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We propose and analyze a method that allows for the production of squeezed states of the atomic center-
of-mass motion that can be injected into an atom interferometer. Our scheme employs dispersive probing in
a ring resonator on a narrow transition in order to provide a collective measurement of the relative
population of two momentum states. We show that this method is applicable to a Bragg diffraction-based
strontium atom interferometer with large diffraction orders. This technique can be extended also to
small diffraction orders and large atom numbers N by inducing atomic transparency at the frequency of the
probe field, reaching an interferometer phase resolution scaling Δϕ ∼ N−3=4. We show that for realistic
parameters it is possible to obtain a 20 dB gain in interferometer phase estimation compared to the standard
quantum limit. Our method is applicable to other atomic species where a narrow transition is available
or can be synthesized.
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A major effort in the field of atom interferometry [1] is
focused on increasing the instrument sensitivity, either by
enhancing the momentum transferred by the light onto the
atoms [2,3] or by increasing the interrogation time [3–6].
For a given momentum transfer and interrogation time, the
instrument sensitivity is determined by the phase noise of
the interferometer. By applying differential schemes, many
systematics and noise sources can be efficiently rejected as
common-mode effects [7,8], and one eventually meets a
fundamental limit associated with the uncorrelated phase
noise of different atoms, the so-called standard quantum
limit (SQL) ΔϕSQL ¼ 1=

ffiffiffiffi
N

p
, where N is the atom number.

This limit can be overcome by introducing quantum
correlations between the individual particles, thereby pro-
ducing squeezed atomic states, potentially reaching the
Heisenberg limit ΔϕH ¼ 1=N [9,10]. For the squeezing of
atomic internal states, many schemes have been studied
both theoretically [11,12] and experimentally [13–21], with
almost 20 dB of observed noise reduction compared to the
SQL [22,23]. The key feature of most of these schemes is
the enhanced atom-light interaction in an optical resonator
that enables the generation of correlations between distant
atoms. The implementation of these methods with motional
states in atom interferometry remains, however, a chal-
lenging task. In this Letter we propose and analyze a
scheme that generates strongly squeezed momentum states
[9,24] for atom interferometry. In particular, we consider
the production of squeezed states of the atomic center-of-
mass motion by dispersive probing of a momentum-state
superposition of atoms in an optical ring resonator. For the
bosonic isotope of strontium 88Sr, the interest is motivated

by its expected immunity to stray fields in atom interfer-
ometers and by the possibility of attaining long coherence
times in quantum interference [25,26]. The presence of
narrow intercombination transitions makes the atom well
suited for squeezing experiments involving external
degrees of freedom.
The proposed scheme is illustrated in Fig. 1, where two

vertical counterpropagating laser beams B1 and B2 induce
a momentum-state superposition between the states
j1S0; p ¼ 0i and j1S0; p ¼ 2nℏkbi by nth-order Bragg
diffraction [2] on the dipole-allowed 1S0–1P1 blue Sr
transition at 461 nm. Here the atomic linear momentum
is indicated by p, and the photon momentum is denoted by
ℏkb. The duration of the Bragg diffraction pulses is set in
order to couple the two momentum states only. This
condition is typically met by pulse durations of the order
of 10 μs [27].
We consider the squeezing of the atomic states by

collective measurements of the relative population of the
two momentum states through dispersive detection in a
ring cavity (Fig. 1). This is achieved by probing for a time
Tm on the red 1S0–3P1 intercombination line of strontium at
689 nm using a laser beam, of angular frequency ωr,
incident onto the cavity. Probing is performed when the
free-falling atoms cross the cavity mode volume.
In the following, measurements of the cavity output field

b̂out are considered, and the sensitivity to atom number
fluctuations between momentum states is computed. As
such measurements provide collective information about
the ensemble without distinguishing between individual
atoms, they project the ensemble into a collective state
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which corresponds to the measurement outcome [15].
This process can produce conditionally squeezed atomic
momentum states that can be implemented in atom inter-
ferometers with significant metrological gain.
We treat the two momentum states as a spin-1=2 system

and describe the ensemble by a total spin S ¼ N=2, where
N is the atom number. The population difference between
the two momentum states is then 2Sz.
We quantify the attainable metrological gain ξm by the

ratio between the contrast squared C2 and the population
variance ð2ΔSzÞ2 normalized to the atom shot noise
variance 2S [10]:

