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Interferometric gravitational-wave detectors are dynamic instruments. Changing gravitational-wave
strains influence the trajectories of null geodesics and therefore modify the interferometric response. These
effects will be important when the associated frequencies are comparable to the round-trip light travel time
down the detector arms. The arms of advanced detectors currently in operation are short enough that the
strain can be approximated as static, but planned 3rd generation detectors, with arms an order of magnitude
longer, will need to account for these effects. We investigate the impact of neglecting the frequency-
dependent detector response for compact binary coalescences and show that it can introduce large
systematic biases in localization, larger than the statistical uncertainty for 1.4-1.4 M⊙ neutron star
coalescences at z ≲ 1.7. Analysis of 3rd generation detectors therefore must account for these effects.
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I. INTRODUCTION

Gravitational-wave (GW) detectors, such as advanced
LIGO [1] and Virgo [2], have already enjoyed great success
[3–6] and will continue to expand our knowledge of the
Universe in the coming years [7]. However, planning for
3rd generation detectors, such as Cosmic Explorer (CE) [8]
and the Einstein Telescope (ET) [9] has already begun.
Among other technological improvements, 3rd generation
detectors will have longer arms than the current detectors,
with ET proposing a 10 km triangular design [10] and CE a
40 km L-shaped detector, an order of magnitude longer
than the current LIGO detectors. Along with the improved
sensitivity, the long arms will increase the light travel time
and render dynamical interferometric responses critical
within the sensitive band. These will be important for all
signals, regardless of their duration or origin.1

Several discussions of interferometric GW detectors’ fre-
quency dependence already exist in the literature. Typically,
these studies have focused on the response’s impact for
continuous wave or extremely high-frequency signals (see,
e.g., [11–14]) and have focused on either initial or advanced
ground-based detectors [15,16] or space-based interferom-
eters (see, e.g., [17,18]). We instead consider compact binary
coalescences (CBCs) detectable by 3rd generation ground-
based detectors, particularly nonspinning binary neutron star
coalescences containing canonical 1.4-1.4 M⊙ components.
CBC’s signal-to-noise ratios will be dominated by the

low-frequency parts of the waveform, although they may
also contain high frequency support. It is often claimed that
localization is dependent on the high-frequency signal, but
we show that neglecting the frequency dependence of
detectors’ responses can severely bias localization regardless
of signal morphology or duration, including for signals with
only low-frequency support that last for ≪ 1 sec.
We begin by describing the basic physical mechanism

behind interferometric GW detection in § II, including the
impact of frequency dependence on the detector sensitivity
in Sec. II A. Implications for source localization are
discussed in Sec. III, and we conclude in Sec. IV. While
there may be many more issues associated with neglecting
the frequency dependence of our detectors’ responses than
we discuss here (see [19]), the frequency dependence of
detector responses must be correctly incorporated into
planning for 3rd generation detectors.

II. BASICS OF THE MEASUREMENT

In one way or another, interferometric GW detectors
operate by timing light’s round-trip down their arms and
back. By recording differences in the travel time for
multiple arms, they are able to reject many sources of
noise, often called common-mode noise, and obtain higher
sensitivities than a single arm alone. Nevertheless, a single
arm is sensitive to GWs, and the individual response of
each arm can separately affect the recorded signal.
Let us begin by considering the static limit,2 in which the

GW is described by a constant spatial metric perturbation1Binary neutron star coalescences may spend several hours
in 3rd generation detectors’ sensitive band and therefore the
Earth’s rotation may also be important. We neglect the Earth’s
rotation in order to focus on the impact of dynamic interfero-
metric responses alone.

2This is sometimes called the long-wavelength approximation;
the associated GW wavelengths are much longer than the
detector’s arms.
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hij. Throughout this work, latin indices (i, j, etc) run over
spatial dimensions only. The change in length of a single
arm, oriented parallel to the unit-vector ei, is given by
δL ¼ Lðhij=2Þeiej, and the factor of 1=2 comes from
expanding the perturbed metric and keeping only linear
terms in the perturbation. By measuring the difference
between two arms, we expect our interferometric readout
to be

δV ¼ δLx − δLy

L

¼ 1

2
ðeixejx − eiye

j
yÞhij; ð1Þ

which naturally leads the definition of the detector tensor
Dij ≡ ðeixejx − eiye

j
yÞ=2 and the antenna response for each

polarization

Fþ;× ¼ Dijε
ij
þ;×; ð2Þ

where εijþ;× is the polarization tensor for the þ and ×
polarizations, respectively [20].3 In this limit, the antenna
response is purely a projection effect that maps the strains
in the wave-frame onto the detector. In reality, the dynamics
within the detector add additional dependence on both the
GW frequency and the direction of propagation relative to
the arms.
Following the procedure outlined in [13–15], we analyze

the round-trip travel time between fixed coordinate posi-
tions along null geodesics. Consider a monochromatic GW
plane wave traveling in the direction defined by ni. In this
case, the GW strain along the arm is given by

hðt − nex=cÞ ¼ ðhþεijþ þ h×ε
ij
×Þe−iωðt−nex=cÞeiej; ð3Þ

where ne ≡ niei. We can then determine the time taken
to travel along null geodesics via cdt ¼ �ð1þ h=2Þdx,
recognizing that dx=dt > 0 on the outbound trip and
dx=dt < 0 on the return. Again, we refer to [13–15] for
a more complete derivation, but the fractional change in the
travel time for a single arm in the Fourier domain4 is

