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Abstract

This thesis project takes an in-depth look at a new class of images, called salient
stills. Photography represents a discrete moment in time, while video is a temporal
medium. Salient stills close the space between the two mediums by reflecting in one
image, the aggregate motion of an image sequence, keeping only the salient features.
The application of the affine transformation and non-linear temporal processing to a:
sequence of images can lead to a still image of multi-resolution patches, a larger field
of view, and higher overall resolution than any of the frames in the original sequence.
Previous work by Teodosio and Bender used optical flow as their method of motion
estimation. This thesis looks at applying block-based motion estimation from such
applications as MPEG1 and MPEG?2 to generate salient stills.
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Chapter 1

Introduction

1.1 Salient Stills

The salient still image is a new representation of moving data which merges the space
between photography and video sequences. By transforming a sequence of images
onto one still frame, the salient still captures the temporal and spatial information
of an image sequence, while preserving the original content and context. This paper
will look at new methods of motion estimation, a process critical to the performance
of the salient still.

An image sequence consists of zooms, tilts, pans, and other camera movement that
changes the field-of-view, vantage point, and perceived resolution. By estimating the
motion and then applying the affine transform, we can create a salient still which
takes advantage of these temporal changes.

An example of the salient still process can be seen in the images below, which were
generated by Teodosio [20]. Figure 1-1 shows four frames taken from a 12 second zoom
sequence featuring the cellist Yo-Yo Ma during a performance at Tanglewood. The
sequence starts with a close-up view of Mr. Ma and zooms out as a musical assistant
walks across the stage. The resultant salient still is shown in Figure 1-2.

Note that the salient still shown in Figure 1-2 contains both the temporal and
spatial information of the entire sequence. The close-up frames render Mr. Ma with

optimal resolution, while the far shot reveals the context of the sequence. In addition,
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Figure 1-1: Four Frames Taken from the Yo-Yo Ma Sequence

Figure 1-2: The Resultant Salient Still
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the middle frames provide enough data redundancy that with appropriately chosen
temporal filters, we can either display the motion of the musical assistant as shown
in Figure 1-2, or we can remove him altogether. This way, we can keep the audience’s

attention on the more salient Yo-Yo Ma. This still is shown in Figure 1-3.

Figure 1-3: The Salient Still Without the “Temporal” Musical Assistant

1.2 Motivation

Salient stills can be used for a wide variety of applications. One use is for enhanced
reproduction quality. The resolution of individual video frames is less than that of
print medium. The salient still increases resolution for zoom sequences, and is useful
for removing transient noise (such as salt and pepper noise) found in most video,
because a salient still contains many lumination samples for each pel.

An example of this resolution enhancing procedure can be seen in Figure 1-4.
Here, two images of Mr. Ma taken from different frames in the sequence have blown
up to better show the resolution. The left image was taken from the leftmost (zoom)
image in Figure 1-1, while the right image was taken from the rightmost image. As
is clearly evident, the zoomed image contains much more high-freqency components,
leading to greatened resolution. Thus to achieve maximal resolution, the final still

uses the frame with higher resolution to portray Mr. Ma.
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Figure 1-4: Yo-Yo Ma taken from Two Different Frames

Next, we deal with the issue of compression. Representing an entire sequence in
approximately the space of a single image means less bits. A related use of the salient
still is as a scene icon. Video retrieval from an image database usually requires
description, searching, and viewing. The salient still would make such a process
quicker.

The Yo-Yo Ma image sequence is a good example of this. The entire image
sequence could represent a scene. Hence, because the final still contains the spatial
and temporal information of the image sequence, it serves the purpose of compressing
the data and being used as a scene icon.

Yet another benefit of salient stills is the ease at which photomontages can be
created. The use of specialized cameras would no longer be necessary as standard
video equipment could capture many scenic frames. From these, the editor could
handpick the desired ones and then create the salient still. Figure 1-5 shows a still
generated from a 121 frame sequence of the Kennedy procession. Figure 1-6 shows a
still created from a 159 frame sequence of a coastline.

Hence, with so many possible applications, it is important to reap the highest
quality still possible. Probably most essential to the quality of the salient still is
the method at which the motion is estimated. There are many ways to accomplish
this with the most prevalent being optical flow and block-based motica estimation.

These motion estimates determine how well the sequence of frames are aligned; thus,
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Figure 1-5: Salient Still from the Kennedy Procession

Figure 1-6: Salient Still from a Coastline Sequence
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they are directly linked to the quality of the final salient still. Especially with the
emergence of block-based video coding standards such as MPEG, the importance of
exploring block-based estimators and salient stills can lead to even more applications,
while adding minimal additiona] computation.

Teodosio and Bender’s original method [21] used optical flow as its method of
estimating motion. In an effort to explore other forms of motion estimation and how
they affect the resultant salient still, this thesis will look at how well block-based

motion estimation can generate salient still images.

1.3 Thesis Work

Work focused on two areas: 1) implementing and improving block-based estimation
algorithms to generate salient stills and 2) expanding the application to MPEG
In the first part of my research, salient stills were generated directly from MPEQG

bitstreams. The basic process is outlined in Figure 1-7.