ξm ¼ S
2ðΔSzÞ2

C2: ð1Þ

The squeezing premeasurement of Sz can be achieved by
arranging a situation where the two momentum states are
associated with opposite variations of the index of refrac-
tion and shift the cavity resonance frequency in opposite
directions.
As shown in Fig. 1(b), the probe light inside the cavity

couples atoms in the state j1S0;pi to the state j3P1;pþℏkri,
where ℏkr is the probe photon momentum, corrected by the
factor cos α due to the angle between gravity and the
oblique cavity beams [Fig. 1(a)]. The transitions associated
with the two momentum states jp ¼ 0i and jp ¼ 2nℏkbi

are then separated by the Doppler effect 2δωr≡
kr½ð2nℏkbÞ=M� ¼ 2πn cos α × 28.6 kHz, which is much
larger than the natural linewidth Γ ¼ 2π × 7.6 kHz of
the 1S0–3P1 transition. For small α, the factor cos α yields
a small correction to the frequency splitting which we
neglect in our discussion. When the cavity resonance
frequency ωc is tuned halfway between the two optical
transitions, atoms in the two momentum states produce
opposite shifts of the cavity resonance frequency that can
be detected via the phase shift Δϕph of the light reflected
from the cavity [Fig. 1(a)].
It can be shown that (see Supplemental Material [28])

Δϕph ¼
4 κin

κ SzηLdðδωrÞ
½2 κin

κ − 1 − NηLaðδωrÞ�½1þ NηLaðδωrÞ�
; ð2Þ

i.e., the population difference can be detected via the phase
shift of the light emerging from the cavity. Here LdðΔÞ ¼
−2ΓΔ=ðΓ2 þ 4Δ2Þ and LaðΔÞ ¼ Γ2=ðΓ2 þ 4Δ2Þ are the
atomic dispersion and absorption profiles, respectively. The
single-atom cooperativity is indicated as η ¼ 4g2=ðΓκÞ,
where 2g is the vacuum Rabi frequency, κ is the cavity
mode linewidth, and κin is the contribution to κ due to the
input mirror transmission. The light phase measurement
can be performed, for example, through the Pound-Drever-
Hall technique. If the detector is at the photon shot noise
level, the variance of the population difference between the
two momentum states, normalized to the variance 2S of the
atom shot noise, is given by [28]

2ðΔSzÞ2
S

¼ LaðδωrÞ½1þ NηLaðδωrÞ�2
4Nηϵdnsc½LdðδωrÞ�2

; ð3Þ

where ϵd is the detection efficiency [28], and we have
expressed the measurement strength in terms of the average
number nsc of photons scattered per atom into free space,
since the latter process constitutes the main, and funda-
mental, limitation on the attainable squeezing [34]. After
the scattering of one photon by one atom, the momentum
superposition is destroyed, and the associated recoil causes
the trajectory to deviate from the vertical direction. The
resulting losses cause a random imbalance 2ðΔSzÞsc of the
populations in the two momentum states. Assuming that
each atom scatters at most one photon, the population
variance increase is ð2ΔSzÞ2sc ¼ 2Snsc. By accounting for
free space scattering, we can then compute the optimum
metrological gain, which is attained for

nsc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LaðδωrÞ½1þ NηLaðδωrÞ�2

4Nηϵd½LdðδωrÞ�2

s
: ð4Þ

The resulting gain is represented by blue circles in Fig. 2 for
the case where ϵd ¼ 1 and Nη ¼ 104, for varying Bragg
diffraction orders n. When Nη lies in the range 103–104,
there is significant gain if n > 5, a condition typically
met by large-momentum-transfer atom interferometers [3].

(a) (b)

(c)

FIG. 1. (a) Schematic setup with the probe field b̂in coupled to
the optical cavity and interacting with the atoms (green circle)
through the oblique beam with angle α with respect to gravity.
The reflected field b̂out is measured by the detector D. The atomic
states are manipulated through the Bragg beams B1 and B2.
(b) Level diagram for probing on the 1S0–3P1 transition (red
arrow) and for momentum-state manipulation through Bragg
diffraction on the 1S0–1P1 transition (blue arrows). (c) Interfer-
ometer trajectories and measurement sequence. The interferom-
eter is formed by a π=2–π–π=2 Mach-Zehnder sequence with
interrogation time T. The cavity-enhanced squeezing measure-
ment with duration Tm is indicated as M1. The Bragg pulse θ
induces a phase-sensitive state for the interferometer, and the final
readout measurement is performed (M2). Lower part: Bloch
sphere representation of the state evolution.
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Indeed, for small n, the optical transitions are not suffi-
ciently resolved in frequency space compared to the atomic
linewidth, which prevents operating in the dispersive
regime of atom-light interaction and leads to substantial
absorption and squeezing reduction. In general, consider-
able gain can be observed if NηLaðδωrÞ ≪ 1, so that
n ≫ 0.3 ×

ffiffiffiffiffiffi
Nη

p
, in which case the gain saturates at a value

ξm ≈
ffiffiffiffiffiffiffiffiffiffiffi
Nηϵd

p
, independent of the Bragg diffraction order.

