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APPENDIX A: RATING STUDY RESULTS 

‘z-bad’ is the average z-score for the hypothesized ‘bad’ option. ‘z-good’ is the average z-score for the 
hypothesized good option. ‘Z.diff’ is the difference between z-good and z-bad and is the effect size. Beta 
is the estimate from the linear mixed-effects model, which has a standard error ‘SE’ and a t-value ‘t’. ‘χ2’ 
is the chi-squared value comparing the full model to an intercept-only model, and ‘χ2 p’ is the p-value 
obtained by that comparison. Simple ‘p’ is just the p-value calculated using the t-value. Pred is TRUE if 
the effect goes in the significant direction. Sig is TRUE if there is a significant effect.  

Rows in yellow are rows in which the effect goes in the predicted direction but is not significant. 
 
EXPERIMENT z-BAD z-GOOD Z.DIFF BETA SE t χ2 χ2 p p PRED SIG 
35.3.Hazout:36–36 −0.05 −0.04 0.01 0.00 0.06 0.08 0.01 0.9350 0.9360 TRUE FALSE 
34.4.Lasnik:24a–24b 0.20 0.21 0.01 0.01 0.08 0.12 0.02 0.9010 0.9040 TRUE FALSE 
34.1.Basilico:11a–12a −0.46 −0.44 0.03 0.02 0.10 0.24 0.06 0.8130 0.8100 TRUE FALSE 
34.4.Lasnik:22a–22b 0.03 0.06 0.03 0.03 0.06 0.48 0.23 0.6290 0.6310 TRUE FALSE 
35.3.Hazout:73b–73b −0.29 −0.17 0.11 0.11 0.07 1.72 2.89 0.0890 0.0850 TRUE FALSE 
33.1.Fox:47c–48b −0.39 −0.26 0.12 0.12 0.07 1.69 2.68 0.1020 0.0910 TRUE FALSE 
32.2.Nunes:fn 35iia–

fn35iib −0.89 −0.78 0.12 0.12 0.06 2.02 4.06 0.0440 0.0430 TRUE TRUE 
35.2.Hazout:1b–1b −0.35 −0.18 0.17 0.17 0.07 2.59 6.57 0.0100 0.0100 TRUE TRUE 
32.4.Lopez:9c–10c −0.56 −0.36 0.20 0.20 0.05 3.59 11.01 0.0010 < 0.0001 TRUE TRUE 
32.3.Culicover:37a–37a −0.37 −0.15 0.22 0.21 0.07 3.21 9.95 0.0020 0.0010 TRUE TRUE 
33.4.Neeleman:97a–98 −0.33 −0.09 0.24 0.24 0.13 1.80 2.93 0.0870 0.0720 TRUE FALSE 
40.1.Heck:51–52 −0.63 −0.39 0.24 0.24 0.09 2.69 5.87 0.0150 0.0070 TRUE TRUE 
34.3.Landau:7c–7c 0.88 1.13 0.25 0.25 0.12 2.05 3.74 0.0530 0.0400 TRUE FALSE 
41.3.Landau:11a–11a 0.28 0.54 0.26 0.26 0.06 4.08 15.21 < 0.0001 < 0.0001 TRUE TRUE 
35.2.Larson:44b–44b 0.54 0.80 0.27 0.27 0.08 3.50 10.76 0.0010 < 0.0001 TRUE TRUE 
34.1.Phillips:59c–60c −0.74 −0.45 0.29 0.29 0.11 2.58 5.52 0.0190 0.0100 TRUE TRUE 
33.2.Bowers:49c–49c −0.74 −0.46 0.29 0.29 0.09 3.35 8.65 0.0030 0.0010  TRUE TRUE 
34.2.Caponigro:11b–11c –0.50 0.82 0.32 0.32 0.06 5.50 20.80 < 0.0001 < 0.0001 TRUE TRUE 
32.3.Fanselow:61a–61b −0.96 −0.63 0.33 0.33 0.06 5.24 22.00 < 0.0001 < 0.0001 TRUE TRUE 
34.1.Phillips:23a–25a −0.02 0.39 0.40 0.40 0.09 4.50 12.78 < 0.0001 < 0.0001 TRUE TRUE 
35.1.Bhatt:93a–b −0.69 −0.29 0.41 0.40 0.08 5.02 14.82 < 0.0001 < 0.0001 TRUE TRUE 
32.3.Culicover:46a–48a −0.20 0.21 0.41 0.41 0.07 6.30 22.52 < 0.0001 < 0.0001 TRUE TRUE 
34.3.Landau:38a–38c −0.28 0.14 0.42 0.42 0.07 5.68 18.67 < 0.0001 < 0.0001 TRUE TRUE 
39.1.Sobin:8b–8f −0.36 0.06 0.42 0.42 0.07 6.32 25.00 < 0.0001 < 0.0001 TRUE TRUE 
34.4.Boskovic:fn6iie–

