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Abstract—We consider the problem of optimal load balancing
in a server farm under overload conditions. A convex penalty
minimization problem is studied to optimize queue overflow
rates at the servers. We introduce a new class of α-fair penalty
functions, and show that the cases of α = 0, 1,∞ correspond
to minimum sum penalty, penalty proportional fairness, and
min-max fairness, respectively. These functions are useful to
maximize the time to first buffer overflow and minimize the
recovery time from temporary overload. In addition, we show
that any policy that solves an overload minimization problem
with strictly increasing penalty functions must be throughput
optimal. A dynamic control policy is developed to solve the
overload minimization problem in a stochastic setting. This policy
generalizes the well-known join-the-shortest-queue (JSQ) policy
and uses intelligent job tagging to optimize queue overflow rates
without the knowledge of traffic arrival rates.

I. INTRODUCTION

Server farms suffer from overload conditions, i.e., when the
user demand exceeds the service capacity, on a regular basis.
The cause of server overload includes demand fluctuations,
flash crowds, denial-of-service attacks, server and link failures,
or turning servers off for power saving and maintenance.
Server farms are expected to have high utilization in order
to be cost-effective, leaving less room to accommodate unex-
pected events that may lead to overload. An overloaded system
may incur reduced throughput and longer response time,
resulting in low user satisfaction and loss of revenue for the
service providers. Therefore, graceful and robust management
of overload surges is an important task.

We consider the problem of optimal load balancing in a
server farm consisting of load balancers and servers. Each
load balancer routes incoming jobs to its connected servers,
which may have different service rates. We focus on the
overload scenario where the traffic demand is unknown and
cannot be supported by the server farm. The performance
metrics of interest are queue overflow rates at the servers
and total system throughput. In general, a desired operating
point in an overloaded system is one that maximizes the
total throughput while enforcing the queue overflow rates to
possess certain good properties, e.g., maximizing the time to
first buffer overflow or minimizing the recovery time from
temporary overload. Achieving these performance objectives
introduces a nontrivial network control problem, because the
desired system performance cannot be computed offline due to
the unknown traffic demand, and existing throughput-optimal
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policies in a stable system (e.g., the max-weight policies) may
be sub-optimal when the system becomes unstable [1]. Also,
it is not understood under what conditions (if possible) can
maximizing throughput and inducing desired queue overflow
rates be achieved simultaneously in an overloaded system.

This paper studies optimal overload balancing in a server
farm as convex penalty minimization problems. By properly
choosing the penalty functions, we can achieve the desired
system performance as solutions to the minimization problems.
Our main contributions include:

• We characterize the set of all feasible queue overflow vec-
tors and show that the set is convex. This is somewhat sur-
prising because we show that the feasible region of queue
overflow rates under the collection of work-conserving
policies can be non-convex, which complicates the design
of optimal control policies. Also, we identify useful queue
overflow vectors in the feasible region, including: (i) the
most-balanced vector which is throughput-optimal, min-
max fair, and useful to maximize the time to first buffer
overflow; (ii) the weighted min-max fair vector which
minimizes the recovery time from temporary overload.

• We introduce a new class of α-fair convex penalty func-
tions as a generalization of the well-known α-fair utility
functions [2], and show that the cases of α = 0, 1,∞
correspond to minimum sum penalty, penalty proportional
fairness, and min-max fairness, respectively. Furthermore,
we prove that any policy solving a convex overflow
minimization problem with strictly increasing penalty
functions must be throughput optimal.

• In a stochastic setting, we develop a dynamic load bal-
ancing policy that solves queue overflow minimization
problems and is throughput optimal. This policy gener-
alizes the join-the-shortest-queue policy and proactively
adjusts queue overflow rates by an intelligent job tagging
mechanism. This method turns the overload control prob-
lem in an unstable queueing system into one that aims at
stabilizing virtual queues.

The optimal overload balancing problem in this paper is
fundamentally different from the traditional studies of network
load balancing [3, Chap. 5], where the former focuses on the
overload case and the latter assumes that the traffic demand
is always supportable in the network. The study of network
systems in overload has received significant attention recently.
Fluid limits [4], [5] and throughput optimization problems [6],
[7] are investigated. Work [8] shows that the most-balanced
queue growth rate vector exists in a single-commodity network
in overload; this work uses deterministic fluid models for
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performance analysis and does not provide a stochastic control
policy to achieve the most-balanced vector. The queue growth
rates of max-weight and α-fair policies in overloaded networks
are analyzed in [1], [9]. Tuning the max-weight policy to
render a queue growth rate vector in a given direction is
studied in [10]. Job tagging mechanisms are used to maximize
rewards in overloaded many-server systems [11]. Adaptive
overload control for web servers is considered in [12], [13].

The outline of the paper is as follows. Section II describes
the system model, characterizes the feasible queue overflow
region, and discusses useful queue overflow vectors. In Sec-
tion III, we introduce the overflow minimization problem and
the α-fair penalty functions, and prove that throughput opti-
mality is achieved using optimal queue overflow vectors. The
dynamic overload balancing policy is proposed and analyzed
in Section IV, followed by simulation results in Section V.

