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Abstract—We conducted a study to investigate trust in and
dependence upon robotic decision support among nurses and
doctors on a labor and delivery floor. There is evidence that
suggestions provided by embodied agents engender inappropriate
degrees of trust and reliance among humans. This concern is a
critical barrier that must be addressed before fielding intelligent
hospital service robots that take initiative to coordinate patient
care. Our experiment was conducted with nurses and physicians,
and evaluated the subjects’ levels of trust in and dependence
on high- and low-quality recommendations issued by robotic
versus computer-based decision support. The support, generated
through action-driven learning from expert demonstration, was
shown to produce high-quality recommendations that were ac-
cepted by nurses and physicians at a compliance rate of 90%.
Rates of Type I and Type II errors were comparable between
robotic and computer-based decision support. Furthermore, em-
bodiment appeared to benefit performance, as indicated by a
higher degree of appropriate dependence after the quality of
recommendations changed over the course of the experiment.
These results support the notion that a robotic assistant may
be able to safely and effectively assist in patient care. Finally,
we conducted a pilot demonstration in which a robot assisted
resource nurses on a labor and delivery floor at a tertiary care
center.

I. INTRODUCTION

Service robots are being increasingly utilized across a wide
spectrum of clinical settings. They are deployed to improve
operational efficiency by delivering and preparing supplies,
materials and medications [6, 15, 20, 35, 38]. The systems
exhibit robust, autonomous capabilities for navigating from
point to point while avoiding obstacles [33, 34], and initial
concerns regarding physical safety around people have largely
been addressed. However, these robots are not yet well-
integrated into the healthcare delivery process – they do not
operate with an understanding of patient status and needs, and
must be explicitly tasked and scheduled. This can impose
a substantial burden upon the nurse in charge of resource
allocation, or the “resource nurse,” – particularly within fast-
paced hospital departments, such as the emergency or labor
and delivery units.

Resource nurses are essentially solving an NP-hard [5]
problem on-the-fly: They assign resources such as beds (e.g.
for triage, in-patient, recovery and operating rooms) while
subject to upper- and lower-bound temporal constraints on
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availability and considering stochasticity in the timing of
patient progression from one bed type to another. They must
also pair patients with staff nurses, equipment and resources.
The resource nurse’s job is made feasible because staff nurses
understand patients statuses and needs and will take initiative
to accomplish some tasks without being explicitly directed.

As the number and types of hospital service robots in-
creases, these robots must similarly take initiative in order
to provide a net productivity benefit. The need to explicitly
task many service robots may degrade the performance of a
resource nurse [9, 11, 37], which has implications for both
patient safety and the well-being of healthcare professionals
[7, 24, 42, 47].

On the other hand, a robot that autonomously takes initiative
when performing tasks may make poor decisions in the ab-
sence of oversight. Furthermore, decades of research in human
factors cautions against fully autonomous decision making, as
it contributes to poor human situational awareness and degra-
dation in the human supervisor’s performance [23, 41, 46, 53].
When integrating machines into human cognitive workflows,
an intermediate level of autonomy is preferred [23, 53], in
which the system provides suggestions to be accepted or
modified by a human supervisor. Such a system would fall
within the “4-6” range on the 10-point scale of Sheridan’s
levels of automation [41].

In this paper, we investigate the human factors implications
of fielding hospital service robots that will necessarily reason
about which tasks to perform and when to perform them.
In particular, we investigate trust in and dependence upon
robotic decision support among nurses and doctors on a labor
and delivery floor. Studies of human-automation interaction
in aviation – another safety-critical domain – have shown
that human supervisors can inappropriately trust in and rely
upon recommendations made by automation systems [16]. For
example, numerous aviation incidents have been attributed
to human overreliance on imperfect automation [16]. Other
studies have examined the effects of changes in system reli-
ability, and found that it led to suboptimal control allocation
strategies and reduced levels of trust in the systems [13, 14].
There is also evidence that suggestions provided by embodied
agents engender over-trust and inappropriate reliance [44].
This concern is a critical barrier to fielding intelligent hospital
service robots that take initiative to participate with nurses in
decision making.



Fig. 1. A resource nurse must assimilate a large variety and volume of
information to effectively reason about resource management for patient care.

This paper presents three novel contributions to the fields
of robotics and healthcare. First, through human subject
experimentation with physicians and registered nurses, we
conducted the first known study involving experts working
with an embodied robot on a real-world, complex decision
making task comparing trust in and dependence on robotic
versus computer-based decision support. Previous studies have
focused on novice users and/or simple laboratory decision
tasks [4, 12, 26, 31]. Our findings provide the first evidence
that experts performing decision making tasks appear to be less
susceptible to the negative effects of support embodiment, as
trust assessments were similar in both the computer-based and
robotic decision support conditions. Furthermore, embodiment
yielded performance gains compared with computer-based
support after the quality of recommendations changed over the
course of the experiment. This provides encouraging evidence
that intelligent service robots can be safely integrated into the
hospital setting.

Second, decision support generated through action-driven
learning from expert demonstration was shown to produce
high-quality recommendations accepted by nurses and physi-
cians at a compliance rate of 90%. This indicates that a hospi-
tal service robot may be able to learn context-specific decision
strategies and apply them to make reasonable suggestions for
which tasks to perform and when.

