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Abstract: Factorization theorems underly our ability to make predictions for many pro-

cesses involving the strong interaction. Although typically formulated at leading power,

the study of factorization at subleading power is of interest both for improving the pre-

cision of calculations, as well as for understanding the all orders structure of QCD. We

use the SCET helicity operator formalism to construct a complete power suppressed basis

of hard scattering operators for e+e− → dijets, e−p → e− jet, and constrained Drell-Yan,

including the first two subleading orders in the amplitude level power expansion. We an-

alyze the field content of the jet and soft function contributions to the power suppressed

cross section for e+e− → dijet event shapes, and give results for the lowest order matching

to the contributing operators. These results will be useful for studies of power corrections

both in fixed order and resummed perturbation theory.
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1 Introduction

One of the primary goals of the study of Quantum Chromodynamics (QCD) is an under-

standing of the all orders behavior of observables, traditionally formalized through either

an operator product expansion (OPE) [1] or factorization theorems [2–4]. For observ-

ables that can be handled with an OPE, a lot is known about the form of power correc-

tions. Examples include deep inelastic scattering where the OPE has been carried out to

twist-4 [5–8], inclusive B-decays where the OPE is known to O(1/m4
b) [9], and Quarkonia

production and decay, see [10] for a review. The description of observables with more

complicated dynamics typically relies on factorization theorems and much less is known

about the structure of power corrections in these cases. Power corrections have been consid-

ered for Drell-Yan [11–15] at O(Λ2
QCD/Q

2), for inclusive B decays in the endpoint region at

O((1−z)0, (ΛQCD/mb)
1,2) [16–24], for exclusive B decays at O(ΛQCD/mb) [25–33], for event

shapes τ in e+e−, ep, and pp collisions at O(ΛkQCD/(Qτ)k) [13, 34–48], and at O((1− z)0)

for threshold resummation [49–60].

A convenient formalism for studying factorization in QCD is the Soft Collinear Effective

Theory (SCET) [61–64], an effective field theory describing the soft and collinear limits of

QCD. SCET allows for a systematic power expansion at the level of the Lagrangian,

and simplifies many aspects of factorization proofs [65]. SCET has been used to study

power corrections at the level of the amplitude [66] and to derive factorization theorems

for B decays using subleading power operators (eg. [19, 21, 22, 24–26, 31, 67–69]), where

many interesting processes only start at subleading power. More recently, progress has

been made towards understanding the subleading factorization and resummation of the

event shape thrust in e+e− [70, 71]. Such subleading factorization theorems are technically

cumbersome, and significant work is still required to gain a simplified and more complete

understanding.

In this paper we consider the formalism required to study subleading factorization

theorems in SCET, focusing in particular on subleading hard scattering operators. Using

the results of ref. [72], we further develop and explore a set of SCET helicity operator

building blocks which is valid for constructing operator bases at any order in the power

expansion. These operators extend the leading power basis of ref. [73], where it was shown

that the use of helicity operators greatly simplifies the construction of operator bases, as

well as matching calculations, for processes with many final state jets (see also [74] for an

application of helicity operators to Higgs processes, where they were used to simplify the
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(a) (b) (c) (d)

Figure 1. Examples of the contributions to thrust, τ , in the dijet limit, at leading power in (a)

and (b), and subleading power in (c) and (d). There is an extra collinear gluon in (a) from splitting,

and in (b) there is an extra gluon from soft emission. In (c) the extra energetic gluon is collinear

with the quark, but occurs without a nearly onshell parent propagator. Likewise in (d) the extra

soft emission amplitude is subleading.

matching to fixed order helicity amplitudes). As we will see, helicity operators can also be

used to simplify the construction of subleading power bases of hard scattering operators,

where multiple fields can appear in the same collinear sector. After reviewing the helicity

operator building blocks, we will focus on the case of hard scattering operators involving

two back-to-back collinear sectors, which is relevant for proving subleading factorization

theorems for a number of phenomenologically important process, namely e+e− → dijets,

e−p → e− jet, and threshold Drell-Yan or Drell-Yan with an inclusive jet veto (which

we refer to as constrained Drell-Yan for short). Examples of the contributions from such

operators, and a comparison to analogous leading power contributions are shown in figure 1.

As an example to illustrate the expected form of subleading factorization theorems for

collider observables, consider the e+e− event shape thrust T = 1− τ [75] at center-of-mass

energy Q. In the Q� ΛQCD and τ � 1 limit [41, 76–78] where the events are dominated

by back-to-back jets, one can derive a leading power factorization formula for this process,

given by

dσ

dτ
= Qσ0H

(0)(Q,µ)

∫
ds J (0)

τ (s, µ) S(0)
τ

(
Qτ − s

Q
, µ

)
+O

(
τ0,

ΛQCD

Qτ

)
. (1.1)

This factorization formula involves hard contributions from the scale Q in a leading power

hard function H(0), collinear contributions from the scale Qτ1/2 in the leading power thrust

jet function obtained by combining two standard jet functions, J
(0)
τ = [J (0) ⊗ J (0)], and

ultrasoft contributions from the scales Qτ and ΛQCD in the leading power thrust soft

function S
(0)
τ . Here σ0 is the e+e− → qq̄ Born cross section and µ is the factorization

scale. For simplicity, we take Qτ ∼ ΛQCD so that we do not have to elaborate further

on the factorization of the soft function into perturbative and non-perturbative parts.

The factorized product H(0) × J (0)
τ ⊗ S(0)

τ in eq. (1.1) includes contributions at all orders

in αs and powers of ln τ , which have the power law scaling of O(τ−1), including δ(τ)

terms. As indicated, there are perturbative and nonperturbative power corrections to this

formula starting at O(τ0). The soft function S
(0)
τ contains all nonperturbative corrections

of O
(

ΛkQCD

τ(Qτ)k

)
, so the first missing power corrections are O(

ΛQCD

Qτ ), which is also O(τ0) in

our simplified counting.

– 2 –
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In general the cross section can be expanded in powers of τ ,

dσ

dτ
=

dσ(0)

dτ
+

dσ(1)

dτ
+

dσ(2)

dτ
+

dσ(3)

dτ
+O(τ) , (1.2)

where dσ(n)/dτ ∼ τ−1+n/2 denotes the suppression relative to the leading term in powers

of
√
τ . Although for most observables the odd terms vanish, this convention gives a simple

correspondence with the amplitude level power expansion. The explicit expression for

dσ(0)/dτ is given by the first term, H(0) × J (0)
τ ⊗ S(0)

τ , shown in eq. (1.1). In SCET the

hard scattering operators and Lagrangians governing the soft and collinear dynamics can

be factorized from each other at any order in the power expansion.1 Therefore factorization

theorems can also be derived for the power suppressed contributions dσ(i)/dτ , for i > 0,

corresponding to the power corrections in eq. (1.1). A prototypical example of this is the

factorization theorem for the decay rate of b→ sγ at large Eγ , which has the same form as

eq. (1.1) at leading power, and where a factorization theorem for the O(τ0) terms has been

derived [19]. It involves subleading hard, jet, and soft functions, since power corrections can

not change the relevant degrees of freedom. Based on this we expect that the higher order

power corrections to the thrust cross section will obey schematic factorization theorems of

the form

dσ(n)

dτ
= Qσ0

∑
j

H
(nHj)
j ⊗

[
J

(nJj)
j J

(n′Jj)

j

]
⊗ S(nSj)

j , (1.3)

where j sums over the multiple contributions that appear at each order, nHj + nJj +

n′Jj + nSj = n, and ⊗ denotes a set of convolutions. In this formula, the cross section

at each power has been factorized into hard functions H
(nHj)
j , jet functions J

(nJj)
j , and

soft functions S
(nSj)
j which may be leading or subleading power depending on the value

of the nXj indices. The hard function contains the dependence on the underlying hard

partonic process, but can be chosen to be independent of the particular event shape that

is being measured. The jet functions (which describe the collinear radiation along the jet

directions) as well as the soft function (which describes the soft radiation in the event)

depend on the particular measurement function.

Deriving a subleading power factorization theorem using SCET, like that in eq. (1.3),

consists of several steps. First, one must demonstrate the existence of a finite basis of

hard scattering operators in SCET at the appropriate order in the power expansion, and

determine an explicit basis of such operators. Matching calculations from QCD to SCET

are required to determine the Wilson coefficients of these operators and the structure

of their collinear Wilson lines. The soft and collinear dynamics are entirely described

by the Lagrangian of the effective theory, and the subleading power SCET Lagrangian

is also required at the same order in the power expansion. At leading power, the BPS

1This assumes that leading power Lagrangian interactions that can couple soft and collinear modes

through Glauber exchange operators [79] that involve 1/P2
⊥ potential can be ignored at the active parton

level. It is known that this is the case for the full e+e− →2-jet event shapes at leading power and for

inclusive Drell-Yan at leading power [3], and that this is not the case for spectator effects and O(α4
s)

perturbative corrections in certain Drell-Yan event shapes [80, 81].

– 3 –
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field redefinition [65] can be used to factorize the Lagrangian into non-interacting pieces

describing each collinear sector, as well as the soft sector. The only exception to this is the

leading power Glauber Lagrangian [79] which couples together soft and collinear fields, and

which will violate factorization if it can not be shown to give canceling contributions or that

it is irrelevant. Power suppressed Lagrangians have been analyzed in the literature [82–87],

and the SCETI Lagrangian is currently known to O(λ2) [87] (excluding power suppressed

Glauber exchange operators). Beyond leading power and after the BPS field redefinition,

the subleading Lagrangians (including power suppressed Glauber operators) will involve

factorized products of soft and collinear fields. Here factorization at the Lagrangian level

again only requires showing that the leading power Glauber Lagrangian is not required.

Next, one must consider factorization of the observable, and demonstrate that one can

define suitable measurements that are separately made in the soft and collinear matrix

elements. Finally, starting with the full QCD expression for the appropriate observable,

one must go through a number of expansions and algebraic manipulations to factorize the

cross section into a product of squared matrix elements, each involving only collinear or

soft fields. This step leads to field theoretic definitions of the subleading jet, soft and

hard functions appearing in the factorization theorem of eq. (1.3). The degree to which

these steps require lengthy and tedious calculations is determined by the complexity of the

operator basis.

Traditionally, an operator basis is constructed by enumerating all possible operators

consistent with symmetry constraints. These operators are formed from the SCET fields,

along with Lorentz, Dirac and color structures. Beyond leading power, the determination

of a minimal operator basis becomes complicated, even for processes with a limited number

of collinear sectors, such as pp→ µ+µ− (constrained Drell-Yan) or e+e− → dijets. The al-

gebraic manipulations in SCET required to achieve factorization are similarly complicated,

making subleading factorization laborious. In this paper, we show that by working with

operators of definite helicity, the operator basis is easy to construct, and does not involve

complicated Lorentz or Dirac structures, simplifying the algebraic manipulations required

for factorization. Many symmetry properties are also made manifest in the helicity basis.

We demonstrate how these provide simplifications both at the level of the hard scattering

operator basis as well as in factorized matrix elements.

An outline of this paper is as follows. In section 2 we provide a brief review of SCET

with an emphasis on the field content, power counting, and construction of SCET opera-

tors. In section 3 we describe our basis of helicity operators and discuss their symmetry

properties. We focus in particular on the treatment of operators involving ultrasoft fields,

and use the BPS field redefinition to define collinear and ultrasoft gauge invariant operator

building blocks. Additionally, selection rules on the hard scattering operators due to an-

gular momentum conservation are described [72]. Extensions of the formalism to SCETII

as well as SCET with massive collinear quarks are also discussed, as are complications

associated with evanescent operators. We then demonstrate the utility of our helicity basis

in section 4 by constructing an O(λ2) basis of hard scattering operators with two back-

to-back collinear sectors, as relevant for e+e− → dijets, e−p → e−+jet, and constrained

Drell-Yan. Using the symmetry properties of the operators, we enumerate those which can

– 4 –
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contribute to the factorized cross section at O(λ2), and in section 5, we perform the tree

level matching to these operators. We conclude in section 6.

2 Review of SCET

SCET is an effective field theory of QCD describing the interactions of collinear and soft

particles in the presence of a hard interaction [61–65]. Since SCET describes collinear par-

ticles (which are characterized by a large momentum along a particular light-like direction),

as well as soft particles, it is natural to use light-cone coordinates. For each jet direction

we define two light-like reference vectors nµi and n̄µi such that n2
i = n̄2

i = 0 and ni ·n̄i = 2.

One typical choice for these quantities is

nµi = (1, ~ni) , n̄µi = (1,−~ni) , (2.1)

where ~ni is a unit three-vector. Given a choice for nµi and n̄µi , any four-momentum p can

then be written as

pµ = n̄i ·p
nµi
2

+ ni ·p
n̄µi
2

+ pµni⊥ . (2.2)

A particle with momentum p close to the ~ni direction, such that the components of p

scale as (ni ·p, n̄i ·p, pni⊥) ∼ n̄i ·p (λ2, 1, λ), where λ � 1 is a small formal power counting

parameter, are referred to as ni collinear. The formal scaling of λ is determined by the

form of measurements or kinematic restrictions on the QCD radiation. To ensure that ni
and nj refer to distinct collinear directions, we must have

ni ·nj � λ2 for i 6= j . (2.3)

Since distinct reference vectors, ni and n′i, with ni · n′i ∼ O(λ2) both describe the same

collinear physics, one can label a collinear sector by any member of a set of equivalent

vectors, {ni}. This freedom is manifest as a symmetry of the effective theory known as

reparametrization invariance (RPI) [83, 84]. Specifically, the three classes of RPI transfor-

mations are

RPI-I RPI-II RPI-III

niµ → niµ + ∆⊥µ niµ → niµ niµ → eαniµ

n̄iµ → n̄iµ n̄iµ → n̄iµ + ε⊥µ n̄iµ → e−αn̄iµ . (2.4)

Here, we have ∆⊥ ∼ λ, ε⊥ ∼ λ0, and α ∼ λ0. The parameters ∆⊥ and ε⊥ are infinitesimal

(Note that this is distinct from its formal scaling with respect to λ. One can have infinites-

imal quantities that have λ0 scalings.), and satisfy ni ·∆⊥ = n̄i ·∆⊥ = ni · ε⊥ = n̄i · ε⊥ = 0.

RPI will be exploited to simplify the structure of the subleading power operator basis

in section 4.

The effective theory is constructed by expanding momenta into label and residual

components

pµ = p̃µ + kµ = n̄i ·p̃
nµi
2

+ p̃µni⊥ + kµ . (2.5)

– 5 –
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Here, n̄i · p̃ ∼ Q and p̃ni⊥ ∼ λQ are the large label momentum components, where Q is

the scale of the hard interaction, while k ∼ λ2Q is a small residual momentum describing

fluctuations about the label momentum. A multipole expansion is then performed to obtain

fields with momenta of definite scaling, namely collinear quark and gluon fields for each

collinear direction, as well as soft quark and gluon fields. Independent gauge symmetries

are enforced for each set of fields.

Due to the multipole expansion, the SCET fields for ni-collinear quarks and gluons,

ξni,p̃(x) and Ani,p̃(x), are written in position space with respect to the residual momentum

and in momentum space with respect to the large momentum components. They are labeled

by their collinear direction ni and their large momentum p̃. The label momentum operator

Pµni , gives the large label component of the momentum, Pµni ξni,p̃ = p̃µ ξni,p̃, while derivatives

give the residual momentum dependence, i∂µ ∼ k ∼ λ2Q. The label momentum operator

is defined such that when acting on a product of fields, Pni gives the sum of the label

momenta of all ni-collinear fields. We will often use the shorthand notation Pni = n̄·Pni
for the large label momentum component.

Soft degrees of freedom are described in the effective theory by separate quark and

gluon fields. We will assume that we are working in the SCETI theory where these soft

degrees of freedom are referred to as ultrasoft so as to distinguish them from the soft

modes of SCETII [67]. Extensions of our formalism to treat SCETII problems will be

discussed in section 3.6.1. In SCETI, the ultrasoft modes do not carry label momenta, but

have residual momentum dependence with i∂µ ∼ λ2Q, and are able to exchange residual

momenta between different collinear sectors. They are therefore described by fields qus(x)

and Aus(x) without label momenta, and without a collinear sector label.

SCET is formulated as an expansion in powers of λ, constructed so that manifest power

counting is maintained at all stages of a calculation. As a consequence of the multipole

expansion, all fields and derivatives acquire a definite power counting [63], shown in table 1.

The SCET Lagrangian is also expanded as a power series in λ

LSCET = Lhard + Ldyn =
∑
i≥0

L(i)
hard + L(0)

G +
∑
i≥0

L(i) , (2.6)

where (i) denotes objects at O(λi) in the power counting. The Lagrangians L(i)
hard contain

the hard scattering operators O(i), whose structure is determined by the matching process,

as described in section 5. The leading power Glauber Lagrangian [79], L(0)
G , describes lead-

ing power interactions between soft and collinear modes in the form of potentials. It breaks

factorization unless it can be shown to cancel out or absorbed into other interactions such

as Wilson line directions. The L(i) describe the dynamics of ultrasoft and collinear modes

in the effective theory, including subleading power corrections to the Glauber Lagrangian.

The subleading Lagrangians (excluding subleading power corrections to the Glauber La-

grangian) are explicitly known to O(λ2), and the relevant ones for our analysis can be

found, along with their Feynman rules in [88]. This distinction between leading power

and subleading power Glauber Lagrangians has been made, since the subleading power

Lagrangians can only be inserted a finite number of times at any given power, and are

therefore on the same footing as other subleading power Lagrangians.

– 6 –
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Operator Bµni⊥ χni Pµ⊥ qus Dµ
us

Power Counting λ λ λ λ3 λ2

Table 1. Power counting for building block operators in SCETI.

Glauber modes are a relevant mode in SCET, and therefore should be included in a

complete treatment. However, the subleading structure of Glauber operators in SCET is

currently not known, and therefore a complete treatment is not possible. We will therefore

not discuss further the issue of Glaubers. For the particular case of thrust that we consider,

this can be regarded as the assumption that Glaubers cancel at subleading power. However,

we emphasize that it is an important open problem to understand Glaubers at subleading

power. The assumption that they cancel could then be checked through explicit calculation,

and if it is indeed the case that Glauber gluons do contribute, their contributions should

be added to the discussion.

Factorization theorems used in jet physics are typically derived at leading power in λ.

In this case, interactions involving hard processes in QCD are matched to a basis of lead-

ing power SCET hard scattering operators O(0), the dynamics in the effective theory are

described by the leading power Lagrangian, L(0), and the measurement function, which

defines the action of the observable, is expanded to leading power. Higher power terms in

the λ expansion, known as power corrections, arise from three sources: subleading power

hard scattering operators O(i), subleading Lagrangian insertions, and subleading terms in

the expansion of the measurement functions which act on soft and collinear radiation. The

first two sources are independent of the details of the particular measurement, only requir-

ing that it is an SCETI dijet observable, while the third depends on its precise definition.

Although we will not discuss subleading measurement functions in this paper, an example,

for the case of thrust, is given in appendix B.

Gauge invariant collinear operators in the effective theory are constructed out of prod-

ucts of gauge invariant building blocks. These building blocks are formed from gauge

invariant combinations of fields and Wilson lines [62, 63]. The collinearly gauge-invariant

quark and gluon fields are defined as

χni,ω(x) =
[
δ(ω − Pni)W †ni(x) ξni(x)

]
, (2.7)

Bµni⊥,ω(x) =
1

g

[
δ(ω + Pni)W †ni(x) iDµ

ni⊥Wni(x)
]
.

Here we have chosen a convention such that for χni,ω, we have ω > 0 for an incoming quark

and ω < 0 for an outgoing antiquark. For Bni,ω⊥, ω > 0 (ω < 0) corresponds to outgoing

(incoming) gluons. The covariant derivative which appears in eq. (2.7) is defined as,

iDµ
ni⊥ = Pµni⊥ + gAµni⊥ , (2.8)

and Wni are Wilson lines of ni-collinear gluons in label momentum space defined as

Wni(x) =

[ ∑
perms

exp

(
− g

Pni
n̄·Ani(x)

)]
, (2.9)

– 7 –
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In general the structure of Wilson lines must be derived by a matching calculation from

QCD. These Wilson lines sum up arbitrary emissions of ni-collinear gluons off of particles

from other sectors, which due to the power expansion always appear in the n̄i direction.

The gluon emissions summed in the Wilson lines are O(λ0) in the power counting. In

eqs. (2.7) and (2.9) the label momentum operators act only on the fields inside the square

brackets. The Wilson line Wni(x) is localized with respect to the residual position x,

and we can therefore treat χni,ω(x) and Bµni,ω(x) as local quark and gluon fields from the

perspective of ultrasoft derivatives ∂µ that act on x.

The complete set of collinear and ultrasoft building blocks for constructing hard scat-

tering operators or subleading Lagrangians at any order in the power counting is given

in table 1. All other field and derivative combinations can be reduced to this set by the

use of equations of motion and operator relations [89]. Since these building blocks carry

vector or spinor Lorentz indices they must be contracted to form scalar operators, which

also involves the use of objects like {nµi , n̄
µ
i , γ

µ, gµν , εµνστ}. A key advantage of the helicity

operator approach discussed below is that this is no longer the case; all the building blocks

will be scalars.

As shown in table 1, both the collinear quark and collinear gluon building block fields

scale as O(λ). For the majority of jet processes there is a single collinear field operator

for each collinear sector at leading power. (Although for fully exclusive processes that

directly produce hadrons there will be multiple building blocks from the same sector in

the leading power operators since they form color singlets in each sector.) Also, since

P⊥ ∼ λ, this operator will not typically be present at leading power (exceptions could

occur, for example, in processes picking out P-wave quantum numbers). At subleading

power, operators for all processes can involve multiple collinear fields in the same collinear

sector, as well as P⊥ operator insertions. The power counting for an operator is obtained

by simply adding up the powers for the building blocks it contains. To ensure consistency

under renormalization group evolution the operator basis in SCET must be complete,

namely all operators consistent with the symmetries of the problem must be included.

Dependence on the ultrasoft degrees of freedom enters the operators through the ul-

trasoft quark field qus, and the ultrasoft covariant derivative Dus, defined as

iDµ
us = i∂µ + gAµus , (2.10)

from which we can construct other operators including the ultrasoft gluon field strength. All

operators in the theory must be invariant under ultrasoft gauge transformations. Collinear

fields transform under ultrasoft gauge transformations as background fields of the appro-

priate representation. The power counting for these operators is shown in table 1. Since

they are suppressed relative to collinear fields, ultrasoft fields typically do not enter fac-

torization theorems in jet physics at leading power, other than in the form of Wilson lines

which power count at λ0. An example where ultrasoft fields enter at leading power is

B → Xsγ in the photon endpoint region, which is described at leading power by a single

collinear sector, and an ultrasoft quark field for the b quark [61].
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3 Helicity operators

The use of on-shell helicity amplitudes has been fruitful for the study of scattering ampli-

tudes in gauge theories and gravity (see e.g. [90–93] for pedagogical reviews). By focusing

on amplitudes for external states with definite helicity and color configurations many sim-

plifications arise. The helicity approach to SCET operators of ref. [73] takes advantage of

the fact that collinear SCET fields are themselves gauge invariant, and are each associated

with a fixed external label direction with respect to which helicities can naturally be de-

fined. Instead of considering operators formed from Lorentz and Dirac structures (each of

which contributes to multiple states with different helicity combinations) helicity operators

can be associated with external states of definite helicity. This approach greatly simplifies

the construction of a minimal operator bases for processes with many active partons, and

facilitates the matching to fixed order calculations which are often performed using spinor

helicity techniques.

We now briefly summarize our spinor helicity conventions. Further identities, as well

as our phase conventions, can be found in appendix A. To simplify our discussion we take

all momenta and polarization vectors as outgoing, and label all fields and operators by

their outgoing helicity and momenta. We use the standard spinor helicity notation

|p〉 ≡ |p+〉 =
1 + γ5

2
u(p) , |p] ≡ |p−〉 =

1− γ5

2
u(p) , (3.1)

〈p| ≡ 〈p−| = sgn(p0) ū(p)
1 + γ5

2
, [p| ≡ 〈p+| = sgn(p0) ū(p)

1− γ5

2
,

with p lightlike. The polarization vector of an outgoing gluon with momentum p can be

written

εµ+(p, k) =
〈p+|γµ|k+〉√

2〈kp〉
, εµ−(p, k) = −〈p−|γ

µ|k−〉√
2[kp]

, (3.2)

where k 6= p is an arbitrary lightlike reference vector.

The polarization vectors and spinors satisfy the standard identities.

p · ε±(p, k) = k · ε±(p, k) = 0 , ε±(p, k) · ε±(p, k) = 0 , ε±(p, k) · ε∓(p, k) = −1 ,

/ε+(p, k)|k〉 = /ε−(p, k)|k] = 0 , [k|/ε−(p, k) = 〈k|/ε+(p, k) = 0 . (3.3)

Additional identities can be found in appendix A.

In this section we discuss the extension of the helicity operator approach of [73] to

subleading powers. We review the full set of subleading power building block operators

introduced in [72], and provide more details about them. In section 3.1 we describe op-

erators involving only collinear fields, and in section 3.2 we describe operators involving

insertions of the P⊥ operator. We also give all the Feynman rules for these operators. The

organization of color bases is discussed in section 3.3. The inclusion of ultrasoft fields in the

hard scattering operators is more involved, since the usual SCET building blocks are gauge

covariant rather than gauge invariant. In section 3.4 we discuss the BPS field redefinition,

and how it can be used to define ultrasoft gauge invariant helicity operators to be used as

basis elements. In section 3.5, we give the complete list of scalar building blocks needed
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to construct an operator basis at arbitrary power in λ. Next, in section 3.6 we examine

the extension of this formalism to SCETII, SCET with massive quarks and evanescent

operators. We briefly discuss how to carry out matching calculations at subleading power

in section 5, and the C and P properties of the operators in section 3.7. In section 3.8 we

discuss interesting constraints from angular momentum conservation which first appear at

subleading power when there are multiple fields in the same collinear sector.

3.1 Collinear gauge invariant helicity building blocks

We define a collinear gluon field of definite helicity as

Bai± = −ε∓µ(ni, n̄i)Baµni⊥,ωi , (3.4)

where a is an adjoint color index. This is sufficient for the treatment of collinear gluons

even at subleading power. With this definition, for an outgoing gluon with polarization ±,

momentum p, p0 > 0 (or an incoming gluon with polarization ∓, momentum −p, p0 < 0),

and color a, the nonzero tree-level Feynman rules are2

〈ga±(p)|Bbi±|0〉 = δabδ̃(p̃i − p) , (3.5)

〈0|Bbi±|ga∓(−p)〉 = δabδ̃(p̃i − p),

where we have followed ref. [73] in using k = n̄ as our reference vector. Despite the fact

that Bai± = Bai±(x), our external gluon state has zero residual momentum, so we do not get

an additional phase. We also define quark fields with definite helicity, given by

χαi± =
1 ± γ5

2
χαni,−ωi , χ̄ᾱi± = χ̄ᾱni,ωi

1 ∓ γ5

2
. (3.6)

Here we note that helicity label applies to the collinear gauge invariant composite χi field,

which includes the collinear Wilson line in its definition in eq. (2.7). Note that under the

helicity rotation in the ⊥-plane the Wilson line acts like a scalar. For external quarks of

definite helicity, with ni-collinear momentum p, the spinor appearing in SCET Feynman

rules is,

1 ± γ5

2

/ni /̄ni
4
u(p) =

/ni /̄ni
4
|p±〉 ≡ |p±〉ni , (3.7)

2The precise definition of this delta function and measure are

δ̃(p̃i − p) ≡ δ{ni},p δ(ωi − n̄i · p) ,∫
dp̃ ≡

∑
{ni}

∫
dωi ,

where

δ{ni},p =

{
1 ni · p = O(λ2) ,

0 otherwise .

The Kronecker delta is nonzero if the collinear momentum p is in the {ni} equivalence class, i.e. p should

be considered as collinear with the ith jet. The sum in the second line runs over the different equivalence

classes.
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where |p±〉ni is a convenient short-hand notation for the projected spinor, and is propor-

tional to |ni±〉 (see (A.20). Using this, we get the nonzero tree-level Feynman rules for

incoming (p0 < 0) and outgoing (p0 > 0) quarks with definite helicity ± and color α (or ᾱ),〈
0
∣∣χβi±∣∣qᾱ±(−p)

〉
= δβᾱ δ̃(p̃i − p) |(−pi)±〉ni , (3.8)〈

qα±(p)
∣∣χ̄β̄i±∣∣0〉 = δαβ̄ δ̃(p̃i − p) ni 〈pi±| ,〈

0
∣∣χ̄β̄i±∣∣q̄α∓(−p)

〉
= δαβ̄ δ̃(p̃i − p) ni 〈(−pi)±| ,〈

q̄ᾱ∓(p)
∣∣χβi±∣∣0〉 = δβᾱ δ̃(p̃i − p) |pi±〉ni .

We wish to take advantage of the fact that fermions come in pairs, to simplify the treat-

ment of Dirac structures when constructing an operator basis. Ref. [73] therefore defined

the currents

J ᾱβij± = ∓

√
2

ωi ωj

εµ∓(ni, nj)

〈nj ∓ |ni±〉
χ̄ᾱi± γµχ

β
j± , (3.9)

J ᾱβij0 =
2√

ωi ωj [ninj ]
χ̄ᾱi+χ

β
j− , (J†)ᾱβij0 =

2√
ωi ωj〈ninj〉

χ̄ᾱi−χ
β
j+.

These currents have been defined such that they are invariant under an RPI-III trans-

formation, which can be easily seen from the fact that ωi scales as n̄i under an RPI-III

transformation and the |ni〉 scale as
√
ni.

3 In sections 4 and 5, we will focus on the case of

two back-to-back jet directions, so it is worth writing down the currents in that case. The

tree-level Feynman rules for the currents with general sectors are given by

〈qα1
+ (p1)q̄ᾱ2

− (p2)|J β̄1β2
12+ |0〉 = eiΦ(J12+) δα1β̄1δβ2ᾱ2 δ̃(p̃1 − p1)δ̃(p̃2 − p2) , (3.10)

〈qα1
− (p1)q̄ᾱ2

+ (p2)|J β̄1β2
12− |0〉 = eiΦ(J12−) δα1β̄1δβ2ᾱ2 δ̃(p̃1 − p1)δ̃(p̃2 − p2) ,

〈qα1
+ (p1)q̄ᾱ2

+ (p2)|J β̄1β2
12 0 |0〉 = eiΦ(J12 0) δα1β̄1δβ2ᾱ2 δ̃(p̃1 − p1)δ̃(p̃2 − p2) ,

〈qα1
− (p1)q̄ᾱ2

− (p2)|(J†)β̄1β2
12 0 |0〉 = eiΦ(J†12 0) δα1β̄1δβ2ᾱ2 δ̃(p̃1 − p1)δ̃(p̃2 − p2) ,

where the phases appearing here are given by

eiΦ(J12±) = 〈n1 ∓ |n̄1±〉〈n2 ± |n̄2∓〉
〈n̄1 ± |p1∓〉〈n̄2 ∓ |p2±〉

8
√
ω1 ω2

, (3.11)

eiΦ(J12 0) = 〈n̄1n1〉〈n2n̄2〉
[p1n̄1][n̄2p2]

8
√
ω1 ω2

,

eiΦ(J†12 0) = [n̄1n1][n2n̄2]
〈p1n̄1〉〈n̄2p2〉

8
√
ω1 ω2

.

Note that the spinor products 〈n̄1n1〉, 〈n2n̄2〉, etc., depend on the choice of quantization

axis for the spinors, and hence are not all trivial even though n1 · n̄1 = n2 · n̄2 = 2.

3By this we mean that under an RPI-III transformation as defined in eq. (2.4), the spinors are rescaled

by the square root of the scaling factor for the reference vector, namely |ni〉 → eα/2|ni〉.
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If we consider two back-to-back collinear directions given by n and n̄, our currents

have definite helicity, given by

h=± 1: J ᾱβnn̄± = ∓
√

2

ωn ωn̄

εµ∓(n, n̄)

〈n̄∓ |n±〉
χ̄ᾱn± γµχ

β
n̄± , (3.12)

h=0: J ᾱβnn̄0 =
2√

ωn ωn̄ [nn̄]
χ̄ᾱn+χ

β
n̄− , (J†)ᾱβnn̄0 =

2√
ωn ωn̄〈nn̄〉

χ̄ᾱn−χ
β
n̄+.

The current J ᾱβnn̄0 transforms as a scalar under rotations about the n axis, i.e. has helicity

zero.4 Similarly, the currents J ᾱβnn̄± have helicity h = ±1.

Our notation above for the Bai± and χαi± fields and the currents J ᾱβij±, J ᾱβij 0, and (J†)ᾱβij 0

follows ref. [73], and these objects suffice for the construction of leading power operators.

The Φ phases in eq. (3.11) were set to zero in ref. [73], since with only one particle in each

collinear sector we are free to choose the p̃i to have zero label ⊥-momenta, and with this

choice all the phases vanish. However, at subleading power, multiple collinear fields can be

present in the same collinear sector and the phases can not a priori be set to zero. Note that

the phases for each current are given by a product of phases, one from each collinear sector.

We now look at how to treat the sectors at subleading power that contain multiple

collinear fields, as was discussed in [72]. Collinear gluons appear in gauge invariant building

blocks of definite helicity, and therefore operators with multiple collinear gluons in the same

sector can simply be obtained by multiplying copies of the gluon building blocks, such as

Bai+Bbi+. However, for quarks we must introduce new helicity currents. For i = j the

products of quark building blocks in eq. (3.9) all vanish (χ̄ᾱi±γµχ
β
i± = 0, χ̄ᾱi+χ

β
i− = 0, and

χ̄ᾱi−χ
β
i+ = 0) and hence are not suitable for handling quarks in the same collinear sector.

This follows from the SCET projection relations

/ni /̄ni
4
χni = χni , /niχni = 0 , (3.13)

which enforce that a quark anti-quark pair of the same chirality, in the same sector, must

have zero helicity, while a quark anti-quark pair of opposite chirality must have helicity

±1. Indeed, the scalar current χ̄niχni = 0, vanishes, as do the plus and minus helicity

components of the vector current χ̄niγ
±
⊥χni = 0.

We therefore define the helicity operators involving two collinear quarks in the same

sector as [72]

h=0: J ᾱβi0 =
1

2
√
ωχ̄ ωχ

χ̄ᾱi+ /̄ni χ
β
i+ , J ᾱβ

i0̄
=

1

2
√
ωχ̄ ωχ

χ̄ᾱi− /̄ni χ
β
i− , (3.14)

h=±1: J ᾱβi± = ∓

√
2

ωχ̄ ωχ

εµ∓(ni, n̄i)(
〈ni ∓ |n̄i±〉

)2 χ̄ᾱi± γµ /̄ni χβi∓ .
Note that these currents are only labeled by a single collinear sector i. Once again, we can

easily see the RPI-III invariance, as the scaling power of ni is the same as the scaling power

4In ref. [73] the J ᾱβij0 current was denoted as J ᾱαijS . We choose to use the 0 subscript to emphasize the

helicity in the back-to-back case and conform with our notation for subleading currents below.
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of n̄i in each of these currents. The J ᾱβi0 and J ᾱβ
i0̄

transform as a scalar under rotations

about the ni axis, i.e. have helicity zero. Similarly, the operators J ᾱβi± have helicity h = ±1.

These currents use only the reference vector associated with the particular jet in question

for their construction. The Feynman rules for these currents with external quark states are

〈qα1
+ (p1)q̄ᾱ2

− (p2)|J β̄1β2
i0 |0〉 = eiΦ(Ji0) δα1β̄1δβ2ᾱ2 δ̃(p̃1 − p1)δ̃(p̃2 − p2) , (3.15)

〈qα1
− (p1)q̄ᾱ2

+ (p2)|J β̄1β2

i0̄
|0〉 = eiΦ(Ji0̄) δα1β̄1δβ2ᾱ2 δ̃(p̃1 − p1)δ̃(p̃2 − p2) ,

〈qα1
+ (p1)q̄ᾱ2

+ (p2)|J β̄1β2
i+ |0〉 = eiΦ(Ji+) δα1β̄1δβ2ᾱ2 δ̃(p̃1 − p1)δ̃(p̃2 − p2) ,

〈qα1
− (p1)q̄ᾱ2

− (p2)|J β̄1β2
i− |0〉 = eiΦ(Ji−) δα1β̄1δβ2ᾱ2 δ̃(p̃1 − p1)δ̃(p̃2 − p2) ,

where the phases here are given by

eiΦ(Ji0) =
1

2

[p1n̄i]〈n̄ip2〉√
ω1 ω2

, eiΦ(Ji0̄) =
1

2

〈p1n̄i〉[n̄ip2]√
ω1 ω2

, (3.16)

eiΦ(Ji±) =
1

2

〈p1 ± |n̄i∓〉〈n̄i ± |p2∓〉√
ω1 ω2

.

Together, the currents in eq. (3.9), as well as eq. (3.14) are sufficient to describe collinear

sectors with multiple quark fields. The complete set of quark currents will also include

those with ultrasoft quark building blocks, which we will consider below in section 3.4.

3.2 P⊥ operators

Along with multiple collinear fields in the same sector, subleading power operators can

involve explicit insertions of the Pµi⊥ operator, where i denotes a particular collinear sector.