fn6iid −0.34 0.12 0.46 0.46 0.10 4.54 13.78 < 0.0001 < 0.0001 TRUE TRUE 
35.3.Embick:62b–62b.Cf 0.40 0.86 0.46 0.46 0.08 5.54 17.72 < 0.0001 < 0.0001 TRUE TRUE 
34.4.Haegeman:2a–2b −0.15 0.30 0.46 0.46 0.06 7.27 25.89 < 0.0001 < 0.0001 TRUE TRUE 
34.3.Landau:fn12i–fn12ii −0.88 −0.42 0.46 0.46 0.06 7.73 27.48 < 0.0001 < 0.0001 TRUE TRUE 
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34.1.Basilico:37a–37b −0.37 0.10 0.47 0.47 0.09 5.31 16.56 < 0.0001 < 0.0001 TRUE TRUE 
39.1.Sobin:8c–8f −0.32 0.15 0.47 0.47 0.06 8.02 35.62 < 0.0001 < 0.0001 TRUE TRUE 
35.2.Hazout:1a–1a −0.86 −0.34 0.52 0.52 0.06 8.77 34.21 < 0.0001 < 0.0001 TRUE TRUE 
33.2.Bowers:7d–7d 0.56 1.12 0.56 0.56 0.10 5.48 17.11 < 0.0001 < 0.0001 TRUE TRUE 
34.1.Phillips:61a–61b −1.00 −0.41 0.59 0.59 0.07 7.86 25.39 < 0.0001 < 0.0001 TRUE TRUE 
39.1.Sobin:20a–21a −0.18 0.41 0.60 0.60 0.08 7.41 23.31 < 0.0001 < 0.0001 TRUE TRUE 
35.3.Embick:7a–7b −0.47 0.14 0.62 0.62 0.09 6.98 22.55 < 0.0001 < 0.0001 TRUE TRUE 
34.1.Fox:37a–37b −0.17 0.45 0.62 0.62 0.08 8.26 27.10 < 0.0001 < 0.0001 TRUE TRUE 
35.1.Bhatt:fn25ia–fn25ib −1.08 −0.43 0.65 0.65 0.08 7.78 26.37 < 0.0001 < 0.0001 TRUE TRUE 
34.3.Takano:2b–d −0.52 0.14 0.66 0.66 0.12 5.71 16.37 < 0.0001 < 0.0001 TRUE TRUE 
41.3.Landau:32a–32b −0.60 0.06 0.66 0.66 0.07 8.98 29.15 < 0.0001 < 0.0001 TRUE TRUE 
34.1.Phillips:23a–24a −0.41 0.30 0.71 0.71 0.13 5.28 14.52 < 0.0001 < 0.0001 TRUE TRUE 
33.2.Bowers:20a–20b −0.53 0.18 0.71 0.71 0.12 5.84 16.21 < 0.0001 < 0.0001 TRUE TRUE 
34.4.Haegeman:2c–2b −0.73 0.00 0.73 0.73 0.08 8.80 28.07 < 0.0001 < 0.0001 TRUE TRUE 
32.3.Culicover:25c–25d. 
 WithOneself −0.25 0.52 0.77 0.77 0.10 7.76 22.87 < 0.0001 < 0.0001 TRUE TRUE 
41.4.Bruening:61b–62b. 
 StarredVariantIn61 −0.24 0.54 0.78 0.78 0.16 4.89 13.65 < 0.0001 < 0.0001 TRUE TRUE 
35.1.Bhatt:fn5ia–fn5ia 0.03 0.80 0.78 0.78 0.09 8.89 25.75 < 0.0001 < 0.0001 TRUE TRUE 
32.1.Martin:50b–51b −0.49 0.29 0.78 0.78 0.07 11.65 42.71 < 0.0001 < 0.0001 TRUE TRUE 
32.3.Culicover:46b–46b −0.32 0.49 0.81 0.81 0.08 9.89 30.41 < 0.0001 < 0.0001 TRUE TRUE 
40.4.Hicks:2a–2b 0.21 1.04 0.82 0.83 0.12 6.65 19.30 < 0.0001 < 0.0001 TRUE TRUE 
34.2.Panagiotidis:12a–b 0.07 0.92 0.84 0.84 0.13 6.50 19.02 < 0.0001 < 0.0001 TRUE TRUE 
38.2.Hornstein:fn2.iii–iii −0.24 0.60 0.84 0.84 0.10 8.68 28.84 < 0.0001 < 0.0001 TRUE TRUE 
32.3.Culicover:34c–34e −0.28 0.56 0.84 0.84 0.08 10.76 34.15 < 0.0001 < 0.0001 TRUE TRUE 
32.1.Martin:50a–51a −0.21 0.65 0.87 0.87 0.09 9.20 27.00 < 0.0001 < 0.0001 TRUE TRUE 
35.2.Hazout:5a–5c −0.67 0.21 0.89 0.89 0.06 15.54 42.33 < 0.0001 < 0.0001 TRUE TRUE 
40.4.Hicks:10a–10b −0.80 0.11 0.91 0.91 0.08 11.63 36.63 < 0.0001 < 0.0001 TRUE TRUE 
32.3.Culicover:23c–23d. 
 SentenceDP 0.20 1.12 0.92 0.93 0.15 6.11 16.76 < 0.0001 < 0.0001 TRUE TRUE 
34.3.Takano:2a–c −0.36 0.58 0.94 0.93 0.09 10.10 27.12 < 0.0001 < 0.0001 TRUE TRUE 
34.1.Fox:4–4 −1.01 −0.09 0.93 0.93 0.08 11.24 36.45 < 0.0001 < 0.0001 TRUE TRUE 
41.4.Bruening:62a–87a. 

