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Measurement of the shape of the Λ0
b → Λ +

c μ − ν̄μ differential decay rate

R. Aaij et al.*

(LHCb Collaboration)
(Received 7 September 2017; published 13 December 2017)

A measurement of the shape of the differential decay rate and the associated Isgur-Wise function for the
decay Λ0

b → Λþ
c μ

−ν̄μ is reported, using data corresponding to 3 fb−1 collected with the LHCb detector in
proton-proton collisions. The Λþ

c μ
−ν̄μðþanythingÞ final states are reconstructed through the detection of a

muon and a Λþ
c baryon decaying into pK−πþ, and the decays Λ0

b → Λþ
c π

þπ−μ−ν̄μ are used to determine

contributions from Λ0
b → Λ�þ

c μ−ν̄μ decays. The measured dependence of the differential decay rate upon

the squared four-momentum transfer between the heavy baryons, q2, is compared with expectations from
heavy-quark effective theory and from unquenched lattice QCD predictions.

DOI: 10.1103/PhysRevD.96.112005

I. INTRODUCTION

In the Standard Model (SM) of particle physics, quarks
participate in a rich pattern of flavor-changing transitions.
The relevant couplings form a complex 3 × 3 matrix,
known as the Cabibbo-Kobayashi-Maskawa (CKM)
matrix, characterized by just four independent parameters
[1]. A vast body of measurements of individual CKM
elements exists, and thus the overall consistency of the SM
picture of charged current interactions is highly overcon-
strained. Decades of experimental work have demonstrated
the impressive consistency of experimental data with the
CKM paradigm [2,3]; nonetheless, the motivation to probe
the CKM matrix remains strong. Effects of physics beyond
the SMmay be subtle; thus, more precise measurements are
necessary to unveil them. Semileptonic decays of heavy-
flavored hadrons are commonly used to measure CKM
parameters, as they involve only one hadronic current,
parametrized in terms of scalar functions known as form
factors. The number of form factors needed to describe a
particular decay depends upon the spin of the initial- and
final-state hadrons [4,5]. A precise calculation of these
form factors has been elusive for many years as it is not
possible in perturbative QCD. Heavy-Quark Effective
Theory (HQET) provides the framework to systematically
include nonperturbative corrections in computations
involving hadrons containing heavy quarks. In particular,
in the limit of infinite heavy-quark mass, all the form
factors describing the semileptonic decay of a heavy-
flavored hadron are proportional to a universal function,
known as the Isgur-Wise (IW) function [6]. Lattice QCD,

namely the use of lattice formulations of QCD in large scale
numerical simulations, has emerged in recent years as a
technique with well-defined and systematically improvable
uncertainties which can be applied to a wide range of
processes and physical quantities [7]. Predictions from the
infinite heavy-quark mass limit are useful as a check of
several lattice QCD calculations [8].
The decay Λ0

b → Λþ
c μ

−ν̄μ is described by six form
factors corresponding to the vector and axial-vector com-
ponents of the flavor-changing charged current [9]. In
HQET, Λ0

b decays are particularly simple, as the light ud
quark pair has total spin j ¼ 0, and thus the chromomag-
netic corrections, which are of the order of a few percent for
B mesons, are not present [10]. In the static approximation
of infinite heavy-quark masses, the six form factors
characterizing the baryonic semileptonic decay1 Λ0

b →
Λþ
c μ

−ν̄μ can be expressed in terms of the elastic heavy-
baryon Isgur-Wise function ξBðwÞ [11]. The scalar invari-
ant w≡ vΛ0

b
· vΛþ

c
is related to the squared four-momentum

transfer between the heavy baryons, q2, by

w ¼ ðm2
Λ0
b
þm2

Λþ
c
− q2Þ=ð2mΛ0

b
mΛþ

c
Þ; ð1Þ

where vΛ0
b
and vΛþ

c
are the four-velocities of the Λ0

b and Λþ
c

baryons, respectively, and mΛ0
b
and mΛþ

c
are the corre-

sponding invariant masses. Nonperturbative corrections to
the static limit can be expressed in terms of an expansion in
powers of 1=mc and 1=mb, where mc and mb represent the
c- and b-quark masses, respectively. It has been shown in
Ref. [12] that the 1=mc term can be expressed in terms of
ξBðwÞ and one dimensionful constant. Moreover, partial
cancellations lead to small first-order corrections near
w ¼ 1 [13].

*Full author list given at the end of the article.
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In the static approximation, the differential decay width
of the Λ0

b → Λþ
c μ

−ν̄μ decay is given by

dΓ
dw

¼ GKðwÞξ2BðwÞ; ð2Þ

where the constant factor G is given by

G ¼ 2

3

G2
F

ð2πÞ3 jVcbj2ðmΛ0
b
Þ4r2 with r ¼ mΛþ

c
=mΛ0

b
; ð3Þ

where GF represents the Fermi coupling constant [14],
jVcbj is the magnitude of the matrix element describing the
coupling of the c quark to the b quark, and the kinematic
factor KðwÞ is given by

KðwÞ ¼ mΛþ
c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
½3wð1 − 2rwþ r2Þ þ 2rðw2 − 1Þ�:

