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Robust Routing in Interdependent Networks

Jianan Zhang and Eytan Modiano
Laboratory for Information and Decision Systems, Massaetia Institute of Technology

Abstract—We consider a model of two interdependent net- is supported by one or more nodes in the supply network.
works, where every node in one network depends on one or Thus, nodes in the demand network and nodes in the supply
more supply nodes in the other network and a node fails if it network can be viewed as demand nodes and supply nodes,

loses all of its supply nodes. We develop algorithms to compe . . A
the failure probability of a path, and obtain the most reliable path respectively. Given that a demand node fails if it loses &ll o

between a pair of nodes in a network, under the condition that itS supply nodes, supply node failures may lead to correlate
each supply node fails independently with a given probabity. ~demand node failures, which makes it difficult to route teaffi
Our work generalizes the classical shared risk group modelby  through reliable paths in the demand network. We develop
considering multiple risks associated with a node and lettig a techniques to tackle the failure correlation. This simedfi

node fail if all the risks occur. Moreover, we study the divese d d ists i t ¢ E |
routing problem by considering two paths between a pair of one-way dependence exists in current Systems. For example,

nodes. We define two paths to bei-failure resilient if at least routers and processors in a communication network depend
one path survives after removingd or fewer supply nodes, which on the electric power. Moreover, as we will see later, the
generalizes the concept of disjoint paths in a single netwkr analysis based on this simplified scenario can be applied to

and risk-disjoint paths in a classical shared risk group moetl. ; ;
We compute the probability that both paths fail, and develop interdependent networks under certain assumptions.

algorithms to compute the most reliable pair of paths.

[. INTRODUCTION G1

t demand

Many modern systems are interdependent, such as smar
network

power grids, smart transportation, and other cyber-plysic
systems [1], [2], [3], [4], [5]. In interdependent networks
one network depends on another to properly function. For
example, in smart grids, power generators rely on messages G2
from the control center to adjust to the power demands, while  supply
the control center relies on the electric power to operate D network
to the interdependence, failures in one network may cascade
to another. It is important to understand the robustness Fig. 1. Every node in the demand netwagk is supported by two nodes in
interdependent networks which are prone to cascadingéailu e SuPPly neworiG:.
o e v rbust g prclems have been extensel st
. . ) Bhder both independent failure and correlated failure acen
models, in the asymptotic regime where the number of nodes o .
e L . i0S. If edges or nodes fail independently, the most reliable
approaches mﬁmty [6], [7]. The finite-size art_)ltrqry—tdpgy path between a source-destination pair can be viewed as a
graph models, which represent real commur_ncatlon and ph%ﬁortest path, where the length is a function of the failure
ical networks, have been largely overlooked in the inteedep probability. In the case of correlated failures, it is diffic
dent networks literature. A few exceptions include [4],,[5] : '

which model interdependent power grids and communicatitO find a path with any performance guarantee in genergl
E&ﬂ. If correlation only exists among edges or nodes thdt fai

networks b)_/ graphs with topolqgles specified by the reS|multaneously, the network can be viewed using a shared
networks. Similarly, we abstract interdependent netwdrks risk group model (Fig. 2) [9], [10]. The shared risk grou
graphs with specified topologies, which can be tailored for a group g ' ' group

. - model captures correlated failures in an overlay networkmwh
wide range of applications. : .
) . .. underlay failures occur, and is commonly used to study the
In this paper, we study robust routing problems in inter-

o ., cross-layer reliability, such as logical link failures sad by
dependent networks, by characterizing the effects of reglu fiber failures in optical networks [11], [12], [13], [14]. h

n ot?le netwodrk rc])n”the othgtr_ner:vxllor];ki ::or an %verwe\_/v Of.;.hl%ost reliable path contains the smallest number of risks if
problems and challenges, it is helpful to consider a sinelif all risks are equally likely to occur, and can be obtained by

scenario where a demand network depends on a supply n 'E[éger programming [11].

work, illustrated by Fig. 1. Every node in the demand networ Interdependent networks have similarities with the ctadsi
This work was supported by DTRA grants HDTRA1-13-1-0021 an&har_ed risk group model, in that two demand nodes share a
HDTRA1-14-1-0058. risk if they have at least one common supply node. However,




e [18]. In contrast, we explicitly bound the gap between the
0 ‘0 failure probability and the optimization objective, andrelep
\ algorithms that have provable performance.
‘ a a ‘ In this paper, we develop an analytically tractable frame-
} 4 work to study the following robust routing problems in inter

dependent networks.
AN Si ngl e- pat h routing: Compute the probability that
a specified path fails. Obtain the most reliable path betveeen
Fig. 2. A shared risk node group model, where nodes labelethéysame Source-destination pair.
number share the same risk. Di verse routing: Compute the probability that two
specified paths both fail. Obtain the pair of most reliabldhpa
(?tween a source-destination pair.

