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1 Introduction

The neutral current Drell-Yan (DY) process, qq → Z/γ∗ → `+`−, where ` is either an

electron or a muon, is one of the best studied physics processes at the CERN LHC. The

total and differential cross sections have been calculated theoretically at next-to-next-to-

leading order (NNLO) accuracy in the strong coupling αS [1–4]. The differential cross

section as a function of dilepton invariant mass dσ/dm`` has been measured by the LHC

experiments at different centre-of-mass energies [5–8]. Theoretical calculations reproduce

the measurements over nine orders of magnitude at the level of a few percent.

The large production cross section and the experimentally clean final state of the DY

process allow for detailed studies of kinematic distributions that serve as stringent tests

of the perturbative calculations. One of the most interesting observables is the transverse

momentum qT of the Z boson, which is related to its production mechanism. The lower

range of qT values are caused by multiple soft-gluon emissions, whereas high qT values result

from the emission of one or more hard partons in association with the Z boson. Another

interesting observable is the rapidity y of the Z boson which depends on the difference in
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momentum between the parent partons in the colliding protons; therefore, the cross section

as a function of y depends on the parton distribution functions (PDF). The qT spectrum

of the Z boson has been measured by the ATLAS, CMS and LHCb Collaborations at√
s = 7 TeV [9–11]. Recently, both the CMS and ATLAS Collaborations have extended the

study at 8 TeV by performing double-differential measurements as functions of qT and y [12,

13]. Calculations based on fixed-order perturbative quantum chromodynamics (QCD) [14]

describe these measurements fairly well.

A thorough understanding of the qT spectra of the electroweak vector bosons is es-

sential for high-precision measurements at the LHC, in particular that of the mass of the

W boson. Furthermore, the theoretical calculation of the transverse momentum distri-

bution for the Higgs boson produced in gluon-gluon fusion at the LHC involves Sudakov

form factors [15], which are closely related to those appearing in the calculations for qT.

Thus precise measurements of vector boson production are important for validating the

theoretical calculations of Higgs boson production at the LHC.

An important issue in the accurate measurement of the differential cross section dσ/dqT
is the experimental resolution of qT, which is dominated by the uncertainties in the magni-

tude of the transverse momenta of the leptons from the decay of the Z boson. The angles

subtended by the leptons, however, are measured more precisely due to the excellent spa-

tial resolution of the CMS tracking system. A kinematic quantity φ∗ [16–18], derived from

these angles, is defined by the expression

φ∗ = tan

(
π −∆φ

2

)
sin(θ∗η). (1.1)

The variable ∆φ is the opening angle between the leptons in the plane transverse to the

beam axis. The variable θ∗η indicates the scattering angle of the dileptons with respect to

the beam in the boosted frame where the leptons are aligned. It is related to the pseudora-

pidities of the oppositely charged leptons by the relation cos(θ∗η) = tanh[∆η/2], where ∆η

is the difference in pseudorapidity between the two leptons. By construction, φ∗ is greater

than zero. Since φ∗ depends on angular variables, the resolution of φ∗ is significantly better

than that of qT, especially at low qT values. Since φ∗ ∼ qT/m``, the range φ∗ ≤ 1 corre-

sponds to qT up to about 100 GeV for a dilepton mass close to the nominal Z boson mass.

The cross sections for the DY process as a function of φ∗ have been measured by

the D0 Collaboration at the Tevatron for pp̄ collisions at
√
s = 1.96 TeV [19] and at the

LHC by the ATLAS Collaboration for pp collisions at 7 and 8 TeV [13, 20]. In this paper,

the measurements of the differential cross section dσ/dφ∗ and the double-differential cross

section d2σ/dφ∗d|y| in CMS at
√
s = 8 TeV are presented using data corresponding to an

integrated luminosity of L = 19.7± 0.5 fb−1.

The paper is organized as follows. A brief description of the CMS detector is presented

in section 2. The general features of event reconstruction and selection for the analysis are

discussed in section 3. The details of simulated samples used to guide and validate the

measurements are given in section 4. Section 5 states the precise definitions of the fiducial

region and the differential cross sections. Section 6 describes the background subtraction,

and section 7 describes how the signal distributions are unfolded to remove the impact
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of resolution in the experimental measurement. Section 8 provides a discussion of the

systematic uncertainties. Section 9 discusses the theoretical predictions that are compared

to the measured cross sections. Finally the results are reported and discussed in section 10,

with a summary presented in section 11.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal

diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel

and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass

and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap

sections. The steel and quartz-fibre Cherenkov hadron forward calorimeters extend the

pseudorapidity coverage provided by the barrel and endcap detectors. Muons are measured

in the gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid,

with detection planes made using three technologies: drift tubes, cathode strip chambers,

and resistive-plate chambers. A more detailed description of the CMS detector, together

with a definition of the coordinate system used and the relevant kinematic variables, can

be found in ref. [21].