ð4Þ
The function ξBðwÞ cannot be determined from first
principles in HQET, but calculations based on a variety
of approaches exist. The kinematic limit w ¼ 1 is special in
HQET, as only modest corrections in the (1=mb, 1=mc)
expansion are expected, due to the absence of hyperfine
corrections [15]. Thus, it is interesting to express ξB as a
Taylor series expansion

ξBðwÞ ¼ 1 − ρ2ðw − 1Þ þ 1

2
σ2ðw − 1Þ2 þ � � � ; ð5Þ

where ρ2 is the magnitude of the slope of ξB and σ2 is its
curvature at w ¼ 1. Sum rules provide constraints on ρ2 and
σ2. In particular, they require the slope at the zero recoil
point to be negative and give bounds on the curvature and
higher-order derivatives [16,17]. In addition, they predict
σ2 ≥ 3=5½ρ2 þ ðρ2Þ2� [18] and ρ2 ≥ 3=4. Table I summa-
rizes theoretical predictions for ρ2 from quenched lattice
QCD, QCD sum rules, and a relativistic quark model.
Recently, state-of-the-art calculations of the six form

factors describing the decay Λ0
b → Λþ

c μ
−ν̄μ have been

obtained using lattice QCDwith 2þ 1 flavors of dynamical
domain-wall fermions [19]. These form factors are calcu-
lated in terms of q2. More details on this formalism are
given in Appendix A. The resulting theoretical uncertainty
attached to a measurement of jVcbj using this form-factor
prediction is about 3.2%. The precision of this calculation
makes this approach an appealing alternative to the ones
currently used, all based on B-meson semileptonic decays
such as B̄0 → D�þμ−ν̄μ. Thus, it is important to examine
the model’s agreement with measured quantities such as the
shape of the dΓ=dq2 spectrum.
The experimental knowledge of Λ0

b semileptonic decays
is quite sparse, as this baryon is too heavy to be produced at
the eþe−B-factories. The only previous experimental study
of ξBðwÞ was performed by the DELPHI experiment at

LEP, which obtained ρ2 ¼ 2.03� 0.46ðstatÞþ0.72
−1.00ðsystÞ,

with an overall uncertainty of the order of 50% [20].
In this paper, we describe a determination of the shape of

the w or q2 spectrum of the decay Λ0
b → Λþ

c μ
−ν̄μ and

compare it with functional forms related to a single form
factor, inspired by HQET, and the lattice QCD prediction of
Ref. [19]. Section II presents the experimental procedure
and simulated samples, while Sec. III describes the method
employed to reconstruct Λ0

b → Λþ
c μ

−ν̄μ candidates and to
estimate the corresponding kinematic variables w and q2.
Section IV describes the method adopted to isolate the
signal, the unfolding procedure used to account for exper-
imental resolution effects, and the efficiency corrections.
The fit results for ξBðwÞ corresponding to different func-
tional forms are summarized in Sec. V. The same analysis
procedure is used in Sec. VI to derive the shape of the
differential decay width dΓ=dq2ðΛ0

b → Λþ
c μ

−ν̄μÞ and com-
pare with the predictions of Ref. [19]. These data are also
fitted with a single form-factor parametrization that corre-
sponds to the HQET infinite heavy-quark mass limit.

II. EXPERIMENTAL METHOD

The data used in this analysis were collected with the
LHCb detector at the Large Hadron Collider at CERN and
correspond to 1 fb−1 of integrated luminosity collected
at a center-of-mass energy of 7 TeV in 2011 and 2 fb−1

collected at a center-of-mass energy of 8 TeV in 2012.
The LHCb detector [24,25] is a single-arm forward

spectrometer designed for the study of particles containing
b or c quarks. The detector covers the pseudorapidity range
2 < η < 5, where η is defined in terms of the polar angle θ
with respect to the beam direction as − lnðtan θ=2Þ. The
detector includes a high-precision tracking system consist-
ing of a silicon-strip vertex detector surrounding the pp
interaction region [26], a large-area silicon-strip detector
located upstream of a dipole magnet with a bending power
of about 4 Tm, and three stations of silicon-strip detectors
and straw drift tubes [27] placed downstream of the
magnet. The tracking system provides a measurement of
the momentum, p, of charged particles with a relative
uncertainty that varies from 0.5% at low momentum to
1.0% at 200 GeV.2 The minimum distance of a track to a

TABLE I. Predictions for the slope at zero recoil of the baryonic
Isgur-Wise function ξB. The evaluation from Ref. [21] includes
first-order corrections in HQET.

ρ2 Approach Reference

1.35� 0.13 QCD sum rules [22]
1.2þ0.8

−1.1 Lattice QCD (static approximation) [23]
1.51 HQETþ relativistic wave function [21]