-

Encoded
Emor

MPEG

y Video Out

-
Prediction Predicted Frame
Vectors Frame Delay

l Histogram

SALIENT STILL
Isodata Affine

Clustering Estimation

Figure 1-7: Block Diagram: Generating Salient Stills from MPEG Bitstreams
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Figure 1-7 gives an overview of the process, but is an oversimplification in that
it assumes too narrow of a temporal window. MPEG is a layered coder which does
not always send motion estimation information between frames. In most cases, this
occurs once for every Group of Pictures (GOP). Salient stills are about still scenes,
not still GOPs, so a mechanism is needed to interlink the GOPs that make up a scene.

The second focus involved building a block-based motion estimator and adding
improvements to its estimation process. In particular, I used a hierarchical structure
to reduce computational complexity and isodata clustering to extract foreground
motion. The purpose of segmenting foreground objects is to improve the affine fit of
the background.

This thesis is organized as follows:

Chapter 2 provides background information on the original salient stills by Teo-
dosio and Bender, as well as a brief summary of issues concerning MPEG and block-
based estimation algorithms.

Chapter 3 discusses the methodology used in the research.

Chapter 4 shows some resultant salient stills that were generated.

Chapter 5 evaluates the relative performance of the work done in this project with
the original salient still method. Finally,

Chapter 6 summarizes the work done and proposes work for the future.
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Chapter 2

Background

2.1 Salient Still Images by Teodosio and Bender

The basic premise behind the salient still is that one can build a single image which
contains the spatial and temporal information of an entire video sequence, while
keeping only the salient features.

The original work done by Teodosio and Bender [20] [21] used the following

methodology to build these higher resolutional images:

1. Optical flow is calculated between successive frame pairs.
2. Affine coefficients are calculated from the estimated motion parameters.

3. These coefficients are used to translate, scale, and rotate each successive frame

pair onto a single high-resolution raster.

4. An assortment of temporal filters (i.e. the weighted median filter) is applied to

the image data, resulting in the final image, the salient still.

As a gradient-based method of motion estimation, optical flow is modeled by a

continuous variation of image intensity which is a function of position and time:

I(z,y,t) = I(z + dz,y + dy, t + dt) (2.1)
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If the motion field is continuous, we can expand I(z +dz, y+dy, t+dt) using a Taylor

series ignoring higher order terms.

dldz  dldy _ dI

Gd A @ (2:2)

Note that this model can be solved by assuming that the motion is translational
in the z and y directions, but does not model zoom. The affine transformation brings
zoom into the model, using an implementation by Bergen [4]. Assuming motion occurs
with directional velocities, p,(z,y) and p,(z,y), we can derive the affine model to be
as follows:

p_-,;(.’I:, y) =az + bz + CzY (23)

py(z,y) = ay + byz + ¢y . (2.4)

In this model, a, and a, are motion translations; b, and ¢, are scaling factors;
and c, and b, are rotational factors. Using the results of our motion estimator,
we try to find the best affine coefficients to fit this model. Hence, generalizing the
equation above, we solve for the parameters by using the least square method and

then differentiating the results to find the minimal error.

Pe = Gz +b:T + CzY (2.5)

Py = Gy + by + Y (2.6)

LSE, = Z(pz — (az + bz + czy))? (2.7)
R

LSE, = Y (py — (ay + byz + cyy))? (2.8)
R

Differentiating the error terms by the respective parameters, a, b, and c, we can
solve the three linear equations by setting the equation to zero. Here, we solve for

az, bz, and ¢;.
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d

d—LSE=azzl+bzzx+czzy—217z=0 (2.9)
Oz R R R R
d
ELSE=azZm+b:Zx2+c,Z:ry—Zzpz=O (2.10)
z R R R R
d
d—LSE=azZy+szzy+c12y2—Zypz=0 (2.11)
Cz R R R R

Rewriting in matrix form, we solve for the affine coeflicients as follows:

-

Yrl XrZT XRY az > rPz
YrZ Yrz® Tpzy || b | = | Trap: (2.12)
LrY TrTY Tp¥’ || € Y RYPz

-1
az Yrl Xrr XRrY 2 RPz
by | =| Tpr XTpT® Lrpzy LRIz (2.13)
Cs YrY LrITY XLgrY° 2 RYPz

Once the matrix equations for the six affine coefficients have been solved, each
successive image pair can be warped into a continuous space/time raster from which
various temporal filters can be applied. In general, we use the median filter to preserve

the salient features and exhibit the temporal motion of the original image sequence.

2.2 Block Based Motion Estimation

Motion estimation analyzes the movement of objects in an image sequence and then
calculates interframe displacement vectors. To estimate these vectors, several tech-
niques have been proposed. Among these, the major approaches have been gradient
based methods [4] [8] [9] [10] and block matching algorithms {7] [11] [18] [19].

In general, the gradient methods are analytically tractable because they make use

of iterative solutions. However, because they require the use of derivatives, they are
generally limited to short range motion. In practice, derivatives are usually imple-

mented using differences, which not only introduce errors, but amplify high frequency
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components. As a result, they are very sensitive to noise. Other problems with optical
flow occur when some basic assumptions of optical flow are broken.

One assumption is that the overall lumination of a scene is constant. This, of
course, can cause problems when there are changes in the lighting. A second assump-
tion is that the luminance surface is smooth. This assumption fails in areas near
motion boundaries.