3 Event reconstruction and selection

Events of interest are selected using a two-tiered trigger system [22]. The first level (L1),

composed of custom hardware processors, uses information from the calorimeters and muon

detectors to select events at a rate of around 100 kHz within a time interval of less than 4 µs.

The second level, known as the high-level trigger (HLT), consists of a farm of processors

running a version of the full event reconstruction software optimized for fast processing, and

reduces the event rate to around 1 kHz before data storage. The events for this analysis are

triggered by the presence of at least one electron with transverse momentum pT > 27 GeV

and |η| < 2.5, or at least one muon with pT > 24 GeV and |η| < 2.1. Both electrons and

muons must satisfy relatively loose isolation and identification requirements compared to

the off-line selection. For this analysis, the overall performance of this trigger is found to

be better than the inclusive dilepton trigger.

Because of the high instantaneous luminosity, there are multiple pp collisions within

the same bunch crossing leading to event pileup in the detector. The average number

of pileup in a triggered event during the 2012 data taking period is about 21. The re-

constructed vertex with the largest value of summed physics-object p2T is taken to be the

primary pp interaction vertex. The physics objects are the objects returned by a jet find-

ing algorithm [23, 24] applied to all charged tracks associated with the vertex, plus the

corresponding associated missing transverse momentum.

The off-line particle-flow event algorithm [25] reconstructs and identifies individual

particles with an optimised combination of information from the various elements of the

CMS detector. The photon energy is obtained directly from the ECAL measurement,

corrected for zero-suppression effects. Electron identification relies on the electromagnetic
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shower shape and other observables based on tracker and calorimeter information [26]. The

barrel-endcap transition regions of the ECAL (1.444 < |η| < 1.566) are excluded from the

acceptance. The energy of electrons is inferred from a combination of the electron momen-

tum at the primary vertex as determined by the tracker, the energy of the corresponding

ECAL cluster, and the energy sum of all the bremsstrahlung photons spatially compatible

with originating from the electron track.

Electrons originating from photon conversions are suppressed by requiring no more

than one missing tracker hit and that the final hit on the reconstructed track matches an

electron cluster in the ECAL. Electron candidates are rejected if they form a pair with

a nearby track that is consistent with photon conversion. To ensure that the electron is

consistent with a particle originating from the primary interaction vertex, the magnitude

of the transverse impact parameter of the candidate track must be less than 0.02 cm, and

the longitudinal distance from the primary interaction vertex is required to be less than

0.1 cm. The momentum resolution for electrons from Z → e+e− decays ranges from 1.7%

for electrons in the barrel region to 4.5% for electrons that begin to shower before the

calorimeter in the endcaps [26].

The transverse momentum of muons is obtained from the curvature of the muon tracks

in the muon detector combined with matched tracks in the silicon tracker. Muon candidates

are selected by applying minimal requirements to the track segments in both muon and

inner tracker systems as well as consistent with small energy deposits in the calorimeters.

The track associated with each muon candidate is required to have at least one hit in the

pixel detector and at least five hits in different layers of the silicon tracker. The muon can-

didate is required to have hits in at least two different muon stations. To reject cosmic ray

muons, the magnitude of the transverse impact parameter is required to be less than 0.2 cm

and the longitudinal distance from the primary interaction vertex is required to be less than

0.5 cm [27]. Selected muons in the range 20 < pT < 100 GeV have a relative pT resolution

of 1.3–2.0% in the barrel (|η| < 1.2) and less than 6% in the endcaps (1.2 < |η| < 2.4) [27].

The energy of charged hadrons is determined from a combination of their momentum

measured in the tracker, and the matched ECAL and HCAL energy deposits. Subse-

quently, it is corrected for zero-suppression effects and for the response function of the

calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from

the corresponding corrected ECAL and HCAL energies.

Events containing at least two leptons are selected, in which one lepton, consistent

with the trigger, satisfies pT > 30 GeV and |η| < 2.1, while the other is required to have

pT > 20 GeV and |η| < 2.4. These two leptons must have the same flavour and originate

from the same primary vertex. For dimuon events, the leptons must have opposite electric

charges. The probability of charge misidentification is not negligible for electrons and hence

this criteria is not applied to dielectron events. Events are retained if the dilepton invariant

mass falls in the range 60 < m`` < 120 GeV.