Finally, based on the previous two findings, we conducted
the first test demonstration in which a robot assisted resource
nurses on a labor and delivery floor in a tertiary care center.
Our robot used machine learning computer vision techniques
to read the current status of the labor floor and make sugges-
tions about resource allocation, and used speech recognition to
receive feedback from the resource nurse. To our knowledge,
this is the first investigation to field a robotic system in a
hospital to aid in the coordination of resources required for
patient care.

II. BACKGROUND

While the effects of embodiment on engagement in social
judgment tasks are extensively studied and well-documented
(e.g. [25, 26, 48, 49]), the relationship between embodiment
and humans levels of trust and dependence is a relatively new
area of research [4, 26, 31]. This topic is crucial if robots are
to become more than companions, but advisors to people.

Trust is defined as “the attitude that an agent will help
achieve an individual’s goals in a situation characterized
by uncertainty and vulnerability [28],” and dependence is a

behavioral measure indicating the extent to which users accept
the recommendation of robots or virtual agents. Measures of
dependence are distinguished according to whether the user
makes Type I or Type II errors [17]. “Type I” refers to reliance,
or the degree to which users accept advice from an artificial
agent when it offers low-quality recommendations. “Type II”
refers to the extent to which human users reject advice from
an artificial agent when the advice is of high quality. The
degrees to which a user accepts high-quality advice and rejects
low-quality advice are called “appropriate compliance” and
“appropriate reliance,” respectively.

Studies examining the effects of embodiment on trust
and dependence necessarily include objective assessments of
dependence and task performance in addition to subjective
assessment of the users trust in the system [4, 12, 26, 31, 40].
Scassellati et. al. [4, 31] conducted a series of experiments to
compare compliance rates when interacting with a physically
embodied robot, a video of a robot and a disembodied voice.
The tasks involved users receiving instructions to move objects
to different locations, along with strategy advice for solving
Sudoku-like puzzles. The authors found that embodiment was
associated with a higher rate of compliance with advice pro-
vided by the robot, and suggested this indicated a greater level
of human trust for an embodied robot. Similarly, Kiesler et.
al. [26] found that participants consumed fewer calories after
receiving health advice from a physically embodied robot, as
compared with advice from a video of a robot or an on-screen
animated virtual agent.

Studies in human factors and decision support indicate that
increased anthropomorphism also affects user interactions. Pak
et al. [40] evaluated how the anthropomorphic characteristics
of decision support aids assisting subjects answering questions
about diabetes influenced subjective trust and task perfor-
mance. The results indicated that younger adults trusted the
anthropomorphic decision aid more, whereas older adults were
insensitive to the effects of anthropomorphism. Moreover,
shorter question response time (after controlling for accuracy)
was observed in both age groups, suggesting a performance
gain when receiving advice from a more anthropomorphic aid.
In another study, de Visser [12] varied the degree of anthro-
pomorphism of a decision support system while participants
performed a pattern recognition task. The results indicated
that the perceived knowledgeableness of the system increased
with increasing anthropomorphism; however, their findings on
dependence were inconclusive.

The results from studies with embodied robots must be
interpreted with caution since they were primarily focused
on situations in which robots produced reliable and high-
quality recommendations. There is a growing body of research
indicating that the quality of decision support cannot be
relied upon, especially during complex tasks [52]. Negative
consequences of humans blindly depending upon imperfect
embodied artificial intelligence have been previously reported
[44]. For example, Robinette et al. [44], conducted experi-
ments in which a robot guided human participants during a
mock emergency rescue scenario involving a building fire. All



participants followed the robot, even when the robot led them
down unsafe routes and/or displayed simulated malfunctions
and other suspicious behavior.

Such dependence upon imperfect automation presents seri-
ous problems for robotic assistance during safety-critical tasks.
This concern is heightened by results from studies indicating
increased trust in and reliance upon embodied systems as
compared with virtual or computer-based decision support,
suggesting a higher possibility of committing Type I errors.
However, we also note that prior studies on embodiment,
trust and dependence were conducted with novices rather than
domain experts performing complex real-world tasks. This
leaves us with founded concerns, but gaps in our understanding
of how human-robot interaction impacts the decision making
of expert resource nurses. In the next sections, we describe our
experiment and present a positive result for service robots in a
hospital setting, with Type I and Type II error rates comparable
to those observed for computer-based decision support. Fur-
thermore, embodiment appeared to improve performance, as
indicated by a higher degree of appropriate compliance when
the quality of advice changed mid-experiment.

III. EXPERIMENTAL INVESTIGATION

In this section, we describe human-subject experimentation
aimed at comparing trust in and dependence upon an embodied
robot assistant versus computer-based decision support in a
population of physicians and registered nurses. The partici-
pants interacted with a high-fidelity simulation of an obstetrics
department at a tertiary care center. This simulation provided
users the opportunity to assume the roles and responsibilities
of a resource nurse, which included assigning labor nurses and
scrub technicians to care for patients, as well as moving pa-
tients throughout various care facilities within the department.