Dðf; neÞ≡ c
8πifL

�
1 − e−2πifð1−neÞL=c

1 − ne

− e−4πifL=c
1 − eþ2πifð1þneÞL=c

1þ ne

�
: ð4Þ

While this form clearly shows the contributions from the
outbound (first term) and return (second term) parts of the
trip, we find it more convenient to express this as

Dðf; neÞ

¼ e−2πifL=c

2ð1 − n2eÞ
�
sin cð2πfL=cÞ − n2e sin cð2πfneL=cÞ

−
ine

2πfL=c
ðcosð2πfL=cÞ − cosð2πfneL=cÞÞ

�
; ð5Þ

where sin cðxÞ≡ sinðxÞ=x. This makes explicit the fact
that jDðf; neÞj ¼ jDðf;−neÞj, as expected from time-
reversal symmetry. Figure 1 shows the general behavior
ofDðf; neÞ; the relevant frequency scale corresponds to the
unperturbed round-trip travel time along the arm, or the free
spectral range (ffsr ¼ c=2L).
Combining the result from multiple arms allows us to

extend the definition of Dij to

Dij ¼ Dðf; nkekxÞeixejx −Dðf; nlelyÞeiyejy: ð6Þ

We also see that

lim
f→0

Dðf; neÞ ¼
1

2
−
πifL
c

�
1 −

n
2

�
; ð7Þ

in agreement with our analysis of a static strain Eq. (1).
Importantly, we note that the antenna responses defined in
Eq. (2) are transfer functions from the astrophysical strain
in the wave-frame to the detector readout. Therefore, they
are complex functions dependent on the direction to the
source (and therefore the propagation direction) along with
the GW frequency. This means that the antenna pattern

FIG. 1. Response of a single arm as a function of frequency for
several ne. Note that jDðf; neÞj ¼ jDðf;−neÞj and the phase is
linear in the frequency for many, but not all, ne.

3Fþ;× is often written in terms of three angles: the spherical
coordinates θ and ϕ along with a polarization angle ψ , which
is equivalent to the rotation between the wave-frame’s x- and
y-axes and the detector’s x- and y-axes when θ ¼ 0 (directly
overhead).

4We define ~xðfÞ ¼ R
dte−2πiftxðtÞ.
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relevant for a single source will evolve in time as GWs from
the source evolve in frequency.

A. General behavior of the antenna response

The antenna responses can change dramatically as a
function of both the source location and the GW frequency.
Figure 2 shows the overall sensitivity (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jFþj2 þ jF×j2

p
) as

a function of source location at several frequencies for a
detector oriented along the coordinate axes [ex ¼ ð1; 0; 0Þ
and ey ¼ ð0; 1; 0Þ]. Similarly, Fig. 3 shows both the
magnitude and phase of the response to each polarization
separately for a few source locations in spherical coordi-
nates defined relative to the detector.
At frequencies small compared to ffsr, we notice little

difference in the overall shape of the antenna response,
although the phase does change. The predominant change
is a decrease in the magnitude, which is apparent in the
color scales within Fig. 2 but is more clearly depicted
in Fig. 3. However, when we approach (and exceed) ffsr,
there are large changes to the directional sensitivity. In
particular, the maximum in the detector response directly

overhead (θ ¼ 0) becomes a zero. We also note thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jFþj2 þ jF×j2

p
is only symmetric under rotations of π

about the z-axis for all GW frequencies, which is expected
from l ¼ 2 spherical harmonics. This is in contrast to the
symmetry under rotations of π=2 in the static limit, which
is due to an additional symmetry between Fþ and F× in
that limit.
For a fixed source location, we note the general decrease

in jFþ;×j at higher frequencies as well as the significant
change in phase, even at f ≲ ffsr=2. The annotations in
Fig. 3 show the dynamical frequency of a 2 M⊙ neutron

star with a 12 km radius (fns ¼ ð1=2πÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R3

p
¼

1.97 kHz) normalized by ffsr for LIGO and CE, respec-
tively. It is clear that LIGO is reasonably approximated by
the static limit, but CE can accrue significant phase and a
respectable loss in sensitivity at f ≳ 2 kHz. In particular,
we note that the phase introduced is linear in the frequency
(Eq. (7)) for many source locations, which appears as a time
offset (Eq. (8)), and, given the scale, it is not unreasonable
to ask whether neglecting this phase can significantly
impact GW measurements.