The leptons in the DY process are usually isolated from other particles produced in

the event; hence isolation criteria are useful for rejecting non-DY events. The isolation of a

lepton, I, is defined as the ratio of the sum of the transverse momenta of the charged and

neutral hadrons as well as photons that fall within a cone of radius ∆R =
√

(∆η)2 + (∆φ)2
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(where φ is the azimuthal angle in radians) centered on the lepton to its pT. The require-

ment that the reconstructed charged particle tracks originate from a common primary

vertex practically eliminates the pileup contribution from charged hadrons. In the case of

electrons the pileup contributions for neutral hadrons and photons are estimated on a sta-

tistical basis using the approach of jet area subtraction [28]. For muons the corresponding

subtracted quantity is computed by summing up the momenta of the charged tracks not

associated with the interaction vertex and multiplying the total contribution by a factor

of 0.5 to account for the relative fraction of neutral and charged particles. The values of

the cone size and relative isolation optimised for electrons (muons) are ∆R < 0.3(0.4) with

I < 0.15(0.12).

Applying the full set of selection criteria, the dielectron and dimuon data samples

include approximately 4.4 and 6.7 million events, respectively.

4 Monte Carlo simulation

Samples of simulated Monte Carlo (MC) events are used for estimating the signal efficien-

cies and the rates of most of the background processes. An inclusive DY signal sample

generated by the MadGraph (v1.3.30) leading order (LO) matrix element generator [29]

that includes up to four extra partons in the calculation, is used to estimate the efficiency

and to unfold the data. The parton distribution function (PDF) set CTEQ6L1 [30] is

used for the generation of this sample. Parton shower and hadronisation effects are im-

plemented by interfacing the event generator with pythia6 (v6.4.24) [31] along with the

kT-MLM matching scheme [32] and using the Z2* tune [33, 34] for the underlying event.

The background due to DY → τ+τ− production is simulated in the MadGraph sam-

ple used for the signal. The decays of τ leptons are described by the tauola (v1.27) [35]

package. The backgrounds due to tt and W+jets events are also generated using Mad-

Graph, while dibosons (WW, WZ and ZZ), single top quarks (tW and tW), and muon-

enriched QCD multijet samples are generated using pythia6. The cross sections for the

simulated processes are normalised to the available state-of-the-art theoretical calculations.

For the MadGraph signal as well as W+jets samples, the total inclusive cross sections

are normalised to the values obtained from the theoretical predictions, computed using

fewz (v2.0) [36] with the NNPDF3.0 set of PDF [37]. fewz includes QCD corrections

up to NNLO and electroweak corrections up to next-to-leading order (NLO). The tt rate

is normalised to the predicted cross section with NNLO+NNLL (next-to-next-to-leading

logarithm) accuracy [38]. The normalisations for single top quark and diboson samples

use cross section values available at NLO accuracy [39–42]. For QCD multijet events the

simulated sample is normalised to the LO cross section.

The generated events are passed through a CMS detector simulation based on

Geant4 [43]. Minimum bias events are superposed on each of the simulated samples to

account for pileup. The number of superposed events is dictated by the distribution of the

number of reconstructed primary vertices in data, which is a function of the instantaneous

luminosity.
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5 Analysis method

The fiducial region is defined by a common set of kinematic restrictions applied to both the

dielectron and the dimuon channels: one lepton with pT > 30 GeV and |η| < 2.1, a second

lepton with pT > 20 GeV and |η| < 2.4, and a dilepton invariant mass 60 < m`` < 120 GeV.

The φ∗ range is restricted to a value less than 3.227 so as to keep the statistical and

systematic uncertainties comparable in the relevant bin. Leptons are defined at Born level,

i.e., before bremsstrahlung or final-state radiation of photon (QED-FSR).

Differential cross sections are defined within this fiducial region. Before the spectra are

unfolded (as it will be discussed later), the absolute differential cross section is defined by[
dσ

dφ∗

]
i

=
Ni − Bi
L εi ∆φ∗i

, (5.1)

where Ni, Bi, εi, and ∆φ∗i are the number of selected events, the estimated number of

background events, the overall efficiency, and the width of the ith bin of φ∗, respectively,

and L is the total integrated luminosity.

The normalised cross section is defined as the absolute cross section divided by the

integral over all the bins of the differential distribution: (1/σ) dσ/dφ∗. The cancellation

of some of the factors leads to a reduction in uncertainty, and hence the normalised cross

section is more suitable for a comparison with theoretical predictions.