2Natural units with c ¼ ℏ ¼ 1 are used throughout.
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primary vertex, the impact parameter (IP), is measured with
a resolution of ð15þ 29=pTÞ μm, where pT is the compo-
nent of the momentum transverse to the beam, in GeV.
Different types of charged hadrons are distinguished using
information from two ring-imaging Cherenkov detectors
(RICH) [28]. Photons, electrons, and hadrons are identified
by a calorimeter system consisting of scintillating-pad and
preshower detectors, an electromagnetic calorimeter, and a
hadronic calorimeter. Muons are identified by a system
composed of alternating layers of iron and multiwire
proportional chambers [29]. The online event selection is
performed by a trigger [30], which consists of a hardware
stage, based on information from the calorimeter and muon
systems, followed by a software stage, which applies a full
event reconstruction.
Muon candidates are first required to pass the hardware

trigger that selects muons with a transverse momentum
pT > 1.6 (1.8) GeV for the 2011 (2012) data taking
period. In the subsequent software trigger, events with
one particle identified as a muon are selected if at least one
of the final-state particles has both pT > 0.8 GeV and IP
larger than 100 μm with respect to all of the primary pp
interaction vertices (PVs) in the event. In the offline
selection, trigger signals are associated with reconstructed
particles. Selection requirements can therefore be made on
the trigger selection itself and on whether the decision was
due to the signal candidate, other particles produced in the
pp collision, or a combination of both. This classification of
trigger selections can be used for data-driven efficiency
determination. Finally, the tracks of two or more of the
final-state particles are required to form a vertex that is
significantly displaced from the PVs.
Our study makes use of simulated semileptonic decays,

where pp collisions are generated using PYTHIA [31]
with a specific LHCb configuration [32]. Decays of
hadronic particles are described by EVTGEN [33], in which
final-state radiation is generated using PHOTOS [34]. The
interaction of the generated particles with the detector, and
its response, are implemented using the GEANT4 toolkit
[35] as described in Ref. [36].

III. EVENT RECONSTRUCTION

To isolate a sample of Λ0
b → Λþ

c μ
−ν̄μX semileptonic

decays, where X represents the undetected particles pro-
duced with theΛþ

c in the c-quark hadronization, we combine
Λþ
c → pK−πþ candidates with tracks identified as muons.

We consider candidates where a well-identified muon
passing the hardware and software trigger algorithms with
momentum greater than 3 GeV is found. Charmed baryon
candidates are formed from hadrons with momenta greater
than 2 GeV and transverse momenta greater than 0.3 GeV.
In addition, we require that the average of the magnitudes of
the transverse momenta of the hadrons forming the Λþ

c
candidate be greater than 0.7 GeV. Kaons, pions, and protons
are identified using the RICH system. Each track’s IP

significance with respect to the associated primary vertex
is required to be greater than 9.3 Moreover, the selected
tracks must be consistent with coming from a common
vertex: the χ2 per degree of freedom (χ2=DOF) of the vertex
fit must be smaller than 6. In order to ensure that the
direction of the parent Λ0

b is well measured, the Λþ
c vertex

must be distinct from the primary pp interaction vertex. To
this end, we require that the flight-distance significance of
the Λþ

c candidate (defined as the measured flight distance
divided by its uncertainty) with respect to the associated PV
be greater than 100.
Partially reconstructed Λ0

b baryon candidates are formed
combining μ− and Λþ

c candidates that are consistent with
coming from a common vertex, and we require that the
angle between the direction of the momentum of the Λþ

c μ
−

candidate and the line from the associated PV to the Λþ
c μ

−

vertex be less than 45 mrad. As theΛþ
c baryon is aΛ0

b decay
product with a small but significant lifetime, we require that
the difference in the component of the decay vertex position
of the charmed hadron candidate along the beam axis and
that of the beauty candidate be positive. We explicitly
require that the Λ0

b hadron candidate pseudorapidity be
between 2 and 5. We measure η using the line defined by
connecting the associated PV and the vertex formed by the
Λþ
c and the μ− lepton. Finally, the invariant mass of the

Λþ
c μ

− system must be between 3.3 and 5.3 GeV. These
selection criteria ensure that the Λþ

c candidates are decay
products of Λ0

b semileptonic decays. In particular, the
background from directly produced Λþ

c (prompt Λþ
c ) is

highly suppressed. This is quantified by an unbinned
extended maximum likelihood fit to the two-dimensional
pK−πþ invariant mass and ln(IP/mm) distributions of the
Λþ
c candidates, where “/mm” refers to the length unit used

to measure the IP. The ln(IP/mm) component allows us
to determine the small prompt Λþ

c background. The
parameters of the IP distribution of the prompt sample
are found by examining directly produced charm hadrons,
as described in Ref. [37]. An empirical probability
density function (PDF) derived from simulation is used
for the Λþ

c from Λ0
b component. We find ð2.74� 0.02Þ ×

106 Λþ
c → pK−πþ candidates, which can be interpreted as

Λ0
b → Λþ

c μ
−ν̄μX decays, and we determine the prompt

Λþ
c → pK−πþ fraction to be 1.5%, which can be neglected.

The corresponding fit is shown in Fig. 1.
Our goal is the study of the ground-state semileptonic

decay Λ0
b → Λþ

c μ
−ν̄μ; thus, we need to estimate the con-

tributions from Λ�þ
c decaying into Λþ

c ππ states. Theoretical
predictions suggest that the inclusive rateΛ0

b → Λþ
c μ

−ν̄μX is
dominated by the exclusive channelΛ0

b → Λþ
c μ

−ν̄μ [38,39].
The residual contribution is expected to be accounted for by

3The associated primary vertex to a Λ0
b → Λþ

c μ
−ν̄μX candidate

is selected as the primary vertex which minimizes the IP
significance of the Λþ

c μ
− system.
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theΛ0
b → Λcð2595Þþμ−ν̄μ andΛ0

b → Λcð2625Þþμ−ν̄μ chan-
nels. Other modes, such asΛ0

b → Σþ
c μ

−ν̄μ, are suppressed in
the static limit and to order 1=mQ, where mQ represents the
heavy-quark mass (mc or mb) [40], with an additional
stronger suppression factor of the order ðmd −muÞ=mc
rather than ðmd −muÞ=mΛQCD