Unfortunately, there are also many drawbacks to block or token matching. But
first, let’s discuss the basic methodology. Block-based estimation techniques have
been frequently used because they are theoretically straightforward and easy to im-
plement in hardware. In block matching methods, each frame is broken up into small,
nonoverlapping blocks. Blocks in the previous frame are matched with corresponding
blocks in the current frame via certain criteria such as MAD (mean of absolute dif-
ferences) and MSD (mean of squared differences). These minimization functions are

literally defined as follows:

z ockz Z oc IIc‘u T(xay) - IT d(x+pzay+p )'
MAD(p.,p,) = === bloZkey ; (214)

2 block, Zblock,, [Icurr(x’ y) — 1, red(T + Pz, Y + D )]2
MSD(pz,py) = = block, x bl:cky : (2.15)

(ps,py) represents the motion vector which minimizes the function; I.y.(z,y) and
Irea(z,y) are the original and predicted luminance values.

Note that using the MAD and MSD criteria will generally yield similar results.
The difference in theory between the MAD and MSD, however, is that MSD adds an
increasing amount of error, the more poorly the blocks match up. As a result, MSD
is more sensitive to noise.

A limiting factor in achieving this efficiency is the range at which the motion can
be compensated. As the motion of an image sequence is often unknown, the motion
estimation program must simply set a search range. Of course, if this search range
is too small, the motion estimate will not be accurate, resulting in reduced quality

of the reconstructed image and the affine fit of the salient still. Alternatively, if the
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search range is too large, there may be a tremendous computational load.

There are other problems which are notable of block-based estimation. One of
the key assumptions is that all pixels in each block will undergo the same translation
between successive frames. Thus, if there are two or more different kinds of motion
within a block (for instance, at the boundary of a moving object), then part of the
block will have a wrong motion vector estimate.

A related problem deals with block size. We want the block size to be large enough
to get a good correlation with the data. However, the block size must also be small
relative to the objects in the image to minimize the possibility of possessing more
than one motion per block. The resultant compromise is normally 8x8 or 16x16 sized
blocks. To estimate long range motion accurately, 16x16 blocks generally work best
because in the larger search space, there is more data to correlate with. This explains
why most of my tests were done using 16x16 blocks.

" A final problem with block-based estimation cccurs when the region of estimation
is flat (i.e. all the pels within the region contain similar values). In this case, small
amounts of noise will dominate the minimization criterion, causing the blocks to
correlate to the noise instead of the actual data.

In short, full search block matching techniques are not only computationally de-
manding, but also tend to produce noisy motion fields which do not always correspond
to true 2-dimensional motion. To ease these problems, hierarchical block matching
techniques have been proposed.

Hierarchical or multiresolution motion estimation techniques [3] [5] [6] [7] take
advantage of typical scenes which frequently contain motion at different scales. Es-
sentially, a pyramid structure of two successive input images is generated by low pass
filtering and subsampling at multiple levels. A sample pyramid is shown in Figure 2-1
for 3 levels.

Starting at the highest level (the pair of images which have been subsampled the
most), motion vectors are computed and refined at each level. Thus, this coarse to
fine strategy relies on the fact that the first motion vector is accurate. If the motion

vectors at the highest level are inaccurate, the motion estimator will not be able to
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Level 1

Figure 2-1: Pyramid of Images
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converge to the glcbal minima.

Note that along with subsampling the image by a factor of two in the z and y
directions, the block sizes are also reduced by a factor of two. Hence, if the motion
estimator performs too many levels, the block sizes may be so small that a poor
correlation to the data will result.

To summarize, hierarchical block matching techniques give a near optimal solution
in minimizing the energy of the prediction error, while easing the computational

burden.

2.3 Lossy Video Coders: MPEG1 and MPEG2

MPEG (Motion Pictures Experts Group) [1] [2] is named after the group responsi-
ble for standardizing video and associated audio on digital storage media. Whereas
MPEG1 has been primarily aimed at storage applications, MPEG2 is being considered
for broader applications. There are many differences between MPEG1 and MPEG2,
but I'll begin with the similarities.

Both MPEG1 and MPEG2 are layered coders which essentially break the image
sequences into smaller sublayers: sequence, group of pictures (GOP), picture (one
frame), slice (one row of pixels in a frame), macroblock (16x16 block of pixels), and
block (contains the chrominance information). The general encoding process is to use
block-based estimation to reduce temporal redundancy, apply the DCT transform to
reduce spatial redundancy, quantize the data to achieve a targeted bit rate, and then
use run length coding to set the information into a bitstream. A typical diagram of
an MPEG encoder and decoder is shown in Figure 2-2 and Figure 2-3.

With regard to motion estimation, MPEG deals with interpolative (noncausal)
coding techniques as well as the predictive (causal) techniques. There are three
coding picture types: I (intra), P (predictive), and B (bidirectional). The I pictures
are coded without any sort of prediction (and hence, holds the greatest quality); P
pictures are based on previous I or P frames in the sequence; and B pictures are based

on previous and subsequent I and/or P pictures for bidirectional prediction.
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Figure 2-3: MPEG2 Decoder Block Diagram
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The most compression is obtained from B pictures, which explains why B pictures
also possess the worst quality. Thus, to minimize error propagation throughout the
sequence, it makes sense that B pictures are never predicted from previous or future
B pictures.