The double-differential cross section is defined similarly by taking into account the

width of the rapidity bin ∆|y|j , and the efficiency, defined suitably,[
d2σ

dφ∗ d|y|

]
ij

=
Nij − Bij

L εij ∆φ∗i ∆|y|j
. (5.2)

The normalised double-differential cross section is given by (1/σ) d2σ/dφ∗d|y|.
The efficiencies for the trigger, reconstruction, identification, and isolation require-

ments on the leptons are obtained in bins of pT and |η| using “tag-and-probe” tech-

niques [44]. Scale factors are applied as event weights to the simulated samples to correct

for the differences in the efficiencies measured with the data and the simulation. The scale

factors for trigger, reconstruction, identification, and isolation efficiencies depend on pT and

|η|. For the dielectron channel the trigger efficiency scale factors range from 0.92 to 1.03

with an uncertainty in the range 0.1 to 1.9%. The reconstruction efficiency scale factors

vary from 0.98 to 1.01 with uncertainties of 0.1 to 1.2% respectively, while the combined

identification and isolation efficiency scale factors range from 0.91 to 1.02 with uncertain-

ties of 0.1 to 5.7%. For the dimuon channel the scale factor for the trigger efficiency varies

from 0.97 to 1.01 with a typical uncertainty of 0.2%, and the combined scale factor for

the reconstruction, identification, and isolation efficiencies ranges from 0.92 to 1.03 with

an uncertainty of about 0.5%. Energy and momentum scale corrections are applied to the

electrons and muons, respectively, in both experimental data and simulated events [45, 46].

Thirty-four bins in φ∗ are defined [13] with widths that increase with φ∗; the bulk of

the distribution falls in the range φ∗ < 1. When measuring the double-differential cross

section, six bins in |y| of constant width ∆|y| = 0.4 covering the range |y| < 2.4 are used.
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6 Background estimation

The background contributions to the selected samples amount only to about 0.6% and 0.5%

in the dielectron and dimuon channels, respectively. The components of this background

consist of the inclusive production of tt, Z→ τ+τ−, WW, WZ, ZZ, single top quarks, and,

to a lesser extent, W+jets and QCD multijets. The latter two processes contribute when at

least one jet is misidentified as a lepton or when a lepton produced within a jet passes the

isolation requirement. Their contribution in the dimuon channel is negligible. In the dielec-

tron channel the background arising from W+jets and QCD multijet processes is estimated

by fitting the invariant mass distribution in each final bin. The fit is performed using an ana-

lytical shape for the W+jets and QCD multijet backgrounds and a simulation-derived shape

for the other backgrounds and the signal events that have wrongly reconstructed same-sign

dielectrons. Since the processes which generate dielectron pairs in QCD multijets and

W+jets are expected to be charge-symmetric, the analytical fit result from the same-sign

distribution is used to predict the background in the total sample. This background consti-

tutes approximately 6% of the total background in the dielectron channel. All other back-

grounds are estimated using simulated event samples. As indicated in eqs. (5.1) and (5.2),

the estimated total background is subtracted bin-by-bin before unfolding the spectra.

Figure 1 presents the observed and the expected dielectron and dimuon kinematic dis-

tributions. Scale factors have been applied to remove any differences in efficiency between

data and simulation as discussed earlier; weights have been applied to match the distribu-

tion of pileup vertices in data. The error bars represent the statistical uncertainties for the

data and the simulations. The top row displays the qT distribution followed by the φ∗ and

|y| distributions. The data and the expectations in all distributions agree within 10%.

7 Unfolding

To compare with the predictions from event generators, the distributions of the observ-

ables need to be corrected back to the stable particle level for event selection efficiencies

and for detector resolution effects. The measurement uncertainties for φ∗ and |y| are

small, but not zero. In order to remove the impact of events migrating among bins, the

background-subtracted distributions are unfolded. For the double-differential distribution,

the migration of events from one φ∗ bin to another is at the level of 10 (3) % for the dielec-

tron (dimuon) channel, while for the |y| distribution the corresponding values are smaller,

typically less than 2 (1)%, because the |y| bins are large compared to the resolution. In

addition to the effects of measurement uncertainties, the impact of QED-FSR is included in

the unfolding. The observed distributions are unfolded to pre-FSR or “Born-level” distri-

butions using the d’Agostini method [47] as implemented in the RooUnfold package [48].

Four iterations have been performed for the unfolding of the distributions. A response

matrix correlates the values of the observable with and without the detector effects. The

model for the detector resolution is derived from a simulated signal sample generated with

MadGraph interfaced with pythia6.