Pµi⊥ is included as part of the operator to ensure that the Wilson coefficient includes only

the dependence on the hard kinematics and has a uniform power counting. Since the Pµi⊥
operator acts on the perpendicular subspace defined by the vectors ni, n̄i, which is spanned

by the polarization vectors ε(ni, n̄i), it naturally decomposes as

P+
i⊥(ni, n̄i) = −ε−(ni, n̄i) · Pi⊥ , P−i⊥(ni, n̄i) = −ε+(ni, n̄i) · Pi⊥ . (3.17)

It is important to emphasize that the subscript ± refers to the helicity about the ni axis,

and not the lightcone components of the momenta. This decomposition is performed for

the Pi⊥ operator in each sector. Note that it suffices to allow the operator Pi⊥ to act

only on fields with collinear label i.5 Therefore, when acting on a field, we will drop the

collinear sector label on Pi⊥, as it is determined by the label of the field. For example, we

will simply write

Pi⊥ · Bi⊥ = P⊥ · Bi⊥ . (3.18)

5The i-sector operator P±i⊥ does not in general have a well defined power counting when acting on the

field Bλj⊥ for j 6= i. Instead, when we carry out the multipole expansion we decompose any derivative

acting on Bλj using vectors for the j-sector, as i∂µtot = (nµj /2)n̄j · Pj +Pµj⊥ + i∂µus. Therefore only the O(λ)

⊥-operator Pµj⊥ acts on Bλj⊥.
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To see how this decomposition applies to operators written in more familiar notation,

we consider the example operator P⊥ · Bi⊥. Using the completeness relation

∑
λ=±

ελµ(ni, n̄i)
(
ελν (ni, n̄i)

)∗
= −gµν +

niµn̄iν + niν n̄iµ
ni · n̄i

= −g⊥µν(ni, n̄i) , (3.19)

the decomposition into our basis is given by6

P⊥ · Bi⊥ = −P+
⊥Bi− − P

−
⊥Bi+ . (3.20)

When acting within an operator containing multiple fields, square brackets are used to

denote which fields are acted upon by the P±⊥ operator. For example

Bi+
[
P±⊥Bi−

]
Bi+ , (3.21)

indicates that the P+
⊥ or P−⊥ operator acts only on the middle field.

In general, we can decompose the action of the P±⊥ operators into a superposition of

terms where P±⊥ will act only on a single field within a quark current. To define a general

notation for these currents, we will follow [72] and use curly braces and write P±⊥ to the left

of the current if it acts on only the first field in the current and write (P±⊥ )† to the right of

the current if it acts on only the second field. As an example, we can look at the helicity

currents with two quarks in the same sector with a single P±⊥ insertion acting either on the

first or second field, we write

{
Pλ⊥J

ᾱβ
i0

}
=

1

2
√
ωχ̄ ωχ

[
Pλ⊥χ̄ᾱi+

]
/̄niχ

β
i+ , (3.22)

{
J ᾱβi0 (Pλ⊥)†

}
=

1

2
√
ωχ̄ ωχ

χ̄ᾱi+ /̄ni

[
χβi+(Pλ⊥)†

]
.

Following the notation defined above, the use of the use of curly brackets {Pλ⊥ · · · } and

{· · · (Pλ⊥)†} indicate that the P⊥ operators act on only one of quark fields in the current,

in the manner shown. Also note for eq. (3.22) that the choice of λ = + or − for Pλ⊥ is

independent of the ± choice for the quark building block fields. The same notation will be

used for P±⊥ insertions into other currents. If we wish to instead indicate a P⊥ operator

that acts on both building blocks in a current then we use the standard square bracket

notation, for example,
[
Pλ⊥J

ᾱβ
i±
]
.

The Feynman rules for collinear operators involving insertions of the P⊥ operator follow

straightforwardly from the corresponding Feynman rules without the P⊥ insertion, as given

in eqs. (3.4), (3.10), and (3.15). For example, using the h = +1 current of eq. (3.10) as an

6The sign convention in eq. (3.17) is made so that dot products, as in eq. (3.20), agree with using a

(+,−,−,−) metric for the contraction.
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example, we have

〈qα1
+ (p1)q̄ᾱ2

− (p2)|
{
P+
⊥J

β̄1β2
12+

}
|0〉=−ε−(ni, n̄i)·p̃1⊥ e

iΦ(J12+)δα1β̄1δβ2ᾱ2 δ̃(p̃1−p1)δ̃(p̃2−p2) ,

〈qα1
+ (p1)q̄ᾱ2

− (p2)|
{
P−⊥J

β̄1β2
12+

}
|0〉=−ε+(ni, n̄i)·p̃1⊥ e

iΦ(J12+)δα1β̄1δβ2ᾱ2 δ̃(p̃1−p1)δ̃(p̃2−p2) ,

〈qα1
+ (p1)q̄ᾱ2

− (p2)|
{
J β̄1β2

12+ (P+
⊥ )†
}
|0〉=−ε−(ni, n̄i)·p̃2⊥ e

iΦ(J12+)δα1β̄1δβ2ᾱ2 δ̃(p̃1−p1)δ̃(p̃2−p2) ,

〈qα1
+ (p1)q̄ᾱ2

− (p2)|
{
J β̄1β2

12+ (P−⊥ )†
}
|0〉=−ε+(ni, n̄i)·p̃2⊥ e

iΦ(J12+)δα1β̄1δβ2ᾱ2 δ̃(p̃1−p1)δ̃(p̃2−p2) ,

(3.23)

where the phase Φ(J12+) was defined in eq. (3.11).

3.3 Color bases

To this point we have focused on the helicity structure of the operators, with color indices

left free. Consider an operator formed from a product of the currents of collinear helicity

fields, Oa1···αn . An important feature of each of the collinear helicity fields is that they are

collinear gauge invariant. Furthermore, all the operators, including P⊥, behave as local

operators with respect to ultrasoft gauge transformations, transforming like background

fields. This implies that for the collinear operators, the constraints of gauge invariance are

equivalent to that of a global color. It is therefore straightforward to write down a color

basis for these operators. Following and generalizing the notation of ref. [73], we write

~O†+··:··(··:··...··:··)[··:··−] = Oa1···αn
+··:··(··:··...··:··)[··:··−] T̄

a1···αn . (3.24)

Here T̄ a1···αn is a row vector of color structures that spans the color conserving subspace.

The ai are adjoint indices and the αi are fundamental indices. The color structures do not

necessarily have to be independent, but must be complete. Color structures which do not

appear in the matching at a particular order will be generated by renormalization group

evolution. Subtleties associated with the use of non-orthogonal color bases were discussed

in detail in ref. [73], but they will not play a role here because we do not explicitly carry

out the full factorization. Note that a decomposition as in eq. (3.24) is not possible in a

gauge invariant manner in the full theory due to the covariant derivative, Dµ = ∂µ + igAµ,

which does not transform uniformly under color. In other words, the full theory gauge

invariance relates different possible color structures.

The goal of the subscripts on the O in eq. (3.24) is to enumerate the helicities of

the gluon, quark, and derivative building blocks in the operator. We have introduced it

in a manner that is general enough to account for the presence of the ultrasoft building

blocks that will be discussed in later sections. Outside of all parentheses the ultrasoft gluon

helicities are listed first, followed by a colon and the enumeration of the collinear gluon

helicities (note that in the absence of any ultrasoft gluons we omit the colon entirely). The

helicities of the various types of quark currents are listed inside the round parentheses and

are separated by colons. (In addition we use a semicolon to distinguish quark currents

involving different flavors, though this notation is not made explicit in eq. (3.24).) Finally

in the square brackets we first list the P⊥ helicities, followed by a colon and then entries

± or 0 to indicate the presence of ultrasoft derivatives ∂us(i)± and ∂us(i)0 to be discussed
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below. Explicit examples that fully exploit this notation will be given in section 3.5. When

working at leading power, it is usually true that all possible combinations of helicity labels

need to be included in the basis. As will be reviewed in section 3.8, angular momentum

conservation of the hard scattering process places many constraints on subleading power

operators [72], so that various helicity combinations can be eliminated. Operators with

P⊥s acting on collinear gauge invariant objects can also often be eliminated by RPI and

momentum conservation considerations.

We can demonstrate how the helicity and color decomposition works with two leading

power examples, which only involve operators formed from collinear fields. We consider

pp→ 2 jets, and for simplicity, we restrict to the qq̄ q′q̄′ channel with distinct quark flavors

to demonstrate the use of the collinear quark fields, and the gggg channel to demonstrate

the use of the collinear gluon fields. For the quark channel we take q to be n1 collinear, q̄

to be n2 collinear, q′ to be n3 collinear, and q̄′ to be n4 collinear. For the gluon channel we

take the collinear gluon fields to lie in four distinct collinear sectors, labelled n1 through n4.

Using the notation of the traditional SCET building blocks in table 1, such operators

are given by

O ᾱβγ̄δ = χ̄ᾱn1
Γ1χ

β
n2
χ̄γ̄n3

Γ2χ
δ
n4
, (3.25)

for the four quark case, and

Oabcd = Bµan1⊥B
νb
n2⊥B

σc
n3⊥B

δd
n4⊥Γµνσδ, (3.26)

for the four gluon case. Here Γµνσδ is a shorthand for all allowed Lorentz structures,

while Γ1 and Γ2 are shorthand for all possible Lorentz and Dirac structures, including

contractions. Actually enumerating a minimal basis of these structures is a nontrivial task.

On the other hand, using the helicity basis described in this section, we find [73] that there

are four independent helicity operators for the quark process,

Oᾱβγ̄δ(+;+) = J ᾱβ12+ J
γ̄δ
34+ , Oᾱβγ̄δ(+;−) = J ᾱβ12+ J

γ̄δ
34− , (3.27)

Oᾱβγ̄δ(−;+) = J ᾱβ12− J
γ̄δ
34+ , Oᾱβγ̄δ(−;−) = J ᾱβ12− J

γ̄δ
34− ,

with a color basis given by

T̄ αβ̄γδ̄ =
(
δαδ̄ δγβ̄ , δαβ̄ δγδ̄

)
. (3.28)

Similarly, we can immediately write down a basis of helicity operators for the gluon process

Oabcd++++ =
1

4!
Ba1+Bb2+Bc3+Bd4+ , Oabcd+++− =

1

3!
Ba1+Bb2+Bc3+Bd4− , (3.29)

Oabcd++−− =
1

4
Ba1+Bb2+Bc3−Bd4− , Oabcd+−−− =

1

3!
Ba1−Bb2−Bc3−Bd4+ ,

Oabcd−−−− =
1

4!
Ba1−Bb2−Bc3−Bd4− ,
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with a color basis

T̄ abcd =
1

2



tr[abcd] + tr[dcba]

tr[acdb] + tr[bdca]

tr[adbc] + tr[cbda]

2tr[ab] tr[cd]

2tr[ac] tr[db]

2tr[ad] tr[bc]



T

. (3.30)

(See ref. [73] for a more detailed discussion. For a pedagogical review of color bases for

QCD amplitudes see refs. [90, 92].) Note that there is no complication of dealing with

Dirac structures, or using equations of motion to determine the minimal operator basis.

The operators only encode relevant information on the helicities and color configuration

of the particles. By using the helicity building blocks, which behave like scalar fields,

we reduce the process of constructing an operator basis to simply enumerating unique

combinations of the scalar objects. The hard kinematics is then described by the Wilson

coefficients of these operators.

The simplicity of the color bases for the collinear operators does not, however, naively

extend to operators involving ultrasoft fields. Indeed, the ultrasoft derivatives are local

at the ultrasoft scale, requiring the use of the ultrasoft covariant derivative Dus, and

reintroducing the problem of the color decomposition that is present in the full theory,

namely that the constraints of gauge invariance must be implemented. In the next section

we show how this issue can be overcome by using objects that account for the action of

the BPS field redefinition. By working in terms of the resulting more non-local operators,

we can reduce the constraints of gauge invariance to global color, enabling us to extend

the simple color decomposition discussed in this section for the collinear building blocks to

ultrasoft building blocks.

3.4 Ultrasoft gauge invariant helicity building blocks

The BPS field redefinition is defined by [65]

Baµn⊥ → Y
ab
n B

bµ
n⊥, χαn → Y αβ̄

n χβn, (3.31)

and is performed in each collinear sector. Here Yn, Yn are fundamental and adjoint ultrasoft

Wilson lines, respectively, and we note that

YnT
aY †n = T bYban . (3.32)

For a general representation, r, the ultrasoft Wilson line is defined by

Y (r)
n (x) = P exp

ig 0∫
−∞

ds n ·Aaus(x+ sn)T a(r)

 , (3.33)

where P denotes path ordering. The BPS field redefinition has the effect of decoupling

the ultrasoft degrees of freedom from the leading power collinear Lagrangian [65]. When

this is done consistently for S-matrix elements it accounts for the full physical path of
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ultrasoft Wilson lines [94, 95], so Y
(r)
n may also occur with a path from (0,∞). Indeed for

e+e− → dijets all the ultrasoft Wilson lines occur with paths from (0,∞) (see eg. [96]).

After the BPS field redefinition, the fields Bn⊥, and χn are ultrasoft gauge singlets,

but still carry a global color index. We can use the BPS field redefinition to define ultrasoft

quark and gluon fields that are ultrasoft gauge invariant. These operators are non-local

at the ultrasoft scale, and involve the ultrasoft Wilson lines. For their construction, it is

essential that the non-locality is dictated by the form of the BPS decoupling. In particular,

the matching is first done onto the SCET Lagrangian pre-BPS field redefinition, which is

local at the hard scale, and then the BPS decoupling is performed.

We begin by defining an ultrasoft gauge invariant quark building block field

ψus(i) = Y †niqus , (3.34)

where the direction of the Wilson line ni is a label for a collinear sector. Since the ultrasoft

quarks are not naturally associated with an external label direction, ni can be chosen arbi-

trarily. However, there is often a convenient or obvious choice. The definition in eq. (3.34)

straightforwardly generalizes to matter in an arbitrary representation. We also perform the

following decomposition of the gauge covariant derivative in an arbitrary representation, r,

Y (r) †
ni iD(r)µ

us Y (r)
ni = i∂µus + [Y (r) †

ni iD(r)µ
us Y (r)

ni ] = i∂µus + T a(r)gB
aµ
us(i) , (3.35)

where we have defined the ultrasoft gauge invariant gluon building block field by

gBaµus(i) =

[
1

ini · ∂us
niνiG

bνµ
us Ybani

]
, (3.36)

where Gbνµus is the standard field strength. In the above equations the derivatives act only

within the square brackets. Again, the choice of collinear sector label ni here is arbitrary.

This is the ultrasoft analogue of the gauge invariant collinear gluon field, which can be

written

gBAµni⊥ =

[
1

P̄
n̄iνiG

Bνµ⊥
ni WBA

ni

]
. (3.37)

Here WBA
ni is an adjoint collinear Wilson. From the expression for the gauge invariant

ultrasoft gluon field of eq. (3.36) we see the price we have paid for working with ultrasoft

gauge invariant operators. Unlike the ultrasoft fields, the building block field BAµus(i) is non-

local at the scale λ2, and depends on the choice of a collinear direction ni. Note that in

the case that the derivative operator acts in the opposite direction, we have

Y (r) †
ni i

←−
D (r)µ
us Y (r)

ni = i
←−
∂ µus + [Y (r) †

ni i
←−
D (r)µ
us Y (r)

ni ] = i
←−
∂ µus − T a(r)gB

aµ
us(i) , (3.38)

The subleading Lagrangians can also be written after BPS field redefinition in terms

of the gauge invariant ultrasoft gluon field, as was done in ref. [66],

L(1)BPS
ni = K̂(1)

ni + K̂
(1)a
BniµgB

aµ
us(i) + L(1)BPS

ξnψus
, (3.39)

L(2)BPS
ni = K̂(2)

ni + K̂
(2)a
BniµgB

aµ
us(i) + K̂

(2)ab
BBniµνgB

aµ
us(i)gB

bν
us(i) + L(2)BPS

χnψus
.
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Here K̂
(1)
ni and K̂

(2)
ni contain only collinear fields and i∂µus derivatives. Their particular

form is not relevant for the current discussion, we merely want to emphasize that the

decomposition into gauge invariant building blocks is also convenient at the level of the

Lagrangian, allowing it to be written in a factorized form. The terms L(1)BPS
ξnψus

and L(2)BPS
ξnψus

involve ultrasoft quark fields. Note that the superscript i for K̂(i) indicates the Lagrangian

that these terms contribute to and not their individual power counting.

With the ultrasoft gauge invariant operators defined, we can now introduce ultrasoft

fields and currents of definite helicity, following closely the collinear operators, but with

some important differences. Throughout this section we implicitly work post BPS field

redefinition. In section 3.5 we will show how an operator basis can be constructed prior

and post BPS field redefinition, and how to easily treat the corresponding color bases.

We begin by defining ultrasoft gluon helicity fields which are ultrasoft gauge invariant

Baus(i)± = −ε∓µ(ni, n̄i)Baµus(i), Baus(i)0 = n̄µBaµus(i) . (3.40)

From eq. (3.36), we can see that the ultrasoft gluon field satisfies the relation

ni · Baus(i) = 0 . (3.41)

For the collinear gauge invariant gluon field there are only two building block fields, which

correspond to the two physical helicities of the gluon. On the other hand, for the ultrasoft

gauge invariant gluon field we use three building block fields to describe the two physical

degrees of freedom. This occurs because the ultrasoft gluons are homogeneous and not

fundamentally associated with any direction. Therefore, without making a further gauge

choice their polarization vectors do not lie in the perpendicular space of any fixed external

reference vector. Note that if we use the ultrasoft gauge freedom to choose Baus(j)0 = 0, then

we will still have Baus(i)± 6= 0 and Baus(i)0 6= 0 for i 6= j. We could remove Baus(i)0 using the

ultrasoft gluon equation of motion, in a manner analogous to how [W †nin·DnWn] is removed

for the collinear building blocks. However this would come at the expense of needing to

allow inverse ultrasoft derivatives, 1/(in · ∂us), to appear when building operators. In the

collinear case these 1/P factors are O(λ0) and can be absorbed into the Wilson coefficients,

but this is not possible for the ultrasoft case. Therefore we choose to forbid inverse ultrasoft

derivatives and allow Baus(i)0 to appear.

When writing down the Feynman rules for external ultrasoft gluons, we have the

freedom to choose the reference vector for their polarizations. Choosing a general reference

vector k, the tree level Feynman rules for the ultrsoft gluon field are

〈gaus(p)|Bbus(i)±(x)|0〉 = −ε∓µ(nin̄i)

[
εµ(p, k)− pµ

n · p
n · ε(p, k)

]
δabeip·x , (3.42)

〈gaus(p)|Bbus(i)0(x)|0〉 =

[
n̄ · εµ(p, k)− n̄ · p

n · p
n · ε(p, k)

]
δabeip·x ,

〈0|Bbus(i)±(x)|gaus(−p)〉 = −ε∓µ(nin̄i)

[
ε∗µ(p, k)− pµ

n · p
n · ε∗(p, k)

]
δabeip·x ,

〈0|Bbus(i)0(x)|gaus(−p)〉 =

[
n̄ · ε∗µ(p, k)− n̄ · p

n · p
n · ε∗(p, k)

]
δabeip·x .

– 19 –



J
H
E
P
1
1
(
2
0
1
7
)
1
4
2

We also decompose the ultrasoft partial derivative operator ∂µus into lightcone

components,

∂us(i)± = −ε∓µ(ni, n̄i) ∂
µ
us, ∂us(i)0 = n̄iµ∂

µ
us, ∂us(i)0̄ = niµ∂

µ
us . (3.43)

If the ∂us(i)0̄ operator acts on an ni-collinear field, then it can be eliminated using the

equations of motion [89], and therefore such a combination does not need to be included

in our basis. In contrast with the collinear case, we cannot eliminate the n̄i · ∂us using the

equations of motion without introducing inverse ultrasoft derivative (e.g. 1/(n̄i · ∂us)), so

we instead keep these operators explicitly in our basis. When inserting ultrasoft derivatives

into operators we will use the same curly bracket notation defined for the P⊥ operators

in eq. (3.22). In other words, {i∂us(i)λJ} indicates that the ultrasoft derivative acts from

the left on the first field in J and {J(i∂us(i)λ)†} indicates that it acts from the right on

the second field in J . Note that the appearance of ∂us(i)0 and ∂us(i)0̄ is also constrained by

RPI-III invariance.

Gauge invariant ultrasoft quark fields also appear explicitly in the operator basis at

subleading powers. Due to fermion number conservation they are conveniently organized

into scalar currents. From table 1, we see that ultrasoft quark fields power count like λ3.

However, for factorization theorems involving a single collinear sector, as appear in factor-

ization theorems describing a variety of both inclusive, and exclusive B decays, operators

involving ultrasoft quarks appear at leading power. The currents involving ultrasoft quarks

that are necessary to define subleading power operators at any desired order are

J ᾱβi(us)± = ∓
εµ∓(ni, n̄i)

〈n̄i ∓ |ni±〉
χ̄ᾱi± γµψ

β
us(i)± , (3.44)

J ᾱβi(us)± = ∓
εµ∓(n̄i, ni)

〈ni ∓ |n̄i±〉
ψ̄ᾱus(i)± γµχ

β
i± ,

J ᾱβi(us)0 = χ̄ᾱi+ψ
β
us(i)− , (J†)ᾱβi(us)0 = ψ̄ᾱus(i)−χ

β
i+ ,

J ᾱβi(us)0 = ψ̄ᾱus(i)+χ
β
i− , (J†)ᾱβi(us)0 = χ̄ᾱi−ψ

β
us(i)+ ,

J ᾱβ
(us)2ij± = ∓

εµ∓(ni, nj)

〈nj ∓ |ni±〉
ψ̄ᾱus(i)±γµψ

β
us(j)± ,

J ᾱβ
(us)2ij0

= ψ̄ᾱus(i)+ψ
β
us(j)− , (J†)ᾱβ

(us)2ij0
= ψ̄ᾱus(i)−ψ

β
us(j)+ .

For the mixed collinear-ultrasoft currents we choose the collinear sector label i in order to

specify the ultrasoft quark building block field. For the ultrasoft-ultrasoft currents, there

is freedom to choose two sectors to use to construct the collinear gauge invariant ultrasoft

fields, and we leave the choices arbitrary, i and j, which appear as subscripts after the

(us)2 on the currents. Although the ultrasoft quark carries a label, this label is only

associated with the ultrasoft Wilson line structure used to define the building block field.

In particular, it is important to realize that the ultrasoft quark field does not satisfy the

projection relations of eq. (3.13), that is satisfied by the collinear quarks. Note that all the

ultrasoft quark currents are already RPI-III invariant except for J ᾱβ
(us)2ij0

for generic i and j.
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The Feynman rules for the collinear-ultrasoft currents to external states are

〈qα1
+ (p1)q̄ᾱ2

us−(p2)|J β̄1β2

1(us)+(x)|0〉=
√
ω1

2
eiΦ(J1(us)+)〈n1p2〉δα1β̄1δβ2ᾱ2 δ̃(p̃1−p1)eip2·x ,

〈qα1
− (p1)q̄ᾱ2

us+(p2)|J β̄1β2

1(us)−(x)|0〉=
√
ω1

2
eiΦ(J1(us)−)[n1p2] δα1β̄1δβ2ᾱ2 δ̃(p̃1−p1)eip2·x ,

〈qα1
us+(p1)q̄ᾱ2

− (p2)|J β̄1β2

2(us)+(x)|0〉=
√
ω2

2
eiΦ(J2(us)+)[n2p1]δα1β̄1δβ2ᾱ2 δ̃(p̃2−p2)eip1·x ,

〈qα1
us−(p1)q̄ᾱ2

+ (p2)|J β̄1β2

2(us)−(x)|0〉=
√
ω2

2
eiΦ(J2(us)+)〈n2p1〉δα1β̄1δβ2ᾱ2 δ̃(p̃2−p2)eip1·x ,

〈qα1
+ (p1)q̄ᾱ2

us+(p2)|J β̄1β2

1(us)0(x)|0〉=
√
ω1

2
eiΦ(J1(us)0)[n1p2]δα1β̄1δβ2ᾱ2 δ̃(p̃1−p1)eip2·x ,

〈qα1
us−(p1)q̄ᾱ2

− (p2)|(J†)β̄1β2

2(us)0(x)|0〉=
√
ω2

2
eiΦ((J†)2(us)0)〈n2p1〉δα1β̄1δβ2ᾱ2 δ̃(p̃2−p2)eip1·x ,

〈qα1
us+(p1)q̄ᾱ2

+ (p2)|J β̄1β2

2(us)0(x)|0〉=
√
ω2

2
eiΦ(J2(us)0)[n2p1]δα1β̄1δβ2ᾱ2 δ̃(p̃2−p2)eip1·x ,

〈qα1
− (p1)q̄ᾱ2

us−(p2)|(J†)β̄1β2

1(us)0(x)|0〉=
√
ω1

2
eiΦ((J†)1(us)0)〈n1p2〉δα1β̄1δβ2ᾱ2 δ̃(p̃1−p1)eip2·x .

(3.45)

The phases appearing in the Feynman rules of eq. (3.45) are defined as

eiΦ(J1(us)+) =
[n̄1p1]√

2ω1
, eiΦ(J1(us)−) =

〈n̄1p1〉√
2ω1

, (3.46)

eiΦ(J2(us)+) =
〈n̄2p2〉√

2ω2
, eiΦ(J2(us)+) =

[n̄2p2]√
2ω2

,

eiΦ(J1(us)0) =
〈n1n̄1〉[n̄1p1]

2
√

2ω1
, eiΦ((J†)2(us)0) =

−[n2n̄2]〈n̄2p2〉
2
√

2ω2
,

eiΦ((J)2(us)0) =
−〈n2n̄2〉[n̄2p2]

2
√

2ω2
, eiΦ((J†)1(us)0) =

[n1n̄1]〈n̄1p1〉
2
√

2ω1
.

The phases involve only the momentum of the collinear field. Additional P±⊥ insertions into

the mixed ultrasoft-collinear currents are defined following the notation of eq. (3.22), where

we note that in SCETI only the collinear fields carry label ⊥ momentum. The Feynman

rules for the currents involving two ultrasoft quark fields are

〈qα1
us+(p1)q̄ᾱ2

us−(p2)|J β̄1β2

(us)212+
|0〉 =

[n2p1]〈n1p2〉√
2n1 · n2

δα1β̄1δβ2ᾱ2 , (3.47)

〈qα1
us−(p1)q̄ᾱ2

us+(p2)|J β̄1β2

(us)212−|0〉 =
〈n2p1〉[n1p2]√

2n1 · n2

δα1β̄1δβ2ᾱ2 ,

〈qα1
us+(p1)q̄ᾱ2

us+(p2)|J β̄1β2

(us)212 0
|0〉 = [p1p2] δα1β̄1δβ2ᾱ2 ,

〈qα1
us−(p1)q̄ᾱ2

us−(p2)|(J†)β̄1β2

(us)212 0
|0〉 = 〈p1p2〉 δα1β̄1δβ2ᾱ2 .

Due to the dependence on two ultrasoft momenta, there is no natural way to separate

phases from these Feynman rules as was done for previous currents.
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3.5 Constructing operator bases

In this section we describe how the building blocks of the previous sections can be combined

to define bases of hard scattering operators. The hard scattering component of the SCET

Lagrangian, eq. (2.6), has an explicit expansion in powers of λ,

Lhard =
∑
j≥0

L(j)
hard . (3.48)

Here j denotes suppression by O(λj) with respect to the leading power hard scattering

operators. The effective Lagrangian for hard scattering operators at each power is given by,

L(j)
hard =

∑
{ni}

∑
A,··

[
`A∏
i=1

∫
dωi

]
~O

(j)†
A+··:··(··:··...··:··)[··:··−]

(
{ni};ω1, . . . , ω`A

)
× ~C

(j)
A+··:··(··:··...··:··)[··:··−]

(
{ni};ω1, . . . , ω`A

)
. (3.49)

The appropriate collinear sectors {ni} are determined by the hard process being consid-

ered, and the sum over A, ·· runs over the full basis of operators that appear at this order,

which are specified by either explicit labels A and/or helicity labels ·· on the operators

and coefficients. The operators also satisfy momentum conservation for various momenta,

including the O(λ0) ωi’s. Here the ~C
(j)
A are O(λ0) Wilson coefficients, and are also vectors

in the color subspace in which the O(λj) hard scattering operators ~O
(j)†
A are decomposed.

Explicitly, in terms of color indices, we have

Ca1···αn
+··:··(··:··...··:··)[··:··−] =

∑
k

Ck+··:··(··:··...··:··)[··:··−]T
a1···αn
k ≡ T̄ a1···αn ~C+··:··(··:··...··:··)[··:··−] . (3.50)

Note that the color bases used to decompose the hard scattering operators at each order in

λ are in general distinct, since at higher powers more building blocks appear which carry

additional color indices. The Wilson coefficients depend only on the jet directions, {ni},
and the large label components of the operators ωi. The number of ωi’s depends on the

specific operator we are considering since at subleading power multiple collinear fields can

appear in the same collinear sector and we must consider the inclusion of ultrasoft building

blocks with no ωi labels. For a given operator A · ·, we label the number of ωi’s as `A·· in

eq. (3.49) and do the integral over each ωi. The operators ~O†+··:··(··:··...··:··)[··:··−] are given by

products of the quark and gluon helicity operators of table 2.

At subleading power, this is complicated by the fact that the ultrasoft Wilson lines

which appear in the ultrasoft gauge invariant building blocks only appear after the BPS field

redefinition. There are two possible approaches to dealing with this issue, both of which

give the same answer. We take the attitude that one can use whichever is most convenient.

A priori, we might like to first know how the ultrasoft fields are color contracted in the

operator in order to choose the appropriate collinear vector ni for defining each ultrasoft

building block. In one approach we first determine the full color basis involving contractions

for the ultrasoft fields’ color indices, and then choose the building blocks. Alternatively, we

can simply pick fixed ni vectors for the ultrasoft building blocks, so that we have common
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Bai± J ᾱβij± J ᾱβij0 P±⊥ J ᾱβi± J ᾱβi0 J ᾱβ
i0̄

Baus(i)± Baus(i)0 ∂us(i)± ∂us(i)0

λ λ2 λ2 λ λ2 λ2 λ2 λ2 λ2 λ2 λ2

J ᾱβi(us)± J ᾱβi(us)± J ᾱβi(us)0 J ᾱβi(us)0 J(us)2ij± J(us)2ij0

λ4 λ4 λ4 λ4 λ6 λ6

Table 2. Power counting for the complete set of helicity building block operators in SCETI,

where the definitions for these objects are given in eqs. (3.4), (3.6), (3.9), (3.14), (3.17), (3.40),

(3.43), (3.44). The building blocks also include the conjugate currents J† in cases where they are

distinct from the ones shown.

ultrasoft objects for all operators. In this case there will be products of ultrasoft Wilson

lines in the operators to compensate for a choice that does not correspond with the color

contraction.

In either approach a basis of operators can be constructed in the form

~O†+··:··(··:··...··:··)[··:··−] = Oa1···αn
+··:··(··:··...··:··)[··:··−] T̄

a1···ᾱn
BPS . (3.51)

Here Oa1···αn
+··:··(··:··...··:··)[··:··−] is formed from products of the collinear and ultrasoft gauge invari-

ant helicity building blocks constructed in the previous sections, for which the complete list

is given in table 2. The meaning of T̄ a1···αn
BPS will be discussed below. When utilizing P±i⊥,

∂us(i)±, and ∂us(i)0 to construct operators, these derivatives can either act on a single build-

ing block object like Bai± or Baus(i)±, or on a bilinear object like one of the currents J . For

cases where they act on a bilinear object we use the curly bracket notation introduced in

eq. (3.22) to indicated which of the two objects in the bilinear the derivative acts on. Note

that P±i⊥ can only act on ni-collinear building blocks, whereas ∂us(i)± and ∂us(i)0 can act

on any building block field. The convention for the subscripts used on Oa1···αn was defined

below eq. (3.24). A couple of more complicated examples of the use of this notation are

Oa1a2a3a4ᾱβγ̄δσ̄τ
A−0:+−(+0̄:−)

= Ba1

us(1)−B
a2

us(1)0B
a3
1+B

a4
2−J

ᾱβ
3+J

γ̄δ
2 0̄
J σ̄τ45− , (3.52)

Oa1a2a3ᾱβγ̄δ
B −:+−(0̄:−)[+:−]

= Ba1

us(1)−
[
i∂−us(1)B

a2
2+

]
Ba3

2−J
ᾱβ
3 0̄

{
P+
⊥ J

γ̄δ
14−
}
.

Besides illustrating the correspondence between the operator subscripts and the helicity

building blocks, these examples also highlight some of the limits of the notation. In par-

ticular, specifying the collinear gluon building block helicities does not determine whether

the corresponding building blocks are in the same or different collinear sectors, specifying

the helicities for mixed collinear-ultrasoft currents does not fix the sector of the collinear

field in this building block, and the notation for the derivatives does not fix which object

they act on. To distinguish these type of differences we adopt additional explicit labels on

the operators, which here are A and B.

The T̄ a1···αn
BPS in eq. (3.51) generalizes the color structure decomposition of section 3.3,

because it is defined to include ultrasoft Wilson lines that arise from the BPS field redef-

inition. It is important to emphasize that products of ultrasoft Wilson lines, like Y †n1Yn2 ,
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should not be viewed as independent building blocks. The structure of ultrasoft Wilson

lines is entirely determined by the form of the BPS field decoupling. Several examples will

be given below to further clarify this point. The form in eq. (3.51) is convenient for fac-

torization, since for operators involving only collinear field insertions it is already written

in a factorized form.

It is also useful to have an equivalent form of the operator basis where we leave the

ultrasoft Wilson lines in the operator itself, which would maintain the exact color decom-

positions of section 3.3. In order to do this, we can define an operator Õ such that after

BPS field redefinitions we have

~O†+··:··(··:··...··:··)[··:··−] = Õa1···αn
+··:··(··:··...··:··)[··:··−] T̄

a1···ᾱn . (3.53)

As we will demonstrate below, converting between O and Õ is a simple exercise in reorganiz-

ing where we place the ultrasoft Wilson lines, and either form is equally valid as a basis. The

decomposition in eq. (3.51) provides a compact way to track both the ultrasoft Wilson lines

and color structure in one object, and hence will be used for many of our later examples.

We can compare the complete basis of helicity operator building blocks given in table 2

with the traditional form of the building block basis given in table 1. While there are more

building blocks with the helicity operators, there is a great benefit from the fact that each

of them is a scalar. So, while constructing operators with table 1 is a complex exercise

in deducing all possible Lorentz structures, with the helicity operator approach we simply

have to write down all possible products of the helicity building blocks at a given power.

In order to demonstrate how eq. (3.51) works in practice, we now give some simple

examples. We begin by discussing cases involving only collinear fields. Here the BPS field

redefinition is not necessary to define color decomposed helicity operators, but is essential

in the proof of factorization. Note that insertions of the P⊥ operator have no effect, since

they do not carry color and commute with the ultrasoft Wilson lines [P⊥, Yn] = 0, so we

will only consider examples without P⊥ insertions.

We begin with a simple leading power example with gluon and quark current building

blocks,

Oaᾱβ+(±) = Ba1+ J
ᾱβ
23± , Oaᾱβ−(±) = Ba1− J

ᾱβ
23± . (3.54)

In this case there is a unique color structure before BPS field redefinition, namely

T̄ aαβ̄ = (T a)αβ̄ . (3.55)

After BPS field redefinition, we find the Wilson line structure,

T̄ aαβ̄BPS =
(
Y †n2

T bYban1
Yn3

)
αβ̄

. (3.56)

The key point is that this structure is entirely determined by the form of the operator in

eq. (3.54), as well as the structure of the BPS field redefinition. The ultrasoft Wilson lines

arise only from the BPS field redefinition of the collinear fields in the building blocks, and

not from hard matching. We can also reorganize the ultrasoft Wilson lines to group them

into the operator, with the form in eq. (3.53), which gives

Õaᾱβ+(±) = (Yn1B1+)a(Y †n2
J23±Yn3)ᾱβ , Õaᾱβ−(±) = (Yn1B1−)a (Y †n2

J23±Yn3)ᾱβ , (3.57)

with the color structure as given in eq. (3.55).
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Another illustrative example is the four quark operator discussed in section 3.3

Oᾱβγ̄δ(+;+) = J ᾱβq12+ J
γ̄δ
q′34+ Oᾱβγ̄δ(+;−) = J ᾱβq12+ J

γ̄δ
q′34− , (3.58)

Oᾱβγ̄δ(−;+) = J ᾱβq12− J
γ̄δ
q′34+ , Oᾱβγ̄δ(−;−) = J ᾱβq12− J

γ̄δ
q′34− ,

with color basis

T̄ αβ̄γδ̄ =
(
δαδ̄ δγβ̄ , δαβ̄ δγδ̄

)
. (3.59)

After BPS field redefinition, the color basis becomes

T̄ αβ̄γδ̄
BPS =

([
Y †n1

Yn4

]
αδ̄

[
Y †n3

Yn2

]
γβ̄
,
[
Y †n1

Yn2

]
αβ̄

[
Y †n3

Yn4

]
γδ̄

)
. (3.60)

This demonstrates how the decomposition in eq. (3.51) provides a convenient way of orga-

nizing the ultrasoft Wilson lines for the collinear operators. Once again, we could choose

to simply organize the ultrasoft Wilson lines in the operators Õᾱβγ̄δ, which would then be

multiplied by the color structure given in eq. (3.59).

