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Robust Routing in Interdependent Networks
Jianan Zhang and Eytan Modiano

Laboratory for Information and Decision Systems, Massachusetts Institute of Technology

Abstract—We consider a model of two interdependent net-
works, where every node in one network depends on one or
more supply nodes in the other network and a node fails if it
loses all of its supply nodes. We develop algorithms to compute
the failure probability of a path, and obtain the most reliable path
between a pair of nodes in a network, under the condition that
each supply node fails independently with a given probability.
Our work generalizes the classical shared risk group model,by
considering multiple risks associated with a node and letting a
node fail if all the risks occur. Moreover, we study the diverse
routing problem by considering two paths between a pair of
nodes. We define two paths to bed-failure resilient if at least
one path survives after removingd or fewer supply nodes, which
generalizes the concept of disjoint paths in a single network,
and risk-disjoint paths in a classical shared risk group model.
We compute the probability that both paths fail, and develop
algorithms to compute the most reliable pair of paths.

I. I NTRODUCTION

Many modern systems are interdependent, such as smart
power grids, smart transportation, and other cyber-physical
systems [1], [2], [3], [4], [5]. In interdependent networks,
one network depends on another to properly function. For
example, in smart grids, power generators rely on messages
from the control center to adjust to the power demands, while
the control center relies on the electric power to operate. Due
to the interdependence, failures in one network may cascade
to another. It is important to understand the robustness of
interdependent networks which are prone to cascading failures.

Most previous studies on interdependent networks have
focused on the network connectivity based on random graph
models, in the asymptotic regime where the number of nodes
approaches infinity [6], [7]. The finite-size arbitrary-topology
graph models, which represent real communication and phys-
ical networks, have been largely overlooked in the interdepen-
dent networks literature. A few exceptions include [4], [5],
which model interdependent power grids and communication
networks by graphs with topologies specified by the real
networks. Similarly, we abstract interdependent networksby
graphs with specified topologies, which can be tailored for a
wide range of applications.

In this paper, we study robust routing problems in inter-
dependent networks, by characterizing the effects of failures
in one network on the other network. For an overview of the
problems and challenges, it is helpful to consider a simplified
scenario where a demand network depends on a supply net-
work, illustrated by Fig. 1. Every node in the demand network

This work was supported by DTRA grants HDTRA1-13-1-0021 and
HDTRA1-14-1-0058.

is supported by one or more nodes in the supply network.
Thus, nodes in the demand network and nodes in the supply
network can be viewed as demand nodes and supply nodes,
respectively. Given that a demand node fails if it loses all of
its supply nodes, supply node failures may lead to correlated
demand node failures, which makes it difficult to route traffic
through reliable paths in the demand network. We develop
techniques to tackle the failure correlation. This simplified
one-way dependence exists in current systems. For example,
routers and processors in a communication network depend
on the electric power. Moreover, as we will see later, the
analysis based on this simplified scenario can be applied to
interdependent networks under certain assumptions.
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Fig. 1. Every node in the demand networkG1 is supported by two nodes in
the supply networkG2.

The robust routing problems have been extensively studied
under both independent failure and correlated failure scenar-
ios. If edges or nodes fail independently, the most reliable
path between a source-destination pair can be viewed as a
shortest path, where the length is a function of the failure
probability. In the case of correlated failures, it is difficult
to find a path with any performance guarantee in general
[8]. If correlation only exists among edges or nodes that fail
simultaneously, the network can be viewed using a shared
risk group model (Fig. 2) [9], [10]. The shared risk group
model captures correlated failures in an overlay network when
underlay failures occur, and is commonly used to study the
cross-layer reliability, such as logical link failures caused by
fiber failures in optical networks [11], [12], [13], [14]. The
most reliable path contains the smallest number of risks if
all risks are equally likely to occur, and can be obtained by
integer programming [11].

Interdependent networks have similarities with the classical
shared risk group model, in that two demand nodes share a
risk if they have at least one common supply node. However,
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Fig. 2. A shared risk node group model, where nodes labeled bythe same
number share the same risk.

the key difference is that a demand node does not necessarily
fail if a risk occurs (i.e., a supply node fails), since a demand
node may have multiple supply nodes, whereas a node fails
if its associated risk occurs in the classical shared risk group
model.

The reliability of a path in interdependent networks, in
contrast to the classical shared risk group model, can no longer
be characterized by the number of risks that the path contains.
For example, if all the nodes in a path depend on a single
supply node and thus the path has a single risk, removing a
single supply node would disconnect the path. In contrast, if
every node in a path has multiple supply nodes, the path would
be more robust and can resist a larger number of supply node
failures, although the path has more “risks”.

In addition to the most reliable path, a backup path can
be used to further improve reliability, throughdiverse routing.
Intuitively, a pair of reliable paths should share the minimum
number of risks (or be risk-disjoint) in the shared risk group
model [11], [13]. However, in interdependent networks, it is
easy to construct examples where two paths that share many
supply nodes can withstand a larger number of supply node
failures than two paths that share a smaller number of supply
nodes (e.g., Fig. 3). New metrics, other than the number of
risks shared by two paths, need to be identified to characterize
their reliability.
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Fig. 3. The two numbers in each node represent its two supply nodes. The
two st paths in the left figure share two supply nodes, and can be both
disconnected after removing supply nodes{1, 2}. The two st paths in the
right figure share four supply nodes, but they cannot be both disconnected
after removing any two supply nodes.