. . b
the key difference is that a demand node does not necessari }éy generalizing the concept of disjoint paths to interde-

fail if a risk occurs (.e.., a supply node fails), since a demand ,endent networks, we characterize the level of disjoirgnes
node may have multiple supply nodes, whereas a node feﬁs

o . . : . . etween two paths to study diverse routing. In contrast to
if its associated risk occurs in the classical shared rigkugr . . L
model. the classical shared risk group model where a node fails if

.its risk occurs, in interdependent networks a node fails if a

co-r:'[]r:lsﬁgiﬁglzacs)];igalpsrtlgrtler:j r'ir;tke rciﬁﬂenrgggglnggr\]/orksbr: ombination of risks occur. In view of this, our methods exte
group ' "BEON 16 shared risk group model. To the best of our knowledge,

be characterized by the number of risks that the path cotai is paper is the first to study the robust routing problem in
For example, if all the nodes in a path depend on a Sin%eterdependent networks

supply node and thus the path has a single risk, removing rhe rest of the paper is organized as follows. In Section II,

single supp]y node would disponnect the path. In contrést, | state our model for interdependent networks and failures
every node in a path has multiple supply nodes, the path WOtk gSection [ll, we prove the complexity, and develop approx-

be_ more robust and can resist a Iarge“r _nurr:ber of supply NQfvation algorithms to compute the path failure probahility
failures, although the path has more “risks”.

Section 1V, we develop algorithms to find the most reliable

In addition to the most reliable path, a backup path C%th between a pair of nodes. In Section V, we study the

be g;ed to further improve reliability, througiverse roufcir}g diverse routing problem in interdependent networks, andl fin
Intuitively, a pair of reliable paths should share the minim a pair of reliable paths whose failure probability is mirdel.

number of risks (or be rlsk-_d|s_10|nt) in the shared risk POUsection VI provides numerical results. Finally, Sectionl VI
model [11], [13]. However, in interdependent networks,sit i

concludes the paper.
easy to construct examples where two paths that share many

supply nodes can withstand a larger number of supply node Il. MODEL

failures than two paths that share a smaller number of supple consider a demand netwoék, and a supply network
nodes eg, Flg 3) New metrics, other than the number 0@2’ where every demand node @Yl depends on one or
risks shared by two paths, need to be identified to Charaeteri'nore Supp|y nodes |ﬂ;’2 We assume that every Supp|y node
their reliability. provides substitutional supply to the demand nodes, and a
demand node is functioning if it is directly connected to at

a ﬁ a ﬁ least one supply node. To study the impact of node failures in
: : Gy on GGy, it is equivalent to study the following model.

Consider a grapt¥(V, E, Sy ), where node¥” and edge®
° e e e are identical to nodes and edgein, andSy are the supply
node sets, each of which is a set of nodes&sinthat provide
a 6 a e supply to a node iri/. In this model, each node, € V is a
’ demand node, supported by a set of supply ndties Sy,
Fig. 3. The two numbers in each node represent its two suppdes The andv; fails if all the nodes inS; fail. (Note that nodes” may
two st paths in the left figure share two supply nodes, and can be bdtave different number of supply nodes.) Finally, fet € V/
disconnected after removing supply nodgs 2}. The two st paths in the he g source-destination pair.
g?t';ﬁ If;fviiga;i;ﬁzssuupppgy?%%iss’_ but they cannot be bistodnected jjer the condition that supply nodes fail independently
with given probabilities, and following the convention tha

Diverse routing problems have been studied under corcelatet do not fail, we study the robust routing problems in
link failures. The correlation between a pair of logicalkkn G(V,E,Sv).
is obtained either by measurement [15] or by analysis &emark.The analysis for this model can be directly applied
the underlay physical topology [16]. Heuristic algorithmso interdependent networks, as long as the interdependence
have been developed to find multiple reliable paths, aigl bidirectional {.e., if v € G; depends onu € G, then
their performance was evaluated by simulation [15], [17}; depends orv as well) and failures initially occur in one



network. It suffices to observe that, given a set of failedasodAlgorithm 1 Estimating the path failure probability based on
S C G, a nodev € G, fails if and only if its supply nodes importance sampling.
are all in S. Notice that the failure ofv does not further Initialization:

lead to node failures irG,, because all the nodes that 1) Givenapatvy, vy, ..., vm}, let{u}|j =1,... ng(vi)}
supports, which are exactly the supply nodes fodue to denote the set of supply nodeswof wheren, (v;) is the
the bidirectional interdependence, have failed. number of supply nodes of,.
Main loop:
Il1. COMPUTING THE RELIABILITY OF A PATH 2) Among{vi, vs, ..., vm}, randomly choose; with prob-
If every node has a single supply node, the path failure ability
probability is given byl — (1 — p)”, where each supply node H p(u;)/ Z H p(u;?).

fails independently with probability and the path is supported
by r supply nodes. In contrast, if every node has more than one ) )
supply node, computing the path failure probability beceme  If €very demand node has an identical number of supply
#P-hard. The proof can be found in the Appendix of the nodes, and the supply node failure probabiliy.;) is

1<j<ng(vq) 1<k<m 1<j<n(vk)

technical report [19]. identical, then node; is chosen with probability /m.

_ _ 3 _3) If v; is chosen, set all of its supply nodgs|j =
Theorem 1. Computing the failure probability of a path is 1,...,ns(v;)} to be failed. The other supply nodes are
#P-hard, if every node has two or more supply nodes and randomly set to be failed with their respective failure
each supply node fails independently with probability probabilities. Let/ denote the set of failed supply nodes.