StarredVariantIn87 −0.31 0.65 0.95 0.95 0.12 8.01 23.20 < 0.0001 < 0.0001 TRUE TRUE 
34.3.Heycock:93a–93b 0.04 1.01 0.98 0.97 0.07 14.00 38.46 < 0.0001 < 0.0001 TRUE TRUE 
38.3.Landau:62a–62b −0.12 0.87 0.98 0.98 0.10 10.32 29.29 < 0.0001 < 0.0001 TRUE TRUE 
32.3.Culicover:44a–45a −0.61 0.40 1.01 1.01 0.06 16.01 44.47 < 0.0001 < 0.0001 TRUE TRUE 
40.2.Johnson:78–79 −0.57 0.48 1.05 1.04 0.08 12.30 31.13 < 0.0001 < 0.0001 TRUE TRUE 
41.3.Constantini:1b–

1b.BothVsBothBoth −0.14 0.91 1.04 1.04 0.08 13.69 37.01 < 0.0001 < 0.0001 TRUE TRUE 
34.2.Caponigro:fn6ia–

fn6ib.EagerlyIn2ndPos −0.06 0.98 1.03 1.04 0.07 15.02 37.98 < 0.0001 < 0.0001 TRUE TRUE 
34.1.Basilico:29b–30b −0.97 0.07 1.05 1.05 0.10 10.71 30.49 < 0.0001 < 0.0001 TRUE TRUE 
34.3.Takano:11a–11b −0.92 0.12 1.05 1.05 0.09 11.40 31.77 < 0.0001 < 0.0001 TRUE TRUE 
34.1.Fox:1–1 −1.01 0.08 1.09 1.09 0.07 14.94 46.32 < 0.0001 < 0.0001 TRUE TRUE 
37.4.Nakajima:fn1ia–

fn1iiia −0.91 0.21 1.12 1.11 0.13 8.69 23.29 < 0.0001 < 0.0001 TRUE TRUE 
35.1.Bhatt:5a–5c −0.40 0.72 1.12 1.12 0.07 15.57 43.81 < 0.0001 < 0.0001 TRUE TRUE 
33.2.Bowers:56c–56d −0.37 0.77 1.14 1.14 0.16 7.09 20.34 < 0.0001 < 0.0001 TRUE TRUE 
32.2.Alexiadou:fn11iib–

fn11iic −0.56 0.58 1.14 1.14 0.10 11.71 32.22 < 0.0001 < 0.0001 TRUE TRUE 
33.1.denDikken:56a–58a −0.51 0.66 1.17 1.17 0.09 13.22 35.62 < 0.0001 < 0.0001 TRUE TRUE 
32.3.Culicover:fn6ia–fn6ib −0.77 0.41 1.18 1.18 0.07 17.10 48.58 < 0.0001 < 0.0001 TRUE TRUE 
36.4.denDikken:35a–35b −0.26 0.95 1.21 1.21 0.09 13.25 37.76 < 0.0001 < 0.0001 TRUE TRUE 
35.1.Bhatt:1b–1b −0.52 0.69 1.21 1.21 0.07 17.76 50.67 < 0.0001 < 0.0001 TRUE TRUE 
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34.3.Landau:fn13ii–fn13ii −0.49 0.73 1.22 1.23 0.10 12.21 34.15 < 0.0001 < 0.0001 TRUE TRUE 
41.3.Vicente:6b–8b −0.98 0.26 1.24 1.24 0.08 15.94 42.74 < 0.0001 < 0.0001 TRUE TRUE 
33.2.Bowers:7a–7a. 

PerfectlyIn2ndPos3rdPos −0.42 0.82 1.25 1.25 0.07 17.18 40.23 < 0.0001 < 0.0001 TRUE TRUE 
41.1.Muller:28a–28b −0.86 0.42 1.28 1.28 0.11 11.30 31.48 < 0.0001 < 0.0001 TRUE TRUE 
35.1.McGinnis:63a–63b −0.35 0.94 1.28 1.28 0.09 14.49 36.90 < 0.0001 < 0.0001 TRUE TRUE 
38.2.Hornstein:2b–2c −0.12 1.24 1.35 1.35 0.09 14.74 45.23 < 0.0001 < 0.0001 TRUE TRUE 
33.2.Bowers:19a–19b −0.35 1.02 1.37 1.37 0.10 13.18 39.73 < 0.0001 < 0.0001 TRUE TRUE 
35.3.Embick:72a–72b −0.37 1.05 1.41 1.41 0.13 11.17 30.27 < 0.0001 < 0.0001 TRUE TRUE 
32.1.Martin:15a–15b −0.33 1.12 1.45 1.45 0.13 11.35 29.79 < 0.0001 < 0.0001 TRUE TRUE 
32.4.Lopez:16a–16b −0.44 1.03 1.48 1.48 0.07 20.04 55.90 < 0.0001 < 0.0001 TRUE TRUE 
34.1.Basilico:50–51 −0.81 0.68 1.49 1.49 0.14 10.89 29.51 < 0.0001 < 0.0001 TRUE TRUE 
33.1.denDikken:57a–57b −0.65 0.87 1.51 1.52 0.10 15.16 39.21 < 0.0001 < 0.0001 TRUE TRUE 
34.1.Basilico:7a–7b −0.46 1.06 1.52 1.52 0.09 16.29 40.28 < 0.0001 < 0.0001 TRUE TRUE 
32.1.Martin:48a–48b −0.93 0.67 1.60 1.60 0.12 13.14 33.95 < 0.0001 < 0.0001 TRUE TRUE 
32.3.Fanselow:59a–59b −0.49 1.12 1.61 1.61 0.08 20.91 48.82 < 0.0001 < 0.0001 TRUE TRUE 
35.3.Hazout:30a–30a −0.67 0.98 1.64 1.64 0.15 10.76 27.84 < 0.0001 < 0.0001 TRUE TRUE 
37.2.deVries:70a–70b −0.68 0.97 1.65 1.65 0.07 22.04 50.10 < 0.0001 < 0.0001 TRUE TRUE 
35.2.Larson:61a–61b −0.81 0.85 1.66 1.66 0.09 17.71 43.62 < 0.0001 < 0.0001 TRUE TRUE 
38.4.Boskovic:74–75 −0.80 0.87 1.67 1.67 0.08 20.91 44.93 < 0.0001 < 0.0001 TRUE TRUE 
35.3.Hazout:65a–65b −0.99 0.73 1.72 1.72 0.12 13.94 35.00 < 0.0001 < 0.0001 TRUE TRUE 
33.2.Bowers:13b–13b −0.81 0.98 1.79 1.79 0.11 16.49 40.15 < 0.0001 < 0.0001 TRUE TRUE 
35.1.Bhatt:13a–13a −1.03 0.79 1.82 1.82 0.07 27.59 61.45 < 0.0001 < 0.0001 TRUE TRUE 
34.1.Basilico:4b–4c −0.81 1.03 1.84 1.84 0.06 28.80 64.27 < 0.0001 < 0.0001 TRUE TRUE 
36.4.denDikken:38b–38b −1.02 0.89 1.91 1.91 0.08 24.38 58.24 < 0.0001 < 0.0001 TRUE TRUE 
37.2.Sigurdsson:3c–3e −0.92 1.08 2.00 2.00 0.07 29.93 58.39 < 0.0001 < 0.0001 TRUE TRUE 
  