Diverse routing problems have been studied under correlated
link failures. The correlation between a pair of logical links
is obtained either by measurement [15] or by analysis of
the underlay physical topology [16]. Heuristic algorithms
have been developed to find multiple reliable paths, and
their performance was evaluated by simulation [15], [17],

[18]. In contrast, we explicitly bound the gap between the
failure probability and the optimization objective, and develop
algorithms that have provable performance.

In this paper, we develop an analytically tractable frame-
work to study the following robust routing problems in inter-
dependent networks.
Single-path routing: Compute the probability that

a specified path fails. Obtain the most reliable path betweena
source-destination pair.
Diverse routing: Compute the probability that two

specified paths both fail. Obtain the pair of most reliable paths
between a source-destination pair.

By generalizing the concept of disjoint paths to interde-
pendent networks, we characterize the level of disjointness
between two paths to study diverse routing. In contrast to
the classical shared risk group model where a node fails if
its risk occurs, in interdependent networks a node fails if a
combination of risks occur. In view of this, our methods extend
the shared risk group model. To the best of our knowledge,
this paper is the first to study the robust routing problem in
interdependent networks.

The rest of the paper is organized as follows. In Section II,
we state our model for interdependent networks and failures.
In Section III, we prove the complexity, and develop approx-
imation algorithms to compute the path failure probability. In
Section IV, we develop algorithms to find the most reliable
path between a pair of nodes. In Section V, we study the
diverse routing problem in interdependent networks, and find
a pair of reliable paths whose failure probability is minimized.
Section VI provides numerical results. Finally, Section VII
concludes the paper.

II. M ODEL

We consider a demand networkG1 and a supply network
G2, where every demand node inG1 depends on one or
more supply nodes inG2. We assume that every supply node
provides substitutional supply to the demand nodes, and a
demand node is functioning if it is directly connected to at
least one supply node. To study the impact of node failures in
G2 on G1, it is equivalent to study the following model.

Consider a graphG(V,E,SV ), where nodesV and edgesE
are identical to nodes and edges inG1, andSV are the supply
node sets, each of which is a set of nodes inG2 that provide
supply to a node inV . In this model, each nodevi ∈ V is a
demand node, supported by a set of supply nodesSi ∈ SV ,
andvi fails if all the nodes inSi fail. (Note that nodesV may
have different number of supply nodes.) Finally, lets, t ∈ V
be a source-destination pair.

Under the condition that supply nodes fail independently
with given probabilities, and following the convention that
s, t do not fail, we study the robust routing problems in
G(V,E,SV ).

Remark.The analysis for this model can be directly applied
to interdependent networks, as long as the interdependence
is bidirectional (i.e., if v ∈ G1 depends onu ∈ G2, then
u depends onv as well) and failures initially occur in one



network. It suffices to observe that, given a set of failed nodes
S ⊆ G2, a nodev ∈ G1 fails if and only if its supply nodes
are all in S. Notice that the failure ofv does not further
lead to node failures inG2, because all the nodes thatv
supports, which are exactly the supply nodes forv due to
the bidirectional interdependence, have failed.

III. C OMPUTING THE RELIABILITY OF A PATH

If every node has a single supply node, the path failure
probability is given by1− (1− p)r, where each supply node
fails independently with probabilityp and the path is supported
by r supply nodes. In contrast, if every node has more than one
supply node, computing the path failure probability becomes
#P -hard. The proof can be found in the Appendix of the
technical report [19].

Theorem 1. Computing the failure probability of a path is
#P -hard, if every node has two or more supply nodes and
each supply node fails independently with probabilityp.

Although it is#P -hard to compute, the path failure proba-
bility can be well approximated. We apply the solution to the
DNF probabilityproblem and propose an(ǫ, δ)-approximation
algorithm based on importance sampling, which approximates
the path failure probability to within a multiplicative factor
1± ǫ with probability at least1− δ.

The DNF probability problem computes the probability that
a Disjunctive Normal Form (DNF) formula is true, when lit-
erals are set to be true independently with given probabilities.
A DNF formula is a disjunction of clauses, each of which
is a conjunction of literals, and takes the following form:
(x1

1∧· · ·∧x1
n1
)∨ (x2

1∧· · ·∧x2
n2
)∨· · ·∨ (xm

1 ∧· · ·∧xm
nm

). Let
v1−· · ·−vm be a path inG(V,E,SV ). The key observation is
that computing the path failure probability can be formulated
by a DNF probability problem, in which a clauseCi represents
a nodevi in the path and the literalsxi

j in clauseCi represent
the supply nodes ofvi. For completeness, we state Algorithm
1 that approximates the path failure probability, by adapting
the algorithm that approximates the DNF probability in [20].

The intuition behind this importance sampling algorithm
is as follows. Some events, although rare, are important in
determining the path failure probability, especially whenthe
path failure probability is small. The algorithm samples ina
space consisting of important events, each of which is a set
of supply node failuresU that lead to the path failure. In this
space, the failure ofU may appear multiple times, given that
multiple choices ofvi in Step 2 may lead to the sameU in Step
3. The algorithm then remove the duplicatedU via sampling
in Step 4.

To prove the correctness of the algorithm, we take the
following two steps. First, following a similar analysis to
[20], we prove that the path failure probability is given by
E[I]

∑

1≤k≤m

∏

1≤j≤ns(vk)
p(uk

j ), whereE[I] is the expec-
tation of I in Step 4 of the algorithm. Second, by repeating
the loop a sufficiently large number of times,E[I] can be
approximated to within factor1 ± ǫ with probability at least

Algorithm 1 Estimating the path failure probability based on
importance sampling.
Initialization:

1) Given a path{v1, v2, . . . , vm}, let {ui
j|j = 1, . . . , ns(vi)}

denote the set of supply nodes ofvi, wherens(vi) is the
number of supply nodes ofvi.