Although it is  P-hard to compute, the path failure proba- 4) Test whetherv; is the first failed node among
bility can be well approximated. We apply the solution to the ~ 1V1:V2: - - Um}, given thatl fail (and no other supply
DNF probability problem and propose d#, §)-approximation nodes fail). I true, setl = 1; othegrvylse, setl = 0.
algorithm based on importance sampling, which approximate Repeat the loop fon = 3m In(2/4)/¢" iterations.
the path failure probability to within a multiplicative fax Result:

1 £ € with probability at leastl — ¢. 5) Count the number of = 1 and denote the number by
The DNF probability problem computes the probability that ~ An (e, d)-approximation of the path failure probability is
a Disjunctive Normal Form (DNF) formula is true, when it given byb/a 3>, oy o, TTi<jcp. o) P(U])-

erals are set to be true independently with given probaslit
A DNF formula is a disjunction of clauses, each of which
is a conjunction of literals, and takes the following form'1
(iAo Aalh IV @IA-- A2 )V V(@A Axl ). Let

vy —---—vy, be apath inG(V, E, Sy ). The key observation is
that computing the path failure probability can be formedat
by a DNF probability problem, in which a clauég represents
a nodev; in the path and the Iiterats} in clauseC; represent
the supply nodes of;. For completeness, we state Algorith

1 that ap_proxmates the path failure probability, .b.y e}dtg)t| smalf. In contrast, by sampling in a more important space, the
the algorithm that approximates the DNF probability in [Zo]number of iterations is reduced. Note that the only quantity

The intuition behind this importance sampling algorithnfhat needs to be estimated in Algorithm 1 by simulation is
is as follows. Some events, although rare, are important ﬁm and thatPr( = 1) > 1/m. We conclude this section

detﬁr;ni_lning thebp?lh fa!”“re plrlobak\]bilit)l/, es.r;]ecially Wlma'&, by the following theorem, whose proof is in the Appendix of
path failure probability is small. The algorithm samplesain .o technical report [19].

space consisting of important events, each of which is a set

of supply node failure$’ that lead to the path failure. In thisTheorem 2. The path failure probability can be estimated to
space, the failure off may appear multiple times, given thatwithin a multiplicative factorl + e with probability 1 — 4, in
multiple choices of; in Step 2 may lead to the sarfiein Step  time O(m?n, In(1/6)/€e?), wherem is the path length and

3. The algorithm then remove the duplicatédvia sampling is the maximum number of supply nodes for a demand node.

in Step 4. . . -
. Although the failure probability of a specific path can be
To prove the correctness of the algorithm, we take tr\]/(\?ell approximated by the importance sampling algorithne, th

following two steps. First, following a similar analysis toalgorithm hardly gives an intuition for path propertiesttha

[20], we prove that the path kfaﬂur;z probab!l|tyh|s given IO¥:haracterizeareliable path. In the remainder of this sactie
E[{]nggm ngjgnsévk)p(uj)i w ere E[I] is the expec-
tation of 7 in Step 4 of the algorithm. Second, by repeating , , . . .
. . If F" occurs inb out of a trials, Pr(F) € (1 £ €)b/a with probability
the |00_p a sufﬁuently large numbe_r of t'meE_’[_I] can be ; 5 under the condition thab — Q(In(1/6)/c2). The total number of
approximated to within factot + ¢ with probability at least trials a = Q(In(1/5)/e?)/ Pr(F) is large whenPr(F) is small.

—d. The details of the proof can be found in the Appendix
of the technical report [19].

The advantage of this algorithm over a naive Monte-Carlo
algorithm €.g, by repeatedly simulating the supply node
failure events and counting the fraction of trials in whitte t
ath fails) is that the number of iterations in the naive kéen
arlo algorithm is large when the path failure probabilisy i



develop indicators and bounds on the path failure prokigbili Next, we consider the first two terms that provide a lower

which can be used for finding the most reliable path. bound on the path failure probabilitgf( Bonferroni inequal-

) ) ) - ities). For any pair of nodes;, v, € D, the union of their

A. Small and identical failure probability supply node sets contains at leastx(n,(v; ), ns(vy)) + 1
Consider a path;, —- - -—wv,, in G(V, E,Sy). Let F; denote nodes, because neither supply node set includes the otlaer as

the event that all the supply nodesgffail. Let ' denote the subset. At least™™ + 1 supply nodes have to be removed in

event that the path fails. Clearly, the path fails if at lems¢ order for a pair of nodes i to fail. At leastn™*+2 supply

nodew; loses all of its supply noded (= Ui<i<m F}). nodes need to be removed in order for a pair of nodes to fall
By the inclusion-exclusion principle, we have if at least one node belongs 10,. The absolute value of the
B second term is at mogt))p™= "1+ [(7) — (T)]p"s T2 A
Pr(F)= ) Pi(F)— > Pi(F,NF,) lower bound onPr(F) is
1<i<m 1<ii<ia<m
m—1 min m2 min m?2 min
+- 4 (1) Pr(FiNFy- N Ey). 1) Pr(F) >mp"s  — (TPPRS + TPQPnS )
Directly computing the path failure probability is diffi¢ul N _ pmin
. m . . . >mp’s  —emps
given that there areéj) summations in theg-th term of the
inclusion-exclusion formula. We first reduce the number dér p < e/m. O

events in the inclusion-exclusion formula, and then furthe . . o
- . - Thus, we have obtained the following tweliability indi-

simplify the computation under the condition that the syppl . . )

node failure probability is small and identical cators for a path. These combinatorial properties are useful
To reduce the number of events somdunda.mtevents can in finding a reliable path, which will be studied in the next