FIG. 2. Directional dependence of the overall sensitivity to GWs for a detector aligned with the coordinate axes. We note that the color-
scale for f=ffsr ¼ 0 is different than the scale for f=ffsr > 0 to account for the dramatic change in overall sensitivity (see Fig. 3); the
three plots with f=ffsr > 0 all have the same scale.
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III. IMPLICATIONS FOR LOCALIZATION

We focus on the “bread and butter” CBCs expected to be
observed in great numbers with current and 3rd generation
detectors (see, e.g., [5,7,21–23]). CBCs are dominated by
the low frequency parts of their signal, generally where we
would expect the static limit to be most appropriate. These
results should apply to all signals as long as f ≪ ffsr,
independent of the actual waveform. We also only focus on
source localization instead of enumerating all the possible
ways the static limit may be inappropriate for 3rd gen-
eration detectors. The point being that as long as there is at
least one major shortcoming, the static limit cannot be
assumed.
We first note that, because jFþ;×j is approximately

constant for f ≪ ffsr, we do not expect to lose much
signal-to-noise ratio by neglecting frequency-dependent
effects. Instead, we find that it is the phase that intro-
duces potentially large biases into the reconstructed
location of sources, which is mostly due to confusion
between the neglected phase and the signal’s arrival time
at each detector. To understand this, we first consider
the effect of a time-delay on the Fourier transform of
the signal

Z
dte−2πifthðtþ δtÞ ¼

Z
dτe−2πifðτ−δtÞhðτÞ

¼ e2πifδt ~hðfÞ: ð8Þ

We note that the additional phase introduced by the time-
delay isΦ ¼ 2πfδt, and therefore any phase that is linear in
f could be confused for an analogous time-delay. Now, the

actual phase introduced by the frequency dependence of the
antenna response depends on the GW’s propagation direc-
tion relative to each of the detector’s arms, and therefore
can easily be different for different detectors. That implies

FIG. 3. Bode plots of Fþ and F× at a few source directions (θ, ϕ) with polarization angle ψ ¼ 0. Note the logarithmically
scaled ordinate, in contrast to the linear scale in Fig. 1. Grey lines denote the dynamical frequency for neutron stars
(f ¼ ð1=2πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R3

p
∼ 1.97 kHz) normalized by ffsr for LIGO and CE, respectively. We also note that Fþ < 1 for all frequencies,

even at θ ¼ 0°, for ϕ ¼ 15°. This is because of a degeneracy between ϕ and ψ when θ ¼ 0°, which effectively mixes the polarizations.
Instead,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jFþj2 þ jF×j2

p
→ 1 as f → 0 for θ ¼ 0°, independent of ϕ (see Fig. 2).

FIG. 4. Amplitude Spectral Densities assumed in our simu-
lations; our Monte Carlo regressions compute likelihoods using
frequencies ≥ 10 Hz. Because the actual detector response, and
therefore the effective noise floor, depends on both the GW
frequency and the source location, we show the underlying noise
curves neglecting directional dependence in thick solid lines.
Thin dashed lines demonstrate the variability with source location
(normalized by the static limit responses), and colors correspond
to the relative orientations in Fig. 3. Curves presented in [8]
assume sources nearly, but not exactly, overhead the detectors.
We only show the directional dependence for CE because all
other detectors are short enough that the effects are small.
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that the inferred time-delay will differ in each detector,
causing a net change in the time-of-arrival difference
between the detectors. Ground-based GW detectors pri-
marily localize signals via triangulation, and therefore these
effects, if neglected, introduce biases in the reconstructed
source location.
Figure 5 demonstrates an analytic approximation for the

bias introduced within a network of one CE located and
oriented identically to the current LIGO Livingston detec-
tor and one vertex of the proposed ET, located at the current
Virgo site. Specifically, we compute the complex phase
of a linear combination of the antenna responses for each
polarization

Φ ¼ arg

�
Fþ

1

2
ð1þ cos2θjnÞ þ F× cos θjn

�
; ð9Þ

where θjn is the inclination angle between the orbit and the
wave’s propagation direction. We compute Φ as a function
of frequency and extract the corresponding time-delay
through a linear fit. The difference in this time-delay
between detectors is converted to an angular bias through
triangulation. The time-delay introduced by the detector
response makes it appear as if the signal was recorded
later at CE, and when this effect is neglected it biases the
reconstructed location away from CE and toward ET. CE
dominates the effect because of its longer arms.