APPENDIX B: FORCED-CHOICE RESULTS 

‘Gramm’ is the proportion of people who choose the hypothesized acceptable sentence. ‘Beta’ is the 
model estimate of the effect size, which has a standard error of SE and a z-value (distance from 0 in units 
of standard error) of z. The p-value is calculated directly from the z-value. Pred is TRUE if the effect goes 
in the significant direction, FALSE otherwise. Sig is TRUE if there is a significant effect.  

Rows in red represent contrasts where the effect is significant in the opposite direction of that pre-
dicted. Rows in pink show effects in the opposite direction of what was predicted but are not significant. 
Rows in yellow are rows in which the effect goes in the predicted direction but is not significant. 
 
 

EXPERIMENT GRAMM BETA z SE p PRED SIG 
35.3.Hazout:36–36 0.39 −0.79 −4.03 0.20 < 0.0001 FALSE TRUE 
34.4.Lasnik:24a–24b 0.35 −0.73 −3.43 0.21 0.0010 FALSE TRUE 
32.2.Nunes:fn35iia–fn35iib 0.44 −0.25 −1.40 0.18 0.1620 FALSE FALSE 
32.4.Lopez:9c–10c 0.46 −0.19 −1.20 0.15 0.2300 FALSE FALSE 
39.1.Sobin:8b–8f 0.46 −0.19 −1.09 0.17 0.2760 FALSE FALSE 
34.4.Lasnik:22a–22b 0.47 −0.17 −0.70 0.25 0.4840 FALSE FALSE 
34.1.Basilico:11a–12a 0.51 0.04 0.17 0.26 0.8650 TRUE FALSE 
34.4.Haegeman:2a–2b 0.58 0.51 2.20 0.23 0.0280 TRUE TRUE 
34.1.Phillips:23a–25a 0.62 0.65 2.45 0.26 0.0140 TRUE TRUE 
33.4.Neeleman:97a–98 0.62 0.70 1.93 0.37 0.0540 TRUE FALSE 
40.1.Heck:51–52 0.69 0.94 3.88 0.24 < 0.0001 TRUE TRUE 
39.1.Sobin:8c–8f 0.70 1.02 4.60 0.22 < 0.0001 TRUE TRUE 
34.3.Landau:fn12i–fn12ii 0.71 1.03 5.47 0.19 < 0.0001 TRUE TRUE 
34.1.Basilico:37a–37b 0.72 1.04 4.59 0.23 < 0.0001 TRUE TRUE 
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33.1.Fox:47c–48b 0.71 1.05 4.06 0.26 < 0.0001 TRUE TRUE 
35.2.Larson:44b–44b 0.69 1.11 3.85 0.29 < 0.0001 TRUE TRUE 
34.3.Landau:7c–7c 0.71 1.18 6.07 0.19 < 0.0001 TRUE TRUE 
34.1.Phillips:61a–61b 0.77 1.30 10.07 0.13 < 0.0001 TRUE TRUE 
34.2.Panagiotidis:12a–b 0.75 1.45 4.10 0.35 < 0.0001 TRUE TRUE 
34.4.Boskovic:fn6iie–fn6iid 0.73 1.54 4.56 0.34 < 0.0001 TRUE TRUE 
32.3.Fanselow:61a–61b 0.78 1.55 8.99 0.17 < 0.0001 TRUE TRUE 
32.3.Culicover:37a–37a 0.79 1.57 9.36 0.17 < 0.0001 TRUE TRUE 
41.3.Constantini:1b–

1b.BothVsBothBoth 0.79 1.58 7.19 0.22 < 0.0001 TRUE TRUE 
41.3.Landau:11a–11a 0.80 1.64 7.28 0.22 < 0.0001 TRUE TRUE 
32.3.Culicover:25c–25d.WithOneself 0.80 1.77 5.75 0.31 < 0.0001 TRUE TRUE 
41.4.Bruening:61b–

62b.StarredVariantIn61 0.74 1.84 3.77 0.49 < 0.0001 TRUE TRUE 
34.2.Caponigro:11b–11c 0.83 2.01 8.24 0.24 < 0.0001 TRUE TRUE 
35.3.Embick:7a–7b 0.83 2.03 6.12 0.33 < 0.0001 TRUE TRUE 
34.1.Phillips:23a–24a 0.83 2.06 5.95 0.35 < 0.0001 TRUE TRUE 
35.1.Bhatt:93a–b 0.85 2.14 9.59 0.22 < 0.0001 TRUE TRUE 
39.1.Sobin:20a–21a 0.83 2.18 6.41 0.34 < 0.0001 TRUE TRUE 
40.4.Hicks:2a–2b 0.86 2.24 6.22 0.36 < 0.0001 TRUE TRUE 
33.1.denDikken:57a–57b 0.87 2.24 8.85 0.25 < 0.0001 TRUE TRUE 
33.2.Bowers:49c–49c 0.85 2.26 8.48 0.27 < 0.0001 TRUE TRUE 
35.1.Bhatt:fn25ia–fn25ib 0.89 2.31 8.81 0.26 < 0.0001 TRUE TRUE 
34.3.Landau:38a–38c 0.88 2.41 7.65 0.32 < 0.0001 TRUE TRUE 
35.1.Bhatt:fn5ia–fn5ia 0.88 2.49 6.74 0.37 < 0.0001 TRUE TRUE 
32.3.Culicover:46b–46b 0.89 2.51 7.03 0.36 < 0.0001 TRUE TRUE 
34.1.Phillips:59c–60c 0.86 2.59 7.84 0.33 < 0.0001 TRUE TRUE 
41.4.Bruening:62a–