[9].
We useΛ0

b → Λþ
c π

þπ−μ−ν̄μ decays to infer contributions
from the excited Λþ

c modes, where the Λþ
c candidates are

selected as pK−πþ combinations of which the invariant
mass is within �20 MeV of the nominal Λþ

c mass. The
Λþ
c μ

−ν̄μ candidates are combined with pairs of opposite-
charge pions that satisfy criteria similar to those used to
select the pions from the Λþ

c decay. The minimum trans-
verse momentum of these pions is required to be 0.2 GeV,
and the transverse momentum of the Λþ

c π
þπ− system is

required to be greater than 1.5 GeV. Lastly, the χ2 per
degree of freedom of the vertex fit for the Λþ

c π
þπ− system

must be smaller than 6.
The resulting spectrum, measured as the mass difference

mðpK−πþπ−πþÞ −mðpK−πþÞ added to the known Λþ
c

mass [14], is shown in Fig. 2. We see peaks corresponding
to the Λcð2595Þþ, Λcð2625Þþ, Λcð2765Þþ, and Λcð2880Þþ

resonances. The Λcð2595Þþ is only a few MeV above the
kinematic threshold, and thus it is not well described by a
Breit-Wigner function. The baseline fit for this resonance
uses a PDF consisting of the sum of two bifurcated Gaussian
functions. As a check, we use an S-wave relativistic Breit-
Wigner convolved with a Gaussian function with standard
deviation σ ¼ 2 MeV that accounts for the detector reso-
lution. While the second parametrization is more accurate,
the fits to the invariant mass spectra in different kinematic
bins aremore stablewith the baseline parametrization.We fit
the Λcð2625Þþ signal with a double Gaussian PDF with
shared mean, as the natural width is expected to be well
below the measured detector resolution. The shape of the
combinatoric background PDF is inferred from wrong-sign
(WS) candidates, where a πþπþ or π−π− pair is combined
with Λþ

c instead of πþπ−. In addition, we observe peaks
corresponding to two higher-mass resonances, with masses
and widths consistent with the Λcð2765Þþ and Λcð2880Þþ
baryons [14]. In order to determine their yields, we fit the
two signal peaks with single Gaussian PDFs with uncon-
strainedmasses andwidths. Themeasured yields for the four
Λþ
c final states, as well as the Λþ

c μ
−ν̄μX final state, are

presented in Table II.
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FIG. 1. (a) The ln(IP/mm) distribution and (b) pK−πþ invariant mass for Λþ
c candidate combinations with a muon. The red (dashed-

dotted) curves show the combinatorial Λþ
c background, the green (dashed) curves show the Λþ

c from Λ0
b, and the blue-solid curves show

the total yields.
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FIG. 2. The mass difference mðpK−πþπþπ−Þ −mðpK−πþÞ added to the known Λþ
c mass, mPDGðΛþ

c Þ [14], for candidates with
pK−πþ invariant mass within �20 MeV of the known Λþ

c mass in candidate semileptonic decays for the entire w range: data are shown
as black dots, the combinatoric background is shown as a blue solid line, and the gray histogram shows the WS spectrum, obtained by
combining a πþπþ or π−π− pair with Λþ

c instead of πþπ−. The signal fits are identified as follows: (a) for m < 2700 MeV, the
Λcð2595Þþ as a magenta dashed line and the Λcð2625Þþ as a green long-dashed line; (b) for m > 2700 MeV, the Λcð2765Þþ as a
magenta dashed line and the Λcð2880Þþ as a green long-dashed line.

R. AAIJ et al. PHYSICAL REVIEW D 96, 112005 (2017)

112005-4



The measured contributions from the two heavier
Λ�þ
c final states, shown in Table II, are smaller than those

from Λ0
b → Λcð2595Þþμ−ν̄μ and Λ0

b → Λcð2625Þþμ−ν̄μ
decays. No theoretical prediction for nonresonant Λ0

b →
Λþ
c π

þπ−μ−ν̄μX exists, but we estimate systematic uncertain-
ties due to the subtractionof this componentwith an alternative
fit of the Λ0

b → Λþ
c π

þπ−μ−ν̄μX spectrum from candidate Λ0
b

semileptonic decays,wherewe derive both the yield and shape
of the combinatoric background from the WS sample.
The kinematical quantities q2 and w in the decay Λ0

b →
Λþ
c μ

−ν̄μ can be calculated if the magnitude of the Λ0
b

momentum is known. TheΛ0
b flight direction can be inferred

from the primary and secondary vertex locations, and this
input, combined with the constraints from energy and
momentum conservation, implies the following relationship
for pΛ0