Note that MPEG1 and MPEG2 are both lossy coders. Because they are targeted
to be sent at specific bit rates, poorer compression results in quantization levels which
are more coarse. The result is data loss and thus, less quality images.

MPEG1 and MPEG?2 share the same general approach, but differ primarily in
complexity. MPEG2 carries more features than MPEG]I, including such items as
interlaced video manipulation, scalability, compatibility (with MPEG1), error re-
silience, and various options for very high resolution video coding . These additional
features make the MPEG2 codec more complicated and costly.

Probably the most significant difference between MPEG1 and MPEG2 is the lat-
ter’s ability to handle interlaced video with either frame or field modes. Whereas
MPEGI can only treat each field or each frame as a separate unit, the MPEG?2 coder
can exploit the correlation between the two fields in a frame and then select the opti-
mum mode. This is the reason why MPEG?2 generally yields higher quality images. It
also has an additional type of motion estimation called dual-prime which is essentially
field-based prediction that allows the interpolation of two reference fields using one
motion vector and a correction vector.

With the basic issues layed out, the rest of this paper will discuss the research I

conducted, including the methodology and evaluation of results.
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Chapter 3

Methodology

3.1 Applications with MPEG

My first salient still images from block-based motion estimation came from decoding
MPEG bitstreams. Calculating the affine coefficients requires decoding the motion
vectors and respective addresses for each 16x16 macroblock. Thus, for MPEG1 bit-
streams, this process is relatively straightforward.

It is more tricky to decode MPEG2 bitstreams due to its interlaced format. Be-
cause field pictures are reduced by a factor of two in the vertical direction, all vertical
motion vectors must be scaled by a factor of 2.

Another issue concerns dealing with the bidirectional (B) pictures. With B pic-
tures, there are multiple frame estimates for each frame, which complicates the pro-
cess. However, with more estimates available, there is more information to achieve
a better affine fit. The biggest drawback, though, is that most of the compression is
achieved with B pictures, leading to decreased quality of the reconstructed images.

Salient stills are generated from MPEG bitstreams by using the reconstructed
picture sequence. Because MPEG coders are lossy, the image will show some coding
artifacts, due to both prediction errors and quantization noise. Hence, to optimize
resolution in salient still images, I omitted B frames altogether, using only I and P

frames. In this manner, the philosophy behind salient stills was upheld.
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With this decision made, one last issue needs to be addressed. Because no motion
vectors generally exist for I frames (although there are sometimes concealment vectors
for MPEG?2 sequences), the frequency of I frames would determine the first and last
frames used by the salient still. Hence, with the information contained in the MPEG
bitstreams alone, it would not be possible to generate a single salient still for the
entire sequence. Of course, if I wanted to continuously build a salient still across I
frames, all that would be needed is to perform motion estimation on the I frame.

The MPEG decoder that I developed was able to generate salient stills from both
MPEGC1 and MPEG?2 bitstreams. There is an option that allows the user to build one
salient still from the entire sequence or to build several stills based on the frequency of
I frames. The motion estimator which assigns motion vectors to the I frames performs
a full search block-estimation routine, where the user specifies both the search range

and thev block size.

3.2 Building a Block-Based Motion Estimator

3.2.1 Hierarchical Structure

The command line for the motion estimator I built looks as follows:

motest <input> <pred> <needle> <pred_err> <aff> <yvec> <xvec>
-level (number of levels for hierarchical estimation)
-block (size of correlation block)
-search <minx> <maxx> <miny> <maxy> (search range)

-ssd | -sad (error criteria)

Basically, the motion estimator takes an image sequence as input, as well as a host
of data for motion estimation such as block size, search range, error criteria, and the
number of levels for hierarchical estimation. The estimator outputs the reconstructed
image sequence (pred), a needle diagram displaying the magnitude and direction of

the motion vectors (needle), an image displaying the residual prediction errors (pred-
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err), a file containing the resultant affine parameters (aff), and a file containing the
z and y vectors (zvec) and (yvec).

For this implementation, the hierarchical structure of the motion estimator gave
huge computational savings, while yielding very similar results to those of the full
search method.

In general, the number of computations required for a k level search is approxi-

mately .
N x M,

> —5r X B? x (2 x §;)? (3.1)
1=0 l

Where for a given level I, the dimensions of the image is N; x M, the block size
is By, and the search range is from —S; to +S; in both the z and y directions.

The first term, ﬂ%?’ﬁ, refers to the number of blocks in the image. Meanwhile,
B} * (2 * S;)? refers to the computations involved in the search.

Note that 5%?—”1 is constant for each level since all parameters are being subsampled
by the same factor. Hence, if we assign the constant c to this value, the equation

simplifies to

¢ X zk:Bf x (2 x 8))? (3.2)

=0
Plugging B, = 16 and S, = 16, we get the following number of computations for

a given number of levels k.

