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We demonstrate the agreement between first-principles calculations and experimental measurements of size
effects in thermal transport in SiGe alloys without fitting parameters. Transient thermal grating (TTG) is used
to measure the effect of the grating period on the temperature decay. The virtual crystal approximation under
the density-functional-theory framework combined with impurity scattering is used to determine the phonon
properties for the exact alloy composition of the measured samples. With these properties, classical size effects are
calculated for the experimental geometry of reflection mode TTG using the recently developed variational solution
to the phonon Boltzmann transport equation, which is verified against established Monte Carlo simulations. We
find agreement between theoretical predictions and experimental measurements in the reduction of thermal
conductivity (as much as fourfold of the bulk value) across grating periods spanning one order of magnitude.
This paper provides a framework for the study of size effects in thermal transport in opaque materials.

DOI: 10.1103/PhysRevMaterials.1.054601

I. INTRODUCTION

Deviations from the Fourier regime of thermal transport
occur when length scales become on the order of the mean
free paths of thermal energy carriers. Geometries in which the
dimensions of heating or sample size can be shrunk to such a
scale have provided experimentalists with a tool for probing
size effects in thermal transport. For instance, Hu et al. used
nanoscale metal heaters exposed to optical heating in the time-
domain thermoreflectance (TDTR) configuration to measure
size effects in bulk substrates [1], and Cuffe et al. used the
transmission mode transient thermal grating (TTG) geometry
to study the effect of film thickness in silicon membranes [2].

The nanoheater technique requires careful fabrication and
microscopic knowledge of the thermal interface between
the heaters and substrate for an accurate description of the
transport. The transmission TTG requires optically thin and
mechanically free membranes, limiting the range of materials
that can be studied. Thus, a technique that overcomes these
disadvantages is desirable. First used by Johnson et al. to
observe nondiffusive transport in GaAs [3], the reflection mode
TTG technique is a simple geometry that is not obfuscated by
an interface or limited to thin membranes. The objective of this
work is to use a bottom-up theoretical approach and apply the
framework to the reflection mode TTG. In doing so, we are able
to unify the pictures obtained from the macroscopic observ-
ables of experiment to the microscopic properties from theory.

Our candidate material is a silicon-germanium (SiGe) alloy,
as this system has proven to be a canonical case for the study of
thermal transport in a mass-disordered yet crystalline system,
evidenced by the plethora of work dating back to the original
work by Stohr [4], Toxen [5], and Abeles [6,7], where it
was noted that the mass disorder scatters short-wavelength
phonons, consequently shifting the dominant contribution to
thermal conductivity to long-wavelength phonons.

*gchen2@mit.edu

The concept of a large contribution to thermal conductivity
from long-wavelength phonons with large mean free paths
(MFP) was used to explain the observation from Koh et al.,
who reported a modulation frequency-dependent estimate of
thermal conductivity under the Fourier model of the exper-
imental geometry of TDTR [8]. The authors suggested that
the frequency dependence corresponds to a reduction in the
contribution to thermal conductivity of the large MFP phonons.
This result led to a series of theoretical explanations [9–13].
However, each of these explanations invoked a set of fitting
parameters to accurately capture the experimental observable.

Inspired by the multiple theoretical attempts to explain the
experimental observations, we present theoretical predictions
that accurately capture our experimental observables without
relying upon fitting parameters or unnecessary approxima-
tions. The structure of the paper is as follows. In Sec. II,
we present the phonon properties obtained using density-
functional theory. In Sec. II B, the variational solution to
the phonon Boltzmann transport equation (BTE) for the
TTG experimental geometry is developed. In Sec. III, results
obtained from TTG are presented and compared with our
BTE-based predictions. Finally, we close with a discussion
and outlook in Sec. IV.

II. THEORY

A. First-principles calculations

We follow the general procedure established by Broido
[14,15] and Esfarjani [16] to obtain the phonon properties for
SiGe. While the details can be found in these works, an outline
of the procedure is included for the sake of completeness.