Next we consider an example involving an ultrasoft building block. We again consider

four quarks, but now using currents built from two n1-collinear building blocks χβ1± and

χ̄ᾱ1±, one n2-collinear building block χ̄γ̄2±, and one ultrasoft building block ψδus(i)±. We

choose to pair up these fields into the currents J ᾱβ1λ with λ = ±, 0, 0̄, and J γ̄δ2(us)λ′ with

λ′ = ±, 0 or (J†)γ̄δ2(us)0. This notation implies that we have made the choice of the 2-sector

for the ultrasoft building block field, ψδus(2)±. The basis of operators is then

Oᾱβγ̄δA(λ:λ′) = J ᾱβ1λ J γ̄δ2(us)λ′ , Oᾱβγ̄δB(λ:0) = J ᾱβ1λ (J†)γ̄δ2(us)0 , (3.61)

where there are 16 distinct operators once we take into account the allowed helicity choices

for λ, λ′. Again we have the color basis T̄ ᾱβγ̄δ in eq. (3.59). Due to the different structure

of fields the color basis after BPS field redefinition for this example is

T̄ αβ̄γδ̄
BPS =

([
Y †n1

Yn2

]
αδ̄

[
Y †n2

Yn1

]
γβ̄
, δαβ̄ δγδ̄

)
. (3.62)

In the second color structure we have no Yn1 Wilson lines because the n1-collinear fields

are color contracted, and the correct Y †n2 Wilson line is already contained in the ψδus(2)±

building block inside J γ̄δ2(us)λ′ . In the first color structure we have [Y †n2Yn1 ] determined by

the collinear building blocks, and then need [Y †n1Yn2 ] in order to swap the ultrasoft reference

vector to the 1-sector when this factor multiplies J γ̄δ2(us)λ′ . Writing out the Õᾱβγ̄δT̄ αβ̄γδ̄ form

of the operators for this case, the two color structures give

Õᾱββ̄αA(λ:λ′) = J ᾱβ1λ

(
Yn1Y

†
n2
J2(us)λ′Yn2Y

†
n1

)β̄α
, Õᾱαγ̄γA(λ:λ′) = J ᾱα1λ J γ̄γ2(us)λ′ , (3.63)

Õᾱββ̄αB(λ:0) = J ᾱβ1λ

(
Yn1Y

†
n2

(J†)2(us)0Yn2Y
†
n1

)β̄α
, Õᾱαγ̄γB(λ:0) = J ᾱα1λ (J†)γ̄γ2(us)0 .

From this example we see that the advantage of using T̄ αβ̄γδ̄
BPS is that we do not need to be

concerned with the color contractions when specifying Oᾱβγ̄δ(λ:λ′).
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Note that an equivalent way of specifying the basis in eq. (3.61) would be to have

started with the other possible grouping of the fermion building blocks, using J γ̄β12+, J γ̄β12−,

J γ̄β120 or (J†)γ̄β12 0, together with J1(us)+, J1(us)−, J1(us)0, or (J†)1(us)0. This again gives 16

choices for the operator helicities, but now we are using the ultrasoft building block with

the reference direction as the 1-sector. The final result is the same with relations between

elements of the two bases.

As another example involving ultrasoft building blocks, we consider a dijet operator

that in a traditional approach has an ultrasoft derivative insertion, χ̄ᾱn1+

(
n̄2 · Dus

)
χβn2−.

After BPS field redefinition, we can rewrite this operator as

χ̄n1+

(
n̄2 ·Dus

)
χn2− → χ̄n1+

(
Y †n1

Yn2

)
in̄2 · ∂usχn2− + χn1+

(
Y †n1

Yn2

)
gBaus(2)0T

aχn2− .

(3.64)

Here we have chosen the 2 sector to define the ultrasoft building block gluon field,

Baus(2)0 = n̄2 ·Ba
us(2). In terms of our basis of ultrasoft gauge invariant helicity operators,

we can write the two operators as

Oᾱβ =
−2√

ω1 ω2 [n1n2]
χ̄ᾱ1+i∂us(2)0χ

β
2− =

{
J ᾱβ120(i∂us(2)0)†

}
, T̄αβ̄BPS =

(
Y †n1

Yn2

)
αβ̄

, (3.65)

and

Oᾱβa =
2√

ω1 ω2 [n1n2]
χ̄ᾱ1+gBaus(2)0χ

β
2− = J ᾱβ120gB

a
us(2)0 , T̄αβ̄aBPS =

(
Y †n1

Yn2T
a
)αβ̄

. (3.66)

The decomposition can always be done in the form of eq. (3.51). Using ultrasoft Wilson

lines arising from the BPS field redifinition, gauge covariant derivatives can be converted

into the ultrasoft partial derivative and the ultrasoft building block gluon field. Products

of the building blocks will then be linked in color space by ultrasoft Wilson lines. In

particular, the remaining ultrasoft derivatives do not act on the linking Wilson lines, they

only act on the ultrasoft Wilson lines and other fields that appear in the definitions of the

ultrasoft gauge invariant building blocks. In general we see that given a form of an operator

O with color structures T̄ , it is straightforward to determine T̄BPS, and thus also Õ.

3.6 Extensions

Throughout this paper we have discussed our operator basis in the language of the SCETI

theory with massless quarks and in d = 4 dimensions. SCET is also used in its SCETII

(with soft rather than ultrasoft fields) and SCET+ [97–100] incarnations, with massive

collinear particles, and with dimensional regularization in d = 4 − 2ε dimensions, so we

discuss the necessary extensions for each of these here.

3.6.1 SCETII

For a certain class of observables, including pT dependent measurements and exclusive

decays, the theory SCETII provides the appropriate effective field theory description [67].

In SCETII the soft and collinear modes live on the same invariant mass hyperbola, and

therefore modes mediating interactions between the soft and collinear modes are off-shell
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and can be integrated out of the theory, generating both collinear and soft Wilson lines. A

convenient way of matching to the SCETII theory is to first match QCD onto an SCETI

theory with a larger offshellness for the collinear fields [67]. The BPS field redefinition can

then be used to decouple the ultrasoft and collinear modes, giving rise to Wilson lines in

the operators, as discussed in section 3.4. One can then match this decoupled theory to

SCETII by lowering the virtuality of the external collinear modes to the soft scale, and

relabeling ultrasoft modes as soft. This matching calculation will be trivial (1-to-1) in

cases where there are not time-ordered products of two or more subleading operators or

Lagrangians in the SCETI theory [87]. Furthermore, in the matching procedure terms of

a given order in λ in the SCETI theory will only contribute to terms at that same order

or higher in the SCETII theory. The resulting Wilson coefficients in the SCETII theory

now also involve n ·ks momenta of soft building blocks, from integrating out hard-collinear

momenta with offshellness of order n̄ · pnn · ks ∼ Q2λ.

Since the helicity operator building blocks listed in table 2 are defined after BPS field

redefinition, they also directly apply to the description of the hard scattering operators in

the SCETII theory. We simply need to replace ultrasoft fields and Wilson lines by those

involving soft fields, qus → qs, Yn1 → Sn1 , etc. This matching should be done at the level of

the Õ operators in the SCETI theory, so that we do not have Wilson lines grouped with the

color structures in the resulting SCETII operators. There is a 1-to-1 correspondence be-

tween the appropriate building blocks in the two theories. We have the same building blocks

for collinear fields, and operators are now built from the soft building blocks for gluons

Bas(i)± = −ε∓µ(ni, n̄i)Baµs(i), Bas(i)0 = n̄µBaµs(i) , (3.67)

where Baµs(i) is defined as in eq. (3.36) but with soft fields. The soft quark building block

ψs(i) = S†niqs appears in currents that are directly analogs of those containing the ultrasoft

quark building block, namely7

J ᾱβi(s)± = ∓ 2√
ωi

εµ∓(ni, n̄i)

〈n̄i ∓ |ni±〉
χ̄ᾱi± γµψ

β
s(i)± , (3.68)

J ᾱβi(s)± = ∓ 2√
ωi

εµ∓(n̄i, ni)

〈ni ∓ |n̄i±〉
ψ̄ᾱs(i)± γµχ

β
i± ,

J ᾱβi(s)0 =

√
2

ωi
χ̄ᾱi+ψ

β
s(i)− , (J†)ᾱβi(s)0 =

√
2

ωi
ψ̄ᾱs(i)−χ

β
i+ ,

J ᾱβi(s)0 =

√
2

ωi
ψ̄ᾱs(i)+χ

β
i− , (J†)ᾱβi(s)0 =

√
2

ωi
χ̄ᾱi−ψ

β
s(i)+ ,

J ᾱβ
(s)2ij± = ∓

εµ∓(ni, nj)

〈nj ∓ |ni±〉
ψ̄ᾱs(i)±γµψ

β
s(j)± ,

J ᾱβ
(s)2ij0

= ψ̄ᾱs(i)+ψ
β
s(j)− , (J†)ᾱβ

(s)2ij0
= ψ̄ᾱs(i)−ψ

β
s(j)+ .

The full set of SCETII building blocks is listed in table 3. Here the soft derivatives ∂s(i)±
and ∂s(i)0 act only on soft building block fields. From these building blocks we see that the

7The notation here is chosen to make the SCETI to SCETII matching simpler, which in some cases comes

at the expense of using a different normalization for the soft and collinear currents in the SCETII theory.
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Bai± J ᾱβij± J ᾱβij0 P±⊥ J ᾱβi± J ᾱβi0 J ᾱβ
i0̄

Bas(i)± Bas(i)0 ∂s(i)± ∂s(i)0 ∂s(i)0̄

λ λ2 λ2 λ λ2 λ2 λ2 λ λ λ λ λ

J ᾱβi(s)± J ᾱβi(s)± J ᾱβi(s)0 J ᾱβi(s)0 J(s)2ij± J(s)2ij0

λ5/2 λ5/2 λ5/2 λ5/2 λ3 λ3

Table 3. Power counting for the full set of helicity building block operators in SCETII. Again we

must add the conjugate currents J† in cases where they are distinct from the ones shown.

helicity formalism can also be used to greatly simplify the construction of operator bases

for SCETII processes.

3.6.2 SCET+

In cases where multiple measurements are made on the same jet additional degrees of

freedom must be added to SCET. A general class of effective theories to describe such

situations is the class of SCET+ theories [97–100]. In addition to collinear and soft modes,

these effective field theories typically contain (multiple) collinear-soft modes, which exhibit

both a collinear, and a soft scaling. Such effective field theories have been used, for example,

for the calculation [101] of the D2 [102] jet substructure observable.

While subleading power corrections to SCET+ theories have not been studied, we wish

to emphasize that our helicity operator approach extends also straightforwardly to such

theories. In SCET+ theories, subleading power hard scattering operators will involve not

only collinear and (ultra)soft fields, but also collinear soft fields. Although we will not do

it in this paper, it is then a simple exercise to write a basis of helicity operator building

blocks, including also such collinear soft fields. Indeed, the helicity operator formalism has

already been used to simplify matching calculations in SCET+ at leading power in [100].

3.6.3 SCET with massive collinear quarks

The effective field theory description of the dynamics of the ultrasoft and collinear modes, as

discussed thus far, is appropriate for massless quarks. For certain cases of phenomenological

relevance, including boosted top production, the quark mass is an IR scale with the same

parametric scaling as the ⊥ momenta of collinear particles. In this case, the quark mass

must be included in Ldyn [103, 104] for collinear quarks, soft or ultrasoft quarks, or both.

For example, the leading power collinear quark Lagrangian for massive quarks is given by

Lm(0)
nξ = ξ̄n

[
in ·Dns +

(
i /Dn⊥ −m

)
Wn

1

Pn
W †n

(
i /Dn⊥ +m

)] /̄n
2
ξn . (3.69)

where iDns = in · ∂us + gn ·Aus + gn ·An.

Since the mass appears as an IR scale in the effective theory, the hard scattering op-

erators for the case of massive SCET are the same as for massless SCET and the helicity

operator basis presented in this paper also applies. However, as compared to the lead-

ing power Lagrangian for massless collinear quarks, the mass terms in eq. (3.69) imply
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that quark chirality is not conserved by the soft and collinear dynamics of the effective

field theory. This means that symmetry arguments relying on the conservation of helicity

no longer apply. (We will use such symmetry arguments to reduce the number of hard

scattering operators that can contribute to the e+e− → dijets or constrained Drell-Yan

cross-section at O(λ2) for massless SCET.) Nevertheless, the helicity operator basis still

provides a convenient way of organizing hard scattering SCET operators involving boosted

massive quarks.

3.6.4 Evanescent operators

One subtlety of the helicity operator basis is that it relies on massless quarks and gluons

having two helicities, a feature which is specific to 4 dimensions. In dimensional regu-

larization, divergences are regularized by analytically continuing the particle momenta to

d = 4− 2ε dimensions. In a general scheme, the helicities of quarks and gluons live in dgs,

and dqs dimensional spaces respectively, although in most commonly used schemes, only

dgs is analytically continued. Different schemes within dimensional regularization differ in

their treatment of dgs for internal (unobserved) and external (observed) particles. Evanes-

cent operators [105–107] are defined as those whose tree level matrix elements vanish as

ε → 0. However in loop calculations these matrix elements can multiply 1/ε poles and

lead to contributions that must be included in matching and higher order anomalous di-

mension calculations. For explicit discussions within the context of SCET calculations, see

refs. [69, 108–110]. Such evanescent operators can not be specified using only our helicity

building block fields.

In ref. [73] a discussion of scheme dependence was given for leading power helicity

operators, and it was shown that evanescent operators do not appear when using SCET

helicity operators for leading power matching calculations in exclusive jet processes. How-

ever, evanescent operators could appear at loop level when working to subleading power.

The required extension of our helicity operator basis depends in detail on the regulariza-

tion scheme, but in general requires the inclusion of additional fields, for example an ε

scalar gluon Baε to encode the (−2ε) transverse degrees of freedom, and quark currents

Jε which involve Dirac structures that would vanish if ε = 0. Since we do not consider

the explicit one-loop matching and evolution of the helicity operators in this paper, we

postpone a detailed discussion of evanescent operators to future work. However, we ex-

pect that at each loop order, the possible evanescent operators can be easily identified and

treated. We note that a calculation of the leading power inclusive jet and soft functions in

different regularization schemes, including the treatment of ε scalar gluons was presented

in ref. [111].

3.7 Parity and charge conjugation properties

It may initially seem that having distinct operators for each external helicity configuration

greatly increases the number of operators. However, as is known from the study of helicity

amplitudes, this is not the case. Parity and charge conjugation relations allow one to

relate operators with distinct helicity configurations. An understanding of these relations

is therefore essential for minimizing the number of matching calculations. The use of parity
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and charge conjugation relations is not limited to theories which exhibit C or P symmetry.

Amplitudes and Wilson coefficients can be decomposed into pieces each of which have

definite properties under C or P.

The C/P properties for the helicity building blocks involving collinear fields are as

follows. Under parity, we have

PBai±(ni;ωi;x) P = −Bai∓(nP
i ;ωi;x

P) , (3.70)

P J ᾱβij±(ni, nj ;ωi, ωj ;x) P = J ᾱβij∓(nP
i , n

P
j ;ωi, ωj ;x

P) ,

PJ ᾱβi0 (ni;ω1, ω2;x)P = J ᾱβ
i0̄

(nP
i ;ω1, ω2;xP) ,

PJ ᾱβ
i0̄

(ni;ω1, ω2;x)P = J ᾱβi0 (nP
i ;ω1, ω2;xP) ,

PJ ᾱβi± (ni;ω1, ω2;x)P = J ᾱβi∓ (nP
i ;ω1, ω2;xP) ,

where we have made the dependence on ni, ωi, and x explicit, and the parity-transformed

vectors are xP
µ = xµ. Under charge conjugation we have,

CBai±(ni;ωi)T
a
αβ̄ C = −Bai±(ni;ωi)T

a
βᾱ , (3.71)

C J ᾱβij±(ni, nj ;ωi, ωj) C = −J β̄αji∓(nj , ni;ωj , ωi) ,

CJ ᾱβi0 (ni;ω1, ω2)C = −J β̄α
i0̄

(ni;ω2, ω1) ,

CJ ᾱβ
i0̄

(ni;ω1, ω2)C = −J β̄αi0 (ni;ω2, ω1) ,

CJ ᾱβi± (ni;ω1, ω2)C = −J β̄αi± (ni;ω2, ω1) .

Under parity, the P±⊥ operators transform as

PP±⊥P = −P∓⊥ . (3.72)

Since charge conjugation exchanges the order of fields within a quark current, we have

C{J ᾱβi0 (P±⊥ )†}C = −{(P±⊥ )J β̄α
i 0̄
} , (3.73)

along with similar relations for the other operators that involve P±⊥ insertions.

Although for our main example in section 4 we will not use the operators of eq. (3.44),

which involve ultrasoft quarks, for completeness we give their C/P properties. Under parity,

the mixed ultrasoft collinear operators transform as

PJ ᾱβi(us)±(ni;ωi)P = J ᾱβi(us)∓(nP
i ;ωi) , (3.74)

PJ ᾱβi(us)±(ni;ωi)P = J ᾱβi(us)∓(nP
i ;ωi) ,

PJ ᾱβi(us)0(ni;ωi)P = (J†)ᾱβi(us)0(nP
i ;ωi) ,

PJ ᾱβi(us)0(ni;ωi)P = (J†)ᾱβi(us)0(nP
i ;ωi) ,

P(J†)ᾱβi(us)0(ni;ωi)P = J ᾱβi(us)0(nP
i ;ωi) ,

P(J†)ᾱβi(us)0(ni;ωi)P = J ᾱβi(us)0(nP
i ;ωi) ,
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while under charge conjugation, we have

CJ ᾱβi(us)±(ni;ωi)C = −J β̄αi(us)∓(ni;ωi) , (3.75)

CJ ᾱβi(us)±(ni;ωi)C = −J β̄αi(us)∓(ni;ωi) ,

CJ ᾱβi(us)0(ni;ωi)C = −J β̄αi(us)0(ni;ωi) ,

CJ ᾱβi(us)0(ni;ωi)C = −J β̄αi(us)0(ni;ωi) ,

C(J†)ᾱβi(us)0(ni;ωi)C = −(J†)β̄αi(us)0(ni;ωi) ,

C(J†)ᾱβi(us)0(ni;ωi)C = −(J†)β̄αi(us)0(ni;ωi) .

The C/P properties of the currents involving two ultrasoft quarks are identical to those

of standard quark bilinears, so we do not give them here. Finally, the C/P properties of

the SCETII operators of eq. (3.68), which involve soft quarks, are easily obtained from the

SCETI results above.

As a simple example to demonstrate the use of C/P relations, we consider e+e− → qq̄

through an off-shell photon at leading power in SCET, which we will consider in more

depth in section 4. We will label the quark and antiquark by 1, 2 and the electron and

positron by 3, 4. It is well known that at leading power there is a single current using

traditional SCET operators,

Jµᾱβ = χ̄ᾱ1 γ
µχβ2 . (3.76)

The free Lorentz index is contracted with the leptonic tensor to form a scalar. On the

other hand, the helicity basis consists of four scalar operators,

O
(0)ᾱβ
(+;+) = J ᾱβ12+ Je+ , O

(0)ᾱβ
(+;−) = J ᾱβ12+ Je− , (3.77)

O
(0)ᾱβ
(−;+) = J ᾱβ12− Je+ , O

(0)ᾱβ
(−;−) = J ᾱβ12− Je− ,

which already include the leptons through the lepton helicity current Je±. The leptonic

helicity currents are defined in an identical manner to the leading power QCD current of

eq. (3.9), but without the corresponding Wilson lines or color indices

Je± ≡ J34± = ∓
√

2

ω3 ω4

εµ∓(n3, n4)

〈n4 ∓ |n3±〉
ē3± γµe4± . (3.78)

For the e+e− → qq̄ process, there is a unique color structure for either eq. (3.76) or

eq. (3.77),

T̄αβ̄ = (δαβ̄) . (3.79)

Invariance under parity implies that the Wilson coefficients for the helicity operators

are related by

C(+;+)(n1, n2;ω1, ω2;ω3, ω4) = C(−;−)(n
P
1 , n

P
2 ;ω1, ω2;ω3, ω4) , (3.80)

C(+;−)(n1, n2;ω1, ω2;ω3, ω4) = C(−;+)(n
P
1 , n

P
2 ;ω1, ω2;ω3, ω4) .
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When doing the matching, we sum over the n’s as in eq. (3.49), so we are free to rewrite

nP
i → ni. Since we consider the process to all orders in the strong interaction, but only

leading order in the electromagnetic interaction, the leptons couple through the current

〈1± |γµ|2±〉 = 〈2∓ |γµ|1∓〉. This implies the further relation

C(+;+)(n1, n2;ω1, ω2;ω3, ω4) = C(+;−)(n1, n2;ω1, ω2;ω4, ω3) . (3.81)

These relations can be easily checked by considering the tree level matching. At tree level,

the Wilson coefficients are given by

C(+;+) = −e2q2 2[13]〈24〉
s34

, C(+;−) = −e2q2 2[14]〈23〉
s34

, (3.82)

C(−;+) = −e2q2 2[23]〈14〉
s34

, C(−;−) = −e2q2 2[24]〈13〉
s34

.

These satisfy the above relations, by noting from appendix A that parity simply inter-

changes [] ↔ 〈〉. Together the three relations in eqs. (3.80) and (3.81) provide the nec-

essary information to indicate that the matching onto the helicity operator basis came

from a vector current. Therefore, only one coefficient of the helicity operators needs to be

computed in a matching calculation at any order in αs. Note that the basis constructed in

eq. (3.77) also works for mediation through a Z-boson, where axial coupling also needs to

be considered.

Further examples of the use of C and P to simplify helicity operator bases can be found

in ref. [73], and below in section 4.

3.8 Constraints from angular momentum conservation

The use of operators with definite helicities makes manifest symmetries related to rota-

tional invariance. As discussed in detail in [72], constraints from conservation of angular

momentum can greatly reduce the basis of hard scattering operators appearing at sublead-

ing powers, when multiple collinear fields can appear in each collinear sector. Conservation

of angular momentum implies the general constraint [72]

J
(i)
min ≤

∑
j with n̂j 6=n̂i

J
(j)
min , (3.83)

where J
(i)
min is the minimum angular momentum carried by the ni-collinear sector. This

can be related to the helicities of the building blocks in a given sector by J
(i)
min = |htot

ni |,
where the helicities in the ni-collinear sector of some operator add up to htot

ni . From this,

we immediately get the constraint,

|htot
ni | ≤

∑
j with n̂j 6=n̂i

|htot
nj | , (3.84)

where it is important to count back-to-back collinear directions only once in this sum,

considering the helicity about their common axis.

These selection rules are particularly simple for the case of e+e− → dijets (or con-

strained Drell-Yan) which we study here. In this case, there are two axes along which
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(a) (b)

Figure 2. A illustration of the helicity selection rule for e+e− → dijets. In a) the collinear particles

along the n axis carry |h = 2|, and have a vanishing projection onto the Je± current. In b), the

collinear particles carry |h = 0| and therefore have a non-vanishing projection onto the Je± current.

particles move, namely the axis of the colliding e+e− pairs, and the n axis of the jets. In

the helicity operator approach, the helicities of all operators are defined with respect to

these axes. For the case of e+e− → dijets proceeding through an off-shell photon or Z bo-

son, the coupling to vector bosons guarantees that the electron pair has a combined helicity

along the collision axis of |he+e− | = 1, as shown in figure 2. To have a non-zero amplitude,

the helicity state of the outgoing jets defined along the n axis must have an overlap with

this helicity 1 state. In particular, we must have htot
n = −1, 0, 1. At subleading power,

when there are multiple collinear fields in the n and n̄ sectors, the helicity of a particular

sector can be larger than 1. This means that the helicities of the fields must be arranged

in particular combinations, and considerably simplifies the basis.

As an example, consider a subleading power operator involving an additional collinear

gluon field in the n collinear sector. Without imposing constraints from angular momentum

conservation, a basis of allowed helicity operators is

O
(1)a ᾱβ
+(+;±) = Ban+ J

ᾱβ
nn̄+ Je± , O

(1)a ᾱβ
+(−;±) = Ban+ J

ᾱβ
nn̄− Je± , (3.85)

O
(1)a ᾱβ
−(+;±) = Ban− J

ᾱβ
nn̄+ Je± , O

(1)a ᾱβ
−(−;±) = Ban− J

ᾱβ
nn̄− Je± .

However, the first and fourth operators have |htot
n | = 2 and thus are not allowed, and can

be eliminated from the basis. This configuration is shown schematically in figure 2 (a).

Only the operators where the helicity of the n collinear quark and gluon fields are opposite

are allowed in the basis. The actual basis of allowed operators is therefore simpler, and is

just given by

O
(1)a ᾱβ
−(+;±) = Ban− J

ᾱβ
nn̄+ Je± , O

(1)a ᾱβ
+(−;±) = Ban+ J

ᾱβ
nn̄− Je± , (3.86)

A schematic illustration of these configurations is shown in figure 2 (b). Using these re-

strictions, we have therefore eliminated half of the potential operators. Similar constraints

will play an important role in simplifying the complete basis of subleading power operators

given in section 4.
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4 Hard scattering operators with two collinear directions

To demonstrate the simplicity of the helicity-operator approach, we construct the O(λ) and

O(λ2) basis of power suppressed hard scattering operators with two collinear directions.

A summary of the complete set of operators is given in table 4. For concreteness, we take

the color singlet particles involved in the hard scattering to be an e+e− pair, with the

interaction proceeding through an off-shell γ or Z. The basis is valid to all orders in αs,

and leading order in the electroweak couplings. Since the helicity operators from which

our basis of hard scattering operators are composed are manifestly crossing symmetric, our

operators can be used as a basis of hard scattering operators in factorization proofs for

e+e− → dijet event shapes, constrained Drell-Yan, or DIS producing a single jet.

The extension to O(λ2) is necessary, since when we square power suppressed jet am-

plitudes to calculate a cross section, the O(λ) power corrections to the cross section vanish

in known examples [19, 68, 70, 143]. We will explicitly show the vanishing of the contri-

butions to the O(λ) cross section from hard scattering contributions in section 4.4.1. We

then present the hard scattering operators that contribute to the factorized cross section

at O(λ2) in section 4.4.2. A set of O(λ) and O(λ2) operators for e+e− → dijets has been

presented in ref. [70], although no claim of completeness was made, and a different formu-

lation of SCET was used. In section 4.5 we will briefly compare our all orders basis with

the operators of ref. [70].

One simplification that we make when constructing our basis is that we work in the

center of mass frame, and only consider operators that are non-vanishing in this frame.

This is natural for Drell-Yan (CM frame), e+e− → dijet event shapes (the CM frame of

the jets), and is also a convenient frame for theoretical studies of DIS (the Breit frame).

Because of the conservation of label momentum in SCET, this choice of frame allows us

to take the strongly interacting collinear sectors to be back-to-back. We therefore describe

them by the back-to-back light-like vectors n1 = n = (1, n̂) and n2 = n̄ = (1,−n̂). Due

to this choice we will label the helicity currents with n and n̄, as in J ᾱβnn̄±, instead of with

collinear sector numbers, J ᾱβ12±. In eq. (3.49) the hard Lagrangian in SCET is written as a

sum over label momenta of the hard operators. For the special case of two back-to-back

collinear sectors this reduces to

L(j)
hard =

∑
n

∑
A,··

[
`A∏
i=1

∫
dωi

]
~O

(j)†
A+··:··(··:··...··:··)[··:··−]

(
nn̄;ω1, . . . , ω`A

)
× ~C

(j)
A+··:··(··:··...··:··)[··:··−]

(
nn̄;ω1, . . . , ω`A

)
. (4.1)

When constructing a complete basis, we therefore do not need to include operators which

are identical up to the swap of n ↔ n̄. For a given operator, we can therefore choose the

n and n̄ labels arbitrarily, and this can be done independently for each operator. When

squaring matrix elements, all possible interferences are properly incorporated by accounting

for the sum over directions in eq. (4.1).

Furthermore, we choose to align the n and n̄ axes with the jets or protons, such that

the overall label ⊥ momentum of each collinear sector is zero. As a consequence, operators
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Order Category Operators (equation number) # helicity # of σ
O(λ2)
2j 6=0

configs color

O(λ0) eēqq̄ O
(0)ᾱβ
(λ1;±) = J ᾱβnn̄λ1

Je± (4.6) 4 1 X

O(λ) eēqq̄g O
(1)a ᾱβ
nn̄1,2λ1(λ2;±) = Ban,n̄λ1

J ᾱβnn̄−λ1
Je± (4.13), (4.14) 8 1 X

O
(1)a ᾱβ
n̄λ1(λ2:±) = Banλ1

J ᾱβn̄λ2
Je± (4.15) 8 1 X

eēggg O
(1)abc
Bλ1λ2λ3(±) = S Banλ1

Bbn̄λ2
Bcn̄λ3

Je± (4.20) 8 2 X

O(λ2) eēqq̄QQ̄ O
(2)ᾱβγ̄δ
qQ1(λ1;λ2:±) = J ᾱβ(q)nλ1

J γ̄δ(Q)n̄λ2
Je± (4.25) 8 2

O
(2)ᾱβγ̄δ
qQ2(λ1;λ1:±) = J ᾱβ

(qQ̄)nλ1
J γ̄δ(Qq̄)n̄ λ1

Je± (4.26) 4 2

O
(2)ᾱβγ̄δ
qQ3(λ1;−λ1;±) = J ᾱβ(q)nn̄λ1

J γ̄δ(Q)nn̄−λ1
Je± (4.28) 4 2

O
(2)ᾱβγ̄δ
qQ4(λ1:λ2;±) = J ᾱβ(q)n̄λ1

J γ̄δ(Q)nn̄ λ2
Je± (4.32) 8 2 X

O
(2)ᾱβγ̄δ
qQ5(λ1:λ2;±) = J ᾱβ(q)n̄λ1

J γ̄δ(Q)n̄nλ2
Je± (4.32) 8 2 X

eēqq̄qq̄ O
(2)ᾱβγ̄δ
qq1(λ1;λ2:±) = J ᾱβ(q)nλ1

J γ̄δ(q)n̄λ2
Je± (4.30) 8 2

O
(2)ᾱβγ̄δ
qq3(λ1;−λ1;±) = J ᾱβ(q)nn̄λ1

J γ̄δ(q)nn̄−λ1
Je± (4.31) 2 2

O
(2)ᾱβγ̄δ
qq4(λ1:λ2;±) = J ᾱβ(q)n̄λ1

J γ̄δ(q)nn̄ λ2
Je± (4.35) 8 2 X

O
(2)ᾱβγ̄δ
qq5(λ1:λ2;±) = J ᾱβ(q)n̄λ1

J γ̄δ(q)n̄nλ2
Je± (4.35) 8 2 X

eēqq̄gg O
(2)ab ᾱβ
B1λ1λ2(λ3;±) = SBanλ1

Bbnλ2
J ᾱβnn̄ λ3

Je± (4.40) 8 3 X

O
(2)ab ᾱβ
B2λ1λ2(λ3;±) = SBanλ1

Bbnλ2
J ᾱβn̄n λ3

Je± (4.41) 8 3 X

O
(2)ab ᾱβ
B3λ1λ2(λ3;±) = Banλ1

Bbn̄λ2
J ᾱβnn̄ λ3

Je± (4.44) 12 3

O
(2)ab ᾱβ
B4λ1λ2(λ3:±) = Banλ1

Bbn̄λ2
J ᾱβn λ3

Je± (4.46) 8 3

O
(2)ab ᾱβ
B5λ1λ2(λ3:±) = Ban̄λ1

Bbn̄λ2
J ᾱβn λ3

Je± (4.48) 4 3

eēgggg O
(2)abcd
4g1λ1λ2λ3λ4(±) = SBanλ1

Bbnλ2
Bcn̄λ3

Bdn̄λ4
Je± (4.54) 6 9

O
(2)abcd
4g2λ1λ2λ3λ4(±) = SBanλ1

Bbn̄λ2
Bcn̄λ3

Bdn̄λ4
Je± (4.56) 4 9

P⊥ O
(2)a ᾱβ
P2λ1(λ2:±)[λP ] = Banλ1

{J ᾱβn̄ λ2
(PλP⊥ )†} Je± (4.62) 8 1

O
(2)a ᾱβ
P1n,n̄λ1(λ2;±)[λP ] =

[
PλP⊥ B

a
n,n̄λ1

]
J ᾱβnn̄ λ2

Je± (4.60), (4.61) 24 1 X

O
(2)abc
PBλ1λ2λ3(±)[λP ] = S Banλ1

Bbn̄λ2

[
PλP⊥ B

c
n̄λ3

]
Je± (4.65) 8 2

Ultrasoft O
(2)a ᾱβ
B(us(i))λ1:(λ2;±) = Baus(i)λ1

J ᾱβnn̄ λ2
Je± (4.70), (4.72) 8 1

O
(2)a ᾱβ
B(us(i))0:(λ1;±) = Baus(i)0 J

ᾱβ
nn̄ λ1

Je± (4.70), (4.72) 8 1 X

O
(2) ᾱβ
∂(us(i))λ1:(λ2;±) = {∂us(i)λ1

J ᾱβnn̄ λ2
} Je± (4.75) 8 1

O
(2) ᾱβ

∂(us(i))0,0̄:(λ1;±)
= {∂us(i)0,0̄ J

ᾱβ
nn̄ λ1
} Je± (4.75) 8 1 X

O
(2)abc
(us(i))λ1:λ2λ3(±) = Baus(i)λ1

Bbn λ2
Bcn̄ λ3

Je± (4.77), (4.79) 24 2

O
(2)ab
∂B(us(i))λ1:λ2λ3(±) =

[
∂us(i)λ1

Bnλ2

]
Bn̄ λ3Je± (4.82), (4.84) 24 2

Table 4. Basis of hard scattering operators to O(λ2) with an electron current Je± and two back-

to-back collinear sectors. Here the λi denote helicities, S represents a symmetry factor, and Ban,n̄λ1

indicates Banλ1
or Ban̄λ1

. The allowed values for the λi helicities are given in the indicated equation,

and the total count is given in the indicated column. The last column indicates which operators

can contribute to e+e− → dijet event shapes and other two-direction processes up to O(λ2) in the

power expansion and at any order in αs, as discussed in detail in section 4.4.2.
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involving P⊥ acting on the complete set of fields in a collinear sector vanish. Insertions

of P⊥ can still be non-vanishing when two or more collinear field building blocks appear

in the same sector, and hence will first appear in our analysis at O(λ2). The presence

of ultrasoft degrees of freedom carrying residual momentum implies that, unlike the label

perp momentum, the residual perp momentum of a collinear sector does not necessarily

vanish, and can be exchanged with the ultrasoft sector.

All outgoing quark fields are taken to be massless. Chiral symmetry is violated in QCD

by heavy quark masses, such as the top quark mass, and by non-perturbative effects. When

matching QCD to SCET with only massless external fields we assume we are working below

the scale where a top-quark can be produced, so top quarks appear only in closed loops and

chirality is conserved at each order in αs by the matching procedure (though not by the

low energy non-perturbative dynamics, such as the chiral condensate). This remains true

when considering QCD corrections to the Z exchange for any of the processes governed by

the back-to-back collinear operators. All operators appearing in our basis must therefore

preserve chirality.

Throughout this section we will use PZ to denote the ratio of the Z and photon

propagators,

PZ(s) =
s

s−M2
Z + iΓZMZ

, (4.2)

and we will use viL,R for the coupling of particle i to the Z boson, whose explicit expressions

are given by

viL =
2T i3 − 2Qi sin2 θW

sin(2θW )
, viR = −2Qi sin2 θW

sin(2θW )
, (4.3)

where T i3 is the third component of weak isospin. Since we use helicities to label the

operators and Wilson coefficients, it is convenient to define the weak couplings in terms of

helicities for both the quark and lepton currents,

vl+ = vlR, vl− = vlL, vq+ = vqR, vq− = vqL . (4.4)

For color, we use the normalization tr[T a T b] = 1/2 δab, i.e. TF = 1/2, and write the

antisymmetric and symmetric structure constants of SU(3), as fabc, dabc respectively. In

the case of the collinear operators, we present the color structure both before and after

BPS field redefinition.

When labeling particles, the highest two subscripts will be used to refer to the electron

and positron respectively, which will always appear in the current

Je± ≡ Jeij± = ∓

√
2

ωi ωj
εµ∓(ni, nj)

ēi±γµej±
〈nj ∓ |ni±〉

. (4.5)

Since this current appears in every operator, for notational convenience we will drop the

explicit ij label on the current, denoting it simply by Je±.

Due to the relatively large number of operators present up to O(λ2) we provide a

summary of the complete set of operators in table 4, along with the number of helicity
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configurations for each operator. There are a total of 256 helicity configurations in our

operator basis, 116 of which can contribute at O(λ2), of which 100 have tree level contri-

butions. This number does not include the different color configurations, which are also

indicated in the table. The leading power basis can be found in section 4.1, the O(λ)

subleading basis in section 4.2 and the O(λ2) subleading basis in section 4.3.

4.1 Leading power operators

To begin this analysis, we review the leading power back-to-back operators and Wilson

coefficients, which are combined according to eq. (3.49) to give L(0)
hard. By power counting,

the leading power operators consist of either two collinear quark building blocks or two

collinear gluon building blocks, one in the n-collinear and one in the n̄-collinear sector. For

the eegg channel we have a process with one offshell spin-1 (γ/Z) particle and two onshell

spin-1 particles (gg). The Wilson coefficients then all vanish by Yang’s theorem [112, 113],

so we omit these operators. Therefore only the eeqq̄ channel contributes at leading power.

While one should sum over the flavor of the outgoing quarks, this is trivial to implement,

and therefore we do not make the flavor in the quark current explicit. The leading power

helicity operators are given by

qq̄ :

O
(0)ᾱβ
(+;±) = J ᾱβnn̄+Je± , O

(0)ᾱβ
(−;±) = J ᾱβnn̄−Je± . (4.6)

Here, and throughout this section, the bracketed superscript indicates the suppression in

powers of λ of the operator relative to the leading power operators. Since these are the

leading power operators, it is zero in this case.