We conducted the experiment using a within-subjects design
that manipulated two independent variables: embodiment –
subjects received advice from either a robot or a computer,
and recommendation quality – subjects received high- or low-
quality advice. Each participant experienced four conditions,
the quality of advice was blocked and the ordering of the
conditions was counterbalanced in order to mitigate potential
learning effects. Figure 2 depicts the experimental setup for
the embodied condition.

A. Hypotheses and Measures

H1 Rates of appropriate compliance with and reliance on
robotic decision support will be comparable to or greater than
those observed for computer-based decision support. Objective
measures of compliance and reliance were assessed based on
the participants’ “accept” or “reject” response to each decision
support recommendation. Statistics on appropriate compliance,
appropriate reliance, Type I and Type II errors were recorded.
H2 Robotic decision support will be rated more favorably
than computer-based decision support in terms of trust and
other attitudinal measures. Numerous studies have demon-
strated that embodied and anthropomorphic systems are rated

Fig. 2. Experiment participant pictured receiving advice from the robotic
decision support.

more favorably by users than computer-based interactive sys-
tems. We hypothesized that the robotic system in our study
would elicit this favorable response (H2), while engendering
appropriate rates of compliance and reliance (H1). This would
indicate a positive signal for the successful adoption of a
hospital service robot that participates in decision making.
Subjective measures of trust and attitudinal response were
collected via questionnaires administered to each participant
after each of the four trials. Trust was assessed by a composite
rating of seven-point Likert-scale responses for a commonly
used, validated trust questionnaire [21]. Other attitudinal ques-
tions were drawn from [29] to evaluate personality recognition,
social responses and social presence in human-robot interac-
tion, and were responded to on a 10-point Likert scale.

B. Materials and Setup

We conducted our experiments using a high-fidelity simu-
lation of a labor and delivery floor. This simulation had previ-
ously been developed through a hospital quality improvement
project as a training tool over a year-long, rigorous design
and iteration process that included workshops with nurses,
physicians, and medical students to ensure the tool accurately
captured the role of a resource nurse. Parameters within the
simulation (e.g. arrival of patients, timelines on progression
through labor) were drawn from medical textbooks and papers
and modified through alpha and beta testing to ensure that the
simulation closely mirrored the patient population and nurse
experience at our partner hospital.

An Aldebaran Nao was employed for the embodied con-
dition (Figure 2). A video of the Nao offering advice to a
participant with speech and co-speech gestures is viewable
at http://tiny.cc/NAORecommendation. Participants received
advice through synthesized speech under both the embodied
and computer-based support conditions, using a male voice
drawn from the Mary Text-to-Speech System (MaryTTS) [45].
The advice was also displayed as text in an in-simulation pop-
up box under both conditions. The subject clicked a button in
order to accept or reject the advice. These buttons were not
clickable until the narration of the advice was complete; this
narration took equal time in both conditions.

C. Experimental Procedure

Seventeen physicians and registered nurses participated in
the experiment (one man and sixteen women). The participants
were recruited from the partner hospital’s obstetrics depart-
ment via email and word-of-mouth.

http://tiny.cc/NAORecommendation


First, participants provided consent for the experiment and
watched an 8-minute tutorial video describing the labor and
delivery floor simulation. The tutorial video is viewable at
http://tiny.cc/simTutorial. Participants were instructed to play
the simulation four times, with each iteration lasting 10
minutes, simulating a total of 4 hours on the labor floor.
The computer or embodied system would interject during the
simulation to make recommendations on which nurse should
care for which patient, and on patient room assignments.
Participants were asked to accept or reject the advice based
on their own judgment. They were not informed whether the
robotic or virtual decision support coach was providing high-
or low-quality advice. Finally, after each of the four trials,
participants were asked to rate their subjective experience via
a set of Likert-scale questions, as described in Section III-A.

IV. TOWARD DECISION SUPPORT - FORMULATION OF THE
RESOURCE NURSE’S DECISION-MAKING PROBLEM

This section provides a formal representation of the resource
nurse’s decision making problem. Section V describes how we
implemented the decision support based on this formulation.

A resource nurse must solve a problem of task allocation
and schedule optimization with stochasticity in the number
and types of patients and the duration of tasks. A task τi
represents the set of steps required to care for patient i, and
each τ ji is a given stage of labor for that patient. Stages
of labor are related by stochastic lower-bound constraints
W〈τj

i ,τ
y
x 〉, requiring the stages to progress sequentially. There

are stochastic time constraints, Dabs
τj
i

and Drel

〈τj
i ,τ

y
x 〉, relating the

stages of labor to account for the inability of resource nurses
to perfectly control when a patient will move from one stage
of labor to the next. Arrivals of τi (i.e. patients) are drawn
from stochastic distributions. The model considers three types
of patients: scheduled cesarean patients, scheduled induction
patients and unscheduled patients. The set of W〈τj

i ,τ
y
x 〉, D

abs
τj
i

and Drel
〈τi,τj〉 are dependent upon patient type.

Labor nurses are modeled as agents with a finite capacity
to process tasks in parallel, where each subtask requires a
variable amount of this capacity. For example, a labor nurse
may generally take care of a maximum of two patients. If the
nurse is caring for a patient who is “fully and pushing” (i.e.,
the cervix is fully dilated and the patient is actively trying to
push out the baby) or in the operating room, the nurse may
only care for that patient.