– 7 –



J
H
E
P
0
3
(
2
0
1
8
)
1
7
2

N
u
m

b
e
r 

o
f 
e
v
e
n
ts

/G
e
V

10

210

310

410

510

610

710
 (8 TeV)

-1
19.7 fbCMS

Data (ee) ee (MG+PY6)→*/Zγ

Wt+tW+tt ZZ

WZ ττ→*/Zγ

WW QCD,W+Jets

 [GeV]
T

q

0 50 100 150 200 250 300

D
a
ta

/M
C

0.5

1

1.5

N
u
m

b
e
r 

o
f 
e
v
e
n
ts

/G
e
V

10

210

310

410

510

610

710
)µµData (  (MG+PY6)µµ→*/Zγ

Wt+tW+tt ZZ

WZ ττ→*Zγ

WW

 (8 TeV)
-1

19.7 fbCMS

 [GeV]
T

q

0 50 100 150 200 250 300

D
a

ta
/M

C

0.5

1

1.5

*
φ

N
u
m

b
e
r 

o
f 
e
v
e
n
ts

/U
n
it
 

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

10
10

Data (ee) ee (MG+PY6)→*/Zγ

Wt+tW+tt ZZ

WZ ττ→*Zγ

WW QCD,W+Jets

 (8 TeV)
-1

19.7 fbCMS

*φ

3−
10

2−
10

1−
10 1

D
a
ta

/M
C

1

1.05

1.1

*
φ

N
u
m

b
e
r 

o
f 
e
v
e
n
ts

/U
n
it
 

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

10
10

)µµData (  (MG+PY6)µµ→*/Zγ

Wt+tW+tt ZZ

WZ ττ→*Zγ

WW

 (8 TeV)
-1

19.7 fbCMS

*φ

3−
10

2−
10

1−
10 1

D
a
ta

/M
C

1

1.05

1.1

N
u
m

b
e
r 

o
f 
e
v
e
n
ts

/U
n
it
 |
y
|

210

310

410

510

610

710

810
Data (ee) ee (MG+PY6)→*/Zγ

Wt+tW+tt ZZ

WZ ττ→*/Zγ

WW QCD,W+Jets

 (8 TeV)
-1

19.7 fbCMS

|y|

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

D
a
ta

/M
C

0.9

1

1.1

N
u
m

b
e
r 

o
f 
e
v
e
n
ts

/U
n
it
 |
y
|

210

310

410

510

610

710

810
)µµData (  (MG+PY6)µµ→*/Zγ

Wt+tW+tt ZZ

WZ ττ→*Zγ

WW

 (8 TeV)
-1

19.7 fbCMS

|y|

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

D
a
ta

/M
C

0.9

1

1.1

Figure 1. Distributions of dilepton transverse momentum qT (upper), φ∗ (middle), and rapidity |y|
(lower) in the dielectron (left) and dimuon (right) channels. The points represent the data and

the shaded histograms represent the expectations which are based on simulation, except for the

contributions from QCD multijet and W+jets events in the dielectron channel, which are obtained

from control samples in data. Here “MG+PY6” refers to a sample produced with MadGraph

interfaced with pythia6 (Z2* tune). The error bars indicate the statistical uncertainties for data

and for simulation only. No unfolding procedure has been applied to these distributions.
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8 Systematic uncertainties

The total systematic uncertainty includes uncertainties in the integrated luminosity, unfold-

ing, lepton efficiencies (trigger, identification and isolation), pileup, background estimation,

electron energy scale, muon momentum scale and resolution, and modelling of QED-FSR.

The impact of these sources of systematic uncertainty varies with φ∗, as shown in fig-

ure 2, and is different for the measurement of absolute and normalised cross sections. As

expected, the systematic uncertainties for the normalised cross sections are substantially

smaller than those for the absolute cross section.

The largest source of uncertainty comes from the measurement of the integrated lu-

minosity and amounts to 2.6% [49]. It is uniform across all φ∗ and |y| bins and is relevant

only for the absolute cross section measurements.

The unfolding uncertainty originates from the finite size of the simulated signal sample

used for the response matrix and hence the variation of this uncertainty with φ∗ and |y|
closely parallels the statistical uncertainty. The model dependence is studied by reweighting

the simulated events used for the unfolding to match either the y or m`` distribution in

data or to change the qT distribution. The effect of this reweighting on the unfolded

data is less than 0.05% for most of the φ∗ range and reaches about 0.5% for the highest

bin of the |y| distribution. The systematic uncertainty due to the model dependence of

the unfolding procedure is of comparable magnitude and both are negligible. Systematic

uncertainties for lepton efficiencies include the uncertainties in the scale factors used to

correct the identification, isolation, and trigger efficiency values from the simulation.