II. SYSTEM MODEL

We consider a server farm that comprises a set B of load
balancers and a set S of servers. According to the system
architecture, a load balancer b ∈ B is allowed to route
incoming jobs to a subset Sb of servers, Sb ⊆ S. Let Bs ⊆ B
be the set of load balancers that can direct traffic to a server
s ∈ S. Consider a time-slotted system. In slot t, load balancer
b receives Ab(t) jobs and forwards them to the connected
servers in Sb. We assume that Ab(t) are i.i.d. over slots with
mean λb, and have bounded support Ab(t) ≤ Amax. Each job
brings some workload to the system, referred to as the job size.
The size of incoming jobs is i.i.d. and denoted by a random
variable X . Suppose X has bounded support with X ≤ xmax,
and its probability distribution is otherwise arbitrary. Assume
that the size of the jobs is unknown to the system, but its
mean E[X] is available. Server s has a constant processing
rate cs, and takes x/cs slots to complete a job of size x. Jobs
are processed in a nonpreemptive fashion at each server. Load
balancers forward incoming jobs to the servers for processing.
Specifically, load balancer b routes Abs(t) jobs to server s in
slot t, where

∑
s∈S Abs(t) = Ab(t). If load balancer b is not

connected to server s, i.e., b /∈ Bs, then Abs(t) = 0 for all t.
Each server stores received jobs that are not yet processed in
a queue. See Fig. 1(a) for an example of the server farm.
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Fig. 1. (a) A server farm with two load balancers and three servers. (b) A
fluid network representation of the server farm.

A. Achievable performance
We seek to develop stochastic control policies that optimize

long-term queue overflow rates at the servers. For that, it is

important to understand the set of achievable queue overflow
vectors using a simple fluid model. It is useful to regard the
server farm as a single-commodity network with an augmented
receiver τ , see Fig. 1(b). The receiver τ is connected to the
servers s with directed links (s, τ) of capacity cs. Each load
balancer b is connected to its connected servers with directed
links (b, s), where s ∈ Sb. Since there is no queueing effect
at the load balancers, let the links between load balancers and
servers have infinite capacity. The exogenous traffic rate of
load balancer b is wb , λb E[X] in the fluid model, where wb
is also the workload arrival rate in the stochastic model.

We denote by qs the queue overflow rate at server s, i.e., the
workload growth rate at server s.1 Let Q be the set of feasible
overflow vectors q = (qs, s ∈ S). We denote by wbs and
wsτ the data flows over links (b, s) and (s, τ), respectively.
The flow wbs is the traffic rate at which load balancer b
directs its traffic to server s, and wsτ is the throughput at
server s. A queue overflow vector q is feasible if and only if
there exist flow variables wbs and wsτ satisfying the following
constraints:

wb =
∑
s∈Sb

wbs, b ∈ B (1)∑
b∈Bs

wbs = qs + wsτ , s ∈ S (2)

wsτ ≤ cs, s ∈ S (3)
wbs ≥ 0, wsτ ≥ 0. (4)

Equations (1) and (2) are flow conservation constraints,
where (2) shows that the total flow rate into server s is equal
to the throughput plus the queue overflow rate at that server.
Equation (3) is the link capacity constraint. We define the
vector w = (wbs, wsτ , qs)b∈B,s∈S that satisfies (1)-(4) as a
superflow, which reduces to the standard “flow” definition if
the queue overflow rates qs are zero for all s. As a result, the
feasible set Q is

Q = { q | w is a superflow } , (5)

which is a convex and compact set. See Figures 2(a) and 2(b)
for an example.

The feasible set Q in (5) is fully achievable if the servers are
allowed to be non-work-conserving. As an example, consider
a given load balancing allocation (wbs), which are flows
between load balancers and servers. We observe from (2) that
qs =

∑
b∈Bs wbs is a feasible queue overflow rate that is

achieved by always idling server s (i.e., setting wsτ = 0). The
reason for allowing suboptimal non-work-conserving servers
is that the resulting feasible queue overflow region Q is
convex. On the contrary, Fig. 2(c) gives an example of the
set of feasible queue overflow vectors under work-conserving
policies, and the region is not convex. Comparing Fig. 2(b)
and Fig. 2(c), we observe that allowing non-work-conserving
servers “convexifies” the feasible queue overflow region by
including suboptimal points. This enables us to formulate the
overload balancing problem as a convex optimization problem
without affecting the optimal solution.

1We use the terms “queue overflow” and “queue growth” interchangeably.
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Fig. 2. (a) A multi-server example. (b) The set Q of queue overflow vectors
under both work-conserving and non-work-conserving server operations. The
overflow vector (3, 0) is achieved by sending all traffic to server 1 but keeping
both servers idle. The middle point (1.5, 1.5) is achieved by equal time-
sharing between sending all traffic to one of the two servers. (c) The non-
convex set Q′ of feasible queue overflow vectors when both servers are work-
conserving. The overflow vector (2, 0) is achieved by sending all traffic to
server 1. Here, equal time-sharing over the two policies that achieve queue
overflow rates (2, 0) and (0, 2) respectively sends an average traffic rate of
1.5 to each server, resulting in the queue overflow rates (0.5, 0.5), which is
not a convex combination of (2, 0) and (0, 2). Therefore, the time-sharing
argument cannot be used in Q′.

B. Useful performance objectives

We describe three useful performance objectives and iden-
tify the queue overflow vectors that achieve them. Consider
maximizing the system throughput. Summing (1) and (2) over
b and s, we get ∑

b∈B

wb =
∑
s∈S

qs +
∑
s∈S

wsτ , (6)

where the first sum is the total exogenous traffic rate and the
last sum is the system throughput. This shows that maximizing
total throughput is the same as minimizing the sum of queue
overflows.