, ' i section.

be ignored. For example, i; occurs only if F; occurs, then i o o

the event} is redundant in determining with the knowledge ~ * 75" - the minimum number of distinct supply nodes for

of F;. To see this, note that 1) #; occurs, then the path fails & !"Ode in the path. o -

regardless ofF;; 2) if F; does not occur, the; does not ~ * 77 the number of combinations of;™" supply node

occur as well. If the supply nodes of form a subset of the failures that lead to the failure of at least one node in

supply nodes ofi;, then F; is redundant. With an abuse of  the path.

language, we call a node; redundant ifF; (i.e., the state g Arbitrary failure probability

of v;) is redundant. With this simplification, we derive the ) .

following result. In contrast with the case where supply node failure prob-

Letn, (v;) denote the number of distinct supply nodesof ability is small and identical, it is difficult to characteei
Let pmin — miny<s<m 1s(01). After removing the redundant the reliability of a path by its combinatorial propertiesittw

nodes sequentially, lef be the number of remaining nodeéimited knowledge of node failure probabilities. Therefpwe

that each havag“i“ supply nodes. The path failure probabilityObtain bounds on path failure probability that will be udefu

b timated by the following th . in finding a reliable path.
can be estimated by the following theorem First, we develop an upper bound on the path failure proba-

Theorem 3. If every supply node fails independently withbility. Let p(v;) be the failure probability of node;, under the
probability p < ¢/m, then the path failure probability satisfiescondition that each of its supply node$ fails independently
s with probability p(u}). The path failure probability, under the

(1 —e)mp™ < Pr(F) < (1+e€)mp™s
Proof. We first reduce the number of failure events that appe%?ndltlon that the failures of” are positively correlated, is no

in the inclusion-exclusion formula by removing the reduntdaIarger than the path failure probability by assuming that th

nodes. Note that determining whether a node is redundfarlwl{ureS of " are independent. The proof can be found in the

and removing the redundant node are done sequentially, Th%ghnlcal report [19].

among the set of nodes that have the same supply nodes, lbe@ma 1. The failure probability of a patt? where a supply
node remains. LeD denote the nodes in the path excludingode v fails independently with probability(u}) is upper
the redundant nodes. bounded byl — [[,, cp(1 — p(vi)).

First, we consider the first term in Eq. (1) that provides

an upper bound on the path failure probability, known as th Then, we develop a lower bound on the path failure proba-

union bound. LetD; c D denote the set of nodes that eacﬁ: ity. The intuition is as follows. After replacing a supptode
have pmin su.pply nodes, and let, — | D, |. The remaining that supports multiple demand nodes by multiple independen

nodesD, = D \ D; each haven™™ + 1 or more supply supply_nodes with. _sufficiently §ma|| failure probgpilit)het
nodes. Thus, the first term of Eq. (1) is at most path failure probability does not increase. In the origigraiph
, _ G(V,E,Sy), consider a node; € V. Let U* denote the
Pr(F) <mp™  + (m —m)pp™s set of supply nodes of;, let u; € U’ denote one supply

n +ep"§m“, node, letp(u;) denote the failure probability ofi;, and let

nq(ul) denote the number of nodes tha} supports. Let

for p <e¢/m. p(vi) = [lyicy: P(u}) denote the failure probability ob

i

<ip"



if u; fails invdependently with probability?(u?) =1-(1— by a modified Dijkstra’s algorithm, and can be obtained in
p(ut))'/ma(3) A lower bound on the path failure probabilitylinear time [22].
is as follows, whose proof follows a similar technique in][21 However, it is NP-hard to minimize:, even in the special
and is in the technical report. case where every demand node has a single supply node. The
. - result follows from the NP-hardness of computing a path with

Lemmai\ 2. Thg failure probab|I|.ty ofa patlf wh?re.a SUPPY the minimum colors in a colored graph [12].
node u; fails mdependentI)N/ with probability(u}) is lower We develop an integer program to compute the pth
bounded byt — [T, c p(1 — p(v1)). with the minimumsn, under the condition that™®(P) =

Let ng denote the maximum number of demand nodes that@n,, c p n5(v;) is maximized. The following pre-processing
supply node supports, and ket denote the maximum numberreduces the size of the integer program. First, compute
of supply nodes for a demand node. The following lemmaaxpep n)""(P), where P is the set of all thest paths,
bounds the ratio between the upper and lower bounds. It$ prosing the linear-time maximum capacity path algorithm.i,he

can be found in the Appendix of the technical report [19]. remove all the nodes that have fewer thamlistinct supply
nodes and their attached edges, and denote the remaining