Level | Computations

k=0 8500 * ¢
k=1 27216 * ¢
k=2 92480 * ¢

k=3 278784 * ¢

Table 3.1: Computational Load for Different Numbers of Hierarchical Levels

Thus, for each additional level, the computational load is reduced by about three
times. However, by reducing the computational load, the quality of the motion vectors

might have been reduced.
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I ran the hierarchical motion estimator for a few different levels, using alternatively
both the MAD and MSD criteria. Using a block size of 16 and a search range from
-16 to 16 in both the z and y directions, the errors in Table 3.2 are shown for a six

frame sequence (hence, there were five predictions in all). Note that error parameters

represent the average error per 16x16 block.

Levels | Error | Frame 1 | Frame 2 | Frame 3 | Frame 4 | Frame 5
0 MSD | 33860.5 | 30536.9 | 30887.0 | 32233.5 | 40134.9
1 MSD | 34726.0 | 30588.5 | 30894.2 | 32572.9 | 40373.9
2 MSD | 35611.8 | 32818.9 | 34694.0 | 32769.8 | 41377.3
3 MSD | 56725.5 | 55009.4 | 61952.3 | 56838.5 | 65209.8
0 MAD | 1563.0 1443.4 1486.3 1474.8 1760.0
1 MAD | 1571.3 1444.5 1488.0 1481.3 1762.8
2 MAD | 1577.1 1488.4 1543.0 1500.2 1803.6
3 MAD | 1953.3 1889.5 1950.1 1881.6 2141.6

Table 3.2: Hierarchical Levels of Estimation Using Different Error Criteria

From Table 3.2, we can see that levels 0 to 2 have similar error results, but level 3
yields a significantly greater amount of error. Note that for three levels, the estimator
would first use a 2x2 block size for estimation. Because this is a small amount of
data with which to correlate, the initial estimation is probably not accurate, so the
resultant vectors have a noticeably less chance of converging to the global optima.
For two levels, the motion estimator would initially use a 4x4 block, which is still a
little small, but quite a bit better than a 2x2 block which could match with virtually
anything.

To get a better idea of how accurate the motion vectors are, it may be helpful to
look at the needle diagrams for a translational sequence. These diagrams are shown
in Figure 3-1 and Figure 3-2 for all levels using the MSD criteria.

The needle diagrams for Levels 0, 1, and 2 look very similar, while the one for
Level 3 has quite a few spurious motion vectors. Thus, to get accurate results while
minimizing computational load, I targeted a minimum block size of 4x4 for all future
runs. Hence, if I wanted a final block size of 16x16, I would use 2 levels; for a final

block size of 8x8, I would use only 1 level.
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Figure 3-1: Needle Diagrams Using the MSD Criteria
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Figure 3-2: Needle Diagrams Using the MSD Criteria (continued)
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The full search method (i.e. Level 0 of the hierarchical structure) generated a
blurry still. Made up of six frames which were mostly translational, the salient still

should have easily aligned the frames. The resultant still is shown in Figure 3-3.

Figure 3-3: Salient Still Generated Using the Full Search Method

There is an obvious amount of blurring going on. Notice that there are mainly
two types of motion going on. First is the background which is made up of the house,
sky, and flower garden. All these objects have approximately the same velocity from
frame to frame. Then, there is the foreground object, the tree, which travels at a
much greater velocity because it is closer to the camera. This object is probably
obscuring the affine fit. There must be a way to segment the foreground data, so that

we can achieve a higher resolution background fit.

3.2.2 Segmentation

Segmentation is an age-old problem for which elegant solutions are still unknown.
Segmentation encompasses the general task of identifying some type of information

in a scene.
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The human visual system is extremely accurate at performing segmentation,
mostly through the usage of color, brightness, lighting, texture, motion, and stereo.
Algorithms to do this on a computer use similar criteria when performing segmen-
tation but generally with extremely poor results. The reason is that humans use a
priori knowledge when segmenting a frame like the garden sequence into such objects
as a house, tree, garden, and so on. Programming such knowledge into a computer
is not a realistic solution.

There have been many attempts to use motion as the basis for segmentation. Some
can be found in [15] [17] [22]. However, the type of segmentation that this project
needs does not demand tremendous accuracy. While more accurate segmentation will
yield better results, any type of segmentation is bound to improve the affine fit. The
inherent task, here, is to identify and then extract foreground motion so that the
resultant salient still matches up best with the background.

Wang and Adelson [22] used both temporal and spatial information to perform
this task. Having completed motion estimation and then calculated some initial affine
coefficients, they warped the images onto a high resolution raster and then looked
at how well the objects were lined up. Foreground objects were identified as those
which matched up poorly. Using an iterative method, several foreground models were
formed and then refined.

For this project, it is only necessary to group the foreground objects as one. Hence,
a simpler method is proposed.

The affine coefficients are computed by trying to fit six parameters to a model
which is a function of block position and estimated motion vector. Thus, if we have
the block position and the affine coefficients, we can calculate what the motion vector
should be for each block if the affine model were perfect. This can be done by using
Equation 2.3 and Equation 2.4.

For most images, the background will occupy considerably more blocks relative to
the foreground objects. Thus, it is reasonable to assume that the affine model does a

pretty good job in its initial estimation and simply needs a little fine tuning.
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If \his assumption is correct, we can look at the estimated and actual motion
vectors when determining which foreground vectors to segment. If the model is quite
accurate, then the estimated and actual vectors should be within a reasonable range
of each other. Thus, motion vectors which do not resemble the estimated ones are
not used when re-calculating affine coefficients.