Main loop:
2) Among{v1, v2, . . . , vm}, randomly choosevi with prob-

ability
∏

1≤j≤ns(vi)

p(ui
j)/

∑

1≤k≤m

∏

1≤j≤ns(vk)

p(uk
j ).

If every demand node has an identical number of supply
nodes, and the supply node failure probabilityp(ui

j) is
identical, then nodevi is chosen with probability1/m.

3) If vi is chosen, set all of its supply nodes{ui
j|j =

1, . . . , ns(vi)} to be failed. The other supply nodes are
randomly set to be failed with their respective failure
probabilities. LetU denote the set of failed supply nodes.

4) Test whether vi is the first failed node among
{v1, v2, . . . , vm}, given thatU fail (and no other supply
nodes fail). If true, setI = 1; otherwise, setI = 0.
Repeat the loop fora = 3m ln(2/δ)/ǫ2 iterations.

Result:
5) Count the number ofI = 1 and denote the number byb.

An (ǫ, δ)-approximation of the path failure probability is
given byb/a

∑

1≤k≤m

∏

1≤j≤ns(vk)
p(uk

j ).

1− δ. The details of the proof can be found in the Appendix
of the technical report [19].

The advantage of this algorithm over a naı̈ve Monte-Carlo
algorithm (e.g., by repeatedly simulating the supply node
failure events and counting the fraction of trials in which the
path fails) is that the number of iterations in the naı̈ve Monte-
Carlo algorithm is large when the path failure probability is
small1. In contrast, by sampling in a more important space, the
number of iterations is reduced. Note that the only quantity
that needs to be estimated in Algorithm 1 by simulation is
E[I], and thatPr(I = 1) ≥ 1/m. We conclude this section
by the following theorem, whose proof is in the Appendix of
the technical report [19].

Theorem 2. The path failure probability can be estimated to
within a multiplicative factor1± ǫ with probability 1− δ, in
timeO(m2ns ln(1/δ)/ǫ

2), wherem is the path length andns

is the maximum number of supply nodes for a demand node.

Although the failure probability of a specific path can be
well approximated by the importance sampling algorithm, the
algorithm hardly gives an intuition for path properties that
characterize a reliable path. In the remainder of this section, we

1If F occurs inb out of a trials, Pr(F ) ∈ (1 ± ǫ)b/a with probability
1 − δ, under the condition thatb = Ω(ln(1/δ)/ǫ2). The total number of
trials a = Ω(ln(1/δ)/ǫ2)/Pr(F ) is large whenPr(F ) is small.



develop indicators and bounds on the path failure probability,
which can be used for finding the most reliable path.

A. Small and identical failure probability

Consider a pathv1−· · ·−vm in G(V,E,SV ). LetFi denote
the event that all the supply nodes ofvi fail. Let F denote the
event that the path fails. Clearly, the path fails if at leastone
nodevi loses all of its supply nodes (F = ∪1≤i≤mFi).

By the inclusion-exclusion principle, we have

Pr(F ) =
∑

1≤i≤m

Pr(Fi)−
∑

1≤i1<i2≤m

Pr(Fi1 ∩ Fi2)

+ · · ·+ (−1)m−1 Pr(F1 ∩ F2 · · · ∩ Fm). (1)

Directly computing the path failure probability is difficult,
given that there are

(

m
j

)

summations in thej-th term of the
inclusion-exclusion formula. We first reduce the number of
events in the inclusion-exclusion formula, and then further
simplify the computation under the condition that the supply
node failure probability is small and identical.

To reduce the number of events, someredundantevents can
be ignored. For example, ifFi occurs only ifFj occurs, then
the eventFi is redundant in determiningF with the knowledge
of Fj . To see this, note that 1) ifFj occurs, then the path fails
regardless ofFi; 2) if Fj does not occur, thenFi does not
occur as well. If the supply nodes ofvj form a subset of the
supply nodes ofvi, thenFi is redundant. With an abuse of
language, we call a nodevi redundant ifFi (i.e., the state
of vi) is redundant. With this simplification, we derive the
following result.

Let ns(vi) denote the number of distinct supply nodes ofvi.
Let nmin

s = min1≤i≤m ns(vi). After removing the redundant
nodes sequentially, let̄m be the number of remaining nodes
that each havenmin

s supply nodes. The path failure probability
can be estimated by the following theorem.

Theorem 3. If every supply node fails independently with
probability p ≤ ǫ/m, then the path failure probability satisfies
(1− ǫ)m̄pn

min

s ≤ Pr(F ) ≤ (1 + ǫ)m̄pn
min

s .

Proof. We first reduce the number of failure events that appear
in the inclusion-exclusion formula by removing the redundant
nodes. Note that determining whether a node is redundant
and removing the redundant node are done sequentially. Thus,
among the set of nodes that have the same supply nodes, one
node remains. LetD denote the nodes in the path excluding
the redundant nodes.

First, we consider the first term in Eq. (1) that provides
an upper bound on the path failure probability, known as the
union bound. LetD1 ⊂ D denote the set of nodes that each
havenmin

s supply nodes, and let̄m = |D1|. The remaining
nodesD2 = D \ D1 each havenmin

s + 1 or more supply
nodes. Thus, the first term of Eq. (1) is at most

Pr(F ) ≤m̄pn
min

s + (m− m̄)ppn
min

s

≤m̄pn
min

s + ǫpn
min

s ,

for p ≤ ǫ/m.