Le_mma 3. For_ any path, the ratio of the upper bound on itaraph byG'(V', E',Sy+). The removed nodes and edges will
fagltur_e %r(_)ball_blhty ob;a_me(: n Lem{jja 1 to the lower bound, e \iseq by the optimal path. L&Y’ C V'’ denote the
obtained in Lemma 2 is at mogt)". nodes among which each has exadtlgistinct supply nodes.
IV. EINDING THE MOST RELIABLE PATH We aim to find a pat/lj/p where the number of distinct supply
. . . . de sets foVp N V" is minimized.
In this section, we aim to compute the most reliable afl? P
! on, We a bu ! P Let S; denote the set of supply nodesiof V. Let Sy«

between a source-destination pait € V in G(V, E, Sy ). te th : fth i denote the fl bl
We first prove that it is NP-hard to approximately computger_]O e the union of these sets. Lgf denote © flow variable
hich takes a positive value if and only if edgej) belongs

the most reliable path. We then develop an algorithm h I d path his identified b int (3
compute the most reliable path when the supply nodes f%?lt € se (_acte path. path is I gntl led by constraint (3).
node i is on the selected path if at least oneagf and

independently with an identically small probability, anafily is positive. Leth(S;) denote whether removing supply

develop an approximation algorithm under arbitrary falur'7: )
probabFi)Iities PP g y nodess; disconnects the selected path. If a nads on the

Hardness of approximatiomlthough the failure probability selected path and has supply nodes, them(S;) must be.
of any given path can be approximated to within factor ¢ one, guaranteed by constraint (4). All the other nodes eithe

for anye > 0, it is NP-hard to obtain art path whose failure do not belong t9 the selected pa_th or have more ihgupply
probability is less thari + ¢ times the optimal for a small nodes, and their supply node failures are not consideregl. Th

¢. The proof can be found in the Appendix of the techniczﬂbjemive minimizesn, which is the number of combinations
réport [19] of k& supply node failures that disconnect the path.

Theorem 4. Computing anst path whose failure probability

is less thanl + ¢ times the failure probability of the most MN > h(S) )
reliable st path is NP-hard fore < 1/m, wherem is the Si€Syn
maximum path length. 1, ifi=s,

. i i . S.t. Z Tij — Z Tji = —1, if 1= t, (3)
A. Small and identical failure probability GlapeEy Glones) 0, otherwise.

If every supply node fails independently with an identigall ) ”
small probability, there are two reliability indicatorg:" _ Z lxij—k_ Z fvﬁ < 20(Si), Vi€ VT 5, 1,(4)
and . Recall thatn™™ is the minimum number of supply biter Llvaer
nodes for a node in the path, and thatis the number of vy 20, V(i,j) € E,
combinations of»™" supply node failures that disconnect the h(Si) ={0,1}, VS; € Syr.
path. With the two indicators, the path failure probabilign
be approximated to within a multiplicative factar+ ¢ by R T
mp™s, under the condition thap < ¢/m. Moreover, the If nodesV in a graphG(V,E) fail independently, the
indicatorn™ is more important (and has a higher priority tgorobability that a path survives is the product of the suabiv
be optimized) thamn. We next develop algorithms to optimizeprobabilities of nodes along the path. The most reliablé pat
the two indicators. can be obtained by the classical shortest path algorithm, by
Given a graphG(V, E,Sy) and a pair of nodess, t), the replacing the length of traversing a nogeby — In(1—p(7;)),
problem of computing ast path with the maximum™* can wherep(7;) is the failure probability ofy;. It is easy to see
be formulated as theaximum capacity pathroblem, where that the length of a pattP is » ; .p —In(1 — p(3;)) =
the capacity of a node equals the number of its distinct guppt In[[; cp(1 — p(?:)). The shortest path has the smallest
nodes and the capacity of a path is the minimum node capadajture probabilityl — [[; (1 — p(%:)).
along the path. The maximum capacity path can be obtainedCompared with the above simple model, the difficulty in

B. Arbitrary failure probability



obtaining the most reliablet path in interdependent networksalso# P hard to compute the failure probability of two paths
is the failure correlations of nodels C G(V, E,Sy). The To see this, note that if two paths have the same number of
failure probability of a path can no longer be characterizgd nodes and each node in the first path has identical supply
1—[I,,ep(1 —p(v:)). Moreover, lets —--- —v; —--- —t be nodes as its corresponding node in the second path, then the
the most reliablest path. The sub-patk — --- — v; may not probability that both paths fail equals the probability ttlaa
be the most reliable path betweerand v;. Thus, the label- single path fails. Fortunately, we are still able to obtaif e-
correction approach in dynamic programmirgg(, Dijkstra’'s approximation of the failure probability in polynomial ten
algorithm) cannot be used, even though the failure prothabil
of a given path can be approximated. A. Small and identical failure probability

Given the bounds obtained in the previous section, we pro-
pose Algorithm 2 to compute a path whose failure probabilit(;{r
is within (nq)" times the optimal failure probability. Recall

that the bounds on path survival probability are the prOdui(&IenticaIIy small probabilityp — o(1/m?), the probability