b
,

��p̂Λ0
b
·p⃗Λþ

c μ
−

EΛþ
c μ

−

�2

−1

�
p2
Λ0
b
þ
�
ðm2

Λ0
b
þm2

Λþ
c μ

−Þ
p̂Λ0

b
·p⃗Λþ

c μ
−

E2
Λþ
c μ

−

�
pΛ0

b

þ
��ðm2

Λ0
b
þm2

Λþ
c μ

−Þ
2EΛþ

c μ
−

�2

−m2
Λ0
b

�
¼0; ð6Þ

where the unit vector p̂Λ0
b
is the direction of the Λ0

b baryon,

p⃗Λþ
c μ

− is the momentum of the Λþ
c μ

− pair, EΛþ
c μ

− is the
energy of the Λþ

c μ
− pair, mΛþ

c μ
− is the invariant mass of the

Λþ
c μ

− pair, mΛ0
b
is the nominal mass of the Λ0

b baryon, and

Λþ
c identifies the pK−πþ combination. This is a quadratic

equation, reflecting the lack of knowledge of the neutrino
orientation in the Λ0

b rest frame with respect to the Λ0
b

direction in the laboratory. The solution corresponding to the
lower value of pΛ0

b
, which is correct between 50% and 60%

of the time depending upon the kinematics of the final state,
is chosen in the q2 andw determination as simulation studies
have shown that this choice introduces the smallest bias. The
w resolution is estimated from simulated data in different w
intervals. The distributions of differences between recon-
structed and generated w are fitted with double-Gaussian
functions, and the effective standard deviations are found to
be between 0.01 and 0.05. The overall w resolution is
estimated with a fit with a triple-Gaussian function and has
an effective standard deviation σ equal to 0.028.

IV. SPECTRAL DISTRIBUTION
dNcorr=dwðΛ0

b → Λ +
c μ− ν̄μÞ

The Λ0
b → Λþ

c μ
−ν̄μX candidates are separated into 14

equal-size bins of reconstructedw in the full kinematic range
1 ≤ w ≤ 1.43. The parameters of the PDFs describing the
signal and background components are determined from the
fit to the overall pK−πþ mass spectrum. The contributions
from semileptonic decays including higher-mass baryons in
the final state is evaluated by fitting theΛþ

c π
þπ−mass spectra

with two different methods. In the first, we fit for the four
resonances shown in Fig. 2 using a PDF derived from theWS
sample to model the background and then use the simulation
to correct for efficiency. In the second, we determine the
signal yields of the Λ�þ

c states by subtracting the WS
background and treating the residual smooth component
of the spectrum as originating from a semileptonic decay
Λ0
b → Λþ

c μ
−ν̄μX. The secondmethod provides an estimate of

the systematic uncertainty introduced by the contribution
from nonresonant Λþ

c π
þπ− components of the hadron

spectrum, as the smooth component of this spectrum is
likely to comprise also the combinatoric background.
Next, we correct the raw Λþ

c μ
−ν̄μX and Λþ

c π
þπ−μ−ν̄μX

signal yields for the corresponding software trigger efficien-
cies, which are derivedwith a data-drivenmethod [30], based
on the determination of Λþ

c μ
−ν̄μX events where a positive

trigger decision is provided by the signal candidates and
eventswhere the trigger decision is independent of the signal.
Then, we subtract the raw yields reported in Table II, scaled

by the corresponding efficiency ratios
εðΛ0

b→Λþ
c μ

−ν̄μXÞ
εðΛ0

b→Λþ
c π

þπ−μ− ν̄μXÞ,

from the correctedΛþ
c μ

−ν̄μX yields. These ratios are derived
from Λ0

b → Λcð2595Þþμ−ν̄μ and Λ0
b → Λcð2625Þþμ−ν̄μ

simulations. The higher-mass yields are scaled by an average
of these two corrections, as no model for these semileptonic
decays is available. These corrections account for the
efficiency loss due to the reconstruction of the additional
pion pairs, as well as for the unseen Λ0

b → Λþ
c π

0π0μ−ν̄μX
decay, and are onlymildly dependent upon the invariantmass
of the final state. The expectation is thatΛ0

b → Λþ
c π

þπ−μ−ν̄μ
accounts for two-thirds of the inclusive dipion final state.
We have checked this prediction by studying the inclusive
final states Σþþ

c μ−ν̄μX, Σþ
c μ

−ν̄μX, and Σ0
cμ

−ν̄μX. Taking
into account the difference in the Λþ

c π
þπ−μ−ν̄μX and

Λþ
c π

0μ−ν̄μX detection efficiencies, estimated with simula-
tions,wemeasure the ratioR ¼ NðΛþ

c π
þπ−Þ=NðΛþ

c π
þπ− þ

Λþ
c π

0π0Þ with

R¼ NðΣþþ
c ÞþNðΣ0

cÞ
NðΣþþ

c ÞþNðΣ0
cÞþNðΣþ

c Þ · ½εðΛþ
c π

þπ−μÞ=εðΛþ
c π

0μÞ� ;

ð7Þ

whereNðΣþþ
c Þ andNðΣ0

cÞ are the detected yields for the final
statesΣþþ

c π−μν andΣ0
cπ

þμν,NðΣþ
c Þ is the detected yield for

TABLE II. Measured raw yields for the four Λ�þ
c μ−ν̄μ final

states and the inclusive Λþ
c μ

−ν̄μX.