The color basis is one dimensional, and is given before and after BPS field

redefinition by

T̄αβ̄ = (δαβ̄) , T̄αβ̄BPS =
[
Y †nYn̄

]
αβ̄
. (4.7)

Since the weak interactions break C and P symmetry, it is convenient to expand the Wilson

coefficients into components with well defined C/P properties. We use the decomposition

~C
(0)
(λq ;λl)

(n, n̄;ω1,ω2;ω3,ω4) = e2

{[
Q`Qq+v`λlv

q
λq
PZ(s34)

]
~C

(0)
q(λq ;λl)

(n, n̄;ω1,ω2;ω3,ω4)

+

nf∑
j=1

[
Q`Qj+

v`λl
2

(vjL+vjR)PZ(s34)

]
~C

(0)
v(λq ;λl)

(n, n̄;ω1,ω2;ω3,ω4)

+
v`λl

sin(2θW )
PZ(s34) ~C

(0)
a(λq ;λl)

(n, n̄;ω1,ω2;ω3,ω4)

}
, (4.8)

where λq and λl are the quark and lepton current helicities. Our notation follows that

of [73]. Here we have extracted only electroweak couplings from the Wilson coefficients, so
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that each of ~Cq,v,a is a power series in αs. In eq. (4.8) we have split the amplitude into a

contribution, ~Cq, arising from the matching contributions where the vector boson couples

directly to the final-state quark line, and contributions ~Cv, ~Ca where the vector boson

couples to a quark loop through a vector or axial coupling, respectively. This decomposition

is valid since we work only to leading order in the electroweak couplings. We have also

made the assumption that all quarks, except for the top, are massless. This implies that

only the b, t isodoublet contributes to ~Ca. This assumption can trivially be lifted, but many

helicity amplitudes are calculated assuming this approximation.

Charge and parity conjugation can be used to derive relations between the Wilson

coefficients. Parity relates the Wilson coefficients by

C
(0)αβ̄
q (λ12;λ34)(n, n̄;ω1, ω2;ω3, ω4) = C

(0)αβ̄
q (−λ12;−λ34)(n, n̄;ω1, ω2;ω3, ω4) , (4.9)

C
(0)αβ̄
v (λ12;λ34)(n, n̄;ω1, ω2;ω3, ω4) = C

(0)αβ̄
v (−λ12;−λ34)(n, n̄;ω1, ω2;ω3, ω4) ,

C
(0)αβ̄
a (λ12;λ34)(n, n̄;ω1, ω2;ω3, ω4) = −C(0)αβ̄

a (−λ12;−λ34)(n, n̄;ω1, ω2;ω3, ω4) .

Here λ12 = ± denotes the helicity label of the helicity building block with momentum labels

ω1 and ω2 describing the two collinear quark fields, and similarly for λ34. This notation

will be used throughout this section, with the additional allowance for λi = 0 or 0̄ when

appropriate. For later applications, we also introduce the notation

if λ = 0 then − λ = 0̄ . (4.10)

Note that n and n̄ are not swapped here since after applying parity we always make an

additional swap n ↔ n̄ so that we get back the same form of operators. Since we always

work to leading order in the weak and electromagnetic couplings, the leptons couple only

through the vector and axial-vector currents which satisfy

〈3±|γµ|4±〉 = 〈4∓|γµ|3∓〉, 〈3±|γµγ5|4±〉 = −〈4∓|γµγ5|3∓〉 . (4.11)

These relations will be used throughout our analysis. Here they imply

C
(0)αβ̄
q (λ12;λ34)(n, n̄;ω1, ω2;ω3, ω4) = C

(0)αβ̄
q (λ12;−λ34)(n, n̄;ω1, ω2;ω4, ω3) , (4.12)

C
(0)αβ̄
v (λ12;λ34)(n, n̄;ω1, ω2;ω3, ω4) = C

(0)αβ̄
v (λ12;−λ34)(n, n̄;ω1, ω2;ω4, ω3) ,

C
(0)αβ̄
a (λ12;λ34)(n, n̄;ω1, ω2;ω3, ω4) = −C(0)αβ̄

a (λ12;−λ34)(n, n̄;ω1, ω2;ω4, ω3) .

The relations in eqs. (4.11) and (4.12) imply that only the three Wilson coefficients with

the helicity label (+; +) need to be calculated to get all twelve coefficients.

4.2 Subleading power operators

From the power counting of the operators in table 1, we see that the O(λ) suppressed

operators have three O(λ) collinear building block fields, or two collinear building block

fields and a single P⊥ insertion. Our choice for n and n̄ eliminates operators that have a

P⊥ acting on a complete collinear sector. Therefore, we only need to consider operators
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consisting of three collinear field building blocks at O(λ). There are two possibilities for the

field content of the operators: two collinear quarks and a collinear gluon, or three collinear

gluons. We shall discuss each in turn.

The helicity operators involving two collinear quarks and a single collinear gluon consist

of a single leptonic current, a quark current, and a collinear gluon building block field. For

each helicity configuration, we must consider the cases where both collinear quarks are in

the same sector, or in different sectors. The quarks are necessarily in a same chirality pair,

which simplifies the operator basis. The basis of helicity operators was already constructed

in section 3.8 and is given by

(gq)n(q̄)n̄ :

O
(1)a ᾱβ
nn̄1+(−;±) = Ban+ J

ᾱβ
nn̄− Je± , O

(1)a ᾱβ
nn̄1−(+;±) = Ban− J

ᾱβ
nn̄+ Je± , (4.13)

and

(q)n(gq̄)n̄ :

O
(1)a ᾱβ
nn̄2−(−;±) = Ban̄− J

ᾱβ
nn̄− Je± , O

(1)a ᾱβ
nn̄2+(+;±) = Ban̄+ J

ᾱβ
nn̄+ Je± , (4.14)

for the case that the quarks are in different collinear sectors, and

(g)n(qq̄)n̄ :

O
(1)a ᾱβ
n̄+(0:±) = Ban+ J

ᾱβ
n̄0 Je± , O

(1)a ᾱβ

n̄+(0̄:±)
= Ban+ J

ᾱβ
n̄0̄
Je± , (4.15)

O
(1)a ᾱβ
n̄−(0:±) = Ban− J

ᾱβ
n̄0 Je± , O

(1)a ᾱβ

n̄−(0̄:±)
= Ban− J

ᾱβ
n̄0̄
Je± ,

in the case that they are in the same sector. Note that the operators in eqs. (4.13) and (4.14)

are distinct, and therefore both need to be included in the basis, while in the case that both

quarks are in the same sector, it is sufficient to chose both quark fields to be in the same

sector, since the direction is summed over. In eqs. (4.13) and (4.14) we have eliminated

two of the possible helicity combinations, as was discussed in detail in section 3.8. The

color basis is one dimensional, and is given by

T̄ aαβ̄ = T aαβ̄ . (4.16)

After BPS field redefinition the structure of the ultrasoft Wilson lines is different depending

on whether the quarks are in different or the same collinear sectors. We find

T̄ aαβ̄BPS =
(
T aY †nYn̄

)
αβ̄

, T̄ aαβ̄BPS =
(
Y †nYn̄T

a
)
αβ̄

, T̄ aαβ̄BPS = Yban Ybcn̄ T cαβ̄ , (4.17)

for the operators in eqs. (4.13) and (4.14) and eq. (4.15), respectively. We have used

eq. (3.32) to simplify the equations in eq. (4.17) and we will continue to do so throughout

this section when it simplifies the relevant Wilson line structures.
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The Wilson coefficients of the operators in both eqs. (4.13) and (4.14) and eq. (4.15)

can be expanded as

~C(1)(n, n̄;ω1;ω2,ω3;ω4,ω5) = e2

{[
Q`Qq+v`λlv

q
λq
PZ(s45)

]
~C(1)
q (n, n̄;ω1;ω2,ω3;ω4,ω5)

+

nf∑
j=1

[
Q`Qj+

v`λl
2

(vjL+vjR)PZ(s45)

]
~C(1)
v (n, n̄;ω1;ω2,ω3;ω4,ω5)

+
v`λl

sin(2θW )
PZ(s45) ~C(1)

a (n, n̄;ω1;ω2,ω3;ω4,ω5)

}
, (4.18)

where the components of the Wilson coefficient have the same meaning as in eq. (4.8). C/P

relations combined with the ability to flip the helicity of the electron current, as described

in eq. (4.11), give the following relations between Wilson coefficients

~C
(1)
v λ1(λ23:λ45)(n, n̄; {ωi}) = ~C

(1)
v−λ1(−λ23:−λ45)(n, n̄; {ωi}) , (4.19)

~C
(1)
v λ1(λ23:λ45)(n, n̄;ω1;ω2, ω3;ω4, ω5) = − ~C(1)

v λ1(−λ23:−λ45)(n, n̄;ω1;ω3, ω2;ω5, ω4) ,

~C
(1)
v λ1(λ23:λ45)(n, n̄;ω1;ω2, ω3;ω4, ω5) = ~C

(1)
v λ1(λ23:−λ45)(n, n̄;ω1;ω2, ω3;ω5, ω4) .

Here the λi denote generic helicity labels for the corresponding helicity building blocks,

subject to the constraints of angular momentum conservation, as in eqs. (4.13) and (4.14)

and eq. (4.15). ~C
(1)
q and ~C

(1)
a satisfy the same relations, but with an additional negative

sign for each of the equations in the case of ~C
(1)
a . We are using the notation where λ = ±1, 0

or 0̄. Additionally, if λ = 0, then we take −λ = 0̄. Combined, these relations imply that

for each of the ~C
(1)
q , ~C

(1)
v , and ~C

(1)
a , only a single Wilson coefficient needs to be calculated

for the operators in eq. (4.13) (for example, ~C+(−;+)) and one for those in eq. (4.15) (for

example, ~C+(0:+)). In particular, restricting to a mediating photon, and ignoring processes

which proceed through a fermion loop, only a single Wilson coefficient is needed in each of

the two cases.

Operators involving three collinear gluon fields do not appear in the matching until

one-loop, and are therefore not of immediate phenomenological interest. However, we

include them here both for completeness and to demonstrate the simplicity of the helicity

operator approach. The basis of three gluon operators is

(g)n(gg)n̄ :

O
(1)abc
B+++(±) =

1

2
Ban+ Bbn̄+ Bcn̄+ Je± , O

(1)abc
B−−−(±) =

1

2
Ban− Bbn̄− Bcn̄− Je± ,

O
(1)abc
B++−(±) = Ban+ Bbn̄+ Bcn̄− Je± , O

(1)abc
B−+−(±) = Ban− Bbn̄+ Bcn̄− Je± , (4.20)

where we have taken the two gluon fields to be in the n̄ collinear sector. Here the factors

of 1/2 are included for convenience as symmetry factors. Note that when writing this basis

we have used the angular momentum constraints discussed in section 3.8 to eliminate the
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other two helicity combinations. These missing combinations have h = ±2 about the n̂

axes, and therefore vanish. The basis of color structures here is two dimensional,

T̄ abc =

(
ifabc

dabc

)
, T̄ abcBPS =

(
ifa

′b′c′ Ya′an Yb
′b
n̄ Yc

′c
n̄

da
′b′c′ Ya′an Yb

′b
n̄ Yc

′c
n̄

)
=

(
if bcdYa′dn̄ Ya

′a
n

dbcd Ya′dn̄ Ya
′a
n

)
. (4.21)

Once again we have simplified the Wilson line structures after the BPS field redefinition.

For eēggg, the intermediate boson must couple to a fermion loop, so the Wilson coef-

ficient can be expanded as

~C(1)(n, n̄;ω1,ω2,ω3;ω4,ω5) = e2

{
v`λl

sin(2θW )
PZ(s45) ~C(1)

a (n, n̄;ω1,ω2,ω3;ω4,ω5) (4.22)

+

nf∑
j=1

[
Q`Qj+

v`λl
2

(vjL+vjR)PZ(s45)

]
~C(1)
v (n, n̄;ω1,ω2,ω3;ω4,ω5)

}
,

where, as in eq. (4.18), ~C
(1)
v , ~C

(1)
a correspond to the contributions from the intermediate

boson coupling through either the vector or axial couplings respectively, and we have

suppressed the helicity labels on all coefficients. In writing eq. (4.23), we have assumed

that all quarks, other than b, t are massless, and therefore their contribution to ~C
(1)
a cancels

isodoublet by isodoublet, so that we have not written a sum over flavors for the axial

contribution. C/P relations combined with the ability to flip the helicity of the electron

current, as described in eq. (4.11), give the following relations between Wilson coefficients

~C
(1)
v λ1λ2λ3(λ45)(n, n̄; {ωi}) = ~C

(1)
v−λ1−λ2−λ3(−λ45)(n, n̄; {ωi}) , (4.23)

~C
(1)
v λ1λ2λ3(λ45)(n, n̄;ω1, ω2, ω3;ω4, ω5) =

(
−1 0

0 1

)
~C

(1)
v λ1λ2λ3(−λ45)(n, n̄;ω1, ω2, ω3;ω5, ω4) ,

~C
(1)
v λ1λ2λ3(λ45)(n, n̄;ω1, ω2, ω3;ω4, ω5) = ~C

(1)
v λ1λ2λ3(−λ45)(n, n̄;ω1, ω2, ω3;ω5, ω4) ,

where the λi = ± denote generic helicity labels of the corresponding helicity building

blocks, subject to the constraint of angular momentum conservation, as in eq. (4.20), and

we have expressed the color structures in the bases of eq. (4.21). ~C
(1)
q and ~C

(1)
a satisfy the

same relations but with an additional overall negative sign in both equations for ~C
(1)
a .

The charge conjugation relations of eq. (4.23) imply that to all orders in αs only the

Wilson coefficients for the color structure dabc are non-zero for the vector current, whereas

for the axial current, only the Wilson coefficients corresponding to the color structure ifabc

are non-zero. These statements remain true under renormalization group evolution. The

helicity relations of eq. (4.23) then imply that only a single Wilson coefficient for a chosen

helicity needs to be calculated for each of the color structures.

4.3 Sub-subleading power operators

The construction of the O(λ2) power suppressed operator basis is slightly more involved, so

we divide the discussion into several subsections. The full list of operators can be found in

table 4. We separately discuss operators involving only collinear building block fields, oper-

ators involving P⊥ insertions, and operators involving insertions of ultrasoft building blocks.
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4.3.1 Collinear field insertions

Operators involving four collinear fields, corresponding to the partonic processes eēgggg,

eēqq̄qq̄, eēqq̄QQ̄, eēggqq̄, appear at sub-subleading power. We will consider each in turn.

Four quark operators. We begin by considering the case of operators involving four

collinear quark fields. When constructing the operator basis, we must consider the case

that there are two collinear quarks in each collinear sector, or three collinear quarks in one

sector, and one in the other. We must also treat separately the case of identical quark

flavors eēqq̄qq̄ and distinct massless quark flavors eēqq̄QQ̄. For the case of distinct quark

flavors eēqq̄QQ̄ we will have a q ↔ Q symmetry for the operators. Furthermore the two

quarks of flavor q, and the two quarks of flavor Q, are necessarily of the same chirality.

In the case that both quarks of the same flavor appear in the same current, the current

will be labeled by the flavor. Otherwise, the current will be labeled with (qQ̄) or (Qq̄)

appropriately. For all these cases, the color basis is

T̄ αβ̄γδ̄ =
(
δαδ̄ δγβ̄ , δαβ̄ δγδ̄

)
. (4.24)

We will give results for the corresponding T̄ αβ̄γδ̄
BPS basis as we consider each case below.

For the case of operators with distinct quark flavors eēqq̄QQ̄ and two collinear quarks

in each of the n and n̄ sectors there are three possibilities. There is either a quark anti-

quark pair of the same flavor in each sector (e.g. (qq̄)n(QQ̄)n̄), a quark and an antiquark

of distinct flavors in the same sector (e.g. (qQ̄)n(Qq̄)n̄), or two quarks with distinct flavors

in the same sector(e.g. (qQ)n(q̄Q̄)n̄). In the case that there is a quark anti-quark pair of

the same flavor in each sector, the basis of helicity operators is

(qq̄)n(QQ̄)n̄ :

O
(2)ᾱβγ̄δ
qQ1(0;0:±) = J ᾱβ(q)n0 J

γ̄δ
(Q)n̄0 Je± , O

(2)ᾱβγ̄δ

qQ1(0;0̄:±)
= J ᾱβ(q)n0 J

γ̄δ
(Q)n̄0̄

Je± , (4.25)

O
(2)ᾱβγ̄δ

qQ1(0̄;0:±)
= J ᾱβ

(q)n0̄
J γ̄δ(Q)n̄0 Je± , O

(2)ᾱβγ̄δ

qQ1(0̄;0̄:±)
= J ᾱβ

(q)n0̄
J γ̄δ

(Q)n̄0̄
Je± ,

where we have chosen the q quark to be in the n sector. Since all the operators have

total helicity 0 along the n̂ direction, there are only chirality constraints here and no

constraints from angular momentum conservation. In the case that there is a quark anti-

quark of distinct flavors in the same sector, chirality and angular momentum conservation

constrains the basis to be

(qQ̄)n(Qq̄)n̄ :

O
(2)ᾱβγ̄δ
qQ2(0;0:±) = J ᾱβ

(qQ̄)n0
J γ̄δ(Qq̄)n̄0 Je± , O

(2)ᾱβγ̄δ

qQ2(0̄;0̄:±)
= J ᾱβ

(qQ̄)n0̄
J γ̄δ

(Qq̄)n̄0̄
Je± . (4.26)

For the operators in eqs. (4.25) and (4.26) the color basis after BPS field redefinition is

T̄αβ̄γδ̄BPS =

([
Y †nYn̄

]
αδ̄

[
Y †n̄Yn

]
γβ̄
, δαβ̄ δγδ̄

)
. (4.27)
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When there are two quarks of distinct flavors in the same sector the basis of helicity

operators is constrained by chirality and reduced further to just two operators by angular

momentum conservation, giving

(qQ)n(q̄Q̄)n̄ :

O
(2)ᾱβγ̄δ
qQ3(+;−;±) = J ᾱβ(q)nn̄+ J γ̄δ(Q)nn̄− Je± , O

(2)ᾱβγ̄δ
qQ3(−;+;±) = J ᾱβ(q)nn̄− J

γ̄δ
(Q)nn̄+ Je± . (4.28)

For the operators in eq. (4.28) the color basis after BPS field redefinition is

T̄αβ̄γδ̄BPS =

([
Y †nYn̄

]
αδ̄

[
Y †nYn̄

]
γβ̄
,
[
Y †nYn̄

]
αβ̄

[
Y †nYn̄

]
γδ̄

)
. (4.29)

In the cases in eqs. (4.25) and (4.26) where there is a quark and antiquark field in

the same collinear sector, we have chosen to work in a basis using J ᾱβi0 and J ᾱβ
i0̄

which

contain only fields in a single collinear sector. One could also construct an alternate form

for the basis, for example using the currents J ᾱβnn̄λ. However, from the point of view of

factorization, our basis is more convenient. The fields in the n and n̄ collinear sectors are

only connected by color indices, which will simplify later steps of factorization proofs. In

the following, we will make this choice for our basis whenever possible.

For identical quark flavors the operators have the same structure as in eqs. (4.25),

(4.26), (4.28), except the operators O
(2)
qQ1 and O

(2)
qQ2 are no longer distinct. A basis of

operators is then given by

(qq̄)n(qq̄)n̄ :

O
(2)ᾱβγ̄δ
qq1(0;0:±) = J ᾱβ(q)n0 J

γ̄δ
(q)n̄0 Je± , O

(2)ᾱβγ̄δ

qq1(0;0̄:±)
= J ᾱβ(q)n0 J

γ̄δ
(q)n̄0̄

Je± , (4.30)

O
(2)ᾱβγ̄δ

qq1(0̄;0:±)
= J ᾱβ

(q)n0̄
J γ̄δ(q)n̄0 Je± , O

(2)ᾱβγ̄δ

qq1(0̄;0̄:±)
= J ᾱβ

(q)n0̄
J γ̄δ

(q)n̄0̄
Je± ,

and

(qq)n(q̄q̄)n̄ :

O
(2)ᾱβγ̄δ
qq3(+;−;±) = J ᾱβ(q)nn̄+ J γ̄δ(q)nn̄− Je± , O

(2)ᾱβγ̄δ
qq3(−;+;±) = J ᾱβ(q)nn̄− J

γ̄δ
(q)nn̄+ Je± . (4.31)

We also have the same color bases as in eqs. (4.27) and (4.29) for O
(2)
qq1 and O

(2)
qq3 respectively.

We must also consider the operators with three collinear quarks in one sector, and one

quark in the other. To minimize the number of operators to display, we exploit the q ↔ Q

and n↔ n̄ symmetry to restrict ourselves to the case where the single quark (or antiquark)

has flavor Q and is in the n collinear sector. The basis for the distinct flavor case with
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three quarks in the same collinear sector is then

(Q)n(Q̄qq̄)n̄ :

O
(2)ᾱβγ̄δ
qQ4(0:+;±) = J ᾱβ(q)n̄0 J

γ̄δ
(Q)nn̄+ Je± , O

(2)ᾱβγ̄δ

qQ4(0̄:+;±)
= J ᾱβ

(q)n̄0̄
J γ̄δ(Q)nn̄+ Je± , (4.32)

O
(2)ᾱβγ̄δ
qQ4(0:−;±) = J ᾱβ(q)n̄0 J

γ̄δ
(Q)nn̄− Je± , O

(2)ᾱβγ̄δ

qQ4(0̄:−;±)
= J ᾱβ

(q)n̄0̄
J γ̄δ(Q)nn̄− Je± ,

O
(2)ᾱβγ̄δ
qQ5(0:+;±) = J ᾱβ(q)n̄0 J

γ̄δ
(Q)n̄n+ Je± , O

(2)ᾱβγ̄δ

qQ5(0̄:+;±)
= J ᾱβ

(q)n̄0̄
J γ̄δ(Q)n̄n+ Je± ,

O
(2)ᾱβγ̄δ
qQ5(0:−;±) = J ᾱβ(q)n̄0 J

γ̄δ
(Q)n̄n− Je± , O

(2)ᾱβγ̄δ

qQ5(0̄:−;±)
= J ᾱβ

(q)n̄0̄
J γ̄δ(Q)n̄n− Je± .

Note that unlike the case with two quarks in each collinear sector in eq. (4.25), here

angular momentum conservation does not impose constraints beyond those from chirality,

and the flavor diagonal nature of QCD and tree level electroweak interactions. For the

O
(2)
qQ4 operators the color basis after BPS field redefinition is

T̄αβ̄γδ̄BPS =

(
δαδ̄

[
Y †nYn̄

]
γβ̄
, δαβ̄

[
Y †nYn̄

]
γδ̄

)
, (4.33)

while for the O
(2)
qQ5 operators the corresponding basis is

T̄αβ̄γδ̄BPS =

([
Y †n̄Yn

]
αδ̄
δγβ̄ , δαβ̄

[
Y †n̄Yn

]
γδ̄

)
. (4.34)

In the case of identical quark flavors, the same basis of eight terms as in eq. (4.32) define

O
(2)
qq4 and O

(2)
qq5, and the BPS color basis is as in eq. (4.33) for O

(2)
qq4, and as in eq. (4.34) for

O
(2)
qq5. For convenience we add additional symmetry factors to the following operators,

(q)n(q̄qq̄)n̄ :

O
(2)ᾱβγ̄δ
qq4(0:+;±) =

1

2
J ᾱβ(q)n̄0 J

γ̄δ
(q)nn̄+ Je± , O

(2)ᾱβγ̄δ

qq4(0̄:−;±)
=

1

2
J ᾱβ

(q)n̄0̄
J γ̄δ(q)nn̄+ Je± , (4.35)

O
(2)ᾱβγ̄δ
qq5(0:+;±) =

1

2
J ᾱβ(q)n̄0 J

γ̄δ
(q)n̄n+ Je± , O

(2)ᾱβγ̄δ

qq5(0̄:−;±)
=

1

2
J ᾱβ

(q)n̄0̄
J γ̄δ(q)n̄n+ Je± .

Having enumerated a complete basis for all types of four quark operators at O(λ2),

we now consider relations that follow from C and P . To make these relations explicit we

expand the Wilson coefficients for eēqq̄QQ̄ as

~C
(2)
qQi(n, n̄;ω1, ω2;ω3, ω4;ω5, ω6)

= e2

{[
Q`Qq + v`λlv

q
λq
PZ(s56)

]
~C

(2)
q,qQi(n, n̄;ω1, ω2;ω3, ω4;ω5, ω6)

+
[
Q`QQ + v`λlv

Q
λQ
PZ(s56)

]
~C

(2)
Q,qQi(n, n̄;ω1, ω2;ω3, ω4;ω5, ω6)

+
v`λl

sin(2θW )
PZ(s56) ~C

(2)
a,qQi(n, n̄;ω1, ω2;ω3, ω4;ω5, ω6)

}

+

nf∑
j=1

[
Q`Qj +

v`λl
2

(vjL + vjR)PZ(s56)

]
~C

(2)
v,qQi(n, n̄;ω1, ω2;ω3, ω4;ω5, ω6) . (4.36)
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Since we have accounted for symmetry factors explicitly in the operators, for the case of

identical quark flavors, eēqq̄qq̄, we have the relation

~C
(2)
qqi(n, n̄;ω1, ω2;ω3, ω4;ω5, ω6)

= ~C
(2)
qQi(n, n̄;ω1, ω2;ω3, ω4;ω5, ω6)− ~C

(2)
qQi(n, n̄;ω1, ω4;ω3, ω2;ω5, ω6) . (4.37)

We now discuss relations between different helicity operators due to symmetry con-

straints. C/P relations combined with the ability to flip the helicity of the electron current,

as described in eq. (4.11), give the following relations between Wilson coefficients

~C
(2)
v, qQi(λ12:λ34;λ56)(n, n̄;ω1, ω2;ω3, ω4;ω5, ω6) = ~C

(2)
v, qQi(−λ12:−λ34;−λ56)(n, n̄;ω1, ω2;ω3, ω4;ω5, ω6),

~C
(2)
v, qQj(λ12:λ34;λ56)(n, n̄;ω1, ω2;ω3, ω4;ω5, ω6) = − ~C(2)

v, qQj(−λ12:−λ34;−λ56)(n, n̄;ω2, ω1;ω4, ω3;ω6, ω5),

~C
(2)
v, qQi(λ12:λ34;λ56)(n, n̄;ω1, ω2;ω3, ω4;ω5, ω6) = ~C

(2)
v, qQi(λ12:λ34;−λ56)(n, n̄;ω1, ω2;ω3, ω4;ω6, ω5).

(4.38)

Here the λi denote generic helicity labels of the corresponding helicity building blocks,

subject to the constraints from angular momentum conservation discussed in this section.

For the scalar currents, we are again using the convention that for λ = 0, −λ = 0̄. The

same relations hold for ~C
(2)
Q,qQi and ~C

(2)
q,qQi, and there is an additional overall minus sign in

all these relations for ~C
(2)
a,qQi.

Two quark-two gluon operators. We now consider the operators involving two

collinear quark and two collinear gluon building blocks, corresponding to the partonic

process eēqq̄gg. The quark and antiquark have the same chirality, but are not necessarily

in the same collinear sector, as is also the case for the collinear gluons. The color basis for

these channels is three dimensional, and we take our color basis to be

T̄ abαβ̄ =
(

(T aT b)αβ̄ , (T bT a)αβ̄ , tr[T aT b] δαβ̄

)
. (4.39)

We begin with operators that have the quarks in opposite collinear sectors, and two

gluons in the same collinear sector. A basis for these operators is

(ggq)n(q̄)n̄ :

O
(2)ab ᾱβ
B1++(−;±) =

1

2
Ban+ Bbn+ J

ᾱβ
nn̄−Je± , O

(2)ab ᾱβ
B1−−(+;±) =

1

2
Ban− Bbn− J

ᾱβ
nn̄+Je± ,

O
(2)ab ᾱβ
B1+−(+;±) = Ban+ Bbn− J

ᾱβ
nn̄+Je± , O

(2)ab ᾱβ
B1+−(−;±) = Ban+ Bbn−J

ᾱβ
nn̄−Je± , (4.40)

(ggq̄)n(q)n̄ :

O
(2)ab ᾱβ
B2++(−;±) =

1

2
Ban+ Bbn+ J

ᾱβ
n̄n+Je± , O

(2)ab ᾱβ
B2−−(+;±) =

1

2
Ban− Bbn− J

ᾱβ
n̄n−Je± ,

O
(2)ab ᾱβ
B2+−(+;±) = Ban+ Bbn− J

ᾱβ
n̄n+Je± , O

(2)ab ᾱβ
B2+−(−;±) = Ban+ Bbn−J

ᾱβ
n̄n−Je± . (4.41)
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Here we have used constraints from angular momentum conservation to eliminate operators

which do not have h = 0,±1 along the n̂ axis, and we have taken the two gluon fields to

be in the n collinear sector. For the operators in eq. (4.40) the color basis after BPS field

redefinition is

T̄ abαβ̄
BPS =

(
(T aT bY †nYn̄)αβ̄ , (T bT aY †nYn̄)αβ̄ , tr[T aT b] [Y †nYn̄]αβ̄

)
, (4.42)

while for the operators in eq. (4.41) it is

T̄ abαβ̄
BPS =

(
(Y †n̄YnT

aT b)αβ̄ , (Y †n̄YnT
bT a)αβ̄ , tr[T aT b] [Y †n̄Yn]αβ̄

)
. (4.43)

Next we consider the operators with two gluon building blocks in distinct collinear

sectors. When the quarks and gluons are both in distinct collinear sectors the basis of

operators is

(gq)n(gq̄)n̄ :

O
(2)ab ᾱβ
B3++(+;±) = Ban+ Bbn̄+ J

ᾱβ
nn̄+Je± , O

(2)ab ᾱβ
B3−−(−;±) = Ban− Bbn̄− J

ᾱβ
nn̄−Je± ,

O
(2)ab ᾱβ
B3++(−;±) = Ban+ Bbn̄+ J

ᾱβ
nn̄−Je± , O

(2)ab ᾱβ
B3−−(+;±) = Ban− Bbn̄− J

ᾱβ
nn̄+Je± , (4.44)

O
(2)ab ᾱβ
B3+−(−;±) = Ban+ Bbn̄− J

ᾱβ
nn̄−Je± , O

(2)ab ᾱβ
B3−+(+;±) = Ban− Bbn̄+ J

ᾱβ
nn̄+Je± ,

and the color basis after BPS field redefinition is

T̄ abαβ̄
BPS =

(
(T aY †nYn̄T

b)αβ̄ , (Y †nT
dYdbn̄ T cYcan Yn̄)αβ̄ , tr[T cYcan T dYdbn̄ ] [Y †nYn̄]αβ̄

)
. (4.45)

Here operators with J ᾱβn̄nλ are obtained from those in eq. (4.44) by n ↔ n̄. When the two

quarks are in the same collinear sector the basis is given by

(gqq̄)n(g)n̄ :

O
(2)ab ᾱβ
B4++(0:±) = Ban+ Bbn̄+ J

ᾱβ
n 0Je± , O

(2)ab ᾱβ

B4++(0̄:±)
= Ban+ Bbn̄+ J

ᾱβ
n 0̄
Je± , (4.46)

O
(2)ab ᾱβ
B4−−(0:±) = Ban− Bbn̄− J

ᾱβ
n 0Je± , O

(2)ab ᾱβ

B4−−(0̄:±)
= Ban− Bbn̄− J

ᾱβ
n 0̄
Je± .

The color basis after BPS field redefinition is given by

T̄ abαβ̄
BPS =

(
(YTn Yn̄)cb(T aT c)αβ̄ , (YTn Yn̄)cb(T cT a)αβ̄ , TF (YTn Yn̄)ab δαβ̄

)
. (4.47)

In writing eq. (4.46) we have again used constraints of angular momentum conservation to

restrict the allowed operators in the basis.

Finally we consider the basis of operators with both quarks in the same collinear sector,

and both gluons in the other collinear sector. Imposing angular momentum conservation

reduces the basis to two distinct operators

(qq̄)n(gg)n̄ :

O
(2)ab ᾱβ
B5+−(0:±) = Ban̄+ Bbn̄− J

ᾱβ
n 0Je± , O

(2)ab ᾱβ

B5+−(0̄:±)
= Ban̄+ Bbn̄− J

ᾱβ
n 0̄
Je± . (4.48)
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The color basis after BPS field redefinition is

T̄ abαβ̄
BPS =

(
(Y †nYn̄T

aT bY †n̄Yn)αβ̄ , (Y †nYn̄T
bT aY †n̄Yn)αβ̄ , tr[T aT b] δαβ̄

)
. (4.49)

We have chosen to write the operators with both quarks in the n sector.

For the eēqq̄gg operators in eqs. (4.40), (4.44), (4.46), (4.48) we expand the Wilson

coefficients as

~C
(2)
Bi (n, n̄;ω1, ω2;ω3, ω4;ω5, ω6)

= e2

{[
Q`Qq + v`λlv

q
λq
PZ(s56)

]
~C

(2)
q,Bi(n, n̄;ω1, ω2;ω3, ω4;ω5, ω6)

+

nf∑
j=1

[
Q`Qj +

v`λl
2

(vjL + vjR)PZ(s56)

]
~C

(2)
v,Bi(n, n̄;ω1, ω2;ω3, ω4;ω5, ω6)

+
v`λl

sin(2θW )
PZ(s56) ~C

(2)
a,Bi(n, n̄;ω1, ω2;ω3, ω4;ω5, ω6)

}
. (4.50)

C/P relations combined with the ability to flip the helicity of the electron current, as de-

scribed in eq. (4.11), give the following relations between Wilson coefficients (for a detailed

discussion of the action of C/P on the color and helicity structure, see [73])

~C
(2)
v,B iλ1λ2(λ34:λ56)(n, n̄;ω1, ω2;ω3, ω4;ω5, ω6)

= ~C
(2)
v,B i−λ1−λ2(−λ34:−λ56)(n, n̄;ω1, ω2;ω3, ω4;ω5, ω6) , (4.51)

~C
(2)
v,B iλ1λ2(λ34:λ56)(n, n̄;ω1, ω2;ω3, ω4;ω5, ω6)

=

0 1 0

1 0 0

0 0 1

 ~C
(2)
v,B iλ1λ2(−λ34:−λ56)(n, n̄;ω1, ω2;ω4, ω3;ω5, ω6) ,

~C
(2)
v,B iλ1λ2(λ34:λ56)(n, n̄;ω1, ω2;ω3, ω4;ω5, ω6)

= ~C
(2)
v,B iλ1λ2(λ34:−λ56)(n, n̄;ω1, ω2;ω3, ω4;ω6, ω5) ,

where the index i runs from 1 to 4. Here the λi denote generic helicity labels of the

corresponding helicity building blocks, subject to the constraints from angular momentum

conservation discussed in this section. The same two relations hold for ~C
(2)
q , and hold with

the addition of an overall minus sign for ~C
(2)
a .

Four gluon operators. Finally, we consider O(λ2) hard scattering operators involving

four collinear gluons. The four gluon channel gives a highly suppressed contribution for

e+e− → dijets and Drell-Yan, but we nevertheless present it here for completeness. It

also provides a nice demonstration of the helicity basis approach, as the construction of a

minimal basis of four gluon operators is quite difficult otherwise. The helicity operators

that include four gluons were presented in the example of in eq. (3.29) for the case of

four well separated collinear sectors. To adapt these operators to the case of two collinear

sectors, we need to restrict the sector labels to n and n̄ and impose the angular momentum
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constraints of section 3.8. The color basis for the four gluon operators will include more

structures than were used in eq. (3.30), as we now have to allow axial couplings and CP

violation. Our choice for this basis is

T̄ abcd =
1

2



tr[abcd] + tr[dcba]

tr[acdb] + tr[bdca]

tr[adbc] + tr[cbda]

tr[abcd]− tr[dcba]

tr[acdb]− tr[bdca]

tr[adbc]− tr[cbda]

2tr[ab] tr[cd]

2tr[ac] tr[db]

2tr[ad] tr[bc]



T

. (4.52)

For the specific case of SU(Nc) with Nc = 3 it is possible to further reduce the color basis

by using relations of the form

tr[abcd+ dcba] + tr[acdb+ bdca] + tr[adbc+ cbda]

= tr[ab]tr[cd] + tr[ac]tr[db] + tr[ad]tr[bc] . (4.53)

We prefer not to use this relation since it makes the structure more complicated, and does

not hold for Nc > 3, and hence one can not look at the large Nc scaling of results if one

uses such relations.