For a nonalloy system, the harmonic phonon properties are
obtained using density-functional perturbation theory (DFPT).
The underlying premise is to treat the mechanical displacement
corresponding to the wave vector of a phonon as a linear
perturbation to the electronic Hamiltonian, from which atomic
forces can be calculated under the self-consistent criteria
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of density-functional theory (DFT). These forces are then
converted into harmonic force constants and used to construct
the dynamical matrix for the perturbing wave vector, which can
then be diagonalized to obtain the corresponding frequencies.
The anharmonic properties can be obtained by extending the
perturbation to higher orders [17]. The approach we follow
begins with constructing a symmetry-reduced set of atomic
displacements in a supercell, where each member of the set
undergoes a standard DFT self-consistent calculation, each
yielding the force field for the configuration. With this set
of force fields, the third-order force constants are extracted.
Phonon lifetimes are related to the third-order force constants
through the application of Fermi’s golden rule. Integrating
the modal thermal conductivity over the Brillouin zone,
under the relaxation-time approximation to the phonon BTE,
yields the lattice thermal conductivity. This full procedure is
implemented in the SHENGBTE package [18].

To extend the above procedure to a crystalline alloy,
approximations are necessary. As discussed by Toxen [5] and
Abeles [6], the SiGe alloys are ideal candidates for studying the
validity of the virtual crystal approximation (VCA). Following
Garg et al. [19], we use the VCA to modify the DFT calcu-
lations. Within this approximation, two paths can be taken.
One can compositionally average the pseudopotentials for the
constituent atoms, and then proceed with the usual procedure.
Alternatively, one can calculate the harmonic and third-order
force constants for the unalloyed crystalline versions of the
constituent atoms, take the mass normalized compositional
average, and then proceed to calculate the phonon properties:

AVCA = xASi + (1 − x)AGe, (1)

where x is the percent composition of silicon, and Ai is a
placeholder for the harmonic force constants, the third-order
force constants, the atomic masses, and the lattice constants
[20] of the constituent atoms. We have followed both VCA
procedures and find a negligible difference in the phonon
properties (see the Supplemental Material [21] ).

The penultimate step in the alloy calculation is to include
the effect of mass disorder. Again, following Garg’s work, the
phonon lifetimes are modified under Matthiessen’s rule using
the theory established by Tamura [22] to treat isotope scattering
as an elastic perturbation. Garg et al. went a step further
to estimate the anharmonic shifts due to disorder through
supercell calculations. Feng et al. used molecular dynamics
to show that the application of Matthiessen’s rule leads to an
overestimation of thermal conductivity by more than ∼20% in
SiGe due to neglecting four- and five-phonon processes [23].
Our experimental results will show that the harmonic mass
disorder approximation under Matthiessen’s rule produces
reasonable theoretical predictions. We note that the procedure
followed in this work will not capture the frequency shifts
that can be observed in the SiGe Raman spectra [24,25] (see
the Supplemental Material [21]). It is expected that these
Raman active modes do not significantly contribute to thermal
conductivity, as their group velocities are small and their
lifetimes have been reduced by mass disorder scattering. The
phonon properties are reported in Fig. 1, and details of the DFT
calculations are available in the Supplemental Material [21].
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FIG. 1. Si93.4Ge6.6 MFP accumulation of thermal conductivity
and heat capacity at 300 K.

B. Solving the Boltzmann transport equation

Given the bulk phonon properties of Si93.4Ge6.6, we now
turn to the study of the effect of grating period length on
thermal transport in the reflection mode TTG geometry. The
diffusive temperature profile has previously been obtained
in order to analyze the temperature signal using TTG for
opaque materials [26]. For the experimental conditions of a
spatially periodic heat source defined by wave vector q = 2π

λ
,

the temperature is given by T (x,z,t) = T0 + T0e
iqxh(z,t) in

complex form, and this serves as a definition of the nondimen-
sional temperature h. The temperature T0 is the background
equilibrium temperature of the system, for example the room
temperature. The heating by the laser is incorporated with a
volumetric heat generation term, given by the functional form