Rooms on the labor floor (e.g., a labor room, an operating
room, etc.) are modeled as resources, which process subtasks
in series. Agent and resource assignments to subtasks are pre-
emptable, meaning that the agent and resource assigned to
care for any patient during any step in the care process may
be changed over the course of executing that subtask.

In this formulation, At a
τj
i

∈ {0, 1} is a binary decision

variable for assigning agent a to subtask τ ji for time epoch
[t, t+ 1). Gt a

τj
i

is an integer decision variable for assigning a

certain portion of the effort of agent a to subtask τ ji for time

epoch [t, t + 1). Rt r
τj
i

∈ {0, 1} is a binary decision variable

for whether subtask τ ji is assigned resource r for time epoch
[t, t+1). Hτi ∈ {0, 1} is a binary decision variable for whether
task τi and its corresponding subtasks are to be completed.
Uτj

i
specifies the effort required from any agent to work on

τ ji . sτj
i
, fτj

i
∈ [0,∞) are the start and finish times of τ ji .

min fn
(
{ At a

τ
j
i

}, { Gt a

τ
j
i

}, { Rt r

τ
j
i

}, {Hτi}, {sτji , fτji }
)

(1)

∑
a∈A

At a

τ
j
i
≥ 1−M (1−Hτi) , ∀τ

j
i ∈ τ , ∀t (2)

M
(
2− At a

τ
j
i
−Hτi

)
≥ −U

τ
j
i
+ Gt a

τ
j
i
≥

M
(
At a

τ
j
i
+Hτi − 2

)
,∀τ ji ∈ τ , ∀t (3)∑

τ
j
i ∈τ

Gt a

τ
j
i
≤ Ca,∀a ∈ A,∀t (4)

∑
r∈R

Rt r

τ
j
i
≥1−M (1−Hτi) , ∀τ

j
i ∈ τ , ∀t (5)

∑
τ
j
i ∈τ

Rt r

τ
j
i
≤ 1, ∀r ∈ R, ∀t (6)

ub
τ
j
i
≥ f

τ
j
i
− s

τ
j
i
≥ lb

τ
j
i
, ∀τ ji ∈ τ (7)

sτyx − fτji ≥W〈τi,τj〉, ∀τi, τj ∈ τ |, ∀W〈τi,τj〉 ∈ TC (8)

fτyx − sτji ≤ D
rel

〈τi,τj〉, ∀τi, τj ∈ τ |∃D
rel

〈τi,τj〉 ∈ TC (9)

f
τ
j
i
≤ Dabs

τi , ∀τi ∈ τ |∃D
abs
τi ∈ TC (10)

Equation 2 enforces that each subtask τ ji during each time
epoch [t, t+ 1) is assigned one agent. Equation 3 ensures that
each subtask τ ji receives a sufficient portion of the effort of
its assigned agent a during time epoch [t, t + 1). Equation 4
ensures that agent a is not oversubscribed. Equation 5 ensures
that each subtask τ ji of each task τi that is to be completed (i.e.,
Hτi = 1) is assigned one resource r. Equation 6 ensures that
each resource r is assigned to only one subtask during each
epoch [t, t+1). Equation 7 requires the duration of subtask τ ji
to be less than or equal to ubτj

i
and at least lbτj

i
units of time.

Equation 8 requires that τyx occurs at least W〈τj
i ,τ

y
x 〉 units of

time after τ ji . Equation 9 requires that the duration between the
start of τ ji and the finish of τyx is less than Drel

〈τj
i ,τ

y
x 〉. Equation

10 requires that τ ji finishes before Dabs
τj
i

units of time have
expired since the start of the schedule.

The stochasticity of the problem arises from the uncertainty
in the upper and lowerbound of the durations (ubτj

i
, lbτj

i
) of

each of the steps in caring for a patient, the number and types
of patients τ and the temporal constraints TC relating the
start and finish of each step. These variables are a function
of the resource and staff allocation variables Rt a

τj
i

, At a
τj
i

, and
patient task state Λτj

i
, which includes information on pa-

tient type (i.e. presenting with scheduled induction, scheduled

http://tiny.cc/simTutorial


cesarean section, or acute unplanned anomaly), gestational
age, gravida, parity, membrane status, anesthesia status, cervix
status, time of last exam and any co-morbidities. Formally,(
{ubτj

i
, lbτj

i
|τ ji ∈ τ}, τ ,TC

)
∼ P ({ Rt a

τj
i

, At a
τj
i

,Λτj
i
,∀t ∈

[0, 1, . . . , T ]}).