of (original or new) node survival probabilities, which eX§t ., 6 paths fail i99( f(m)p?) if they are risk disjoint and
match the path survival probability in the case of mdepemde@(f(m)p) if they share one or more risks, where is the
node failures. maximum path length andgi(m) is a function ofm. Thus,
Algorithm 2 An approximation algorithm to compute a reli-fisk-disjointness characterizes the order of the religbof
able st path inG(V, E, Sy). two paths. In interdependent networks where every demand
node has multiple supply nodes, if nodesin do not share
) ) I~ ;¥ any supply nodes with nodes i#?, then P! and P? are
ﬁce ? supply tnode ?f}i Wgh falllutr? pirObbet{p(lfjl risk disjoint. However, risk-disjointness does not suffice
Y Squ?rsnd(u-j) nodes, e_p(uj) o ( characterize the reliability of two paths, for the followin
_p(u;j))l_/nd@j)- Let j(v;) be the failure probability ob; o reasons. First, the failure probability of a demand node
if uj fails independently with probability(uj). ~ depends on the number of supply nodes for it, which is
2) Compute the most reliable path assuming that; fails ot related to risk-disjointness. Second,fit and P? share
independently with probabilitys(v;). The most reliable some supply nodes, the failure probability depends furtimer
path can be obtained by a standard shortest path algoritif maximum number of supply node failures that the two
(e.g, Dijkstra’s algorithm), by letting- In(1 — p(vi)) be  paths can withstand. To study the reliability of two paths in
the length of traversing node. interdependent networks, we defidailure resilient pathsas
follows.

A central concept in diverse routing is tliisjoint paths
risk disjoint paths[11], [12], [10]. In the classical shared
risk group model, if every risk occurs independently with an

1) For eachv; € V, computep(v;) as follows. Letu;ﬂ

Theorem 5. The failure probability of the path obtained byDefinition 1. Two paths arel-failure resilient if removing any
Algorithm 2 is at mostn,)": times the failure probability of d supply nodes would not disconnect both paths.
the most reliablest path under arbitrary supply node failure

probabilities Remark.In the classical graph modé}(V, E), two disjoint

paths are 1-failure resilient while two overlapping pathe a
Proof. Let the path obtained by Algorithm 2 ¢/ and let the O-failure resilient. In the classical shared risk group elpd
path with the minimum failure probability b&*. Let p(P’) two risk disjoint paths are 1-failure resilient while twotha
and p(P*) denote their failure probabilities. Moreover, lethat share risks are O-failure resilient. Two paths can nbee
p(P’") andp(P*) denote their failure probabilities by assumingnore than one failure resilient. Thus, the disjointnessisk-r
that each node; fails independently with probability(v;). disjointness suffices to characterize (the order of) thalviity
We havep(P') < nj*p(P’) < nj*p(P*) < nj*p(P*), oftwo paths in these models.

where the first inequality follows from Lemma 3 and the last 1) Evaluation of failure probability: Consider two paths

inequality follows from Lemma 2. O pr_ s—vl—pl— oyl P2 =g p2—p2—. .02 —t
m ' mo

Remark.If n, = 1 and every supply node fails independentipetween a_paig of nodgs, t). We study the Svent that at least
with an identically small probability, our result reducesthe ©n€ node inP" and at least one node iff* both fail. Let
following result in the classical shared risk group modedeT 7 denote the event that all the supply nodesspffail, and
number of risks associated with the shortest path is at mpst/et 7* denote the event that thieth path fails,k € {1,2}.
times the number of risks associated with the minimum-risk'€NF* N F? = Ur<i<m, 1<j<m, (F} N F}). For simplicity
path [13]. of presentation, leF™" = F' N F? and F;; = F} N F?. Let
S;; denote the union of supply nodes @f andv?.
V. RELIABILITY OF A PAIR OF PATHS '
To study diverse routing in interdependent networks, we2meanwhile, it is still simple to compute the failure probiihiof two paths

consider the simplest case of twa paths in this section. if every node has a single supply node, by first computing theability that
the first path fail, and then computing the probability the second path fail

_Given that (_:OmpUting the failure prObabi"ty of a Single Iﬁp"a_‘tv_\/hile the first path does not fail.€., none of the supply nodes of the first
is # P hard if every node has more than one supply node, itpath fail), both in polynomial time, and summing the two abiities.



To decide whether two paths akéfailure resilient, we a demand node.
consider the number of supply node failures that lead to d 5
the eventF;;, and denote the number by;;. Thend = ()

; = 1, ifi=s
ming<i<m, 1<j<ms dij — 1. Moreover, letrn be the number L . PS5
of pairs of nodes, one from each path, such that each pair St Z Tij — Z Tji = —1, if :_t, ke{l,2},
nodes in total havel + 1 distinct supply nodes and any two ldlG)eEy {ilU.HeE} 0, otherwise.
pairs do not have the same setdf 1 supply nodes.l(e., m Z ok + Z ak < 2bF, VieV,ke{l1,2}
combinations ofd + 1 supply node failures each disconnect UlGHEEY {jIGA)EEY
both paths.) The next theorem formalizes the connection b} +bf <1, VieV\st, 6)

between the reliability of two paths antd The proof follows 1 12\ v -
the same manner as that for Theorem 3 and can be found in d+1 <15 US;|+M(2—b; —b5),¥i,j €V s, ,(7)
the technical report [19]. zy; €{0,1}, V(i,§) € B,k € {1,2},

WP e {0,1}, VieV,ke{1,2}.