87a.StarredVariantIn87 0.83 2.60 4.57 0.57 < 0.0001 TRUE TRUE 
34.3.Takano:2b–d 0.86 2.65 5.06 0.52 < 0.0001 TRUE TRUE 
32.1.Martin:48a–48b 0.89 2.75 7.90 0.35 < 0.0001 TRUE TRUE 
32.1.Martin:50a–51a 0.91 2.79 7.20 0.39 < 0.0001 TRUE TRUE 
34.3.Takano:2a–c 0.90 2.80 7.52 0.37 < 0.0001 TRUE TRUE 
33.2.Bowers:20a–20b 0.88 2.82 8.01 0.35 < 0.0001 TRUE TRUE 
35.2.Hazout:1b–1b 0.86 2.91 3811.11 0.00 < 0.0001 TRUE TRUE 
35.3.Embick:62b–62b.Cf 0.87 2.93 7.25 0.40 < 0.0001 TRUE TRUE 
33.2.Bowers:7d–7d 0.90 2.95 7.00 0.42 < 0.0001 TRUE TRUE 
35.3.Hazout:73b–73b 0.90 2.98 8.21 0.36 < 0.0001 TRUE TRUE 
38.3.Landau:62a–62b 0.92 3.00 7.66 0.39 < 0.0001 TRUE TRUE 
33.2.Bowers:56c–56d 0.89 3.04 5.60 0.54 < 0.0001 TRUE TRUE 
38.2.Hornstein:fn2.iii–iii 0.95 3.06 13.01 0.23 < 0.0001 TRUE TRUE 
32.3.Culicover:34c–34e 0.91 3.32 6.97 0.48 < 0.0001 TRUE TRUE 
35.3.Hazout:65a–65b 0.97 3.38 11.94 0.28 < 0.0001 TRUE TRUE 
32.3.Fanselow:59a–59b 0.97 3.38 12.16 0.28 < 0.0001 TRUE TRUE 
35.2.Hazout:1a–1a 0.90 3.41 5.78 0.59 < 0.0001 TRUE TRUE 
32.1.Martin:50b–51b 0.91 3.42 6.34 0.54 < 0.0001 TRUE TRUE 
33.2.Bowers:7a–

7a.PerfectlyIn2ndPos3rdPos 0.97 3.54 14.39 0.25 < 0.0001 TRUE TRUE 
32.3.Culicover:46a–48a 0.90 3.57 5.13 0.70 < 0.0001 TRUE TRUE 
32.3.Culicover:23c–23d.SentenceDP 0.94 3.60 5.91 0.61 < 0.0001 TRUE TRUE 
34.1.Fox:4–4 0.91 3.63 5.55 0.65 < 0.0001 TRUE TRUE 
34.3.Takano:11a–11b 0.92 3.65 5.10 0.71 < 0.0001 TRUE TRUE 
34.1.Fox:1–1 0.93 3.77 5.43 0.69 < 0.0001 TRUE TRUE 
35.3.Hazout:30a–30a 0.97 3.79 9.45 0.40 < 0.0001 TRUE TRUE 
37.4.Nakajima:fn1ia–fn1iiia 0.93 3.84 5.63 0.68 < 0.0001 TRUE TRUE 
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34.1.Basilico:29b–30b 0.94 3.93 5.71 0.69 < 0.0001 TRUE TRUE 
34.1.Basilico:4b–4c 0.98 3.99 13.10 0.30 < 0.0001 TRUE TRUE 
35.2.Hazout:5a–5c 0.93 4.03 4.92 0.82 < 0.0001 TRUE TRUE 
41.3.Landau:32a–32b 0.92 4.17 3.88 1.07 < 0.0001 TRUE TRUE 
33.2.Bowers:13b–13b 0.99 4.44 11.69 0.38 < 0.0001 TRUE TRUE 
37.2.Sigurdsson:3c–3e 0.99 4.44 11.69 0.38 < 0.0001 TRUE TRUE 
40.4.Hicks:10a–10b 0.92 4.79 3.11 1.54  0.0020 TRUE TRUE 
34.3.Landau:fn13ii–fn13ii 0.92 5.52 4.18 1.32 < 0.0001 TRUE TRUE 
34.1.Fox:37a–37b 0.92 6.06 5.86 1.04 < 0.0001 TRUE TRUE 
40.2.Johnson:78–79 0.94 6.70 5.87 1.14 < 0.0001 TRUE TRUE 
35.2.Larson:61a–61b 0.95 6.76 4.62 1.46 < 0.0001 TRUE TRUE 
32.2.Alexiadou:fn11iib–fn11iic 0.95 7.45 7.53 0.99 < 0.0001 TRUE TRUE 
34.4.Haegeman:2c–2b 0.93 7.50 7.21 1.04 < 0.0001 TRUE TRUE 
34.1.Basilico:7a–7b 0.97 7.59 6.80 1.12 < 0.0001 TRUE TRUE 
32.1.Martin:15a–15b 0.97 7.88 7.75 1.02 < 0.0001 TRUE TRUE 
38.4.Boskovic:74–75 0.97 7.95 1318.99 0.01 < 0.0001 TRUE TRUE 
32.3.Culicover:fn6ia–fn6ib 0.96 7.96 7.70 1.03 < 0.0001 TRUE TRUE 
33.2.Bowers:19a–19b 0.95 8.04 6.54 1.23 < 0.0001 TRUE TRUE 
34.2.Caponigro:fn6ia–