Q = δ(t)eiqxU0βe−βz, (2)

where U0 represents the energy per unit area deposited into
the substrate by the pulse, and β is the inverse penetration
depth of the heating profile. The derivation found in [26] takes
into consideration different in-plane and cross-plane thermal
conductivities, however the experimental signal is mostly
sensitive to the in-plane thermal conductivity. For simplicity,
we show the derivation for an isotropic system, where the
Fourier heat conduction equation simplifies to

∂h

∂t
= −αq2h + α

∂2h

∂z2
+ βU0

CT0
e−βzδ(t) (3)

with the initial and boundary conditions given by

h(z,t = 0−) = 0,

∂h

∂z

∣∣∣∣
z=0

= 0,

h(z → ∞,t) = 0, (4)

which assumes an adiabatic surface at z = 0, and that the
system starts at equilibrium prior to the energy deposited by
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the laser. We present the solution in the Laplace transformed
domain for convenience:

ĥ(z,s) =
βU0

CT0

s + α(q2 − β2)

⎛
⎝e−βz − β√

q2 + s
a

e−z
√

q2+ s
a

⎞
⎠.

(5)

We intend to utilize this Fourier heat conduction tempera-
ture profile in our variational solution of the BTE. Taking the
inverse Laplace transform of this yields the temperature as a
function of the depth into the substrate and time:

h(z,t) = βU0

2CT0
e−αt(q2−β2)

[
eβzerfc

(
β
√

αt + z

2
√

αt

)

+ e−βzerfc

(
β
√

αt − z

2
√

αt

)]
, (6)

where the surface temperature is

h(z = 0,t) = βU0

CT0
e−αt(q2−β2)erfc(β

√
αt). (7)

1. Temperature integral equation

We begin with the spectral Boltzmann transport equation
under the relaxation-time approximation (RTA):

∂gω

∂t
+ vω · ∇gω = g0 − gω

τω

+ Qω

4π
, (8)

where gω is the phonon energy density per unit frequency
interval per unit solid angle above the reference back-
ground energy, related to the distribution function as gω =
h̄ωD(ω)

4π
[fω − f0(T0)]. vω is the group velocity, τω is the

relaxation time, and g0 is the equilibrium energy density, given
by g0 ≈ 1

4π
Cω(T − T0) in the linear-response regime. The

sinusoidal heating profile in the x direction (in-plane), given
by the pulse form Qω(x,z,t) = δ(t)eiqxQ̃ω(z), means we can
expect that the spectral and equilibrium energy densities will
also obey a sinusoidal profile gω = eiqx g̃ω, and the equilibrium
distribution will simplify accordingly to g̃0 = CωT0

4π
h(z,t). By

inputting this in-plane sinusoidal profile and utilizing the
Laplace transform (denoted by theˆsymbol) in the time domain,
the BTE simplifies to

∂ ˆ̃gω

∂z
+ ˆ̃gω

1 + sτω + iηωμx

�ωμz

=
ˆ̃g0 + τω

Q̃ω

4π

�ωμz

, (9)

where we have defined ηω = q�ω. For convenience, we define
the parameter V = 1+sτω+iηωμx

�ωμz
to group the variables in a

compact form for the following solution of the BTE:

ˆ̃gω(z,s,μx,μz) = e−V z ˆ̃gω(z = 0,s,μx,μz)

+
∫ z

0
dz′e−V (z−z′)

ˆ̃g0(z′,s) + τω
Q̃ω

4π

�ωμz

. (10)

The boundary conditions are taken to be

ˆ̃gω(z = L,s,μx,μz < 0) = 0,

ˆ̃gω(z = 0,s,μx,μz > 0) = σ. (11)

The first boundary condition takes an imaginary blackbody
wall at length L into the substrate at the background tempera-

ture to account for the semi-infinite substrate, where this length
approaches infinity. The second boundary condition provides
the adiabatic boundary condition with diffuse scattering,
where σ = 1

π

∫
d�(μz)μz

ˆ̃gω(z = 0,s,μx,−μz), which is
proportional to the specular heat flux approaching the surface.
We have utilized the Heaviside step function to reduce the
integration over the solid angle only to consider phonons
approaching the surface. Applying the boundary conditions
and taking the artificial length L to infinity yields the formal
solution to the BTE for the spectral energy density in terms of
the equilibrium energy density:

ˆ̃gω(z,s,μx,μz) = −�(−μz)
∫ ∞

z

e−V (z−z′)
ˆ̃g0(z′,s) + τω

Q̃ω

4π

�ωμz

+�(μz)

(∫ z

0
e−V (z−z′)

ˆ̃g0(z′,s) + τω
Q̃ω

4π

�ωμz

+
∫ ∞

0
2e−V (z)F2(z′)

ˆ̃g0(z′,s) + τω
Q̃ω

4π

�ω

)
,

(12)

where we have defined the following solid-angle integral
function:

Fn(z) = 1

2π

∫
d�(μz)μ

n−2
z (e)−V z. (13)

The first term represents phonons moving toward the surface of
heating at z = 0, whereas the second term represents phonons
moving away from the surface.

The temperature can be derived by utilizing the equilibrium
condition obtained by integrating Eq. (12) with respect to
frequency and the solid angle [27]. The equilibrium condition
in this case can be expressed as

4π

∫
dω

1

τω

ˆ̃g0(z,s) =
∫

dω
1

τω

∫
d ˆ̃gω(z,s,μx,μz). (14)

Performing the solid-angle integral, and inputting the
expression for the nondimensional temperature expression
ˆ̃g0 = CωT0

4π
ĥ(z,s), we obtain the integral equation for the

temperature distribution:

ĥ(z,s)
∫

dω
Cω

τω

=
∫

dω
Cω

2�ωτω

∫ ∞

0
dz′

(
ĥ(z′,s) + τωQ̃ω(z′)

CωT0

)
× [F1(|z − z′|) + 2F2(z)F2(z′)]. (15)

This is an integral equation in the spatial variable z for the
nondimensional temperature in the Laplace domain, which,
after solving, requires an inverse Laplace transform in order
to obtain the full temperature solution in the time domain. For
the thermal distribution, the spectral heat generation takes the
form

Q̃ω(z) = Cω

C
U0βe−βz. (16)

Note that Cω

C
is a weighting of the contribution of a given

mode to heat generation under the assumption of thermalized
distribution [28]. While other distributions can be taken, we
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utilize this form in order to compare to the Fourier heat
conduction solution.

2. Variational solution

Equation (15) can be numerically solved using finite-
difference methods [29] or Monte Carlo methods [30,31].
In this work, we extend a variational approach previously
presented for the one-dimensional (1D) TTG [32] and thin-film
TTG geometries [33] to the reflection mode TTG geometry.
The starting point of this approach is to select a trial function.
The simplest trial function is to take the diffusive temperature
profile and allow just the thermal diffusivity to be a variational
parameter. In general, the size effects exhibited by the BTE
will affect both the temporal as well as the spatial distributions
of the temperature. However, the simple variational solution
that varies only one parameter, namely the thermal diffusivity,
performs well by approximately solving for the thermal decay
from the BTE over a broad range of grating period length
scales. We proceed by taking the Fourier heat conduction
solution of Eq. (5) as a trial function, and we use the thermal
diffusivity as the variational parameter.

To solve for the variational parameter, we can utilize
mathematical optimization methods such as least squares on
the error residual of the temperature equation [32], or impose
a physical condition that we wish the trial function to satisfy.
Here, we impose that the trial function must satisfy energy
conservation taken over the control volume of the semi-infinite
substrate over all time, analogous to the condition utilized for
the thin-film TTG geometry [33]. This mathematical condition
can be obtained by integrating the BTE of Eq. (14) over the
solid angle and frequency, and then also over the depth variable
z as well as over all time to yield

U0
λ

π
= 2i

∫ ∞

0
dz

∫ ∞

0
dt q̃x(z,t). (17)

This statement says that the total energy per unit area
perpendicular to the z axis deposited in the semi-infinite
substrate initially [left-hand side of Eq. (16)] must be equal
to the total energy that moves away in the in-plane direction.
The in-plane heat flux is obtained by utilizing the spectral
energy density of Eq. (12) and integrating over the frequency
and solid angle ˆ̃qx(z,s) = ∫

dω
∫

d�vωμx
ˆ̃gω(z,s,μx,μz) to

obtain the in-plane heat flux:

ˆ̃qx(z,s) = T0

2

∫
dω

Cωvω

�ω

∫ ∞

0
dz′

(
ĥ(z′,s) + τωQ̃ω(z′)

CωT0

)
× [G1(|z − z′|) + 2G2(z)F2(z′)], (18)

where we have defined the solid-angle integral function:

Gn(z) = 1

2π

∫
d�(μz)μ

n−2
z μx(e)−V z. (19)

Inserting the heat flux expression of Eq. (18) into the
energy conservation statement of Eq. (17), and inputting
the variational trial function of the Fourier heat conduction
solution of Eq. (5) as well as the thermal distribution for
the heat generation rate, we can solve for the effective
thermal conductivity after cleaning up some of the solid-angle
integrals. We obtain a form similar in structure to the results
from the thin-film TTG [33] and the one-dimensional limit of

the TTG [32]:

k =
1
3

∫
dω Cωvω�ωf (ηω,Knω)

1
C

∫
dω Cωg(ηω,Knω)

, (20)

where Knω = �ωβ. Note that information concerning the
spectral contribution to heat capacity is needed in the equation
for effective thermal conductivity [34]. f and g are the kernels
that weigh a given mode’s contribution to effective thermal
conductivity under the imposed size effects, explicitly given as

f (ηω,Knω) = 3

η2
ω

(
1 − 1

ηω

arctan(ηω)

+ η2
ω�(ηω,Knω) − Kn2

ω�(ηω,Knω)

η2
ω − Kn2

ω

)
,

g(ηω,Knω) = 1

ηω

arctan(ηω) + �(ηω,Knω). (21)

We have defined the following solid-angle integral functions:

�(x,z) = 1

2
ψ1(x,z) − 1

1 + √
1 + x2

ψ0(x,z),

ψn(x,z) = 1

2π

∫
d�(μz)

zμz

(1 + ixμx)n(1 + zμz + ixμx)
.

(22)

If we take the limit of Knω → 0, i.e., the case of
very long penetration depth, the solid-angle integrals van-
ish as ψn(ηω,Knω → 0) ∝ Knω, and we recover the one-
dimensional TTG limit described by the previously derived
effective thermal conductivity [32]. The more interesting case
for this problem is the reduction to surface heating, i.e.,
Knω → ∞. In this case, the kernel functions simplify to

f (ηω,Knω → ∞)

= 3

2η2
ω

(
1 − 1

ηω

arctan(ηω)

)
− 1

η3
ω

(
1 + √

1 + η2
ω

)
×

(
(1 + ηω)

3
2 − 3

2
η2

ω − η3
ω − 1

)
,

g(ηω,Knω → ∞) = 1

2ηω

arctan(ηω) + 1

1 + √
1 + η2

ω

. (23)

For the general case of arbitrary penetration depth, the
solid-angle integral functions can be calculated analytically
(available in the Supplemental Material [21]), which allows
for a fully analytical effective thermal conductivity for any
penetration depth into the substrate.

3. Comparison between the variational solution
and Monte Carlo simulations

To study the effect of the optical penetration depth in the
case of a diffuse surface boundary condition, we first plot
the kernels f and g as a function of η for the extremal
limits of Knω. The one-dimensional limit of Knω → 0 and
the surface heating limit of Knω → ∞ define the envelope of
curves between which the kernels for arbitrary values of the
penetration depth must lie. As the Knudsen number increases,
the size effect due to the optical penetration depth increases,
which physically results in a decrease of the effective thermal
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FIG. 2. Kernels of the effective conductivity in Eq. (20). (a) The numerator kernel f that shows the size effects and appears beside the
differential conductivity and (b) the denominator kernel g that shows the size effects and appears beside the spectral heat capacity.

conductivity. This occurs due to the decrease in the numerator
kernel f and the increase of the denominator kernel g. How-
ever, the variational solution produces a one-dimensional limit
and a surface heating limit that are practically indistinguishable
(Fig. 2), suggesting that the effective thermal conductivity due
to a diffuse boundary experiences weak effects from the optical
penetration depth.