Next, we consider the first two terms that provide a lower
bound on the path failure probability (cf . Bonferroni inequal-
ities). For any pair of nodesvj , vk ∈ D, the union of their
supply node sets contains at leastmax(ns(vj), ns(vk)) + 1
nodes, because neither supply node set includes the other asa
subset. At leastnmin

s +1 supply nodes have to be removed in
order for a pair of nodes inD1 to fail. At leastnmin

s +2 supply
nodes need to be removed in order for a pair of nodes to fail
if at least one node belongs toD2. The absolute value of the
second term is at most

(

m̄
2

)

pn
min

s +1 + [
(

m
2

)

−
(

m̄
2

)

]pn
min

s +2. A
lower bound onPr(F ) is

Pr(F ) ≥m̄pn
min

s −
(m̄2

2
ppn

min

s +
m2

2
p2pn

min

s

)

≥m̄pn
min

s − ǫm̄pn
min

s ,

for p ≤ ǫ/m.

Thus, we have obtained the following tworeliability indi-
cators for a path. These combinatorial properties are useful
in finding a reliable path, which will be studied in the next
section.

• nmin
s : the minimum number of distinct supply nodes for

a node in the path.
• m̄: the number of combinations ofnmin

s supply node
failures that lead to the failure of at least one node in
the path.

B. Arbitrary failure probability

In contrast with the case where supply node failure prob-
ability is small and identical, it is difficult to characterize
the reliability of a path by its combinatorial properties, with
limited knowledge of node failure probabilities. Therefore, we
obtain bounds on path failure probability that will be useful
in finding a reliable path.

First, we develop an upper bound on the path failure proba-
bility. Let p(vi) be the failure probability of nodevi, under the
condition that each of its supply nodesui

j fails independently
with probabilityp(ui

j). The path failure probability, under the
condition that the failures ofV are positively correlated, is no
larger than the path failure probability by assuming that the
failures ofV are independent. The proof can be found in the
technical report [19].

Lemma 1. The failure probability of a pathP where a supply
nodeui

j fails independently with probabilityp(ui
j) is upper

bounded by1−
∏

vi∈P (1− p(vi)).

Then, we develop a lower bound on the path failure proba-
bility. The intuition is as follows. After replacing a supply node
that supports multiple demand nodes by multiple independent
supply nodes with sufficiently small failure probability, the
path failure probability does not increase. In the originalgraph
G(V,E,SV ), consider a nodevi ∈ V . Let U i denote the
set of supply nodes ofvi, let ui

j ∈ U i denote one supply
node, letp(ui

j) denote the failure probability ofui
j, and let

nd(u
i
j) denote the number of nodes thatui

j supports. Let
p̃(vi) =

∏

ui
j
∈Ui p̃(ui

j) denote the failure probability ofvi



if ui
j fails independently with probabilitỹp(ui

j) = 1 − (1 −

p(ui
j))

1/nd(u
i
j). A lower bound on the path failure probability

is as follows, whose proof follows a similar technique in [21]
and is in the technical report.

Lemma 2. The failure probability of a pathP where a supply
nodeui

j fails independently with probabilityp(ui
j) is lower

bounded by1−
∏

vi∈P (1 − p̃(vi)).

Let nd denote the maximum number of demand nodes that a
supply node supports, and letns denote the maximum number
of supply nodes for a demand node. The following lemma
bounds the ratio between the upper and lower bounds. Its proof
can be found in the Appendix of the technical report [19].

Lemma 3. For any path, the ratio of the upper bound on its
failure probability obtained in Lemma 1 to the lower bound
obtained in Lemma 2 is at most(nd)

ns .

IV. F INDING THE MOST RELIABLE PATH

In this section, we aim to compute the most reliable path
between a source-destination pairs, t ∈ V in G(V,E,SV ).
We first prove that it is NP-hard to approximately compute
the most reliable path. We then develop an algorithm to
compute the most reliable path when the supply nodes fail
independently with an identically small probability, and finally
develop an approximation algorithm under arbitrary failure
probabilities.

Hardness of approximation:Although the failure probability
of any given path can be approximated to within factor1± ǫ
for anyǫ > 0, it is NP-hard to obtain anst path whose failure
probability is less than1 + ǫ times the optimal for a small
ǫ. The proof can be found in the Appendix of the technical
report [19].

Theorem 4. Computing anst path whose failure probability
is less than1 + ǫ times the failure probability of the most
reliable st path is NP-hard forǫ < 1/m, wherem is the
maximum path length.

A. Small and identical failure probability

If every supply node fails independently with an identically
small probability, there are two reliability indicators:nmin

s

and m̄. Recall thatnmin
s is the minimum number of supply

nodes for a node in the path, and thatm̄ is the number of
combinations ofnmin

s supply node failures that disconnect the
path. With the two indicators, the path failure probabilitycan
be approximated to within a multiplicative factor1 ± ǫ by
m̄pn

min

s , under the condition thatp ≤ ǫ/m. Moreover, the
indicatornmin

s is more important (and has a higher priority to
be optimized) than̄m. We next develop algorithms to optimize
the two indicators.

Given a graphG(V,E,SV ) and a pair of nodes(s, t), the
problem of computing anst path with the maximumnmin

s can
be formulated as themaximum capacity pathproblem, where
the capacity of a node equals the number of its distinct supply
nodes and the capacity of a path is the minimum node capacity
along the path. The maximum capacity path can be obtained

by a modified Dijkstra’s algorithm, and can be obtained in
linear time [22].