To construct a complete basis of four gluon operators with two collinear sectors, we

need to consider two cases. First, when we have two gluons in each sector a basis of

operators is

(gg)n(gg)n̄ :

O
(2)abcd
4g1++++(±) =

1

4
Ban+Bbn+Bcn̄+Bdn̄+Je± , O

(2)abcd
4g1+−+−(±) = Ban+Bbn−Bcn̄+Bdn̄−Je± , (4.54)

O
(2)abcd
4g1−−−−(±) =

1

4
Ban−Bbn−Bcn̄−Bdn̄−Je± ,

where we have used angular momentum constraints to eliminate operators that contain

only one + or one − helicity. The basis of color structures after BPS field redefinition is

given by

T̄ abcdBPS =
1

2



(tr[T a
′
T b
′
T c
′
T d
′
] + tr[T d

′
T c
′
T b
′
T a
′
])Ya′an Yb

′b
n Yc

′c
n̄ Yd

′d
n̄

(tr[T a
′
T c
′
T d
′
T b
′
] + tr[T b

′
T d
′
T c
′
T a
′
])Ya′an Yb

′b
n Yc

′c
n̄ Yd

′d
n̄

(tr[T a
′
T d
′
T b
′
T c
′
] + tr[T c

′
T b
′
T d
′
T a
′
])Ya′an Yb

′b
n Yc

′c
n̄ Yd

′d
n̄

(tr[T a
′
T b
′
T c
′
T d
′
]− tr[T d

′
T c
′
T b
′
T a
′
])Ya′an Yb

′b
n Yc

′c
n̄ Yd

′d
n̄

(tr[T a
′
T c
′
T d
′
T b
′
]− tr[T b

′
T d
′
T c
′
T a
′
])Ya′an Yb

′b
n Yc

′c
n̄ Yd

′d
n̄

(tr[T a
′
T d
′
T b
′
T c
′
]− tr[T c

′
T b
′
T d
′
T a
′
])Ya′an Yb

′b
n Yc

′c
n̄ Yd

′d
n̄

1
2δ
abδcd

1
2(YTn Yn̄)ac(YTn Yn̄)bd

1
2(YTn Yn̄)ad(YTn Yn̄)bc



T

. (4.55)
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The other relevant case has three gluons in one sector, and we can take advantage of

the n↔ n̄ symmetry to choose the three gluons to be in the n̄ collinear sector. The basis

of operators is then given by

(g)n(ggg)n̄ :

O
(2)abcd
4g2+++−(±) =

1

2
Ban+Bbn̄+Bcn̄+Bdn̄−Je± , O

(2)abcd
4g2−+−−(±) =

1

2
Ban−Bbn̄+Bcn̄−Bdn̄−Je± , (4.56)

where we have once again used conservation of angular momentum to restrict to these

particular helicity choices. In this case, we have

T̄ abcdBPS =
1

2



(tr[T a
′
T b
′
T c
′
T d
′
] + tr[T d

′
T c
′
T b
′
T a
′
])Ya′an Yb

′b
n̄ Yc

′c
n̄ Yd

′d
n̄

(tr[T a
′
T c
′
T d
′
T b
′
] + tr[T b

′
T d
′
T c
′
T a
′
])Ya′an Yb

′b
n̄ Yc

′c
n̄ Yd

′d
n̄

(tr[T a
′
T d
′
T b
′
T c
′
] + tr[T c

′
T b
′
T d
′
T a
′
])Ya′an Yb

′b
n̄ Yc

′c
n̄ Yd

′d
n̄

(tr[T a
′
T b
′
T c
′
T d
′
]− tr[T d

′
T c
′
T b
′
T a
′
])Ya′an Yb

′b
n̄ Yc

′c
n̄ Yd

′d
n̄

(tr[T a
′
T c
′
T d
′
T b
′
]− tr[T b

′
T d
′
T c
′
T a
′
])Ya′an Yb

′b
n̄ Yc

′c
n̄ Yd

′d
n̄

(tr[T a
′
T d
′
T b
′
T c
′
]− tr[T c

′
T b
′
T d
′
T a
′
])Ya′an Yb

′b
n̄ Yc

′c
n̄ Yd

′d
n̄

1
2(YTn Yn̄)abδcd

1
2(YTn Yn̄)acδbd

1
2(YTn Yn̄)adδbc



T

. (4.57)

Once again for simplicity we have not used identities to simplify some of these Wilson line

structures. Also we note that

Just as in the case of three gluons, the eēgggg channel must proceed through a fermion

loop, so we can decompose the Wilson coefficient as

~C(2)(n, n̄;ω1, ω2,ω3, ω4;ω5, ω6) = e2

{
v`λl

sin(2θW )
PZ(s56) ~C(2)

a (n, n̄;ω1, ω2, ω3, ω4;ω5, ω6)

+

nf∑
j=1

[
Q`Qj +

v`λl
2

(vjL + vjR)PZs56)

]
~C(2)
v (n, n̄;ω1, ω2, ω3, ω4;ω5, ω6)

}
, (4.58)

where we have suppressed all of the helicity labels and ~C
(2)
a and ~C

(2)
v correspond to the axial

or vector coupling contributions respectively. With this Wilson coefficient expansion and

the color basis from eq. (4.52), C/P relations combined with the ability to flip the helicity of

the electron current, as described in eq. (4.11), give the following relations between Wilson

coefficients

~C
(2)
vλ1λ2λ3λ4(λ56)(n, n̄;{ωi}) = ~C

(2)
v−λ1−λ2−λ3−λ4(−λ56)(n, n̄;{ωi}) , (4.59)

~C
(2)
vλ1λ2λ3λ4(λ56)(n, n̄;ω1,ω2,ω3,ω4;ω5,ω6) = V̂4g

~C
(2)
vλ1λ2λ3λ4(−λ56)(n, n̄;ω1,ω2,ω3,ω4;ω6,ω5) ,

~C
(2)
vλ1λ2λ3λ4(λ56)(n, n̄;ω1,ω2,ω3,ω4;ω5,ω6) = ~C

(2)
vλ1λ2λ3λ4(−λ56)(n, n̄;ω1,ω2,ω3,ω4;ω6,ω5) ,

where V̂4g is diagonal in the space defined by eq. (4.52) with +1 for the first three entries,

-1 for the middle three entries and +1 for the final three entries. The λi are generic helicity

labels, but are restricted by the constraints from angular momentum conservation discussed

earlier. ~C
(2)
a satisfies the same relations with an additional negative sign.
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4.3.2 P±⊥ insertions

For our choice of kinematics, hard scattering operators with explicit P±⊥ insertions first

arise at O(λ2). Since operators involving a P±⊥ insertion that acts on an entire collinear

sector vanish, the only non-vanishing O(λ2) operators involve single insertions of P±⊥ into

subleading power operators with two collinear fields in the same sector. The contributing

partonic processes are identical to those considered at subleading power, so we can decom-

pose the Wilson coefficients following eqs. (4.18) and (4.22), and use the color bases of

eqs. (4.16), (4.17) and (4.21).

For the insertions of P±⊥ into operators involving two quarks and a gluon, a basis of

operators for the case that the quarks are in distinct collinear sectors is

(gqP⊥)n(q̄)n̄ :

O
(2)a ᾱβ
P1n+(+;±)[−] =

[
P−⊥B

a
n+

]
J ᾱβnn̄+ Je± , O

(2)a ᾱβ
P1n−(−;±)[+] =

[
P+
⊥B

a
n−
]
J ᾱβnn̄− Je± , (4.60)

O
(2)a ᾱβ
P1n−(+;±)[+] =

[
P+
⊥B

a
n−
]
J ᾱβnn̄+ Je± , O

(2)a ᾱβ
P1n−(+;±)[−] =

[
P−⊥B

a
n−
]
J ᾱβnn̄+ Je± ,

O
(2)a ᾱβ
P1n+(−;±)[+] =

[
P+
⊥B

a
n+

]
J ᾱβnn̄− Je± , O

(2)a ᾱβ
P1n+(−;±)[−] =

[
P−⊥B

a
n+

]
J ᾱβnn̄− Je± ,

and

(q)n(gq̄P⊥)n̄ :

O
(2)a ᾱβ
P1n̄+(+;±)[−] =

[
P−⊥B

a
n̄+

]
J ᾱβnn̄+ Je± , O

(2)a ᾱβ
P1n̄−(−;±)[+] =

[
P+
⊥B

a
n̄−
]
J ᾱβnn̄− Je± , (4.61)

O
(2)a ᾱβ
P1n̄−(+;±)[+] =

[
P+
⊥B

a
n̄−
]
J ᾱβnn̄+ Je± , O

(2)a ᾱβ
P1n̄−(+;±)[−] =

[
P−⊥B

a
n̄−
]
J ᾱβnn̄− Je± ,

O
(2)a ᾱβ
P1n̄+(−;±)[+] =

[
P+
⊥B

a
n̄+

]
J ᾱβnn̄+ Je± , O

(2)a ᾱβ
P1n̄+(−;±)[−] =

[
P−⊥B

a
n̄+

]
J ᾱβnn̄− Je± ,

which we refer to as P1 operators. In the case that they are in the same collinear sector

the basis is,

(g)n(qq̄P⊥)n̄ :

O
(2)a ᾱβ
P2+(0:±)[+] = Ban+

{
P+
⊥J

ᾱβ
n̄ 0

}
Je± , O

(2)a ᾱβ
P2−(0:±)[−] = Ban−

{
P−⊥J

ᾱβ
n̄ 0

}
Je± , (4.62)

O
(2)a ᾱβ

P2+(0̄:±)[+]
= Ban+

{
P+
⊥J

ᾱβ
n̄ 0̄

}
Je± , O

(2)a ᾱβ

P2−(0̄:±)[−]
= Ban−

{
P−⊥J

ᾱβ
n̄ 0̄

}
Je± ,

and we refer to these as P2 operators. If we integrate the P±⊥ by parts in eq. (4.60) then

it gives the operators involving [P±⊥J
ᾱβ
nn̄λ], and doing this in eq. (4.62) gives the terms

{J ᾱβn̄0 (P±⊥ )†} and {J ᾱβ
n̄0̄

(P±⊥ )†}, thus explaining why these structures do not appear as sep-

arate terms in the basis. In eq. (4.60) there is only one field in the n̄ direction, so any

operators that contain {J ᾱβnn̄±(Pλ⊥)†} vanish. Similarly, in eq. (4.62), any operators that

contain [Pλ⊥B±n ] are zero for our choice of kinematics. In both eq. (4.60) and eq. (4.62) we
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have used angular momentum conservation of the hard scattering process to reduce the

helicity combinations allowed in the basis.

C/P relations combined with the ability to flip the helicity of the electron current, as

described in eq. (4.11), give the following relations between Wilson coefficients for the P1

operators

~C
(2)
v,P1λ1(λ23:λ45)[λP ](n, n̄; {ωi}) = − ~C(2)

v,P1−λ1(−λ23;−λ45)[−λP ](n
P, n̄P; {ωi}) , (4.63)

~C
(2)
v,P1λ1(λ23:λ45)[λP ](n, n̄;ω1;ω2, ω3;ω4, ω5) =− ~C(2)

v,P1−λ1(−λ23:−λ45)[−λP ](n, n̄;ω1;ω3, ω2;ω5, ω4) ,

~C
(2)
v,P1λ1(λ23:λ45)[λP ](n, n̄;ω1;ω2, ω3;ω4, ω5) = ~C

(2)
v,P1λ1(λ23:−λ45)[λP ](n, n̄;ω1;ω2, ω3;ω5, ω4) ,

which hold for both the n and n̄ versions of the operators, and similarly for the P2 operators

~C
(2)
v,P2λ1(λ23:λ45)[λP ](n, n̄; {ωi}) = − ~C(2)

v,P2−λ1(−λ23:−λ45)[−λP ](n
P, n̄P; {ωi}) , (4.64)

~C
(2)
v,P2λ1(λ23:λ45)[λP ](n, n̄;ω1;ω2, ω3;ω4, ω5) = ~C

(2)
v,P2λ1(−λ23:−λ45)[λP ](n, n̄;ω1;ω3, ω2;ω5, ω4) ,

~C
(2)
v,P2λ1(λ23:λ45)[λP ](n, n̄;ω1;ω2, ω3;ω4, ω5) = ~C

(2)
v,P2λ1(λ23:−λ45)[λP ](n, n̄;ω1;ω2, ω3;ω5, ω4) .

A basis of operators involving three collinear gluon fields and a P±⊥ insertion is given by

(g)n(ggP⊥)n̄ :

O
(2)abc
PB+++(±)[−] = Ban+ Bbn̄+

[
P−⊥B

c
n̄+

]
Je± , O

(2)abc
PB−−−(±)[+] = Ban− Bbn̄−

[
P+
⊥B

c
n̄−
]
Je± ,

O
(2)abc
PB++−(±)[+] = Ban+ Bbn̄+

[
P+
⊥B

c
n̄−
]
Je± , O

(2)abc
PB−−+(±)[−] = Ban− Bbn̄−

[
P−⊥B

c
n̄+

]
Je± .

(4.65)

We have used angular momentum conservation to eliminate certain helicity combinations.

Note that the analogous operators with the helicities O
(2)abc
PB+−+(±)[+] and O

(2)abc
PB−+−(±)[−] are

not eliminated, but instead are equivalent to those in the last row by integrating the P±⊥
by parts onto the other n̄-collinear field.

C/P relations combined with the ability to flip the helicity of the electron current, as

described in eq. (4.11), give the following relations between Wilson coefficients

~C
(2)
v,PBλ1λ2λ3(λ45)[λP ](n, n̄; {ωi}) (4.66)

= − ~C(2)
v,PB−λ1−λ2−λ3(−λ45)[−λP ](n

P, n̄P; {ωi}) ,

~C
(2)
v,PBλ1λ2λ3(λ45)[λP ](n, n̄;ω1, ω2, ω3;ω4, ω5)

=

(
−1 0

0 1

)
~C

(2)
vPBλ1λ2λ3(−λ45)[λP ](n, n̄;ω1, ω2, ω3;ω5, ω4) ,

~C
(2)
v,PBλ1λ2λ3(λ45)[λP ](n, n̄;ω1, ω2, ω3;ω4, ω5)

= ~C
(2)
vPBλ1λ2λ3(−λ45)[λP ](n, n̄;ω1, ω2, ω3;ω5, ω4) .

As was the case for the operators involving three collinear gluon fields discussed in

section 4.2, the charge conjugation relations of eq. (4.66) imply that to all orders in
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αs only the Wilson coefficients for the color structure dabc are non-zero for the vector

current, whereas for the axial current, only the Wilson coefficients corresponding to the

color structure ifabc are non-zero. These statements remain true under renormalization

group evolution.

4.3.3 Ultrasoft insertions

At O(λ2) operators first appear which involve a single Ba
us(i)λ with λ = ±, 0 (for example

Ba
us(i)λJ

ᾱβ
nn̄λ′) or an insertion of a ultrasoft derivative (for example, {∂us(i)0J

ᾱβ
nn̄λ′}). There

are no contributions involving the ultrasoft quark current building blocks, like J ᾱβi(us)λ. Even

though these mixed ultrasoft-collinear currents have the correct power counting, they do

not involve the collinear fields that are needed to conserve the large momentum flow in the

hard scattering processes being considered.

Before listing the basis of operators, it is worth emphasizing the distinction between

the treatment of label and residual ⊥ momentum. In SCETI ultrasoft fields do not carry

label momenta. Because only the collinear sectors carry label momentum, we are able to

choose the collinear sectors back-to-back, with zero total ⊥ momentum in each collinear

sector. However, for the residual components of the momentum, it is inconsistent to si-

multaneously choose n̄ = (1,−~n), and to set the ⊥ component of the residual momentum

in both sectors to zero. This is because the ultrasoft fields also carry O(λ2) residual mo-

mentum, which can cause the jet direction to recoil by this small amount. Furthermore,

because ultrasoft fields carry residual momentum, we cannot, for example, say that the

two collinear sectors carry equal and opposite residual momenta, and therefore we cannot

in general relate ultrasoft derivatives acting on one sector to ultrasoft derivatives acting

on another sector to reduce the basis. Ultrasoft derivatives acting on both sectors must

therefore be included in the basis.

When constructing a basis of operators involving ultrasoft gluons, different choices can

be made due to the fact that the ultrasoft gluons are not naturally associated with a given

lightcone direction. This corresponds to a choice of which light like vector is used to define

the Bus(ni) field of eq. (3.35). To guide our choice, we will always choose to work in a basis

where ultrasoft derivatives acting on ultrasoft Wilson lines are absorbed into Bus fields, and

do not appear explicitly in the operator. As an example, consider the pre-BPS operators

Oµ1 = χ̄n̄
−→
Dusχn , Oµ2 = χ̄n̄

←−
Dusχn , (4.67)

where we have not made the contraction of the µ index explicit. Here the arrow refers to

the direction in which the derivative operator acts, as opposed to a vector. Performing the

BPS field redefinition, we obtain

Oµ1BPS = χ̄n̄Y
†
n̄

−→
DusYnχn , Oµ2BPS = χ̄n̄Y

†
n̄

←−
DusYnχn (4.68)

To absorb all ultrasoft derivatives acting on Wilson lines into Bus fields, we can rearrange

the Wilson lines in the operators as

Oµ1BPS = χ̄n̄Y
†
n̄Yn(Y †n

−→
DusYn)χn , Oµ2BPS = χ̄n̄(Y †n̄

←−
DusYn̄)Y †n̄Ynχn (4.69)
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Using the definition of the ultrasoft gluon field, eq. (3.35), we see that this can be written

entirely in terms of ∂us operators acting on collinear fields, as well as the gauge invariant

ultrasoft gluon fields Bus(n) and Bus(n̄). In this way of organizing the basis, ultrasoft gluon

fields defined using both n and n̄ are required. It should be clear from this example that

it is also possible to work entirely with only Bus(n) or Bus(n̄). However, in this case we see

that we would have ultrasoft derivatives in the operators acting on ultrasoft Wilson lines

not associated with Bus(n) or Bus(n̄). To avoid this, and to make our basis more symmetric,

we choose to work with both Bus(n) or Bus(n̄).

For the operators involving one ultrasoft gluon and two collinear quarks, we have

the basis

gus(q)n(q̄)n̄ :

O
(2)a ᾱβ
B(us(n))−:(+;±) = Baus(n)− J

ᾱβ
nn̄+ Je± , O

(2)a ᾱβ
B(us(n))+:(−;±) = Baus(n)+ J

ᾱβ
nn̄− Je± , (4.70)

O
(2)a ᾱβ
B(us(n))0:(+;±) = Baus(n)0 J

ᾱβ
nn̄+ Je± , O

(2)a ᾱβ
B(us(n))0:(−;±) = Baus(n)0 J

ᾱβ
nn̄− Je± ,

with the unique color structure

T̄ aαβ̄
BPS =

(
T aY †nYn̄

)
αβ̄

, (4.71)

and

O
(2)a ᾱβ
B(us(n̄))+:(+;±) = Baus(n̄)+ J

ᾱβ
nn̄+ Je± , O

(2)a ᾱβ
B(us(n̄))−:(−;±) = Baus(n̄)− J

ᾱβ
nn̄− Je± , (4.72)

O
(2)a ᾱβ
B(us(n̄))0:(+;±) = Baus(n̄)0 J

ᾱβ
nn̄+ Je± , O

(2)a ᾱβ
B(us(n̄))0:(−;±) = Baus(n̄)0 J

ᾱβ
nn̄− Je± ,

with the unique color structure

T̄ aαβ̄
BPS =

(
Y †nYn̄T

a
)
αβ̄

. (4.73)

The helicity selection rules act different for the two projections of the Bus fields due to the

different definition of helicity in the two cases.

The Wilson coefficients of the operators that include Bus(n)0 can be related to the

Wilson coefficients of the leading power operators using RPI symmetry (see [66]). In

particular, we have

C
(2)
B(us)0:(λ1,±) = −

∂C
(0)
(λ1;±)

∂ω1
, (4.74)

where C
(0)
(λ1;±) is the Wilson coefficient for the leading power dijet operator of section 4.1.

As we will show in section 5, the leading power Wilson coefficients for the case of back

to back jets are independent of ω1 and ω2, at tree level, so that this Wilson coefficient

vanishes at tree level. We will also show explicitly that they do not arise in the tree level

matching calculation in section 5.6. However, we will also show that the Wilson coefficient

is non-vanishing at O(αs).
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The operators involving Baus(n)± do not seem to be related to the leading power Wilson

coefficient. In [66] it was shown that in the general case of N jets, certain subleading

operators involving Baus(n)± are generated by the RPI expansion of the leading power op-

erator. However, these particular operators vanish for the case of back to back jets that

we consider here. Interestingly, as we will show below, only the operators O
(2)a ᾱβ
B(us)0:(+;±)

and O
(2)a ᾱβ

B(us)0̄:(+;±)
can contribute to the dijet cross section at O(λ2), and therefore, the new

Wilson coefficients (which are not related by RPI) do not contribute at this order.

We also have operators involving two collinear quark fields and a single ultrasoft deriva-

tive. In writing the basis, we can use the fact that quark equations of motion can be used

to rewrite in · ∂χn and in̄ · ∂χn̄ in terms of purely collinear operators. Therefore, these

combinations of derivatives do not need to be included in our basis. A basis of derivative

operators is then given by

∂us(q)n(q̄)n̄ :

O
(2) ᾱβ
∂(us(n))−:(+;±) = {∂us(n)− J

ᾱβ
nn̄+} Je± , O

(2) ᾱβ
∂(us(n))+:(−;±) = {∂us(n)+ J

ᾱβ
nn̄−} Je± ,

O
(2) ᾱβ
∂(us(n))0:(+;±) = {∂us(n)0 J

ᾱβ
nn̄+} Je± , O

(2) ᾱβ
∂(us(n))0:(−;±) = {∂us(n)0 J

ᾱβ
nn̄−} Je± ,

O
(2) ᾱβ

∂†(us(n̄))+:(+;±)
= {J ᾱβnn̄+ (i∂us(n̄)+)†} Je± , O

(2) ᾱβ

∂†(us(n̄))−:(−;±)
= {J ᾱβnn̄− (i∂us(n̄)−)†} Je± ,

O
(2) ᾱβ

∂†(us(n̄))0:(+;±)
= {J ᾱβnn̄+ (i∂us(n̄)0)†} Je± , O

(2) ᾱβ

∂†(us(n̄))0:(−;±)
= {J ᾱβnn̄− (i∂us(n̄)0)†} Je± .

(4.75)

The helicity decomposition for these ultrasoft operators is more cumbersome due to the fact

that not only the ± helicities appear, and for this particular case, it is perhaps simpler to

use the more traditional operator basis, in contrast to the case with multiple collinear fields.

The color structure of these operators is exactly the same as for the leading power

operator given in eq. (4.7). The Wilson coefficients of the operators that include a ∂us(n)0 =

∂us(n̄)0̄ or ∂us(n)0̄ = ∂us(n̄)0 are related via RPI to the Wilson coefficients of the leading power

operator by

C
(2)
∂(us)0:(λ1,±) = −

∂C
(0)
(λ1;±)

∂ω1
, C

(2)

∂(us)0̄:(λ1,±)
= −

∂C
(0)
(λ1;±)

∂ω2
. (4.76)

This is true also of the operators where the derivatives act on the Wilson lines, as these arise

only through the BPS field redefinition of the same operator. As we will show in section 5,

the leading power Wilson coefficients for the case of back to back jets are independent

of ω1 and ω2 at tree level, so that these Wilson coefficients in fact vanish at the lowest

order in the matching. We will also show this explicitly in the matching calculation in

section 5.6. It is also interesting to mention the physical interpretation of the vanishing

of these contributions. As was discussed in [66] these derivative terms can be interpreted

as the orbital angular momentum contribution to the tree level Low-Burnett-Kroll (LBK)

theorem [114, 115], which vanishes for back to back jets.
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In the case of ultrasoft derivative insertions, the operators that include a ∂us(n)± are

related by RPI to O(λ) operators that involve the insertion of P± into the leading power

operators of eq. (4.6). Indeed, RPI implies that the label momentum and derivative oper-

ator must always appear in the combination Pµ + i∂µ. Therefore the Wilson coefficients

of these operators are equal, and should not be treated as independent. However, we have

chosen to work in the center of mass frame, where insertions of P± into the leading power

operator vanish, and so such operators do not appear explicitly in our basis. The Wilson

coefficients of the ∂us(n)± are therefore not related to operators that appear in our basis,

and so we will treat them as independent.

We also have operators involving two collinear gluons and a single ultrasoft gluon field.

Since their Wilson coefficients start at one-loop order these are of limited phenomenological

relevance, but are included as a further example of our approach. The basis of such

operators is given by

gus(g)n(g)n̄ :

O
(2)abc
(us(n))+:++(±) =Baus(n)+B

b
n+Bcn̄+Je± , O

(2)abc
(us(n))+:−−(±) =Baus(n)+B

b
n−Bcn̄−Je± , (4.77)

O
(2)abc
(us(n))−:++(±) =Baus(n)−B

b
n+Bcn̄+Je± , O

(2)abc
(us)−:−−(±) =Baus(n)−B

b
n−Bcn̄−Je± ,

O
(2)abc
(us(n))+:−+(±) =Baus(n)+B

b
n−Bcn̄+Je± , O

(2)abc
(us(n))−:+−(±) =Baus(n)−B

b
n+Bcn̄−Je± ,

with the two dimensional basis of color structures,8

T̄ abcBPS =

(
ifabd

(
YTn Yn̄

)dc
dabd

(
YTn Yn̄

)dc
)T

, (4.78)

and

O
(2)abc
(us(n̄))−:++(±) = Baus(n̄)− B

b
n+ Bcn̄+ Je± , O

(2)abc
(us(n̄))−:−−(±) = Baus(n̄)− B

b
n− Bcn̄− Je± , (4.79)

O
(2)abc
(us(n̄))+:++(±) = Baus(n̄)+ B

b
n+ Bcn̄+ Je± , O

(2)abc
(us(n̄))+:−−(±) = Baus(n̄)+ B

b
n− Bcn̄− Je± ,

O
(2)abc
(us(n̄))−:−+(±) = Baus(n̄)− B

b
n− Bcn̄+ Je± , O

(2)abc
(us)+:+−(±) = Baus(n̄)+ B

b
n+ Bcn̄− Je± ,

with the basis of color structures

T̄ abcBPS =

(
ifacd

(
YTn̄ Yn

)db
dacd

(
YTn̄ Yn

)db
)T

. (4.80)

Here we have only included the T̄ abcBPS version of the color structure here because the Baus(n)λ

are generated by BPS field redefiniton. When constructing this basis we have used the

8In order to see how the Wilson line structure in eq. (4.78) arises, we look at the object Dab
usBcnBdn̄ pre-

BPS field redefinitions. This object must be contracted with a tensor to make it a singlet under ultrasoft

gauge transformations. Each of these resulting forms can be mapped onto the color structures of eq. (4.78)
after performing the BPS field redefinition.
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angular momentum constraints discussed in section 3.8 to eliminate the other two helicity

combinations in each case.

In eq. (4.77) we have not included the operators

O
(2)abc
(us(n))0:++(±) = Baus(n)0 B

b
n+ Bcn̄+ Je± , O

(2)abc
(us(n))0:−−(±) = Baus(n)0 B

b
n− Bcn̄− Je± ,

O
(2)abc
(us(n̄))0:++(±) = Baus(n̄)0 B

b
n+ Bcn̄+ Je± , O

(2)abc
(us(n̄))0:−−(±) = Baus(n̄)0 B

b
n− Bcn̄− Je± . (4.81)

The coefficients of these operators are related by RPI to the derivative of the leading power

operators for eēgg, and therefore also vanish by Yang’s theorem. The Wilson coefficients

of the operators in eq. (4.77) are not constrained by RPI considerations.

We can also consider operators with an insertion of ∂us(n) with two collinear gluons in

different collinear sectors. As for the case of ultrasoft derivative insertions into the quark

operators, the gluon equations of motion allow us to eliminate the operators in · ∂Bn⊥ and

in̄ · ∂Bn̄⊥. However, these operators already vanish by Yang’s theorem, as they are related

by RPI to the leading power operators for eēgg. A basis of helicity operators is then given by

∂us(g)n(g)n̄ :

O
(2)ab
∂B(us(n))+:++(±) = Ban+

[
∂us(n)+Bbn̄+

]
Je± , O

(2)ab
∂B(us(n))+:−−(±) = Ban−

[
∂us(n)+Bbn̄−

]
Je± ,

O
(2)ab
∂B(us(n))−:++(±) = Ban+

[
∂us(n)−Bbn̄+

]
Je± , O

(2)ab
∂B(us(n))−:−−(±) = Ban−

[
∂us(n)−Bbn̄−

]
Je± ,

O
(2)ab
∂B(us(n))+:−+(±) = Ban−

[
∂us(n)+Bbn̄+

]
Je± , O

(2)ab
∂B(us(n))−:+−(±) = Ban+

[
∂us(n)− Bbn̄−

]
Je± ,

(4.82)

with the basis of color structures

T̄ abBPS =
(
YTn Yn̄

)ab
, (4.83)

and

O
(2)ab
∂B(us(n̄))−:++(±) =

[
∂us(n̄)− Ban+

]
Bbn̄+ Je± , O

(2)ab
∂B(us(n̄))−:−−(±) =

[
∂us(n̄)− Ban−

]
Bbn̄− Je± ,

O
(2)ab
∂B(us(n̄))+:++(±) =

[
∂us(n̄)+ Ban+

]
Bbn̄+ Je± , O

(2)ab
∂B(us(n̄))+:−−(±) =

[
∂us(n̄)+ Ban−

]
Bbn̄− Je± ,

O
(2)ab
∂B(us(n̄))−:−+(±) =

[
∂us(n̄)− Ban−

]
Bbn̄+ Je± , O

(2)ab
∂B(us(n̄))+:+−(±) =

[
∂us(n̄)+ Ban+

]
Bbn̄− Je± ,

(4.84)

with the basis of color structures

T̄ abBPS =
(
YTn̄ Yn

)ab
. (4.85)

We have not included any operator with ∂us(n)0 or ∂us(n)0̄ acting on two collinear gluons,

as these will all have Wilson coefficients that are related to the coefficient of the two gluon

operator, which vanishes due to Yang’s theorem.
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4.4 Cross section contributions

While the basis of hard scattering operators presented in this section is quite large, and we

have focused on providing a complete basis to allow for an understanding of all possible

contributions, many of these operators will not contribute to a calculation of a particular

cross section. In this section we will consider the case of event shapes in e+e− → dijets,

and discuss how symmetry arguments can be used to show which operators can contribute

to the cross section up to O(λ2). In section 4.4.1, we begin by proving that the hard

scattering operators do not generate a contribution to the cross section at O(λ), and then

in section 4.4.2, we discuss which operators contribute to the cross section at O(λ2), and

the particular form of their contribution, by listing the operator content of the resulting

jet and soft functions. A summary of which operators contribute is given in table 4.

4.4.1 Vanishing at O(λ)

For e+e− → dijets event shapes described by SCETI, the leading O(λ) power corrections

vanish [19, 68, 70]. This is expected because fixed order calculations indicate the leading

correction should scale as e, while an O(λ) power correction would scale as
√
e for our

power counting. In this section, we use our formalism to show explicitly that this is the

case for contributions from the hard scattering operators. We consider only measurement

functions that carry zero angular momentum. Similar arguments can also be used to show

that Lagrangian contributions vanish. The O(λ) observable expansion terms also vanish,

as discussed in appendix B.
While we will not discuss the factorization of the cross section in detail, the contribution

of the hard scattering operators to the cross section at O(λ) can be written

dσ

dτ

(1)

⊃ N
∑
X,i

δ̃(4)
q 〈0|C

(1)
i Õ

(1)
i (0) |X〉 〈X|C(0)Õ(0)(0) |0〉 δ

(
τ − τ (0)(X)

)
+ h.c. . (4.86)

Here N is a normalization factor. We use the shorthand notation δ̃
(4)
q = (2π)4δ4(q − pX)

for the momentum conserving delta function. The summation over all final states, X,

includes phase space integrations. Here L denotes the e+e− leptonic initial state. The

measurement of the observable is enforced by δ
(
e− e(X)

)
, where e(X), returns the value

of the observable e as measured on the final state X.

From the expression for the O(λ) power correction to the cross section in eq. (4.86), we

see that the only contributions from hard scattering operators arise from matrix elements

of an O(λ) operator with an O(λ0) operator. When determining whether or not the

insertion of a given operator vanishes, we can make arguments based on fermion number

conservation or angular momentum conservation either before or after factorization. Before

factorization, the matrix elements in the cross section given in eq. (4.13) that contribute

at O(λ) with the insertion of an O(λ) operator can be written as

〈0|O(0)(x)M̂(0)O(1)(0)|0〉 . (4.87)

Here the sum over the complete set of states |X〉 has been performed using the measure-

ment operator M̂(0), where M̂(0)|X〉 = δ(e − e(0)(X))|X〉. As we are taking a vacuum
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matrix element, we must have that O(0)(x)O(1)(0) conserves fermion number and angular

momentum. If this matrix element does not vanish, we can move to the factorized state,

where we split the operators into components in the n, n̄ and ultrasoft sectors. This will

give us factorized matrix elements that become our jet and soft functions,

〈0|O(0)
n (x)M̂(0)

n O(1)
n (0)|0〉〈0|O(0)

n̄ (x)M̂(0)
n O

(1)
n̄ (0)|0〉〈0|O(0)

us (x)M̂(0)
us O

(1)
us (0)|0〉 . (4.88)

In this form, it is clear that each sector must exhibit both fermion number and angular

momentum conservation, so we can make these arguments at the level of the factorized

matrix elements, providing an even stronger constraint. In other words, if we examine

the field content in each sector, we must have the same number of quarks and anti-quarks

and must conserve angular momentum. As shown in table 4, there are only two operator

structures appearing at O(λ), and a single operator at O(λ0), so we can consider each of

the possible contributions in turn.

O(1)
gggO

(0)
qq vanish. We first consider the O(λ) hard scattering operators involving three

collinear gluons, given in eq. (4.20). After factorization of this matrix element one obtains a

vacuum matrix element involving a single quark field in each collinear sector, coming from

the leading power operator. The leading order Lagrangian separately conserves fermion

number in each collinear sector, and therefore this contribution vanishes.

O(1)
qqgO

(0)
qq vanish. Next we consider the contribution from the O(λ) hard scattering

operators involving two collinear quarks, and one collinear gluon. As for the three gluon

operator, fermion number conservation immediately eliminates any possible contribution

from the operators of eq. (4.15), where the collinear quarks are both in the same sector.

To eliminate the O(λ) contribution from the operators of eq. (4.13), we can use symmetry

arguments, similar to those in section 3.8. For the operator of eq. (4.13), the matrix

elements entering the factorized expression for the cross section are of the form

〈0|(J ᾱβnn̄λ1
(x))†M̂(0)J δ̄γnn̄λ2

(0)Ba(n,n̄)λ3
(0)|0〉 . (4.89)

The λi = ± denote arbitrary helicities, and the (n, n̄) subscript on the gluon denotes that

it can be associated with either collinear sector. Since RPI has been used to choose the

axes of the collinear sectors as back-to-back, all helicities are defined with respect to a

common n̂ axis. The SCET Lagrangian preserves rotational invariance about the n̂ axis,

which implies that this matrix element vanishes since with an odd number of ± helicities it

can not transform as a scalar. An identical argument follows for the operator of eq. (4.14).

4.4.2 Relevant hard scattering operators at O(λ2)

Having shown that there are no contributions to the dijet cross section at O(λ), we now

discuss contributions at O(λ2). To see which can contribute, we focus on contributions

arising from our basis of hard scattering operators, although we will also briefly mention

contributions from subleading Lagrangian insertions. Due to the power counting λ ∼
√
e,

the O(λ2) power corrections correspond to O(e) power corrections, and will not in general

vanish. While there are large number of O(λ2) hard scattering operators given in table 4,
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we can use similar arguments to those of section 4.4.1 to severely restrict the number of

operators that contribute to the dijet cross section at O(λ2). The resulting set of operators

are indicated in table 4, and table 5 shows which products of hard scattering operators

contribute to the factorized cross section and the schematic form of the corresponding hard,

jet and soft functions.

Despite the fact that we are working at subleading power, in many cases the jet and

soft functions which appear in the factorization are identical to those at leading power,

with only several new power suppressed functions appearing, as can be seen in table 5. For

the case of the soft functions this simplification arises due to color coherence, allowing a

simplification to the Wilson lines in the soft functions that appear. For quark-quark and

gluon-gluon color channels the leading power soft functions are

S(0)
q =

1

Nc
tr〈0|Y †n̄YnM̂(0)Y †nYn̄|0〉 , S(0)

g =
1

(N2
c − 1)

tr〈0|YTn̄ YnM̂(0)YTn Yn̄|0〉 , (4.90)

and depend on the kinematic variables probed by the measurement operator M̂(0). For

the jet functions, this simplification occurs since the power correction is often restricted to

a single collinear sector. The other collinear sector is then described by the leading power

jet functions for quarks and gluons

δαβ̄
( /n

2

)ss′
J (0)
q =

∫
dx−

|ω|
e
i
2
`+x−

〈
0
∣∣∣χsαn (x−n2) δ̂ χ̄s′β̄n,ω(0)

∣∣∣0〉 , (4.91)

δabgµν⊥ J
(0)
g = −ω

∫
dx−

|ω|
e
i
2
`+x−

〈
0
∣∣∣Bµa⊥ (x−n2) δ̂ Bνb⊥,ω(0)

∣∣∣0〉 .
The form of the leading power measurement function δ̂ appearing in these jet functions will

depend on the precise factorization theorem being treated. Here we assume an SCETI type

measurement that does not fix the P⊥ of the measured particle. Often the jet functions are

inclusive in which case δ̂ = (2π)2δ2(ω⊥ + P2
⊥), giving functions of a single invariant mass

momentum variable, J
(0)
q (ω`+ − ~ω 2

⊥) and J
(0)
g (ω`+ − ~ω 2

⊥).

Contributions to the cross section at O(λ2) whose power suppression arises solely from

hard scattering operators, take the form either of a product of two O(λ) operators or as a

product of an O(λ2) operator and an O(λ0) operator:

dσ

dτ

(2)

⊃ N
∑
X,i

δ̃(4)
q 〈0|C

(2)
i Õ

(2)
i (0) |X〉 〈X|C(0)Õ(0)(0) |0〉 δ

(
τ − τ (0)(X)

)
+ h.c.

+N
∑
X,i,j

δ̃(4)
q 〈0|C

(1)
i Õ

(1)
i (0) |X〉 〈X|C(1)

j Õ
(1)
j (0) |0〉 δ

(
τ − τ (0)(X)

)
+ h.c. . (4.92)

We first consider the contributions from products of O(λ) hard scattering operators, where

we have several categories that could possibly contribute.

O(1)
gggO

(1)
ggg contribute. After factorization, the contribution to the O(λ2) cross section

from the product of two O(λ) three gluon operators of eq. (4.20) gives rise to jet functions

involving either two or four collinear gluon fields. The schematic factorization is given

by H
(0)
q1 J

(0)
g J

(2)
gg S

(0)
g , shown in table 5, where the jet functions J

(2)
gg involving four B fields

have two different color contractions. Rotational invariance arguments, similar to those
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presented in section 4.4.1, but applied after factorization into separate matrix elements for

the n and n̄ sectors, imply that jet functions involving three collinear gluon building block

fields vanish.