Utilizing the derived kernels to calculate the effective
thermal conductivity for Si93.4Ge6.6, we show in Fig. 3 the
effective thermal conductivity in the various limits. Note that
the effective thermal conductivity is quite similar in the one-
dimensional limit and in the surface heating limit. As expected,
when the thermal grating period is much smaller than the
optical penetration depth, the effective thermal conductivity
takes on values of the one-dimensional limit, as the transport is
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FIG. 3. Effective thermal conductivity for Si93.4Ge6.6 in the one-
dimensional limit and the surface heating limit. The effective thermal
conductivity using the gray suppression function for one-dimensional
TTG [Eq. (24)] is also shown [32].

mostly in-plane. In the opposite case, when the grating period
is much larger than the optical penetration depth, the effective
thermal conductivity approaches the surface heating limit.

Figure 3 demonstrates that the variational technique pre-
dicts that transport has a weak dependence on the optical
penetration depth, a consequence of the kernels’ weak de-
pendence on the optical penetration depth. In the limit of
q/β 	 1, the one-dimensional TTG is recovered. In the limit
of q/β 
 1, the modified Fourier approach fails to capture the
short-time behavior. In this regime, the use of effective thermal
conductivity (obtained either using the variational approach
or otherwise) is insufficient to characterize thermal transport.
An example of this failure is presented in the Supplemental
Material [21]. Even with such a limitation, our variational
approach sufficiently characterizes the intermediate regime.

In the limit of q/β 
 1, the variational method, using the
Fourier temperature profile as input, reveals that the thermal
conductivity that best recovers this behavior is the bulk value.
This can be understood as a consequence of the constraint
imposed by the equilibrium condition of Eq. (17), which
dictates the behavior of the variational temperature profile in
the large time limit where transport is diffusive. To ensure that
this limitation is not present in the current experimental study,
we compare against established Monte Carlo simulations of
the RTA-BTE [30,31].

As is seen in Fig. 4, agreement at a grating period of 100 nm
and an optical penetration depth of 10 nm and for a grating
period of 10 μm and an optical penetration depth of 1 μm is
observed. As our experiments have penetration depths on the
order of 1 μm for Si93.4Ge6.6 [35], and use grating periods of
between 1 and 13.5 μm, we are not in the q/β 
 1 regime
and we can move forward with our variational solutions.

III. EXPERIMENT

A. Sample specifications

The SiGe sample was fabricated by metal-organic chemical
vapor deposition (MOCVD). Briefly, SiH4 and GeH4 enter the
reactor, which break up into Si, Ge, and H2 from exposure
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FIG. 4. Temperature profiles obtained from Monte Carlo simulations compared with the corresponding variational predictions for Si93.4Ge6.6

at 300 K with (a) a grating period of 100 nm and optical penetration depth of 10 nm and (b) a grating period of 10 μm and an optical penetration
depth of 1 μm. The Monte Carlo trace for case (b) contains noise because of the computational cost of simulating longer decays for a large
number of effective particles. The Monte Carlo source code is included in the Supplemental Material [21].

to high temperatures (750–800 ◦C). The composition is
controlled by tuning the flow rates of SiH4 and GeH4. A
single-crystal sample consisting of 93.4% Si, 6.6% Ge with
a thickness of 6 μm on a [1 0 0] oriented Si wafer with 6◦
off-cut toward the [1 1 1] plane was used for this work. Details
of the sample fabrication and characterization can be found in
previous work [36].