Next, consider the queue overflow vector that solves

min
q∈Q

max
s∈S

qs. (7)

Its solution is useful for preventing queue buffer overflow [8].
To see this, suppose each server has a finite buffer of equal
size A, and all buffers are initially empty. At the fluid level,
mins∈S{A/qs} is the earliest time epoch at which buffer
overflow occurs, and is maximized by the solution to (7).
A solution to (7) is the min-max fair queue overflow vector
q(∞), which exists in the convex and compact set Q [14,
Theorem 1].2 The vector q(∞) solves (7) because q(∞) is
the leximax minimum in Q, i.e., it is the lexicographically
smallest vector over feasible queue overflow vectors sorted
in a decreasing order. Both leximax minimum and min-max
fairness are stronger than the criterion (7).

Motivated by the simulation example in the introduction,
we are interested in the queue overflow vector that solves

min
q∈Q

max
s∈S
{qs/cs}, (8)

where cs is the capacity of server s. Its solution is useful for
mitigating temporary system overload in minimum time. To
see this, suppose that the system is initially empty and suffers
from temporary overload for a duration of t seconds, where
server s has queue overflow rate qs. At the end of the overload

2The notation q(∞) is explained in Section III-A.

period, the amount of workload accumulated at server s is
tqs. Thus, maxs∈S tqs/cs is the remaining time the system is
affected by temporary overload after the overload event ends,
and is minimized by the solution to (8). A solution to (8) is the
weighted min-max fair queue overflow vector with weights cs.

In the next section, we show that the queue overflow vectors
discussed above are achieved as solutions to convex penalty
minimization problems.

III. OVERLOAD BALANCING AND OPTIMIZATION

We formulate the overload balancing problem as a convex
optimization problem. Each server s ∈ S = {1, . . . , S} has
a penalty function hs of the queue overflow rate qs, where
hs is increasing, continuous, and convex. We consider the
optimization problem

minimize
S∑
s=1

hs(qs) (9)

subject to q ∈ Q, (10)

where Q is given in (5). The optimal solution exists be-
cause (9)-(10) minimizes a continuous function over a compact
set; the solution is unique if the objective function is strictly
convex.

We wish to design penalty functions that can achieve desired
queue overflow vectors, e.g., those discussed in Section II-B,
by solving (9)-(10). An important result in [8] is that there
exists a most-balanced queue overflow vector qMB in a single-
commodity network under overload, of which the server
farm in this paper is a special case. The vector qMB has
two important properties [8]: (i) it simultaneously maximizes
system throughput and achieves min-max fair queue overflow
rates; (ii) if hs = h for all servers s where h is any convex
and increasing function, then qMB solves the corresponding
optimization problem (9)-(10). Consequently, if we choose
hs(x) = x2 or any convex increasing function for all s, then
the unique solution to (9)-(10) achieves both maximum system
throughput and min-max fair queue overflow rates. In general,
however, the vector qMB does not yield weighted min-max
fairness, for which we introduce an interesting class of penalty
functions next.

A. α-fair penalty function

We propose a family of convex penalty functions that can
be used to achieve several fairness objectives. We define the
class of α-fair penalty functions

h(α)(q) =
q1+α

1 + α
, α ≥ 0, q ≥ 0, (11)

which can be regarded as a natural generalization of the α-fair
utility functions [2]

g(α)(r) =

{
r1−α/(1− α), α ∈ R+ \ {1}
log(r), α = 1

by letting α take negative values in g(α)(r). In general, the
convex and increasing functions h(α)(q) are useful in penalty
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minimization problems, whereas the concave functions g(α)(r)
are useful for reward maximization problems.

Consider the problem (9)-(10) with α-fair penalty functions:

minimize
S∑
s=1

(qs)
1+α

1 + α
(12)

subject to q ∈ Q, (13)

where Q is compact and convex. Let its optimal solution be
q(α). There are three values of α of particular interest: α ∈
{0, 1,∞}. When α = 0, the problem (12)-(13) minimizes the
total queue overflow. When α = 1, the α-fair penalty function
is q2/2 and the first-order optimality condition for the solution
q(1) is [15],

S∑
s=1

(qs − q(1)s ) q(1)s ≥ 0, ∀q ∈ Q. (14)

Prior work [16] shows that the condition (14) incurs the same
proportional tradeoff as rate proportional fairness [17] for an
optimal reward vector (y∗n)

N∑
n=1

yn − y∗n
y∗n

≤ 0, for all feasible (yn). (15)

The difference is that (14) is meaningful in the context of
penalty minimization and (15) in reward maximization. We
refer to q(1) as the vector that achieves penalty proportional
fairness. The criterion (14) has the product form instead of the
ratio form (15) because we favor large reward in (15) but desire
small penalty in (14). We note that rate proportional fairness
uses logarithmic utility functions while penalty proportional
fairness uses quadratic penalty functions. Finally, the case of
α → ∞ corresponds to min-max fairness, as shown in the
next lemma.

Lemma 1. The vector q(∞) = limα→∞ q(α), where q(α) is
the solution to (12)-(13), exists and achieves min-max fairness
in the compact and convex set Q. (The proof is omitted due
to the space constraint.)