Theorem 6. If every supply node fails independently with A slightly modified integer program suffices to minimize
probability p < €/(m1ms), then the probability that twal- m under the condition thaf is maximized. Leth(S; U S;)
failure resilient paths with lengths:;, mo both fail satisfies denote whether removing the union of supply nodes fand
(1 — e)mp?™tt < Pr(F*M) < (1 + €)mpdt. j disconnects both paths. Constraints (9) guarantee that if
and j belong to two different paths,e., b; = b7 = 1, then
o ) ) h(S; U S;) = 1. Otherwise,h(S; U S;) = 0 in the optimal
2) Finding the most reliable pair of pathszrom Theorem g tion."Let a positive values(|S; U S;|) denote itsweight
6, we know .that the probability that twd-failure resilient |\ nhich is a decreasing function of the cardinality; U S;|.
paths both fail is smaller for larger valuesdfMoreover, fora \we aim to minimize the total weights of supply node failures
fixed d, the failure probability is proportional te, the number 14t disconnect two paths. In order to guarantee thas

of combinations ot + 1 supply node failures that disconnectnayimized,w(1) /w(l + 1) should be sufficiently large for any
both paths. We have obtained two reliability indicatorstfoo integerl, e.g, [V|?/2. Since there are at mogt'|(|V|— 1)/2
paths:d andmn. pairs of nodes, largef is always preferable and has a higher
priority to be optimized overn.
Unfortunately, computing the pair af paths that have the
maximumd and the minimummn are both NP-hard, even in

the special case where every demand node has a single supyly Z w(|Si U S;)h(S: U S;) (®)
node. This special case reduces to the classical shared risk “%€5v

group model. In this special casé,= 1 if there exist two 1, if i =s,

risk-disjoint paths, and = 0 otherwise. The NP-hardness of S.t. > af, — > af, =¢ —1,ifi=t, ke{1,2},
determining the existence of two risk-disjoint paths betwe {ilG.)eE}y {j1(4.1)€R} 0, otherwise.

an st pair has been proved in [11]. Moreover, in this special Z xfj + Z xfz <ok, VieVke{1,2)

case, for two paths that share common supply nodess UlGi L=
. . Jl@HeEr {jlG,H)eE}
the number of overlapping risks between the two pailes, ( 1 .9 _
) _ . b, +b; <1, VieV\s,t,
removing any of then supply nodes disconnects both paths). v
The NP-hardness of the least coupled paths problem, which ~ A(Si U S;) > b; +b2 —1, Vi,j € V \s,t, 9)
computes a pair of paths that share the minimum number of Ifj €{0,1}, V(i,j) € E,k € {1,2},
risks m_the classical shared risk group model, has also been h(S;US;) € {0,1}, Vi,jeV
proved in [11]. '
B. Arbitrary failure probability

We develop an integer program to compute a pair of 1) Evaluation of failure probability: We use a similar
st paths with the maximunma in G(V, E, Sy ). Let variable importance sampling approach to Algorithm 1 and formulate
xfj denote whether edgg, j) is part of thek-th path, and the problem of computing the failure probability of two psith
let variableb? denote whether nodeis part of thek-th path, as a DNF probability problem. A clausg; represents a pair
k € {1,2}. Same as before, lef; denote the supply nodesof nodesv} and v?. Literals in C;; represent the union of
of nodei. Constraints (6) guarantee that two paths are nodgipply nodes ofv; and vf. A literal is true if and only if
disjoint. Notice that these constraints can be droppedefeh the supply node that it represents fails, and the probwbilit
iS no restriction on the physical disjointness of two paththat the literal is true is the same as the supply node failure
Constraints (7) guarantee that at ledst1 supply nodes need probability. The disjunction of clauses is true if and only
to be removed in order for one node in each path to fal,( if at least one clause is true, in which case both paths fail
b} = bf =1, 14,5 € V), where M is a sufficiently large because at least one node from each path fails. The rest of
number.e.g, twice the maximum number of supply nodes fothe computation follows the same manner as Algorithm 1,



by replacing a node in Algorithm 1 by a pair of nodes. Al
(¢, 6)-approximation of the failure probabilitr( FP°™M) can
be obtained inD(m2m3n;In(1/46)/€?) time.

2) Finding the most reliable pair of pathdt is more diffi-
cult to find two paths that have the smallest failure proligbil
Recall Theorem 6. The failure probability of two paths i
O(f(my, ma)ptt) if they are d-failure resilient when the
supply node failure probability is small, wheref (m, ms) is
a function of two path lengths. As a corollary of the fact the
it is NP-hard to compute two paths that have the maximu
level of resilienced, it is also NP-hard to compute two paths ‘ ‘ ‘ ‘ ‘
whose failure probability is within a facter from the optimal, 2120 -110 100 -90 -80
whereq is any function of the network size. Thus, we develop
the following heuristic. After computing the failure prdiiity ~ Fig. 4. Topology of the XO network and randomly generateghtyle supply
plui) of anode n Step 1of AIGortm 2, et In(1 —p(v)) [, e nestieiene Scaieban oo oo o concon
be the length of traversing node, and compute two node gepends on two nearest supply nodes.
disjoint paths with the minimum total lengths. The two paths
can be efficiently obtained using a slightly modified shdrtes
augmenting path algorithm [23]. The computation is outline First, we assume that every XO node depends on two nearest
in Algorithm 3. The reason for the graph transformation igupply nodes and every supply node fails independently with
Step 1 is to simplify the computation of a residual graph, terobability 10~2. Since the supply node failure probability is
which the shortest augmenting path algorithm can be appliginall and identical, we are able to obtain the most reliable