B. Transient thermal grating measurements

Transient grating spectroscopy is a variant on four-wave-
mixing spectroscopic techniques that can be used to measure
thermal transport dynamics over a well-defined in-plane length
scale. In this technique, two pump laser pulses (515 nm,
60 ps full width at half-maximum) are crossed at the surface
of the sample, where they interfere to yield a sinusoidal
intensity pattern. Absorption by the sample creates a matching
temperature profile, which evolves as a function of time
through in-plane and cross-plane transport. The time dynamics
of this “transient grating” are measured by the diffraction of
a quasicontinuous probe beam (532 nm), and phase-specific
information is extracted through heterodyned detection of the
TTG signal by superposition of the diffracted signal with
a reference beam (local oscillator) derived from the probe
beam source. The signal is detected using a fast photodiode
(1 GHz bandwidth) and recorded on an oscilloscope (4 GHz
bandwidth). Specific details of the optical setup can be found
elsewhere [26,37,38], and a depiction of the TTG setup is
shown in Fig. 5.

The TTG signal will in principle have both real and
imaginary field contributions due to “amplitude-grating” and
“phase-grating” responses, respectively. The phase grating
contributions contain decay components that correspond
to thermal expansion and the imaginary part of the ther-
moreflectance and acoustic oscillations corresponding to the
impulsive stimulation of surface acoustic waves (SAWs),
whereas the amplitude-grating response only contains one

term corresponding to the real part of the thermoreflectance
[26]. Analysis of the amplitude-grating contribution is simpler
due to the single contribution, and so this term was isolated
during the measurements by optimizing the heterodyne phase
to minimize the SAW signal, which only appears in the
phase-grating response [26].

C. Results

All measurements of the Si93.4Ge6.6 sample were conducted
at room temperature. Figure 6(a) shows two examples of raw
TTG data along with the fits obtained from using Eq. (7).
These fits yield an effective thermal conductivity as shown in

FIG. 5. A diagram of the reflection mode TTG geometry. The
pump and probe beams are passed through the diffraction grating
(referred to here as the phase mask), which sets the period length
of the heating profile. The ±1 orders of the pump and probe are
then imaged on the sample surface using the 4f lens system. An ND
filter attenuates the reference beam of the probe, while an optic (the
heterodyne phase control) is placed in the signal beam of the probe
to control the relative phase between the reference and the signal.
The diffracted signal and the reflected reference are collected at the
detector.
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FIG. 6. (a) Raw experimental data for
6.6 μm (top) and 1.8 μm (bottom) grating
periods with the fit obtained from Eq. (7).
(b) Green circles correspond to measured
TTG data for a range of grating periods,
from 13.5 to 1 μm. The black line is the
prediction from the variational solution
with DFT properties as input, while the
orange line (yellow line, purple line)
corresponds to the variational prediction
for Si97Ge3 (Si80Ge20, Si).

Fig. 6(b) alongside the prediction from the variational solution
using properties obtained from first-principles calculations
following Sec. II. We have used an optical penetration depth
of 1500 nm, according to [35]. The effect of uncertainty in the
penetration depth is presented in the Supplemental Material
[21]. There is good agreement between theory and experiment,
which persists for a range of grating periods, from ∼13.5
to 1 μm. Example fits of the TTG data with comparisons
to the variational predictions are found in the Supplemental
Material [21].

IV. DISCUSSION AND OUTLOOK

To review, we calculated the first-principles phonon prop-
erties to match the exact composition of the sample studied
experimentally. We then used these properties and the varia-
tional solution to the RTA-BTE to predict (without any fitting
parameters) the recorded observable of TTG experiments, i.e.,
the temperature decay. In doing so, we reported excellent
agreement between the observables and effective thermal
conductivities of theory and experiment. In this section, we
draw on past interpretations to provide some context for this
work.

As mentioned earlier, one of the first explanations of size
effects in SiGe grew out of the observation of the frequency
dependence in TDTR measurements [8]. This explanation
relied on the application of thermal penetration depth, Ltpd ∼√

αbulk
ω

, as a heuristic approximation to estimate the magnitude

of the deviation from a bulk thermal conductivity. For
Si93.4Ge6.6, αbulk = 1.2358 × 10−5 m2/s, with 10 MHz, yields
Ltpd ∼ 1 μm. Under this approximation, we can take the MFP
thermal conductivity accumulation function at 1 μm, yielding
0.4kbulk = 7.3 W/mK [39]. If we apply the same reasoning
to our TTG measurements, we arrive at a clear inconsistency:
λ = 1 μm yields 0.25kbulk = 4.5 W/mK, indicating that the
MFP thermal conductivity accumulation function alone is
insufficient to estimate the deviation from bulk. The next
natural step in the interpretation of deviations from bulk

required theory to go beyond the Heaviside cutoff of the
thermal penetration depth and obtain a gray suppression
function, Sgray(ηω), from solving the gray BTE [40–42],