O(1)
qqgO

(1)
qqg contribute. Next consider the contribution to the O(λ2) cross section from

the square of the operators involving two collinear quarks, and a collinear gluon, a ba-

sis of which were given in eqs. (4.13) and (4.14) and eq. (4.15). These give rise to the

factorized contributions H
(0)
q2 J

(0)
g J

(2)
qq S

(0)
g , and H

(0)
q3 J

(0)
q J

(2)
qggS

(0)
q in table 5. Here the fac-

torization theorems involve subleading jet functions J
(2)
qq with four collinear quarks (one

color contraction), or J
(2)
qgg with two collinear quarks and two collinear gluons (one color

contraction). The exact color structure is not displayed, but is simple to obtain from the

color structure of the hard scattering operators after BPS field redefinition. Rotational

invariance arguments can be used to restrict the particular helicity configurations which

give non-vanishing contributions. In both these cases the ultrasoft functions are leading

power, and are actually given by the same product of Wilson lines that appear in leading

power factorization theorems, as indicated in table 5 with the notation S
(0)
g and S

(0)
q .

O(1)
gggO

(1)
qqg vanish. The contribution from the product of an operator containing three

collinear gluons and an operator containing a collinear gluon and two collinear quarks must

vanish. If the two quarks are in different sectors, then each jet function will contain only

one fermion and will vanish by fermion number conservation. With 2 quarks in the same

sector, we have the product of O
(1)a ᾱβ
n̄λ1(λ2:±) and O

(1)bcd
Bλ3λ4λ5(±), and we can see that one sector

will contain three objects of helicity ±1 and thus the jet function in that sector will vanish

by the angular momentum arguments considered earlier. So, there is no nonvanishing

contribution from an O(λ) three gluon operator and an O(λ) two quark, one gluon operator.

We now look at the contribution of O(λ2) hard scattering operators to the cross section.

Since these operators are at the desired order, they must be combined with our leading

operator which has a collinear quark building block in each of the n and n̄ directions. Once

again, there are several cases to consider.

O(2)
qqqqO

(0)
qq contribute. First, we consider the inclusion of the four quark operators.

Conservation of fermion number within each collinear sector ensures the contributions to

the cross section involving the four quark operators with two quarks within each collinear

sector vanish. Therefore, only the four quark operators of eq. (4.32), involving three quarks

in one collinear sector, and a single quark in the other collinear sector can give a nonzero

result for the cross section at this order. They contribute to the factorized contribution

H
(0)
q7 J

(0)
q J

(2)
qq′ S

(0)
q shown in table 5, which involves a jet function J

(2)
qq′ with 4 χn̄ (or 4 χn)

fields (with two independent color contractions). Again, the corresponding soft function is

simply the leading power S
(0)
q in all cases.

O(2)
ggggO

(0)
qq vanish. The operators of eqs. (4.54) and (4.56) involving four collinear gluons

do not contribute to the cross section at O(λ2), since when multiplied with the leading

power operator, the factorized matrix element would violate fermion number in the n and

n̄ sectors.
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Operators Factorization Jet n Jet n̄ Soft

O(λ0) O(0)O(0) H
(0)
q J

(0)
q J

(0)
q S

(0)
q χ̄n δ̂ χn χ̄n̄ δ̂ χn̄ Y †n̄YnM̂(0)Y †nYn̄

O(λ2) O
(1)
B O

(1)
B H

(0)
q1 J

(0)
g J

(2)
gg S

(0)
g Bn δ̂ Bn Bn̄Bn̄δ̂ Bn̄Bn̄ YTn Yn̄M̂(0)YTn̄ Yn

O
(1)
n̄ O

(1)
n̄ H

(0)
q2 J

(0)
g J

(2)
qq S

(0)
g Bn δ̂ Bn χ̄n̄χn̄δ̂ χ̄n̄χn̄ YTn̄ YnM̂(0)YTn Yn̄

O
(1)
nn̄1O

(1)
nn̄1 H

(0)
q3 J

(0)
q J

(2)
qgg S

(0)
q χ̄n δ̂ χn χ̄n̄Bn̄ δ̂ Bn̄χn̄ Y †n̄YnM̂(0)Y †nYn̄

O(0)O
(2)
B1,B2 H

(0)
q4 J

(0)
q J

(2)
qgg′S

(0)
q χ̄n δ̂ χn χ̄n̄Bn̄Bn̄ δ̂ χn̄ Y †nYn̄M̂(0)Y †n̄Yn

O(0)O
(2)
P1n̄ H

(0)
q5 J

(0)
q J

(2)
qgPS

(0)
q χ̄n δ̂ χn χ̄n̄[P⊥Bn̄]δ̂ χn̄ Y †nYn̄M̂(0)Y †n̄Yn

O(0)O
(2)
qQ4,5 H

(0)
q7 J

(0)
q J

(2)
qq′ S

(0)
q χ̄n δ̂ χn χ̄n̄χn̄χ̄n̄ δ̂ χn̄ Y †n̄YnM̂(0)Y †nYn̄

O(0)O
(2)
B(us)0 H

(0)
q8 J

(0)
q J

(0)
q S

(2)
qB χ̄n δ̂ χn χ̄n̄ δ̂ χn̄ Bus(n)0 Y

†
nYn̄M̂(0)Y †n̄Yn

O(0)O
(2)
∂(us)0 H

(0)
q9 J

(0)
q J

(0)
q S

(2)
q∂0 χ̄n δ̂ χn χ̄n̄ δ̂ χn̄ ∂us(n)0 Y

†
nYn̄M̂(0)Y †n̄Yn

Table 5. Subleading jet and soft functions arising from products of hard scattering operators in the

factorization of dijet event shapes and their field content. Helicity and color structures have been

suppressed. We have not included products of operators whose jet and soft functions are identical

to those given in the table by charge conjugation or n↔ n̄.

O
(2)
gggPO

(0)
qq vanish. An identical argument also applies to the operators of eq. (4.65)

involving three collinear gluons and a single P⊥ insertion, which therefore do not contribute

to the O(λ2) cross-section.

O(2)
ggqqO

(0)
qq contribute. Another source of non-trivial contributions to the cross section

at O(λ2) comes from the hard scattering operators involving two collinear quarks, and two

collinear gluons. To have a non-vanishing contribution, fermion number conservation within

each collinear sector guarantees that the hard scattering operators must have a single quark

building block field in each sector. This restricts us to the operators of eqs. (4.40) and (4.44).

Using similar arguments to those presented above, based on chirality and helicity, it can

be shown that the operators of eq. (4.44) do not contribute. This is indicated in table 4.

The operators of eq. (4.40) give rise to subleading jet functions involving two χ fields, and

two B fields (J
(2)
qgg), as shown by the factorized contribution H

(0)
q4 J

(0)
q J

(2)
qgg′S

(0)
q in table 5.

By simplifying the color, it can be shown to have the leading power soft function.

O
(2)
qqgPO

(0)
qq contribute. Similar arguments also apply to the subleading operators involv-

ing two collinear quarks, a collinear gluon, and a P⊥ insertion. In particular, the operators

of eq. (4.62) do not contribute due to fermion number conservation, while the operators

of eqs. (4.60) and (4.61) do contribute. These give rise to the factorized contribution

H
(0)
q5 J

(0)
q J

(2)
qgPS

(0)
q in table 5, as well as an identical function with n↔ n̄. There is a unique

color contraction for the jet function J
(2)
qgP . Rotational invariance arguments can be used

to restrict the particular helicity configurations which give non-vanishing contributions.
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O(2)
us O

(0)
qq contribute. As shown in table 5, the only operators involving an explicit

ultrasoft field insertion which contribute to the dijet cross section at O(λ2) are those

involving the 0 helicity component of the ultrasoft gluon, Bus(n)0, or the ultrasoft partial

operators ∂us(n)0 = ∂us(n̄)0̄ and ∂us(n)0̄ = ∂us(n̄)0. These operators give rise to the only

subleading power soft functions arising from hard scattering operators, as seen in table 5.

It is also interesting to note that for both these contributions, the hard function is fully

determined by the RPI relations, as was argued in section 4.3.3. The operators of eq. (4.70)

involving the h = ± components of the ultrasoft gluon field, along with the collinear quark

current, vanish when multiplied with the leading power operator, due to angular momentum

conservation. The contributions of the operators of eq. (4.77) involving an ultrasoft gluon

and two collinear gluons vanish when multiplied with the leading power operator due to

fermion number conservation.

A complete analysis of all contributions in table 5, in particular of their detailed helicity

and color structures, as well as their fixed order cross section contributions is beyond the

scope of this paper, and is left for presentation in future work.

4.5 Comparison with earlier literature

In this section we perform a brief comparison of our operator basis with the operators

considered in ref. [70]. These operators were used to study power corrections suppressed

by O(λ2) for the thrust event shape in e+e− → dijets. The goals of the present paper and

ref. [70] are different. While we have focused on constructing a complete basis of operators

valid at any order in αs, ref. [70] instead derives only the set of operators that arise from

tree level matching, and then uses them to explicitly calculate and confirm the O(αsτ
0)

terms in dσ/dτ .

Despite the difference in goals, we believe it is still interesting to perform a comparison

between the forms of the operators in each case. Some care must be taken, since a different

formulation of SCET (first presented in ref. [116]) is used in ref. [70], as compared to this

paper. In the formulation of SCET used in ref. [70], the dynamics of each collinear sector,

as well as the ultrasoft sector, is described by a copy of the QCD Lagrangian, which does

not have a power expansion. This implies that the operator basis of ref. [70] must also

include terms which incorporate what would be termed subleading Lagrangian corrections

in the standard formulation of SCET. Additionally, while the standard formulation of

SCET used in this paper implements separate momentum conservation of residual and

label momentum using the multipole expansion with labels, in the formulation of ref. [70],

momentum is not conserved, and additional operators must be included to compensate for

this. These terms must be distinguished to perform the comparison. At leading power

there are no subleading Lagrangian insertions, and therefore the organization of the two

SCET frameworks is equivalent.

At O(λ) in the power expansion, the basis of ref. [70] does not consider operators

involving three collinear gluons, as given in eq. (4.20). These operators have vanishing

Wilson coefficient at tree level, with the first non-zero correction appearing through dia-

grams involving a quark loop, but can contribute to event shape cross sections at O(λ2)

and higher orders in the αs expansion, as shown in table 4. Operators with two collinear
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quarks in different sectors, and a collinear gluon are also given in ref. [70] in their oper-

ators O
(1an )
2 , O

(1bn )
2 and O

(1an̄ )
2 , O

(1bn̄ )
2 . Operators with two collinear quarks in the same

sector, and a collinear gluon in the other sector, corresponding to eq. (4.15) are given in

ref. [70] by O
(1en )
2 , O

(1fn )
2 . It can be shown using the conservation of the QCD current

that to all orders in αs in the matching, these operators appear only in the combinations

O
(1an )
2 −O(1bn )

2 , O
(1an̄ )
2 −O(1bn̄ )

2 , and O
(1en )
2 −O(1fn )

2 , as discussed in section 3.8. This was

first shown in [71], and used to simplify the basis of ref. [70]. In this case, upon setting

the total P⊥ in each sector to be zero, we find agreement with the operators in eqs. (4.13)

and (4.15). In ref. [70], they also include O(λ) corrections to the ultrasoft sector in (A7).

In the SCET framework used in this paper, these do not appear in our operator basis due

to power counting. Instead, corrections to the ultrasoft dynamics are incorporated through

subleading Lagrangian insertions.

At O(λ2) in the power expansion, the basis of ref. [70] neglects operators involving

four collinear quark fields, as included in our basis in eqs. (4.25)–(4.35). These operators

appear in the tree level matching, and satisfy all necessary symmetry relations to contribute

to event shape cross sections at O(λ2) and α2
s. It would be interesting to compute their

explicit contribution to the cross-section, or to present an argument showing that they do

not contribute. The operators involving four collinear gluons of eqs. (4.54) and (4.56) are

also not considered in ref. [70]. These operators are of limited phenomenological relevance,

as they first appear at loop level in the matching, and furthermore, do not contribute to

event shape cross sections at O(λ2), as explained. In ref. [70] they also neglect operators

involving two quarks in the same sector combined with two gluons or one gluon and one

P⊥ insertion, as in eqs. (4.46) and (4.62). Again, we have shown for the particular case of

dijet event shapes, that such operators do not contribute at O(λ2). Operators involving

two quarks in opposite collinear sectors with two collinear gluons are included in ref. [70]

in operators O
(2bn)
2 and O

(2bn̄)
2 . In this case, our basis is quite different, as we have used

the gluon equations of motion in the effective theory to eliminate the n · Bn field, as is

commonly done in the SCET literature [89]. The operators O
(2an)
2 , O

(2An)
2 , O

(2δn)
2 , O

(2an̄)
2 ,

O
(2An̄)
2 , and O

(2δn̄)
2 from ref. [70] will contribute to this case after simplification with the

equations of motion. This elimination is important for the construction of our helicity

basis, as it allows us to work only in terms of the physical polarizations of the Bn field,

namely B±⊥, and thus simplifies our basis. For the case of two gluons and two quarks,

ref. [70] does not include operators where the two quarks are in the same sector or the two

gluons are in separate sectors, which can first contribute at α2
s. As was the case at O(λ),

ref. [70] also includes operators which in our language arise from subleading Lagrangian

insertions. Counting only operators that arise from two quarks in separate sectors and two

gluons in the same sector, we see that we have 4 operators while ref. [70] has 8, which

implies that the simplifications from working in the center of mass frame and using the

equations of motion are useful for reducing the number of operators.

Finally, ref. [70] also has operators in (A11) involving the expansion of momentum

conserving delta functions, denoted O(δ), which are required in their formulation of SCET.

In the standard formulation of SCET, both label, and residual momenta are conserved,
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so that these operators are not required in our basis. This distinction also modifies the

measurement functions in the two approaches, and the subleading operators O(δ) are re-

quired to maintain consistency between the approaches. Indeed, a particularly convenient

feature of our construction is that table 2 gives the full list of building blocks required to

construct a complete basis of hard scattering operators for an arbitrary number of collinear

directions and to arbitrary power in the expansion parameter λ. The completeness of our

operator basis ensures that it is closed under renormalization group evolution.

5 Matching at subleading power

Having identified the relevant operators which contribute to the cross section in table 4, in

this section we carry out the matching to determine the lowest order Wilson coefficients

for these operators. At O(λ2) operators with up to four collinear fields are present in

the basis. The amplitudes are known for e+e− → 3 partons (and related crossings) at

2 loops [117, 118], and e+e− → 4 partons (and related crossings) at 1 loop [119, 120].

As the focus of the present paper is on the structure of the operators, we will content

ourselves with performing the tree level matching, leaving the higher loop matching for

future work. This implies in particular that we do not match to operators involving only

gluon fields, which necessarily first appear at loop level. Although we have emphasized

the utility of the helicity basis for counting operators, in this section we will perform the

calculation using free Lorentz indices, and then projecting onto definite helicities to obtain

the Wilson coefficients for the helicity operators. This allows us to carry out the matching

for a starting current with a general Dirac structure Γ. We will give the results for the

operators both in terms of standard Lorentz and Dirac structures, and then projected onto

our helicity operator basis.

We begin in section 5.1 with a general discussion of matching at subleading power. We

then consider explicit matching calculations. From table 4, we see that we must therefore

match only to operators involving one additional collinear gluon, which are considered

in section 5.3, two additional collinear gluons, which are considered in section 5.4, or an

additional qq̄ pair, which are considered in section 5.5. Although the operators involving

insertions of ultrasoft operators which contribute to the O(λ2) cross section have their

Wilson coefficients determined by RPI, we also perform the matching calculation with a

single ultrasoft gluon in section 5.6 to explicitly verify this.

5.1 General formalism

In this section we briefly describe matching to the subleading helicity operators in SCETI.

As in the leading power case, QCD is matched to an effective SCET hard scattering La-

grangian, which governs the interactions at the hard scale. As has been discussed, this

hard scattering Lagrangian has an explicit expansion in powers of λ,

Lhard =
∑
j≥0

L(j)
hard , (5.1)
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where j denotes suppression by O(λj) with respect to the leading power hard scattering

operators. The effective Lagrangian for hard scattering operators at each power is given by,

L(j)
hard =

∑
{ni}

∑
A,··

[
`A∏
i=1

∫
dωi

]
~O

(j)†
A+··:··(··:··...··:··)[··:··−]

(
{ni};ω1, . . . , ω`A

)
× ~C

(j)
A+··:··(··:··...··:··)[··:··−]

(
{ni};ω1, . . . , ω`A

)
. (5.2)

The Wilson coefficients, ~C
(j)
A , are determined by performing a matching calculation from

QCD to SCET. When matching at subleading powers, one must take into account sub-

leading Lagrangian insertions with lower power hard scattering operators, arising from the

fact that the Lagrangian describing the ultrasoft and collinear dynamics is also a power

expansion in λ,

Ldyn = L(0) + L(1) + · · · . (5.3)

To any given power we will only need to consider a finite number of insertions of L(i) for

i ≥ 1, as these are constrained by the power counting. However, we must consider arbitrary

L(0) insertions, constrained only by the order in αs to which we are working.

Consider the tree level matching at order λp. We assume that the Wilson coefficients

at all lower powers, ~C
(q)
A with q < p, have already been determined. The matching can be

performed with an arbitrary external state 〈X|, as long as it is chosen to have non-zero

matrix elements for the specific color and helicity structure of the operator. (If the basis is

over complete with regards to color, then the organization of the matching results will also

depend on the convention adopted, but we do not encounter this issue in this paper.) In

general these specifications will not pick out a particular operator from among those with

the same color and helicity structures, so there would still be a sum on A. The remaining

distinguishing feature used is the dependence on momenta (for example, looking at the

p⊥-momenta that appear to determine where a P±⊥ is acting in the operator). This then

enables us to write down a matching equation for a fixed A and fixed helicities, and color

channel. For notational simplicity we assume all these specifications to be made with the

state 〈XA|. Such an external state can arise at tree level only from ~O
(p)†
A , or from subleading

Lagrangian insertions into lower power operators. One then has the following matching

equation

−i(Atree)(λp) = C(p)
〈
XA

∣∣ ~O(p)†
A

∣∣0〉tree

L(0) +
∑
n=1

〈
XA

∣∣[∏L(k)](n)L(p−n)
hard

∣∣0〉tree

L(0) , (5.4)

where [
∏
L(k)](n) represents all combinations of subleading SCET Lagrangian insertions

L(k≥1) whose powers sum to n. The L(0) subscript on the matrix elements indicates that

they are evaluated with any number of insertions of the leading power SCET Lagrangian.

Here (Atree)(λp) is the corresponding amplitude in full QCD expanded to pick out the order

λp component. The momentum of external particles in this amplitude are assigned a power

counting corresponding to the building blocks in ~O
(p)†
A . This means that if two external

particles are in the same collinear sector then we take their collinear limit when expanding
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the matrix element, and that we take the ultrasoft limit for momenta of ultrasoft particles.

The matrix element, 〈XA| ~O(p)†
A |0〉tree

L(0) , is evaluated using the Feynman rules for the helicity

operators. For the case with N distinct collinear particles at leading power, the sum on

the right side of eq. (5.4) does not contribute, as there is nothing to expand when each

of the particles are separated to distinct sectors. However, at subleading power either

collinear particles in the same sector or ultrasoft particles will give contributions in this

expansion. Most modern fixed order computations are performed using spinor helicity and

color decomposition techniques, which give compact results. Using our basis of helicity

operators, the helicity amplitudes can be directly used, since we match to external states

with definite helicities. For the particularly simple cases in this paper, we find it is easier

to simply project the different helicities from a tensor, however, the helicity formalism still

provides a powerful way of organizing the operators.

Beyond tree level, the matching is still conceptually straightforward, but technically

more demanding due to the need to evaluate loop diagrams in both the full and effective

theories. Eq. (5.4) still holds, but now we must consider each of the Wilson coefficients and

matrix elements as an expansion in αs, and go beyond the leading term. At leading power

it is often possible to arrange the choice of IR and UV regulators such that the SCET loop

diagrams are scaleless in the matching calculation. At subleading power we in general need

more than one particle in a given sector in order to have nonzero overlap with the operator,

and this can introduce non-trivial momentum scales in the SCET loop integrals such that

loop calculations in SCET can not be avoided in this manner.

5.2 Setup and leading power matching

In the following sections we carry out the matching starting from a full QCD quark current

with an arbitrary spin structure Γ,

JΓ = ψ̄Γψ . (5.5)

For vector and axial-vector Γ this current is (partially)-conserved in QCD, while for the

scalar, pseudo-scalar and tensor cases JΓ has an anomalous dimension in QCD. We will

denote the full theory vertex with an ⊗ symbol, and hard scattering operators in the

effective theory will be denoted with a purple circle.

The leading power Wilson coefficient is of course well known, however, we reproduce

it here for completeness. The unique leading power operator, written in the form of a

current is

O(0)Γ = χ̄nΓχn̄ , (5.6)

It’s Wilson coefficient for any spin structure Γ is given to O(αs) by

C(0) = 1 +
αs(µ)CF

4π

(
− log2

[
−ω1ω2 − i0

µ2

]
+ 3 log

[
−ω1ω2 − i0

µ2

]
− 8 +

π2

6

)
. (5.7)

Throughout this section, we will restrict ourselves to the tree level matching, however, we

have given the Wilson coefficient of eq. (5.7) to one loop, since it will be used to demonstrate

the RPI relations of section 4.3.3 for the operators involving ultrasoft insertions, which are

first non-trivial at this order.
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5.3 Subleading matching with a single collinear gluon

We begin by considering the matching to operators involving two collinear quark fields and

a collinear gluon field, along with a possible P⊥ insertion. A basis of such operators was

given in eqs. (4.13) and (4.15), as well as eq. (4.60).

The matching coefficients for these operators can be derived by considering matrix

elements with a qq̄g final state. At O(αs), the QCD diagrams for the production of a

single gluon from a quark current with spin structure Γ are

= ū(p1)(igT a/ε∗)
i(/p1

+ /p3
)

(p1 + p3)2
Γv(p2) ,

= ū(p1)Γ
−i(/p2

+ /p3
)

(p2 + p3)2
(igT a/ε∗)v(p2) . (5.8)

The required matching coefficients is obtained by expanding these amplitudes in the re-

quired kinematic limits, namely as the gluon becomes collinear with either the quark or

antiquark, or when the quark and antiquark become collinear. We will consider each of

these cases in turn.

We note that while we will restrict our attention to tree level matching in this section,

it would be particularly interesting to extend the matching to one-loop. Indeed, the one-

loop matching to the operators involving a single additional collinear gluon field is the

only ingredient related to the hard scattering operators, beyond the matching coefficients

presented in this paper, that would be required to perform a full analytic O(α2
s) fixed order

calculation of the subleading cross section for an e+e− → dijets observable. We leave this

to future work.

(q)n(q̄g)n̄. We first consider the case where the gluon and antiquark are n̄ collinear,

and the quark is n collinear. In this case we have hard scattering operators at both O(λ),

which are independent of P⊥ and operators at O(λ2), which depend on P⊥. To extract the

matching coefficients for both sets of operators in a single calculation, we expand the QCD

amplitudes with a non-zero P⊥ between the gluon and antiquark. We take the momenta

of the particles as

pµ1 =
ω1

2
nµ , pµ2 =

ω2

2
n̄µ + pµ⊥ +

p2r

2
nµ , pµ3 =

ω3

2
n̄µ − pµ⊥ +

p3r

2
nµ , (5.9)

where the light cone components are assigned a collinear scaling. The ωi and p⊥ are taken

to be purely label momenta. Following the notation of section 3.1, throughout this section,

we will use the notation

un(i) = Pnu(pi) , and vn(i) = Pnv(i) , (5.10)

for the projected SCET spinors, where the momentum pi is n collinear, and similarly for

the case that it is n̄ collinear. Here Pn is a projector, defined as

Pn =
/n/̄n

4
. (5.11)
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The projected spinors obey

u(pi) =

(
1 +

/pi⊥
n̄ · pi

/̄n

2

)
un(i) , u(pi) =

(
1 +

/pi⊥
n · pi

/n

2

)
un̄(i) , (5.12)

for the n collinear and n̄ collinear cases respectively, with direct analogs for the v(pi)

spinors.

Expanding the first diagram in λ, we find

= −gn · ε
∗

ω3
ūn(1)T aΓvn̄(2) (5.13)

− g

ω1ω3
ūn(1)T a

(
ω3/ε

∗
⊥
/̄n

2
Γ− n · ε∗

/̄n

2
/p⊥Γ +

n · ε∗ ω1

ω2
Γ/p⊥

/n

2

)
vn̄(2)

− g

ω1ω3
ūn(1)T a

(
n · ε∗ p3rΓ− /ε∗⊥/p⊥Γ +

ω3

ω2
/ε∗⊥

/̄n

2
Γ/p⊥

/n

2
− n · ε∗

ω2

/̄n

2
/p⊥Γ/p⊥

/n

2

)
vn̄(2)

+O(λ3) ,

where terms in the first line scale like O(λ0), terms in the second line scale like O(λ1), and

so on. Similarly, we find

=
g

(p2r + p3r)
ūn(1)T aΓ

(
ε∗ · n̄+

/ε∗⊥/p⊥
ω2

)
vn̄(2)

+
g

2(ω2 + ω3)
ūn(1)T aΓ

(
ε∗ · n
ω2

/p⊥/n+ /n/ε∗⊥

)
vn̄(2) . (5.14)

The first line is O(λ0) and second line is O(λ1). Interestingly, this result is exact with no

corrections beyond O(λ).

The O(λ0) terms are reproduced by T -products of the leading SCET Lagrangian. Since

we have performed the matching with no residual momenta for the large or ⊥ components,

all subleading Lagrangian contributions from the T -products in the second term on the

right hand side of eq. (5.4) vanish. This includes those with insertions of the ultrasoft

derivative operators of eqs. (4.75) and (4.82) and the leading order SCET Lagrangian.

Since we have shown by combining the RPI relation of eq. (4.76) with the matching to

the leading power operator in eq. (5.7) that these operators first appear at one-loop, such

terms will not contribute to the tree level matching considered here. With this setup the

QCD result at O(λ1) and O(λ2) must therefore be exactly reproduced by our basis of hard

scattering operators.

Starting at O(λ), summing the results of eqs. (5.13) and (5.14) and rearranging, we find(
+

) ∣∣∣∣∣
O(λ)

(5.15)

= − g

ω1
ūn(1)T a

(
/ε∗⊥ +

ε∗ · n/p⊥
ω3

)
/̄n

2
Γvn̄(2) +

g

(ω2 + ω3)
ūn(1)T aΓ

/n

2

(
/ε∗⊥ +

ε∗ · n/p⊥
ω3

)
vn̄(2) .
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This can be recognized as the one gluon matrix element of the operator

O(1)Γ
Bn̄ =

g

ω2 + ω3
χ̄n,ω1Γ

/n

2
/B⊥n̄,ω3

χn̄,−ω2 −
g

ω1
χ̄n,ω1

/B⊥n̄,ω3

/̄n

2
Γχn̄,−ω2 . (5.16)

In the particular case that Γ = γµ, this simplifies to

O(1)γµ

Bn̄ = g

(
ω1n

µ − (ω2 + ω3)n̄µ

ω1(ω2 + ω3)

)
χ̄n,ω1

/B⊥n̄,ω3
χn̄,−ω2 , (5.17)

which we note for later use. In the center-of-momentum frame conservation of momentum

implies that ω1 = ω2 +ω3 = Q, further simplifying the structure of the operator. However,

throughout this section, we will not perform such a simplification, and will write the result

for the Wilson coefficient for generic values of the label momenta.

At O(λ2), only the diagram in eq. (5.13) contributes. The result can be simplified

using the on-shell condition for the collinear gluon,

p3rω3 + p2
⊥ = 0 , (5.18)

after which one finds(
+

) ∣∣∣∣∣
O(λ2)

(5.19)

=
g

ω1ω2
ūn(1)T a

(
/ε∗⊥ +

ε∗ · n/p⊥
ω3

)
/̄n

2
Γ
/n

2
/p⊥vn̄(2) +

g

ω1ω3
ūn(1)T a

(
/ε∗⊥ +

ε∗ · n/p⊥
ω3

)
/p⊥Γvn̄(2) .

This can be recognized as the one gluon matrix element of the two SCET hard scattering

operators

O(2)µ
Pn̄1 = − g

ω1ω3
χ̄n,ω1

[
/B⊥n̄,ω3

/P†⊥
]
Γχn̄,−ω2 ,

O(2)µ
Pn̄2 = − g

ω1ω2
χ̄n,ω1

[
/B⊥n̄,ω3

/̄n

2
Γ
/n

2
/P†⊥
]
χn̄,−ω2 . (5.20)

Of particular interest is the fact that the Wilson coefficients exhibit singularities as the

momentum fraction of the gluon or quark vanishes, which will be associated with logarithms

in the subleading power cross section.

(gq)n(q̄)n̄. In the case that the gluon is collinear with the quark, we can immediately

obtain the operators by charge conjugation, and a relabeling. To be clear on the particle

labeling, we consider

pµ1 =
ω1

2
nµ , pµ2 =

ω2

2
n̄µ + pµ⊥ +

p2r

2
nµ , pµ3 =

ω3

2
nµ − pµ⊥ +

p3r

2
n̄µ . (5.21)

Analogously to the case that the gluon is in the same collinear sector as the antiquark, we

find the O(λ) operator

O(1)µ
Bn = − g

ω1 + ω3
χ̄n,ω1

/B⊥n,ω3

/̄n

2
Γχn̄,−ω2 +

g

ω2
χ̄n,ω1Γ

/n

2
/B⊥n,ω3

χn̄,−ω2 . (5.22)
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Again, in the case that we take Γ = γµ, this simplifies to

O(1)µ
Bn = g

(
(ω1 + ω3)nµ − ω2n̄

µ

ω2(ω1 + ω3)

)
χ̄n,ω1

/B⊥n,ω3
χn̄,−ω2 . (5.23)

The two O(λ2) operators are

O(2)µ
Pn1 = − g

ω1ω2
χ̄n,ω1

[
/P⊥

/̄n

2
Γ
/n

2
/B⊥n,ω3

]
χn̄,−ω2 ,

O(2)µ
Pn2 = − g

ω2ω3
χ̄n,ω1Γ

[
/P⊥/B⊥n,ω3

]
χn̄,−ω2 . (5.24)

(qq̄)n̄(g)n. We now consider the case where both the quark and anti-quark are in the

same (n̄) collinear sector and the gluon is in the n̄ collinear sector. As discussed in section 4,

in this case, the operators of this form only contribute to the cross section in the form of

a matrix element with themselves. We therefore only need the matching to O(λ), if we

are interested in O(λ2) contributions to the cross section. We can therefore set the ⊥
momentum to zero when performing the matching. We take the kinematics as

pµ1 =
ω1

2
n̄µ , pµ2 =

ω2

2
n̄µ , pµ3 =

ω3

2
nµ . (5.25)

Expanding the QCD results the O(λ0) terms cancel between diagrams, and at O(λ) we find

∣∣∣∣∣∣∣∣
O(λ)

= − g

ω1
ūn̄(1)T a/ε∗⊥

/n

2
Γvn̄(2) , (5.26)



∣∣∣∣∣∣∣
O(λ)

= +
g

ω2
ūn̄(1)T aΓ

/n

2
/ε∗⊥vn̄(2) .

We therefore see that for this configuration, both QCD diagrams contribute. These con-

tributions can be recognized as the one gluon matrix element of the two SCET operators

O(1)µ
χχn̄1 = − g

ω1
χ̄n̄,ω1

/B⊥n,ω3

/n

2
Γχn̄,−ω2 ,

O(1)µ
χχn̄2 =

g

ω2
χ̄n̄,ω1Γ

/n

2
/B⊥n,ω3

χn̄,−ω2 . (5.27)

Both Wilson coefficients exhibit a singularity as the energy fraction as one or the other

quark goes to zero. It is interesting to note that this structure is dictated by the RPI-III

symmetry of the theory. In particular, due to the presence of the /n projector which neces-

sarily appears between the two n̄ collinear quark fields, the Wilson coefficient must behave

like 1/ωi, where i = 2, or 3. This hints at the possible universality of this structure in

subleading power collinear limits.
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5.4 Subleading matching with two collinear gluons

We now consider the matching to operators involving two collinear gluons. As discussed

in section 4, there are two relevant classes of such operators that contribute to the cross

section at O(λ2): those involving two collinear gluons in the same collinear sector, and

those involving two gluons in opposite sectors, both of which have the quark anti-quark

pair in opposite sectors. We consider each case in turn.

(q̄)n̄(qgg)n. A basis of O(λ2) operators with two collinear gluons in the same sector was

given in eq. (4.40). Since these operators get their power suppression from the explicit

collinear gluon fields, we can simplify the matching by taking the particle momenta as

pµ1 =
ω1

2
nµ , pµ2 =

ω2

2
n̄µ ,

pµ3 =
ω3

2
nµ + pµ⊥ +

p3r

2
n̄µ , pµ4 =

ω4

2
nµ − pµ⊥ +

p4r

2
n̄µ , (5.28)

where the particle labeling is the same as before, but with p4 labeling the additional

gluon. This choice of momenta also removes any contributions from subleading Lagrangian

insertions. We do however, get contributions from the subleading hard scattering operators,

O(2)µ
Pn1,2, which must be disentangled from the operator coefficients we want to determine.

For these operators we find +


∣∣∣∣∣∣∣∣∣
O(λ2)

(5.29)

=
−g2ω4

ω1ω2(ω1 + ω4)
ūn(1)T bT a/ε∗4⊥

/̄n

2
Γ
/n

2
/ε∗3⊥vn̄(2) + [(3, a)↔ (4, b)] , +


∣∣∣∣∣∣∣∣∣∣
O(λ2)

=
g2

ω1ω2ω3p4r
ūn(1)T bT a/ε∗4⊥/p⊥Γ/p⊥/ε

∗
3⊥vn̄(2) + [(3, a)↔ (4, b)] .

Interestingly, we see that with our choice of momentum, this gives rise to one term which

localizes, with an O(λ0) denominator, and a term which does not, with a 1/p4r. The

corresponding non-abelian graphs vanish with our choice of momentum,

= 0 , = 0 . (5.30)
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Note that we do not have to consider the operators involving ultrasoft derivatives from

eqs. (4.75) and (4.82) in the matching, since we have chosen to only use a residual momen-

tum component for the small momentum component, and we have shown by RPI that this

component of the derivative first appears at O(αs).

We now consider the expansion of the full theory diagrams. We begin by expanding

each of the QCD diagrams for the production of two gluons off of the qq̄ pair to this

order. For the independent emission diagrams where both gluons with n-collinear scaling

are emitted from the quark with n̄-collinear scaling, we have

+ (5.31)

= ū(p1)Γ
−i(/p2

+ /p3
+ /p4

)

(p2 + p3 + p4)2
(igT b)/ε∗4

−i(/p2
+ /p3

)

(p2 + p3)2
(igT a)/ε∗3v(p2) + [(3, a)↔ (4, b)] .

Expanding, we can pick out the O(λ2) contribution of these diagrams, which is given by +


∣∣∣∣∣∣∣
O(λ2)

(5.32)

= − g2

ω2(ω3 + ω4)
ūn(1)T bT aΓ/ε∗4⊥/ε

∗
3⊥vn̄(2) + [(3, a)↔ (4, b)] ,

which is local, having only O(λ0) momenta in the denominator. Similarly, for the indepen-

dent emission diagrams where a single gluon is emitted from the n collinear quark, we have

+ (5.33)

= ū(p1)(igT b)/ε∗4
i(/p1

+ /p4
)

(p1 + p4)2
Γ
−i(/p2

+ /p3
)

(p2 + p3)2
(igT a)/ε∗3v(p2) + [(3, a)↔ (4, b)] .

The O(λ2) contribution of these diagrams is given by +


∣∣∣∣∣∣∣
O(λ2)

(5.34)

= −g2 1

ω1ω2
ūn(1)T bT a/ε∗4⊥

/̄n

2
Γ
/n

2
/ε∗3⊥vn̄(2) + [(3, a)↔ (4, b)]

+ g2 1

ω1ω2ω3p4r
ūn(1)T bT a/ε∗4⊥/p⊥Γ/p⊥/ε

∗
3⊥vn̄(2) + [(3, a)↔ (4, b)] .

Here we recognize both a local term, as well as a T -product like term, which is reproduced

by the SCET diagrams in eq. (5.29). This is expected from the topology of the diagram.
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There are also non-abelian diagrams. In the case that the gluon is emitted from the n̄

collinear quark, we find

= −ig2fabcū(p1)ΓT c
(/p2

+ /p3
+ /p4

)

(p2 + p3 + p4)2(p3 + p4)2
γρv(p2)

· [gµν(p4 − p3)ρ − gνρ(2p4 + p3)µ + gρµ(p4 + 2p3)ν ] ε∗4νε
∗
3µ . (5.35)

The O(λ2) contribution of this diagram vanishes∣∣∣∣∣∣∣∣
O(λ2)

= 0 . (5.36)

Finally, there are three diagrams in which both gluons are emitted from the n

collinear quark + +


∣∣∣∣∣∣∣∣
O(λ2)

= 0 . (5.37)

Each of these diagrams individually gives a vanishing contribution at O(λ2), as might

naively be expected due to the presence of on-shell propagators.

Subtracting the SCET matrix elements from the full theory results, we find that the

result is given by the tree level matrix element of the two operators

O(2)µ
BB1 =

−g2

ω2(ω1 + ω3)
χ̄n,ω1

/Bn⊥,ω3

/̄n

2
Γ
/n

2
/Bn⊥,ω4

χn̄,−ω2 ,

O(2)µ
BB2 =

−g2

ω2(ω3 + ω4)
χ̄n,ω1Γ/Bn⊥,ω3

/Bn⊥,ω4
χn̄,−ω2 . (5.38)

The behavior of these Wilson coefficients is interesting, in that they exhibit a singular-

ities as a pair of collinear particles in the n direction simultaneously have their energy

approach zero.