We propose a scheme where it is possible to enhance the
signal-to-noise ratio of momentum-state population collec-
tive measurements also at small Bragg diffraction orders n,
while keeping the collective cooperativity Nη, and thus the
squeezing, large. As the main limitation in this regime is
the spoiling of the cavity finesse by atomic absorption, we
consider a scheme where coupling of the decaying 3P1 state
to the metastable state 3P0 with a much longer lifetime
results in electromagnetically induced transparency (EIT) at
the original cavity resonance frequency [35–38] (see Fig. 3).
The 3P1–

3P0 coupling is attained through two-photon
Raman coupling via the 3S1 intermediate state with the
two copropagating Raman lasers R1 and R2 at 679 nm
(3P0–

3S1 transition) and 688 nm (3P1–
3S1 transition),

respectively. As discussed in detail in Ref. [28], for a large
detuning of the Raman lasers from single-photon resonance,
we can adiabatically eliminate the excited 3S1 state and
describe the system in a three-level picture formed by the
states 1S0, 3P1, and 3P0 with the effective control Rabi
frequencyΩeff [28,39,40]. In Fig. 3(b), we plot the spectrum
of the cavity power transmission coefficient T for
Nη ¼ 3 × 103, Ωeff ¼ 2π × 400 kHz, and diffraction order
n ¼ 1. This shows that the coupling to the metastable 3P0

state removes the atomic absorption, allowing for a signifi-
cant increase in the signal-to-noise ratio of the squeezing
measurement. EIT thus results in a reduced effective

linewidth,which in turn allows us to operate in the dispersive
regime. This condition is fulfilledwhenNηLaðδωEÞ ≪ 1, or
jδωEj=Γ ≫

ffiffiffiffiffiffi
Nη

p
=2, where now δωE ¼ δωr −Ω2

eff=ð4δωrÞ.
We also note that in terms of laser power of the Raman
beams, this condition is less demanding for narrow tran-
sitions compared to broad dipole-allowed transitions. The
corresponding metrological gain in the presence of EIT is
shown in Fig. 2 as a function of diffraction order by two
sets of points that correspond to a finite coupling strength
Ωeff ¼ 2π × 400 kHz (red squares) and to perfect trans-
parency Ωeff ¼ ∞ (magenta diamonds).
Figure 4 shows a comparison between the presence and

the absence of the Raman coupling to the 3P0 state. In terms
of metrological gain, EIT is equivalent to large diffraction
orders and allows us to recover the signal-to-noise ratio that
would be otherwise lost because of photon absorption.
An atom interferometry scheme including the squeezed

source proposed here is the following [Fig. 1(c)]: strontium
atoms are cooled and trapped at the cavity mode waist
close to the center of the optical cavity, then a momentum

FIG. 2. Expected metrological gain ξm as a function of the
Bragg diffraction order n, assuming perfect detection efficiency
ϵd ¼ 1, and for Nη ¼ 104. The blue circles refer to the scheme
shown in Fig. 1(b). Values shown as red squares and magenta
diamonds refer to the scheme in Fig. 3(a), where electromag-
netically induced transparency (EIT) is present with Ωeff ¼ 2π ×
400 kHz and with perfect transparency Ωeff ¼ ∞, respectively.

(a)

(b)

FIG. 3. (a) Level diagram for the generation of squeezed
momentum states enhanced by induced transparency via the
3P0 state. The Bragg laser beams are indicated as B1 and B2. The
effective control field that couples the states 3P0 and 3P1 is
obtained by two-photon Raman coupling via the 3S1 intermediate
state. The two Raman beams R1 and R2 operate at the wave-
lengths 679 nm (3P0–

3S1) and 688 nm (3P1–
3S1), respectively,

and are detuned from the transition to the 3S1 state by ΔR.
(b) Cavity transmission spectrum with (red solid line) and
without (blue dashed line) Raman coupling to the 3P0 state for
Ωeff ¼ 2π × 400 kHz, Nη ¼ 3 × 103, and n ¼ 1. The two lateral
peaks correspond to the vacuum Rabi splitting for
κ ¼ 2π × 50 kHz. The population measurement is performed
at the frequency of the transparency region (at probe detuning
δ ¼ 0), which corresponds to a linewidth of κEIT ¼ 2π × 6 kHz.
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superposition is created by a Bragg π=2 pulse, and
immediately after that, the squeezing measurement of
the relative population is performed (M1). At this stage,
the atomic ensemble is projected into a state with reduced
relative population uncertainty. The state on the Bloch
sphere is then transformed into a phase-sensitive state by
applying a Bragg π=2 pulse with a phase shift of 90° with
respect to the first pulse. Following this preparation stage,
the π and π=2 laser pulses complete the Mach-Zehnder
interferometer sequence. A final measurement (M2) is
performed using, for example, fluorescence detection.
With realistic values for the various parameters, our