fn6ib.EagerlyIn2ndPos 0.96 8.17 7.60 1.08 < 0.0001 TRUE TRUE 
37.2.deVries:70a–70b 0.97 8.26 7.25 1.14 < 0.0001 TRUE TRUE 
41.1.Muller:28a–28b 0.96 8.40 8.05 1.04 < 0.0001 TRUE TRUE 
38.2.Hornstein:2b–2c 0.97 8.49 7.31 1.16 < 0.0001 TRUE TRUE 
41.3.Vicente:6b–8b 0.97 8.49 7.31 1.16 < 0.0001 TRUE TRUE 
35.1.Bhatt:1b–1b 0.98 8.51 1004.54 0.01 < 0.0001 TRUE TRUE 
34.3.Heycock:93a–93b 0.96 8.61 6.13 1.40 < 0.0001 TRUE TRUE 
35.1.Bhatt:13a–13a 0.98 8.69 1834.83 0.00 < 0.0001 TRUE TRUE 
36.4.denDikken:38b–38b 0.96 8.76 8.92 0.98 < 0.0001 TRUE TRUE 
35.1.McGinnis:63a–63b 0.93 8.78 6.95 1.26 < 0.0001 TRUE TRUE 
34.1.Basilico:50–51 0.96 8.82 7.08 1.25 < 0.0001 TRUE TRUE 
32.4.Lopez:16a–16b 0.98 9.10 6.59 1.38 < 0.0001 TRUE TRUE 
35.3.Embick:72a–72b 0.98 9.10 7.07 1.29 < 0.0001 TRUE TRUE 
32.3.Culicover:44a–45a 0.96 9.33 5.31 1.76 < 0.0001 TRUE TRUE 
35.1.Bhatt:5a–5c 0.96 9.74 7.12 1.37 < 0.0001 TRUE TRUE 
33.1.denDikken:56a–58a 0.95 10.35 6.80 1.52 < 0.0001 TRUE TRUE 
36.4.denDikken:35a–35b 0.96 10.61 6.56 1.62 < 0.0001 TRUE TRUE 
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APPENDIX D: DISCUSSION OF ITEMS THAT DO NOT SHOW CLEAR RESULTS IN THE PREDICTED DIRECTION 

35.3.Hazout:36 

(#) There seem/*seems to have appeared [some new candidates] in the course of the presidential 
campaign. 

The rating study revealed no significant difference between the two variants (β = 0), and the starred vari-
ant was significantly preferred in the forced-choice experiment. This judgment seems to reflect a trend in 
colloquial English to use the singular There seems in these ‘verbal existential sentences’, even when the 
agreeing phrase is plural. At the very least, there may be individual variation in sentences like this.  
 
34.4.Lasnik:24a–24b 

a. *?The detective asserted two students to have been at the demonstration during each other’s 
 hearings. 

b. ?*The detective asserted that two students were at the demonstration during each other’s hearings. 

Example (b) is proposed to be unacceptable only when the final PP modifies the matrix clause and not the 
embedded clause. Our items were written to ensure that this is the only plausible interpretation, but parti-
cipants still preferred (b) by a significant margin in the forced-choice experiment. 
 
34.4.Lasnik:22a–22b 

a.   John proved three chapters to have been plagiarized with one convincing example each. 
b. ?*John proved that three chapters were plagiarized with one convincing example each. 
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This example showed a nonsignificant trend in favor of (a) in the rating study and a nonsignificant trend 
toward (b) in the forced-choice study. Again, we took care to ensure that the final PP modifies the matrix 
verb across all our items. 
 
32.4.Lopez:9c–10c 

a.  We proved Smith to the authorities to be the thief. 
b. *We proved to the authorities Smith to be the thief. 

People significantly preferred (a) in the rating study, but the opposite trend emerged in the forced-choice 
study, which suggests that this is not a clear contrast. In fact, Hartman (2011) has argued that sentences 
like (a) are degraded on independent grounds, which might explain why most subjects did not prefer them 
over (b).  
 
39.1.Sobin:8b–8f 

a.  Bill devoured a ham, and Mary did a similar thing with a chicken. 
b. *Bill devoured a ham, and Mary did so with a chicken. 

In this contrast, we found a significant predicted effect in the rating study but a trend in the opposite dir-
ection in the forced-choice experiment. It is possible, in this case, that the did so construction in (b) is 
semantically unclear out of context, but clearer (and more natural sounding) when presented with the 
more semantically transparent (a). This would explain the difference between the rating study and the 
forced-choice study.1 

 
APPENDIX E: MATH BEHIND SNAP JUDGMENTS 

Formally, we can think of our experiment as a draw from a binomial distribution, where p is the 
underlying population parameter for how likely someone is to choose sentence A over sentence B, n is the 
total number of trials, and k is the number of trials on which someone chose sentence A over sentence B.  