Final state Yield

Λcð2595Þþμ−ν̄μ 8569� 144

Λcð2625Þþμ−ν̄μ 22965� 266

Λcð2765Þþμ−ν̄μ 2975� 225

Λcð2880Þþμ−ν̄μ 1602� 95

Λþ
c μ

−ν̄μX ð2.74� 0.02Þ × 106
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the final state Σþ
c μνX, and εðΛþ

c π
þπ−μÞ=εðΛþ

c π
0μÞ is

the ratio between the reconstruction efficiencies of these
final states calculated with simulation. A simulation
study gives εðΛþ

c π
þπ−μÞ=εðΛþ

c π
0μÞ ¼ 25.9� 2.7, where

the uncertainty reflects the limited sample size of the
simulation.We obtainR ¼ 0.63� 0.14, where the statistical
uncertainty is due to limited π0 reconstruction efficiency,
consistent with the expectation R ¼ 2=3, and a negligible
Σþ
c μ

−ν̄μ component in the denominator of Eq. (7).
The Λ0

b → Λþ
c μ

−ν̄μ spectrum dNmeas=dw is then unfolded
to account for the detector resolution and other w smearing
effects such as the possible choice of the wrong solution of
Eq. (6). The procedure adopted is based on the single value
decomposition (SVD) method [41] using the ROOUNFOLD

package [42]. We choose to divide the unfolded spectrum
dNu=dw into seven w bins, to be consistent with the
recommendationofRef. [43] to divide themeasured spectrum
into a number of bins at least twice as many as the ones in the
corrected spectrum. The SVD method includes a regulariza-
tion procedure that depends upon a parameter k [41], ranging
between unity and the number of degrees of freedom, in our
case 14. Simulation studies demonstrate that k ¼ 4 is optimal
in our case. Variations associated with different choices of k
have been studied and are included in the systematic

uncertainties. We have performed closure tests with different
simulation models of the Λ0

b → Λþ
c μ

−ν̄μ dynamics and
verified that this unfolding procedure does not bias the
reconstructed distribution. The spectra before and after
unfolding are shown in Fig. 3. Finally, using simulated
samples of signal events, we correct the unfolded spectrum
forw-dependent acceptance and selection efficiency to obtain
the distribution dNcorr=dw. Various kinematic distributions
havebeen studied in simulation anddata, andwe find that they
are all in good agreement.

V. SHAPE OF ξBðwÞ FOR Λ0
b → Λ +

c μ− ν̄μ DECAYS

In order to determine the shape of the Isgur-Wise
function ξBðwÞ, we use the square root of dNcorr=dw
divided by the kinematic factor KðhwiÞ, defined in
Eq. (4), evaluated at the midpoint in the seven unfolded
w bins. We derive the IW shape with a χ2 fit, where the χ2 is
formed using the full covariance matrix of dNcorr=dw.
We use various functional forms to extract the slope, ρ2,

and curvature, σ2, of ξBðwÞ. The first functional form
is motivated by the 1=Nc expansion [44], where Nc
represents the number of colors, and has an exponential
shape parametrized as

w
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FIG. 3. The spectra (a) dNmeas=dw before unfolding and (b) dNu=dw after unfolding, for the decay Λ0
b → Λþ

c μ
−ν̄μ. The latter spectrum

is then corrected for acceptance and reconstruction efficiency and fitted to the IW function ξBðwÞ with the procedure discussed
in the text.

w
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)
w(
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FIG. 4. (a) The Isgur-Wise function fit for the decay Λ0
b → Λþ

c μ
−ν with a Taylor series expansion in (w − 1) up to second order. The

black dots show the data, and the solid (blue) line shows the fitted function with the second-order Taylor series expansion model. The
vertical scale is in arbitrary units. (b) The correlation between slope ρ2 and curvature σ2=2; the three ellipses correspond to the 1σ, 2σ,
and 4σ contours.
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ξBðwÞ ¼ exp½−ρ2ðw − 1Þ�: ð8Þ
The second functional form, the so-called dipole IW
function, which is more consistent with sum-rule bounds
[17], is given by

ξBðwÞ ¼
�

2

wþ 1

�
2ρ2

: ð9Þ

Finally, we can use a simple Taylor series expansion of the
Isgur-Wise function and fit for the slope and curvature
parameters using the Taylor series expansion introduced in
Eq. (5). Figure 4 shows the measured ξBðwÞ and the fit
results with this parametrization. Table III summarizes the
slope and curvature at zero recoil obtained with the three fit
models. Note that the curvature is an independent param-
eter only in the last fit, while in the first two models, it is
related to the second derivative of the IW function.
As the slope of the IW function is the most relevant

quantity to determine jVcbj in the framework of HQET
[13], we focus our studies on the systematic uncertainties
on this parameter. We consider several sources of system-
atic uncertainties, which are listed in Table IV. The first two
are determined by changing the fit models for Λþ

c and
Λcð2595Þþ and Λcð2625Þþ signal shapes in the corre-
sponding candidate mass spectra. The software trigger
efficiency uncertainty is estimated by using an alternative
procedure to evaluate this efficiency using the trigger
emulation in the LHCb simulation. In order to assess
systematics associated with the bin size, we perform the

analysis with different binning choices. The sensitivity to
the Λ0

b → Λþ
c μ

−ν̄μ form-factor modeling is assessed by
reweighting the simulated w spectra to correspond to
different ξB functions with slopes ranging from 1.5 to
1.7. The “phase space averaging” sensitivity is estimated by
comparing the fit to the expression for dNcorr=dw with the
fit to 1=KðhwiÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dNcorr=dw
p