method is applicable to strontium atoms with the current
technology. Specifically, we consider an optical cavity
where one of the foci has a waist w0 ¼ 150 μm, at the
position where the atoms cross the cavity mode volume.
With a cavity finesse F ¼ 105 and at the wavelength
λ ¼ 689 nm, we get a single-atom cooperativity η ¼
3Fλ2=ð2π3w2

0Þ ≈ 0.1 [31]. We then consider N ≈ 105 atoms
occupying a volume with a linear size of about 30 μm.
Therefore, a collective cooperativity Nη ≈ 104 is achiev-
able. The maximum possible Bragg diffraction order with
our method is set by the condition that the transit time of the
wave packets corresponding to the two momentum states
through the cavity beam waist is larger than the time
duration of the collective measurement. We estimate the
useful transit time as the time taken by a wave packet with
speed nℏkb=M to cross one tenth of the effective mode
waist. Because the atoms are crossing the cavity beam
vertically, the effective mode waist is w0= sin α. We there-
fore estimate the maximum Bragg diffraction order as
nmax ¼ Mw0=ð10ℏkbTm sin αÞ, where Tm is the measure-
ment time duration. With α ≈ 0.4 rad and Tm ≈ 200 μs, we
get nmax ¼ 10. However, the maximum Bragg order can be
made considerably larger by a suitable design of the cavity

geometry, where w0 is made larger and α is made smaller.
The measurement time is set by the requirement that the
number of photons scattered into free space be sufficient
to provide the optimum metrological gain. To resume, by
considering a collective cooperativity Nη ¼ 104, first-order
diffraction n ¼ 1, a Raman coupling strength Ωeff ¼
2π × 400 kHz, a measurement time Tm ¼ 200 μs, and a
detection efficiency ϵd ¼ 1, we conclude that the optimum
number of photons scattered into free space per atom is
nsc ¼ 5 × 10−3, corresponding to the excited-state popula-
tion Pexc ¼ nsc=ðΓTmÞ ¼ 5 × 10−4. In this case it is pos-
sible to achieve a metrological gain of 20 dB.
In conclusion, we have proposed and analyzed a novel

scheme that allows for the production of squeezed momen-
tum states for large-momentum-transfer Bragg atom inter-
ferometers. The essence of ourmethod is based on the ability
to resolve the Doppler splitting of two momentum states by
using a probe laser with frequency close to the narrow
1S0–3P1 intercombination line of strontium. With realistic
parameters, we show that 20 dB of noise reduction in atom
interferometer phase measurements can be attained com-
pared to the standard quantum limit, with less than a 1 ms
preparation stage. Moreover, at small diffraction orders,
where cavity-enhanced absorption would limit the resolu-
tion necessary for the collective measurement, we have
shown that it is possible to induce a transparency at the
frequency of the probe laser by two-photon Raman cou-
pling, thus recovering the required dispersive regime. With
thismethod, it is then possible to attain significant squeezing
also for small Bragg diffraction orders and large atom
numbers,with an atomnumber scaling for the interferometer
phase resolution Δϕ ∼ N−3=4. Our method is applicable to
atomic species where narrow transitions are available or can
be synthesized through Raman coupling between hyperfine
ground states, as, e.g., is possible for alkali atoms.

Maria Luisa Chiofalo, Alice Sinatra, and James K.
Thompson are acknowledged for useful discussions. We
thank James K. Thompson for pointing out that the EIT
method is applicable to a broader class of atomic tran-
sitions. This work was supported by INFN and the Italian
Ministry of Education, University and Research (MIUR)
under the Progetto Premiale “Interferometro Atomico” and
the PRIN 2015 project “Interferometro Atomico Avanzato
per Esperimenti su Gravità e Fisica Quantistica e
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FIG. 4. Metrological gain ξm as a function of the number of
photons scattered into free space per atom for different Bragg
diffraction orders and for varying Raman coupling strength:
n ¼ 5, Ωeff ¼ 0 (blue solid line); n ¼ 20, Ωeff ¼ 0 (red dashed
line); n ¼ 1, Ωeff ¼ 2π × 400 kHz (magenta dot-dashed line).
We assume a collective cooperativity Nη ¼ 104 and perfect
detection efficiency ϵd ¼ 1.
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