A. The Role of the Resource Nurse

The functions of a resource nurse are to assign nurses to
take care of labor patients and to assign patients to labor beds,
recovery room beds, operating rooms, ante-partum ward beds
or post-partum ward beds. The resource nurse has substantial
flexibility when assigning beds, and their decisions will depend
upon the type of patient and the current status of the unit in
question. They must also assign scrub technicians to assist
with surgeries in operating rooms, and call in additional
nurses if required. The corresponding decision variables for
staff assignments and room/ward assignments in the above
formulation are At a

τj
i

and Rt r
τj
i

, respectively.
The resource nurse may accelerate, delay or cancel sched-

uled inductions or cesarean sections in the event that the floor
is too busy. Resource nurses may also request expedited active
management of a patient in labor. The decision variables for
the timing of transitions between the various steps in the care
process are described by sτj

i
and fτj

i
. The commitments to a

patient (or that patient’s procedures) are represented by Hτi .
The resource nurse may also reassign roles among nurses:

For example, a resource nurse may pull a triage nurse or even
care for patients herself if the floor is too busy. Or, if a patient’s
condition is particularly acute (e.g., the patient has severe
pre-eclampsia), the resource nurse may assign one-to-one
nursing. The level of attentional resources a patient requires
and the level a nurse has available correspond to variables Uτj

i

and Gt a
τj
i

, respectively. The resource nurse makes his or her
decisions while considering current patient status Λτj

i
, which

is manually transcribed on a whiteboard, shown in Figure 1.

V. IMPLEMENTATION OF DECISION SUPPORT

There are two fundamental challenges to providing decision
support guidance through direct solution of the optimization
problem depicted above. First, the computational complexity
of the problem precludes production of real-time solutions.
The computational complexity of satisfying constraints in
Equations 2-10 is given by O

(
2|A||R|T

2

C
|A|T
a

)
, where |A| is

the number of agents, with each agent possessing an integer
processing capacity of Ca; there are n tasks τi, each with
mi subtasks; |R| resources; and an integer-valued planning
horizon of T units of time. In practice, there are ∼ 10
nurses (agents) who can care for up to two patients at a
time (i.e., Ca = 2,∀a ∈ A), 20 different rooms (resources)
of varying types, 20 patients (tasks) at any one time and a
planning horizon of 12 hours or 720 minutes, yielding a worst-
case complexity of ∼ 210∗20∗7202

210∗720 ≥ 2106

, which is
computationally intractable.

The second challenge to decision support guidance is that
the precise form of the objective function (Equation 1) that

resource nurses optimize for is unknown. Prior work has
indicated that domain experts are adept at describing the
features (high-level, contextual and task-specific) used in their
decision making, yet it is more difficult for experts to describe
how they reason about these features [10, 43]. As such, we
applied a machine learning technique to learn a set of heuristic
scheduling policies from demonstrations of resource nurse
decision making. We then applied these learned policies to
produce advice for the computer-based and robotic decision
support systems.

A. Learning from Resource Nurses

In this section, we present a framework for learning (via
expert demonstration) a set of heuristics for resource allocation
and scheduling that emulates resource nurse decision making.
For the purposes of our experiment, we focused on learning
a policy for recommending which nurse should care for
which patient, and for making patient room assignments. We
demonstrate in Section VI that this technique produced high-
quality recommendations, as evidenced by an overall 90%
accept rate of high-quality advice.

We applied action-driven learning rather than explicitly
modeling a reward function and relying on dynamic program-
ming or constraint solvers. This latter approach [3, 27, 36, 50,
55, 56] can quickly become computationally intractable for
problems involving hundreds of tasks and tens of agents due
to memory limitations. Approximate dynamic programming
approaches exist that essentially reformulate the problem as
regression [27, 32], yet the amount of data required to regress
over a large state space remains challenging, and MDP-based
task allocation and scheduling solutions exist only for simple
problems [1, 51, 54].

Instead, we applied an apprenticeship scheduling algorithm
[19] inspired by work in webpage ranking [22, 39]. The
model representation, a graph with nodes and directed arcs,
provides a suitable analogy for capturing the complex temporal
dependencies (i.e., precedence, wait and deadline constraints)
relating tasks within a scheduling problem. The approach uses
pairwise comparisons between the actions taken (e.g., schedule
agent a to complete task τi at time t) and the set of actions
not taken (e.g., unscheduled tasks at time t) to learn relevant
model parameters and scheduling policies demonstrated by
the training examples. This pairwise approach has the key
advantage that it is nonparametric, in that the cardinality of
the input vector is not dependent upon the number of tasks
(or actions) that can be performed in any instance.

Consider a set of task-resource-agent (τ ji − Ra
τj
i

− Aa
τj
i

)
assignments, denoted πq ∈ Π. Each assignment πq has a set of
associated features, γπq , indicating patient type (i.e. presenting
with scheduled induction, scheduled cesarean section, or acute
unplanned anomaly), bed type, whether or not the bed is
occupied, and staff status (i.e. number of patients for which
the staff member is serving as primary nurse, covering nurse,
baby nurse, or scrub technician). Next, consider a set of
m observations, O = {O1, O2, . . . , Om}. Each observation
consists of a feature vector describing the task-resource-agent



tuple πq scheduled by the expert demonstrator (including a null
task τ∅, resource r∅ or agent a∅ if no task, resource or agent
was scheduled). The goal is to then learn a policy that correctly
determines which task-resource-agent tuple πq to schedule as
a function of feature state.

rankθm〈πq,πr〉 :=
[
γπq
− γπr

]
, ym〈πq,πr〉 = 1,

∀πr ∈ Π\πq,∀Om ∈ O|πq scheduled in Om (11)

rankθm〈πr,πq〉 :=
[
γπr
− γπq

]
, ym〈πr,πq〉 = 0,

∀πr ∈ Π\πq,∀Om ∈ O|πq scheduled in Om (12)