However, it is NP-hard to minimizēm, even in the special
case where every demand node has a single supply node. The
result follows from the NP-hardness of computing a path with
the minimum colors in a colored graph [12].

We develop an integer program to compute the pathP
with the minimumm̄, under the condition thatnmin

s (P ) =
minvi∈P ns(vi) is maximized. The following pre-processing
reduces the size of the integer program. First, computek =
maxP∈P nmin

s (P ), whereP is the set of all thest paths,
using the linear-time maximum capacity path algorithm. Then,
remove all the nodes that have fewer thank distinct supply
nodes and their attached edges, and denote the remaining
graph byG′(V ′, E′,SV ′). The removed nodes and edges will
not be used by the optimal path. LetV ′′ ⊆ V ′ denote the
nodes among which each has exactlyk distinct supply nodes.
We aim to find a pathVP where the number of distinct supply
node sets forVP ∩ V ′′ is minimized.

Let Si denote the set of supply nodes ofi ∈ V ′′. Let SV ′′

denote the union of these sets. Letxij denote the flow variable
which takes a positive value if and only if edge(i, j) belongs
to the selected path. Anst path is identified by constraint (3).
A node i is on the selected path if at least one ofxij and
xji is positive. Leth(Si) denote whether removing supply
nodesSi disconnects the selected path. If a nodei is on the
selected path and hask supply nodes, thenh(Si) must be
one, guaranteed by constraint (4). All the other nodes either
do not belong to the selected path or have more thank supply
nodes, and their supply node failures are not considered. The
objective minimizesm̄, which is the number of combinations
of k supply node failures that disconnect the path.

min
∑

Si∈SV ′′

h(Si) (2)

s.t.
∑

{j|(i,j)∈E′}

xij −
∑

{j|(j,i)∈E′}

xji =







1, if i = s,
−1, if i = t,
0, otherwise.

(3)

∑

{j|(i,j)∈E′}

xij +
∑

{j|(j,i)∈E′}

xji ≤ 2h(Si), ∀i ∈ V ′′ \ s, t,(4)

xij ≥ 0, ∀(i, j) ∈ E′,

h(Si) = {0, 1}, ∀Si ∈ SV ′′ .

B. Arbitrary failure probability

If nodes Ṽ in a graph G̃(Ṽ , Ẽ) fail independently, the
probability that a path survives is the product of the survival
probabilities of nodes along the path. The most reliable path
can be obtained by the classical shortest path algorithm, by
replacing the length of traversing a nodeṽi by − ln(1−p(ṽi)),
wherep(ṽi) is the failure probability of̃vi. It is easy to see
that the length of a pathP is

∑

ṽi∈P − ln(1 − p(ṽi)) =
− ln

∏

ṽi∈P (1 − p(ṽi)). The shortest path has the smallest
failure probability1−

∏

ṽi∈P (1− p(ṽi)).
Compared with the above simple model, the difficulty in



obtaining the most reliablest path in interdependent networks
is the failure correlations of nodesV ⊆ G(V,E,SV ). The
failure probability of a path can no longer be characterizedby
1−

∏

vi∈P (1− p(vi)). Moreover, lets− · · · − vi − · · · − t be
the most reliablest path. The sub-paths− · · · − vi may not
be the most reliable path betweens and vi. Thus, the label-
correction approach in dynamic programming (e.g., Dijkstra’s
algorithm) cannot be used, even though the failure probability
of a given path can be approximated.

Given the bounds obtained in the previous section, we pro-
pose Algorithm 2 to compute a path whose failure probability
is within (nd)

ns times the optimal failure probability. Recall
that the bounds on path survival probability are the product
of (original or new) node survival probabilities, which exactly
match the path survival probability in the case of independent
node failures.

Algorithm 2 An approximation algorithm to compute a reli-
ablest path inG(V,E,SV ).

1) For eachvi ∈ V , compute p̃(vi) as follows. Letui
j

be a supply node ofvi with failure probability p(ui
j).

If ui
j supportsnd(u

i
j) nodes, letp̃(ui

j) = 1 − (1 −

p(ui
j))

1/nd(u
i
j). Let p̃(vi) be the failure probability ofvi

if ui
j fails independently with probabilitỹp(ui

j).
2) Compute the most reliablest path assuming thatvi fails

independently with probabilitỹp(vi). The most reliable
path can be obtained by a standard shortest path algorithm
(e.g., Dijkstra’s algorithm), by letting− ln(1− p̃(vi)) be
the length of traversing nodevi.

Theorem 5. The failure probability of the path obtained by
Algorithm 2 is at most(nd)

ns times the failure probability of
the most reliablest path under arbitrary supply node failure
probabilities.

Proof. Let the path obtained by Algorithm 2 beP ′ and let the
path with the minimum failure probability beP ∗. Let p(P ′)
and p(P ∗) denote their failure probabilities. Moreover, let
p̃(P ′) andp̃(P ∗) denote their failure probabilities by assuming
that each nodevi fails independently with probabilitỹp(vi).
We have p(P ′) ≤ nns

d p̃(P ′) ≤ nns

d p̃(P ∗) ≤ nns

d p(P ∗),
where the first inequality follows from Lemma 3 and the last
inequality follows from Lemma 2.