The uncertainty in the background estimates from the simulated samples is assessed

by varying the cross sections of the contributing processes by the amount as measured

by the CMS Collaboration. The tt background is varied by 10% [50] while WZ and ZZ

contributions are varied simultaneously by 20% [51, 52]. In the dielectron channel the

contribution due to QCD multijets and W+jets processes is assigned a conservative uncer-

tainty of 100% based on variations observed when the binning is changed. Uncertainties

in the other background processes lead to negligible effects on the measured cross sections,

being less than a tenth of the effect of the major backgrounds.

The electron energy scale, known to a precision of 0.1–0.2%, affects all of the φ∗ bins

almost uniformly at the level of 0.15% for the absolute cross section measurement. The

impact on the normalised cross sections is smaller, at the level of 0.06%. The muon momen-

tum scale is corrected for the misalignments in the detector systems and the uncertainty

in the knowledge of the magnetic field. The corresponding cross section uncertainties are

below 0.1% level.

To account for the uncertainty in QED-FSR, the simulation is weighted to reflect

the difference between a soft-collinear approach and the exact O(α) result as obtained in

PHOTOS [53]. This uncertainty is less than 0.08% in the entire phase space considered.

To estimate the uncertainty in our measurement due to that in pileup multiplicity,

the number of interactions per bunch crossing in the simulation is varied by ±5%. This

includes the effects due to the modelling of minimum bias events in simulation, uncertainty
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in the measurement of the inelastic cross section and the number of interactions per bunch

crossing as measured in data.

The uncertainty in the cross sections due to variations of the structure functions in

the used PDF sets is negligible.

Summaries of the uncertainties for the absolute and normalised double-differential

cross section measurements and their variations with φ∗ in representative |y| bins are

displayed in figures 3 and 4, respectively. For the double-differential cross section, the

statistical uncertainty from the data and the MC unfolding statistical uncertainty are

larger than in the single-differential cross section measurement. The statistical uncertainty

starts to dominate the total uncertainty in the high φ∗ and high-|y| regions. Furthermore,

the relative contribution of the background processes in the fiducial region, and therefore

the background uncertainty, increases with rapidity. This is especially true for the QCD

multijet and W+jets backgrounds in the dielectron channel, leading to an uncertainty of

approximately 5% in the highest ranges of φ∗ and |y| covered, which nonetheless remains

smaller than the statistical uncertainty.

9 Theoretical predictions

The measured differential cross sections are compared with five theoretical predictions.

Apart from the LO predictions of MadGraph described in section 4, the following are also

considered: (i) powheg [54–57] with the CT10NLO PDFs [58] interfaced with pythia6

and the Z2* tune; (ii) powheg with the CT10NLO PDF, but interfaced with pythia8

(v8.2) [59] and the CUETP8M1 tune [34] using NNPDF2.3 LO PDF [60, 61]; (iii) Res-

Bos [62–64] with CT10NLO PDF, and (iv) MadGraph5 amc@nlo (henceforth referred

to as amc@nlo) [65] with the NNPDF3.0 NLO PDF and pythia8 for the parton shower

and FxFx merging scheme [66]. The generators powheg and amc@nlo are both accurate

at NLO, while the order for ResBos is resummed NNLL/NLO QCD. Since ResBos uses

the resummation method of pT to account for contributions from soft-gluon radiations in the

initial state it differs from fixed-order perturbative calculations and MC showering meth-

ods. ResBos predictions have been obtained with CP version using general purpose grids.

The MadGraph predictions are normalised to the fewz cross section for m`` >

50 GeV [3]. The uncertainties in the total theoretical cross section calculated with fewz

include those due to αS , neglected higher-order QCD terms beyond NNLO, the choice of

heavy-quark masses (bottom and charm), and PDFs, amounting to a total of 3.3%. The

theoretical uncertainties for powheg, ResBos, and amc@nlo include statistical, PDF,

and scale uncertainties. The PDF uncertainty is calculated using the recommendations

of refs. [67, 68], and the scale uncertainties are evaluated by varying the renormalisation

and the factorisation scales independently by factors of 2 and 1/2 and taking the largest

variations as the uncertainty.
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Figure 2. The variation of statistical and systematic uncertainties with φ∗. The upper row

shows the relative uncertainty for the absolute cross section while the lower one shows the relative

uncertainty for the normalised cross section. The left plots pertain to the dielectron channel and

the right plots pertain to the dimuon channel. The uncertainties from the background, pileup, the

electron energy scale or the muon pT resolution, and from QED-FSR modelling are combined under

the label “Other”.