FIG. 5. (a) Predicted biases introduced by neglecting the detector responses’ phase for a network with CE located at the current LLO
site and ET located at Virgo. Large biases are due to single detector response poles and the coordinate singularity between time-delays
and triangulation’s polar angle. (b, c, d) Monte Carlo estimates with (red) the correct antenna response and (blue) the static limit, along
with (arrows) analytic predictions for the bias based on Eq. (9). The source’s true location is shown with a black ×. Our Monte Carlo
simulations only marginalized over extrinsic parameters and neglected cosmological effects (which is a good approximation for
D ∼ 500 Mpc). Note that the analytically predicted bias is a good approximation for the full numerical result.
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We note that this crude prediction does not involve the
GW morphology in any way, but nonetheless accounts for
the vast majority of the bias observed in Monte Carlo
regressions5 simulating a 1.4-1.4 M⊙ binary neutron star
coalescence (red and blue posteriors in Fig. 5) using the
noise curves shown in Fig. 4. What is more, the systematic
bias can be larger than the statistical uncertainty in the
localization.
An immediate question is whether the bias introduced by

assuming the static limit could impact the current detec-
tions [3–6]. Based on Eq. (5), we expect the largest time-
delay introduced to be jδtj≲L=c∼1.33×10−5 sec, which
corresponds to ∼0.076° for the two LIGO detectors, much
less than the statistical uncertainty in typical localization
estimates ≳3°; [3–5,26]. In reality, the bias is likely to be
even smaller because of the near alignment and identical
arm-lengths of the LIGO detectors. Heterogeneous net-
works, like the CEþ ET network depicted in Fig. 5, often
produce larger biases than homogeneous networks because
there is less cancellation of the effect between detectors.
Networks involving 40-km scale detectors could produce

time-delays an order of magnitude larger (L=c ∼ 1.33×
10−4 sec), and the systematic bias could be ≳0.5°. For
nearby sources, like those of interest for electromagnetic
follow-up (D≲ 500 Mpc). This can be much larger than
the statistical uncertainty in the localization. Following the
procedure outlined in [27,28], and including cosmological
effects [29], we calculate the statistical uncertainty in the
time-of-arrival difference between two CE detectors using
the signal bandwidth within the detectors; signals with
broader frequency support can be triangulated more pre-
cisely, and more distant sources are redshifted to lower
frequencies. Specifically, [27,28] estimate the timing uncer-
tainty in a single detector as

σΔt ¼
1

2πρσf
; ð10Þ

where

σ2f ¼ 4

Z
∞

0

df
jhj2
S

f2 −
�
4

Z
∞

0

df
jhj2
S

f

�
2

: ð11Þ

Here, S is the Power Spectral Density, ρ the signal-to-noise
ratio, and h the GW strain redshifted into the detector
frame. The time-of-arrival difference’s uncertainty is then
estimated assuming independent errors in each detector. We
find the expected standard deviation in the time-of-arrival
difference is comparable to the systematic bias at z ∼ 1.7

(D ∼ 13.1 Gpc). At this distance, a 1.4-1.4 M⊙ binary
neutron star coalescence would have a single-detector
ρ ∼ 26.5 and would be easily detected [30].
We also note that the changing directional dependence of

Dðf; neÞ could possibly improve localization estimates.
This is not the case for CBCs, which are dominated by
f ≪ ffsr. However, the impact may be larger for core-
collapse supernova waveforms, which have more energy at
higher frequencies. The Earth’s rotation may also improve
localization for long-duration signals (see, e.g., [18]), but
quantifying this effect for ground-based detectors is beyond
the scope of this paper.

IV. CONCLUSIONS

Interferometric GW detectors are dynamic instruments
that respond differently at different frequencies. Funda-
mentally, this is associated with the change in projected
strain as the light travels down the arms and back.
Therefore, the free spectral range sets the scale for
frequency dependent effects, and ffsr can be comparable
to the sensitive band for 3rd generation detectors.
We consider the impact of neglecting out detectors’

frequency dependence for canonical 1.4-1.4 M⊙ binary
neutron star coalescences and find significant biases, even
for sources at cosmological distances. We demonstrate that
the bias is due to the neglected phase of the antenna
response, which resembles a time-delay and confuses
triangulation. This means the biases will impact all sources,
regardless of their waveform morphology, even when
f ≪ ffsr. The bias should be much smaller than statistical
uncertainties for current detectors (e.g. LIGO and Virgo),
but 3rd generation detectors, with arms an order of
magnitude longer, will be biased beyond statistical uncer-
tainties for z≲ 1.7.
The biases on localization alone show that we must

account for interferometric frequency dependence for 3rd
generation detectors for an appreciable fraction of all
observable sources in the Universe [30]. Furthermore,
the exact detector response is known, is relatively straight-
forward to implement numerically, and therefore should be
incorporated into all planning for and analysis of 3rd
generation detector science.
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