Sgray(ηω) = 3

η2
ω

(
1 − arctan(ηω)

ηω

)(
ηω

arctan(ηω)

)
. (24)

This function is then used as a kernel in the effec-
tive thermal conductivity integral, i.e., keff,gray = 1

3

∫ ωm

0 Cω

vω�ωSgray(ηω)dω. This picture has also turned out to be an
oversimplification, since the fully spectral solution to the BTE
has no suppression function due to the presence of the denom-
inator term in Eq. (20). The presence of this term is a general
feature of effective thermal conductivity expressions that is
not specific to the reflection mode TTG geometry [29,32]. Our
work confirms this fact by demonstrating that a fully spectral
solution to the BTE is required to characterize experimental
observables. The progression from thermal penetration depth
to gray suppression to fully spectral interpretations in the
context of reflection TTG is shown in Fig. 7. While the
gray BTE solution has been used to provide suppression
functions for the MFP reconstruction problem [1,40], we
demonstrate that this assumption is invalid. Extending the MFP
reconstruction problem to allow for fully spectral solutions is
the subject of future work.

In contrast to the interpretation of the thermal penetration
depth of TDTR, the length scales in TTG do not depend on the
intrinsic value of a material’s transport coefficient, and they
are therefore physically well-defined independent variables.
Although the information concerning the optical penetration
depth is required, this is well within current characterization
technology [43]. Given that the variational solutions to the 1D
and surface heating TTG geometries predict approximately the
same effective thermal conductivity dependence on the grating
period, we have obtained estimates for the regimes in which
the experiment is expected to match theory (i.e., when q/β

is not much less than 1). In doing so, we have presented a
theoretical framework that is testable, given that experimental
deviations from theory can be understood as departures from

054601-7



SAMUEL HUBERMAN et al. PHYSICAL REVIEW MATERIALS 1, 054601 (2017)

0 0.2 0.4 0.6 0.8 1
Time (seconds) 10-7

-0.2

0

0.2

0.4

0.6

0.8

1
N

or
m

al
iz

ed
 T

em
pe

ra
tu

re
Experiment
Variational
MFP Accumulation
Gray Suppression

FIG. 7. Comparison between the predictions from the variational
approach to using the MFP accumulation function or the gray
suppression function for one-dimensional TTG [Eq. (24)] [32] to
estimate the effective thermal conductivity at a 1.00 μm grating
period.

the approximations used in this work: the VCA, the RTA-BTE,
and the specific trial solution for the temperature profile used
in the variational method. These approximations can be lifted
and are left for future work. With the methodology presented
here, the TTG can be used to study in-plane transport in opaque
thin films that require a supporting substrate.

While TDTR measurements are sensitive to the cross-
plane transport, the TTG provides a complementary tool for
measuring in-plane transport. The variational method can be
extended to more complicated geometries, such as layered
systems with interfaces, ideally suited for providing insight
into the interpretations of TDTR and TTG measurements.
Such an extension would provide a path toward unifying the
interpretations of the measurements from TDTR and TTG.

V. CONCLUSION

Our TTG experimental results augmented with DFT-based
modeling and the variational BTE solution indicate that this
experimental geometry is capable of meeting the predictive
criteria necessary for studying size effects on thermal transport
in complex materials, such as the SiGe alloy studied here.
Interesting questions can now be asked, such as in what
systems or at what length scales can we expect to find a
breakdown of the VCA? Moreover, this geometry will likely
prove useful in the study of systems in which the relaxation-
time approximation fails, such as graphene, graphite, and
diamond. The TTG experiment provides a path toward tabletop
studies of the microscopic properties of thermal transport.
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