An obvious generalization of the penalty functions (11) is to
consider weighted α-fair penalty functions (q/c)1+α/(1 + α)
with a weight c > 0. This is useful to minimize the weighted
sum of queue overflow rates by choosing α = 0, and this is
directly related to maximizing the weighted sum throughput
in the server farm. Also, the weighted min-max fair queue
overflow vector with weights cs in Q is min-max fair in the set
of feasible weighted vectors (q1/c1, . . . , qS/cS). Therefore, it
is the solution to (9)-(10) with the objective function

S∑
s=1

(qs/cs)
1+α

1 + α

as α → ∞. In general, however, the set of feasible weighted
queue overflow vectors (q1/c1, . . . , qS/cS) in the server farm
does not contain a most-balanced vector. Therefore, weighted
min-max fairness and minimum weighted sum penalty do not
coincide.

B. Throughput optimality

Throughput is a performance metric as important as queue
overflow, and it is desired to understand under what conditions
does the optimal queue overflow vector that solves (9)-(10)
induces maximum system throughput. One known condition is
when the penalty functions hs in (9)-(10) are the same for all s,
in which case the solution is the most-balanced overflow vector
qMB. More generally, the next theorem shows that maximum
total throughput is always achieved whenever the functions hs
are convex and strictly increasing.

Theorem 1. If the convex penalty functions {hs, s ∈ S} are
strictly increasing, then any superflow w with the optimal
queue overflow vector solving (9)-(10) achieves maximum
system throughput.

Proof: See Appendix A.

IV. DYNAMIC CONTROL ALGORITHM

A well-known policy for balancing loads in server farms
is the join-the-shortest-queue (JSQ) policy [18], according
to which a load balancer routes jobs to the server with the
shortest queue. When the server farm is underloaded, it is not
difficult to see that the JSQ policy is a max-weight policy and
thus throughput optimal [19], i.e., JSQ stabilizes the system
whenever the exogenous traffic rates are within the stability
region. When the system is in overload, however, we do not
expect the JSQ policy to always yield optimal queue overflow
rates—the long-term performance of JSQ, if it converges,
corresponds to one point in the overflow feasible region Q,
but the overload balancing problem (9)-(10) with different
objective functions can have different solutions.

We propose a simple generalization to the JSQ policy that
yields optimal queue overflow rates to solve (9)-(10) with
different penalty functions. The idea is to virtually categorize
the jobs into two groups, tagged and untagged, so that the
job tagging rate at a server corresponds to its queue overflow
rate and the rate at which jobs are untagged is the throughput
at the server. Then, virtual queues are used to optimize the
job tagging rates according to the objective functions. In the
following, we provide intuition behind the design of our policy.

1) Job Tagging: For each job i, we define the indicator
function Ii = 1 if the job is tagged, and 0 otherwise; the
optimal job tagging mechanism is given in Section IV-3. Let
Ns(t) be the number of untagged jobs stored at server s and
ns(t) the number of untagged jobs departing the server in slot
t. Recall that Abs(t) is the number of jobs routed from load
balancer b to server s in slot t. The queue process {Ns(t)} at
server s is updated over slots according to:

Ns(t+ 1) = Ns(t)− ns(t) +
∑
b∈B

Abs(t)∑
i=1

(1− Ii). (16)

For the purpose of explanation, we assume that the system
is heavily overloaded so that the servers can only process
untagged jobs, and tagged jobs stay in the system forever.
Suppose untagged jobs have strict priorities over tagged jobs
at each server. Consider a policy that keeps the number of
untagged jobs bounded in the system by stabilizing the queues
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Ns(t). Under this policy, the average throughput at a server is
the departure rate of untagged jobs multiplied by the average
job size. In addition, the queue overflow rate at a server is the
product of average job tagging rate and average job size, i.e.,

qs = θs E[X],

where θs is the long-term job tagging rate at server s:

θs = lim
T→∞

1

T

T−1∑
t=0

∑
b∈B

E
[Abs(t)∑

i=1

Ii

]
. (17)

Therefore, it is possible to solve the overload balancing
problem (9)-(10) by designing a control policy that stabilizes
the queues Ns(t), and a job tagging policy that achieves the
optimal job tagging rates θ∗s = q∗s/E[X], where (q∗1 , . . . , q

∗
S)

is the optimal solution to (9)-(10).
Due to the randomness of job arrivals, some tagged jobs

may receive service, in which case the queue overflow rate at
a server is upper bounded by the weighted job tagging rate,
or qs ≤ θs E[X]. The virtual queue mechanism described next
ensures that the queue overflow rates qs can still be optimized
by minimizing the average job tagging rates θs, s ∈ S.

2) Virtual-Queue Mechanism: Optimizing queue overflow
rates amounts to minimizing the penalty function

∑S
s=1 hs(qs)

in (9). From Lyapunov drift theory, one useful method is
to turn this penalty minimization into an optimal control
problem over virtual queues. Specifically, we observe that the
problem (9)-(10) is equivalent to the alternative problem

minimize
S∑
s=1

hs(ysE[X]) (18)

subject to qs ≤ ysE[X], ys ≥ 0, s ∈ S (19)
q ∈ Q, (20)

where ys are auxiliary control variables and E[X] is the
average job size. As a result, minimizing

∑S
s=1 hs(qs) in (9)

is equivalent to achieving the following two objectives: (i)
minimizing the alternative penalty function

∑S
s=1 hs(ysE[X])

over control variables ys; (ii) satisfying the constraints (19).
To design a control policy that satisfies the constraints (19),

we set up a virtual queue Ys(t) at server s with the queueing
dynamics:

Ys(t+ 1) = max
[
Ys(t)− ys(t), 0

]
+
∑
b∈B

Abs(t)∑
i=1

Ii, (21)

where ys(t) ∈ [0, ymax] is a decision variable at time t and ymax
is a finite but sufficiently large constant. In (21), the amount
of arrivals at the virtual queue Ys(t) in a slot is the number of
tagged jobs in that slot. Thus, the arrival rate of queue Ys(t) is
the job tagging rate θs. If we regard ys in (19) as the limiting
time average of the decision variable ys(t), i.e.,

ys = lim
T→∞

1

T

T−1∑
t=0

E[ys(t)], (22)

then the service rate of queue Ys(t) is ys. If the virtual queue
Ys(t) is stable, then from queueing theory its arrival rate must

be less than or equal to the service rate, i.e.,

θs ≤ ys ⇒ qs ≤ θsE[X] ≤ ysE[X]. (23)

Thus, stabilizing the queues Ys(t) satisfies the constraints (19).
Next, to minimize the alternative penalty function (18), by

using Jensen’s inequality and convexity of hs we have

lim
T→∞

1

T

T−1∑
t=0

E
[
hs
(
ys(t)E[X]

)]
≥ hs(ysE[X]). (24)

This inequality suggests that minimizing
∑S
s=1 hs(ysE[X])

can be achieved by minimizing
∑S
s=1 E

[
hs
(
ys(t)E[X]

)]
in

every slot. In summary, to optimize the queue overflow penalty∑S
s=1 hs(qs), it suffices to stabilize the virtual queues Ys(t)

and minimize the sum
∑S
s=1 E

[
hs
(
ys(t)E[X]

)]
in every slot.

3) Server Selection: From the above discussions, we need
to stabilize both queues Ns(t) and Ys(t) at the servers s ∈ S. It
suffices for each load balancer b to run the normal JSQ policy
(i.e., the max-weight policy) over the queues Ns(t) and Ys(t)
at its connected servers s ∈ Sb. This policy decides where to
forward incoming jobs at each load balancer. After a server
receives a job, it needs to decide whether to tag the job or not.
We observe that the “arrivals” to the queue Ns(t) are untagged
jobs and the “arrivals” to Ys(t) are tagged jobs. To impose the
effect of “joining” the shortest queue at server s, the job is
tagged if Ns(t) > Ys(t) and untagged otherwise.

A. The control policy
The complete overload balancing policy is given as follows.

The JSQ-with-Tagging (JSQT) policy:
1) Server selection: Load balancer b ∈ B routes all

incoming jobs in slot t to the server

s(t) ∈ argmins∈Sb min{Ns(t), Ys(t)},

where ties are broken arbitrarily.
2) Job tagging: Server s ∈ S tags all received jobs in slot

t if Ns(t) > Ys(t), and tags none of the jobs otherwise.
Untagged jobs have strict priority over tagged ones.

3) Virtual-queue mechanism: Update Ns(t) and Ys(t) at
the end of slot t according to (16) and (21), respectively,
where ys(t) is the solution to

minimize
V

E[X]2
hs
(
ys(t)E[X]

)
− Ys(t) ys(t), (25)

subject to ys(t) ∈ [0, ymax], (26)

where V > 0 is a control parameter and ymax is a finite
but sufficiently large constant.

We make the following remarks.
(a) The queues Ns(t) keep track of the number of untagged

jobs at server s ∈ S. The virtual queues Ys(t) are implemented
as a means to optimize average job tagging rates, and are not
the amount of tagged jobs waiting at the servers. We may
view Ys(t) as a dynamic threshold beyond which the amount
of untagged jobs Ns(t) at server s triggers an overload signal,
making the server start tagging jobs.
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(b) The objective function in (25) captures an inherent
tradeoff that appears in solving the problem (18)-(20) by
stabilizing the virtual queues Ys(t). Since hs are increasing,
minimizing

∑S
s=1 hs

(
ys(t)E[X]

)
requires small values of

ys(t). But stabilizing the virtual queues Ys(t) requires large
service rates ys(t) (see (21)). To optimize this tradeoff, it is
natural to minimize the weighted difference of hs(ys(t)E[X])
and Ys(t)ys(t) in (25), where the weight V captures the
relative importance of the two conflicting goals. The product
Ys(t)ys(t) in (25) reflects the fact that if the virtual backlog
Ys(t) is large, then a large service rate ys(t) is desired for
queue stability.

(c) The value of ymax in (25)-(26) needs to be large enough
so that choosing ys(t) = ymax for all t is sufficient to stabilize
the virtual queue Ys(t). A feasible choice is ymax = BmaxAmax,
where Bmax = maxs∈S |Bs| is the maximum number of load
balancers connected to a server. Note that BmaxAmax is a
universal upper bound on the amount of per-slot arrivals to
the virtual queue Ys(t) (see (21)).

(d) The JSQT policy makes optimal decisions by dividing
jobs into two groups, tagged and untagged. Since job sizes
are assumed to be unknown but have i.i.d. distribution, the
identity of jobs in each group is irrelevant. Therefore, jobs
can be processed in the order of their arrival without affecting
the performance of the JSQT policy, by simply re-marking the
Ns(t) head-of-line jobs at each server s as untagged jobs and
the rest at the server as tagged in slot t. In other words, we
can keep track of the values of Ns(t) as counters and serve
all jobs in a first-in-first-out fashion.