Remark.If ns = 1 and every supply node fails independently
with an identically small probability, our result reduces to the
following result in the classical shared risk group model: The
number of risks associated with the shortest path is at mostnd

times the number of risks associated with the minimum-risk
path [13].

V. RELIABILITY OF A PAIR OF PATHS

To study diverse routing in interdependent networks, we
consider the simplest case of twost paths in this section.
Given that computing the failure probability of a single path
is #P hard if every node has more than one supply node, it is

also#P hard to compute the failure probability of two paths2.
To see this, note that if two paths have the same number of
nodes and each node in the first path has identical supply
nodes as its corresponding node in the second path, then the
probability that both paths fail equals the probability that a
single path fails. Fortunately, we are still able to obtain1± ǫ-
approximation of the failure probability in polynomial time.

A. Small and identical failure probability

A central concept in diverse routing is thedisjoint paths
or risk disjoint paths[11], [12], [10]. In the classical shared
risk group model, if every risk occurs independently with an
identically small probabilityp = o(1/m2), the probability
that two paths fail isΘ(f(m)p2) if they are risk disjoint and
Θ(f(m)p) if they share one or more risks, wherem is the
maximum path length andf(m) is a function ofm. Thus,
risk-disjointness characterizes the order of the reliability of
two paths. In interdependent networks where every demand
node has multiple supply nodes, if nodes inP 1 do not share
any supply nodes with nodes inP 2, then P 1 and P 2 are
risk disjoint. However, risk-disjointness does not sufficeto
characterize the reliability of two paths, for the following
two reasons. First, the failure probability of a demand node
depends on the number of supply nodes for it, which is
not related to risk-disjointness. Second, ifP 1 andP 2 share
some supply nodes, the failure probability depends furtheron
the maximum number of supply node failures that the two
paths can withstand. To study the reliability of two paths in
interdependent networks, we defined-failure resilient pathsas
follows.

Definition 1. Two paths ared-failure resilient if removing any
d supply nodes would not disconnect both paths.

Remark. In the classical graph model̃G(Ṽ , Ẽ), two disjoint
paths are 1-failure resilient while two overlapping paths are
0-failure resilient. In the classical shared risk group model,
two risk disjoint paths are 1-failure resilient while two paths
that share risks are 0-failure resilient. Two paths can never be
more than one failure resilient. Thus, the disjointness or risk-
disjointness suffices to characterize (the order of) the reliability
of two paths in these models.

1) Evaluation of failure probability:Consider two paths
P 1 = s−v11−v12−· · ·−v1m1

−t, P 2 = s−v21−v22−· · ·−v2m2
−t

between a pair of nodes(s, t). We study the event that at least
one node inP 1 and at least one node inP 2 both fail. Let
F k
i denote the event that all the supply nodes ofvki fail, and

let F k denote the event that thek-th path fails,k ∈ {1, 2}.
ThenF 1 ∩ F 2 = ∪1≤i≤m1,1≤j≤m2

(F 1
i ∩ F 2

j ). For simplicity
of presentation, letF both = F 1 ∩ F 2 andFij = F 1

i ∩ F 2
j . Let

Sij denote the union of supply nodes ofv1i andv2j .

2Meanwhile, it is still simple to compute the failure probability of two paths
if every node has a single supply node, by first computing the probability that
the first path fail, and then computing the probability that the second path fail
while the first path does not fail (i.e., none of the supply nodes of the first
path fail), both in polynomial time, and summing the two probabilities.



To decide whether two paths ared-failure resilient, we
consider the number of supply node failures that lead to
the eventFij , and denote the number bydij . Then d =
min1≤i≤m1,1≤j≤m2

dij − 1. Moreover, letm̄ be the number
of pairs of nodes, one from each path, such that each pair of
nodes in total haved + 1 distinct supply nodes and any two
pairs do not have the same set ofd+1 supply nodes. (I.e., m̄
combinations ofd + 1 supply node failures each disconnect
both paths.) The next theorem formalizes the connection
between the reliability of two paths andd. The proof follows
the same manner as that for Theorem 3 and can be found in
the technical report [19].

Theorem 6. If every supply node fails independently with
probability p ≤ ǫ/(m1m2), then the probability that twod-
failure resilient paths with lengthsm1,m2 both fail satisfies
(1− ǫ)m̄pd+1 ≤ Pr(F both) ≤ (1 + ǫ)m̄pd+1.

2) Finding the most reliable pair of paths:From Theorem
6, we know that the probability that twod-failure resilient
paths both fail is smaller for larger values ofd. Moreover, for a
fixedd, the failure probability is proportional tōm, the number
of combinations ofd+1 supply node failures that disconnect
both paths. We have obtained two reliability indicators fortwo
paths:d andm̄.

Unfortunately, computing the pair ofst paths that have the
maximumd and the minimumm̄ are both NP-hard, even in
the special case where every demand node has a single supply
node. This special case reduces to the classical shared risk
group model. In this special case,d = 1 if there exist two
risk-disjoint paths, andd = 0 otherwise. The NP-hardness of
determining the existence of two risk-disjoint paths between
an st pair has been proved in [11]. Moreover, in this special
case, for two paths that share common supply nodes,m̄ is
the number of overlapping risks between the two paths (i.e.,
removing any of thēm supply nodes disconnects both paths).
The NP-hardness of the least coupled paths problem, which
computes a pair of paths that share the minimum number of
risks in the classical shared risk group model, has also been
proved in [11].