Using this segmentation procedure, I generated the needle diagram shown in Fig-
ure 3-4. Note that the white and black vectors together represent the original set of
motion vectors generated using a two level hierarchy, an original block size of 16, and

a search range of -16 to 16 in the z and y directions. The black vectors represent the

set of vectors which were extracted.
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Figure 3-4: Needle Diagram Showing the Segmented Motion Vectors

From Figure 3-4, we can see that there are essentially three major areas where
segmentation occured. First, there is the tree which travels at a greater velocity than
the rest of the background. Next, there is the region above the lights (at the left edge
of the still) which gets segmented. This region along with the small area in the upper

right hand corner of the frame are uniform areas which cause the motion estimator
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problems. Because these vectors don’t match up well with the affine model, these
regicns were removed.

Thus, a by-product of this segmentation scheme is not only to extract foreground
objects, but also to remove spurious vectors in situations where the motion estimator
has problems. Another example of this can be seen on the upper right boundary of
the foreground tree. In this area, we can see that the motion boundary is also causing
some problems. As a result, vectors in that region are also removed.

Another example is from a zoom sequence called tennis. The resultant segmen-

tation can be seen in Figure 3-5.
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Figure 3-5: Another Needle Diagram Showing the Segmented Motion Vectors

In this example, the only real foreground object is the ping-pong ball. Hence, these
motion vectors as well as other spurious ones are extracted. With all such vectors
removed, the resultant salient still should match up better with the background,
leading to heightened resolution.

The final algorithm is summarized in Figure 3-6.
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Chapter 4

Resultant Salient Stills

4.1 MPEG

I ran the adapted MPEG decoder code on the MPEG-1 bitstream entitled garden.
This sequence consisted of 73 frames which were 240x352. In all, there were 5 GOPs
which consisted of 15 frames each, except for the first GOP which had 13 frames.
The P frames occurred every three frames, so a typical GOP had the display order
of IBBPBBPBBPBBPBB. As was mentioned earlier, I omitted B frames to give the
salient stills optimal quality. Thus, each GOP used five frames to generate the still.

The salient stills generated from each GOP are shown in Figure 4-1 to Figure 4-5.

GOP1 e
Figure 4-1: Salient Stills From MPEG-1 GOPs
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GOP2

GOP3
Figure 4-3: Salient Stills From MPEG-1 GOPs (cont)

GOP4
Figure 4-4: Salient Stills From MPEG-1 GOPs (cont)
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GOP5 i
Figure 4-5: Salient Stills From MPEG-1 GOPs (cont)

In these examples, we can see a considerable amount of blurring. This is due to
several reasons. First of all, MPEG coding is lossy; hence the reconstructed image
will not have as good quality. Second, the fixed block size (16x16) used for motion
estimation may be too large relative to the objects in the sequence. As a result, there
is a better chance that blocks contain more than one motion, skewing first the motion
vectors, and second, the affine fit.

Running the estimator on a similar, but enlarged MPEG?2 bitstream, it is easy to
see the difference in resolution. Figure 4-6 shows a higher resolution still which was
run on just one GOP. The high quality image is a direct result of smaller block to
image size ratio and the higher resolution of MPEG2 reconstructed frames.

For completeness, I ran my motion estimator to link I frames with previous GOPs.
The resultant salient still from all five GOPs is shown in Figure 4-7.

From Figure 4-7 , it is obvious that the error from fitting the 25 frames into a
single still has accumulated. Essentially, inaccurate motion estimation caused a poor
affine fit. Salient stills are generated at the decoder end and therefore rely on how
good the encoding is. If the encoder does a poor job at either motion estimation or
reconstructed image quality, the salient still created from this bitstream is likely to
show poor resolution.

It is also important to note that motion estimation to link GOPs was done using

the noisy reconstructed frames. The original vectors were calculated using a clean
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Figure 4-6: Salient Still From an MPEG-2 GOP

Figure 4-7: Salient Still From Entire MPEG-1 Sequence
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image sequence and still were inaccurate. As a result, the vectors which were calcu-
lated to link GOPs could only have been worse. Probably the only type of refinement

which could be done at the decoder end is foreground extraction.

4.2 Hierarchical Motion Estimator

The motion estimator that I built was tested on two test sequences: the garden
and tennis sequence. The garden sequence was used to show the performance of the
estimator on translational sequences, while the tennis sequence was designed to test
the performance on zoom sequences.
Both sequences had 480x720 resolution. I ran the estimator using a block size of
16, two hierarchical levels, and a search range from -16 to 16 in the z and y directions.
Figure 4-8 shows the salient still generated using the motion estimator on a six

frame garden sequence.

Figure 4-8: Short Garden Still Generated Using Block-Based Estimation
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Note how the background matches up very well, with the main blur resulting
from the temporal motion of the foreground tree. This image clearly displays even
the shingles of the roof, showing the accuracy of the affine fit.

However, there are errors in the frame aligning process, even though it is not as
evident in the previous case. In fact, if the motion estimator was applied to a greater
number of frames, such errors would become prominent. Figure 4-9 shows the salient

still from eleven frames of the garden sequence.