B. Examples
We consider two practical cases and provide the solution to

the problem (25)-(26) in closed form. First, consider the most-
balanced queue overflow vector qMB, which is also the min-
max fair vector. Using hs(qs) = (qs)

2/2 for all servers s, the
virtual-queue mechanism of the JSQT policy chooses ys(t) =
min{ymax, Ys(t)/V } as the solution to (25)-(26) in every slot.
This solution can be used to maximize the time to first buffer
overflow in a system with finite buffers. Second, consider the
weighted α-fair queue overflow vector with weights cs. Using
the penalty function hs(qs) = (qs/cs)

1+α/(1 + α) for server
s, the JSQT policy chooses

ys(t) = min

{
ymax,

cs
E[X]

α

√
Ys(t)E[X]cs

V

}
.

By choosing α to be a large integer, the JSQT policy with
this choice of ys(t) yields the weighted min-max fair queue
overflow vector, which is useful to minimize the time duration
in which the system is affected by temporary overload.

C. Performance analysis
The next theorem proves the optimality of the JSQT policy.

Theorem 2. Let qs be the long-term queue growth rate of
server s under the JSQT policy. We have∑

s∈S
hs(qs) ≤ h∗ +

F

V
, (27)

where h∗ is the optimal objective value of the overload
balancing problem (9)-(10), F is a finite constant, and V > 0
is a control parameter that can be chosen sufficiently large to
diminish the performance gap in (27). Furthermore, the JSQT
policy is nearly throughput optimal (from Theorem 1).

Proof of Theorem 2: Omitted due to the space constraint.

V. SIMULATION RESULTS

We simulate the JSQT policy for different scenarios of
interest. In all simulations, the arrivals are Poisson processes
and the job sizes are exponential random variables with unit
mean.

A. Performance of JSQT

We examine the performance of the JSQT policy in a
simple load balancing system with two heterogenous servers
of capacity (c1, c2) = (1, 2) and a load balancer with incoming
job arrival rate λ = 4; see Fig. 3. Since the jobs are assumed
to have unit mean, the workload arrival rate is w = 4 as well.
The topology and the feasible set Q are shown in Fig. 3. We
choose the value of V = 100, and use the weighted α-fair
penalty functions

hs(qs) =
(qs/ξs)

1+α

1 + α
, s = 1, 2,

where ξs are positive weights. We examine the following three
cases under the JSQT policy; each simulation is executed for
one million slots.

1) Symmetric objective: We use the JSQT policy to achieve
the most-balanced vector, which is (0.5, 0.5) in this case. We
choose weights ξ1 = ξ2 = 1 and α = 1. Hence, the α-
fair penalty functions become hs(qs) = (qs)

2/2. The queue
growth rate vector under the JSQT policy in the simulation is
(.5008, .5007), which is point A in Fig. 3. We also simulate
the JSQT policy for other values of α ∈ {0.1, 10, 100}. We
observe that the same queue growth rates are achieved and the
workload difference between the four cases is negligible.

2) Asymmetric objective: We seek to achieve weighted
min-max fairness with weights proportional to server capacity;
this is helpful to minimize the recovery period after temporary
overload. We choose the weights ξ1 = 0.5, ξ2 = 1, and let
α = 100. The corresponding weighted min-max fair point
is (1/3, 2/3). The measured queue overflow vector under the
JSQT policy is (0.3340, 0.6596), which is point B in Fig. 3.

In addition, if we assign to the two servers different weights,
i.e., ξ1 6= ξ2, then different values of α correspond to
different performance points. To illustrate this, we simulate
the JSQT policy with weights (ξ1, ξ2) = (0.5, 1) and different
values of α. Fig. 4 shows that the JSQT policy yields the
empirical queue overflow rates q̃(α)1 for server 1 as follows:
q̃
(0.1)
1 = 0.02, q̃(1)1 = 0.21, q̃(10)1 = 0.32, and q̃

(100)
1 = 0.34.

As α increases, the queue overflow rate of server 1 approaches
q
(∞)
1 = 1/3.
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w = 4

c1 = 1

c2 = 2

1

2

q2

q1

A (0.50, 0.50)
B (0.33, 0.65)

Q

Fig. 3. The performance of the JSQT policy in the load-balancing example
on the left, with different performance objectives: (a) the most-balanced vector
(1/2, 1/2); (b) the weighted min-max fair point (1/3, 2/3).
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α = 100
α = 10
α = 1
α = 0.1 q̃

(100)
1 = .34

q̃
(10)
1 = .32

q̃
(1)
1 = .21

q̃
(0.1)
1 = .02

Time

Server 1 workload

Fig. 4. The empirical workload process of server 1 under the JSQT policy
with weights (ξ1, ξ2) = (0.5, 1) and different values of α. As α increases, the
empirical queue overflow rate q̃(α)1 , i.e., the slope of each workload process,
approaches q(∞)

1 = 1/3.

B. Behavior under bursty arrivals

The recovery time after a temporary overload surge is min-
imized by balancing queue overflows proportional to server
capacities. Therefore, it is interesting to investigate the system
performance under bursty arrivals where every burst corre-
sponds to an overload surge. We study the two-server system
in Fig. 3 with different server capacities (c1, c2) = (1, 10). The
load balancer has a Poisson arrival process with time-varying
arrival rates alternating between λlow = 1 and λhigh = 20 every
250 slots. We compare the JSQT policy and the JSQ policy in
this setup. Note that the system is stable under both policies
because (wlow + whigh)/2 = 10.5 < c1 + c2. For JSQT, we
choose ξ1 = 0.1, ξ2 = 1 and α = 100 to achieve the weighted
min-max fair point. Fig. 5 shows the sample paths of the two
policies in the first 104 slots. We observe that the JSQT policy
yields smaller backlogs, i.e., better delay performance, than the
JSQ policy.