. The uncertainty associated
with theΛ0

b → Λ�þ
c μ−ν̄μ modeling is evaluated by changing

the relative fraction of Λþ
c π

þπ− versus Λþ
c π

0π0 of the Λ�þ
c

spectrum by �20%. Finally, we use the alternative evalu-
ation of the fraction of Λ0

b → Λþ
c π

þπ−μ−ν̄μ which includes
the maximum possible nonresonant component to assess
the sensitivity to residual Λ�þ

c components in the subtracted
spectrum. The total systematic uncertainty in ρ2 is 0.08.
The value of ρ2 obtained from the Taylor series expan-

sion is

ρ2 ¼ 1.63� 0.07� 0.08;

which is consistent with lattice calculations [23], QCD sum
rules [22], and relativistic quark model [21] expectations.
The measured slope is compatible with theoretical pre-
dictions and with the bound ρ2 ≥ 3=4 [16]. The measured
curvature σ2 is compatible within uncertainties with the
lower bound σ2 ≥ 3=5½ρ2 þ ðρ2Þ2� [18].

VI. COMPARISON WITH UNQUENCHED
LATTICE PREDICTIONS

The lattice QCD calculation in Ref. [19] uses a helicity-
based description of the six form factors governingΛ0

b → Λ
transitions introduced in Ref. [45]. The calculation uses
state-of-the-art techniques encompassing the entire q2

region. The stated uncertainties on the predicted width
are therefore larger than what is expected in a high-q2

region but remain rather small, namely 6.3%. This corre-
sponds to a 3.2% theoretical uncertainty on jVcbj, thus
raising the prospect of an additional precise independent
determination of jVcbj.
The simplest check on this theoretical prediction consists

of a comparison of the predicted shape of dΓ=dq2 and
the measured data. Thus, we measure the distribution
dNcorr=dq2 with the same procedure adopted to derive
dNcorr=dw, including efficiency corrections and the
unfolding procedure, with the same number of bins used
to determine the raw and unfolded yields. We produce

TABLE III. Summary of the values for the slope and curvature of the Isgur-Wise function with different
parametrizations. The quoted uncertainties are statistical only. The models marked with “*” have only the slope at
zero recoil as a free parameter; thus, the curvature is derived from the fitted ρ2.

Shape ρ2 σ2 Correlation coefficient χ2=DOF

Exponential* 1.65� 0.03 2.72� 0.10 100% 5.3=5
Dipole* 1.82� 0.03 4.22� 0.12 100% 5.3=5
Taylor series 1.63� 0.07 2.16� 0.34 97% 4.5=4

TABLE IV. Summary of the systematic uncertainties on the
slope parameter ρ2. The total uncertainty is obtained by adding
the individual components in quadrature.

Source σðρ2Þ
Signal fit for Λþ

c 0.02
Signal PDF for Λ�þ

c 0.02
Software trigger efficiency 0.02
w binning 0.03
SVD unfolding regularization 0.03
Phase space averaging 0.03
Λ0
b → Λþ

c μ
−ν̄μ modeling 0.03

Λ0
b → Λ�þ

c μ−ν̄μ modeling 0.03
Additional components of the semileptonic spectrum 0.02
Λ0
b kinematic dependencies 0.02

Total 0.08
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seven corrected yields and their associated covariance
matrix, where the nondiagonal terms are related to the
unfolding procedure. We then perform a χ2 fit to the seven
experimental dNcorr=dq2 data points using the theoretical
functional shape given in Eq. (85) of Ref. [19], which also
provides the nominal values of the form-factor parameters,
and thus we leave only the relative normalization floating.
This fit uses a covariance matrix that combines experi-
mental and theoretical uncertainties, which yields a χ2

equal to 1.32 for 6 degrees of freedom and a corresponding
p-value of 97%. This shows that the predicted shape is in
good agreement with our measurement.
The form-factor decomposition in Ref. [19] does not

allow a straightforward extrapolation to the HQET limit of
infinite heavy-quark masses. However, we know that in the
static limit all the form factors are proportional to a single
universal function. In order to assess how well our data are
consistent with the static limit, we perform a second χ2 fit
assuming that all the form factors are proportional to a
single z-expansion function [46]. Fits with different pole
masses used in the six form factors determined in Ref. [19]
are performed. The overall shape does not change appreci-
ably; the pole mass of 6.768 GeV is preferred. The two fit
parameters are the coefficients a0 and a1, giving the
strength of the first two terms in the z-expansion. The
resulting fitted shape is shown in Fig. 5. This fit has a χ2

equal to 1.85 for 5 degrees of freedom, with a correspond-
ing p-value of 87%. Note that the shape obtained with a
single form factor is very similar to the one predicted in
Ref. [19]. This is consistent with the HQET prediction [15]
that the shape of the differential distribution is well
described by the static approximation, modulo a scale
correction of the order of 10%, reflecting higher-order
contributions. Further details of this fit and the fit using the
lattice QCD calculation can be found in the Appendix.