π̂q∗ = argmax
πq∈Π

∑
πq∈Π

fpriority (πq, πr) (13)

In order to learn to correctly assign the subsequent task
to the appropriate resource and/or agent, we transform each
observation Om into a new set of observations by perform-
ing pairwise comparisons between the scheduled assignment
πq and the set of assignments s that were not scheduled
(Equations 11-12). Equation 11 creates a positive example
for each observation in which a πq was scheduled. This
example consists of the input feature vector, φm〈πq,πr〉, and
a positive label, ym〈πq,πr〉 = 1. Each element of the input
feature vector φm〈πq,πr〉 is computed as the difference between
the corresponding values in the feature vectors γπq

and γπr
,

describing scheduled assignment πq and unscheduled task
πr. Equation 12 creates a set of negative examples with
ym〈πr,πq〉 = 0. For the input vector, we take the difference
of the feature values between unscheduled assignment πr and
scheduled assignment πq .

We applied these observations to train a decision-tree clas-
sifier fpriority(πq, πr) ∈ {0, 1} to predict whether it is better
to make the task-resource-agent assignment πq as the next as-
signment rather than πr. Given this pairwise classifier, we can
determine which single assignment πq* is the highest-priority
assignment according to Equation 13 by determining which
assignment is most often of higher priority in comparison to
the other assignments in Π.

In our experiments, fpriority(πq, πr) was applied directly
to generate high-quality recommendations. We generated low-
quality advice using two methods: The first method rec-
ommended the action that minimized Equation 13, instead
of maximizing it. This approach would typically generate
infeasible advice (e.g., move a patient to a room that is
currently occupied). A second method was applied to offer
low-quality but feasible advice (e.g., assign a post-operating
patient to triage). This was achieved by evaluating Equation
13 after filtering the space of possible actions to include
only feasible actions (per the constraints in Equations 2-
10). Recommendations for the low-quality condition were
produced by randomly selecting between these two methods
in order to mitigate ordering effects.

The dataset used for training was generated by seven
resource nurses working with the simulation for a total of 21/2

TABLE I
CONFUSION MATRIX FOR PARTICIPANTS SHOWN AS A RAW COUNT AND

PERCENTAGE OF THE WHOLE.

Robotic Decision Support Response
Accept Reject

Advice Quality High 130 (44.5%) 16 (5.48%)
Low 16 (5.48%) 130 (44.5%)

Virtual Decision Support Response
Accept Reject

Advice Quality High 134 (45.3%) 14 (4.78%)
Low 19 (6.48%) 126 (43.0%)

TABLE II
CORRECT ACCEPT AND REJECT DECISIONS MADE WITH

COMPUTER-BASED (C-ACCEPT, C-REJECT) VERSUS ROBOTIC
(R-ACCEPT, R-REJECT) DECISION SUPPORT, AS A FUNCTION OF TRIAL
NUMBER, SHOWN AS A RAW COUNT AND PERCENTAGE OF THE WHOLE.

Trial Number
Bad Advice Good Advice

1 2 3 4
C-Accept 5 (10.4%) 4 (6.7%) 41 (82.0%) 49 (92.5%)
R-Accept 9 (17.6%) 5 (9.6%) 43 (91.5%) 44 (93.6%)

Trial Number
Good Advice Bad Advice

1 2 3 4
C-Reject 2 (28.6%) 1 (2.8%) 11 (73.3%) 20 (87.0%)
R-Reject 3 (8.6%) 1 (10.0%) 21 (84.0%) 16 (94.1%)

hours, simulating 60 hours of elapsed time on a real labor
floor. This yielded a dataset of more than 3, 013 individual
decisions. None of the seven resource nurses who contributed
to the dataset participated in the experiment.

VI. RESULTS

We report statistical testing of our hypotheses here. We
defined statistical significance at the α = 0.05 level.

A. Analysis & Discussion of H1
Objective measures of compliance and reliance were as-

sessed based on the participant’s “accept” or ‘reject” responses
to each decision support recommendation. Statistics on hits,
misses, false alarms and correct rejections are shown in Table
I. Results from a z-test for two proportions indicated no
statistically significant difference in the Type II error rates for
the robotic (pR = 13.1%) and computer-based (pC = 11.0%)
decision support conditions (z = 0.562, p = 0.713), nor in
the rates of correct “accept” responses to high-quality advice
(pR = 90.5%, pC = 89.0%, p = 0.713) and “reject” responses
to low-quality advice (pR = 86.9%, pC = 89.0%, p = 0.287)
across the two conditions. Results from a TOST equivalence
test using two z-tests for two proportions indicated that the
rates of error, appropriate compliance and appropriate reliance
between the robotic and virtual decision support conditions
were equivalent within 95% confidence.

We also analyzed the rates of Type I and Type II errors in
the second and third trials, at the transition in advice quality
(Table II). Fisher’s exact test found a significant difference



TABLE III
SUBJECTIVE MEASURES POST-TRIAL QUESTIONNAIRE WITH

STATISTICAL SIGNIFICANCE. QUESTIONS 1-5 WERE RESPONDED TO ON A
7-POINT SCALE, AND QUESTIONS 6-9 ON A 10-POINT SCALE.