C. On the most-balanced queue overflow vector

The results of this paper show that the JSQT policy achieves
the most-balanced vector by using the α-fair penalty functions
for some α > 0. On the other hand, the JSQ policy seeks
to balance the server backlogs equally. This leads to the
conjecture that the queue overflow performance of the JSQ
policy achieves the most-balanced vector. Next, we compare
the JSQT policy and the JSQ policy by simulations to support
this conjecture.

0 2 k 4 k 6 k 8 k 1 0 k0

1 k

2 k

3 k

4 k

5 k

6 k

 

 

           
      
JSQ
JSQT

Time

Sum workload

Fig. 5. Comparison of the JSQT and the JSQ policy in a stable system with
bursty arrivals.

w1 = 3

w2 = 2

c1 = 1

c2 = 1

1

2

1

2

q2

q1

(2, 1) Q

Fig. 6. (Left) A load balancing system used to examine the conjecture that
the JSQ policy achieves the most-balanced queue overflow vector. (Right) The
feasible set of queue overflow vectors with the most-balanced overflow vector
qMB = (2, 1).

Consider the example in Fig. 6 where two load balancers
route jobs to two servers, each has unit capacity. The balancers
receive jobs at the rates (w1, w2) = (3, 2) and the reachable
servers for each load balancer are S1 = {1} and S2 = {1, 2}.
The feasible set of queue overflow vectors is shown in Fig. 6.
The most balanced vector in this set is (2, 1). We simulate the
JSQ and the JSQT policy using the same sample path of the
arrival process for 104 slots, where we choose V = α = 100
and (ξ1, ξ2) = (1, 1) for the JSQT policy. We observe the
following empirical queue overflow rates for both policies:
q̃JSQ = (2.0116, 0.9901) and q̃JSQT = (2.0117, 0.99). Fig. 7
presents the sample paths of the workload processes under the
two policies. The subfigure in Fig. 7 shows that the difference
between the two sample paths is very small.

VI. CONCLUSION

This paper studies the problem of balancing queue overflow
rates in a server farm under overload conditions, formulated
as a convex penalty minimization problem. We introduce the
class of α-fair penalty functions that are useful to achieve
desired queue overflow vectors, including those that maximize
the time to first buffer overflow and minimize the recovery
time from temporary overload. We show that throughput
optimality is always achieved by policies that minimize strictly
increasing overload penalty functions. A generalized JSQ pol-
icy is proposed to optimize queue overflow rates via intelligent
job tagging in a stochastic setting. The simulation results show
that our policy yields better delay performance than the JSQ
policy, and that the JSQ policy renders the most-balanced
queue overflow vector.
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JSQ
JSQT

slope of server 1 ≈ 2

slope of server 2 ≈ 1

Time

Workload

Fig. 7. The sample paths of the workload processes of the JSQ policy and
the JSQT policy.

Broadly speaking, this paper provides a useful analysis to
study stochastic control in more complex overloaded systems.
There are many future research directions. One is to extend the
results in this paper to multi-commodity multi-hop networks
in overload conditions. In such problems, a control policy that
optimizes queue overflow rates may not be throughput optimal,
and it is of interest to characterize the joint queue overflow-
throughput performance region and develop stochastic control
policies there. Another interesting direction is to study robust
control in overloaded systems with arbitrarily time-varying
demands. In this scenario, it is of interest to design unified con-
trol algorithms that seamlessly provide optimal load balancing
in both underload cases (i.e., balancing flows over links) and
overload cases (i.e., balancing queue overflows); see [11] for
an example.
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APPENDIX A
PROOF OF THEOREM 1

Our proof needs the construction of a useful graph G. Given
the exogenous traffic rates (wb, b ∈ B), we define a graph
G = (V,E) with the node set V consisting of a source node
σ, a sink node τ , load balancers b ∈ B, and servers s ∈ S. The
source σ is connected to each load balancer b with a directed
link (σ, b) of capacity cσb = wb. Each server s is connected to
the sink τ with a link (s, τ) of capacity cs. There is an infinite-
capacity link (b, s) ∈ E if balancer b has access to server s.
An important observation is that the maximum throughput in
the server farm is achieved by the maximum flow in the graph
G. We denote by r∗ the maximum throughput.

Consider a superflow w = (wbs, wsτ , qs)b∈B,s∈S , defined in
Section II-A, in the graph G. This superflow w must saturate
all links (σ, b) in G because it injects flow rate wb into load
balancer b, incurring an overflow rate qs at server s ∈ S.
Consider pruning flows from the superflow w to remove all
queue overflow rates qs; there may be more than one way of
pruning. We get an induced flow f = (fσb, fbs, fsτ )b∈B,s∈S
according to the standard flow definition. That is, the induced
flow f satisfies

fσb =
∑
s∈S

fbs, b ∈ B, (28)∑
b∈B

fbs = fsτ , s ∈ S, (29)

fsτ = wsτ , s ∈ S, (30)
fbs ≤ wbs, (b, s) ∈ E, fσb ≤ wb, (σ, b) ∈ E. (31)

Equations (28) and (29) represent flow conservation at nodes
b and s, respectively. Equation (30) shows that the flow wsτ
from server s to sink τ is the throughput of server s because
only queue overflows are removed from w. Inequalities (31)
result from pruning flows over links (b, s) and (σ, b). We
observe that two flows f1 and f2 induced from w must deliver
the same total throughput.