We develop an integer program to compute a pair of
st paths with the maximumd in G(V,E,SV ). Let variable
xk
ij denote whether edge(i, j) is part of thek-th path, and

let variablebki denote whether nodei is part of thek-th path,
k ∈ {1, 2}. Same as before, letSi denote the supply nodes
of nodei. Constraints (6) guarantee that two paths are node-
disjoint. Notice that these constraints can be dropped if there
is no restriction on the physical disjointness of two paths.
Constraints (7) guarantee that at leastd+1 supply nodes need
to be removed in order for one node in each path to fail (i.e.,
b1i = b2j = 1, i, j ∈ V ), whereM is a sufficiently large
number,e.g., twice the maximum number of supply nodes for

a demand node.

max d (5)

s.t.
∑

{j|(i,j)∈E}

xk
ij −

∑

{j|(j,i)∈E}

xk
ji =







1, if i = s,
−1, if i = t,
0, otherwise.

k ∈ {1, 2},

∑

{j|(i,j)∈E}

xk
ij +

∑

{j|(j,i)∈E}

xk
ji ≤ 2bki , ∀i ∈ V, k ∈ {1, 2}

b1i + b2i ≤ 1, ∀i ∈ V \ s, t, (6)

d+ 1 ≤ |Si ∪ Sj |+M(2− b1i − b2j), ∀i, j ∈ V \ s, t,(7)

xk
ij ∈ {0, 1}, ∀(i, j) ∈ E, k ∈ {1, 2},

bki ∈ {0, 1}, ∀i ∈ V, k ∈ {1, 2}.

A slightly modified integer program suffices to minimize
m̄ under the condition thatd is maximized. Leth(Si ∪ Sj)
denote whether removing the union of supply nodes fori and
j disconnects both paths. Constraints (9) guarantee that ifi
and j belong to two different paths,i.e., b1i = b2j = 1, then
h(Si ∪ Sj) = 1. Otherwise,h(Si ∪ Sj) = 0 in the optimal
solution. Let a positive valuew(|Si ∪ Sj |) denote itsweight,
which is a decreasing function of the cardinality|Si ∪ Sj |.
We aim to minimize the total weights of supply node failures
that disconnect two paths. In order to guarantee thatd is
maximized,w(l)/w(l+1) should be sufficiently large for any
integerl, e.g., |V |2/2. Since there are at most|V |(|V | − 1)/2
pairs of nodes, largerd is always preferable and has a higher
priority to be optimized over̄m.

min
∑

Si,Sj∈SV

w(|Si ∪ Sj |)h(Si ∪ Sj) (8)

s.t.
∑

{j|(i,j)∈E}

xk
ij −

∑

{j|(j,i)∈E}

xk
ji =







1, if i = s,
−1, if i = t,
0, otherwise.

k ∈ {1, 2},

∑

{j|(i,j)∈E}

xk
ij +

∑

{j|(j,i)∈E}

xk
ji ≤ 2bki , ∀i ∈ V, k ∈ {1, 2}

b1i + b2i ≤ 1, ∀i ∈ V \ s, t,

h(Si ∪ Sj) ≥ b1i + b2j − 1, ∀i, j ∈ V \ s, t, (9)

xk
ij ∈ {0, 1}, ∀(i, j) ∈ E, k ∈ {1, 2},

h(Si ∪ Sj) ∈ {0, 1}, ∀i, j ∈ V.

B. Arbitrary failure probability

1) Evaluation of failure probability: We use a similar
importance sampling approach to Algorithm 1 and formulate
the problem of computing the failure probability of two paths
as a DNF probability problem. A clauseCij represents a pair
of nodesv1i and v2j . Literals in Cij represent the union of
supply nodes ofv1i and v2j . A literal is true if and only if
the supply node that it represents fails, and the probability
that the literal is true is the same as the supply node failure
probability. The disjunction of clauses is true if and only
if at least one clause is true, in which case both paths fail
because at least one node from each path fails. The rest of
the computation follows the same manner as Algorithm 1,



by replacing a node in Algorithm 1 by a pair of nodes. An
(ǫ, δ)-approximation of the failure probabilityPr(F both) can
be obtained inO(m2

1m
2
2ns ln(1/δ)/ǫ

2) time.
2) Finding the most reliable pair of paths:It is more diffi-

cult to find two paths that have the smallest failure probability.
Recall Theorem 6. The failure probability of two paths is
Θ(f(m1,m2)p

d+1) if they are d-failure resilient when the
supply node failure probabilityp is small, wheref(m1,m2) is
a function of two path lengths. As a corollary of the fact that
it is NP-hard to compute two paths that have the maximum
level of resilienced, it is also NP-hard to compute two paths
whose failure probability is within a factorα from the optimal,
whereα is any function of the network size. Thus, we develop
the following heuristic. After computing the failure probability
p̃(vi) of a nodevi in Step 1 of Algorithm 2, let− ln(1− p̃(vi))
be the length of traversing nodevi, and compute two node
disjoint paths with the minimum total lengths. The two paths
can be efficiently obtained using a slightly modified shortest
augmenting path algorithm [23]. The computation is outlined
in Algorithm 3. The reason for the graph transformation in
Step 1 is to simplify the computation of a residual graph, to
which the shortest augmenting path algorithm can be applied.

Algorithm 3 A heuristic to compute a pair of reliablest path
in G(V,E,SV ).

1) TransformG(V,E,SV ) with node failure probabilities
to a directed graphG′ with edge failure probabilities
using the standard approach. (Split every nodev into vin

and vout. Add a directed edge fromvin to vout, which
has length− ln(1 − p̃(vi)). Add a directed edge from
v1out to v2in and a directed edge fromv2out to v1in, both
with zero length, if an edge exists betweenv1 andv2 in
G(V,E,SV ).)