path and pair of paths by optimizing the reliability indicet
Algorithm 3 A heuristic to compute a pair of reliablg path using integer programs.
in G(V, E,Sy). To identify the most reliable path, sineg®®(P) = 2 for
1) TransformG(V, E,Sy) with node failure probabilities @ny path”, we only need to compute a path with the minimum
to a directed graphG’ with edge failure probabilities ™ USing the integer program in Section IV. The most reliable
using the standard approach. (Split every nodeto v, ~Path is colored red in Fig. 4, for which, = 8. To evaluate
and vo,. Add a directed edge from, to vey, which the path fallure_ probablhty,_ by a stronger qnalog of Theore
has length—In(1 — f(v;)). Add a directed edge from 3 (Corollary 1 in the technical report), setting= 4 x 10*_2,
V1ou 10 12y and a directed edge fromuoy t0 vy, both  Pr(F) € [7.68x107%,8x10~%]. To compare, using Algorithm
with zero length, if an edge exists betweenandwv, in 1, We obtain7.9686 x 10~* as a { + 0.01)-approximation
G(V,E,Sy).) of the path failure probability with probability 0.99. Tres
2) Compute the shortest paff{ from soy; to tin in G'. results suggest that the two reliability indicatong(", /) well
3) Compute the residual graph as follows. Remove all tifflaracterize the path failure probability when the supplgien
edges inP/. Add a backward edge fron, to v/ with a failure probability is small and identical.

Miami

20

negated length if an edge from to v}, is part of P]. We compute the most reliable pair of paths connecting
4) Compute the shortest path] from sou to #, in the Seattle-Miami using the integer programs in Section V. The
residual graph. two paths are plotted in Fig. 5, and they are 1-failure resili

5) CombineP] and P} by cycle cancellation. The two paths(d = 1). The failure probability of both paths is approximately

become node-disjoint and can be mapped to two pathslif#388 X 10=%. In contrast, the most reIiabIe_ pair of paths
G(V,E,Sy). connecting Seattle-Denver are 3-failure resilient andrthe

failure probability is approximatelg.9800 x 10~8. Thus, the
level of resilience well indicates the reliability of two tha.
Next, we assume that an XO node dependsvgmandomly
chosen supply nodes, whepé; is uniformly chosen among
We study the robust routing problems in the XO backborie 2, and 3. Let the failure probability of each supply node be
communication network with 60 nodes and 75 edges [24], lyiformly and independently chosen fraih005, 0.015]. We
assuming that the XO nodes are supported by 36 randombe Algorithm 2 to obtain a reliable path connecting Seattle
generated supply nodes within the continental US. The XKdiami. Averaged over 10 trials, the path failure probapilg
network topology is depicted in Fig. 4, and the supply nodegpproximately2.1032 x 102, while the lower bound on the
are marked as triangles. Theaxis represents the longitudefailure probability of the most reliable path 2365 x 1073,
and they-axis represents the latitude. We do not claim thathe obtained path has failure probability around four tirtes
the XO network needs supply from these randomly generatiesver bound. Moreover, by using the heuristic to find a pair of
points, and we use this example only to provide a visuatimati paths, the paths have average failure probaldlity32 x 103,
of the robust routing problems using available data. which improves the reliability of a single path.

VI. NUMERICAL RESULTS
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-120  -110  -100 -90 -80

(5]
Fig. 5. The most reliable pair of paths between Seattle-Mena colored red,
under the condition that supply node failure probabilitsisall and identical

and every XO node depends on two nearest supply nodes. (6]
[71

We compare the performance of the heuristic (Algorithm 3)
with the optimal pair of paths. Since it is difficult to obtain (8]
the optimal pair of paths under arbitrary failure probaieiti,
we use the integer program (8), under the condition that
supply nodes fail independently with probability0=2. If
every XO node depends on two nearest supply nodes, the
failure probabilities of two optimal paths and two path§0]
obtained by the heuristic are approximatély388 x 10~*
and 1.0773 x 104, respectively. If every XO node dependsii]
on three nearest supply nodes, the failure probability af tw
optimal paths and two paths obtained by the heuristic dfé
approximatelyl.0200 x 10~% and1.0508 x 10~°, respectively.
These experiments validate the performance of our heuridfi3]
algorithm.

Finally, we report the running times of the algorithmsj4;
executed in a workstation that has an Intel Xeon Processor
(E5-2687W v3) and 64GB RAM. The integer programs th@{5
find the most reliable path and pair of paths (under small
and identical supply node failure probability) can both be
solved within 1 second. The approximation algorithm to fink®!
a reliable path and the heuristic to find a pair of paths (under
arbitrary failure probabilities) can both be solved witl@irl  [17]
second. The evaluation of the failure probability of onehpat
or a pair of paths by Algorithm 1 takes several minutes, by
settinge = 6 = 0.01. Thus, the algorithms (integer programs!8l
and Algorithms 2 and 3) can be used to find reliable routes in
realistic size networks. [19]

VIl. CONCLUSION

We studied the robust routing problem in interdepende[r%?]
networks. We developed approximation algorithms to comput
the path failure probability, and identified reliabilitydicators [21]
for a path, based on which we develop algorithms to find the
most reliable route in interdependent networks. We alsd-stu22]
ied diverse routing in interdependent networks, and d@ezlo
approximation algorithms to compute the probability thved t
paths both fail and to find two reliable paths. Our work extgend
the shared risk group models, and provides a new framewd##l
to study robust routing problems in interdependent netaork

(23]
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