Trust and Embodiment in Human-Robot Interaction
1. I am suspicious of the system’s intent, actions or outputs.
2. I think I could have a good time with this decision support coach.
3. People will find it interesting to use this decision support coach.
4. While you were interacting with this decision-support coach, how much
did you feel as if it were an intelligent being?
5. While you were interacting with this decision-support coach, how much
did you feel as if it were a social being?
6. Unsociable/Sociable.
7. Machine-Like/Life-Like.

in the rate of incorrect “accept” of low quality advice (Type I
error) across the second and third trials for the computer-based
decision support (6.7% vs. 26.7%, p = 0.046), but not for the
robotic support (9.6% vs. 16.0%, p = 0.461). A significant
difference was also found in the rate of incorrect “reject”
of high-quality advice (Type II error) across the second and
third trials for the computer-based decision support (2.8%
vs. 18.0%, p = 0.040), but not for robotic decision support
(10.0% vs. 8.5%, p ∼ 1.0). In other words, participants’
rate of Type I error associated with computer-based support
increased significantly when participants had received high-
quality advice in the previous trial. Similarly, the rate of Type
II error associated with computer-based support increased
significantly when participants had received low-quality advice
in the previous trial. No such significant differences were
found for the robotic support conditions.

H1 Takeaway: These results support H1, in that Type I
and Type II error rates were comparable between robotic and
computer-based decision support. Furthermore, embodiment
appeared to offer performance gains, as indicated by lower
error rates after the quality of recommendation changed mid-
experiment. These are encouraging findings because they pro-
vide evidence that a robotic assistant may be able to participate
in decision making with nurses without eliciting inappropriate
dependence. One potential rationale for these results is that
experts may be less susceptible to the negative effects of
embodiment, as has been documented for experienced users
interacting with anthropomorphic agents [40]. We note that
our study was conducted with a stationary robot, in which
movement was limited to co-speech gestures. Further inves-
tigation is warranted for situations in which experts interact
with mobile service robots that participate in decision-making.

B. Analysis & Discussion of H2

A composite measure of trust was computed, as in [21]. Re-
sults from a repeated-measures ANOVA (RANOVA) demon-
strated a statistically significant increase in the average rating
for the decision support system under the high-quality advice
condition (M = 5.39, SD = 0.666) as compared with the
low-quality condition (M = 3.49, SD = 1.26) (F (1, 14) =
46.3, p < 0.001). However, a RANOVA yielded no statistically
significant difference in trust between the robotic (M = 4.41,
SD = 1.32) and computer-based (M = 4.48, SD = 1.47)

embodiment conditions (F (1, 14) = 0.450, p = 0.513).
Results from a TOST equivalence test, using two t-tests,
indicated that subjects’ trust ratings for the computer-based
and robotic support were within one point of one another on
a 7-point Likert Scale.

We observed significant differences in the attitudinal assess-
ment of the robotic versus computer-based decision support
conditions for Questions 2, 3, 5, 6 in Table III, indicating
that participants rated the robotic system more favorably. The
result was established using a two-way omnibus Friedman test,
followed by pairwise Friedman tests. The test statistics for the
pairwise Friedman tests were p = 0.028, 0.007, 0.043, and
0.005, respectively. Strikingly, there was not a single question
(out of 37) for which participants rated the computer-based
decision support significantly better than the robotic support.

We also found that the subjective perception of the char-
acter of the robot was significantly less sensitive to tran-
sitions in advice quality than the computer-based decision
support. We computed the frequency with which the rat-
ings of one embodiment condition subsumed the other, and
vice versa. Specifically, we defined xR,L as the Likert-
scale rating for a given question and a particular participant
in the robotic low-quality advice condition, and likewise
for the high-quality condition, xR,H . The variables xC,L,
xC,H were similarly defined for the computer-based low-
and high-quality conditions. The robotic condition was de-
fined as subsuming the computer-based condition if either
min(xR,L, xR,H) ≤ min(xC,L, xC,H) ≤ max(xC,L, xC,H) <
max(xR,L, xR,H) or min(xR,L, xR,H) < min(xC,L, xC,H) ≤
max(xC,L, xC,H) ≤ max(xR,L, xR,H), and vice versa for the
computer-based condition subsuming the robotic condition. A
χ2 test indicated that the participants’ subjective evaluation
according to Questions 1, 4, 6, 7 (p = 0.045, 0.022, 0.005
and 0.0043, respectively) changed more significantly under the
computer-based condition than the robotic condition. There
were no questions for which the response changed more
significantly under the robotic condition versus the computer-
based condition. In other words, the subjective assessment of
the robot was more robust to advice quality changes than
the computer-based decision support. Further investigation is
warranted to determine whether these effects persist over time
as the users habituate to interaction with the robot.

H2 Takeaway: Our findings support H2 in that the robotic
system was rated more favorably on attitudinal assessment
than computer-based decision support, even as it engendered
appropriate dependence. It is inevitable that a service robot
will occasionally make poor-quality suggestions, and we pos-
itively note that the robot engendered greater tolerance of
errors than the computer-based decision support. These results
indicate a positive signal for successful adoption of a robot that
participates in a resource nurse’s decision making.