2) Compute the shortest pathP ′
1 from sout to tin in G′.

3) Compute the residual graph as follows. Remove all the
edges inP ′

1. Add a backward edge fromv′2 to v′1 with a
negated length if an edge fromv′1 to v′2 is part ofP ′

1.
4) Compute the shortest pathP ′

2 from sout to tin in the
residual graph.

5) CombineP ′
1 andP ′

2 by cycle cancellation. The two paths
become node-disjoint and can be mapped to two paths in
G(V,E,SV ).

VI. N UMERICAL RESULTS

We study the robust routing problems in the XO backbone
communication network with 60 nodes and 75 edges [24], by
assuming that the XO nodes are supported by 36 randomly
generated supply nodes within the continental US. The XO
network topology is depicted in Fig. 4, and the supply nodes
are marked as triangles. Thex-axis represents the longitude
and they-axis represents the latitude. We do not claim that
the XO network needs supply from these randomly generated
points, and we use this example only to provide a visualization
of the robust routing problems using available data.

-120 -110 -100 -90 -80
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50 Seattle

Miami

Fig. 4. Topology of the XO network and randomly generated triangle supply
nodes. The most reliable Seattle-Miami path is colored red under the condition
that supply node failure probability is small and identicaland every XO node
depends on two nearest supply nodes.

First, we assume that every XO node depends on two nearest
supply nodes and every supply node fails independently with
probability10−2. Since the supply node failure probability is
small and identical, we are able to obtain the most reliable
path and pair of paths by optimizing the reliability indicators
using integer programs.

To identify the most reliable path, sincenmin
s (P ) = 2 for

any pathP , we only need to compute a path with the minimum
m̄ using the integer program in Section IV. The most reliable
path is colored red in Fig. 4, for which̄m = 8. To evaluate
the path failure probability, by a stronger analog of Theorem
3 (Corollary 1 in the technical report), settingǫ = 4 × 10−2,
Pr(F ) ∈ [7.68×10−4, 8×10−4]. To compare, using Algorithm
1, we obtain7.9686 × 10−4 as a (1 ± 0.01)-approximation
of the path failure probability with probability 0.99. These
results suggest that the two reliability indicators (nmin

s , m̄) well
characterize the path failure probability when the supply node
failure probability is small and identical.

We compute the most reliable pair of paths connecting
Seattle-Miami using the integer programs in Section V. The
two paths are plotted in Fig. 5, and they are 1-failure resilient
(d = 1). The failure probability of both paths is approximately
1.0388 × 10−4. In contrast, the most reliable pair of paths
connecting Seattle-Denver are 3-failure resilient and their
failure probability is approximately2.9800× 10−8. Thus, the
level of resilience well indicates the reliability of two paths.

Next, we assume that an XO node depends onNs randomly
chosen supply nodes, whereNs is uniformly chosen among
1, 2, and 3. Let the failure probability of each supply node be
uniformly and independently chosen from[0.005, 0.015]. We
use Algorithm 2 to obtain a reliable path connecting Seattle-
Miami. Averaged over 10 trials, the path failure probability is
approximately2.1032× 10−2, while the lower bound on the
failure probability of the most reliable path is5.2365× 10−3.
The obtained path has failure probability around four timesthe
lower bound. Moreover, by using the heuristic to find a pair of
paths, the paths have average failure probability3.9732×10−3,
which improves the reliability of a single path.
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Fig. 5. The most reliable pair of paths between Seattle-Miami are colored red,
under the condition that supply node failure probability issmall and identical
and every XO node depends on two nearest supply nodes.

We compare the performance of the heuristic (Algorithm 3)
with the optimal pair of paths. Since it is difficult to obtain
the optimal pair of paths under arbitrary failure probabilities,
we use the integer program (8), under the condition that
supply nodes fail independently with probability10−2. If
every XO node depends on two nearest supply nodes, the
failure probabilities of two optimal paths and two paths
obtained by the heuristic are approximately1.0388 × 10−4

and 1.0773 × 10−4, respectively. If every XO node depends
on three nearest supply nodes, the failure probability of two
optimal paths and two paths obtained by the heuristic are
approximately1.0200×10−6 and1.0508×10−6, respectively.
These experiments validate the performance of our heuristic
algorithm.

Finally, we report the running times of the algorithms,
executed in a workstation that has an Intel Xeon Processor
(E5-2687W v3) and 64GB RAM. The integer programs that
find the most reliable path and pair of paths (under small
and identical supply node failure probability) can both be
solved within 1 second. The approximation algorithm to find
a reliable path and the heuristic to find a pair of paths (under
arbitrary failure probabilities) can both be solved within0.1
second. The evaluation of the failure probability of one path
or a pair of paths by Algorithm 1 takes several minutes, by
settingǫ = δ = 0.01. Thus, the algorithms (integer programs
and Algorithms 2 and 3) can be used to find reliable routes in
realistic size networks.

VII. C ONCLUSION

We studied the robust routing problem in interdependent
networks. We developed approximation algorithms to compute
the path failure probability, and identified reliability indicators
for a path, based on which we develop algorithms to find the
most reliable route in interdependent networks. We also stud-
ied diverse routing in interdependent networks, and developed
approximation algorithms to compute the probability that two
paths both fail and to find two reliable paths. Our work extends
the shared risk group models, and provides a new framework
to study robust routing problems in interdependent networks.
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