Figure 4-9: Long Garden Still Generated Using Block-Based Estimation

In this example, the resultant still contains more blurs than its predecessor. The
match is still very good, but error has accumulated with the addition of each frame.
Notice that we can now peer through the tree and see parts of the house which reveal
itself later in the sequence. If an even greater number of frames are processed, the tree

will become even less visible, as the temporal filter which was used was the median

filter.
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The still shown in Figure 4-10 was run on an eleven frame tennis sequence, using
a 16x16 block size, two hierarchical levels, and a -16 to 16 search in the z and y

directions.

Figure 4-10: Tennis Still Generated Using Block-Based Estimation

Because the affine transformation must model zoom and translation simultane-
ously, the zoom sequences are generallyk more difficult to match. However, for this
particular sequence, the motion estimator has done a pretty good job with the only
noticeable problem at the edges of the ping-pong table. The person’s hand and paddle
are blurry, because this is where most of the foreground motion took place.

To get a better idea of the block-based estimator’s performance, we now look at

the salient stills created by Teodosio and Bender.
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4.3 Stills by Teodosio and Bender

The original method of generating optical flow used a hierarchical optical flow method
of estimating the motion. Figure 4-11, Figure 4-12, and Figure 4-13 display the results

from each of the three previous examples.

Figure 4-11: Short Garden Still Generated Using Optical Flow

For the short garden sequence, the original method has done a similar job as the
block-based motion estimator. The background has excellent resolution, except for
the foreground tree.

The long garden sequence, also, shows comparable results with some noticeable
blur being introduced by the greater number of frames which need to be processed.

Looking at the tennis salient still, I discovered two major differences of note. First,
notice how well the ping-pong table is lined up. This process has done a much better
job at lining this table up. The bottom edge of the sign which is located on the left

edge of the still signals another improvement.
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Figure 4-13: Tennis Still Generated Using Optical Flow



These improvements do not come without costs. First of all, the smaller letters on
the sign have not lined up as well, making them more difficult to read. In addition,

the player’s head has been distorted a little and there is greater blur on the wall.
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Chapter 5

Evaluation

The block-based estimator yields similar results with the original optical flow based
process on translational sequences. For the more difficul’ zoom sequences, however,
both methods possess both advantages and disadvantages. One conclusion can be gar-
nered from the results: the process needs further refinement to better model camera
motion.

It is difficult to evaluate the relative performances of both processes. Common
criteria such as signal-to-noise ratios cannot be calculated because there is no reference
still. In addition, the real affine parameters are unknown.

Hence, in order to better evaluate the performances, I created a couple sequences

with known affine parameters.

5.1 Test Sequences

5.1.1 Translational Sequence

The first sequence was developed using a single frame from the garden sequence. The
original sequence contained frames of dimensions 480x704. The sequence I created
had dimensions of 480x640, where the first frame was lined up at the left edge and
each succeeding frame was shifted to the right by 8 pels.
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With nine frames in all, the correct still should have a final dimension of 480x704,

and its affine coeflicients should only reflect the rightward shift of 8 pels. Thus, the

true affine coefficients for each pair of successive frames are as shown below.

A, = 8/640 = .0125, B, =1.0, C,=0.0

A, =00, B,=0.0, C,=10

Using the optical flow method of motion estimation, the resultant still had the

final dimension of 483x707 with the estimated affine parameters as shown in Table 5.1

Frame | A, B. C; Ay B, Cy
1,2 |.01214 | .99881 | .00113 | .00006 | .00010 | .99978
2,3 | .01216 | .99869 | .00108 | .00005 | .00008 | .99981
3,4 |.01214 | .99866 | .00111 | .00004 | .00006 | .99982
4,5 |.01212 | .99850 | .00109 | .00004 | .00008 | .99984
5,6 |.01210 | .99851 | .00118 | .00004 | .00004 | .99984
6,7 .01219 | .99899 | .00109 | .00003 | .00000 | .99985
7,8 .01221 | .99900 | .00102 | .00003 | .00001 | .99986
8,9 |.01225|.99901 | .00074 | .00003 | .00004 | .99986

Table 5.1: Affine Parameters Calculated Using Optical Flow

The salient still generated by using block-based motion estimation was 480x703.

The calculated affine parameters are shown in Table 5.2.

Frame | A; B, C. A, B, Cy
1,2 |.01234 | .99958 | .00014 | .00000 | .00000 | 1.00000
2,3 |.01235 | .99972 | .00004 | .00000 | .00000 | 1.00000
3,4 |.01233 | .99957 | .00005 | .00000 | .00000 | 1.00000
4,5 |.01236 | .99985 | .00006 | .00000 | .00000 | 1.00000
5,6 |.01235 | .99966 | .00002 | .00000 | .00000 | 1.00000
6,7 |.01236 | .99979 | -.00001 | .00000 | .00000 | 1.00000
7,8 |.01235 | .99978 | -.00002 | .00000 { .00000 | 1.00000
8,9 |.01235 | .99967 | -.00005 | .00000 | .00000 | 1.00000

Table 5.2: Affine Parameters Calculated Using Block-Based Motion Estimation
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Based on the raw numbers, the block-based method does a better job in estimat-
ing the affine coefficients and accordingly, yields a final still which has more similar
dimensions. However, these differences are rather minor and cannot be seen in the

salient still images shown in Figure 5-1, Figure 5-2, and Figure 5-3.