To prove the theorem by contradiction, consider a feasible
superflow w that is not throughput optimal, i.e., any induced
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flow f from w has the total throughput
∑
s fsτ < r∗. We show

that the queue overflow rates qs in w cannot be the solution
to (9)-(10). Since the induced flow f is not throughput optimal,
f cannot be the maximum flow in the graph G from the
above observation. From the Augmenting Path Theorem [20,
Chap. 7], there must exist an acyclic augmenting path p from
σ to τ in G. Due to the structure of the graph G, the acyclic
path p must be of the form

σ → b1 → s1 → b2 → s2 → · · · → bm → sm → τ, (32)

where bi ∈ B, si ∈ S, and m ≥ 1. By definition of an
augmenting path, the following inequalities are satisfied in the
path p: (i) fσb1 < cσb1 = wb1 , (ii) fsmτ < csm , (iii) fbi+1si >
0 for i = 1, . . . ,m− 1. The next lemma is useful.

Lemma 2. Given the augmenting path p in (32), load balancer
b1 is connected to a server s0 that has positive queue overflow
qs0 > 0 and positive flow wb1s0 > 0 over the link (b1, s0).

Proof of Lemma 2: From the augmenting path property
fσb1 < wb1 , load balancer b1 must prune a positive flow from
the super w over link (b1, s0) for at least one connected server
s0 ∈ Sb. Therefore, the server s0 exists and wb1s0 > 0. In
addition, since only queue overflow is pruned, the server s0
must have positive overflow qs0 > 0.

Now, among the servers {s0, s1, . . . , sm} that have positive
queue overflow rates, consider the server si∗ closest to sm:

i∗ = max
0≤i≤m

{i | qsi > 0}.

Server si∗ exists because s0 is a feasible choice. Consider three
cases: (i) si∗ = sm, (ii) si∗ /∈ {s0, sm}, and (iii) si∗ = s0.

(i) When si∗ = sm, we have qsm > 0. From the augmenting
path property, we have wsmτ = fsmτ < csm . It is feasible
to remove an ε amount of flow out of qsm to improve the
throughput of server sm from wsmτ to wsmτ + ε. As a result,
the queue overflows of all servers remain the same except that
the queue overflow of server sm is improved, strictly reducing
the overflow penalty. This contradicts that the superflow w is
the optimal solution to (9)-(10).

(ii) When si∗ /∈ {s0, sm}, we have qs = 0 for all servers
s ∈ Ŝ = {sj | i∗ < j ≤ m}. It follows that, under the
superflow w, the throughput fsτ of each server s ∈ Ŝ is equal
to the total incoming rate at server s, i.e.,∑

b∈Bs

wbs = fsτ =
∑
b∈Bs

fbs, s ∈ Ŝ. (33)

Since fbs ≤ wbs by (31), equality (33) indicates that

fbs = wbs, for all s ∈ Ŝ and all b ∈ Bs. (34)

Now, consider the path

si∗ → bi∗+1 → si∗+1 → · · · bm → sm → τ, (35)

which is part of the augmenting path p in (32). From the
augmenting path property, we have

wbi∗+1si∗ = fbi∗+1si∗ > 0 (36)

wbi∗+2si∗+1
= fbi∗+2si∗+1

> 0 (37)

i*+1

i*+1

i*

m

i*+2

τ

qi* > 0

w1 > 0

⋮

wmτ < cm
m

w2
w3 > 0

wj

load
balancers

servers

(a) the superflow w

i*+1

i*+1

i*

m

i*+2

τ

qi* -ε
w1-ε

⋮

wmτ+ε
m

w2+ε

w3-ε

wj+ε

load
balancers

servers

(b) the adjusted superflow w′

Fig. 8. An illustration of adjusting the superflow w by removing ε queue
overflow from si∗ and forwarding it along the red-dashed augmenting path
to server sm for throughput improvement.

...
wbmsm−1

= fbmsm−1
> 0 (38)

where the equalities follow (34). See Fig. 8(a) for an example.
Consider a new superflow w′ that takes an ε amount of queue
overflow from server si∗ and forwards it along the augmenting
path in (35) to improve the throughput of server sm by ε. In
particular, define

q′si∗ = qsi∗ − ε (39)

w′bi∗+1si∗
= wbi∗+1si∗ − ε (40)

w′bi∗+1si∗+1
= wbi∗+1si∗+1

+ ε (41)

w′bi∗+2si∗+1
= wbi∗+2si∗+1

− ε (42)
...

w′bmsm = wbmsm + ε (43)
w′smτ = wsmτ + ε (44)

See Fig. 8(b) for an illustration of the superflow adjustment.
The new allocations (40) and (42) are feasible because of the
augmenting path property in (36)-(38). The allocations (41)
and (43) are feasible because the links (b, s) are assumed to
have infinite capacity. The allocation (39) reduces the queue
overflow at server si∗ and is feasible because qsi∗ > 0. The
allocation (44) improves the throughput of server sm and
is feasible because wsmτ < csm by the augmenting path
property. It is easy to observe that the queue overflow rates
of all servers are the same expect that the queue overflow of
server si∗ is improved. Consequently, the superflow w cannot
be the optimal solution to (9)-(10), which is a contradiction.

(iii) The case of si∗ = s0 is almost the same as the case (ii),
and thus the analysis is omitted. We remark that the analysis
here requires the condition wb1s0 > 0, which is shown in
Lemma 2.