VII. CONCLUSIONS

A precise measurement of the shape of the Isgur-Wise
function describing the semileptonic decay Λ0

b → Λþ
c μ

−ν̄μ
has been performed. The measured slope is consistent with
theoretical models and the bound ρ2 ≥ 3=4 [16]. The
measured curvature σ2 is consistent with the lower-bound
constraint σ2 ≥ 3=5½ρ2 þ ðρ2Þ2� [18]. The shape of dΓ=dq2
is studied and found to be well described by the
unquenched lattice QCD prediction of Ref. [19], as well
as by a single form-factor parametrization. Further studies
with a suitable normalization channel will lead to a precise
independent determination of the CKM parameter jVcbj.
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APPENDIX A: ANALYTICAL EXPRESSION
FOR dΓ=dq2

This Appendix describes the formalism used in the
dΓ=dq2 fits. In particular, we give the expression of
dΓ=dq2 in terms of the form-factor basis chosen in
Ref. [19], the so-called helicity form factors. In addition,
we show the corresponding expression used to model the
static limit.
The lattice QCD calculations reported in Ref. [19] predict

the differential decay width dΓðΛ0
b → Λþ

c μ
−ν̄μÞ=dq2 as

follows,
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FIG. 5. Comparison between the fit to the seven experimental
data points using either the lattice QCD calculation of Ref. [19],
shown as gray points with a shaded area corresponding to the
binned 1σ theory uncertainty, or a single form-factor fit in the z-
expansion, shown as the solid blue curve. The data points,
modulo a scale factor, are shown as black points with error bars.
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dΓ
dq2

¼ G2
FjVcbj2 ffiffiffiffiffiffiffiffiffiffi

sþs−
p

768π3m3
Λ0
b

�
1 −

m2
l

q2

�
2

×

�
4ðm2

l þ 2q2Þðsþ½g⊥ðq2Þ�2 þ s−½f⊥ðq2Þ�2Þ

þ 2
m2

l þ 2q2

q2
ðsþ½ðmΛ0

b
−mXÞgþðq2Þ�2 þ s−½ðmΛ0

b
þmXÞfþðq2Þ�2Þ

þ 6m2
l

q2
ðsþ½ðmΛ0

b
−mXÞf0ðq2Þ�2 þ s−½ðmΛ0

b
þmXÞg0ðq2Þ�2Þ

�
; ðA1Þ

where g⊥, f⊥, gþ, fþ, g0, and f0 represent the six form
factors necessary to describe this decay, X ≡ Λc denotes
the final-state baryon, ml represents the mass of the muon,
q2 is the squared four-momentum transfer between the
heavy baryons, and

s� ¼ ðmΛ0
b
�mXÞ2 − q2: ðA2Þ

The six form factors are cast in terms of the z-expansion
[46] up to first order and have the functional form

fðq2Þ ¼ 1

1 − q2=ðmf
poleÞ2

× ½af0 þ af1z
fðq2Þ�; ðA3Þ

where zfðq2Þ is given by

zfðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tfþ − q2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tfþ − t0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tfþ − q2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tfþ − t0

q ; ðA4Þ

t0 ¼ðmΛ0
b
−mXÞ2; ðA5Þ

and tfþ is given by

tfþ ¼ ðmf
poleÞ2; ðA6Þ

and the pole masses used in the calculations are shown
in Table V. The parameters af0 and af1 for the six form
factors describing this decay are given in Table VIII of
Ref. [19].

In the static limit, all the helicity form factors are
proportional to a single universal function. Thus, we use
a common z-expansion parametrization

dΓ
dq2

¼G2
FjVcbj2 ffiffiffiffiffiffiffiffiffiffi

sþs−
p

768π3m3
Λ0
b

�
1−

m2
l

q2

�
2

g2⊥ðq2Þ

×

�
4ðm2

lþ2q2Þðsþþ s−Þ

þ 4

q2
½sþðmΛ0

b
−mXÞ2þ s−ðmΛ0

b
þmXÞ2�½2m2

lþq2�
�
;

ðA7Þ
where the choice of g⊥ reflects the choice of the pole mass
used in the single z-expansion fit given in Sec. VI. We
performed the fits with various choices of pole masses and
examined the effects on the shape dΓ=dq2 and found the
shape did not vary significantly, though it was found that
the parameters defining g⊥ yielded the optimal fit. In this
case, the fit parameters are the coefficients a0 and a1 in the
z-expansion parametrization of g⊥ðq2Þ, which has the form
shown in Eq. (A3).

APPENDIX B: MEASURED NORMALIZED
SPECTRA dNcorr=dq2 AND ASSOCIATED

COVARIANCE MATRIX

In this Appendix, we report the seven measured
data points dNcorr=dq2 and the corresponding covariance
matrix, shown in Tables VI and VII, respectively.

TABLE V. Masses of the relevant form-factor poles in the
physical limit (in GeV).

f JP mf
poleðΛ0

b → ΛcÞ (GeV)
fþ, f⊥ 1− 6.332
f0 0þ 6.725
gþ, g⊥ 1þ 6.768
g0 0− 6.276

TABLE VI. Measured normalized yields dNcorrðΛ0
b→

Λþ
c μ

−ν̄μÞ=dq2.
q2 (GeV2) dNcorr=dq2

0.80 1.50� 0.10
2.38 1.80� 0.10
3.97 2.04� 0.10
5.56 2.23� 0.08
7.14 2.35� 0.07
8.73 2.28� 0.05
10.32 1.50� 0.04
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qUniversità degli Studi di Milano, Milano, Italy.
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uUniversità di Modena e Reggio Emilia, Modena, Italy.
vIligan Institute of Technology (IIT), Iligan, Philippines.
wNovosibirsk State University, Novosibirsk, Russia.

MEASUREMENT OF THE SHAPE OF THE … PHYSICAL REVIEW D 96, 112005 (2017)

112005-15