(q)n̄(q̄gg)n. To obtain the matching to the operators involving two collinear gluons and

an antiquark in the same collinear sector, we can simply apply charge conjugation to the

operators in eq. (5.38) and then relabel to obtain

O(2)µ
BB1′ =

−g2

ω1(ω2 + ω4)
χ̄n̄,ω1

/Bn⊥,ω3

/̄n

2
Γ
/n

2
/Bn⊥,ω4

χn,−ω2 ,

O(2)µ
BB2′ =

−g2

ω1(ω3 + ω4)
χ̄n̄,ω1

/Bn⊥,ω3
/Bn⊥,ω4

Γχn,−ω2 . (5.39)
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(q̄g)n̄(qg)n. A basis of O(λ2) operators with two collinear gluons in the opposite sectors

was given in eq. (4.44). Although we have argued that these operators do not contribute to

the cross section at O(λ2), we perform the matching out of interest, and to understand the

relation to the operators with both collinear gluons in the same sector. These operators

get their power suppression from the explicit collinear gluon fields, and to simplify the

matching we decompose the particle momenta as

pµ1 =
ω1

2
nµ + p1⊥ +

p1r

2
n̄µ , pµ2 =

ω2

2
n̄µ + p2⊥ +

p2r

2
nµ ,

pµ3 =
ω3

2
n̄µ − p2⊥ +

p3r

2
nµ , pµ4 =

ω4

2
nµ − p1⊥ +

p4r

2
n̄µ , (5.40)

where the particle labeling is the same as before, but with p4 labeling the additional gluon.

Furthermore, we choose the gluon polarizations to be perp in the matching. This choice of

momenta also removes any contributions from subleading Lagrangian insertions. However,

there are also SCET contributions coming from the O(λ2) operators O(2)µ
Pn̄1,2, and O(2)µ

Pn1,2.

The four contributions from these operators are given by

= −
g2 ūn(1)T bT a/p1⊥/ε

∗
4⊥/ε
∗
3⊥/p2⊥Γvn̄(2)

ω1ω3(ω1 + ω4)(p1r + p4r)
,

= −
g2 ūn(1)T bT a/p1⊥/ε

∗
4⊥/ε
∗
3⊥

/̄n
2 Γ /n

2 /p2⊥vn̄(2)

ω1ω2(ω1 + ω4)(p1r + p4r)
,

= −
g2 ūn(1)T bT a/p1⊥

/̄n
2 Γ /n

2 /ε
∗
4⊥/ε
∗
3⊥/p2⊥vn̄(2)

(ω2 + ω3)ω1ω2(p2r + p3r)
,

= −
g2 ūn(1)T bT aΓ/p1⊥/ε

∗
4⊥/ε
∗
3⊥/p2⊥vn̄(2)

(ω2 + ω3)ω2ω4(p2r + p3r)
. (5.41)

Note that we do not have to consider the operators involving ultrasoft derivatives from

eqs. (4.75) and (4.82) in the matching, since we have chosen to only have a residual mo-

mentum for the small momentum component, and we have shown by the RPI relation of

eq. (4.76) combined with the matching to the leading power operator in eq. (5.7) that this

component of the derivative first appears at O(αs).

Since the matrix elements in full QCD are identical to the case when the gluons are

in different collinear sectors, as was just considered, here we just give the results of the

diagrams evaluated to O(λ2). Unlike the previous case where both gluons were in the

same collinear sector, in this case all possible diagrams contribute at O(λ2). Using also

the direction of the gluon to indicate whether it is taken to have n-collinear or n̄-collinear
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momentum, we find ∣∣∣∣∣∣∣
O(λ2)

= −
g2 ūn(1)T bT aΓ/ε∗4⊥/ε

∗
3⊥vn̄(2)

(ω2 + ω3)ω4

−
g2 ūn(1)T bT aΓ/p1⊥/ε

∗
4⊥/ε
∗
3⊥/p2⊥vn̄(2)

(ω2 + ω3)ω2ω4(p2r + p3r)

−
g2 ūn(1)T bT a/p1⊥

/̄n
2 Γ /n

2 /ε
∗
4⊥/ε
∗
3⊥/p2⊥vn̄(2)

(ω2 + ω3)ω1ω2(p2r + p3r)
,∣∣∣∣∣∣

O(λ2)

= −
g2 ūn(1)T aT bΓ/ε∗3⊥/ε

∗
4⊥vn̄(2)

ω2ω4
,

∣∣∣∣∣∣∣
O(λ2)

= −
g2 ūn(1)T bT a/ε∗4⊥/ε

∗
3⊥Γvn̄(2)

(ω1 + ω4)ω3

−
g2 ūn(1)T bT a/p1⊥/ε

∗
4⊥/ε
∗
3⊥

/̄n
2 Γ /n

2 /p2⊥vn̄(2)

ω1ω2(ω1 + ω4)(p1r + p4r)

−
g2 ūn(1)T bT a/p1⊥/ε

∗
4⊥/ε
∗
3⊥/p2⊥Γvn̄(2)

ω1ω3(ω1 + ω4)(p1r + p4r)
,∣∣∣∣∣∣∣

O(λ2)

= −
g2 ūn(1)T aT b/ε∗3⊥/ε

∗
4⊥Γvn̄(2)

ω1ω3
,

∣∣∣∣∣∣∣
O(λ2)

= −
g2 ūn(1)T bT a/ε∗4⊥

/̄n
2 Γ /n

2 /ε
∗
3⊥vn̄(2)

(ω2 + ω3)(ω1 + ω4)
,

∣∣∣∣∣∣
O(λ2)

=
−g2 ūn(1)T aT b/ε∗3⊥

/̄n
2 Γ /n

2 /ε
∗
4⊥vn̄(2)

ω1ω2
,

∣∣∣∣∣∣∣
O(λ2)

= −
ig2fabcε∗3⊥ · ε∗4⊥ ūn(1)T cΓvn̄(2)

ω3ω4
,

∣∣∣∣∣∣∣∣
O(λ2)

= −
ig2fabcε∗3⊥ · ε∗4⊥ ūn(1)T cΓvn̄(2)

ω3ω4
. (5.42)

The sum of all these contributions must be reproduced by hard scatting operators in

SCET, after the non-local terms, which are easily recognizable, have been subtracted. The

simplest approach is just to associate to each of the above diagrams an operator with a
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different Lorentz and color structures. This makes the structure the most transparent, and

simplifies the projection to helicity operators. It also allows us to easily treat a completely

general Dirac structure, Γ, inserted at the vertex. We can therefore write the operators

generated by the tree level matching as

O(2)µ

BB̄1
=

−g2

(ω2+ω3)ω4
χ̄n,ω1Γ/B⊥n,ω4

/B⊥n̄,ω3
χn̄,−ω2 , O

(2)µ

BB̄2
=
−g2

ω2ω4
χ̄n,ω1Γ/B⊥n̄,ω3

/B⊥n,ω4
χn̄,−ω2 ,

O(2)µ

BB̄3
=

−g2

(ω1+ω4)ω3
χ̄n,ω1

/B⊥n,ω4
/B⊥n̄,ω3

Γχn̄,−ω2 , O
(2)µ

BB̄4
=
−g2

ω1ω3
χ̄n,ω1

/B⊥n̄,ω3
/B⊥n,ω4

Γχn̄,−ω2 ,

O(2)µ

BB̄5
=

−g2

(ω2+ω3)(ω1+ω4)
χ̄n,ω1

/B⊥n,ω4

/̄n

2
Γ
/n

2
/B⊥n̄,ω3

χn̄,−ω2 ,

O(2)µ

BB̄6
=
−g2

ω1ω2
χ̄n,ω1

/B⊥n̄,ω3

/̄n

2
Γ
/n

2
/B⊥n,ω4

χn̄,−ω2 ,

O(2)µ

BB̄7
=
−2g2

ω3ω4
χ̄n,ω1

(
B⊥n̄,ω3 ·B⊥n,ω4−B⊥n,ω4 ·B⊥n̄,ω3

)
Γχn̄,−ω2 . (5.43)

A number of these operators exhibit singularities in the Wilson coefficients as a single

one of the gluons or quarks becomes soft. This behavior is distinct from that of the

Wilson coefficients of the operators involving two gluons in a single collinear sector, given

in eq. (5.38), which only have a singularity when a pair of particles becomes soft. Of

particular interest, are the operators O(2)µ

BB̄2
, O(2)µ

BB̄4
, O(2)µ

BB̄6
, O(2)µ

BB̄7
, which have a separate

divergence in each collinear sector.

In section 5.7.3 these operators will be projected to a helicity basis, which simplifies

their structure.

5.5 Subleading matching with four collinear quarks

Finally, we consider the matching to the operators involving four collinear quark fields.

As discussed in section 4, the only relevant such operators for the cross section at O(λ2)

involve a single collinear quark operator in one sector, and three collinear quark operators

in the other sector. A basis of such operators was given in eq. (4.32). Since the operators

get their power suppression from the explicit collinear quark fields, we can simplify the

matching by taking the particle momenta as

pµ1 =
ω1

2
nµ , pµ2 =

ω2

2
n̄µ ,

pµ3 =
ω3

2
n̄µ + pµ⊥ +

p3r

2
nµ , pµ4 =

ω4

2
n̄µ − pµ⊥ +

p4r

2
nµ . (5.44)

The momentum labeling corresponds to that shown in the figure in eq. (5.46). This choice

of momentum also removes contributions from subleading Lagrangian insertions, as well as

from the O(λ2) single gluon operators

= 0 . (5.45)
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The QCD diagrams at O(λ2) must therefore be exactly reproduced by the hard scattering

operators. As before, the matching coefficients can be calculated by expanding the QCD

diagrams. In the case where a gluon splits into a quark anti-quark pair, with one in each

sector, we find

= ū(p1)(igT aγν)v(p2)
−i

(p1 + p2)2
ū(p3)Γ

−i(/p1
+ /p2

+ /p4
)

(p1 + p2 + p4)2
(igT aγν)v(p2) ,

= ū(p1)(igT aγν)v(p2)
−i

(p1 + p2)2
ū(p3)(igT aγν)

i(/p1
+ /p2

+ /p3
)

(p1 + p2 + p3)2
Γv(p2) .

(5.46)

The O(λ2) contribution of these diagrams is given by∣∣∣∣∣∣∣
O(λ2)

=
g2

ω1ω2(ω2 + ω4)
ūn(1)T aγνvn̄(2)ūn̄(3)Γ

/n

2
γνT avn̄(4) ,

∣∣∣∣∣∣∣
O(λ2)

= − g2

ω1ω2(ω2 + ω3)
ūn(1)T aγνvn̄(2)ūn̄(3)γνT a

/n

2
Γvn̄(4) . (5.47)

We could also have contributions from a gluon emitted from the n collinear quark, which

splits into two quarks, both in the n̄ collinear sector. The full theory diagram is given by

= ū(p3)(igT a)γρv(p4)ū(p1)(igT a)γρi
/p1

+ /p3
+ /p4

(p1 + p3 + p4)2
Γv(p2)

(−i)
(p3 + p4)2

.

(5.48)

Expanding this, we find that its O(λ2) term vanishes∣∣∣∣∣∣∣∣
O(λ2)

= 0 . (5.49)

Finally, there is a contribution from a gluon emitted from the n̄ collinear quark, which

splits into two quarks. The full theory diagram is given by

= ū(p3)(igT a)γρv(p4)ū(p1)Γ(−i)
/p2

+/p3
+/p4

(p2+p3+p4)2
(igT a)γρv(p2)

(−i)
(p3+p4)2

.

(5.50)
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Expanding this to O(λ2), we find that its contribution at this order also vanishes∣∣∣∣∣∣∣∣∣
O(λ2)

= 0 . (5.51)

We therefore find that the QCD result is reproduced by two SCET operators

O(2)Γ
4χ1a =

g2

ω1ω2(ω2 + ω4)

[
χ̄n,ω1T

aγνχn̄,−ω2

][
χ̄n̄,ω3Γ

/n

2
γνT aχn̄,−ω4

]
,

O(2)Γ
4χ1b = − g2

ω1ω2(ω2 + ω3)

[
χ̄n,ω1T

aγνχn̄,−ω2

][
χ̄n̄,ω3γ

νT a
/n

2
Γχn̄,−ω4

]
. (5.52)

Similarly, for the case where there is an antiquark in the n collinear sector instead of a

quark, the SCET operators are given by

O(2)Γ
4χ̄1a =

g2

ω1ω2(ω2 + ω4)

[
χ̄n̄,ω2T

aγνχn,−ω1

][
χ̄n̄,ω3Γ

/n

2
γνT aχn̄,−ω4

]
,

O(2)Γ
4χ̄1b = − g2

ω1ω2(ω2 + ω3)

[
χ̄n̄,ω2T

aγνχn,−ω1

][
χ̄n̄,ω3γ

νT a
/n

2
Γχn̄,−ω4

]
. (5.53)

Both operators exhibit singularities as certain quarks go soft.

5.6 Subleading matching with a single ultrasoft gluon

In this section we consider the matching with a the emission of a single ultrasoft gluon,

which allows us to probe the operators involving ultrasoft insertions. These operators are

determined by RPI, so the determination of their Wilson coefficients does not require a

new calculation, nevertheless it is instructive to see how this matching works.9 For the

corresponding tree level matching computation, the necessary SCET diagram calculations

were carried out explicitly in ref. [66] for an arbitrary current. For completeness we give

the full theory and SCET results needed for the matching calculation in the case studied

here. This illustrates how contributions from the SCET Lagrangian insertions are treated

in the matching, as discussed in general in section 5.1, which can not be avoided in this

case. We carry out this matching prior to making the BPS field redefinition.

To perform the matching calculation, we route the residual momenta such that it is

only carried by the external ultrasoft particle, any intermediate collinear fields, and then

out through the hard current. We take

p1 =
ω1

2
nµ , p2 =

ω2

2
n̄µ , ps =

n · ps
2

n̄µ + ps⊥ +
n̄ · ps

2
nµ , (5.54)

9Note that we have also shown that they do not contribute to the dijet cross section at O(αsλ
2).
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where the momentum ps is ultrasoft and hence purely residual. Expanding the QCD

diagrams, we find

=
−gε∗µūn(1)T a

[
(ω1+n̄ · ps)nµ + γµ⊥/ps⊥+ (γµ⊥n · ps−/ps⊥n

µ) /̄n2

]
Γv∗n̄(2)

ω1 n · ps
,

=
gε∗µūn(1)T aΓ

[
(ω2+n · ps)n̄µ + /ps⊥γ

µ
⊥+ /n

2 (γµ⊥n̄ · ps−/ps⊥n̄
µ)
]
v∗n̄(2)

ω2 n̄ · ps
.

(5.55)

Next we drop the standard eikonal O(λ0) terms, and using the equations of motion n ·psn̄ ·
ps = −p2

s⊥ to write the result in a form which is clearly gauge invariant graph by graph for

the O(λ2) terms. This gives

∣∣∣∣∣∣
O(λ2)

=
−gε∗µūn(1)T a

ω1n·ps

{
pµs⊥n·ps−p

2
s⊥n

µ

n·ps
+

[γµ⊥,/ps⊥]

2
+

(γµ⊥n·ps−/ps⊥n
µ)/̄n

2

}
×Γv∗n̄(2) ,∣∣∣∣∣∣

O(λ2)

=
gε∗µūn(1)Γ

ω2 n̄·ps

{
pµs⊥n̄·ps−p

2
s⊥n̄

µ

n̄·ps
−

[γµ⊥,/ps⊥]

2
+
/n(γµ⊥n̄·ps−/ps⊥n̄

µ)

2

}
×T av∗n̄(2) . (5.56)

These results are written in the same form given in ref. [66], which is also the form predicted

by the LBK relation [114, 115].

Unlike our earlier analysis of the purely collinear graphs, with a ultrasoft particle

present there are residual momenta in collinear propagators. Therefore, in the matching

with eq. (5.4) there are non-vanishing contributions from insertions of the subleading power

SCET Lagrangians. Insertions of L(1) vanish as they involve label ⊥ momentum, which we

chose to be zero. The Feynman rules for the corrections from L(2) to an n-collinear quark

propagator, and to the emission of a ultrasoft gluon are given by

= i
/̄n

2

p2
r⊥

n̄ · p
, = igT a

(
γµ⊥/p1r⊥
n̄ · p

+
/p2r⊥γ

µ
⊥

n̄ · p

)
/̄n

2
. (5.57)

Computing the SCET diagrams that contribute to the matrix element, we find that the
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propagator insertions of L(2) and corrections to the gluon emission from L(2) give

+ = g

(
−n·ε

∗ n̄·ps
ω1n·ps

+
n̄·ε∗n·ps
ω2 n̄·ps

)
ūn(1)T aΓv∗n̄(2) ,

+ = g ūn(1)T a
(
−
/ε∗⊥/ps⊥Γ

ω1n·ps
+

Γ/ps⊥/ε
∗
⊥

ω2 n̄·ps

)
v∗n̄(2) ,

Sum =
gūn(1)T aΓ

ω2 n̄·ps

{
pµs⊥n̄·ps−p

2
s⊥n̄

µ

n̄·ps
−

[γµ⊥,/ps⊥]

2

}
v∗n̄(2)

− gūn(1)T a

ω1n·ps

{
pµs⊥n·ps−p

2
s⊥n

µ

n·ps
+

[γµ⊥,/ps⊥]

2

}
Γv∗n̄(2) .

(5.58)

Note that the sum is gauge invariant for each leg. Subtracting off these SCET matrix

elements leaves only the third term in each line of the full theory results in eq. (5.56).

These terms are reproduced by the SCET operators

O(2)Γ
s⊥1 = χ̄n,ω1Γ

i /D⊥us
(−ω2)

/n

2
χn̄,−ω2 , O(2)Γ

s⊥2 = χ̄n,ω1

/̄n

2

(−i
←−
/D⊥us)

ω1
Γχn̄,−ω2 . (5.59)

Each of these operators gives two contributions, one where the D⊥ produces a ultrasoft

gluon at the vertex, and one where the D⊥ acts as a derivative, and the ultrasoft gluon is

produced by an insertion of L(0):〈
O(2)Γ
s⊥1

〉
= g ūn(1)ΓT a

/n

2

(
/ε⊥
ω2
−
/ps⊥n̄ · ε

∗

ω2 n̄ · ps

)
v∗n̄(2) ,〈

O(2)Γ
s⊥2

〉
= −g ūn(1)T a

(
/ε⊥
ω1
−
/ps⊥n · ε

∗

ω1 n · ps

)
/̄n

2
Γv∗n̄(2) . (5.60)

The Wilson coefficients of these operators are both fixed by RPI to all orders in perturbation

theory, and our tree level matching result agrees with this relation.

We see that only the D⊥, or correspondingly in terms of helicity operators, the ∂±
and B±, are required to reproduce the tree level QCD result. Operators of the form

χ̄n̄,ω1in · DusΓχn,ω2 or χ̄n̄,ω1in̄ ·
←−
DusΓχn,ω2 are turned into purely collinear operators by

the leading power SCET quark equations of motion, and therefore are not included in the

basis, as was discussed for the helicity operators in section 4.3.3. Prior to the BPS field

redefinition, the operators involving the other components of Dµ
us, which could appear at

the one gluon level are

O(2)Γ
sn̄ = C

(2)
sn̄ χ̄n,ω1(−in̄ ·

←−
Dus)Γχn̄,−ω2 , O(2)Γ

sn = C(2)
sn χ̄n,ω1Γin ·Dusχn̄,−ω2 , (5.61)

but these two operators do not show up in the tree level matching since their coefficients C
(2)
sn

and C
(2)
sn̄ are O(αs). As noted in section 4.3.3, the Wilson coefficients of these two operators

are related to derivatives of the leading power operator. Since the Wilson coefficient of the
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leading power operator is 1 at tree level, the derivative RPI relation implies that the Wilson

coefficient of these operators vanish, which is reproduced by our explicit tree level matching.

Using the RPI relations of section 4.3.3, we can determine the Wilson coefficients of these

operators at one-loop. Taking derivatives of the leading power Wilson coefficient of eq. (5.7)

gives

C(2)
sn =

∂C(0)

dω1
= −αsCF

4π

1

ω1

[
−2 ln

(−ω1ω2 − i0
µ2

)
+ 3

]
+O(α2

s) , (5.62)

C
(2)
sn̄ =

∂C(0)

dω2
= −αsCF

4π

1

ω2

[
−2 ln

(−ω1ω2 − i0
µ2

)
+ 3

]
+O(α2

s) .

In the calculation of the cross section, conservation of momentum will enforce ω1 = ω2, so

that the Wilson coefficients of these two operators are identical. This will hold to all orders

in perturbation theory. Combined with the arguments of section 4.4.2, showing that the ⊥
ultrasoft operators don’t contribute to the e+e− → dijets cross section at O(λ2), this shows

that ultrasoft operators will first contribute at O(α2
s). The O(αs) ultrasoft contributions

therefore arise only from the subleading SCET Lagrangian.

5.7 Projection onto helicities

Given the general result for the Wilson coefficients in SCET, in this section we project

the operators onto helicities to show how they appear in the helicity operator basis. For

simplicity, we will do this projection for the specific case of a vector current, namely Γ = γµ,

as relevant for e+e− → dijets proceeding through an off shell photon. We then compare

with the operators of the helicity basis given in section 4.

In setting up the decomposition of the Wilson coefficients, as given, for example, for

the leading power operator in eq. (4.8), the couplings of the photon to both the electrons

and the quarks has been extracted. To extract the Wilson coefficient and helicity operators

from one of the currents, O(i)ν
j we can simply expand the contraction

v̄eγ
µue

(
−igµν
Q2

)
O(i)ν
j , (5.63)

using the completeness relation for polarization vectors∑
λ=±

ελµ(ni, n̄i)
(
ελν (ni, n̄i)

)∗
= −gµν +

niµn̄iν + niν n̄iµ
ni · n̄i

= −g⊥µν(ni, n̄i) . (5.64)

Here we have taken s = Q2, so that a large light cone momentum Q is deposited in each

hemisphere.

The helicity operator basis of section 4 involves helicity operators defined with respect

to the axes of the jets, namely n and n̄, as well as with respect to the axes of the incoming

electrons, namely ne and n̄e. In performing the projection in eq. (5.63), the non-trivial

angular dependence of the Wilson coefficient arises from inner products of the polarization

vectors with respect to the axis of the electrons and those defined with respect to the

axis of the jets. While we will not in general expand these inner products of polarization
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vectors, as they allow for an intuitive interpretation of each term, we note that they can

straightforwardly be written in terms of spinor products as

ε+(n, n̄) · ε+(ne, n̄e) =
[nne]〈n̄en̄〉
〈n̄n〉〈n̄ene〉

, ε+(n, n̄) · ε−(ne, n̄e) = − [nn̄e]〈nen̄〉
〈n̄n〉[n̄ene]

,

ε−(n, n̄) · ε+(ne, n̄e) = − [n̄ne]〈n̄en〉
[n̄n]〈n̄ene〉

, ε−(n, n̄) · ε−(ne, n̄e) =
[n̄n̄e]〈nen〉
[n̄n][n̄ene]

, (5.65)

Since these factors will appear whenever two spin 1 currents are projected onto each other,

we will define a shorthand notation

ε+(n, n̄) · ε+(ne, n̄e) = d++ , ε+(n, n̄) · ε−(ne, n̄e) = d+− ,

ε−(n, n̄) · ε+(ne, n̄e) = d−+ , ε−(n, n̄) · ε−(ne, n̄e) = d−− . (5.66)

Similarly, inner products of the n and n̄ vectors with the electron polarization vectors can

be expanded as

n · ε+(ne, n̄e) =
[nen]〈nn̄e〉√

2〈n̄ene〉
, n̄ · ε+(ne, n̄e) =

[nen̄]〈n̄n̄e〉√
2〈n̄ene〉

,

n · ε−(ne, n̄e) = −〈nen〉[nn̄e]√
2[n̄ene]

, n̄ · ε−(ne, n̄e) = −〈nen̄〉[n̄n̄e]√
2[n̄ene]

. (5.67)

We will occasionally perform this expansion if it simplifies the result.

The spinor products in general give a phase

〈ij〉 =
√
|sij |eiφij , [ij] =

√
|sij |e−i(φij+π) , (5.68)

see appendix A for details. To slightly simplify the expressions, we will choose to define our

spinors with respect to the jet axis n, which we take to be in the z direction, nµ = (1, 0, 0, 1).

In this case we simplify the spinor products between n and n̄

[nn̄] = −2 , 〈nn̄〉 = 2 . (5.69)

We also note that depending on the collinear sector of the operator, the helicities are

defined either with respect to the n or n̄ axes. The relation

εµ±(n, n̄) = εµ∓(n̄, n) , (5.70)

allows for the trivial exchange of the corresponding decompositions.

Finally, we comment on the organization of this section. Instead of providing tables

of the Wilson coefficients, we find that it is more transparent to show the decomposition

of each of the currents generated in the tree level matching onto the helicity operators.

The way we have performed the matching, we have typically associated a single Feynman

diagram in the matching with an SCET current. Therefore, each of these currents typically

projects onto a single helicity operator. The Wilson coefficients for a particular helicity

operator can then trivially be read off from the corresponding projection.
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5.7.1 Leading power

We begin by considering the projection onto the leading power helicity basis of section 4.1.

Since this is the first operator we are considering, we go through the projection onto the

helicity basis in slightly more detail. Using the completeness relation for the polarization

vectors of eq. (5.64), as well as the projection relations for the SCET spinors, we find

v̄eγ
µue

(
−igµν
Q2

)
O(0)ν =(

−i
Q2

)
ε−(ne, n̄e) · ε+(n, n̄)

(
εµ+(ne, n̄e)v̄eγ

µue
) (
ερ−(n, n̄)O(0)

ρ

)
+

(
−i
Q2

)
ε+(ne, n̄e) · ε+(n, n̄)

(
εµ−(ne, n̄e)v̄eγ

µue
) (
ερ−(n, n̄)O(0)

ρ

)
+

(
−i
Q2

)
ε−(ne, n̄e) · ε−(n, n̄)

(
εµ+(ne, n̄e)v̄eγ

µue
) (
ερ+(n, n̄)O(0)

ρ

)
+

(
−i
Q2

)
ε+(ne, n̄e) · ε−(n, n̄)

(
εµ−(ne, n̄e)v̄eγ

µue
) (
ερ+(n, n̄)O(0)

ρ

)
. (5.71)

Here we see explicitly the four different helicity combinations which arise from the single

operator, and that the Wilson coefficient arises as the inner product of the helicity vectors

defined with the different axes, as expected form the point of view of spin projection.

Written in terms of the helicity currents, we have

v̄eγ
µue

(
−igµν
Q2

)
O(0)ν = δαβ̄

(
−i
2

)(
d+− [n̄ene]Jēe−J

ᾱβ
q̄q+ − d++ 〈n̄ene〉Jēe+J ᾱβq̄q+

+d−− [n̄ene]Jēe−J
ᾱβ
q̄q− − d−+ 〈n̄ene〉Jēe+J ᾱβq̄q−

)
. (5.72)

We therefore see that each of the helicity combinations in the leading power operator basis

of eq. (4.6) is reproduced, as required from the C and P relations. The Wilson coefficients

can then immediately be read off of eq. (5.72). Note that the spinor products appearing in

this expression can be simplified given a particular choice of reference axes, but we have

chosen to leave them in this general form.

5.7.2 Subleading power

We now consider the projection onto the O(λ) subleading power helicity operator basis of

section 4.2.

(q̄)n̄(qg)n and (q̄g)n̄(q)n. We begin by considering the case where the quark and an-

tiquark are in different collinear sectors. The operators found in eqs. (5.17) and (5.23) can

be expanded in terms of the helicity currents. We have

χ̄n,ω1
/B⊥nχn̄,−ω2 =

√
ω1ω2Jnn̄−Bn+ +

√
ω1ω2Jnn̄+Bn− ,

χ̄n,ω1
/B⊥n̄,ω3

χn̄,−ω2 =
√
ω1ω2Jnn̄−Bn̄− +

√
ω1ω2Jnn̄+Bn̄+ , (5.73)
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where the helicity of the gluon fields is opposite in the two cases due to the fact that it is

defined with respect to different axes. From this, we immediately obtain the helicity ex-

pansions of the two operator. In the case that the gluon is in the n collinear sector, we have

v̄eγ
µue

(
−igµν
Q2

)
O(1)ν
Bn = gT aαβ̄

(
−i√ω1ω2

2Q

)
(5.74)[

[n̄ene]

(
(ω1 + ω3)n · ε−(ne, n̄e)− ω2n̄ · ε−(ne, n̄e)

ω2(ω1 + ω3)

)(
Jēe−J

ᾱβ
nn̄−Ban+ + Jēe−J

ᾱβ
nn̄+Ban−

)
+〈n̄ene〉

(
(ω1 + ω3)n · ε+(ne, n̄e)− ω2n̄ · ε+(ne, n̄e)

ω2(ω1 + ω3)

)(
Jēe+J

ᾱβ
nn̄−Ban+ + Jēe+J

ᾱβ
nn̄+Ban−

)]
,

and in the case that the gluon is in the n̄ collinear sector, we find

v̄eγ
µue

(
−igµν
Q2

)
O(1)ν
Bn̄ = gT aαβ̄

(
−i√ω1ω2

2Q

)
(5.75)[

[n̄ene]

(
ω1n · ε−(ne, n̄e)− (ω2 + ω3)n̄ · ε−(ne, n̄e)

ω1(ω2 + ω3)

)(
Jēe−J

ᾱβ
nn̄−Ban̄− + Jēe−J

ᾱβ
nn̄+Ban̄+

)
+〈n̄ene〉

(
ω1n · ε+(ne, n̄e)− (ω2 + ω3)n̄ · ε+(ne, n̄e)

ω1(ω2 + ω3)

)(
Jēe+J

ᾱβ
nn̄−Ban̄− + Jēe+J

ᾱβ
nn̄+Ban̄+

)]
.

Note that while the Wilson coefficients of the individual helicity operators are more com-

plicated, and explicitly involve spinor products which incorporate the angular dependence

of the scattering process, the helicity structure is very simple. Indeed, comparing the op-

erators generated, with those in the basis of eq. (4.13), we explicitly see that the helicity

selection rules are respected by the tree level matching. This will continue to hold to all

orders in perturbation theory.

(q̄q)n̄(g)n. We now consider the operator with a single collinear gluon, where both the

quarks are in the same sector. In performing the matching, we found the two operators of

eq. (5.27). Projecting these onto helicities, we find

v̄eγ
µue

(
−igµν
Q2

)
O(1)ν
χχn̄1 = T aαβ̄

−g
ω1

(
−i√ω1ω2√

2Q

)
(5.76)[

d+− [n̄ene]Jēe−Ban+J
ᾱβ
n̄0 − d++ 〈n̄ene〉Jēe+Ban+J

ᾱβ
n̄0

+ d−− [n̄ene]Jēe−Ban−J
ᾱβ
n̄0̄
−d−+ 〈n̄ene〉Jēe+Ban−J

ᾱβ
n̄0̄

]
,

and

v̄eγ
µue

(
−igµν
Q2

)
O(1)ν
χχn̄2 = T aαβ̄

g

ω2

(
−i√ω1ω2√

2Q

)
(5.77)[

d+− [n̄ene]Jēe−Ban+J
ᾱβ
n̄0̄
− d++ 〈n̄ene〉Jēe+Ban+J

ᾱβ
n̄0̄

+ d−− [n̄ene]Jēe−Ban−J
ᾱβ
n̄0 −d−+ 〈n̄ene〉Jēe+Ban−J

ᾱβ
n̄0

]
.

Note that all the operators expected in the basis of eq. (4.15) are generated, although half

come from the first Lorentz structure generated in the tree level matching, while half come

from the second Lorentz structure. Again, the expected helicity selection rules, namely

that the two quarks have net helicity zero is respected.
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5.7.3 Subsubleading power

We now consider the projection of the operators found in the tree level matching onto the

O(λ2) helicity operator basis of section 4.3.

(q̄gP⊥)n̄(q)n. We first consider the operators involving an insertion of the P⊥ operator,

which contribute to the cross section at O(λ2). The basis of helicity operators was given

in eq. (4.60), and they involve a single collinear gluon field, and a single insertion of the

P⊥ operator. The two currents found in the tree level matching were given in eq. (5.20).

We find

v̄eγ
µue

(
−igµν
Q2

)
O(2)ν
Pn̄1 = −T aαβ̄

g

ω1ω3

(
−i√ω1ω2√

2Q

)
(5.78)[

d+− [n̄ene]Jēe−J
ᾱβ
nn̄+[Ban̄−P

†
+] − d++ 〈n̄ene〉Jēe+J ᾱβnn̄+[Ban̄−P

†
+]

+ d−− [n̄ene]Jēe−J
ᾱβ
nn̄−[Ban̄+P

†
−] −d−+ 〈n̄ene〉Jēe+J ᾱβnn̄−[Ban̄+P

†
−]
]
,

and

v̄eγ
µue

(
−igµν
Q2

)
O(2)ν
Pn̄2 = T aαβ̄

g

ω1ω2

(
−i√ω1ω2√

2Q

)
(5.79)[

d+− [n̄ene]Jēe−J
ᾱβ
nn̄+[Ban̄−P

†
−] − d++ 〈n̄ene〉Jēe+J ᾱβnn̄+[Ban̄−P

†
−]

+ d−− [n̄ene]Jēe−J
ᾱβ
nn̄−[Ban̄+P

†
+] −d−+ 〈n̄ene〉Jēe+J ᾱβnn̄−[Ban̄+P

†
+]
]
.

We see that these project down into two different classes of helicity operators. Of the oper-

ators in the helicity basis of eq. (4.60) the first four are absent, while the last eight obtain

non-zero matching coefficients at tree level. As expected all expected helicity selection

rules are respected.

(q̄)n̄(ggq)n. We now consider the projection onto the helicity operators for the case of

two collinear gluons in the same collinear sector. A basis of helicity operators for this case

was given in eq. (4.40). The operators arising in the tree level matching were given in

eq. (5.38). Projecting onto helicities, we find

v̄eγ
µue

(
−igµν
Q2

)
O(2)ν
BB1 =

1

2

(
(T aT b)αβ̄ + (T bT a)αβ̄

) g2√ω1ω2

ω2(ω1 + ω3)

(
−i√
2Q

)
(5.80)[

d+− [n̄ene]Jēe−J
ᾱβ
nn̄+Ban−Bbn− − d++ 〈n̄ene〉Jēe+J ᾱβnn̄+Ban−Bbn−

+ d−− [n̄ene]Jēe−J
ᾱβ
nn̄−Ban+Bb+ −d−+ 〈n̄ene〉Jēe+J ᾱβnn̄−Ban+Bbn+

]
,

where we have included the appropriate symmetry factor. And

v̄eγ
µue

(
−igµν
Q2

)
O(2)ν
BB2 =

1

2

(
(T aT b)αβ̄ + (T bT a)αβ̄

) −g2√ω1ω2

ω2(ω3 + ω4)

(
−i√
2Q

)
(5.81)[

d+− [n̄ene]Jēe−J
ᾱβ
nn̄−Ban−Bbn+ − d++ 〈n̄ene〉Jēe+J ᾱβnn̄−Ban−Bbn+

+ d−− [n̄ene]Jēe−J
ᾱβ
nn̄+Ban+Bb− −d−+ 〈n̄ene〉Jēe+J ᾱβnn̄+Ban+Bbn−

]
.

Again we see that of the helicity combinations present in the basis of eq. (4.40), four are

not present, while the other eight are generated in the tree level matching.
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(q̄g)n̄(qg)n. Similar projections apply to the case when the two gluons are in different

collinear sectors. A basis of helicity operators for this case was given in eq. (4.44). The

operators arising in the tree level matching were given in eq. (5.43). Because of the way we

have organized the operators, namely each corresponding to a particular Feynman diagram,

the helicity structure of the Feynman diagram is reflected in particular helicity correlations

in the projected helicity operator. However, summing over all the Feynman diagrams, we

will generate all the different helicity combinations in our helicity basis. We will write the

color structure of the operators in terms of the color basis of eq. (4.39). The organization

of the operators in eq. (5.43) corresponds quite closely to this color decomposition, and

therefore the projection of each operator will typically contribute to only one of the elements

of the color basis.

We begin by projecting onto helicity operators the operators O(2)ν

BB̄1
and O(2)ν

BB̄2
of

eq. (5.43). We find

v̄eγ
µue

(
−igµν
Q2

)
O(2)ν

BB̄1
=

−g2

(ω2 + ω3)ω4
(T bT a)αβ̄

(
−i√ω1ω2√

2Q

)
(5.82)[

d+− [n̄ene]Jēe−J
ᾱβ
nn̄+Bbn+Ban̄+ − d++ 〈n̄ene〉Jēe+J ᾱβnn̄+Bbn+Ban̄+

+ d−− [n̄ene]Jēe−J
ᾱβ
nn̄−Bbn−Ban̄− −d−+ 〈n̄ene〉Jēe+J ᾱβnn̄−Bbn−Ban̄−

]
,

and

v̄eγ
µue

(
−igµν
Q2

)
O(2)ν

BB̄2
=
−g2

ω2ω4
(T aT b)αβ̄

(
−i√ω1ω2√

2Q

)
(5.83)[

d+− [n̄ene]Jēe−J
ᾱβ
nn̄+Ban̄−Bbn− − d++ 〈n̄ene〉Jēe+J ᾱβnn̄+Ban̄−Bbn−

+ d−− [n̄ene]Jēe−J
ᾱβ
nn̄−Ban̄+Bbn+ −d−+ 〈n̄ene〉Jēe+J ᾱβnn̄−Ban̄+Bbn+

]
,

which is identical up to a relabeling of n ↔ n̄, and flipping the helicities correspondingly

for the gluon fields. Note that because the two gluon helicity fields are in the n̄ and n

directions, the helicities of the B fields are defined with respect to different axes.