𝑃(𝑘|𝑛,𝑝) =  �
𝑛
𝑘
�𝑝𝑘(1 − 𝑝)𝑛−𝑘 

To obtain a confidence interval from a binomial distribution where the sample is unanimous while also 
taking advantage of our prior knowledge about how MOST experiments turn out, we will use a Bayesian 
credible interval—which is the Bayesian version of a confidence interval and can be thought of as the 
probability that a given parameter falls within some interval—on the posterior distribution. We get the 
posterior distribution by combining our binomial likelihood with a beta prior distribution (Gelman et al. 
2004) on the parameter p, which gives a distribution of possible values for our parameter p. This prior 
distribution is the distribution over the value of p BEFORE we have collected any data. In other words, 
before we flip the coin, we do not know its weight p. We might think that it is very likely that the coin is 
fair and that p is near 0.50. Or maybe we think that p is close to 1. The shape of the distribution is 
controlled by the shape parameters α and β. Formally, the beta distribution is: 
 

𝑃(𝑝|α,β) =  𝑝
𝛼−1(1−𝑝)β−1

𝐵(α,β)
 , 

                                                           
1 These results also demonstrate that different experimental tasks can sometimes give different results. Specific-

ally, it seems that (b)’s unacceptability is largely context-dependent. 
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where B is the beta function. We could, in principle, use any distribution with support on [0,1], but we use 
the beta distribution because it is the conjugate prior for the binomial and thus lets us obtain a closed-form 
solution.  

Informally, we can think of the job of the prior as being to add in our prior belief about the underlying 
distribution. We can literally think of this as adding the results of imaginary trials that we have not 
actually conducted. For instance, if we suspect that the coin is fair, we might use a beta prior of Beta(5, 
5)—meaning α and β are both 5. Then, we present five people with sentence A and sentence B and ask 
which is better. In this case, p is the underlying probability of choosing A. We get the following result: 

A A A A A 

Without the prior, our best guess for the underlying parameter p is 1 since 5/5 is 1. If we use the Beta(5, 
5) prior, however, we can think of this as adding five a priori As and five a priori Bs to our five experi-
mentally obtained As such that we imagine we have ten As and five Bs, as in the following (where the 
italicized values come from the prior): 

A A A A A B B B B B A A A A A 

In this case, our best estimate of the underlying parameter p is (5 As + 5 As) / (15 trials) = 0.66. If we 
were very confident that the sentences are equally acceptable (i.e. the coin is fair; p ~ 0.5), we could use a 
Beta(100, 100) prior. With a prior like that, we would have to conduct many more trials in order to move 
our estimate substantially away from 0.50. After getting five As, we would still have an estimate of 51%.  

If we thought it was very likely that one of the sentences was better, but we did not know which, we 
might instead use a beta prior of Beta(.1, .1). This would mean that, after asking five people who all 
choose A, our new estimate for how likely a random person is to choose A would be: 5.1/(5.1 + .1) = 
98%. Figure 3 shows the shape of the beta distribution for two possible settings of the shape parameters. 
If the shape parameters are unequal, then the distribution is skewed. When the two shape parameters are 
equal, the distribution is symmetric.  

Formally, we can multiply the beta prior and the binomial likelihood together to get the posterior 
probability.  

𝑃(𝑘|𝑛,𝑝) ∗ 𝑃(𝑝|α,β) =  𝑃(𝑘|𝑛,α,β) =  �
𝑛
𝑘
�
𝐵(𝑘 + α,𝑛 − 𝑘 + β)

𝐵(α,β)
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FIGURE 3. The histograms represent a density map of a draw from a beta distribution with the shape parameters indi- 
cated. The red line is the probability density of the beta distribution at each value for p between 0 and 1. The plot on  

the left conforms to an instance in which, most of the time, the probability p is extreme (toward 0 or 1), as in  
the experiments we tested here. The plot on the right corresponds to a situation in which we have a  

strong prior belief that the probability p is near 0.5. 
 
In our case, we want to know what our prior expectations about p should be. Should our prior look more 
like Figure 3a or Figure 3b? Because we have formal results for 100 contrasts, we can use these empirical 
results to set our prior.2 In other words, when we have a new contrast for which we do not have much 
data but which we believe likely to produce a unanimous result, we can imagine that the contrast has an 
underlying parameter p (where p is once again the probability of choosing sentence A) and that p is drawn 
from the same distribution of judgments that gave rise to the 100 contrasts we observed. If we do not 
believe that the contrast is likely to produce a unanimous result, the assumption that the parameter p is 
drawn from the same distribution as the 100 contrasts we tested experimentally is potentially invalid 
since, in general, the effects that we tested were hypothesized to be very strong. 
 
 

                                                           
2 The prior that is obtained by our experimental results ends up very similar to what is obtained from the results 

from Sprouse, Schütze, and Almeida’s (2013) data (available on Jon Sprouse’s webpage). 
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FIGURE 4. This plot corresponds to a smoothed histogram (averaged over many trials) of the data from our forced-choice 

experiment where, for each contrast, one variant is randomly assigned to be sentence A and one to be sentence B.  
Most of the time, there is a strong preference for one sentence or the other. The best fit for the beta distribution  

is Beta(5.9, 1.1)—which is shown by the red line. 
 
In order to determine the prior empirically, for each contrast in our experiment, we assume that the hypo-
thesized ‘good’ sentence is sentence A. We then draw a histogram of the effect sizes and fit the beta 
distribution to the histogram (as seen in Fig. 4). Averaging over 100 samples, the best fit is Beta(5.9, 1.1), 
with standard error .12 and .01, respectively. Rounding to the nearest whole number, we can think of this 
as having seen six As and one B BEFORE we run our experiment. Thus, if we run an experiment and get 
three As and zero Bs, we can act as if we have nine As and one B. We can use this prior to construct 95% 
Bayesian credible intervals for the underlying probability in the population of someone preferring 
sentence A over sentence B. Specifically, the Bayesian credible interval gives us a continuous interval, for 
which there is a 95% probability that the true underlying probability falls in that region. 