10 Results

The measurements in the dielectron and dimuon channels are consistent within the uncor-

related statistical and systematic uncertainties, and hence they are combined. The best

linear unbiased estimator (BLUE) method [69, 70], as implemented in ref. [71] is used. The

resulting output is unbiased and has minimal variance. The correlations among bins in one

channel as well as between the two channels, including those in the unfolding, are taken

into account. The correlation between channels originates from the systematic uncertain-

ties due to background estimates, pileup, QED-FSR, and the integrated luminosity. The

correlations within one channel also include uncertainties from the lepton efficiencies. The

uncertainty in the integrated luminosity is fully correlated across all bins and both final

states. It is evaluated for the final result after combining channels with the BLUE method.
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Figure 3. The variation of statistical and systematic uncertainties, in representative |y| bins, for

the d2σ/dφ∗d|y| measurements, in the dielectron (left) and dimuon (right) channels. The main

components are shown individually while uncertainties from the background, pileup, the electron

energy scale or the muon pT resolution, and from QED-FSR are combined under the label “Other”.

– 12 –



J
H
E
P
0
3
(
2
0
1
8
)
1
7
2

0

1

2

3
|y| < 0.4

0

1

2

3

4  |y| < 1.6≤1.2 

*φ
-3

10 -210 -110 1

0

5

10

15

20
 2.4≤ |y| ≤2.0 

 (8 TeV)
-1

19.7 fbCMS

R
e

la
ti
v
e

 u
n

c
e

rt
a

in
ty

 [
%

]

Statistical Total systematic Unfolding

Efficiencies Other

Normalised cross section, ee channel

0

1

2

3
|y| < 0.4

0

1

2

3

4  |y| < 1.6≤1.2 

*φ
-3

10 -210 -110 1

0

5

10

15

20
 2.4≤ |y| ≤2.0 

 (8 TeV)
-1

19.7 fbCMS

R
e

la
ti
v
e

 u
n

c
e

rt
a

in
ty

 [
%

]

Statistical Total systematic Unfolding

Efficiencies Other

  channelµµNormalised cross section, 

Figure 4. The variation of statistical and systematic uncertainties, for the normalised double-

differential cross section measurements, in representative |y| bins, in the dielectron (left) and

dimuon (right) channel. The main components are shown individually while uncertainties from

the background, pileup, the electron energy scale or the muon pT resolution, and from QED-FSR

are combined under the label “Other”.
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Figure 5. Comparison of theoretical values for the fiducial cross section with the measured value.

The grey error bar represents the total experimental uncertainty for the measured value. The error

bars for the theoretical values include the uncertainties due to statistical precision, the PDFs, and

the scale choice. The fiducial cross section for fewz is obtained by multiplying the total cross

section with the acceptance determined from the simulated MadGraph+pythia6 sample; the

uncertainty in the prediction corresponds to that in the fewz calculation.

The fiducial cross section, as defined in section 5, is obtained by integrating the absolute

differential cross section dσ/dφ∗. After combining dielectron and dimuon channels, the

measured value for a single lepton flavour is

σ(pp→ Z/γ∗ → `+`−) = 480.7± 0.2 (stat)± 3.6 (syst)± 12.5 (lumi) pb, (10.1)

where the statistical, systematic, and integrated luminosity uncertainties are indicated

separately. As shown in figure 5, this measurement is in agreement with the theoretical

predictions which have a typical uncertainty of 3%.

The combined absolute and normalised single-differential cross sections, dσ/dφ∗ and

(1/σ) dσ/dφ∗ are presented in figure 6. The lower panels indicate the conformity of theory

with data. None of the predictions matches the measurements perfectly for the entire range

of φ∗ covered in this analysis. For the normalised cross section, MadGraph+pythia6

provides the best description with a disagreement of at most 5% over the entire φ∗ range.

ResBos, amc@nlo+pythia8 and powheg+pythia8 predictions are similarly successful

at describing the data at low φ∗ but they disagree with the measurements by as much

as 10% for φ∗ > 0.1. powheg+pythia6 provides the least accurate prediction, with a

disagreement up to 11 (15)% for φ∗ less (greater) than value 0.1. Better models of the

hard-scattering process, such as provided by MadGraph+pythia6, lead to an improved

agreement with the data. At the same time, the importance of the underlying event model

and hadronisation tune for correctly reproducing the φ∗ distribution is evident from the

significant difference (up to 11%) in predicted distributions for a given sample of powheg

events hadronised with pythia6 and with pythia8 separately.
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Figure 6. The measured absolute (left) and the normalised (right) cross sections after the com-

bination of dielectron and dimuon channels. The measurement is compared with the predictions

from ResBos, MadGraph and powheg interfaced with pythia6 (Z2* tune), and amc@nlo and

powheg interfaced with pythia8 (CUETP8M1 tune). In the lower panels, the horizontal bands

correspond to the experimental uncertainty, while the error bars correspond to the statistical, PDF,

and scale uncertainties in the theoretical predictions from ResBos, powheg and amc@nlo and

only the statistical uncertainty for MadGraph.