We can similarly project the operators O(2)ν

BB̄3
and O(2)ν

BB̄4
onto the helicity operator basis.

We find

v̄eγ
µue

(
−igµν
Q2

)
O(2)ν

BB̄3
=

−g2

(ω1 + ω4)ω3
(T bT a)αβ̄

(
−i√ω1ω2√

2Q

)
(5.84)[

d+− [n̄ene]Jēe−J
ᾱβ
nn̄+Bbn−Ban̄− − d++ 〈n̄ene〉Jēe+J ᾱβnn̄+Bbn−Ban̄−

+ d−− [n̄ene]Jēe−J
ᾱβ
nn̄−Bbn+Ban̄+ −d−+ 〈n̄ene〉Jēe+J ᾱβnn̄−Bbn+Ban̄+

]
,

and

v̄eγ
µue

(
−igµν
Q2

)
O(2)ν

BB̄4
=
−g2

ω1ω3
(T aT b)αβ̄

(
−i√ω1ω2√

2Q

)
(5.85)[

d+− [n̄ene]Jēe−J
ᾱβ
nn̄+Ban̄+Bbn+ − d++ 〈n̄ene〉Jēe+J ᾱβnn̄+Ban̄+Bbn+

+ d−− [n̄ene]Jēe−J
ᾱβ
nn̄−Ban̄−Bbn− −d−+ 〈n̄ene〉Jēe+J ᾱβnn̄−Ban̄−Bbn−

]
.
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In this case both the B fields are again in the same helicity, but their correlation with the

helicity of the quark current is opposite to that of eqs. (5.82) and (5.83).

The operators O(2)ν

BB̄5
and O(2)ν

BB̄6
give a different helicity contribution, where the gluon

fields have opposite helicity. We have

v̄eγ
µue

(
−igµν
Q2

)
O(2)ν

BB̄5
=

g2

(ω2 + ω3)(ω1 + ω4)
(T bT a)αβ̄

(
−i√ω1ω2√

2Q

)
(5.86)[

d+− [n̄ene]Jēe−J
ᾱβ
nn̄+Bbn−Ban̄+ − d++ 〈n̄ene〉Jēe+J ᾱβnn̄+Bbn−Ban̄+

+ d−− [n̄ene]Jēe−J
ᾱβ
nn̄−Bbn+Ban̄− −d−+ 〈n̄ene〉Jēe+J ᾱβnn̄−Bbn+Ban̄−

]
,

and

v̄eγ
µue

(
−igµν
Q2

)
O(2)ν

BB̄6
=

g2

ω1ω2
(T aT b)αβ̄

(
−i√ω1ω2√

2Q

)
(5.87)[

d+− [n̄ene]Jēe−J
ᾱβ
nn̄+Ban̄+Bbn− − d++ 〈n̄ene〉Jēe+J ᾱβnn̄+Ban̄+Bbn−

+ d−− [n̄ene]Jēe−J
ᾱβ
nn̄−Ban̄−Bbn+ −d−+ 〈n̄ene〉Jēe+J ᾱβnn̄−Ban̄−Bbn+

]
.

Finally, the operator O(2)ν

BB̄7
gives

v̄eγ
µue

(
−igµν
Q2

)
O(2)ν

BB̄7
= − 2g2

ω3ω4

(
−i√ω1ω2√

2Q

)
(5.88)(

Baω3+Bbω4+(T aT b)αβ̄ + Baω3−B
b
ω4−(T aT b)αβ̄ − Bbω4+Baω3+(T bT a)αβ̄ − Bbω4−B

a
ω3−(T bT a)αβ̄

)[
d+− [n̄ene]Jēe−J

ᾱβ
nn̄+ − d++ 〈n̄ene〉Jēe+J ᾱβnn̄+ + d−− [n̄ene]Jēe−J

ᾱβ
nn̄− −d−+ 〈n̄ene〉Jēe+J ᾱβnn̄−

]
.

Therefore we see that all the different helicity combinations present in the basis of eq. (4.44)

are generated in the tree level matching.

(q̄QQ̄)n̄(q)n. The four quark operators generated in the matching were given in

eq. (5.52). Projecting onto the basis of helicity operators, and using the color basis of

eq. (4.24), we find

v̄eγ
µue

(
−igµν
Q2

)
O(2)ν

4χ1a =
g2√ω1ω2ω3ω4

ω1ω2(ω2 + ω4)

1

2

(
δγβ̄δδ̄α −

1

Nc
δγδ̄δαβ̄

)(
−i
4Q

)
(5.89)[

d+− [n̄ene]Jēe−J
γ̄δ
(q)nn̄+J

ᾱβ
(Q)n̄0̄

− d++ 〈n̄ene〉 Jēe+J γ̄δ(q)nn̄+J
(Q)ᾱβ

n̄0̄

+ d−− [n̄ene]Jēe−J
γ̄δ
(q)nn̄−J

ᾱβ
(Q)n̄0 −d−+ 〈n̄ene〉Jēe+J γ̄δ(q)nn̄−J

ᾱβ
(Q)n̄0

]
,

and

v̄eγ
µue

(
−igµν
Q2

)
O(2)ν

4χ1b =
g2√ω1ω2ω3ω4

ω1ω2(ω2 + ω3)

1

2

(
δγβ̄δδ̄α −

1

Nc
δγδ̄δαβ̄

)(
−i
4Q

)
(5.90)[

d+− [n̄ene]Jēe−J
γ̄δ
(q)nn̄+J

ᾱβ
(Q)n̄0 − d++ 〈n̄ene〉 Jēe+J γ̄δ(q)nn̄+J

(Q)ᾱβ
n̄0

+ d−− [n̄ene]Jēe−J
γ̄δ
(q)nn̄−J

ᾱβ
(Q)n̄0̄

−d−+ 〈n̄ene〉Jēe+J γ̄δ(q)nn̄−J
ᾱβ
(Q)n̄0̄

]
.
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We see that all the helicity combinations of eq. (4.32) are generated in the tree level

matching, as are both possible color structures. Furthermore, all the expected helicity

selection rules are respected. The projection of the operator eq. (5.52) with an antiquark

instead of a quark in the n collinear sector proceeds identically, so we will not discuss

it explicitly.

5.8 Discussion

Having performed the tree level matching both onto operators formed of standard Dirac

and Lorentz structures, as well as projecting these onto operators in the helicity basis

of section 4, here we briefly comment on the two approaches, and their advantages and

disadvantages. The major advantage of the helicity operator approach is in enumerating a

complete basis, and in making symmetry arguments about which operators will contribute

to the factorization. This is greatly simplified by the use of helicity operators. Enumerating

the basis is straightforward, and non-trivial relationships between different operators, for

example using spin Fierz relations are absent. On the other hand, enumerating a complete

and minimal basis of operators in the standard approach (which we did not do in this

paper) is significantly more complicated. Furthermore, many of the symmetry arguments

that were used to show that particular matrix elements of operators do not contribute to

the cross section are obscured. Therefore for performing the formal factorization to all

orders in perturbation theory, where a complete basis is essential, the helicity operator

approach offers a clear advantage. This will become even more essential if one were to

consider the case of three jets, for example. As noted in the case of dijets, a large number

of the operators don’t contribute. This can be seen easily in the helicity operator approach

where many symmetries are manifest.

However, as has been seen in the matching, since each of the helicity building blocks is

a scalar object, in the helicity approach all angular correlations are contained in the Wilson

coefficients. This means that the Wilson coefficients are slightly more complicated objects.

For example, in the case of the e+e− → dijets that we have considered here, the Wilson

coefficients contain the inner products of polarization vectors, which carry all angular de-

pendence. Furthermore, for relatively simple final states, such as those considered here, it

is arguably more efficient to compute first a general current, and then project to helicity

amplitudes. This may no longer be true if more jet directions are involved, since for higher

multiplicity states, particularly involving gluons, it is well known that the calculation of in-

dividual helicity amplitudes can be significantly simpler. Regardless of the exact techniques

used to perform the matching, the helicity approach offers significant formal advantages

for understanding the all orders structure of the operators, and for generating complete

operator basis. The exact procedure which is then used to match to these operators can

then be whatever is most convenient.

In a forthcoming paper we have performed a similar analysis, using the helicity opera-

tors introduced in this paper to study a complete subleading operator basis for gg → H, as

well as performing the tree level matching to those operators which contribute to the cross

section at O(λ2) [121]. In that case we also found the helicity operator approach to be

convenient. In particular, the spin zero nature of the Higgs leads to even more stringent he-
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licity selection rules than for the q̄Γq current considered here. The structure of the Wilson

coefficients in the case of gg → H is also simpler due to the fact that there are no angular

correlations between the initial and final state, and therefore the Wilson coefficients for the

helicity operators remain simple. We therefore believe that the use of helicity operators is

a particularly powerful approach for simplifying subleading power operator bases in SCET,

much more generally than the q̄Γq current considered here.

6 Conclusions

In this paper we have presented a basis of SCET helicity operator building blocks valid

to all orders in the power expansion. This involved the use of helicity operator building

blocks with multiple collinear fields in the same collinear sector, as well as ultrasoft gauge

invariant helicity fields describing ultrasoft degrees of freedom, as summarized in table 2.

These operators allow for efficient organization of both helicity and color information. At

subleading power interesting selection rules arise from the conservation of angular momen-

tum [72], which constrain the allowed hard scattering operators in a basis. The use of

helicity operators, color organization, and ultrasoft gauge invariant building blocks greatly

simplifies the construction of subleading power operator bases in SCET.

To demonstrate the efficiency of the helicity-operator approach, we explicitly con-

structed a complete basis of hard scattering operators from a spin-1 current with two

back-to-back collinear sectors up to O(λ2). Due to the manifest crossing symmetry of

our operator basis, this basis is applicable to studying power corrections for a number

of phenomenologically relevant processes, including e+e− → dijets, e−p → e− jet, and

constrained Drell-Yan. As an example, we discussed in some detail the structure of the

factorization in SCET for e+e− → dijet event shapes at subleading power, and detailed

the different sources of power corrections. Symmetry relations, which are manifest in the

helicity operator basis, were used to show the vanishing of hard scattering contributions to

the dijet cross section at O(λ). Using our basis of hard scattering operators we enumerated

and studied the field content of the subleading jet and soft functions which arise from the

subleading hard scattering operators at O(λ2) in the expansion of the cross section. We

then performed a tree level matching calculation, showing the operators which arise at tree

level, both in a more standard notation in terms of Dirac and Lorentz structures, as well

as projected into the helicity basis. We contrasted the different forms of the operators and

their utility for different purposes. The explicit results for the matching of the subleading

power operators will be useful for further studies of power corrections both in fixed order

and resummed perturbation theory.

Since relatively little is known about the structure of factorization theorems at sub-

leading power a number of directions exist for future study. It would be interesting to study

in more detail RPI relations between operators for the subleading dijet operators to under-

stand if relations beyond those given in this paper could be derived. The renormalization

group evolution of the subleading power helicity operators in SCET is of considerable inter-

est. The anomalous dimensions of leading power operators are well understood, and exhibit

many universal features due to their connections with the soft limits of gauge theories, and
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it would interesting to determine to what extent such features persist to subleading power,

and what new properties emerge. A study of the RG structure of O(λ) operators was consid-

ered in ref. [71]. The RG evolution of higher twist operators has also been well studied [122–

133], and should exhibit similar structures. Finally, an understanding of the numerical im-

pact of the subleading corrections for e+e− → dijets event shapes would be of considerable

interest, for example, for improving extractions of αs performed in [78, 134–136].

Another potentially interesting application of subleading factorization theorems is to

improving subtraction schemes for higher order perturbative calculations. Subtraction

schemes based on factorization theorems include the recently introduced N -jettiness sub-

traction scheme [137–139], based on the N -jettiness event shape [140], as well as the SCET

based subtraction scheme for NNLO semileptonic top quark decays of ref. [141]. Sublead-

ing factorization theorems would allow for the subtraction of the next-to-singular terms,

potentially improving the numerical accuracy and speed of the techniques. This was empha-

sized in [139], and was first studied numerically in [142]. The feasibility of extending these

schemes to subleading power will rely on a convenient organization of the subleading factor-

ization theorem, which should be aided by the simplicity of the helicity operator approach.

A detailed study of power corrections for N -jettiness subtractions using the operators in

this paper was presented in [143], where the terms of O(α2
s log3 τ) were computed explicitly.

See also [144] for a calculation of the power corrections using alternative methods.

More broadly, we also envision that the helicity operator approach could be useful

for constructing subleading operators in other processes, including B physics and higher

twist DIS where power corrections have been more thoroughly studied. Although power

corrections have yet to begin to play an important phenomenological role in jet physics, we

have demonstrated that a particular part of the factorization at subleading power, namely

the construction of a basis of hard scattering operators, can be greatly simplified by the use

of helicity operators, which we hope will prove useful in the future study of factorization

theorems at subleading power.
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A Spinor helicity identities and conventions

The four-component spinor u(p) of a massless Dirac particle with momentum p, satisfies

the massless Dirac equation,

/p u(p) = 0 , p2 = 0 , (A.1)

as does the charge conjugate (antiparticle) spinor v(p). We can therefore choose a repre-

sentation such that v∓(p) = u±(p). We denote the spinors and conjugate spinors for the

two helicity states by

|p±〉 =
1± γ5

2
u(p) , 〈p±| = sgn(p0) ū(p)

1∓ γ5

2
. (A.2)

Here the sgn(p0) is included in the definition to simplify relations under crossing symmetry.

The spinors |p±〉 have an overall phase that is left free by the Dirac equation. Using

the Dirac representation,

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 1

1 0

)
. (A.3)

If we take nµi = (1, 0, 0, 1), we get the standard solutions [90]

|p+〉 =
1√
2


√
p−√

p+eiφp√
p−√

p+eiφp

 , |p−〉 =
1√
2


√
p+e−iφp

−
√
p−

−
√
p+e−iφp√
p−

 , (A.4)

where

p± = p0 ± p3 , exp(±iφp) =
p1 ± ip2√
p+p−

. (A.5)

Using these conventions, we have

〈ij〉 =
√
|sij |eiφij , [ij] =

√
|sij |e−i(φij+π) , (A.6)

where

cosφij =
k1
i k

+
j − k1

jk
+
i√

|sij |k+
i k

+
j

, sinφij =
k2
i k

+
j − k2

jk
+
i√

|sij |k+
i k

+
j

. (A.7)

In terms of the standard spinor wavefunctions, these are simply

〈ij〉 = ū−(ki)u+(kj) , [ij] = ū+(ki)u−(kj). (A.8)

For negative p0 and p± we use the usual branch of the square root, such that for p0 > 0

|(−p)±〉 = i |p±〉 . (A.9)

We also define, 〈p±|, the conjugate spinors, as

〈p±| = sgn(p0) |p±〉 . (A.10)
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We include the additional minus sign for negative p0 as we want to use the same branch

of the square root for both types of spinors. We see for p0 > 0

〈(−p)±| = −|(−p)±〉 = −(−i) 〈p±| = i 〈p±| . (A.11)

This makes all spinor identities correct for momenta of both signs, allowing easier utiliza-

tion of crossing symmetry. These signs will appear in expressions with explicit complex

conjugation, including the most important example,

〈p− |q+〉∗ = sgn(p0q0) 〈q + |p−〉 . (A.12)

The spinor products are denoted by

〈pq〉 = 〈p− |q+〉 , [pq] = 〈p+ |q−〉 . (A.13)

Several useful identities satisfied by the spinor products are

〈pq〉 = −〈qp〉 , [pq] = −[qp] , [p|γµ |p〉 = 〈p| γµ|p] = 2pµ , (A.14)

|p±〉 〈p±| = 1± γ5

2
/p , /p = |p] 〈p|+ |p〉 [p|,

〈pq〉[qp] =
1

2
tr
{

(1− γ5)/p/q
}

= 2p · q , |〈pq〉| = |[pq]| =
√
|2p · q| ,

〈p| γµ|q] = [q|γµ |p〉 , [p|γµ |q〉 [k|γµ |l〉 = 2[pk]〈lq〉 ,
〈pq〉〈kl〉 = 〈pk〉〈ql〉+ 〈pl〉〈kq〉 .

Momentum conservation
∑n

i=1 pi = 0 also implies the relation

n∑
i=1

[ji]〈ik〉 = 0 . (A.15)

Under parity the spinors transform as

|pP±〉 = ±e±iφpγ0 |p∓〉 , 〈pPqP〉 = −ei(φp+φq)[pq] , [pPqP] = −e−i(φp+φq)〈pq〉 . (A.16)

The polarization vector satisfies the completeness relation∑
λ=±

ελµ(p, q)
(
ελν (p, q)

)∗
= −gµν +

pµqν + pνqµ
p · q

. (A.17)

In SCET the projected collinear quark fields

|p±〉n =
/n/̄n

4
|p±〉 , (A.18)

satisfy the relation

/n

(
/n/̄n

4
|p±〉

)
= 0 , (A.19)
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and are therefore proportional to |n±〉. Working in the basis in eq. (A.4), we find

/n/̄n

4
|p〉 =

√
p0

[
cos

(
θn
2

)
cos

(
θp
2

)
+ ei(φp−φn) sin

(
θn
2

)
sin

(
θp
2

)]
|n〉 , (A.20)

/n/̄n

4
|p] =

√
p0

[
ei(φp−φn) cos

(
θn
2

)
cos

(
θp
2

)
+ sin

(
θn
2

)
sin

(
θp
2

)]
|n] .

Here θn, φn, and θp, φp, are the polar and azimuthal angle of the n and p vectors, respec-

tively. Choosing nµi = pµi /p
0
i , we have

/n/̄n

4
|p±〉 =

√
n̄i · p

2
|ni±〉 . (A.21)

B Subleading measurement function

In this section we detail the factorization of the subleading measurement function, to

illustrate its structure, and how the expansion can be systematically performed. We restrict

ourselves to what we will refer to as “pseudo-additive observables” which we define as those

observables with measurement functions that can be factorized into contributions from

collinear and ultrasoft modes at each order in the power expansion in the form

e(i)(X) = e(i)
n (Xn, Gn̄, Gs) + e

(i)
n̄ (Xn̄, Gn, Gs) + e(i)

s (Xs, Gn, Gn̄) . (B.1)

Here Gn, Gn̄, Gs refer to global properties of the corresponding sectors that can be defined

independent of the order in perturbation theory to which one is working.10 The sum over

intermediate states in each sector can be performed by introducing measurement functions

M̂(i)
n , M̂(i)

n̄ , and M̂(i)
s . The measurement functions act as M̂(i)

n |X〉 = δ(e − e(i)
n (X))|X〉,

and similarly for the other sectors [39, 43, 46, 145, 146]. The contributions to the cross

section at each order in the power expansion can then be expressed as a sum of vacuum

matrix elements, involving a measurement function insertion, and each containing only

collinear n, collinear n̄, or ultrasoft fields.

We consider explicitly the factorization for the thrust observable [75]

T = maxt̂

∑
i |t̂ · ~pi|∑
i |~pi|

, (B.2)

assuming massless particles. It is convenient to work with

τ = 1− T , (B.3)

which vanishes in the dijet limit, and can be described by an SCETI factorization theo-

rem with λ ∼
√
τ [76–78, 135, 147]. We will explicitly construct the subleading power

corrections to the thrust measurement function, performing the expansion to O(λ2)

τ = τ (0) + τ (1) + τ (2) , (B.4)

using the same SCET formalism used to enumerate our operator basis.

10An example of a factorization theorem for which non-trivial factors of Gn, Gn̄, Gs appear is the so called

“soft haze” factorization theorem of ref. [101].
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We consider an e+e− event at center of mass energy Q, and we work in the center

of mass frame. We label our lightlike vectors in the effective theory as nµ = (1, ~n), and

n̄ = (1,−~n). The axis defined by the unit vector ~t, which satisfies ~t ·~t = 1, is referred to as

the thrust axis. Thrust is maximized when the thrust axis is aligned with the hemisphere

whose particles have the largest three-momentum along ~t. We therefore partition our event

into hemispheres based on this criteria, which we call J1, and J2. For particles i ∈ J1, we

have ~pi · ~t > 0, while for particles i ∈ J2, we have ~pi · ~t < 0. We also define the thrust

light-cone vectors, tµ = (1,~t ) and t̄µ = (1,−~t ). As shorthand, we will use the notation

PµJ1
=
∑
i∈J1

pµi , PµJ2
=
∑
i∈J2

pµi . (B.5)

We have chosen to define ~n so that we are in a frame where the total label ⊥ component

of each collinear sector vanishes. This choice still allows an infinite family of possible frame

choices as it does not restrict the residual momenta. In particular, the residual momentum

of the collinear sectors need not vanish when one experiences recoil at O(λ2). To make

this frame restriction manifest, we split the momenta in each hemisphere as

PµJ1
=
PJ1

2
nµ + (prµn + k

(2)µ
1 ) , PµJ2

=
PJ2

2
n̄µ + (prµn̄ + k

(2)µ
2 ) . (B.6)

Here PJ1 and PJ2 denote the large component of the label momenta, prn and prn̄ denote the

residual momenta of the collinear sectors and

k
(2)µ
1 =

∑
soft,i

kµi θ(~n · ~ki) , k
(2)µ
2 =

∑
soft,i

kµi θ(−~n · ~ki) , (B.7)

which we will use to express our results.

We will not present a derivation, but simply state the results for the measurement

functions. The familiar result for the leading measurement function is

τ (0) =
n ·
(
prn + k

(2)
1

)
Q

+
n̄ ·
(
prn̄ + k

(2)
2

)
Q

.

At the next order in the power expansion we have no O(λ) terms,

τ (1) =0 , (B.8)

as expected. After some algebra, at O(λ2) we find the rather simple final result

τ (2) = − 2

Q2

(
~p rn⊥ + ~k

(2)
1⊥

)2
(B.9)

= − 2

Q2

[(
~p rn⊥

)2
+ 2~k

(2)
1⊥ · ~p

r
n⊥ +

(
~k

(2)
1⊥
)2]

.

Thus the subleading thrust measurement function depends on only the squared total O(λ2)

perpendicular momentum in a hemisphere. This can also be written in a form that is

symmetric in n̄ and n,

τ (2) = − 1

Q2

(
~p rn⊥ + ~k

(2)
1⊥

)2
− 1

Q2

(
~p rn̄⊥ + ~k

(2)
2⊥

)2
(B.10)

= − 1

Q2

[(
~p rn⊥

)2
+ 2~k

(2)
1⊥ · ~p

r
n⊥ +

(
~k

(2)
1⊥
)2]− 1

Q2

[(
~p rn̄⊥

)2
+ 2~k

(2)
2⊥ · ~p

r
n̄⊥ +

(
~k

(2)
2⊥
)2]

.
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In either form the τ (2) power correction to the thrust observable is always negative. Note

that there is a cross term in the measurement function at O(λ2). However, from the point

of view of the ultrasoft (collinear) sector, this term depends only on a global property of

the collinear (ultrasoft) sector, and therefore satisfies the general form of eq. (B.1).

A derivation of the subleading power measurement function for thrust was first pre-

sented in [70] using the SCET framework of [116]. Due to the fact that residual momentum

is not conserved in their framework, their τ (1) measurement function does not vanish, and

a more complicated form of the τ (1) measurement function is obtained. Nevertheless, the

strategy for computing the subleading measurement functions in the two setups is common,

and hence was not repeated here.

C Generalized basis with P⊥n, P⊥n̄ 6= 0

Throughout the main text, we have restricted ourselves to back to back axes and made

the assumption that the total label perp momentum in each collinear sector vanishes.

When working at subleading power it is convenient to keep the axes back to back, and

in certain cases, it is therefore necessary to generalize the basis to the case that there is

a non-zero total perp momentum in either collinear sector. In this appendix, we provide

the additional operators that appear in this situation, as well as their tree level matching.

Since there are only a few additional operators, we distinguish them simply by their field

content. Furthermore, for conciseness, we give only the operators that can interfere with

the leading power operator. In particular, we do not give the operators involving two

collinear quark fields in the same sector, along with an insertion of the P⊥ operator in the

general frame. We also perform the tree level matching onto these operators.

We first consider the operators involving P⊥ insertions with just a single collinear

quark field in each collinear sector. These appear at O(λ) with a single P⊥ insertion, and

at O(λ2) with two P⊥ insertions. At O(λ), we have the operators

(P⊥q)nq̄n̄ :

O
(1)ᾱβ
Pn(+;±)[−] =

{
P−⊥J

ᾱβ
nn̄+

}
Je± , O

(1)ᾱβ
Pn(−;±)[+] =

{
P+
⊥J

ᾱβ
nn̄−

}
Je± , (C.1)

where the P⊥ operator acts on the outgoing quark, and

qn(P⊥q̄n̄) :

O
(1)ᾱβ
Pn̄(+;±)[−] =

{
J ᾱβnn̄+P

−†
⊥

}
Je± , O

(1)ᾱβ
Pn̄(−;±)[+] =

{
J ᾱβnn̄−P

+†
⊥

}
Je± . (C.2)

where the P⊥ operator acts on the outgoing antiquark. Note that we do not allow the P⊥
operator to act on the electron current, as this can always be removed using integration

by parts.
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There are also O(λ2) operators involving two insertions of the P⊥ operators. A basis

of such operators is given by

(P⊥P⊥q)nq̄n̄ :

O
(2)ᾱβ
PPn(+;±)[−−] =

{
P−⊥P

−
⊥J

ᾱβ
nn̄+

}
Je± , O

(2)ᾱβ
PPn(−;±)[++] =

{
P+
⊥P

+
⊥J

ᾱβ
nn̄−

}
Je± ,

O
(2)ᾱβ
PPn(+;±)[+−] =

{
P+
⊥P
−
⊥J

ᾱβ
nn̄+

}
Je± , O

(2)ᾱβ
PPn(−;±)[+−] =

{
P+
⊥P
−
⊥J

ᾱβ
nn̄−

}
Je± , (C.3)

when both P⊥ operators act on the quark sector,

qn(P⊥P⊥q̄n̄) :

O
(2)ᾱβ
PPn̄(+;±)[−−] =

{
J ᾱβnn̄+P

−†
⊥ P

−†
⊥

}
Je± , O

(2)ᾱβ
PPn̄(−;±)[++] =

{
J ᾱβnn̄−P

+†
⊥ P

+†
⊥

}
Je± ,

O
(2)ᾱβ
PPn̄(+;±)[−+] =

{
J ᾱβnn̄+P

−†
⊥ P

+†
⊥

}
Je± , O

(2)ᾱβ
PPn̄(−;±)[−+] =

{
J ᾱβnn̄−P

−†
⊥ P

+†
⊥

}
Je± , (C.4)

when both P⊥ operators act on the antiquark sector, and

(P⊥qn)(P⊥q̄n̄) :

O
(2)ᾱβ
PP(+;±)[−−] =

{
P−⊥J

ᾱβ
nn̄+P

−†
⊥

}
Je± , O

(2)ᾱβ
PP(−;±)[++] =

{
P+
⊥J

ᾱβ
nn̄−P

+†
⊥

}
Je± ,

O
(2)ᾱβ
PP(+;±)[−+] =

{
P−⊥J

ᾱβ
nn̄+P

+†
⊥

}
Je± , O

(2)ᾱβ
PP(−;±)[−+] =

{
P−⊥J

ᾱβ
nn̄−P

+†
⊥

}
Je± ,

O
(2)ᾱβ
PP(+;±)[+−] =

{
P+
⊥J

ᾱβ
nn̄+P

−†
⊥

}
Je± , O

(2)ᾱβ
PP(−;±)[+−] =

{
P+
⊥J

ᾱβ
nn̄−P

−†
⊥

}
Je± . (C.5)

when one operator acts on either collinear sector. In all these cases, the basis of color

structures is identical to that of the leading power operator in eq. (4.7).

Finally, we must consider the O(λ2) operators involving an insertion of the P⊥ operator

along with a B⊥ insertion. In the case that the P⊥ in each sector is non-vanishing, we must

consider the possibility that the P⊥ operator acts on any field, thus making the basis more

cumbersome than in the center of mass frame. In the general case, the basis is given by

(gqP⊥)n(q̄)n̄ :

O
(2)a ᾱβ
PB+(+;±)[−] =

[
P−⊥B

a
n+

]
J ᾱβnn̄+ Je± , O

(2)a ᾱβ
PB−(−;±)[+] =

[
P+
⊥B

a
n−
]
J ᾱβnn̄− Je± , (C.6)

O
(2)a ᾱβ
PB−(+;±)[+] =

[
P+
⊥B

a
n−
]
J ᾱβnn̄+ Je± , O

(2)a ᾱβ
PB−(+;±)[−] =

[
P−⊥B

a
n−
]
J ᾱβnn̄+ Je± ,

O
(2)a ᾱβ
PB+(−;±)[+] =

[
P+
⊥B

a
n+

]
J ᾱβnn̄− Je± , O

(2)a ᾱβ
PB+(−;±)[−] =

[
P−⊥B

a
n+

]
J ᾱβnn̄− Je± ,
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when the P⊥ operator acts on the B⊥ field,

(gqP⊥)n(q̄)n̄ :

O
(2)a ᾱβ
Pχ+(+;±)[−] = Ban+

{
P−⊥J

ᾱβ
nn̄+

}
Je± , O

(2)a ᾱβ
Pχ−(−;±)[+] = Ban−

{
P+
⊥J

ᾱβ
nn̄−

}
Je± , (C.7)

O
(2)a ᾱβ
Pχ−(+;±)[+] = Ban−

{
P+
⊥J

ᾱβ
nn̄+

}
Je± , O

(2)a ᾱβ
Pχ−(+;±)[−] = Ban−

{
P−⊥J

ᾱβ
nn̄+

}
Je± ,

O
(2)a ᾱβ
Pχ+(−;±)[+] = Ban+

{
P+
⊥J

ᾱβ
nn̄−

}
Je± , O

(2)a ᾱβ
Pχ+(−;±)[−] = Ban+

{
P−⊥J

ᾱβ
nn̄−

}
Je± ,

when it acts on the quark field, and

(gqP⊥)n(q̄)n̄ :

O
(2)aᾱβ
Pχ̄+(+;±)[−] =Ban+

{
J ᾱβnn̄+P

†−
⊥

}
Je± , O

(2)aᾱβ
Pχ̄−(−;±)[+] =Ban−

{
J ᾱβnn̄−P

†+
⊥

}
Je± , (C.8)

O
(2)aᾱβ
Pχ̄−(+;±)[+] =Ban−

{
J ᾱβnn̄+P

†+
⊥

}
Je± , O

(2)aᾱβ
Pχ̄−(+;±)[−] =Ban−

{
J ᾱβnn̄+P

†−
⊥

}
Je± ,

O
(2)aᾱβ
Pχ̄+(−;±)[+] =Ban+

{
P+
⊥J

ᾱβ
nn̄−P

†+
⊥

}
Je± , O

(2)aᾱβ
Pχ̄+(−;±)[−] =Ban+

{
P−⊥J

ᾱβ
nn̄−P

†−
⊥

}
Je± ,

when it acts on the antiquark field.

We now perform the tree level matching to these operators. The first two groups of

operators can be matched to using a qq̄ external state. We take the momenta as

pµ1 = ω1
nµ

2
+ p1⊥ + p1r

n̄µ

2
, pµ2 = ω2

n̄µ

2
+ p2⊥ + p2r

nµ

2
, (C.9)

where p1 denotes the momentum of the quark and p2 the momentum of the anti-quark.

Expanding the tree level result for generic kinematics, we find

ūnΓun̄ + ūn
/̄n

2

/p1⊥
ω1

Γun̄ + ūnΓ
/p2⊥
ω2

/n

2
un̄ + ūn

/p1⊥
ω1

/̄n

2
Γ
/n

2

/p2⊥
ω2

un̄ , (C.10)

From these we can immediately read off the Wilson coefficients and structure of the oper-

ators appearing in the matching,

O(1)
Pn = − 1

ω1
χ̄n,ω1

/P†⊥
/̄n

2
Γχn̄,−ω2 , O(1)

Pn̄ = − 1

ω2
χ̄n,ω1Γ

/̄n

2
/P⊥χn̄,−ω2 , (C.11)

and

O(2)
PP =

1

ω1ω2
χ̄n,ω1

/P†⊥
/̄n

2
Γ
/n

2
/P⊥χn̄,−ω2 . (C.12)

Note that the Wilson coefficients of the operators with a single P⊥ insertion are equal by

RPI to the operators of eq. (5.59) involving an ultrasoft perp derivative. Note also that

the operators involving two insertions of the P⊥ operator in the same collinear sector do

not appear in the tree level matching.
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We now consider the matching to the operators involving one additional collinear gluon

field, and an additional P⊥ insertion, in the case that we do not restrict to the center of

mass frame. Recall that the relevant QCD matrix elements are given by

= ū(p1)(igT a/ε∗)
i(/p1

+ /p3
)

(p1 + p3)2
Γv(p2) ,

= ū(p1)Γ
−i(/p2

+ /p3
)

(p2 + p3)2
(igT a/ε∗)v(p2) . (C.13)

We will explicitly consider the case where the gluon is in the n̄ sector. We can then simplify

the matching by performing it in two steps. First, we can set the total ⊥momentum of the n̄

collinear sector to zero, and extract the operator involving the P⊥ acting on the n collinear

sector. Having extracted that Wilson coefficient, we can then set the perp in the n-collinear

sector to zero, and then extract the other two Wilson coefficients. This suffices since the

operators are linear in P⊥. Note that for general kinematics, there are also T -product

contributions arising from the O(λ2) operator of eq. (C.12), and an insertion of the leading

power SCET Lagrangian, or an emission from the Wilson line in the vertex. However, for

the particular choice of kinematics, both these T -product contributions vanish.

We begin by extracting the Wilson coefficient for the case that the P⊥ acts on the n

collinear sector. We take the momenta as

pµ1 =
ω1

2
nµ + pµ1perp +

p1r

2
n̄µ , pµ2 =

ω2

2
n̄µ + pµ⊥ +

p2r

2
nµ , pµ3 =

ω3

2
n̄µ − pµ⊥ +

p3r

2
nµ ,

(C.14)

Expanding the QCD amplitudes, and keeping only terms involving P⊥ acting on the n

collinear sector, we find∣∣∣∣∣∣
O(λ2)

= − g

ω1(ω2 + ω3)
ūn(p1)/p1⊥T

a /̄n

2
Γ
/n

2

(
/ε⊥ − n · ε

/p3⊥
ω3

)
vn̄(p2) ,

(C.15)

and ∣∣∣∣∣∣
O(λ2)

= − g

ω1ω3
ūn(p1)/p1⊥T

a

(
/ε⊥ − n · ε

/p3⊥
ω3

)
vn̄(p2) . (C.16)

At tree level, we therefore find the operators

O(2)
Pχ1 = − g

ω1(ω2 + ω3)
χ̄n,ω1

/P†⊥
/̄n

2
Γ
/n

2
/B⊥n̄,ω3

χn̄,−ω2 ,

O(2)
Pχ2 = − g

ω1ω3
χ̄n,ω1

/P†⊥/B⊥n̄,ω3
Γχn̄,−ω2 . (C.17)
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Now, to extract the Wilson coefficients of the other operators, where the P⊥ acts in

the n̄ sector, we choose the kinematics as

pµ1 =
ω1

2
nµ , pµ2 =

ω2

2
n̄µ + pµ2⊥ +

p2r

2
nµ , pµ3 =

ω3

2
n̄µ + pµ3⊥ +

p3r

2
nµ . (C.18)

Expanding the QCD diagrams, we find∣∣∣∣∣∣
O(λ2)

= − g

ω1ω3
ūn(p1)/ε3⊥/p3⊥T

aΓvn̄(p2) +
g

ω1ω2
ūn(p1)

/̄n

2
Γ
/n

2
/p2⊥vn̄(p2) ,

(C.19)

and ∣∣∣∣∣∣
O(λ2)

= 0 . (C.20)

We therefore find the operators

O(2)µ
Pn̄1 = − g

ω1ω3
χ̄n,ω1

[
/B⊥n̄,ω3

/P†⊥
]
Γχn̄,−ω2 ,

O(2)µ
Pn̄2 = − g

ω1ω2
χ̄n,ω1

/B⊥n̄,ω3

/̄n

2
Γ
/n

2

[
/P⊥χn̄,−ω2

]
. (C.21)

Note, that restricting to zero total ⊥ momentum in the n̄ collinear sector, i.e. setting

p3⊥ = −p2⊥, we recover the result of eq. (5.20).

In the case that the gluon operator is in the n collinear sector, we have the correspond-

ing operators

O(2)
Pχ1 = − g

ω2(ω1 + ω3)
χ̄n,ω1

/B⊥n,ω3

/̄n

2
Γ
/n

2

[
/P⊥χn̄,−ω2

]
,

O(2)
Pχ2 = − g

ω2ω3
χ̄n,ω1Γ/B⊥n,ω3

[
/P⊥χn̄,−ω2

]
, (C.22)

and

O(2)µ
Pn1 = − g

ω1ω2

[
χ̄n,ω1

/P†⊥
] /̄n

2
Γ
/n

2
/B⊥n,ω3

χn̄,−ω2 ,

O(2)µ
Pn2 = − g

ω2ω3
χ̄n,ω1Γ

[
/P⊥/B⊥n,ω3

]
χn̄,−ω2 . (C.23)

The additional operators given in this appendix demonstrate the simplifications that can

be achieved by working in the center of mass frame. There are however cases of interest,

for example, beam thrust, which involves hadronic radiation in both the final and initial

state, where such a convenient frame cannot be chosen, and this extended operator basis

must be used.
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