We also checked to see if the recommendations here were robust to other reasonable choices of prior. 
There is some theoretical question as to whether it makes sense to use the full available information in 
order to set the prior or if we should instead ‘forget’ which sentence is hypothesized to be good and 
assume that it is equally likely that the good sentence is A or B. The logic here is that including inform-
ation as to which sentence is supposed to be good would be equivalent to doing an experiment where a 
researcher wants to test the efficacy of a medicine and then includes her prior belief that the medicine will 
probably work as evidence in the experiment. While she might be very confident in the medicine’s effic-
acy, she cannot include that prior belief as part of her analysis or else she could end up concluding that 
data that are consistent with pure noise are actually a result in favor of the hypothesis. But, because the 
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whole point of the SNAP Judgment paradigm is to use the existing information, we do not believe those 
concerns are particularly relevant here.3  

To check how robust the paradigm is to choice of prior, we tried this approach where A and B are 
equally likely to be the ‘good’ sentence. To do that, we randomly assign one sentence in each contrast as 
A and one as B. Using this approach, we find a Beta(.6, .6) prior. For five unanimous participants, this 
gives us a mean of .90 with a 95% CI of [.67, 1]. So the CI’s lower bound is only slightly lower than 
when we include all the information. To get the lower bound to .75 when we use this prior, we would 
need to include seven participants in the experiment (as compared to five in our main analysis). We would 
also arrive at similar conclusions if we used the Jeffreys uninformative prior Beta(.5, .5)—a prior that is 
standardly used in many applications since it is locally uniform. Hence, the outcome is similar under other 
plausible alternative priors. We use the asymmetric, full-information prior in our main analysis, but we 
recognize that there may be good theoretical reasons to instead use the symmetric prior. 

 
APPENDIX F: STATISTICAL POWER 

The idea of computing statistical power is to ask, if there is an underlying ‘true effect’ size D that is 
being looked for in the experiment, what is the likelihood that the experiment correctly detects a signif-
icant effect? (Note that, in reality, we can never know the ‘true effect size’ because that would require 
infinite data. We can only sample.) If D = .8 for a sentence in the forced-choice experiment, that would 
mean the true underlying effect was .80. If the statistical power of our experiment is .95 (based on the 
sample size and design), that would mean that 95% of the time we would find a significant effect given 
the underlying effect size of .80. (Power would be lower if the effect size were smaller.) To compute 
statistical power and possible error rates using linear mixed-effects models, we repeated the following 
procedure 100 times for each contrast, took the mean of those 100 iterations, and then averaged across 
contrasts. 

a) Fit a linear mixed-effects model to the real data as described in the main text. 
b) Use the random-effects structure and residual variance from the model fit to the actual data in a). 

For the fixed-effect estimate, use D, which we systematically vary and report for several values in 
the table below. In effect, this lets us use the actual variance in the world (by subject, by item, and 
residual variance) to estimate the noise we should expect in an experiment. 

c) Use the parameters from b) to simulate a new set of data equivalent in sample size to the original 
experiment and with the same subject and item breakdown as the original experiment. 

d) Fit a new linear mixed-effects model to the simulated data in c) and test for effect size and 
significance. 

e) Use the effect sizes and significance levels found in d) to calculate power, type S, and type M error. 

We used the simulated effect size and significance measures to calculate statistical power given varying 
underlying effect sizes as well as two measures recommended: type S (sign) error and type M (magni-
tude) error (Gelman & Carlin 2014). Power here refers to the proportion of the time a ‘true effect’ would 
be detected in the experiment given true effect size D. Type S error refers to the proportion of the time a 
significant effect is found in the OPPOSITE direction of the true effect. That is, if the type S error rate is 
.05, that means that 5% of the time, we should expect to find a significant effect in the opposite direction 
of the true effect. Type M error refers to the expected absolute overestimation rate given that a significant 
                                                           

3 See Cox & Mayo 2011 and Gelman 2012 for more discussion of how to use prior information responsibly in 
scientific inference. 
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effect is found (that is, when significant, the absolute value of the estimated effect size divided by the true 
effect size). This means that, conditioned on finding a significant effect, we should expect it to be M times 
more extreme than the underlying true effect.  

The tables below report power and estimated error rates for various true effect sizes. Note that, in the 
rating study, a true effect size less than .4 is quite small (only 19% of our estimated effect sizes are this 
small) and possibly not large enough for robust acceptability generalizations. For the forced-choice study, 
an effect size less than .70 is quite small, and only 11% of our data fits that description. 

 
D (TRUE EFFECT SIZE) STATISTICAL POWER TYPE S ERROR RATE TYPE M ERROR RATE 

.2 0.63 0.0 1.29 

.4 0.96 0.0 1.01 

.6 1.00 0.0 1.00 

TABLE F1. Ratings study (all values where significance is defined by p < 0.05). 

 
D (TRUE EFFECT SIZE) STATISTICAL POWER TYPE S ERROR RATE TYPE M ERROR RATE 

.6 .48 .04 1.71 

.7 .80 0.0 1.17 

.8 .93 0.0 1.06 

TABLE F2. Forced-choice study (all values where significance is defined by p < 0.05). 

 
* Note that for the forced-choice study, the type M error rate refers to the overestimation rate of the 

difference between the effect size D (defined as the proportion choosing the good sentence) and .5 (50% 
baseline in which neither sentence is better than another). So a 1.17 type M error rate for D = .7 means 
that, on average, if the contrast is significant at p < 0.05, the difference between the estimated d and .5 is 
1.17 higher than it should be (where what it ‘should be’ is .7 − .5 = .2).  
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