The combined double-differential cross sections are shown in figure 7 with theoretical

predictions from MadGraph+pythia6 with Z2* tune. Comparisons with a variety of the-

oretical predictions for the normalised cross section are presented in figure 8. The shape of

the φ∗ distribution varies with dilepton rapidity. In order to emphasize this feature, ratios

of cross sections as functions of φ∗ for bins of |y| relative to the central bin |y| < 0.4 are pre-

sented in figure 9, where they are compared to predictions from theoretical calculations and

models. All of the theoretical predictions provide a fairly good description of the shape of

the φ∗ distribution with |y|. However, the predictions from amc@nlo+pythia8 and Mad-

Graph+pythia6 overestimate the cross section at high |y| by approximately 2% and 5%,

respectively, while powheg+pythia6 and powheg+pythia8 underestimate the cross sec-

tion by 2%. The prediction from ResBos agrees with the |y| dependence at the level of 1%.

Due to difference in kinematic selections these results cannot be directly compared

with similar measurements performed by ATLAS Collaboration [13].
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Figure 7. The combined absolute (left) and the normalised (right) double-differential cross sections

as a function of φ∗ for six ranges of |y|. Experimental data is compared with prediction from

MadGraph+pythia6 with Z2* tune.

11 Summary

Measurements of the absolute differential cross sections dσ/dφ∗ and d2σ/dφ∗d|y| and the

corresponding normalised differential cross sections in the combined dielectron and dimuon

channels were presented for the dilepton mass range of 60 to 120 GeV. The measurements

are based on a sample of proton-proton collision data at a centre-of-mass energy of 8 TeV

collected with the CMS detector at the LHC and correspond to an integrated luminosity

of 19.7 fb−1. They provide a sensitive test of theoretical predictions.

The normalised cross section (1/σ) dσ/dφ∗ is precise at the level of 0.24–1.2%.

Theoretical predictions differ from the measurements at the level of 3% (ResBos),

3% (powheg+pythia8), 4% (MadGraph+pythia6), 6% (amc@nlo+pythia8) and

11% (powheg+pythia6) for φ∗ . 0.1. For higher values of φ∗ the differences are larger:

about 9, 8, 5, 10 and 15%, respectively. These observations suggest that more advanced

calculations of the hard-scattering process reproduce the data better. At the same time, the

large difference in theoretical predictions from a single powheg sample interfaced with two

different versions of pythia and underlying event tunes indicates the combined importance

of the showering method, nonperturbative effects and the need for soft-gluon resummation

on the predicted values of cross sections reported in this paper.

The variation of the cross section with |y| is reproduced by ResBos within 1%, while

MadGraph+pythia6 differs from the data by 5% comparing the most central and most

forward rapidity bins. The predictions from amc@nlo+pythia8, powheg+pythia6, and

powheg+pythia8 deviate from the measurement by at most 2%.
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Figure 8. The ratio of predicted over measured normalised differential cross sections,

(1/σ) d2σ/dφ∗d|y|, as a function of φ∗ for six bins in |y|. The theoretical predictions from Mad-

Graph+pythia6, powheg+pythia6, powheg+pythia8, ResBos, and amc@nlo+pythia8 are

shown. The horizontal band corresponds to the uncertainty in the experimental measurement. The

vertical bars are dominated by the statistical uncertainties in the theoretical predictions.
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Figure 9. The ratio of d2σ/dφ∗d|y| for higher rapidity bins (|y| > 0.4) normalised to the val-

ues in the most central bin |y| < 0.4. The theoretical predictions from MadGraph+pythia6,

powheg+pythia6, powheg+pythia8, ResBos, and amc@nlo+pythia8 are also shown. The

uncertainties in the theoretical predictions at large φ∗ are dominated by the statistical component.
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This analysis validates the overall theoretical description of inclusive production of

vector bosons at the LHC energies by the perturbative formalism of the standard model.

Nevertheless, further tuning of the description of the underlying event is necessary for an

accurate prediction of the kinematics of the Drell-Yan production of lepton pairs.
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L. Baronea,b, F. Cavallaria, M. Cipriania,b, N. Dacia, D. Del Rea,b,17, E. Di

Marcoa,b, M. Diemoza, S. Gellia,b, E. Longoa,b, F. Margarolia,b, B. Marzocchia,b,

– 31 –



J
H
E
P
0
3
(
2
0
1
8
)
1
7
2

P. Meridiania, G. Organtinia,b, R. Paramattia,b, F. Preiatoa,b, S. Rahatloua,b, C. Rovellia,

F. Santanastasioa,b
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