Figure 5-1: The Original Salient Still




Figure 5-3: Salient Still Generated Using Block-Based Estimation

49




Judging from the previous still images, both of the motion estimators have done

a fine job. Neither of the images can be distinguished from one another.

5.1.2 Zoom Sequence

The zoom sequence was created from the table tennis sequence. Using the first frame,
each succeeding frame zoomed in eight pixels in the z and y directions, and then scaled
to achieve the dimensions of the first frame. In all, nine frames were generated with
the dimensions 480x704. Given this setup, the final dimension of the still is calculated
as shown below.

zdim : 704 % 24— = 860

ydim : 480 x g0 — = 654

Where 704 — 16 x 8 and 480 — 16 x 8 represent the z and y dimensions, respectively,
of the smallest zoomed image.

The real affine coefficients are shown in Table 5.3.

Frame | A; B, C, A, B, C,
1,2 |.00000 | .97727 | .00000 | .00000 | .00000 | .96667
2,3 | .00000 | .97674 | .00000 | .00000 | .00000 | .96552
3,4 |.00000 | .97619 | .00000 | .00000 | .00000 | .96429
4,5 |.00000 | .97561 | .00000 | .00000 | .00000 | .96296
5,6 | .00000 | .97500 | .00000 | .00000 | .00000 | .96154
6,7 | .00000 | .97436 | .00000 | .00000 | .00000 | .96000
7,8 | .00000 { .97368 | .00000 [ .00000 | .00000 | .95833
8,9 |.00000 | .97297 | .00000 | .00000 | .00000 | .95652

Table 5.3: Real Affine Parameters

Using the original optical flow method of motion estimation, the resultant still
had the final dimension of 653x859 with the estimated affine parameters shown in

Table 5.4
The salient still generated by using block-based motion estimation had the dimen-

sion 653x856. The resulting affine parameters are shown in Table 5.5.
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Frame A, B; C: A, B, Cy
1,2 .00005 | .97691 | -.00009 | .00013 | .00018 | .96661
2,3 .00002 | .97699 | .00004 | .00004 | -.00011 | .96519
3,4 |-.00002 | .97601 | .00001 | .00005 | .00001 | .96449
4,5 .00004 | .97557 | .00008 | .00000 | .00011 | .96268
5,6 .00002 | .97506 | -.00001 | .00007 | .00003 | .96193
6,7 | -.00001 | .97442 | -.00007 | .00010 | -.00009 | .95929
7,8 .00002 | .97360 | .00011 | .00007 | .00011 | .95838
8,9 .00004 | .97286 | .00001 | .00006 | -.00010 | .95635

Table 5.4: Affine Parameters Calculated Using Optical Flow

Frame A; B, C A, By Cy
1,2 .00004 | .97734 | -.00004 | .00002 | -.00001 | .96652
2,3 .00004 | .97645 | .00002 | .00002 | .00049 | .96562
3,4 .00010 | .97664 | .00016 | .00003 | .00060 | .96418
4,5 {-.00005 | .97634 | -.00024 | .00010 | .00018 | .96267
5,6 |-.00001 | .97593 | .00011 | .00006 | .00049 | .96237
6,7 .00000 | .97471 | -.00002 | .00004 | .00053 | .95968
7,8 .00003 | .97409 | .00019 | .00006 | -.00004 | .95844
8,9 .00003 | .97315 | -.00006 | .00000 | -.00026 | .95651

Table 5.5: Affine Parameters Calculated Using Block-Based Motion Estimation
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According to the previous figures, both estimators have again done a very similar
job, with the optical flow method doing a slightly better job. The differences in the
stills of Figure 5-4, Figure 5-5, and Figure 5-6 are not visible.

Figure 5-4: The Original Salient Still
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Figure 5-5: Salient Still Generated Using Optical Flow

Figure 5-6: Salient Still Generated Using Block-Based Estimation
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Chapter 6

Conclusion

The block-based and optical flow motion estimators yield very similar results. Based
on the calculated affine parameters as well as the rendered 'stills, the block-based
method appeared to do a slightly better job on the translational sequences while the
optical flow method performed better on the zoom sequences.

It is significant that the block-based motion estimator can yield similar stills to
those of the original, optical flow based method. Block-based methods are often used
in video coding, because motion information is only sent for a block a data, rather
than for every pixel.

As today’s society becomes an information society, video coding methods will
become more predominant. Hence, to extend the application of salient stills while
preserving a high degree of resolution, it was significant that the MPEG2 generated
stills possessed good quality.

Although the results are promising, there are still some improvements which are
needed. One limitation of the salient still generating process is that the affine model
is not able to handle three dimensional motion. An improved model is the perspective
model. Adding two parameters to the affine model, the perspective model is designed
to compensate for perspective distortion. However, in a recent implementation, the
eight coeflicients did not always converge to the expected values. An in-depth look
at this process is definitely needed.

In general, the results are encouraging. The salient stills created in this paper
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have shown a remarkable ability to capture the spatial and temporal information of
an image sequence, while maximizing the resolution. Even without the affine model’s

ability to model three-dimensional motion, salient stills have completed its purpose.
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