

MIT Open Access Articles

Search for Standard Model Production of Four Top Quarks with Same-Sign and Multilepton Final States in Proton–proton Collisions at √s = 13 TeV

The MIT Faculty has made this article openly available. *[Please](https://libraries.mit.edu/forms/dspace-oa-articles.html) share* how this access benefits you. Your story matters.

Citation: Sirunyan, A. M. et al. "Search for Standard Model Production of Four Top Quarks with Same-Sign and Multilepton Final States in Proton–proton Collisions at √s = 13 TeV." The European Physical Journal C 78, 2 (February 2018): 140 © 2018 CERN for the benefit of the CMS collaboration

As Published: http://dx.doi.org/10.1140/epjc/s10052-018-5607-5

Publisher: Springer-Verlag

Persistent URL: <http://hdl.handle.net/1721.1/114669>

Version: Final published version: final published article, as it appeared in a journal, conference proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 [International](http://creativecommons.org/licenses/by/4.0/) License

Regular Article - Experimental Physics

Search for standard model production of four top quarks with same-sign and multilepton final states in proton–proton collisions at $\sqrt{s} = 13$ TeV

CMS Collaboration[∗](#page-1-0)

CERN, 1211 Geneva 23, Switzerland

Received: 29 October 2017 / Accepted: 31 January 2018 © CERN for the benefit of the CMS collaboration 2018. This article is an open access publication

Abstract A search for standard model production of four top quarks (tttt) is reported using events containing at least three leptons (e, μ) or a same-sign lepton pair. The events are produced in proton–proton collisions at a center-of-mass energy of 13 TeV at the LHC, and the data sample, recorded in 2016, corresponds to an integrated luminosity of 35.9 fb^{-1} . Jet multiplicity and flavor are used to enhance signal sensitivity, and dedicated control regions are used to constrain the dominant backgrounds. The observed and expected signal significances are, respectively, 1.6 and 1.0 standard deviations, and the tttt cross section is measured to be $16.9^{+13.8}_{-11.4}$ fb, in agreement with next-to-leading-order standard model predictions. These results are also used to constrain the Yukawa coupling between the top quark and the Higgs boson to be less than 2.1 times its expected standard model value at 95% confidence level.

1 Introduction

In the standard model (SM) the production of four top quarks $(t$ ttt \bar{t}) is a rare process, with representative leading-order (LO) Feynman diagrams shown in Fig. [1.](#page-2-0) Many beyond-the-SM (BSM) theories predict an enhancement of the tttt \bar{t} cross section, $\sigma(pp \to t\bar{t}t\bar{t})$, such as gluino pair production in the supersymmetry framework $[1–10]$ $[1–10]$ $[1–10]$, the pair production of scalar gluons $[11, 12]$ $[11, 12]$ $[11, 12]$, and the production of a heavy pseudoscalar or scalar boson in association with a $t\bar{t}$ pair in Type II two-Higgs-doublet models (2HDM) [\[13](#page-10-3)[–15\]](#page-10-4). In addition, a top quark Yukawa coupling larger than expected in the SM can lead to a significant increase in the production via an off-shell SM Higgs boson [\[16](#page-10-5)]. The SM prediction for σ (pp \rightarrow tttttett) at \sqrt{s} = 13 TeV is 9.2^{+2.9} fb at next-to-leading order (NLO) [\[17](#page-10-6)]. An alternative prediction of $12.2^{+5.0}_{-4.4}$ fb is reported in Ref. [\[16](#page-10-5)], obtained from a LO calculation of

9.6^{$+3.9$} fb and an NLO/LO *K*-factor of 1.27 based on the 14 TeV calculation of Ref. [\[18](#page-10-7)].

After the decays of the top quarks, the final state contains several jets resulting from the hadronization of light quarks and b quarks (b jets), and may contain isolated leptons and missing transverse momentum depending on the decays of the W bosons [\[19\]](#page-10-8). Among these final states, the same-sign dilepton and the three- (or more) lepton final states, considering $\ell = e, \mu$, correspond to branching fractions in tute events of 8 and 1%, respectively, excluding the small contribution from $W \rightarrow \tau \nu$, which is included in selected events. However, due to the low level of backgrounds, these channels are the most sensitive to tttt production in the regime with SM-like kinematic properties. The ATLAS and CMS Collaborations at the CERN LHC have previously searched for SM tttt production in $\sqrt{s} = 8$ and 13 TeV pp collisions [\[20](#page-10-9)– [24](#page-10-10)]. The most sensitive of these results is a re-interpretation of the CMS same-sign dilepton search for BSM physics at 13 TeV $[23]$ $[23]$, with an observed (expected) tttt cross section upper limit (assuming no SM tttt signal) of 42 (27^{+13}_{-8}) fb at the 95% confidence level (CL).

The previous search is inclusive, exploring the final state with two same-sign leptons and at least two jets, using an integrated luminosity of 35.9 fb^{-1} [\[23](#page-10-11)]. The analysis described in this paper is based on the same data set and improves on the previous search by optimizing the signal selection for sensitivity to SM ttttt production, by using an improved b jet identification algorithm, and by employing background estimation techniques that are adapted to take into account the higher jet and b jet multiplicity requirements in the signal regions.

2 Background and signal simulation

Monte Carlo (MC) simulations at NLO are used to evaluate the tttt signal acceptance and to estimate the back-

e-mail: <cms-publication-committee-chair@cern.ch>

Fig. 1 Representative Feynman diagrams for tittl production at LO in the SM

ground from diboson (WZ, ZZ, $Z\gamma$, W^{\pm}W^{\pm}) and triboson (WWW, WWZ, WZZ, ZZZ, WW γ , WZ γ) processes, as well as from production of single top quarks (tZq, t γ), or tt produced in association with a boson (ttw, tt Z/γ^* , $t\bar{t}$ H). These samples are generated using the NLO MAD-GRAPH5_aMC@NLO 2.2.2 [\[17](#page-10-6)] program with up to one additional parton in the matrix-element calculation, except for $W^{\pm}W^{\pm}$ which is generated with up to two additional partons, and the WZ, ZZ and $t\bar{t}H$ samples, which are generated with no additional partons with the POWHEG BOX v2 $[25,26]$ $[25,26]$ program. The tt \overline{Z}/γ^* sample with $Z/\gamma^* \to \ell \ell$ is generated with a dilepton invariant mass greater than 1 GeV. The LO MADGRAPH5_aMC@NLO generator, scaled to NLO cross sections, is used to estimate the W γ and tt $\bar{t}\gamma$ processes with up to three additional partons. Other rare backgrounds, such as $t\bar{t}$ production in association with dibosons ($t\bar{t}WW$, $t\bar{t}WZ$, $t\bar{t}ZZ$, $t\bar{t}WH$, $t\bar{t}ZW$, $t\bar{t}HH$), triple top quark production ($t\bar{t}t$, $t\bar{t}tW$), and tWZ are generated using LO MADGRAPH5_aMC@NLO without additional partons, and scaled to NLO cross sections [\[27](#page-10-14)]. The NNPDF3.0LO (NNPDF3.0NLO) [\[28](#page-10-15)] parton distribution functions (PDFs) are used to generate all LO (NLO) samples. Parton showering and hadronization, as well as $W^{\pm}W^{\pm}$ from double-parton-scattering, are modeled by the pythia 8.205 [\[29](#page-10-16)] program, while the MLM [\[30](#page-10-17)] and FxFx [\[31](#page-10-18)] prescriptions are employed in matching additional partons in the matrix-element calculations to parton showers in the LO and NLO samples, respectively. The top quark mass in the generators is set to 172.5 GeV. The GEANT4 package [\[32](#page-10-19)] is used to model the response of the CMS detector. Additional proton–proton interactions (pileup) within the same or nearby bunch crossings are also included in the simulated events.

To improve the MC modeling of the multiplicity of additional jets from initial-state radiation (ISR), simulated $t\bar{t}W$ and tt \overline{Z}/γ^* events are reweighted based on the number of ISR jets (N_{jets}^{ISR}) . The reweighting is based on a comparison of the light-flavor jet multiplicity in dilepton $t\bar{t}$ events in data and simulation. The method requires exactly two jets identified as originating from $\mathbf b$ quarks in dilepton $\mathbf t\bar{\mathbf t}$ events, and assumes that all other jets are from ISR. Weighting factors are obtained as a function of $N_{\text{jets}}^{\text{ISR}}$ to bring data and MC into agreement. These weights are then applied, keeping the total cross section constant, to ttw and tt Z/γ^* MC as a function of the number of jets not originating from top quark, W, or Z decays. To improve the modeling of the flavor of additional jets, the simulation is also corrected to account for the mea-sured ratio of ttbb/ttij cross sections reported in Ref. [\[33](#page-10-20)]. More details on these corrections and their uncertainties are provided in Sect. [6.](#page-4-0)

3 The CMS detector and event reconstruction

The central feature of the CMS detector is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [\[34\]](#page-10-21).

Events of interest are selected using a two-tiered trigger system [\[35\]](#page-10-22). The first level (L1), composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100 kHz within a time interval of less than $4 \mu s$. The second level, known as the high-level trigger (HLT), consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to less than 1 kHz before data storage.

Events are processed using the particle-flow (PF) algorithm [\[36](#page-10-23)], which reconstructs and identifies each individual particle with an optimized combination of information from the various elements of the CMS detector. The energy of photons is directly obtained from the ECAL measurement. The energy of electrons is determined from a combination of the electron momentum at the primary interaction vertex as determined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with the electron track [\[37](#page-10-24)]. The momentum of muons is obtained from the curvature of the corresponding track, combining information from the silicon tracker and the muon system [\[38](#page-10-25)]. The energy of charged hadrons is determined from a combination of their momentum measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for the response function of the calorimeters to hadronic showers. The energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energies.

Hadronic jets are clustered from neutral PF candidates and charged PF candidates associated with the primary vertex, using the anti- k_T algorithm [\[39](#page-10-26),[40](#page-10-27)] with a distance parameter of 0.4. The jet momentum is determined as the vectorial sum of all PF candidate momenta in the jet. An offset correction is applied to jet energies to take into account the contribution from pileup. Jet energy corrections are derived from simulation, and are improved with in situ measurements of the energy balance in dijet, multijet, γ +jet and leptonically decaying Z+jet events [\[41](#page-10-28),42]. Additional selection criteria are applied to each event to remove spurious jet-like features originating from isolated noise patterns in certain HCAL regions. Jets originating from b quarks are identified as b-tagged jets using a deep neural network algorithm [\[43](#page-11-0)], with a working point chosen such that the efficiency to identify a b jet is 55–70% for a jet transverse momentum (p_T) between 20 and 400 GeV. The misidentification rate for a light-flavor jet is $1-2\%$ in the same jet p_T range. The vector $\vec{p}_{\rm T}^{\rm miss}$ is defined as the projection on the plane perpendicular to the beams of the negative vector sum of the momenta of all reconstructed PF candidates in an event [\[44\]](#page-11-1). Its magnitude, called missing transverse momentum, is referred to as p_T^{miss} . The scalar p_T sum of all jets in an event is referred to as H_T .

4 Event selection and search strategy

The definitions of objects and the baseline event selection follow closely those of Refs. [\[23](#page-10-11),[45\]](#page-11-2). Electron identification is based on a multivariate discriminant using shower shape and track quality variables, while for muons it is based on the quality of the geometrical matching between the tracker and muon system measurements. Isolation and impact parameter requirements are applied to both lepton flavors, as well as specific selections designed to improve the accuracy of the charge reconstruction. The combined reconstruction and identification efficiency is in the range of 45–70% (70–90%) for electrons (muons), increasing as a function of p_T and converging to the maximum value for $p_T > 60$ GeV. The number of leptons (N_ℓ) , the number of jets (N_{jets}) , and the number of b-tagged jets (N_b) are counted after the application of the basic kinematic requirements summarized in Table [1.](#page-3-0)

Signal events are selected using triggers that require two leptons with $p_T > 8$ GeV and $H_T > 300$ GeV. The trigger efficiency is greater than 95% for di-electron (ee) and electron-muon (e μ) events and about 92% for di-muon ($\mu\mu$) events. The baseline selections require $H_T > 300$ GeV and $p_{\text{T}}^{\text{miss}} > 50 \,\text{GeV}$, at least two jets ($N_{\text{jets}} \geq 2$), at least two b-tagged jets ($N_b \ge 2$), a leading lepton with $p_T > 25$ GeV, and a second lepton of the same charge with $p_T > 20$ GeV. To reduce the background from Drell–Yan with a chargemisidentified electron, events with same-sign electron pairs with mass below 12 GeV are rejected. Events where a third lepton with p_T larger than 5 (7) GeV for muons (electrons) forms an opposite-sign (OS) same-flavor pair with mass below 12 GeV or between 76 and 106 GeV are also rejected. If the third lepton has $p_T > 20$ GeV and the invariant mass of the pair is between 76 and 106 GeV, these rejected events are used to populate a $t\bar{t}Z$ background control region (CRZ). The signal acceptance in the baseline region, including the leptonic W boson branching fraction, is approximately 1.5%. After these requirements, we define eight mutually exclusive signal regions (SRs) and a control region for the $t\bar{t}W$ background (CRW), based on N_{jets} , N_{b} , and N_{ℓ} , as detailed in Table [2.](#page-3-1) The observed and predicted yields in the control and

Table 1 Kinematic requirements for leptons and jets

Object	p_T (GeV)	$ \eta $	
Electrons	> 20	< 2.5	
Muons	> 20	< 2.4	
Jets	> 40	< 2.4	
b-tagged jets	> 25	< 2.4	

Table 2 Definitions of the eight SRs and the two control regions for $t\bar{t}W$ (CRW) and $t\bar{t}Z$ (CRZ)

signal regions are used to measure $\sigma(pp \to t\bar{t}t\bar{t})$, following the procedure described in Sect. [7.](#page-5-0)

5 Backgrounds

The main backgrounds to the tttt process in the same-sign dilepton and three- (or more) lepton final states arise from rare multilepton processes, such as tt W, tt \overline{L}/γ^* , and tt H $(H \rightarrow WW)$, and single-lepton or OS dilepton processes with an additional "nonprompt lepton". Nonprompt leptons consist of electrons from conversions of photons in jets and leptons from the decays of heavy- or light-flavor hadrons. In this category we include also hadrons misidentified as leptons. The minor background from OS dilepton events with a charge-misidentified lepton is also taken into account.

Rare multilepton processes are estimated using simulated events. Control regions are used to constrain the normalization of the tt^W and tt^{Z} backgrounds, as described in Sect. [7,](#page-5-0) while for other processes the normalization is based on the NLO cross sections referenced in Sect. [2.](#page-1-1) Processes such as the associated production of a $t\bar{t}$ pair with a pair of bosons (W, Z, H) are grouped into a "tt^{VV}" category. Associated photon production processes such as $W\gamma$, $Z\gamma$, $t\bar{t}\gamma$, and $t\gamma$, where an electron is produced in an unidentified photon conversion, are grouped into a " $X\gamma$ " category. All residual processes with very small contributions, including diboson (WZ, ZZ, $W^{\pm}W^{\pm}$ from single- and double-parton scattering), triboson (WWW, WWZ, WZZ, ZZZ, WW γ , WZ γ), and rare single top quark (tZq , tWZ) and triple top quark processes ($t\bar{t}t$ and tttW), are grouped into a "Rare" category.

The nonprompt lepton and charge-misidentified lepton backgrounds are estimated following the methods described in Ref. [\[23](#page-10-11)]. For nonprompt leptons, an estimate referred to as the "tight-to-loose" method defines two control regions by modifying the lepton identification (including isolation) and event kinematic requirements, respectively. An "application region" is defined for every SR by requiring at least one lepton to fail the standard identification ("tight") while satisfying a more relaxed one ("loose"). To obtain the nonprompt lepton background estimate in the corresponding SR, the event yield in each application region is weighted by a factor of $\epsilon_{\rm TL}/(1 - \epsilon_{\rm TL})$ for each lepton failing the tight requirement. The ϵ_{TL} parameter is the probability that a nonprompt lepton that satisfies a loose lepton selection also satisfies the tight selection. It is extracted as a function of lepton flavor and kinematic properties from a "measurement region" that consists of a single-lepton events with event kinematic properties designed to suppress the $W \rightarrow \ell \nu$ contribution.

For charge-misidentified leptons, an OS dilepton control region is defined for each same-sign dilepton signal region. Its yield is then weighted by the charge misidentification

Table 3 Summary of the sources of uncertainty and their effect on signal and background yields. The first group lists experimental and theoretical uncertainties in simulated signal and background processes. The second group lists normalization uncertainties in the estimated backgrounds

probability estimated in simulation, which ranges between 10^{-5} and 10^{-3} for electrons and is negligible for muons.

6 Systematic uncertainties

The sources of experimental and theoretical uncertainty for the data and simulations are summarized in Table [3.](#page-4-1) The uncertainty in the integrated luminosity is 2.5% [\[46](#page-11-3)]. The simulation is reweighted to match the distribution in the number of pileup collisions per event in data. The uncertainty in the inelastic cross section propagated to the final yields provides an uncertainty of at most 6%.

Trigger efficiencies are measured with an uncertainty of 2% in an independent data sample selected using singlelepton triggers. Lepton-efficiency scale factors, used to account for differences in the reconstruction and identification efficiencies between data and simulation, are measured using a "tag-and-probe" method in data enriched in $Z \rightarrow \ell \ell$ events [\[37](#page-10-24)[,38\]](#page-10-25). The scale factors are applied to all simulated processes with an uncertainty per lepton of approximately 3% for muons and 4% for electrons.

The uncertainty in the calibration of the jet energy scale depends on the p_T and η of the jet and results in a 1–15% variation in the event yield in a given SR. The uncertainty due to the jet energy resolution is estimated by broadening the resolution in simulation $[42]$, and the resulting effect is a change of 1–5% in the SR yields. The b tagging efficiency in simulation is corrected using scale factors determined from

efficiencies measured in data and simulation [\[47](#page-11-4)]. The uncertainty in the measured scale factors results in an overall effect between 1 and 15%, again depending on the SR.

As mentioned in Sect. [2,](#page-1-1) ttw and tt Z/γ^* simulated events are reweighted to match the number of additional jets observed in data. The reweighting factors vary between 0.92 for $N_{\text{jets}}^{\text{ISR}} = 1$ and 0.77 for $N_{\text{jets}}^{\text{ISR}} \geq 4$. Half of the difference from unity is taken as a systematic uncertainty in these reweighting factors to cover differences observed between data and simulation when the factors are used to reweight simulation in a control sample enriched in single-lepton $t\bar{t}$ events. Uncertainties in the reweighting factors are treated as correlated among regions. Simulated ttW and tt \overline{Z}/γ^* events with two b quarks not originating from top quark decay are also weighted to account for the CMS measurement of the ratio of cross sections σ (ttbb)/ σ (tttij), which was found to be a factor of 1.7 ± 0.6 larger than the MC prediction [\[33](#page-10-20)]. In signal regions requiring four b-tagged jets, where the effect is dominant, this results in a systematic uncertainty of up to 15% on the total background prediction. In signal regions requiring three b-tagged jets, the dominant origin of the additional b-tagged jet is a charm quark from a W decay, so the effect is negligible.

Uncertainties in the renormalization and factorization scales (varied by a factor of two) and from the choice of PDF [\[48](#page-11-5),[49\]](#page-11-6) affect the number of events expected (normalization) in the simulated background processes, as well as the acceptance for the tittl signal. The effects of these uncertainties on the relative distribution of events in the signal regions (shape) are also considered. For the ttW and tt \overline{Z}/γ^* backgrounds, the normalization uncertainty is 40% , while for tt H a 50% normalization uncertainty reflects the signal strength of 1.5 ± 0.5 measured by CMS [\[50\]](#page-11-7). The processes in the Rare category along with $X\gamma$ and tt_{VV}, many of which have never been observed, are expected to give small contributions to the event yields in the signal regions. We assign separate 50% normalization uncertainties to each of these three categories. The shape uncertainty resulting from variations of the renormalization and factorization scales is as large as 15% for the tt^W, tt^Z/ γ^* , and tt^H backgrounds, and 10% for the tttt signal, while the effect from the PDF is only 1%. For the signal, the uncertainty in the acceptance from variations of the scales (PDFs) is 2% (1%). In addition, for the tttt signal, the scales that determine ISR and final-state radiation (FSR) in the parton shower are also varied, resulting in a 6% change in the acceptance and shape variations as large as 15%.

For nonprompt and charge-misidentified lepton backgrounds, the statistical uncertainty from the application region depends on the SR considered. The background from misidentified charge is assigned a systematic uncertainty of 20%, based on comparisons of the expected number of samesign events estimated from an OS control sample and the observed same-sign yield in a control sample enriched in $Z \rightarrow e^+e^-$ events with one electron or positron having a misidentified charge.

In addition to the statistical uncertainty, the nonprompt lepton background is assigned an overall normalization uncertainty of 30% to cover variations observed in closure tests performed with simulated multijet and $t\bar{t}$ events. This uncertainty is increased to 60% for electrons with p_T 50 GeV, to account for trends observed at high p_T in the closure tests. We also include an uncertainty related to the subtraction of events with prompt leptons (from electroweak processes with a W or Z boson) in the measurement region, which has an effect between 1% and 50%, depending on the SR. The prompt lepton contamination was also checked in the application region, where it was found to be below 1%.

Experimental uncertainties are treated as correlated among signal regions for all signal and background processes. Systematic uncertainties in data-driven estimates and theoretical uncertainties are treated as uncorrelated between processes, but correlated among signal regions. Statistical uncertainties from the limited number of simulated events or in the number of events in data control regions are considered uncorrelated.

7 Results and interpretation

The properties of events in the signal regions (SR 1–8 as defined in Table [2\)](#page-3-1) are shown in Fig. [2,](#page-6-0) where distributions of the main kinematic variables in the data ($N_{\text{jets}}, N_{\text{b}}, H_{\text{T}}$, and $p_{\rm T}^{\rm miss}$) are compared to SM background predictions. The $N_{\rm jets}$ and *N*^b distributions for CRW and CRZ are shown in Fig. [3.](#page-7-0) In both figures we overlay the expected SM tttt signal, scaled by a factor of 5. The SM predictions are generally consistent with the observations, with some possible underestimation in CRW and CRZ.

The yields from SR 1–8, CRW, and CRZ are combined in a maximum-likelihood fit, following the procedures described in Ref. [\[51](#page-11-8)], to estimate a best-fit cross section for titt, the significance of the observation relative to the background-only hypothesis, and the upper limit on σ (pp \rightarrow tttt). The experimental and theoretical uncertainties described in Sect. [6](#page-4-0) are incorporated in the likelihood as "nuisance" parameters and are profiled in the fit. Nuisance parameters corresponding to systematic uncertainties are parameterized as log-normal distributions. The fitted values of the nuisance parameters are found to be consistent with their initial values within uncertainties. The nuisance parameters corresponding to the ttW and tt Z/γ^* normalizations are scaled by 1.2 \pm 0.3 and 1.3 ± 0.3 , respectively, while other background contributions including t H are scaled up by 1.1 or less. The signal and control region results after the maximum-likelihood fit (post-fit) are shown in Fig. [4,](#page-8-0) with the fitted tttt signal contribution added to the background predictions, which are given in

Fig. 2 Distributions in N_{jets} (upper left), N_{b} (upper right), H_{T} (lower left), and p_T^{miss} (lower right) in the signal regions (SR 1–8), before fitting to data, where the last bins include the overflows. The hatched areas represent the total uncertainties in the SM background predictions,

while the solid lines represent the ttert signal, scaled up by a factor of 5 , assuming the SM cross section from Ref. [\[17](#page-10-6)]. The upper panels show the ratios of the observed event yield to the total background prediction. Bins without a data point have no observed events

Fig. 3 Distributions in N_{jets} and N_{b} in ttw (upper) and ttz (lower) control regions, before fitting to data. The hatched area represents the uncertainty in the SM background prediction, while the solid line represents the tttt signal, scaled up by a factor of 5, assuming the SM cross

section from Ref. [\[17\]](#page-10-6). The upper panels show the ratios of the observed event yield to the total background prediction. Bins without a data point have no observed events

Fig. 4 Observed yields in the control and signal regions (upper, in log scale), and signal regions only (lower, in linear scale), compared to the post-fit predictions for signal and background processes. The hatched areas represent the total uncertainties in the signal and background predictions. The upper panels show the ratios of the observed event yield and the total prediction of signal and background. Bins without a data point have no observed events

Table 4 The post-fit background, signal, and total yields with their total uncertainties and the observed number of events in the control and signal regions in data

	SM background	tttt.	Total	Observed
CRZ.	31.7 ± 4.6	0.4 ± 0.3	$32.1 + 4.6$	35
CRW	83.7 ± 8.8	1.9 ± 1.2	85.6 ± 8.6	86
SR 1	$7.7 + 1.2$	$0.9 + 0.6$	8.6 ± 1.2	7
SR ₂	2.6 ± 0.5	0.6 ± 0.4	3.2 ± 0.6	4
SR ₃	0.5 ± 0.3	0.4 ± 0.2	0.8 ± 0.4	1
SR4	4.0 ± 0.7	1.4 ± 0.9	5.4 ± 0.9	8
SR ₅	0.7 ± 0.2	0.9 ± 0.6	1.6 ± 0.6	2
SR ₆	0.7 ± 0.2	1.0 ± 0.6	1.7 ± 0.6	Ω
SR7	2.3 ± 0.5	0.6 ± 0.4	2.9 ± 0.6	1
SR ₈	1.2 ± 0.3	0.9 ± 0.6	2.1 ± 0.6	2

Table [4.](#page-8-1) The tttt cross section is measured to be $16.9^{+13.8}_{-11.4}$ fb, where the best-fit value of the parameter and an approximate 68% CL confidence interval are extracted following the procedure described in Sec. 3.2 of Ref. [\[52](#page-11-9)]. The observed and expected significances relative to the background-only hypothesis are found to be 1.6 and 1.0 standard deviations, respectively, where the expectation is based on the central value of the NLO SM cross section of $9.2^{+2.9}_{-2.4}$ fb [\[17\]](#page-10-6). The observed 95% CL upper limit on the cross section, based on an asymptotic formulation [\[53](#page-11-10)] of the modified frequentist $CL_s criterion [54, 55]$ $CL_s criterion [54, 55]$ $CL_s criterion [54, 55]$, is found to be 41.7 fb. The corresponding expected upper limit, assuming no SM tttt contribution to the data, is $20.8^{+11.2}_{-6.9}$ fb, showing a significant improvement relative to the value of 27 fb of Ref. [\[23](#page-10-11)].

The pp \rightarrow tttt process has contributions from diagrams with virtual Higgs bosons, as shown in Fig. [1.](#page-2-0) Experimental information on $\sigma(pp \to t\bar{t}t\bar{t})$ can therefore be used to constrain the Yukawa coupling, y_t , between the top quark and the Higgs boson. We constrain *y*^t assuming that the signal acceptance is not affected by the relative contribution of the virtual Higgs boson diagrams. As the cross section for the $t\bar{t}H$ background also depends on the top quark Yukawa coupling, for the purpose of constraining y_t the fit described above is repeated with the $t\bar{t}$ H contribution scaled by the square of the absolute value of the ratio of the top quark Yukawa coupling to its SM value $(|y_t/y_t^{\text{SM}}|^2)$, where $y_t^{\text{SM}} = m_t(\sqrt{2}G_F)^{1/2} \approx 1$. This results in a dependence of the measured $\sigma(pp \to t\bar{t}t\bar{t})$ on $|y_t/y_t^{SM}|$ which is shown in Fig. [5](#page-9-1) and is compared to its theoretical prediction. The prediction is obtained from the LO calculation of Ref. [\[16](#page-10-5)], with an NLO/LO *K*-factor of 1.27 [\[18\]](#page-10-7). The LO calculation is used instead of the NLO one, as Ref. [\[16\]](#page-10-5) provides a breakdown of the contributions to the cross section according to powers of *y*t. The prediction also includes the uncertainty associated with varying the renormalization and factorization scales in the LO calculation by a factor of 2. The central,

Fig. 5 The predicted SM value of σ (pp \rightarrow tttt) [\[16](#page-10-5)], calculated at LO with an NLO/LO *K*-factor of 1.27, as a function of $|y_t/y_t^{\text{SM}}|$ (dashed line), compared with the observed value of $\sigma(pp \to t\bar{t}t\bar{t})$ (solid line), and with the observed 95% CL upper limit (hatched line)

upper and lower values of the theoretical cross section provide respective 95% CL limits for $|y_t / y_t^{\text{SM}}| < 2.1, < 1.9$ and $< 2.4.$

8 Summary

The results of a search for standard model (SM) production of tttt at the LHC have been presented, using data from \sqrt{s} = 13 TeV proton–proton collisions corresponding to an integrated luminosity of 35.9 fb⁻¹, collected with the CMS detector in 2016. The analysis strategy uses same-sign dilepton as well as three- (or more) lepton events, relying on jet multiplicity and jet flavor to define search regions that are used to probe the tttt process. Combining these regions yields a significance of 1.6 standard deviations relative to the background-only hypothesis, and a measured value for the ttitude of $16.9^{+13.8}_{-11.4}$ fb, in agreement with the standard model predictions. The results are also re-interpreted to constrain the ratio of the top quark Yukawa coupling to its SM value, yielding $|y_t / y_t^{\text{SM}}| < 2.1$ at 95% confidence level.

Acknowledgements We thank Qing-Hong Cao, Shao-Long Chen, and Yandong Liu for providing calculations used in determining a constraint on the top quark Yukawa coupling. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CIN-VESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/ E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License [\(http://creativecomm](http://creativecommons.org/licenses/by/4.0/) [ons.org/licenses/by/4.0/\)](http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3.

References

- 1. P. Ramond, Dual theory for free fermions. Phys. Rev. D **3**, 2415 (1971). <https://doi.org/10.1103/PhysRevD.3.2415>
- 2. Y.A. Gol'fand, E.P. Likhtman, Extension of the algebra of Poincaré group generators and violation of P invariance. JETP Lett. **13**, 323 (1971)
- 3. A. Neveu, J.H. Schwarz, Factorizable dual model of pions. Nucl. Phys. B **31**, 86 (1971). [https://doi.org/10.1016/](https://doi.org/10.1016/0550-3213(71)90448-2) [0550-3213\(71\)90448-2](https://doi.org/10.1016/0550-3213(71)90448-2)
- 4. D.V. Volkov, V.P. Akulov, Possible universal neutrino interaction. JETP Lett. **16**, 438 (1972)
- 5. J. Wess, B. Zumino, A lagrangian model invariant under supergauge transformations. Phys. Lett. B **49**, 52 (1974). [https://doi.](https://doi.org/10.1016/0370-2693(74)90578-4) [org/10.1016/0370-2693\(74\)90578-4](https://doi.org/10.1016/0370-2693(74)90578-4)
- 6. J. Wess, B. Zumino, Supergauge transformations in fourdimensions. Nucl. Phys. B **70**, 39 (1974). [https://doi.org/10.1016/](https://doi.org/10.1016/0550-3213(74)90355-1) [0550-3213\(74\)90355-1](https://doi.org/10.1016/0550-3213(74)90355-1)
- 7. P. Fayet, Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino. Nucl. Phys. B **90**, 104 (1975). [https://doi.org/10.1016/0550-3213\(75\)90636-7](https://doi.org/10.1016/0550-3213(75)90636-7)
- 8. H.P. Nilles, Supersymmetry, supergravity and particle physics. Phys. Rep. **110**, 1 (1984). [https://doi.org/10.1016/](https://doi.org/10.1016/0370-1573(84)90008-5) [0370-1573\(84\)90008-5](https://doi.org/10.1016/0370-1573(84)90008-5)
- 9. S.P. Martin, A supersymmetry primer. in *Perspectives on Supersymmetry II*, ed. by G.L. Kane. Advanced Series on Directions in High Energy Physics, vol 21 (World Scientific, Singapore, 2010), p. 1. https://doi.org/10.1142/9789814307505_0001
- 10. G.R. Farrar, P. Fayet, Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry. Phys. Lett. B **76**, 575 (1978). [https://doi.org/10.1016/](https://doi.org/10.1016/0370-2693(78)90858-4) [0370-2693\(78\)90858-4](https://doi.org/10.1016/0370-2693(78)90858-4)
- 11. T. Plehn, T.M.P. Tait, Seeking sgluons. J. Phys. G **36**, 075001 (2009). [https://doi.org/10.1088/0954-3899/36/7/075001.](https://doi.org/10.1088/0954-3899/36/7/075001) [arXiv:0810.3919](http://arxiv.org/abs/0810.3919)
- 12. S. Calvet, B. Fuks, P. Gris, L. Valery, Searching for sgluons in multitop events at a center-of-mass energy of 8 TeV. JHEP **04**, 043 (2013). [https://doi.org/10.1007/JHEP04\(2013\)043.](https://doi.org/10.1007/JHEP04(2013)043) [arXiv:1212.3360](http://arxiv.org/abs/1212.3360)
- 13. D. Dicus, A. Stange, S. Willenbrock, Higgs decay to top quarks at hadron colliders. Phys. Lett. B **333**, 126 (1994). [https://doi.org/10.](https://doi.org/10.1016/0370-2693(94)91017-0) [1016/0370-2693\(94\)91017-0.](https://doi.org/10.1016/0370-2693(94)91017-0) [arXiv:hep-ph/9404359](http://arxiv.org/abs/hep-ph/9404359)
- 14. N. Craig et al., The hunt for the rest of the Higgs bosons. JHEP **06**, 137 (2015). [https://doi.org/10.1007/JHEP06\(2015\)137.](https://doi.org/10.1007/JHEP06(2015)137) [arXiv:1504.04630](http://arxiv.org/abs/1504.04630)
- 15. N. Craig et al., Heavy Higgs bosons at low tan β : from the LHC to 100 TeV. JHEP **01**, 018 (2017). [https://doi.org/10.1007/](https://doi.org/10.1007/JHEP01(2017)018) [JHEP01\(2017\)018.](https://doi.org/10.1007/JHEP01(2017)018) [arXiv:1605.08744](http://arxiv.org/abs/1605.08744)
- 16. Q.-H. Cao, S.-L. Chen, Y. Liu, Probing Higgs width and top quark Yukawa coupling from ttH and tttt productions. Phys. Rev. D **95**, 053004 (2017). [https://doi.org/10.1103/PhysRevD.95.053004.](https://doi.org/10.1103/PhysRevD.95.053004) [arXiv:1602.01934](http://arxiv.org/abs/1602.01934)
- 17. J. Alwall et al., The automated computation of tree-level and nextto-leading order differential cross sections, and their matching to parton shower simulations. JHEP **07**, 079 (2014). [https://doi.org/](https://doi.org/10.1007/JHEP07(2014)079) [10.1007/JHEP07\(2014\)079.](https://doi.org/10.1007/JHEP07(2014)079) [arXiv:1405.0301](http://arxiv.org/abs/1405.0301)
- 18. G. Bevilacqua, M. Worek, Constraining BSM physics at the LHC: four top final states with NLO accuracy in perturbative QCD. JHEP **07**, 111 (2012). [https://doi.org/10.1007/JHEP07\(2012\)111.](https://doi.org/10.1007/JHEP07(2012)111) [arXiv:1206.3064](http://arxiv.org/abs/1206.3064)
- 19. Particle Data Group, C. Patrignani et al., Review of particle physics. Chin. Phys. C **40**, 100001 (2016). [https://doi.org/10.1088/](https://doi.org/10.1088/1674-1137/40/10/100001) [1674-1137/40/10/100001](https://doi.org/10.1088/1674-1137/40/10/100001)
- 20. CMS Collaboration, Search for standard model production of four top quarks in the lepton+jets channel in pp collisions at $√s = 8$ TeV. JHEP 11, 154 (2014). [https://doi.org/10.1007/](https://doi.org/10.1007/JHEP11(2014)154) [JHEP11\(2014\)154.](https://doi.org/10.1007/JHEP11(2014)154) [arXiv:1409.7339](http://arxiv.org/abs/1409.7339)
- 21. ATLAS Collaboration, Search for production of vector-like quark pairs and of four top quarks in the lepton-plus-jets final state in pp collisions at \sqrt{s} = 8 TeV with the ATLAS detector. JHEP **08**, 105 (2015). [https://doi.org/10.1007/JHEP08\(2015\)105.](https://doi.org/10.1007/JHEP08(2015)105) [arXiv:1505.04306](http://arxiv.org/abs/1505.04306)
- 22. CMS Collaboration, Search for standard model production of four top quarks in proton–proton collisions at \sqrt{s} = 13 TeV. Phys. Lett. B **772**, 336 (2017). [https://doi.org/10.1016/j.physletb.2017.](https://doi.org/10.1016/j.physletb.2017.06.064) [06.064.](https://doi.org/10.1016/j.physletb.2017.06.064) [arXiv:1702.06164](http://arxiv.org/abs/1702.06164)
- 23. CMS Collaboration, Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momen-

tum, and jets in proton–proton collisions at \sqrt{s} = 13 TeV. Eur. Phys. J. C **77**, 578 (2017). [https://doi.org/10.1140/epjc/](https://doi.org/10.1140/epjc/s10052-017-5079-z) [s10052-017-5079-z.](https://doi.org/10.1140/epjc/s10052-017-5079-z) [arXiv:1704.07323](http://arxiv.org/abs/1704.07323)

- 24. ATLAS Collaboration, Analysis of events with *b*-jets and a pair of leptons of the same charge in *pp* collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector. JHEP **10**, 150 (2015). [https://doi.org/10.](https://doi.org/10.1007/JHEP10(2015)150) [1007/JHEP10\(2015\)150.](https://doi.org/10.1007/JHEP10(2015)150) [arXiv:1504.04605](http://arxiv.org/abs/1504.04605)
- 25. T. Melia, P. Nason, R. Röntsch, G. Zanderighi, W+W−, WZ and ZZ production in the POWHEG BOX. JHEP **11**, 078 (2011). [https://](https://doi.org/10.1007/JHEP11(2011)078) [doi.org/10.1007/JHEP11\(2011\)078.](https://doi.org/10.1007/JHEP11(2011)078) [arXiv:1107.5051](http://arxiv.org/abs/1107.5051)
- 26. P. Nason, G. Zanderighi, W+W−, WZ and ZZ production in the POWHEG BOX V2d. Eur. Phys. J. C **74**, 2702 (2014). [https://doi.](https://doi.org/10.1140/epjc/s10052-013-2702-5) [org/10.1140/epjc/s10052-013-2702-5.](https://doi.org/10.1140/epjc/s10052-013-2702-5) [arXiv:1311.1365](http://arxiv.org/abs/1311.1365)
- 27. D. de Florian et al., Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector. CERN Report CERN-2017-002-M, 2016. [https://doi.org/10.23731/CYRM-2017-002.](https://doi.org/10.23731/CYRM-2017-002) [arXiv:1610.07922](http://arxiv.org/abs/1610.07922)
- 28. NNPDF Collaboration, Parton distributions for the LHC Run II. JHEP **04**, 040 (2015). [https://doi.org/10.1007/JHEP04\(2015\)040.](https://doi.org/10.1007/JHEP04(2015)040) [arXiv:1410.8849](http://arxiv.org/abs/1410.8849)
- 29. T. Sjöstrand, S. Mrenna, P.Z. Skands, A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. **178**, 852 (2008). [https://](https://doi.org/10.1016/j.cpc.2008.01.036) [doi.org/10.1016/j.cpc.2008.01.036.](https://doi.org/10.1016/j.cpc.2008.01.036) [arXiv:0710.3820](http://arxiv.org/abs/0710.3820)
- 30. J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions. Eur. Phys. J. C **53**, 473 (2008). [https://doi.org/10.1140/epjc/](https://doi.org/10.1140/epjc/s10052-007-0490-5) [s10052-007-0490-5.](https://doi.org/10.1140/epjc/s10052-007-0490-5) [arXiv:0706.2569](http://arxiv.org/abs/0706.2569)
- 31. R. Frederix, S. Frixione, Merging meets matching in MC@NLO. JHEP **12**, 061 (2012). [https://doi.org/10.1007/JHEP12\(2012\)061.](https://doi.org/10.1007/JHEP12(2012)061) [arXiv:1209.6215](http://arxiv.org/abs/1209.6215)
- 32. GEANT4 Collaboration, Geant4—a simulation toolkit. Nucl. Instrum. Methods A **506**, 250 (2003). [https://doi.org/10.1016/](https://doi.org/10.1016/S0168-9002(03)01368-8) [S0168-9002\(03\)01368-8](https://doi.org/10.1016/S0168-9002(03)01368-8)
- 33. CMS Collaboration, Measurements of $t\bar{t}$ cross sections in association with *b* jets and inclusive jets and their ratio using dilepton final states in pp collisions at \sqrt{s} = 13 TeV. Phys. Lett. B **776**, 355–378 (2018). [https://doi.org/10.1016/j.physletb.2017.11.](https://doi.org/10.1016/j.physletb.2017.11.043) [043.](https://doi.org/10.1016/j.physletb.2017.11.043) [arXiv:1705.10141](http://arxiv.org/abs/1705.10141)
- 34. CMS Collaboration, The CMS experiment at the CERN LHC. JINST**3**, S08004 (2008). [https://doi.org/10.1088/1748-0221/3/08/](https://doi.org/10.1088/1748-0221/3/08/S08004) [S08004](https://doi.org/10.1088/1748-0221/3/08/S08004)
- 35. CMS Collaboration, The CMS trigger system. JINST **12**, P01020 (2017). [https://doi.org/10.1088/1748-0221/12/01/](https://doi.org/10.1088/1748-0221/12/01/P01020) [P01020.](https://doi.org/10.1088/1748-0221/12/01/P01020) [arXiv:1609.02366](http://arxiv.org/abs/1609.02366)
- 36. CMS Collaboration, Particle-flow reconstruction and global event description with the cms detector. JINST **12**, P10003 (2017). [https://doi.org/10.1088/1748-0221/12/10/P10003.](https://doi.org/10.1088/1748-0221/12/10/P10003) [arXiv:1706.04965](http://arxiv.org/abs/1706.04965)
- 37. CMS Collaboration, Performance of electron reconstruction and selection with the CMS detector in proton–proton collisions at $√s = 8$ TeV. JINST 10, P06005 (2015). [https://doi.org/10.1088/](https://doi.org/10.1088/1748-0221/10/06/P06005) [1748-0221/10/06/P06005.](https://doi.org/10.1088/1748-0221/10/06/P06005) [arXiv:1502.02701](http://arxiv.org/abs/1502.02701)
- 38. CMS Collaboration, Performance of CMS muon reconstruction in pp collision events at $\sqrt{s} = 7$ TeV. JINST 7, P10002 (2012). [https://](https://doi.org/10.1088/1748-0221/7/10/P10002) [doi.org/10.1088/1748-0221/7/10/P10002.](https://doi.org/10.1088/1748-0221/7/10/P10002) [arXiv:1206.4071](http://arxiv.org/abs/1206.4071)
- 39. M. Cacciari, G.P. Salam, G. Soyez, The anti- k_t jet clustering algorithm. JHEP **04**, 063 (2008). [https://doi.org/10.1088/1126-6708/](https://doi.org/10.1088/1126-6708/2008/04/063) [2008/04/063.](https://doi.org/10.1088/1126-6708/2008/04/063) [arXiv:0802.1189](http://arxiv.org/abs/0802.1189)
- 40. M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C **72**, 1896 (2012). [https://doi.org/10.1140/epjc/](https://doi.org/10.1140/epjc/s10052-012-1896-2) [s10052-012-1896-2.](https://doi.org/10.1140/epjc/s10052-012-1896-2) [arXiv:1111.6097](http://arxiv.org/abs/1111.6097)
- 41. C.M.S. Collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS. JINST **6**, P11002 (2011). [https://doi.org/10.1088/1748-0221/6/11/P11002.](https://doi.org/10.1088/1748-0221/6/11/P11002) [arXiv:1107.4277](http://arxiv.org/abs/1107.4277)
- 43. CMS Collaboration, Heavy flavor identification at CMS with deep neural networks. CMS Detector Performance Summary CMS-DP-2017-005 (2017)
- 44. CMS Collaboration, Performance of missing energy reconstruction in 13 TeV pp collision data using the CMS detector. CMS Physics Analysis Summary CMS-PAS-JME-16-001 (2016)
- 45. CMS Collaboration, Search for new physics in same-sign dilepton events in proton–proton collisions at $\sqrt{s} = 13$ TeV. Eur. Phys. J. C **76**, 439 (2016). [https://doi.org/10.1140/epjc/s10052-016-4261-z.](https://doi.org/10.1140/epjc/s10052-016-4261-z) [arXiv:1605.03171](http://arxiv.org/abs/1605.03171)
- 46. CMS Collaboration, CMS luminosity measurements for the 2016 data taking period. CMS Physics Analysis Summary CMS-PAS-LUM-17-001 (2017)
- 47. CMS Collaboration, Identification of b quark jets at the CMS experiment in the LHC Run2. CMS Physics Analysis Summary CMS-PAS-BTV-15-001 (2016)
- 48. M. Botje et al., The PDF4LHC Working Group Interim Recommendations (2011). [arXiv:1101.0538](http://arxiv.org/abs/1101.0538)
- 49. S. Alekhin et al., The PDF4LHC Working Group Interim Report (2011). [arXiv:1101.0536](http://arxiv.org/abs/1101.0536)
- 50. CMS Collaboration, Search for Higgs boson production in association with top quarks in multilepton final states at $\sqrt{s} = 13$ TeV. CMS Physics Analysis Summary CMS-PAS-HIG-17-004 (2017)
- 51. ATLAS and CMS Collaborations, Procedure for the LHC Higgs boson search combination in summer 2011. ATL-PHYS-PUB-2011-011, CMS NOTE-2011/005 (2011)
- 52. CMS Collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV. Eur. Phys. J. C **75**, 212 (2015). [https://doi.org/10.1140/epjc/](https://doi.org/10.1140/epjc/s10052-015-3351-7) [s10052-015-3351-7.](https://doi.org/10.1140/epjc/s10052-015-3351-7) [arXiv:1412.8662](http://arxiv.org/abs/1412.8662)
- 53. G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C **71**, 1554 (2011). [https://doi.org/10.1140/epjc/s10052-011-1554-0.](https://doi.org/10.1140/epjc/s10052-011-1554-0) [arXiv:1007.1727](http://arxiv.org/abs/1007.1727) [Erratum: Eur. Phys. J. C **73**, 2501 (2013)]
- 54. T. Junk, Confidence level computation for combining searches with small statistics. Nucl. Instrum. Methods A **434**, 435 (1999). [https://](https://doi.org/10.1016/S0168-9002(99)00498-2) [doi.org/10.1016/S0168-9002\(99\)00498-2.](https://doi.org/10.1016/S0168-9002(99)00498-2) [arXiv:hep-ex/9902006](http://arxiv.org/abs/hep-ex/9902006)
- 55. A.L. Read, Presentation of search results: the *C Ls* technique, in *Durham IPPP Workshop: Advanced Statistical Techniques in Particle Physics*, p. 2693. Durham, UK, March, 2002 [J. Phys. G **28**, 2693 (2002)]. <https://doi.org/10.1088/0954-3899/28/10/313>

CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia

A. M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Vienna, Austria

W. Adam, F Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl, M. Friedl, R. Frühwirth¹, V. M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler¹, A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, N. Rad, H. Rohringer, J. Schieck¹, R. Schöfbeck, M. Spanring, D. Spitzbart, A. Taurok, W. Waltenberger, J. Wittmann, C.-E. Wulz¹, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus

V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerp, Belgium

E. A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussels, Belgium

S. Abu Zeid, F. Blekman, J. D'Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

Université Libre de Bruxelles, Brussels, Belgium

D. Beghin, B Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, A. K. Kalsi, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, T. Seva, E. Starling, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni

Ghent University, Ghent, Belgium

T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov², D. Poyraz, C. Roskas, S. Salva, D. Trocino, M. Tytgat, W. Verbeke, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, A. Caudron, P. David, S. De Visscher, C. Delaere,

M. Delcourt, B. Francois, A. Giammanco, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich,

K. Piotrzkowski, L. Quertenmont, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

W. L. Aldá Júnior, F. L. Alves, G. A. Alves, L. Brito, G. Correia Silva, C. Hensel, A. Moraes, M. E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato³, E. Coelho, E. M. Da Costa, G. G. Da Silveira⁴,

D. De Jesus Damiao, S. Fonseca De Souza, L. M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida,

C. Mora Herrera, L. Mundim, H. Nogima, L. J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel,

E. J. Tonelli Manganote³, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista*a***, Universidade Federal do ABC***b***, São Paulo, Brazil**

S. Ahuja*a*, C. A. Bernardes*a*, T. R. Fernandez Perez Tomei*a*, E. M. Gregores*b*, P. G. Mercadante*b*, S. F. Novaes*a*, Sandra S. Padula*a*, D. Romero Abad*b*, J. C. Ruiz Vargas*^a*

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria A. Dimitrov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China W. Fang⁵, X. Gao⁵, L. Yuan

Institute of High Energy Physics, Beijing, China

M. Ahmad, J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, Y. Chen, C. H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S. M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, T. Yu, H. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

Y. Ban, G. Chen, J. Li, Q. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, Z. Xu, F. Zhang^{[5](#page-23-4)}

Tsinghua University, Beijing, China Y. Wang

Universidad de Los Andes, Bogotá, Colombia

C. Avila, A. Cabrera, L. F. Chaparro Sierra, C. Florez, C. F. González Hernández, J. D. Ruiz Alvarez, M. A. Segura Delgado

Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P. M. Ribeiro Cipriano, T. Sculac

Faculty of Science, University of Split, Split, Croatia Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov⁶, T. Susa

University of Cyprus, Nicosia, Cyprus M. W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, H. Rykaczewski

Charles University, Prague, Czech Republic M. Finger⁷, M. Finger Jr.

Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

Y. Assran^{[8](#page-23-7), 9}, S. Elgammal⁹, A. Mahrous¹⁰

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia S. Bhowmik, R. K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

J. Havukainen, J. K. Heikkilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland

T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J. L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, C. Leloup, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M. Ö. Sahin, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France

A. Abdulsalam¹¹, C. Amendola, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, R. Salerno, J. B. Sauvan, Y. Sirois, A. G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France

J.-L. Agram¹², J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E. C. Chabert, N. Chanon, C. Collard, E. Conte¹², X. Coubez, F. Drouhin¹², J.-C. Fontaine¹², D. Gelé, U. Goerlach, M. Jansová, P. Juillot, A.-C. Le Bihan, N. Tonon. P. Van Hove

Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, M. Lethuillier, L. Mirabito, A. L. Pequegnot, S. Perries, A. Popov¹³, V. Sordini, M. Vander Donckt, S. Viret, S. Zhang

Georgian Technical University, Tbilisi, Georgia

A. Khvedelidze^{[7](#page-23-6)}

Tbilisi State University, Tbilisi, Georgia I. Bagaturia^{[14](#page-23-13)}

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

C. Autermann, L. Feld, M. K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer, V. Zhukov^{[13](#page-23-12)}

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

A. Albert, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teyssier, S. Thüer

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

G. Flügge, B. Kargoll, T. Kress, A. Künsken, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl^{[15](#page-23-14)}

Deutsches Elektronen-Synchrotron, Hamburg, Germany

M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A. Bermúdez Martínez, A. A. Bin Anuar, K. Borras¹⁶, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo¹⁷, J. Garay Garcia, A. Geiser, J. M. Grados Luyando, A. Grohsjean, P. Gunnellini, M. Guthoff, A. Harb, J. Hauk, M. Hempel¹⁸, H. Jung, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krücker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann¹⁸, R. Mankel, I.-A. Melzer-Pellmann, A. B. Meyer, M. Missiroli, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, A. Raspereza, M. Savitskyi, P. Saxena, R. Shevchenko, N. Stefaniuk, G. P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev

University of Hamburg, Hamburg, Germany

R. Aggleton, S. Bein, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Hoffmann, A. Karavdina, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, T. Lapsien, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo¹⁵, T. Peiffer, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F. M. Stober, M. Stöver, H. Tholen, D. Troendle, E. Usai, A. Vanhoefer, B. Vormwald

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

M. Akbiyik, C. Barth, M. Baselga, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, N. Faltermann, B. Freund, R. Friese, M. Giffels, M. A. Harrendorf, F. Hartmann¹⁵, S. M. Heindl, U. Husemann, F. Kassel¹⁵, S. Kudella, H. Mildner, M. U. Mozer, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, M. Schröder, I. Shvetsov, G. Sieber, H. J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

G. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, I. Topsis-Giotis

National and Kapodistrian University of Athens, Athens, Greece

G. Karathanasis, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

National Technical University of Athens, Athens, Greece

K. Kousouris

University of Ioánnina, Ioannina, Greece

I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F. A. Triantis, D. Tsitsonis

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary M. Csanad, N. Filipovic, G. Pasztor, O. Surányi, G. I. Veres^{[19](#page-23-18)}

Wigner Research Centre for Physics, Budapest, Hungary

G. Bencze, C. Hajdu, D. Horvath²⁰, Á. Hunyadi, F. Sikler, V. Veszpremi, G. Vesztergombi¹⁹

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

N. Beni, S. Czellar, J. Karancsi²¹, A. Makovec, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen, Debrecen, Hungary M. Bartók¹⁹, P. Raics, Z. L. Trocsanyi, B. Ujvari

Indian Institute of Science (IISc), Bangalore, India S. Choudhury, J. R. Komaragiri

National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati²², P. Mal, K. Mandal, A. Nayak²³, D. K. Sahoo²², N. Sahoo, S. K. Swain

Panjab University, Chandigarh, India

S. Bansal, S. B. Beri, V. Bhatnagar, R. Chawla, N. Dhingra, A. Kaur, M. Kaur, S. Kaur, R. Kumar, P. Kumari, A. Mehta, J. B. Singh, G. Walia

University of Delhi, Delhi, India

Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B. C. Choudhary, R. B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, India

R. Bhardwaj, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur

Indian Institute of Technology Madras, Madras, India

P. K. Behera

Bhabha Atomic Research Centre, Mumbai, India

R. Chudasama, D. Dutta, V. Jha, V. Kumar, A. K. Mohanty¹⁵, P. K. Netrakanti, L. M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India

T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G. B. Mohanty, N. Sur, B. Sutar

Tata Institute of Fundamental Research-B, Mumbai, India

S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity²⁴, G. Majumder, K. Mazumdar, T. Sarkar²⁴, N. Wickramage²⁵

Indian Institute of Science Education and Research (IISER), Pune, India

S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

S. Chenarani²⁶, E. Eskandari Tadavani, S. M. Etesami²⁶, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri,

S. Paktinat Mehdiabadi²⁷, F. Rezaei Hosseinabadi, B. Safarzadeh²⁸, M. Zeinali

University College Dublin, Dublin, Ireland

M. Felcini, M. Grunewald

INFN Sezione di Bari*a***, Università di Bari***b***, Politecnico di Bari** *^c***, Bari, Italy**

M. Abbrescia^{a, b}, C. Calabria^{a, b}, A. Colaleo^a, D. Creanza^{a, c}, L. Cristella^{a, b}, N. De Filippis^{a, c}, M. De Palma^{a, b}, F. Errico^{a, b}, L. Fiore^a, G. Iaselli^{a,c}, S. Lezki^{a,b}, G. Maggi^{a,c}, M. Maggi^a, G. Miniello^{a,b}, S. My^{a,b}, S. Nuzzo^{a,b}, A. Pompili^{a,b}, G. Pugliese*a*,*c*, R. Radogna*a*, A. Ranieri*a*, G. Selvaggi*a*,*b*, A. Sharma*a*, L. Silvestris*a*,[15,](#page-23-14) R. Venditti*^a*, P. Verwilligen*^a*

INFN Sezione di Bologna*a***, Università di Bologna***b***, Bologna, Italy**

G. Abbiendi*a*, C. Battilana*a*,*b*, D. Bonacorsi*a*,*b*, L. Borgonovi*a*,*b*, S. Braibant-Giacomelli*a*,*b*, R. Campanini*a*,*b*, P. Capiluppi*a*,*b*, A. Castro*a*,*b*, F. R. Cavallo*a*, S. S. Chhibra*a*,*b*, G. Codispoti*a*,*b*, M. Cuffiani*a*,*b*, G. M. Dallavalle*a*, F. Fabbri*a*, A. Fanfani*a*,*b*, D. Fasanella*a*,*b*, P. Giacomelli*a*, C. Grandi*a*, L. Guiducci*a*,*b*, S. Marcellini*a*, G. Masetti*a*, A. Montanari*a*, F. L. Navarria*a*,*b*, A. Perrotta*a*, A. M. Rossi*a*,*b*, T. Rovelli*a*,*b*, G. P. Siroli*a*,*b*, N. Tosi*^a*

INFN Sezione di Catania*a***, Università di Catania***b***, Catania, Italy**

S. Albergo^{*a*,*b*}, S. Costa^{*a*,*b*}, A. Di Mattia^{*a*}, F. Giordano^{*a*,*b*}, R. Potenza^{*a*,*b*}, A. Tricomi^{*a*,*b*}, C. Tuve^{*a*,*b*}

INFN Sezione di Firenze*a***, Università di Firenze***b***, Florence, Italy**

G. Barbagli*a*, K. Chatterjee*a*,*b*, V. Ciulli*a*,*b*, C. Civinini*a*, R. D'Alessandro*a*,*b*, E. Focardi*a*,*b*, P. Lenzi*a*,*b*, M. Meschini*a*, S. Paoletti*a*, L. Russo*a*,[29,](#page-23-28) G. Sguazzoni*^a*, D. Strom*a*, L. Viliani*^a*

INFN Laboratori Nazionali di Frascati, Frascati, Italy

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera^{[15](#page-23-14)}

INFN Sezione di Genova*a***, Università di Genova***b***, Genoa, Italy**

V. Calvelli^{*a*,*b*}, F. Ferro^{*a*}, F. Ravera^{*a*,*b*}, E. Robutti^{*a*}, S. Tosi^{*a*,*b*}

INFN Sezione di Milano-Bicocca*a***, Università di Milano-Bicocca***b***, Milan, Italy**

A. Benaglia*a*, A. Beschi*b*, L. Brianza*a*,*b*, F. Brivio*a*,*b*, V. Ciriolo*a*,*b*,[15,](#page-23-14) M. E. Dinardo*^a*,*b*, S. Fiorendi*a*,*b*, S. Gennai*a*,

A. Ghezzi*a*,*b*, P. Govoni*a*,*b*, M. Malberti*a*,*b*, S. Malvezzi*a*, R. A. Manzoni*a*,*b*, D. Menasce*a*, L. Moroni*a*, M. Paganoni*a*,*b*,

D. Pedrini*a*, S. Pigazzini*a*,*b*,[30,](#page-23-29) S. Ragazzi*^a*,*b*, T. Tabarelli de Fatis*a*,*^b*

INFN Sezione di Napoli*a***, Università di Napoli 'Federico II'***b***, Naples, Italy, Università della Basilicata***c***, Potenza, Italy, Università G. Marconi***^d* **, Rome, Italy**

S. Buontempo*a*, N. Cavallo*a*,*c*, S. Di Guida*a*,*^d* ,[15,](#page-23-14) F. Fabozzi*^a*,*c*, F. Fienga*a*,*b*, A. O. M. Iorio*a*,*b*, W. A. Khan*a*, L. Lista*a*, S. Meola^{a , d , 15 , P. Paolucci^{a , 15}, C. Sciacca^{a , *b*}, F. Thyssen^{a}}

INFN Sezione di Padova*a***, Università di Padova***b***, Padua, Italy, Università di Trento***c***, Trento, Italy**

P. Azzi*a*, N. Bacchetta*a*, L. Benato*a*,*b*, A. Boletti*a*,*b*, R. Carlin*a*,*b*, A. Carvalho Antunes De Oliveira*a*,*b*, P. Checchia*a*, M. Dall'Osso*a*,*b*, P. De Castro Manzano*a*, T. Dorigo*a*, U. Dosselli*a*, F. Gasparini*a*,*b*, U. Gasparini*a*,*b*, A. Gozzelino*a*, S. Lacaprara*a*, P. Lujan, M. Margoni*a*,*b*, A. T. Meneguzzo*a*,*b*, N. Pozzobon*a*,*b*, P. Ronchese*a*,*b*, R. Rossin*a*,*b*, F. Simonetto*a*,*b*, E. Torassa*a*, M. Zanetti*a*,*b*, P. Zotto*a*,*b*, G. Zumerle*a*,*^b*

INFN Sezione di Pavia*a***, Università di Pavia***b***, Pavia, Italy**

A. Braghieri*a*, A. Magnani*a*, P. Montagna*a*,*b*, S. P. Ratti*a*,*b*, V. Re*a*, M. Ressegotti*a*,*b*, C. Riccardi*a*,*b*, P. Salvini*a*, I. Vai*a*,*b*, P. Vitulo*a*,*^b*

INFN Sezione di Perugia*a***, Università di Perugia***b***, Perugia, Italy**

L. Alunni Solestizi^{*a*,*b*}, M. Biasini^{*a*,*b*}, G. M. Bilei^{*a*}, C. Cecchi^{*a*,*b*}, D. Ciangottini^{*a*,*b*}, L. Fanò^{*a*,*b*}, P. Lariccia^{*a*,*b*}, R. Leonardi*a*,*b*, E. Manoni*a*, G. Mantovani*a*,*b*, V. Mariani*a*,*b*, M. Menichelli*a*, A. Rossi*a*,*b*, A. Santocchia*a*,*b*, D. Spiga*^a*

INFN Sezione di Pisa*a***, Università di Pisa***b***, Scuola Normale Superiore di Pisa***c***, Pisa, Italy**

K. Androsov*a*, P. Azzurri*a*,[15,](#page-23-14) G. Bagliesi*^a*, T. Boccali*a*, L. Borrello, R. Castaldi*a*, M. A. Ciocci*a*,*b*, R. Dell'Orso*a*, G. Fedi*a*, L. Giannini*a*,*c*, A. Giassi*a*, M. T. Grippo*a*,[29,](#page-23-28) F. Ligabue*^a*,*c*, T. Lomtadze*a*, E. Manca*a*,*c*, G. Mandorli*a*,*c*, A. Messineo*a*,*b*, F. Palla*a*, A. Rizzi*a*,*b*, A. Savoy-Navarro*a*,[31,](#page-23-30) P. Spagnolo*^a*, R. Tenchini*a*, G. Tonelli*a*,*b*, A. Venturi*a*, P. G. Verdini*^a*

INFN Sezione di Roma*a***, Università di Roma***b***, Rome, Italy**

L. Barone^{a, b}, F. Cavallari^a, M. Cipriani^{a, b}, N. Daci^a, D. Del Re^{a, b}, E. Di Marco^{a, b}, M. Diemoz^a, S. Gelli^{a, b}, E. Longo^{a, b}, F. Margaroli*a*,*b*, B. Marzocchi*a*,*b*, P. Meridiani*a*, G. Organtini*a*,*b*, R. Paramatti*a*,*b*, F. Preiato*a*,*b*, S. Rahatlou*a*,*b*, C. Rovelli*a*, F. Santanastasio*a*,*^b*

INFN Sezione di Torino*a***, Università di Torino***b***, Turin, Italy, Università del Piemonte Orientale***c***, Novara, Italy**

N. Amapane*a*,*b*, R. Arcidiacono*a*,*c*, S. Argiro*a*,*b*, M. Arneodo*a*,*c*, N. Bartosik*a*, R. Bellan*a*,*b*, C. Biino*a*, N. Cartiglia*a*, F. Cenna*a*,*b*, M. Costa*a*,*b*, R. Covarelli*a*,*b*, A. Degano*a*,*b*, N. Demaria*a*, B. Kiani*a*,*b*, C. Mariotti*a*, S. Maselli*a*, E. Migliore*a*,*b*, V. Monaco*a*,*b*, E. Monteil*a*,*b*, M. Monteno*a*, M. M. Obertino*a*,*b*, L. Pacher*a*,*b*, N. Pastrone*a*, M. Pelliccioni*a*, G. L. Pinna Angioni*a*,*b*, A. Romero*a*,*b*, M. Ruspa*a*,*c*, R. Sacchi*a*,*b*, K. Shchelina*a*,*b*, V. Sola*a*, A. Solano*a*,*b*, A. Staiano*a*, P. Traczyk*a*,*^b*

INFN Sezione di Trieste*a***, Università di Trieste***b***, Trieste, Italy**

S. Belforte*a*, M. Casarsa*a*, F. Cossutti*a*, G. Della Ricca*a*,*b*, A. Zanetti*^a*

Kyungpook National University, Daegu, Korea

D. H. Kim, G. N. Kim, M. S. Kim, J. Lee, S. Lee, S. W. Lee, C. S. Moon, Y. D. Oh, S. Sekmen, D. C. Son, Y. C. Yang

Institute for Universe and Elementary Particles, Chonnam National University, Kwangju, Korea H. Kim, D. H. Moon, G. Oh

Hanyang University, Seoul, Korea J. A. Brochero Cifuentes, J. Goh, T. J. Kim

Korea University, Seoul, Korea S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K. S. Lee, S. Lee, J. Lim, S. K. Park, Y. Roh

Seoul National University, Seoul, Korea

J. Almond, J. Kim, J. S. Kim, H. Lee, K. Lee, K. Nam, S. B. Oh, B. C. Radburn-Smith, S. H. Seo, U. K. Yang, H. D. Yoo, G. B. Yu

University of Seoul, Seoul, Korea H. Kim, J. H. Kim, J. S. H. Lee, I. C. Park

Sungkyunkwan University, Suwon, Korea Y. Choi, C. Hwang, J. Lee, I. Yu

 $\textcircled{2}$ Springer

Vilnius University, Vilnius, Lithuania

V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

I. Ahmed, Z. A. Ibrahim, M. A. B. Md Ali³², F. Mohamad Idris³³, W. A. T. Wan Abdullah, M. N. Yusli, Z. Zolkapli

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

R. Reyes-Almanza, G. Ramirez-Sanchez, M. C. Duran-Osuna, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz[34,](#page-23-33) R. I. Rabadan-Trejo, R. Lopez-Fernandez, J. Mejia Guisao, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

J. Eysermans, I. Pedraza, H. A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

A. Morelos Pineda

University of Auckland, Auckland, New Zealand

D. Krofcheck

University of Canterbury, Christchurch, New Zealand P. H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

A. Ahmad, M. Ahmad, Q. Hassan, H. R. Hoorani, A. Saddique, M. A. Shah, M. Shoaib, M. Waqas

National Centre for Nuclear Research, Swierk, Poland

H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, M. Szleper, P. Zalewski

Faculty of Physics, Institute of Experimental Physics, University of Warsaw, Warsaw, Poland K. Bunkowski, A. Byszuk³⁵, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisbon, Portugal

P. Bargassa, C. Beirão Da Cruz E. Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M. V. Nemallapudi, J. Seixas, G. Strong, O. Toldaiev, D. Vadruccio, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia

A. Baginyan, A. Golunov, I. Golutvin, V. Karjavin, V. Korenkov, G. Kozlov, A. Lanev, A. Malakhov, V. Matveev^{[36](#page-23-35),37}, V. V. Mitsyn, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, V. Smirnov, N. Voytishin, B. S. Yuldashev³⁸, A. Zarubin, V. Zhiltsov

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Y. Ivanov, V. Kim³⁹, E. Kuznetsova⁴⁰, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, V. Stolin, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia

T. Aushev, A. Bylinkin^{[37](#page-23-36)}

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia

R. Chistov⁴¹, M. Danilov⁴¹, P. Parygin, D. Philippov, S. Polikarpov, E. Tarkovskii

P.N. Lebedev Physical Institute, Moscow, Russia

V. Andreev, M. Azarkin³⁷, I. Dremin³⁷, M. Kirakosyan³⁷, S. V. Rusakov, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin⁴², L. Dudko, A. Gribushin, V. Klyukhin, N. Korneeva, I. Lokhtin, I. Miagkov, S. Obraztsov, M. Perfilov, V. Savrin, P. Volkov

Novosibirsk State University (NSU), Novosibirsk, Russia

V. Blinov⁴³, D. Shtol⁴³, Y. Skovpen⁴³

State Research Center of Russian Federation, Institute for High Energy Physics of NRC "Kurchatov Institute", Protvino, Russia

I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, A. Godizov, V. Kachanov, A. Kalinin, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

Faculty of Physics and Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia P. Adzic⁴⁴, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

J. Alcaraz Maestre, I. Bachiller, M. Barrio Luna, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, C. Fernandez Bedoya, J. P. Fernández Ramos, J. Flix, M. C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J. M. Hernandez, M. I. Josa, D. Moran, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, M. S. Soares, A. Triossi, A. Álvarez Fernández

Universidad Autónoma de Madrid, Madrid, Spain

C. Albajar, J. F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain

J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J. R. González Fernández, E. Palencia Cortezon, S. Sanchez Cruz, P. Vischia, J. M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

I. J. Cabrillo, A. Calderon, B. Chazin Quero, E. Curras, J. Duarte Campderros, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland

D. Abbaneo, B. Akgun, E. Auffray, P. Baillon, A. H. Ball, D. Barney, J. Bendavid, M. Bianco, A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, N. Deelen, M. Dobson, T. du Pree, M. Dünser, N. Dupont, A. Elliott-Peisert, P. Everaerts, F. Fallavollita, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, A. Gilbert, K. Gill, F. Glege, D. Gulhan, P. Harris, J. Hegeman, V. Innocente, A. Jafari, P. Janot, O. Karacheban¹⁸, J. Kieseler, V. Knünz, A. Kornmayer, M. J. Kortelainen, M. Krammer¹, C. Lange, P. Lecoq, C. Lourenço, M. T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J. A. Merlin, S. Mersi, E. Meschi, P. Milenovic⁴⁵, F. Moortgat, M. Mulders, H. Neugebauer, J. Ngadiuba, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, D. Rabady, A. Racz, T. Reis, G. Rolandi⁴⁶, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas⁴⁷, A. Stakia, J. Steggemann, M. Stoye, M. Tosi, D. Treille, A. Tsirou, V. Veckalns⁴⁸, M. Verweij, W. D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland

W. Bertl[†], L. Caminada⁴⁹, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H. C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S. A. Wiederkehr

Institute for Particle Physics and Astrophysics (IPA), ETH Zurich, Zurich, Switzerland

M. Backhaus, L. Bäni, P. Berger, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, T. Klijnsma, W. Lustermann, B. Mangano, M. Marionneau, M. T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Reichmann, D. A. Sanz Becerra, M. Schönenberger, L. Shchutska, V. R. Tavolaro, K. Theofilatos,

M. L. Vesterbacka Olsson, R. Wallny, D. H. Zhu

Universität Zürich, Zurich, Switzerland

T. K. Aarrestad, C. Amsler⁵⁰, M. F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, D. Pinna, G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi, A. Zucchetta

National Central University, Chung-Li, Taiwan

V. Candelise, Y. H. Chang, K. y. Cheng, T. H. Doan, Sh. Jain, R. Khurana, C. M. Kuo, W. Lin, A. Pozdnyakov, S. S. Yu

National Taiwan University (NTU), Taipei, Taiwan

Arun Kumar, P. Chang, Y. Chao, K. F. Chen, P. H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y. F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, J. F. Tsai

Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas

Physics Department, Science and Art Faculty, Çukurova University, Adana, Turkey

A. Bat, F. Boran, S. Damarseckin, Z. S. Demiroglu, C. Dozen, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, I. Hos⁵¹, E. E. Kangal⁵², O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut⁵³, K. Ozdemir⁵⁴, S. Ozturk⁵⁵, A. Polatoz, U. G. Tok, H. Topakli⁵⁵, B. Tali⁴⁹, S. Turkcapar, I. S. Zorbakir, C. Zorbilmez

Physics Department, Middle East Technical University, Ankara, Turkey G. Karapinar⁵⁶, K. Ocalan⁵⁷, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey E. Gülmez, M. Kaya⁵⁸, O. Kaya⁵⁹, S. Tekten, E. A. Yetkin⁶⁰

Istanbul Technical University, Istanbul, Turkey

M. N. Agaras, S. Atay, A. Cakir, K. Cankocak, Y. Komurcu

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine L. Levchuk

University of Bristol, Bristol, UK

F. Ball, L. Beck, J. J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, G. P. Heath, H. F. Heath, L. Kreczko, D. M. Newbold⁶¹, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V. J. Smith

Rutherford Appleton Laboratory, Didcot, UK

K. W. Bell, A. Belyaev⁶², C. Brew, R. M. Brown, L. Calligaris, D. Cieri, D. J. A. Cockerill, J. A. Coughlan, K. Harder, S. Harper, J. Linacre, E. Olaiya, D. Petyt, C. H. Shepherd-Themistocleous, A. Thea, I. R. Tomalin, T. Williams, W. J. Womersley

Imperial College, London, UK

G. Auzinger, R. Bainbridge, P. Bloch, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, A. Elwood, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, T. Matsushita, J. Nash, A. Nikitenko⁶, V. Palladino, M. Pesaresi, D. M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta⁶³, T. Virdee¹⁵, N. Wardle, D. Winterbottom, J. Wright, S. C. Zenz

Brunel University, Uxbridge, UK

J. E. Cole, P. R. Hobson, A. Khan, P. Kyberd, I. D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USA

A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith

Catholic University of America, Washington, DC, USA R. Bartek, A. Dominguez

The University of Alabama, Tuscaloosa, USA A. Buccilli, S. I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA

D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, USA

G. Benelli, D. Cutts, M. Hadley, J. Hakala, U. Heintz, J. M. Hogan, K. H. M. Kwok, E. Laird, G. Landsberg, J. Lee, Z. Mao, M. Narain, J. Pazzini, S. Piperov, S. Sagir, R. Syarif, D. Yu

University of California, Davis, Davis, USA

R. Band, C. Brainerd, R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P. T. Cox, R. Erbacher, C. Flores, G. Funk, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, D. Stolp, K. Tos, M. Tripathi, Z. Wang

University of California, Los Angeles, USA

M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev

University of California, Riverside, Riverside, USA

E. Bouvier, K. Burt, R. Clare, J. Ellison, J. W. Gary, S. M. A. Ghiasi Shirazi, G. Hanson, J. Heilman, G. Karapostoli, E. Kennedy, F. Lacroix, O. R. Long, M. Olmedo Negrete, M. I. Paneva, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates

University of California, San Diego, La Jolla, USA

J. G. Branson, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech⁶⁴, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta

Santa Barbara-Department of Physics, University of California, Santa Barbara, USA

N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, L. Gouskos, R. Heller, J. Incandela, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo

California Institute of Technology, Pasadena, USA

D. Anderson, A. Bornheim, J. Bunn, J. M. Lawhorn, H. B. Newman, T. Q. Nguyen, C. Pena, M. Spiropulu, J. R. Vlimant, R. Wilkinson, S. Xie, Z. Zhang, R. Y. Zhu

Carnegie Mellon University, Pittsburgh, USA

M. B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg

University of Colorado Boulder, Boulder, USA

J. P. Cumalat, W. T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland, K. Stenson, K. A. Ulmer, S. R. Wagner

Cornell University, Ithaca, USA

J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J. R. Patterson, D. Quach, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S. M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, USA

S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L. A. T. Bauerdick, A. Beretvas, J. Berryhill, P. C. Bhat, G. Bolla†, K. Burkett, J. N. Butler, A. Canepa, G. B. Cerati, H. W. K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V. D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, R. M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, N. Magini, J. M. Marraffino, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, B. Schneider, E. Sexton-Kennedy, A. Soha, W. J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N. V. Tran, L. Uplegger, E. W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H. A. Weber, A. Whitbeck, W. Wu

University of Florida, Gainesville, USA

D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, A. Carnes, M. Carver, D. Curry, R. D. Field, I. K. Furic, S. V. Gleyzer, B. M. Joshi, J. Konigsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, K. Shi, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton

Florida International University, Miami, USA

Y. R. Joshi, S. Linn, P. Markowitz, J. L. Rodriguez

Florida State University, Tallahassee, USA

A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K. F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, A. Santra, V. Sharma, R. Yohay

Florida Institute of Technology, Melbourne, USA

M. M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA

M. R. Adams, L. Apanasevich, D. Berry, R. R. Betts, R. Cavanaugh, X. Chen, O. Evdokimov, C. E. Gerber, D. A. Hangal, D. J. Hofman, K. Jung, J. Kamin, I. D. Sandoval Gonzalez, M. B. Tonjes, H. Trauger, N. Varelas, H. Wang, Z. Wu, J. Zhang

The University of Iowa, Iowa City, USA

B. Bilki⁶⁵, W. Clarida, K. Dilsiz⁶⁶, S. Durgut, R. P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya⁶⁷, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul⁶⁸, Y. Onel, F. Ozok⁶⁹, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA

B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A. V. Gritsan, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You

The University of Kansas, Lawrence, USA

A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Rogan, C. Royon, S. Sanders, E. Schmitz, J. D. Tapia Takaki, Q. Wang

Kansas State University, Manhattan, USA

A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L. K. Saini, N. Skhirtladze

Lawrence Livermore National Laboratory, Livermore, USA

F. Rebassoo, D. Wright

University of Maryland, College Park, USA

A. Baden, O. Baron, A. Belloni, S. C. Eno, Y. Feng, C. Ferraioli, N. J. Hadley, S. Jabeen, G. Y. Jeng, R. G. Kellogg, J. Kunkle, A. C. Mignerey, F. Ricci-Tam, Y. H. Shin, A. Skuja, S. C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA

D. Abercrombie, B. Allen, V. Azzolini, R. Barbieri, A. Baty, G. Bauer, R. Bi, S. Brandt, W. Busza, I. A. Cali, M. D'Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, D. Hsu, M. Hu, Y. Iiyama, G. M. Innocenti, M. Klute, D. Kovalskyi, Y.-J. Lee, A. Levin, P. D. Luckey, B. Maier, A. C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G. S. F. Stephans, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T. W. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USA

A. C. Benvenuti, R. M. Chatterjee, A. Evans, P. Hansen, J. Hiltbrand, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, J. Turkewitz, M. A. Wadud

University of Mississippi, Oxford, USA

J. G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA

E. Avdeeva, K. Bloom, D. R. Claes, C. Fangmeier, F. Golf, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J. E. Siado, G. R. Snow, B. Stieger

State University of New York at Buffalo, Buffalo, USA

J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA

G. Alverson, E. Barberis, C. Freer, A. Hortiangtham, A. Massironi, D. M. Morse, T. Orimoto, R. Teixeira De Lima, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, USA

S. Bhattacharya, O. Charaf, K. A. Hahn, N. Mucia, N. Odell, M. H. Schmitt, K. Sung, M. Trovato, M. Velasco

University of Notre Dame, Notre Dame, USA

R. Bucci, N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D. J. Karmgard, N. Kellams, K. Lannon, W. Li, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko³⁶, M. Planer, A. Reinsvold, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA

J. Alimena, L. Antonelli, B. Bylsma, L. S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, T. Y. Ling, B. Liu, W. Luo, B. L. Winer, H. W. Wulsin

Princeton University, Princeton, USA

S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S. Higginbotham, A. Kalogeropoulos, D. Lange, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, D. Stickland, C. Tully

University of Puerto Rico, Mayagüez, USA

S. Malik, S. Norberg

Purdue University, West Lafayette, USA

A. Barker, V. E. Barnes, S. Das, S. Folgueras, L. Gutay, M. Jones, A. W. Jung, A. Khatiwada, D. H. Miller, N. Neumeister, C. C. Peng, H. Qiu, J. F. Schulte, J. Sun, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USA

T. Cheng, N. Parashar, J. Stupak

Rice University, Houston, USA

Z. Chen, K. M. Ecklund, S. Freed, F. J. M. Geurts, M. Guilbaud, M. Kilpatrick, W. Li, B. Michlin, B. P. Padley, J. Roberts, J. Rorie, W. Shi, Z. Tu, J. Zabel, A. Zhang

University of Rochester, Rochester, USA

A. Bodek, P. de Barbaro, R. Demina, Y. T. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K. H. Lo, P. Tan, M. Verzetti

The Rockefeller University, New York, USA

R. Ciesielski, K. Goulianos, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA

A. Agapitos, J. P. