from one known bounding patch p through its edge e by
the following pseudo-procedure: next_bounding_patch_of_intersection_shell(p, ¢)

1. if € is a 1D intersection node

2. return p’s counter patch through e

3. b otherwise e is not an intersection node

4. return a patch of status in incident to p through e

> means comments in pseudo code. If e is not an intersecting curve, then the next patch
will be of status in and belongs to the same model of p.

Hence, by identifying a bounding patch of an intersection shell, we can find bounding
patches of the same intersection shell by exploiting its incident patches through its edges.
Following is a pseudo procedure to recursively collect bounding patches of an intersection
shell into a list. In this procedure, [is a empty list of bounding nodes, p is a known bounding
patch, e is one of p’s edges.

collect_intersection_shell_patches(/, p, e)
1. > base case

2. if p and e are in the list /
3. return

4. v otherwise it’s the case that either p or e is not in the list
5. if p is not in the list

6. put pin the list /

7. if e is not in the list {

8. put e in the list

9. np = next_bounding_patch_of_intersection_shell(p, ¢)
10. > otherwise, recursively call this routine for ne and np
11. for each edge ne of np

12. collect_intersection_shell_patches(l, np, ne)

We get the first bounding patch of an intersection shell from a 1D intersection node. To
find bounding patches of intersection shells, employ the following steps and put bounding
patches’ (2D) nodes into a list along with some of their edge (1D) nodes:

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 122

1. Put all 1D intersection nodes (curves) into list_ld_ind;
Allocate an empty list of shells, list_shell;

Pick one 1D intersection node, 1d_ind, from !ist_1d_ind,

W N

Go to step 7 if 1d_ind has been included in one of shells in list_shell; otherwise proceed
to the next step;

5. Pick one 2D nodc 2d_nd of 1d_ind so that 2d_nd is of status in, and allocate an empty
list I;

6. Get one intersection shell by calling collect_intersection_shell_patches(/, 2d_nd,
1d_ind) and put it into list_shell;

7. Complete the process in search of intersection shells, if there is no 1D intersection
node left in list_1d-ind; otherwise go to step 3.

In step 4, it is not necessary for the program to check whether 1d_ind is included in one shell
in list_shell. Instead, we can set an attribute, for instance mark, for each node. The default
value for mark can be set up as not_included; and it is set up as included when its node has
been put into list / in lines 6 and 8 of the routine collect_intersection_shell_patches().
Then we do not have to search the list ! for 1d_ind. Step 5 will be visited as many times as
the number of distinct intersection shells of the two models to extract separate intersection
shells. If there is no intersection between two models, then their intersection shell is empty.

Difference Shells: A difference shell of model A and model B consists of 1D inter-
section nodes, 1D nodesgoutp, 2D nodes,yp and their complement-counter nodes such
as 1D nodesgina, and 2D nodespina. (Please refer to Definition 7.3 for the meaning of
complement-counter.) See Figure 7-19 for an example. Note that 2D nodeoup and 2D
nodepgina are incident through only 1D intersection nodes; see Figure 7-19 for illustration.
Analogous to intersection shells, we can get the next patch of intersection shells from one
known bounding patch p through its edge e by the following pseudo-procedure:

next_bounding_patch_of_difference_shell(p, e)

1. if e is a 1D intersection node

2. return p’s complement-counter patch through e

3. o otherwise e is not an intersection node

4. return a patch of status out incident to p through e

If e is not an intersecting curve, then the next patch will be of status out and belongs to
the same model of p.

Hence, by identifying a bounding patch of a difference shell. we can find bounding
patches of the same difference shell by exploiting its incident patches through its edges. Sim-
ilar to the pseudo procedure collect_intersection_shell_patches(), we can have a pseudo

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 123

CRERR PEEE Tt

Figure 7-19: On the difference shell of models A and B, il, 2, i3, i4, i5 and 6 are
intersection nodes (curves). They form a loop on a surface of a difference shell. On one

side of the loop, there are only nodesgin 4, like pl, p2 and p3; on the o her side of the loop,
there are only nodesouiB.

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 124

procedure collect_difference_shell_patches() to recursively collect bounding patches of
a difference shell into a list. The oniy difference between these two routines is in the line 9.
Instead of

np = next_bounding_patch_of_intersection_shell(p,e), the line 9 of the new procedure is
np = next_bounding_patch_of_difference_shell(p,e). Of course, line 12 should be changed
to next_bounding_patch_of_difference_shell(l, np, ..e).

To find bounding patches of difference shells, employ the similar steps as for the inter-
section shells, and put bounding patches’ (2D) nodes into a list along with some of their
edge (1D) nodes. These steps differ from their intersection counterparts as follows: (1) in
step 5, “status in” should be changed “status out”; (2) in step 6, instead of
next_bounding_patch_of_intersection_shell, the procedure
next_bounding_patch_of difference_shell should be called; (3) in step 7, “intersection
shells” should be changed to “difference shells”.

Similar to the intersection rase, Step 5 will be visited as many times as the number of
distinct difference shells of two models to extract separate difference shells. If there is no
intersection between two models, then difference of model A and model B is model A.

Union Shells : A union shell of model A and model B consists of 1D intersection nodes,
1D nodes gout3, 2D nodespon:p and their counter nodes such as 1D nodespgouia, and 2D
nodespouta. (Please refer to Definition 7.3 for the meaning of counter.) See Figure 7-20
for an example. Note that 2D node o8 and 2D nodepyuia are incident through only 1D
intersection nodes; see Figure 7-20 for illustration. Analogous to intersection shells, we can
write a routine to get a next bounding patch from a known patch and one of its edges.

next_bounding_patch_of_union_shell(p, €)

1. if e is a 1D intersection node

2. return p’s counter patch through e

3. v e is not an intersection node

4. return a patch of status out incident to p through e

If e is not an intersection curve, then the next patch will be of status out and belongs to
the same model of p.

Hence, by identifying a bounding patch of a union shell, we can find bounding patches
of the same union shell by exploiting its incident patches through its edges. Similar to the
pseudo procedure collect_intersection_shell_patches(), we can have a pseudo procedure
collect_union_shell_patches() to recursively collect bounding patches of & union shell
into a list. The only difference between these two routines is in the line 9. Instead of
np = next_bounding_patch_cf_intersection_shell(p,e), the line 9 of the new procedure
is np = next_bounding_patch_of_union_shell(p,e). Of course, line 12 should he changed
to next_bounding.patch_of_union_shell(/, np, ne).

To find bounding patches of union shells, employ the similar steps as for the intersection
shells, and put bounding patches’ (2D) nodes into a list along with some of their edge (1D)
nodes. These steps differ from their intersection counterparts as follows: (1) in step 5,

CHAFPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 125

Figure 7-29: On the union shell of models 4 and B, i1, i2, 3, i4, i5 and 6 are intersection
nodes (curves). They form a loop on a surface of a union shell. On one side of the loop,
there are only nodesgou4; on the other side of the loop, there are only nodesouts-

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 126

“status in” should be changed to“status out”; (2) in step 6, instead of
next_bounding_patch_of_intersection_shell, the procedure
next_bounding.patch_of_union_shell should be called; (3) in step 7, “intersection shells”
should be changed to “union shells”.

After collecting patches for a shell, we can examine if those patches form a valid manifold
shell by checking their Euler numbers as described in the following.

Euler Number of 3D Manifold Objects: Genus is the number of closed patch, on a
surface, which does not separate the surface into more than one region. Torus is an example
with genus = 1. For a surface, a hole is an independent closed path which is not contractible
to one point without leaving a surface on which it is embedded; see Figure 7-8 for examples.
For a 3D manifold object without genus, let V' be the number of vertices, £ the number
of edges, and F' the number of faces, then the Euler number [45] for 3D manifold objects
without genus and holes is
V-E+F=2 (7.1)

For a 3D manifold object with genus and holes, let further H be the number of holes,

G be the number of genus, and S be the number of shells, then the Euler number {45] for
3D manifold objects is

V—-E+F-H=25-G) (7.2)

For a valid shell, a new model can be built from its patches along with their lower
dimensional incident nodes, such as edges and vertices.

7.7 Boolean Operations

This section discusses step 5 in Section 7.2 in more detaii. The operations to find shells
described in Section 7.6 can be used for most regular manifold Boolean operations. It needs
to be slightly modified cnly for some special cases, such as the case in which no intersection
occurs, or the case in which tangential intersection occurs. The resulting model can be non-
manifold for the latter case. The non-manifold results are discussed later in this section. In
the following discussions, only the the former case is considered.

Recall the general procedures for the 3D manifold Boolean operations described in Sec-
tion 7.2. Given two manifold models A and B, if they intersect, follow procedures discussed
in Sections 7.4, 7.6.2. Otherwise, two models are either (1) separate from each other, or (2)
one model is inside the other. Point classification algorithm discussed in Appendix B can
be used to detect in/out status for the two models.

Intersection Operators : For case (1), there is no intersection shell. For case (2), the
intersection shell is the model with in status.

Difference Operators : For case (1), the difference shell is the model from which we
remove the difference. For example, A\ B = A. For case (2), the resulting shell has a cavity

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 127
inside it.

Union Operators : For case (1), the resulting union model has two separate shells. For
case (2), the resulting union model can be represented by the outer shell.

Boolean Operations for Models with Tangential Intersection Surfaces: With the
assumption that the input models are manifold, non-manifold objects can only occur in the
results of Boolean operations.

Two surfaces tangential intersection can be at points, along curves, or they overlap
partially. (See Chapter 4.9 for more detail). The tangential intersection of surfaces can also
be categorized as either an: (1) internal tangential contact, i.e., one model is inside the
other model; or (2) erternal tangential contact, i.e., one model is outside the other model.

Intersection Operators: For internal tangential contact, a tangential surface intersec-
tion is part of an intersection shell. The shell-identification algorithm discussed in Sec-
tion 7.6.2 can identify which intersection shell the tangential surface intersection belongs
to. For example, if model A tangentially contacts model B internally, then the intersec-
tion shell will be A. However, for external tangential contact, the intersection of these two
models can be the tangential surface intersection itself.

Difference Operators: For both cases of internal and external tangential contacts, the
shell-identification algorithm in Section 7.6.2 can extract the difference shell consisting of
the tangential surface intersection. However, that node for tangential surface intersection
should be set as negative (see Chapter 5 for negative node).

Union Operators: For internal tangential contact, the union shell of two models are
still manifold. However, for external tangential contact, the union shell of two models
is non-manifold. For example, two parallel cylinders tangentially intersect along one line
externally. The node of the external tangential contact should be set as non-manifold node.

7.8 Rendering Trimmed Patches

To visualize a trimmed patch requires not only the trimming loops, but also the differen-
tiation between the trimmed and non-trimmed regions. The most common way to do so
is to use orientations of trimming loops. Since a trimming loop is usually represented in a
parameter plane, it has two kinds of orientations, clockwise and counterclockwise.

Trimmed regions are usually bounded by an outer clockwise lonp with or without inner
counterclockwise loops inside it [79]. Conversely, non-trimmed regions are usually bounded
by an outer counterclockwise loop with or without inner clockwise loops inside it.

In our implementation, we use Open [nventorT™ 2 to render trimmed surfaces. A user

TM

20pen Invertor™ is a registered trademark for Siticon Graphics Inc.

CHAPTER 7. THREE DIMENSIONAL BOOLEAN OPERATIONS 128

has to provide trimming loops in appropriate orientations for Open In ventor™ . The trim-
ming loops can be derived from parameter attributes of 2D nodes. Sometimes adjustment
of trimming loops’ orientation is needed. In Appendix A, we present an algorithm to find
orientations for planar locps.

Chapter 8

Numerical Results

Representing, manipulating and interrogating continuous objects with a computer appears
to be comparable to looking at physical realizations of the geometric object with a micro-
scope which allows different magnifications. In such a setting, an approach which permits
geometric interrogation with a variable resolution is beneficial. Hence geometrical consis-
tency is defined within this context of variable resolution instead of as an absolute truth.
Therefore, in our work, resolution can be varied easily in accordance with the user’s criteria.
For example, when intersecting two Bézier interval curves, the tolerance should be propor-
tional to the width of the interval control points. Therefore, it is favorable to keep the
tolerance values variable to satisfy distinct needs for solid modeling systems. In Table 8.1,
it shows how the tolerance will affect the resolution of the resulting roots.

In fact, the interval spline and the tolerance in the non-linear polynomial system solver
both imply the notion of fuzziness or ambiguity e.g. some resulting geometric interrogations
might vary by as much as the interval widths of geometries involved or the tightness of
tolerance in the polynomial equations solver. Consequently the interrogation result will
further influence the results of the modeling system.

All the examples were run on a graphics workstation running at 150 MHz. We implement
our data structures and our algorithms and system in the C++ language due to advantages
of its object-oriented features. This simplifies the code needed for complex geometric and
topological manipulations. It certainly makes it easier for future software development. In
addition, it also simplifies the data exchange with other modeling systems and therefore
enhances compatibility with other systems. This chapter shows 2D (Section 8.1) and 3D
(Section 8.2) examples, generated by our robust geometric modeler described in previous
chapters.

8.1 Examples for 2D Objects

Example 8.1 Two cubic Bézier curves transversally intersect each other. The control
points for these two Bézier curves are curve A: (0,-1), (0.25,5.0), (0.5,-5.0),(1,1), and
curve B: (1.6,-0.2), (—4.4,—0.05), (5.6,0.3), (—0.4,0.8). They are shown in Figure §-1.

129

CHAPTER 8. NUMERICAL RESULTS 130

Figure 8-1: Two transversally intersecting curves.

Nine intersection points exist. Let the curve A be parametrized by u, and curve B by v.
The nine intersection points are shown in Table 8.1(a) by their parameter values u and
v with tolerance of € = 10~*. We have listed only the first three intersection points for
Table 8.1(b) and (c) with tolerance of 1078 and 1072, In Table 8.1, we can see that the
tighter the tolerance, the higher precision (resolution) the roots.
Example 2.1 (continued)

We compare the computation time and the number of resulting roots for those three systems
((1) position, (2) position and tangent and (3) position, tangent and curvature conditions)
to solve example 2.1, the intersection of y = z* (parametrized by u) and y = 0 (parametrized
by v) with the third order tangential contact (see also Figure 2-1 and Table 4.2). Table 8.2
shows the result for example 2.1. We found that at loose tolerance (see Table 8.2(a)),
these three systems can be solved in approximately the same computation time and result
in the same number of roots. While at tight tolerance (see Table 8.2(b)), the addition of
tangent condition can greatly reduce the computation time by nine tenths with respect to
system with position condition alone. The addition of tangent condition can also identify the
tangential roots more accurately since the tangent condition helps remove those approximate
roots around the real root (i.e. origin, in this case). In Table 8.2(b), the system with the
position and tangent conditions produces 16 roots, while the system with the position
condition alone produce 321 roots. We also compare the computation time with various
tolerances in both rounded interval arithmetic and floating point arithmetic for example 2.1,
as shown in Table 8.5(c).

Example 8.2 Two planar Bézier curves inlersecting both tangentially and transversally.
The control points of these two curves are, Curve A: (—0:5,-0.1), (0.0,3.0), (0.5,-3.0),
(1.0,1.0) and Curve B: (1.5,0.5), (—0.5,0.4964936), (—0.5,0.4), (1.3,-0.2). They are
shown in Figure 8-2.

They intersect at one tangential contact point and at four transversal intersection points.
We can solve for these intersections automatically (ie. without manual intervention). After

CHAPTER 8. NUMERICAL RESULTS

e=10"4 u

v |

(1) 0.05832, 0.05842

0.12411, 0.12421] |

(2) 0.07734, 0.07744

3) 0.15455, 0.15465

0.40508, 0.40518
0.96868, 0.96878

0) 0.36357, 0.36367

0.95716, 0.95726

(5) 0.47115, 0.47125

0.46289, 0.46299

(6) 0.52306, 0.52316

0.08206, 0.08216) ||

(7) 0.91839, 0.91849

(8) 0.95319, 0.95329

0.55613, 0.55623]

9) 0.97968, 0.97978

0.04507, 0.04517 N

0.89802, 0.89812

(a)
e=10"° u v
(1) 0.058378840, 0.058378850] | [0.124158874, 0.124158884
(2) 0.077400013, 0.077400023 0.405142146, 0.405142156
(3) 0.154606406, 0.154606416) | [0.968731633, 0.968731643
(b)
[['e=10"12 u v
(1) 0.0583788457428, 0.0583788457438] | [0.1241588818555, 0.1241588818565
(2) 0.0774000183281, 0.0774000183291 0.4051421518690, 0.4051421518700
(3) 0.1546064111049, 0.1546064111059] | [0.9687316377128, 0.9687316377138
(c)

Table 8.1: Intersections of two Bézier curves for different tolerances €. In (b) and (c), only
the first three roots in (a) are shown.

CHAPTER 8. NUMERICAL RESULTS 132

e=10"" position cond. | position and tangent cond. | position, tangent and curvature cond.
u region 0.4990, 0.5009 [0.4991, 0.5008 0.4992, 0.5007
v region 0.4990, 0.5009 0.4991, 0.5009 0.4991, 0.5008
root number 2 2 2
comput. time 0.2s 0.2s 0.2s
(a)
e=10"° position cond. position and tangent cond. | position, tangent and curvature cond.
u region 0.4999096, 0.5001125 0.4999926, 0.5000068 0.4999926, 0.5000068
v region 0.4999093, 0.5001124 0.4999926, 0.5000067 0.4999926, 0.5000067
root number 321 16 16
{| comput. time 4.3s 0.6s 0.6s
(b)

Table 8.2: List of root numbers, computation time and final root regions of three methods
with various tolerances for intersection between y = x* parametrized by u and y = 0 by v.
Root number is the number of roots resulting from the polynomial systems solvers for one
actual root.

root consolidation (see Section 4.3), only one tangential contact point and four transversal
intersection points are identified. The solutions are listed in Table 8.3. If we make the
two curves A and B to be non-degenerate interval curves, then the resulting roots have
wider range. The new interval control points for A and B are: A ([-0.5, -0.4999999], (-
1.0, -0.9999999]), ([0.0, 0.0000001], [3.0, 3.0000001]), ([0.5, 0.5000001], [-3.0, -2.9999999]),
([1.0, 1.0000001], [1.0 1.0000001]) and Curve B: ([1.5, 1.5000001], [0.5, 0.5000001]), ([-0.5,
-0.4999999], [0.4964936, 0.4964937]), ([-1.5, -1.4999999], [0.4, 0.4000001}), ([1.3, 1.2999999],
[-0.2, -0.1999999]). The solutions for the two interval curves are in Table 8.4.

Example 8.3 Boolean operations of two manifold models (shown in Figure 8-3). The
original two models are bounded by three curves, which are Bézier curves of order 3.

|

A

Figure 8-2: Curves intersect tangentially and transversely.

CHAPTER 8. NUMERICAL RESULTS

«e=10"" u (Curve A) v (Curve 13)
transversal | 1 | [0.15510467, 0.15510472] | [0.7009708. 0.70097107]
tangential | 2 | [0.26986901, 0.26986911] | [0.34406305, 0.34406315)
transversal | 3 | [0.48170107, 0.4817011] [[0.8372018. 0.83720202]
transversal | 4 | [0.87122356, 0.87122357 0.93578119, 0.93578139
transversal | 3 | [0.95251551, 0.95251552] | [0.10075786, 0.10075792

133

Table 8.3: Intersections of curves /A (parametrized by u) and B (by v) intersecting tangen-

tially and transversely.

T e=10"7 u (interval Curve A) v (interval Curve B)
transversal [1 | {0.155098974, 0.155108974 [0.70096536, 0.700975599]
tangential | 2 | {0.269868971, 0.269869159] | [0.344063004, 0.344063208
transversal | 3 | [0.481693192, 0.481703192 0.837196555, 0.837203472
transversal | 4 | [0.871218493, 0.871228493] | {0.935777798, 0.935784745
transversal | 5 | [0.952508310, 0.952518310 [0.100757069, 0.10076057]

Table 8.4: Intersections of interval curves A (parametrized by u) and B (by v).

Example 8.4 Boolean operations of one non-manifold and one manifold object (shown
in Figure 5-4 and Figure 8-5). The non-manifold model is of a three-sided regior: with a
dangling edge. The other model is of a three-sided region too. The boundary curves are all
quadratic Bézier curves. Figure 8-4 shows the resulls of the union of two models; Figure 8-5
shows difference of two models.

The numbers listed in the left sides of Figure 8-3(b) and (c) and Figure 8-4 (c), (d) and (f)
are the dimensionalities of the nodes.

Example 8.5 Figure 8-6 shows the creation of a non-manifold object resulting from union
of manifold objects if the tolerance is specified relatively loose. The top model (Figure 8-6) is
bounded by two quadratic Bézier curves and one straight line; the bottom model is bounded
by three quadratic Bézier curves.

The CPU time (in seconds) of above examples for both floating point arithmetic (FPA)
and rounded interval arithmetic (RIA) are listed in Table 8.5.

It can be seen from Table 8.5 that: (1) rounded interval arithmetic (RIA) is only one
order of magnitude slower than floating point arithmetic (FPA); (2) Table 8.5(c) indicates
that the tighter the tolerance is, the more significant the beneficial effect of tangential and
curvature conditions becomes in reducing running time. The reason for this effect is that the
additional tangent or curvature conditions help shrink the feasible regions more efficiently,
so that they eliminate approximate roots around the actual root. Hence, they accelerate
the overall root-finding process; (3) Table 8.5(c) shows that, when adding the tangential
condition, the FPA solver misses roots. This further justifies the use of rounded interval
arithmetic; and (4) the curvature has impact in reducing the number of iterations in the
root finding process, see Table 4.2. However, it does not improve the overall computation

CHAPTER 8. NUMERICAL RESULTS 134

vl

(a) Two manifold objects both bounded by three vertices and three edges.
Model M1 bounded by edges el, €2 and e3. Model M2 by edges e4, e5, and e6.

(b) The data structure of M1

(d) The union of M1 and M2 (e) The data structure of the union
v6
n3 $6
n2 w3 55 s} o3
s2
n w2 4 n2 wS
() Intersection of M1 and M2 (g) One connected component of M1 - M2

Figure 8-3: An example of manifold Boolean operations on two manifold models.

CHAPTER 8. NUMERICAL RESULTS 135

(a)Non-manifold Model M3 and manifold model M4. M3 has edges el, €2, e3 and
dangling edge e4. M4 has edges e5, e6 and e7.

(b) The union of M3 and M4. (c) The data structure for the union.

2
nd
w2 1
s7, nl
vs sl 0
1
(c) One component of the intersections of M3 and M4, (d) The data structure for the intersection component.
2 " Re *
A
1 {/we' | (ézi“
w6 p2) na/ o2
p—" N A ; j
&
(e) The other intersection component. (f) The data structure for the other intersection component.

Figure 8-4: An example of non-manifold Boolean operations for one non-manifold and one
manifold models.

CHAPTER 8. NUMERICAL RESULTS 136

2 v

v w3 n3 2
3y nd
el nl '
wi
vl v2 0

(a) Difference of Model M3 from Model M4.

3 9 o2 !
S0 s3
n4 v6
W 4] °
nl
(c) Difference of Model M4 and Model M3, (d) The data structure for the difference in (c).

Figure 8-5: Difference operations for models M3 and M4 in Figure8-4(a).

v2)
e e2 2
vl 4yv3 '
v6 v4
0
e5 ed

v5 -1

(a)

Figure 8-6: A non-manifold object resulting from union of two manifold objects at relatively
loose tolerance.

CHAPTER 8. NUMERICAL RESULTS 137

I EX 4.2 | EX 8.2 | EX. 8.3 | EX. 8.4 | EX. 8.5
[FPA| 0.30s| 007s| 02is| 051s| 0.00s
[[RIA [370s | 1.00s 24s | 5.50s | 0.30s h

(a)

EX.81|e=10"%]e=108]e=10""2 ||
FPA 0.038s 0.065s 0.091s ||
RIA 0.145s 0.780s 1.200s ||
(b)
EX. 4.1 (with 2 eq.) | EX. 4.1 (with 3 eq.) | EX. 4.1 (with 4 eq.)
FPA (e = 107°) 0.019s {No root) 0.005s (No root) 0.007s
| RIA (e= 10~°) 0.200s 0.200s 0.200s
[FPA (¢ = 107°) 0.026s (No root) 0.005s (No root) 0.008s
RIA (e = 107°) 0.700s 0.400s 0.400s
FPA (¢ = 107°) 0.031s (No root) 0.008s (No root) 0.007s
RIA (e =107°) 4.300s 0.600s 0.700s
(c)

Table 8.5: (a) lists the computation time for some of examples. (b) shows the results from
various tolerances for Example 8.1; (c) shows the results from various tolerances for three
methods of Example 4.1

CHAPTER 8. NUMERICAL RESULTS 138

time. The reason is that the burden of solving one more equation (for curvature condition)
offsets the effect of the root shrinking process. We alsc tested other cases like intersections
of y = z3 with y = 0. In general, using the curvature condition was not beneficial in terms
of efficiency for tangential contact cases of order more than or equal to 2. Therefore, we
suggest the use of position and tangential conditions only for these cases.

8.2 Examples for 3D Objects

8.2.1 Curve-to-Surface Intersection

Example 8.6 Tangential intersection:

Figure 8-7 shows an example of a quadratic Bézier curve (C1) tangentially intersecting a
bi-quadratic Bézier surface (S1). Their control points are listed bhelow:

Control points of curve (C1):

(-0.1, -0.1, 0.0)
(0.5, 0.6, 0.503476985)
(1.1, 1.1, 0.0)

Control points of surface (S1):

(0.0, -1.0)
(0.5, 0.0)
(1.0, 0.0, 1.0)

o o
o O
L] -

(0.0, 0.5, 0.0)
(0.5, 0.5, 1.0)
(1.0, 0.5, 0.0)

(0.0, 1.0, 1.0)
(0.5, 1.0, 0.0)
(1.0, 1.0, -1.0)

Table 8.6(a) shows the result of intersection of surface S1 and curve C1 with tolerance =
10~4; Table 8.6(b) shows the result with tolerance = 1076. In Table 8.6(a), we can see that
using only position equality condition produces loose solutions (57 roots) and takes longer
time (15.8s); whereas the additional tangent condition produces more accurate solutions
(2 roots) and takes less time (6.0s). The interval is reported as a single root result after
root consolidation In Table 8.6. Comparing Table 8.6(a) and Table 8.6(b), we again notice
that the tighter the tolerance is, the more significant the effect of the additional tangent
condition becomes. This effect has been seen in Table 8.5. In fact, in this case, the additional
tangent condition saves more than 96% of computation time, see Table 8.6(h). The reason

CHAPTER 8. NUMERICAL RESULTS 139

(2) (b)

Figure 8-7: Curve C1 intersects surface S1 tangentially at one point. (a) and (b) show the
same objects from different views.

CHAPTER 8. NUMERICAL RESULTS

position cond.

position and tangent cond.

e=10"1
u region

[0.5202051058, 0.523057381]

[0.5215977829, 0.521775966]

v region [0.4701899429, 0.4731015961] | [0.4717673753, 0.4718909151
i region 0.4751931042, 0.4775693295] | [0.4764281282, 0.4765757052
| root number 57 2
| comput. time 15.8s 4.2s
(a)
€=10"° position cond. position and tangent cond.
u u region 0.5215553358, 0.521851055] | [0.5217074472, 0.521709058]
v region 0.471665633, 0.4719593502] | [0.4718177428, 0.4718193258
t region [0.4763880841, 0.4766332022] | [0.4765147913, 0.4765161375
root number 730 3
[| comput. time 190.3s 6.0s 11

(b)

140

Table 8.6: List of root numbers, computation time and final root intervals of two methods
with various tolerances for intersection between surface 51 parametrized by u, v and curve
C1 by t. Root number is the number of roots resulting from the polynomial systems solvers
for one actual root; interval roots reported are after consolidation.

CHAPTER 8. NUMERICAL RESULTS 141

for this effect is that the additional tangent condition helps shrink the feasible regions more
efficiently, and eliminates approximate roots around the actual root. Hence it accelerates
the overall root-finding process.

Example 8.7 Tangential and transversal intersections:

Figure 8-8 shows an example of a curve (C2) intersecting a plane (P2) at both tangential
and transversal points. Their control points are listed below:

Control points of curve C2:

(-0.1, -0.1, 0.0)
(0.5, 0.6, 0.503476985)
(1.1, 1.4, 0.0)

Control points of plane P2:

(0.0, 0.0, -1.0)
(0.5, 0.0, 0.0)
(1.0, 0.0, 1.0)
(0.0, 0.5, 0.0)
(0.5, 0.5, 1.0)
(1.0, 0.5, 0.0)
(0.0, 1.0, 1.0)
(0.5, 1.0, 0.0)
(1.0, 1.0, -1.0)

In Table 8.7, again we see that the tighter the tolerance is, the more significant the additional
tangent condition becomes. Overall, this example takes less time than the previous example
because the surface in this example is a plane.

Example 8.8 Curve and surface overlapping:

Figure 8-9 shows an example of overlap between a curve C3 and a surface S3. Figure 8-
10 shows the bounding boxes of the roots of surface S3 for the overlap with curve C3.
Table 8.2.1 lists the parameter regions for the overlapping curve of surface S3 and curve
C3.

Their interval control points are listed below:

Curve C3

([0.5999999999999991, 0.6000000000000009), {-2.220446049¢-16, 2.220446049¢-1€), [-2.220446049¢-16, 2.£20446€049¢-16))

CHAPTER 8. NUMERICAL RESULTS

e=10"° position cond. position and tangent cond.
u region [0.7998360748, 0.7998370748] | [0.799836136, 0.799837136]
v region [0.4999995, 0.5000005] [0.4999995, 0.5000005)
t region [0.8275828565, 0.8275838565] | [0.8275821152, 0.8275845979]
root number 1 1
comput. time 1.2s 0.9s

(a) Transversal root with tolerance = 1076

€e=10"° position cond. position and tangent cond.
u region [0.4560846374, 0.4560856374] | [0.4560845957, 0.4560855957)
v region [0.4999995, 0.5000005) [0.4999995, 0.5000005)
t region [0.2783750397, 0.2783760397] | [0.2783749819, 0.2783759819]
root number 1 1
comput. time 1.2s 0.9s

(b) Tangential root with tolerance = 10~

[e=10"° position cond. position and tangent cond.
[u region [0.7998366355, 0.7998366365] | [0.7998366355, 0.7998366365]
[v region [0.4999999995, 0.5000000005] | [0.4999999995, 0.5000000005]
t region [0.827583356, 0.827583357] | [0.8275833553, 0.8275833578]
root number 1 1
comput. time 6.5s 0.9s

(c) Transversal root with tolerance = 10~°

u e=10"° position cond. position and tangent cond.
| u region 0.4560850745, 0.4560851164] | [0.4560850952, 0.4560850962
v region 0.4999999995, 0.5000000005) | [0.4999999995, 0.5000000005
| tregion 0.2783754523, 0.2783755104] | [0.2783754814, 0.2783754824
{| root number 62 1

[| comput. time 6.5s 0.9s

(d) Tangential root with tolerance = 107

Table 8.7: List of root numbers, computation time and final root intervals of two methods
with various tolerances for intersection hetween plane P2 parametrized by u, v and curve
C2 by t. They intersect tangentially at another point and transversally at one point. Root
number is the number of roots resulting from the polynomial systems solvers for one actual
root. Interval roots reported are after consolidation.

CHAPTER 8. NUMERICAL RESULTS 143

i

|REARE

(2) (b)

Figure 8-8: Curve C2 intersects plane P2 at both tangential and transversal points. (a) and
(b) show the same objects from different views.

([0.5 1, 0.600(9}, [0.3333333333333326, 0.333333333333334), {-0.1440000000(, -0.1439999999999993])
([0.5 1, 0.60000(], [0 653, 0.6€ 8], [-0.08640000000000037, -0.08639999999399957))
(0.5 99991, O 10000000009), [0 9999986, 1.000000000000002), [-2.220446049¢-16, 2.220446049¢-16})

Surface 53

[{(B! 2, 0.20(8], [0.2 8, 0.3(31), [0.1596671999999991, 0.1596672000000009])
({01 9993, 0.2(], [0.5333333333333318, 0.5333333333333349), [0.213695999999999, 0 213696000000001])
([0.1999939999999995, 0.2000000000000005), [0.7666666666666€49, 0.7 85), [0.12095% 99995, 0.1209600000000005})
([0.1999999999999997, 0.20¢)0000005), [0. 99988, 1.000000000000002), [-2.220446049¢-16, 2.220446049¢-16))
(0.4 66653, 0.4 6c66€8), (0.2 99999999, 0.3000000000000009), [0.1774079999999986, 0.1774080000000014])
(lo.4 6€6€56, 0.4 66666677), {0.533333333333332, 0.5333333333333345), {0.2374399999999984, 0.2374400000000015])
([0.4 66659, 0.46¢€ €6667%), {0.7 66654, 0.7 €6€6666679), [0.1343999999999993, 0.1344000000000007])
([0.4666666666666€62, 0.4 666673], (0. 9991, 1.000000000000001), [-2.220446049¢-16, 2.220446043¢-16])
([0.7333333333333316, 0.7333333333333351], [0.29999 9992, 0.3000()00007), [-0.443% 001, -0.4435199999999989])

([0.7333333333333321, 0.7333333333333346), [0.5333333333333323, 0.5333333333333342), [-0.593€00000000001, -0.5935999999999987])
([0.7333333333333325, 0.7333333333333342), [0.7666666666666658, 0.7666666666666674), [-0.3360000000000005, -0.3359999999999994])

([0.7333333333333328, 0.7333333333333338), (0.9999999999999996, 1.000000000000001], [-2.220446049¢-16, 2.220446049¢-1 6))

(lo. 3, 1 2), [0.2 99093, 0)0005], [-2.220446049¢-16, 2.220446049¢-16])

([0.9999999999999989, 1.000000000000001], [0.5333333333333327, 0.5333333333333339), [-2.220446049¢-16, 2.22044€049¢-16])
({0.9999999999999994, 1.000000000000001), [0.7666666666666663, 0.7666666E66666669), {-2.220446049¢-16, 2.220446049¢-186})

{{1.0, 1.0}, (1.0, 1.0)), {0.0, 0.0))

CHAPTER 8. NUMERICAL RESULTS
|| e=10"2 u v t time | root number
I [0.495, 0.505] | [0.0, 1.0] | [0.298108, 1.0] | 26.8s 128

Table 8.8: Solution fo the overlap between surface S3 parametrized by u, v, and curve C3
parametrized by t.

8.2.2 Critical Points

Example 8.9 Figure 8-11 shows two surfaces, S4 and S5, which are almost parallel to each
other and have a tangential contact point in the middle of both surfaces.

The collinear normal point (in fact, tangential contact point) is found very quickly by
our method described in Section 4.9.2. The control points of the two Bézier surfaces are

surface S4

(-1.0 -1.0 -0.01)
(-1.0 0.0 -0.01)
(-1.0 i.0 -0.01)
(0.0 -1.0 -0.01)
(0.0 0.0 0.03)
(0.0 1.0 -0.01)
(1.0 -1.0 -0.01)
(1.0 0.0 -0.01)
(1.0 1.0 -0.01)
surface S5

(-0.5 -0.5 0.01)
(-0.5 0.0 0.01)
(-0.5 0.5 0.01)
(0.0 -0.5 0.01)
(0.0 0.0 -0.03)
(0.0 0.5 0.01)
(0.5 -0.5 0.01)
(0.5 0.0 0.01)
(0.5 0.5 0.01)

The result only took 4.1 second and is shown in Table 8.9.

CHAPTER 8. NUMERICAL RESULTS 145

(a)

(b)

Figure 8-9: Curve C3 is lying on surface S3. (a) and (b) show the same objects from
different views.

CHAPTER 8. NUMERICAL RESULTS 146

067

033 4

0.00 025 075 1.00

Figure 8-10: The bounding boxes in the parameter domain of surface S3 parametrized by
u, v, for the overlap with curve C3.

tolerance 1078

Hgmput. time 4.1s
surface 1 (u) | [0.499999994, 0.500000005
|r surface 1 (v) | [0.499999994, ¢.500000005

| surface 2 (t) | [0.499999994, 0.500000005
[[surface 2 (w) | [0.499999994, 0.500000005

Table 8.9: Critical point for intersection of surfaces 5S4 and S5.

CHAPTER 8. NUMERICAL RESULTS 147

(b)

Figure 8-11: Two surfaces which are almost parallel to each other have a critical point in
the middle of both surfaces. (a) and (b) show the same objects from different views.

CHAPTER 8. NUMERICAL RESULTS

148

e=1072

u

v

t

w

time

root number

[0.0, 0.7413]

[0.495, 0.505)

[0.495, 0.505]

[0.3496, 1.0]

42.6s

96

Table 8.10: Solution for tangential intersection curve of parabolic cylinder S6 parametrized
by u, v, and plane P3 parametrized by ¢, w.

8.2.3 Surface-to-Surface Intersection

Example 8.10 Tangential intersection curve:

Figure 8-12 shows an example of tangential intersection curve of a parabolic cylinder S6
and a plane P3. Their control points are listed below:

Surface S6
-0.5 -0.
0.0 -0.
0.5 -0
-0.5 0
0.0 0
0.5 0
-0.5 1
0.0 1
0.5 1
Plane P3
-1.0 -1.0
-1.0 1.0
1.0 -1.0
1.0 1.0

w w

® o

w

.25
.25
.25

.25
.25
.25

.25
.25
.25

The solutions are listed in Table 8.2.3. Figure 8-13 shows the bounding boxes in the pa-
rameter domain. Note that the bounding boxes of the roots overlap to properly envelop the

solution set.

Example 8.11 Transversal intersection curve:

Figure 8-14 shows an example of a transversal intersection curve of two surfaces. In Figure 8-
14, surfaces are visualized by a net of interval points on surfaces. The darker line is their

149

CHAPTER 8. NUMERICAL RESULTS

(a)

TN
A asnn N
NAArsstt v\ \N A

SRR\

(b)

Figure 8-12: Tangential intersection of parabolic cylinder S6 and plane P3. (a) and (b)

show the same objects from different views.

CHAPTER 8. NUMERICAL RESULTS 150

1.00
067 -
v
033
0.00 r T T T T T T
0.00 025 0.50 075 1.00
u
(a)
1.00
067
w
033 4
0.00 Y T T v T T v
0.00 025 0.50 075 1.00
t

Figure 8-13: The bounding boxes for tangential intersection curve of parabolic cylinder 56
parametrized by u, v, and plane P3 parametrized by ¢, w. (a) shows the u-v parameter
domain, (b) the t-w parameter domain.

CHAPTER 8. NUMERICAL RESULTS 151

-
i
.
i
.
E3
.
E3
3

Figure 3-14: Transversal intersection curve of two surfaces.

intersection curve.
Example 8.12 Surface overlapping:

Figure 8-15 shows an example for the overlapping of two surfaces S3 and 57. These two
surfaces are subdivided from the same ideal parent surface. Thus we can apply Corollary 4.1
to find the boundaries of their overlapping region. That means their overlapping region is
bounded by their boundaries, even though their control points are all interval.

The control points of surface (S3) have been listed previously, so only the control points
of surface (S7) are listed below:
Surface S7
([o0.0, 0.0), [0.0, 0.0], [0.0, 0.0})
([-2.22044604925¢-186, 2.22044604925¢-16], [0.1999999999999998, 0.2000000000000002), [-2.220446049¢-16, 2.220446049¢-186)

([-2.22044604925¢-16, 2.2204460492%¢-16), [0 , 0.400000()04), [-2.2204460409¢-16, 2.220446049¢-16))

([-2.22044604925¢-16, 2.22044604925¢-16), [0.5999999999999991, 0.6000000000000009), [-2.220446049¢-16, 2.220446049¢-16))

(o1 99998, 0.200C 02), [-2.220446049¢-16, 2.220446049¢-16), (-2 220446049¢- 16, 2.220446049¢-16))
({01 7, 0.20000000C a), [0.1 7, 0. 100003), [0.35 99999994, 0.360000000000000%))
([0.19999 99995, 0.200000¢ 004}, [0. 9994, 0.4000000000000006), [0.4175999999999993, 0.4176000000000007})

({0.1999999399999994, 0.200000000000000%), [0.5999999999999988. 0.600000000000001 1}, [0.3283199999999991, 0.32£3200000000009))

([0.3999999999999995, 0.4000000000600004], [-2.220446049¢-16, 2.22044604 Ie- 16)], [-2.220446049¢-16, 2.220446049¢-16))
([0 3999999999999992, 0.460000000000000 7), [0.1999999999999996, 0.2000000000000004), (0.07199999999999929, 0.07200000000000074))

([0.399999999999999, 0.400000000000001}, [0.3990998999999992, 0.4000000000000009), [0.08351999999999904, 0.08352000000000102})

([o. 99987, 0.40(00000012), [0.5999999999999984, 0.6000000000000014}, {0.06566393999993883, 0.06566400000000124})

([0.5 99991, 0 09), [-2.22044€049¢-16, 2.220446049¢-16), [-2.220446049¢-16, 2.220446049¢-16))

CHAPTER 8. NUMERICAL RESULTS 152
[e=10"2 u v t w root number | time
" 1 0.000, 0.000 0.328, 0.338 0.498, 1.000 0.000, 0.429 64 130.2s
" 2 0.331, 1.000] | [0.000, 0.000] | [0.495, 0.505] | [0.000, 0.501 128

ﬂ 3 0.495, 0.505 0.000, 0.430 1.000, 1.000] | [0.499, 1.000 190

“ 4 0.000, 0.501 0.423, 0.433 0.331, 1.000 1.000, 1.000 253

Table 8.11: Solutior: for four pieces of overlapping curves to form a trimming loop for the
surface overlap between surface S3 parametrized by u, v, and surface S7 parametrized by
t, w.

([0.5999999999999986, 0.6000600000000014), [0.1999999999999995, 0.2000000000000005], [-0.08640000000000073, -0.08639999999999926))

([0.5999999999999982, 0.6000000000000018], (0. , 0.40C 001), [-0.100224000000001, -0.100223999999999))

([0.599999999999998, 0.6000¢ 0021), [0.5

1, 0.6000000000000018), [-0.07879680000000111, -0.07879679999999885))

Figure 8-15(a) and (b) show surfaces $3 and S7 from different views. Figure 8-15(c) shows
the overlapping patch and S3. Figure 8-15(d) shows the overlapping patch alone.

8.2.4 3D Boolean Operations

Example 8.13 Boolean operations of a cube and a tetrakedron.

In the following figures, objects are accompanied with their data structures. However, the
data structures are shown only for the visualization purpose, so the numbers of entities
(vertices, edges, patches, and shells) can be clear to the reader. We do not intend to show
the corresponding nodes to the entities, as we do in the 2D cases (see Figures 8-3 to 8-6).
This is because the resuiting figures from 3D Boolean operations are much more complicated
than those from 2D Boolean operations. It is not only tedious to specify the correspondences
of the nodes to the 3D entities, but also difficult to show the correspondences clearly for 3D
objects in a 2D screen.

Figure 8-17 shows the cube and its data structure; Figure 8-18 shows the tetrahedron
and its data structure.

Figure 8-19 shows the original configuration of the cuke and tetrahedron.

Figure 8-20(a) shows the uniou of the cube and the tetrahedron. Its data structure is
shown in Figure 8-20(b).

Figure 8-21(a) shows the difference of the cube from the tetrahedron. ts data structure
is shown Figure 8-21(b). Notice that the result is homeomorphic to a torus. This is identified
by Figure 8-21(a), in which an passage in the center of the resulting object is shown.

Figure 8-22(a) shows the top of the difference of the tetrahedron from the cube and (b)
its corresponding data structure.

Figure 8-23(b) shows the bottorn of the difference of the tetrahedron from the cube, and
(b) its corresponding data structure.

153

CHAPTER 8. NUMERICAL RESULTS

E?\

nAAAA
4%
3

(d)

(c)

Figure 8-15: Surface S3 and surface S7 overlap partially. (a) and (b) show the same cb-
jects from different views. (c) shows the overlapping patch and surface S3. (d) shows the

overlapping patch alorne.

CHAPTER 8. NUMERICAL RESULTS 154

1.00

067 <

033

0.00 Y T T Y v T
0.00 025 050 o7 1.00

1.00

067

033

4 \ v T \ T v
0.00 025 050 075 1.00
t

(b)

Figure 8-16: The bounding boxes for the trimming loop of the overlap between surface 53
parametrized by u, v, and surface S7 parametrized by ¢, w. (a) shows the (u-v) parameter
domain of S3. (b) shows the (t-w) parameter domain of S7.

155

CHAPTER 8. NUMERICAL RESULTS

(b)

Figure 8-17: A cube and its data structure.

CHAPTER 8.

NUMERICAL RESULTS

(b)

Figure 8-18: A tetrahedron and its data structure,

CHAPTER 8. NUMERICAL RESULTS 157

Figure 8-19: The original configuration of the cube and the tetrahedron.

8

NUMERICAL RESULTS

CHAPTER 8.

(b)

Figure 8-20: The union of the cube in Figure 8-16 and a tetrahedron in Figure 8-17 and its

corresponding data structure.

CHAPTER 8. NUMERICAL RESULTS 159

(b)

Figure 8-21: The difference of the cube from the tetrahedron and its data structure, Note
that there is an passage in the center (shown as white space) due to the subtraction of the
tetrahedron.

CHAPTER 8. NUMERICAL RESULTS 160

(b)

Figure 8-22: One of shell of the difference of the tetrahedron in Figure 8-17 from the cube
in Figure 8-16, and its corresponding data structure.

CHAPTER 8. NUMERICAL RESULTS 161

(b)

Figure 8-23: Another shell of the difference of the tetrahedron in Figure 8-17 from the cube
in Figure 8-16 and its corresponding data structure,

162

CHAPTER 8. NUMERICAL RESULTS

(b)

Figure 8-24: Intersection of the cube in Figure 8-16 and the tetrahedron in Figure 8-17 and

its data structure.

CHAPTER 8. NUMERICAL RESULTS 163

Figure 8-24(a) shows the intersection of the tetrahedron and the cube and (b) its corre-

sponding data structure.
The dimensionalities of the nodes of the data structures in the above figures are shown

in their left sides.

Chapter 9

Conclusions and
Recommendations

9.1 Summary

Overall, this work has provided a theoretical and algorithmic framework for developing a
robust non-manifold geometric modeler for curved objects.

We think that the lack of robust geometrical representations and robust geometrical
computations and methods are the main causes for the robustness problems faced in the
existing solid modelers. We explore interval polynomial objects to achieve robust geomet-
rical representations, and develop new algorithms for robust geometrical computations.

We develop algorithms for 2D and 3D Boolean operations to build an experimental solid
modeler. The resulting modeler is called Interval Solid Modeler (ISM). As a whole, we found
that our algorithms are robust and more effective than existing methods.

The main contributions and future research are summarized as follows:

9.2 Ccntributions

The contributions of this thesis are summarized as follows:
1. Robust geometrical representations:

o We developed robust geometrical representations based on interval polynomial
objects.

2. Robust solver for non-linear polynomial equation systems:

e We developed a new criterion to verify root containment in leftover intervals by
the Bézier clipping and IPP algorithm.

o We developed a robust solver for unbalanced non-linear polynomial systems. It
is used to solve ill-conditioned and general intersection problems.

164

CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS 165

3. Robust computations for geometrical intersections

e We developed algorithms and provide theories, such as End Point Theorem, for
solving ill-conditioned intersection problems, including tangential contact point,
vangential intersection curve and overlap of two objects. These are among the
main causes for the lack of robustness in existing solid modeling systems.

e We introduced a general unified algorithm for geometric intersections which re-
duces to overconstrained or balanced nonlinear polynomial systems.

e We solved for the collinear normal points of two surfaces robustly, to eliminate
intersection loops between patches.

o We developed an interval ordinary differential equation (ODE) solver, which
permits enveloping of intersection curves of patches.

4. B-Rep Boolean operations

e We developed an n-D non-manifold data structure for interval geometrical ob-
jects: interval points, interval polynomial curves, and interval polynomial sur-
faces.

o We developed a point classification algorithm for non-manifold objects.

e We developed and proved an algorithm for determining a point on the boundary
of simple planar closed curves. The theorem is used for the point classification
algorithm.

e We developed algorithms for 2D Boolean operations.

e We developed algorithms for 3D Boolean operations.
5. Rendering trimmed surfaces

e We invented and proved the Extreme Orientation Theorem for determining the
orientation of simple planar closed curves, which is used to display trimmed
patches for curved geometric modelers.

9.3 Future Research

Future research includes:

1. How to further speed up rounded interval arithmetic.

2. How to extend interval polynomial parametric objects to interval splines, like interval

NURBS.

3. How to more efficiently detect and represent overlapping of interval polynomial sur-
faces.

CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS 166

4.

10.

11.

How to solve general intersection problems more efficiently. For example, how to test
the occurrences of ill-conditioned intersection without actually sclving the systems.

How to intersect trimmed surfaces even more efficiently (Boolean operations often
result in trimmed surfaces).

. How to efficiently implement interval B-rep solid modelers for practical use. The

concept of interval B-rep solid modeler is easy, but its detailed implementation is a
difficult task.

. How to build a user-friendly interface for interval solid modelers for curved objects

based on Boolean operations; it is an interesting and profitable line of work for both
academia and industry. Maybe Boolean operations should be hidden from users as
low-level operations and they are only invoked by high-leve! cperations.

Iiow to incorporate interval solid modelers into an intelligent system for both de-
sign and manufacturing. For example. the generation of finite element meshes and
assembly plans from interval solid modelers.

How to choose between an (interval) marching method and IPP solver for surface
intersection. To trace intersection curves between surfaces, marching method is com-
monly used for its simplicity and speed. 1PF solver is slower than the marching
method in general. It is because marching method uses the first derivatives of the
intersection curve; whereas IPP solver finds each root interval individually. However,
in our experiments, ve notice that the marching method is more efficient than IPP
solver, only when loose tlerances are used, (say € = 1072 or ¢ = 1073). Other-
wise, an interval marching method will generate a lot of points along the intersection
curves. Consequently, it appears to take longer time to trace. Hence, the advantage
of efficiency for marching method is reduced. Furthermore, those points generated by
marching methods do not envelop the solution set, whereas IPP solver generates a
solution set to envelop the actual intersection set. To work on a robust solution set
is more advantageous than a set of sample poinis. Therefore, more research needs to
be done to make the IPP soiver more favorable than the marching method.

How to simplify/reduce the representations of intersection curves to make them iess
memory-intensive.

How to develop theory and algorithms for nrocessing data structures of ohjects with
geometric uncertainty at various levels of resolution.

Appendix A

Orientation of a Smooth Simple
Plarar Closed Curve

A.1 Introduction

To render trimmed surfaces, we have to distinguish trimmed parts from untrimmed parts.
The orientations of trimming curves in the parameter space are usually used for this purpose.
For example, the IGES standard and the Open Inventor {a graphical software of SGI) need
to know these orientations to render trimmed surfaces.

The commonly known method for determining the orientation of a smooth simple !
planar closed curve is through the integration of the closed curve, as stated in {12] and used
in [26], as follows:

Algorithm A.1 Given a sr.ooth simple planar closed (SSPC) curve U, pick a point p
inside the curve, then integrate the angle around the point p along curve U. If the integration
is non-zero and positive, then the orientation is counter clockwise (CCW); otherwise the
integration is negative and the the orientation is clockwise (CW).

Instead of using integration of curves, we use derivatives of curves to develop another
algorithm to decide the orientation of smooth simple planar closed (SSPC) curves. We
present the underlying theorem, referred to as Extreme Orientation Theorem, in sec-
tion A.3. We also prove it with the help of differential geometry and the point classification
theorem for planar curves [26).

A.2 Orientation of a SSPC Curve

In this section, we discuss the oric..tation for SSPC curves, since the trimming loops in the
parameter plane usually require that there be nc self-intersection for the trimming loops.

'The term “simple” curve means the curve does not intersect itseli

167

Y
} }

AN N
N N

(a) (b)

Figure A-1: Two orientations of a circle: (a) CCW orientation and (b) CW orientation.

We assume that the closed trimming curves are smooth; however, this assumption can be
relaxed later.

A SSPC curve is topologically equivalent to a circle. Therefore, we use the unit circle
centered at the origin with radius 1 as the template for our discussion. There are only
two orientations, i.e., counterclockwise and clockwise for a circle, which are illustrated in
Figure A-1.

Let us define the unit disk D in the underlying space R? by the following set:

D={plpeR|pl<1} (A.1)
Let Int(D) be the interior of D:
Iny(D)={p|pe D,|lpli<1} (A.z)

Let C be the unit circle. It is obvious that C is the boundary of D. Let D’ be the

complement of D:
D'={~|p¢D,peR? (A3)

Withcut loss of generality, in the remaining of this section, we mainly consider a circle with
CCW orientation. The discussions for the circle with CCW can be similarly applied to the
circle with CW orientation.

Note that, with the CCW orientation, the derivatives of the upper half of the circle
are all toward the left (which implies that x-coordinates decrease along the orientation),
whereas at the upper half of the circle with CW orientation the derivatives are all toward
the right (which implies that x-coordinates increase), see Figure A-1 for illustration. At the
bottom half of the circle with CCW orientation, the derivatives are all toward the right,
whereas at the bottom half of the circle with CW orientation, the derivatives are all toward

168

N\
@

(a) (b)

Figure A-2: (a) points p and q on t * unit circle C’; (b) their neighborhoods N, and N,.

the left.

Vice versa, we can gain insight about the circle orientation from its derivatives. Given
a point p on the circle with CCW orientation, if the derivative of p is toward the right, the
inside of the circle is over p. Otherwise if the derivative of p is toward the left, the inside
of the circle is under p. Here, the two terms over p and under p, will be defined with the
help of the following Differential Jordan Curve Theorem [12]. This theorem states that a
SSPC curve divides the underlying plane into exactly two connected components. One is
Int(D). The other is D' the complement of D, and C' is their common houndary.

Theorem A.1 (Differential Jordan Curve Theorem). Let U be a smooth simple planar
closed (SSPC) curve in R?. Then R? — U has ezactly two connected components and U is
their common boundary.

The proof of Theorem A.1 can be found in [12].
Let us first define neighborhood of a point p € R? as an open set S C R? which contains
p. Let 6 be a positive real number, the set

Nos={ql ¢€R? | p—gql<é} (A4)

is called the 6-neighborhood of p. From Theorem A.1, we know that for a point p € C' (the
unit circle), there exists a neighborhood /' of p such that N is divided into two connected
components and N N C is their common boundary, see Figure A-2.

We now define the terms over p and under p as follows:

Definition A.1 Given an open set S C R?, and a limit point p = (z,y) of S, we say that
p is directly under S or 5 is directly over p, if for any 6 > 0, there ezists an € > 0
such that (z,y+¢) € SN N,s and (z,y — €) € §' N N, 5, where S’ is the complement of
S. We say that p is directly over S or S is directly under p, if for any 6 > 0, there
ezists an € > 0 such that (z,y—<) € SN N,s and (z,y+¢) € S'N Ny 5. See Figure A-3 for
illustration.

169

© A
SO

Figure A-3: p, a limit point of 5, is directly above S and q is directly under .

From Definition A.1, we can derive that for a point p to be directly over or directly
under S, p must be on the boundary of §. Otherwise, p will not satisfy both the é — ¢
conditions.

Definition A.2 Given an open set N C R? which is subdivided by a curve D into two
connected components M, and M,, and a point p on the dividing curve D, if p is directly
under M,, we say M, is on the top of N with p. If p is directly above M;, we say
M, is on the bottom of N with p. See Figure A-4.

We have two remarks regarding Definition A.2. First, in Definition A.2, on the top and on
the bottom are defined only locally with the referenced point, see Figure A-4(b). In Figure A-
4(b), M; is on the bottom of N with p, while M; is on the top of N with q. Second, point
p with its derivative parallel to the y-axis, cannot be applied to Definition A.2, since p is
not directly under or directly above either of the two components, see Figure A-4(c).

Further, if a point p € C (the unit circle) has its derivative toward left, then there exists
a neighborhood N, of p, which N, has connected subset of C' such that N, N C divides
N, into exactly two components, see Figure A-2. The component, N, N Int(D), is on the
bottom of N, with p, while the other component, N, N D' is on the top of N, with p,
see Figure A-2(b). On the contrary, if a point q € C has its derivative toward the right,
then the neighborhood of p, N, which has connected subset of C' has the property that
N, N C divides N, into exactly two components. The component, N, N Ini(D), is on the
bottom of N, with q, while the other component, N, " D’ is on the top of Ny with p, see
Figure A-2(b).

We further observed that the above statements, with regard to the derivatives of points
are not limited only to the points on C, the unit circle. These statements also hold for
general SSPC curves. See Figure A-5 for an example. In Figure A-5, for those points with
derivatives toward the left, the inside of the curve is always locally directly under them,
while for those points with derivatives toward the right, the inside of the curve is always
iocally directly above them (locally means in the neighborhood of points). Let us summarize
the observation in the following lemmas, since it will be used later.

Lemma A.1 For a SSPC curve U € R? with CCW orientation, and given a point p on

170

’ ~
4 S x
4 \
! M
\
’
I} 1 \
! '
! '
\ P l’
M ’
N

(b) (c)

Figure A-4: (a) M, is on the top of N with p; (b) M, is on the bottom of N with p; (c) no
component is on the top or bottom of N with p.

p

Figure A-5: For a SSPC curve, points with derivatives toward the left are always locally

directly above the inside of the curve, while points with derivatives toward the right are
always directly locally under the inside of the curve.

171

U, if p has a derivative toward the rigi.*, then p is directly under the inside of U, (or if p
has a derivative toward the left, then p is directly above the inside of U).

Proof: The orientation of a closed curve can be viewed from another vantage point. If we
walk along the curve following the orientation, then we will find that the inside of the curve
is always on the left hand side if the orientation is CCW, or that the inside of the curve is
on the right hand side if the orientation is CW.

Since U is oriented to CCW, if we stand on p and face the direction of derivative of p,
the inside of U is on the left hand side. If p has the derivative toward the right, (see p in
Figure A-5), the inside of U is on the left hand side. This implies that the inside of U is
directly above p on the plane R2. O

Lemma A.2 For a smooth simple planar closed (SSPC) curve U € R? with CW orienta-
tion, and given a point p on U, if p has a derivative toward the right, then p is directly
above the inside of U, (or if p has a derivative toward the left, then p is directly under the
inside of U).

The proof of Lemma A.2 is similar to that of Lemma A.1.
We need the following planar point classification corollary to prove the Eztreme Orien-
tation Theorem [26):

Corollary A.1 Suppose U is a SSPC simple curve on the 2D plane R?, p is a point on R?
and p is not on the bounding curves. Let r be a ray emanating from p and not intersecling
the curve U tangentially. If r intersects U at an even number of points, then p is outside
U. Otherwise, it is inside U.

A.3 Extreme Orientation Theorem

In this section, we wili prove the following so-called Eztreme Orientation Theorem, which
is used to decide the orientation of a SSPC curve.
For convenience, we first define the following terminology:

Definition A.3 Given a SSPC curve U, point p = (zp,yp) € U is called maximum-y
point, if every point on U has a y-coordinate smaller (greater) than or equal to y,. y, is
called the maximum y of curve U.

Note that a closed curve might have more than one mazimum-y point, but it has a unique
mazimum y.

Theorem A.2 (Eztreme Orientation Theorem): Given a SSPC curve U, let p be a maximum-
y (minimum-y) point of U. If the derivative of p is toward the left (right), then U is oriented
CCW: otherwise, if the derivative of p is toward the right (left), then U is oriented CW,

Proof: We prove this theorem contrapositively. Suppose this theorem is not true. Let
P = (zp,¥), a mazimum-y point of U. p has its derivative toward the left, and U is

172

................

Figure A-6: Shaded areas represent inside of closed curve U.

oriented CW. That implies y, is the mazimum y of the curve U. According to Lemma A.2,
the inside of U is directly above p, that means directly under p is the outside of U (as
determined by the Differential Jordan Curve Theorem).

Thus, we can take point q outside the curve U and under p such that the curve U will
not intersect the segment pq. Let q be (zp,y, — €), where € > 0, see Figure A-6(a).

Then let r be the ray emanating from q through p, see Figure A-6(b). Note that the ray
is toward a vertically upward position and that any point on the ray r has r — coordinate
as z,. Since q is in the outside of U and ray r passes curve U at p transversally (not
tangentially), by Corollary A.1, ray r will intersect U at an even number of points, i.e., at
least two points, including p. Therefore there must be another point other than p at which
ray 7 intersects with curve U. Let w be a poirt other than p at which the ray r intersects
with the curve U. Let w = (T, Yu)-

Y cannot be less than y,, because if y,, is less than y,, then w is either out of the ray
r or falls between p and q, (see Figure A-6(c) for illustration). Therefore, y, > y,. This
contradicts the fact that y, is the mazimum y and p is the mazimum-y point of curve U.
Therefore, U is oriented CCW. The case where p is a minimum-y point can be similarly be
proven. O

Finally, we present our algorithm to find the orientation of a SSPC curve.

Algorithm A.2 (Orientation Algorithm): Given a SSPC curve U, the following procedures
will decide the orientation of U.

1. Find a point p on U with ¢ mazimum (minimum) y coordinate;
2. Find the derivative of U at p;

3. If the derivative is toward the left (right), U is oriented CCW, otherwise, if the deriva-
tive is toward the right (left), U is oriented CW.

If a smooth simple planar closed (SSPC) curve is parametrically defined, we can also
use the z-coordinate to decide the orientation of the curve.

173

Definition A.4 Given a smooth simple planar closed curve U, point p = (zp,yp) € U
is called maximum-x (minimum-x) point, if every point on U has x-coordinate smaller
(greater) than or equal to z,. z, is called the maximum x (minimum x) of curve U.

Corollary A.2 Given a SSPC curve U, let p be a maximum-x (minimum-x) point of U.
If the derivative of U at p is toward up (down), then U is oriented CCW; otherwise, if the
derivative of U at p is toward down (up), then U is oriented CW.

In Theorem A.2, the condition of smoothness for curve U can be relaxed. As long as
curve U is piecewise continuous, Algorithm A.2 can hold. If at the mazimum y point,
U is not smooth (i.e., not G! continuous), we can obtain an approximate derivative by
comparing two points located in the opposite side of mazimum-y point and both in the
vicinity of mazimum-y point. In other words, if mazin.um-y point is U(tg), where g is the
parameter of the curve U, then U'(1p) ~ ﬂ'ﬂ'—‘);‘—u(ﬂl. Simil.r substitutions can be made
for the minimum-y, mazimum-z and minimum-z points.

174

Appendix B

Point Classification

Point Classification for 2D Non-Manifold Objects

Point classification is an important issue in Boolean operations. After two objects are
refined by their intersections, the Boolean operations have to identify which part is inside
the other model (see Chapter 7). This can be done by testing one point of each refinement
region to see if it is inside the other model. If non-manifold models are involved. only slight
changes are required in order to permit the use of a similar method.

Point classification in two-dimensional space is posed as: Given a closed region C' in 2D
bounded by a simple curve, and a point p, decide if p is inside region C', outside C' or on
the curve.

There are two algorithms to solve this problem, both are derived from the Jordan-curve
theorem [45] [80]. One is directly based on the following theorem:

Sugpnose C is a simple closed curve on the 2D plane P and p is a point on P. If the
integral of the angle with respect to p along C is 27, then p is inside C. If the integral of
the angle with respect to p along C' is 0, then p is outside C'. See Figure B-1(b) for an
illustration.

The proof of the above theorem can be found in [11]. It will not be presented here.
However, we can give some indications as to how this should be worked out for this proof.

Figure B-1: The integral of the angle with respect to p

175

complement ray of r

ray r

Figure B-2: An example of a ray and its complement ray.

For p outside C, the integral of the positive angles is equal to the integral of the negative
angles (see Figure B-1), so the sum of them is zero. For p inside C', angles will add up
to 2r or —27. The sign depends on the orientation of the parameter of the loop. For a
star-shaped loop, the integral angle will always be positive or negative (see Figure B-1),
and it will add up to 27 or —27. However, in the implementation of the point classification,
we will not use this theorem directly but instead, we use the following corollary:

Cornllary B.1 Suppose C is a simple closed curve on the 2D plane P, p is a point on P
and p is not on C, and r is a ray emanating from p. If r intersects C' at an even number
of points, then p is outside C, otherwise it is inside C'.

In the above corollary, a ray is defined as a half infinite line, as shown in Figure B-2. We
define a complement ray of a ray r as a ray with the same starting point with r, but with
the opposite direction. The proof of the above corollary is derived from the Jordan curve
theorem (see [12], and also Theorem A.1). To use the above corollary, we have to solve the
ray/curve intersection problem. Also we have to check the tangency ccndition, in which
the ray tangentially intersects the bounding curve. The tangent condition occurs rarely if
we choose the direction of the ray to be random. The algorithm for solving the problem
of ray/curve intersection can be solved as follows. First, express the ray using the implicit
polynomial: az + by + ¢ = 0 where «, b and c are constants. Second, substitutc the x and y
coordinates of the curve in the above polynomial equation and convert it into a polynomial
in the Bernstein basis:) 7_y¢;B*(u) = 0. Third, find the roots of the Bernsteir basis
polynomial (e.g. as in [36]), and discard the inappropriate roots. We shall always delete
such roots, since the ray is only a half-line; recall the above polynomial equation is for
the entire line which includes the ray, and hence roots for the other half-line are always
included. Finally, check the number of intersection points.

Next we propose and prove a new algorithm to determine whether a point is on the
boundary of a closed region. To do this, we define parity of two numbers as: if two integer
numbers are both even or odd, they are of same parity, otherwise, they are of different
parity.

Corollary B.2 Suppose a bounding curve and a point is given. The point is on the bounding
curve if and only if the ray and complement ray intersect the bounding curve with a different
parity number of points as indicated in Figure B-3.

Proof: Prove the necessity (==). Suppose a point p is on the bounding curve. Any line [

176

r’ is the complement ray of r.
r has an odd number of intersection points, while
r’ has an even number of intersection points.

Figure B-3: An example of a point on the bounding curve.

through point p will intersect the bounding curve with even number of points by the ahove
corollary. The intersection points of ray r on line ! and 7’ the complement ray of r will be
the same as that of /, except the point p will be counted twice, so the sum of the intersection
points of 7 and 7’ with the bounding curve is odd, i.e., one number is odd, and the other is
even. Therefore, r and r’ have nonparity number of intersection points with the bounding
curve.

We prove the sufficiency (<=) by proving its contrapositive. If the point is not on the
bounding curve, by the above theorem the point is either inside or outside the bounding
curve. By the above corollary, both a ray and its complement ray of that point intersect
the bounding curve with same parity number of points (if outside, the intersection number
of both ray and its complement with bounding curve are even, otherwise, odd). O

Point Classification for Non-Manifold Objects

We cannot apply Corollary B.1 to non-manifold objects since such objects may include
dangling edges. Take Figure B-4 for example, when using the ray test algorithm to identify
if point A is inside or outside of model M. Although the number of intersection points with
the edges are even, point A is inside of model M. The solution to this problem is that only
the edges of manifold parts will be taken into account for the ray test. Even in the case
that manifold parts are not connected, this algorithm works well. This suggests also that
the data structure should provide easy access to all manifold parts of models.

177

Figure B-4: Ray test for non-manifold: although point A is in inside model M, the ~.umber
of the intersection of ray with the edges is 2 (even).

178

Appendix C

Implementation Issues

This section discusses some issues arising from our implementation. Our experience has
shown that the complexity for B-rep interval solid modelers lies in the following three
aspects: (1) topological consistency, (2) numerical stability , and (3) programming.

Topological Aspect

The great variety of topological entities. such as loop, shell, hole and non-manifoldness,
might confuse programmers.

We suggest that programmers, in the debugging stage, would be able to visualize the
topological data structure to check if topology is correct. The Euler equation can be used
to check if the newly created data structure is topologically correct. For example, at the
complementation of a Boolean operation, how do we know the two data structures of the
incidence graph in Figure C-1(a) and (b) are correct for a manifold object. They are too
complex to check the incidence relations of cells. However, using the Euler equation for a
manifold, we can quickly judge which one is topologically wrong.

Numerical Aspect

Numerical errors cun be the source which later cause topological violations. Take these two
data structures in Figure C-1 for example. The erroneous result in Figure C-1(b) is a real
case in our implementation. The error to the data structure in Figure C-1(b) is caused by
comparing two 3D points to see if they are geometrically equal. The ideal result is that
they should be equal, but they are not. Therefore, this caused the topological error in the
data structure (Figure C-1(b)).

In our work, we improved the rounded interval solver which is numerically stable (see
Chapter 3).

179

Figure C-1: Two data structures for a manifold object, which one is wrong?

Programming Aspect

The best programming is bug free. Bug-free programming is almost impossible in large
and complex CAD systems. The second best programming is easy to debug. That means
we customize our programs so that the running program can detect the running error by
itself and report the errors. Otherwise, the error will cause the running program to crash
at some future point far from the real source of the error. We use the following ways to
detect running errors:

e use redundancy;

e set check points at routines in experimental and debugging stages;
e program from top to bottom (modular};

o differentiate low-level routines from high-level routines.

o utilize object oriented programming language (OOPL) which i- a useful technique for
complicated programs, such as solid modelers.

Even though there are debuggers available in some programming languages, for example
dbx for C and C++, it is still advantageous to program in a manner in which it is con-
venient to debug later. First, debugging software usually just identify where the program

180

went wrong, while the programs oriented to self-debug can identify how the pregram went
wrong. Secondly, the programs orientea to self-debug can stop the running routine when a
running error has been caught much earlier than the debug software. These advantages of
the prograims oriented to self-debuy can shorten the impiementation processes and greatly
allev:ate the pain of debugging complex software systems, such as solid modeleys,

In an object-oriented programming language style, the programmer deals with objects,
instead of just a hunch of data. Each object’s daia can be abstracted and can interface
wiwn its member functions. One of the great advantages for Object-Oriented langnages is
inheritance. This allows different things to be put in an arri.o. ~r a iist. The other advantage
of Ohject-Griented languages is the dynamic binding (1]. This is especially useful for further
development without changing the existing routines.

To see an example of how programming can facility the debug later on, let us look at
the two data structures in Figure (-1 again. The error message is caught in the routine of
the refining process to separate an * - crsecting surface into two trimmed paiches, in which
a checker (a few lines of code to check statuses of some data) found one vertex is incident to
only one edge; this is impossib} - fcr a manifold object. Therefore, the checker stopped the
routine and reported the error message. Then we examined the data structure and quickly
traced it back to the source of error. Without those checks, the program would probabiy
draw the wrong Boolean results. This is very difficult to debug and would be treated as an
error caused by no apparent reason.

In the process of coding, we experienced the great complication involving geometry and
tupological information in tiie Boolean operations. To ease those complications, wo use the
following techrigues:

e :nodule softvare design;
e top to bottom hierarchical software design;
¢ document each routine,

Documenting each routin. divides each routine into three parts: the first part is the state-
ment of the purpose of the routire; the second is the statement of the method and steps to
achieve the purpose; the third part is the hody of the routine with appropriate comments,

With these techniques in the later phases of this project, we encountered less unknown
running crrors and accelerated the debugging process considerably.

List or Array

It is sonzetimes difficult to choose a list or an array in the implementation of data structure,
For the situation in which elements are dynamiczily stored, the list is a better alter-.ative,
e.g., root list, node list. For a situation in which a number of elements are known and
usually will not change substantiall during execution of the program, an array is a better
choice, e.g.. loop array (a bunch of Bézier curves) and ciosed regions (a bunch of loons).

181

Member or Friend Function

In C++4 programming [72], when defining a class, a programmer is confronted with the
choice of whether to define a function to be a member function or a friend function.

The significant difference between a friend and a member function is that the member
function can be called only by an object class, while the friend function might be called by
an object which is implicitly conversed to the object class.

Constructors, destructors, and virtual functions must be defined as member functions.
An operation which will change the states of classes ought to be defined as a member func-
tion. Operators whosc operands are of lvalue type should be defined as member functions.
If implicit type conversion iz used for operands of an operation, it is better to detine the
function as a member function.

182

Bibliography

[1] K. Abelson and G. Sussman. Structure and Interpretation of Compuler Programs. The
MIT Press, Cambridge, MA, 1985.

[2] L. Bardis and N. M. Patrikalakis. Topological structures for generalized boundary
representations. Technical Report MITSG 94-22, Cambridge, MA: MIT Sea Grant
College Program, September 1994.

(3] M. Benouamer, D. Michelucci, and B. Peroche. Error-free houndary evaluation based
on a iazy rational arithmetic: A detailed implementation. Computer Aided Design,
26(6):-163-415, June 1993.

(4] C. Bliek. Computer Methods for Design Automation. PhD thesis, Massachusetts Insti-
tute of Technology, Cambridge, MA, July 1992.

[5) E. Brisson. Representation of d Dimensional Geometric Objects. Ph1) thesis, Depart-
ment of Computer Science and Engineering, Univers'ty of Washington, Seattle, 1990.

[6) E. Brisson. Representing geometric structures in d dimensions: Topology and order.
Discrete and Computational Geomelry, 9:387- 426, 1993,

[7] B. Buchberger. Gedhner bases: An algorithmic method in polynomial ideal theory. In
N. K. Bose, editor, Multidirr<nsional Systems Theory: Progress, Dircetions and Open
Problems in Multidimensicnal Systemns, pages 184 232, 1985, Dordrecht, Holland: D,
Reidel Publishing Company.

[8] J. Canny. Generalized characteristic polynomials. Journal of Symbolic Computation,
9:241-250, 1990.

(9] J.-M. Chen. Integration of Paramctric Geometry and Non-Manifold Topology in Gro-
melric Modeling. PhD) thesis, Carnegie Mellon University, April 1993,

[10] K.-P. Cheng. Using plane vector fields to obtain all the intersection curves of two general
surfaces. In W. Strasser and H. Seidel, editors, Theory and Practicc of Geomelric
Modeling, pages 187-204, NY, 1989. Springer.

[11] J. Dieudonne. Foundaticns of Modern Analysis. Academic Press, New York, 1969.

183

[12] P. M. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1976.

[13] T. Duff. Interval arithmetic and recursive subdivision for implicit functions and con-
structive solid geometry. ACM Computer Graphics, 26(2):131-138, July 1992.

[14] W. Enger. Interval Ray Tracing - A divide and conquer strategy for realistic computer
graphics. The Visual Computer, 9(2):91-104, November 1992.

[15] S. Fang, B. Bruderlin, and X. Zhu. Roubstness in solid modeling: a tolerance-based
intuitionistic approach. Computer Aided Design, 25(9):567--576, 1993.

[16) G. Farin. Curves and Surfaces for Computer Aided Geometric Design: A Practical
Guide. Academic Press, San Diego, CA, 3rd edition, 1993.

[17] C. B. Garcia and W. 1. Zangwill. Global continuation methods for finding all solutions
to polynomial systems of equations in n variables. In A. V. Fiacco and K. O. Kortanek,
editors, Extremal Methods and Systems Analysis, pages 481-497. Springer- Verlag, New
York, NY, 1980.

[18] D. H. Greens and F. F. Yao. Finite-resolution computational geometry. In IEFE Annual
Syaposium on Foundations of Computer Science, pages 143-152, October 1456.

[19] E. L. Giirséz, Y. Choi, and F. B. Prinz. Vertex-based representation of non-manifold
boundaries. In M. J. Wozny, J. U. Turner, and K. Preiss, editors, Geometric Modelling
for Product Engineering, pages 107-130, The Netherlands. 1990. Elsevier Science.

120] E. L. Giirsdz, Y. Choi, and F. B. Prinz. Boolean set operations on non-manifold
representation objects. Computer Aided Design, 23(1):33-39, January/February 1991.

[21] G. D. Hager. Constraint solving methods and sensor-based decision making. In Procced-
ings of the 1992 IEEE International Conference on Rebotics and Automation, pages
1662-1667. IEEE, 1992,

[22) C. M. Hoffmann. Geometric and Solid Modeling: An Introduction. Morgan Kaufmann
Publishers, Inc., San Mateo, California, 1989.

(23] C. M. Hoffmann. The problems of accuracy and robustness in geometric computation,
Computer, 22(3):31-41, March 1989.

[24] M. E. dohmeyer. A surface intersection algorithin based on loop detection. In
J. Rossignac and J. Turner, editors, Proceedings of the Symposium on Solid Model-
ing Foundations and CAD/CAM Applications, pages 197-207, Austin, TX, June 1991.
ACM SIGGRAPH. New York: ACM Press, 1991.

[25] M. E. Hohmeyer. Robust and Efficient Surface Intersection for Solid Modeling. PhD
thesis, University of California, Berkeley, California, May 1992.

184

[26] C.-Y. Hu. Robust Algorithm:~ for Sculptured Shape Visualization. Master’s thesis,
Massachusetts Institute of Technology, Cambridge, MA, July 1993.

[27] R. B. Kearfott. Interval arithmetic techniques in the computational solution of non-
linear systems of equations: Introduction, examples, and comparisons. Lectures in
Applied Mathematics, 26:337-357, 1990.

[28] R. B. Kearfott. Decomposition of arithmetic expressions to improve the behavior of
interval iteration for nonlinear systems. Computing, 17:169-191, 1991.

[29] R. B. Kearfott and M. Novoa. INTBIS, a portable interval Newton/bisection package
(algorithm 681). ACM Transactions on Mathematical Software, 16(2):152--157, June
1990.

[30] D.-K. Kim. Cones on Bezier Curves and Surfaces. PhD thesis, The University of
Michigan, Ann Arbor, MI, 1990.

[31] G. A. Kriezis. Algorithms for Rationel Spline Surface Intersections. PhD) thesis, Mas-
sachuse!ts Institute of Technology, Cambridge, Massachusetts, March 1990.

[32] G. A. Kriezis and N. M. Patrikalakis. Rational polynomial surface intersections. In
G. A. Gabriele, editor, Proceedings of the 17th ASME Design Aulomation Confcrence,
Vol. II, pages 43-53, Miami, September 1991. ASME, New Vork, 1991.

[33] G. A. Kriezis, N. M. Patrikalakis, and F.-E. Wolter. Topological and differential equa-
tion methods for surface intersections. Computer Aided Design. 24(1):41-55, January
1992.

[34] C. Lee, B. Ravani, and A. T. Yang. A theory of contact for geometric continuity of
parametric curves. The Visual Computer, 8(5-6):338-350, June 1992,

[35] T. Maekawa. Robust Computational Methods for Shape Inlcrrogation. PhD thesis,
Massachusetts Institute of Technoiogy, Cambridge, M A, June 1993,

[36] T. Mackawa and N. M. Patrikalakis. Computation of singularities and intercections of
offsets of planar curves. Computer Aided Geometric Design, 10(5):407 129, October
1993,

[37] T. Mackawa and N. M. Patrikalakis. Interrogation of differential geometry properties
for design and manufacture. The Visual Computer, 10(4):216 237, March 1994,

[38] D. Manocha. Solving polynomial systems for curve, surface and solid modeling. In
J. Rossignac, J. Turner, and G. Allen, editors, Proceedings of 2nd ACM/IEEE Sym-
posium on Solid Modeling and Applications, pages 169-178, Montreal, May 1993, New
York: ACM Press, 1993,

185

[39] D. Manocha. Solving systems of polynomial equations. /EEE Computer Graphics and
Applications, 14(2):46-55, March 1994.

[40] R. P. Markot and R. I.. Magedson. Solutions of tangential surface and curve intersec-
tions. Computer Aided Design, 21(7):421-429, September 1989.

[41) V. J. Milenkovic. Verifiable implementations of geometric algorithms using finite pre-
cision arithmetic. Artificial Intelliyence, 37:377-401, 1988.

[42] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1966.
[43] M. E. Mortenson. Geometric Modeling. John Wiley and Sons, New York, 1985.

(44] S. P. Mudur and P.A. Koparkar. Interval methods for processing geometric objects.
IEEE Computer Graphics and Applications, 4(2):7-17, February 1984.

[45) J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, 1984.

[46) A. Neumaier. Interval Methods for Systems of Equations. Cambridge University Press,
Cambridge, 1990.

[47] T. Nishita, T. W Sederberg, and M. Kakimoto. Ray tracing trimmed rational surface
patches. ACM Computer Graphics, 24(4):337-345, August 1990.

[48] T. Ottmann, G. Thiemt, and C. Ullrich. Numerical stability of geometric algorithms.
In ACM Annual Symposium on Computational Geometry, pages 119-125, June 1987,

[49] N. M. Patrikalakis. Surface-to-surface intersections. [EEE Computer Graphics and
Applications, 13(1):89-95. January 1993.

[50] N. M. Patrikalakis, W. Cho, C.-Y. Hu, T. Maekawa, E. C. Sherbrooke, and J. Zhou. To-
wards robust geometric modelers, 1994 progress report. In Procecdings of the 1995 NSF
Design and Manufacturing Grantees Conference, University of California, Sa + Diego,
California, pages 139-140. Society of Manufacturing Engineers, Dearborn, Michigan,
January 1995.

[51) N. M. Patrikalakis, T. Mackawa, E. C. Sherbrooke, and J. Zhou. Computation of
singularities for engineering design. In T. L. Kunii and Y. Shinagawa, editors, Modern
Geometric Computing for Visualization, pages 167-191. Tokyo: Springer-Verlag, June
1992.

[52] N. M. Patrikaiakis and P. V. Prakash. Surface intersections for geometric modeling.
Journal of Mcchanical Design, ASME Transactions, 112(1):100-107, March 1990.

[53] T. Poston and I. Stewart. Catastrophe Theory and its Applications. Pitman, San
Francisco, CA, 1978.

[51] W. H. Press et al. Numerical Recipes in C. Cambridge University Press. 1948.

186

[55)

[56]

[57]

(58]

(59]
(60]

(61)

62)
(63]
[64]
(65)
[66)
67)

[68]

A. A. G. Requicha. Progress in solid modeling and its applications. In Proceedings of
the 18th NSF Design and Manufacturing SCysteis Confercnee, pages 761 -766, Atlanta,
January 1992. SME.

J. R. Ressignac and M. A. O’Connor. SGC: A dimension-independent model for point
sets with internal structures and incomplete boundaries. In M. J. Wozny, J. U. Turner,
and K. Preiss, editors, Geometric Modelling for Product FEngincering, pages 145 180,
Holland, Flsevier Science Publishers, 1990.

J. R. Rossignac and A. G. Requicha. Constructive non-regularized geometry. Computer
Aided Design, 23(1):21- 32, January 1991.

D. Salesin, J. Stolfi, and L. Guibas. Epsilon geometry: Building robust aigorithms
from imprecise calculations. In ACM Annual Symposium on Computational Geometry,
pages 208-217, 1989.

D. H. Salesin. Epsilon geometry: Building robust algerithms from imprecise compulta-
tions. PhD thesis, Stanford University, March 1991.

T. W. Sederberg. Algorithm for algebraic curve intersection. Computer Aided Design,
21(9):547-551, November 1989,

T. W. Sederberg and D. B. Buchier. Offsets of polynomial Bézier curves: Hermite
approximation with error bounds. In T. Lyche and L. L. Schumaker, editors, Math-
ematical Methods in Computer \ided Geometric De.ign, volume I, pages 519-H5K.
Academic Press, 1992,

T. W. Sederberg, H. N. Christiansen, and S. Katz. An improved test for closed locps
in surface interscctions. Computer Aided Design, 21(8):705-508, October 1989,

T. W. Sederberg and R. T. Farouki. Approxitiation by interval Bézier curves, [TEEFE
Computer Graphics and Applications, 12(5):87-95, September 1992,

T. W. Sederberg and R. J. Meyers. Locp detection in surface patch intersections.
Computer Aided Geomelric Design, 5(2):161-- 171, July 1988,

T. W. Sederberg and 1. Nishita. Curve intersection using Bézier clipping. Computcr
Aided Design, 22(9):538-549, 1990.

T. W. Sederberg and S. R. Parry. Comparison of three curve intersection algorithms.
Computer Aided Design, 18(1):58-63, January 1956,

E. C. Sherbrooke and N. M. Patrikalakis. Computation of the solutiuns of nonlinear
polynomial systems. Computer Aided Geometric Design, 10(5).379- 105, October 1993,

P. Sinha, E. Klassen, and K. K. Wang. Exploiting topological and geometric properties
for selective subdivision. In Proceedings of the ACM Symposium on Computational
Geometry, pages 39-15. New York: ACM, 1985,

187

[69) J. M. Snyder. Interval analysis foi computer graphics. ACM Computer Graphics,
26(2):121-130, July 1992.

[70] A. J. Stewart. The theory and practice of robust geometric computation, or, How lo
build robust solid modelers. PhD thesis, Cornell University, 1991.

[71] G. Strang. Linear Algebra and its Applications. Harcourt Brace Jovarovich, San Diego,
CA, 1988.

[72] B. Stroustrup. The C** Programming Language. Addision-Wesley, Reading, MA, 2nd
edition, 1991.

[73] K. Sugihara and M. Iri. A solid modeling system free from topological inconsistency.
Journal of Information Processing, 12(4):380-393, 1989,

[74) L. Toth. Or ray tracing parametric surfaces. ACM Computer Graphics, 19(3):171-179,
July 1985.

[75] S. T. Tuohy, T. Maekawa, and N. M. Patrikalakis. Interrogation of geophysical maps
with uncertainty for AUV micro-navigation. In Engineering in Harmony with the
Ocean, Proceedings of Oceans '93, Victoria, Canada. IEEE Oceanic Engineering 5oci-
ety, October 1993.

[76] S. T. Tuohy and N. M. Patrikalakis. Representation of geophysical maps with uncer-
tainty. In N. M. Thalmann and D. Thalmann, editors, Communicating with Virtual
Worlds, Proceedings of CG Internationsl ’93, pages 179-192. Springer, Tokyo, June
1993.

[77] M. E. Vafiadou and N. M. Patrikalakis. Interrogation of offsets of polynomial surface
patches. In F. H. Post and W. Barth, editors, Furographics ’91, Proceedings of the
12th Annual European Association for Computer Graphics Conference and Izhibition,
pages 247-259 and 538, Vienna, Austria, September 1991. Amsterdam: North-Holland.

[78] K. Weiler. The radial edge structure: A topological representation for non-manifold
geometric modeling. In M. J. Wozny, H. McLaughlin, and J. Encarnacao, editors,
Geometric Modeling for CAD Applicaticns, pages 3- 36, Elsevier Science Publishers,
Holland, 1986.

[79] J. Wernecke. The Inventor Mentor. Addison Wesley, Reading, Massachusetts, 1994,

[80] F.-E. Wolter. Cut Loci in Bordered and Unborucred Ricmannian Manifolds, Ph) thesis,
Technical University of Berlin, Department of Mathematics, December 1985,

[81) W. L. Zangwill and C. b. Garcia. Pathways to solutions, fized points, and cquilibria.
Prentice-Hall, Englewood Cliffs, N.J, 1981,

[82]) J. Zhou, E. C. Sherbrooke, and N. M. Patrikalakis. Computation of stationary points
of distance functions. Engincering with Coraputers, 9(-1):231- 246, Winter 1993,

188