VII. PILOT DEMONSTRATION OF A ROBOTIC ASSISTANT
ON THE LABOR AND DELIVERY FLOOR

Based on the positive results of our experiment, we con-
ducted a pilot demonstration in which a robot assisted resource



Fig. 3. Images of the robot system in action on the labor floor.

nurses on a labor and delivery floor at a tertiary care center.

A. Robot System Architecture

The system was comprised of subsystems providing the
vision, communication and decision support capabilities.
Vision System: In our experiments, the statuses of patients,
nurses and beds were provided and updated in the simulation.
In contrast, nurses and robots on a real labor floor must read
handwritten information off of a whiteboard (i.e., “dashboard”)
depicted in Figure 1. Extracting and parsing this information
autonomously with high accuracy and reliability presents a
substantial technical challenge. We make two assumptions to
address this: (1) that the set of physician and nurse names is
closed and known in advance, and (2) that patient names are
transcribed for the robot upon patient arrival.

In our demonstration, we leveraged the structured nature
of the dashboard to introduce priors that ensured patient
information was interpretable. Rows on the dashboard indicate
room assignments, while columns indicate patient parameters
(e.g., attending physician, gestational age, etc.). Once our
robot captured an image of the dashboard on the labor and
delivery floor, we applied a Canny edge detection operator
[8] and Hough transformation [18] to isolate the handwriting
in individual grid cells. The contents of each grid cell were
processed using a classification technique appropriate to the
data type therein. Numeric fields were parsed using a Con-
volutional Neural Network (CNN)1 trained on MNIST data,
while alphabetical fields with known sets of possible values
(e.g. attending physician, nurse names) were parsed using a
multi-class CNN trained on handwriting2.

Handwriting samples (28 uniquely written alphabets) were
used as a basis for generating classifier training data. Fonts
were created from the provided samples and used (along with
system fonts) to create a large set of binary images containing
samples of nurse names. These synthetic writing samples were
constructed with a range of applied translations, scalings, and
kerning values within a 75x30 pixel area.

The vision system was used to determine the current status
of patient-nurse allocations, nurse role information and room
usage. Prior to deployment, we performed a validation of the
vision system and found our recognition system to correctly
classify handwritten samples across 15 classes (names) with
∼ 83.7% overall accuracy and 97.8% average accuracy. These

1Thanks to Mikhail Sirontenko for developing this package, which is
available at https://sites.google.com/site/mihailsirotenko/projects/cuda-cnn.

2We utilize a network with a the following architecture:
75x30 input layer → 5x5 kernel convolution layer → 2x2 kernel maxpool
layer → 5x5 kernel convolution layer → 2x2 kernel maxpool layer → 100
node dense layer → classification layer.

results were obtained without performing any environmental
manipulations (adjusting lighting, using high-resolution cam-
eras, etc.). In the pilot deployment, our vision system assisted
humans with transcription of patient data.
Communication: CMUSphinx [2] was employed for robot
speech recognition. To achieve high performance in a live
setting, we defined a list of template-based phrases a user
might utter, such as “Where should I move the patient in room
[#]?” or ”Who should nurse [Name] take care of?” All possible
instantiations were enumerated based on information available
a priori (e.g., the list of nurse names). Levenshtein distance
[30] was computed to infer the phrase most likely uttered
by the speaker, and the appropriate corresponding query was
issued to the decision support system.

Decision Support: The live pilot demonstration of the
robot used the same mechanism for generating decision sup-
port as that used during our experiments. However, unlike
the experiments, the decision support system’s input was
taken from the vision subsystem, and the user query from
the communication subsystem. The set of possible actions
to be recommended was filtered according to the query as
recognized by the communication subsystem. For example, if
the user asked, ”Where should I move the patient in room
1A?,” actions that would change nurse assignments were not
considered. The recommended action was communicated to
the user via text-to-speech software.
Feedback from Nurses and Physicians: We conducted a test
demonstration on the labor floor (Figure 3). Three users inter-
acted with the robot over the course of three hours. Ten queries
were posed to the robot; seven resulted in successful exchanges
and three failed due to background noise. A live recording
of the demo can be seen at http://tiny.cc/RobotDemo. After
interacting with the robotic support, User 1, a physician, said
“I think the [robot] would allow for a more even dispersion
of the workload amongst the nurses. In some hospitals...more
junior nurses were given the next patient...more senior nurses
were allowed to only have one patient as opposed to two.”
User 2, a resource nurse said, “New nurses may not understand
the constraints and complexities of the role, and I think the
robot could help give her an algorithm . . . that she can practice,
repeat, and become familiar with so that it becomes second
nature to her.” User 3, a labor nurse offered, “I think you could
use this robot as an educational tool.”

VIII. CONCLUSION

This paper addresses two barriers to fielding intelligent hos-
pital service robots that take initiative to participate with nurses
in decision making. We find experimental evidence that experts
performing decision making tasks may be less susceptible
to the negative effects of support embodiment. Further our
decision support was able to produce context-specific decision
strategies and apply them to make reasonable suggestions
for which tasks to perform and when. Finally, based on the
previous two findings, we conducted a first successful test
demonstration in which a robot assisted resource nurses on
a labor and delivery floor in a tertiary care center.

https://sites.google.com/site/mihailsirotenko/projects/cuda-cnn
http://tiny.cc/RobotDemo
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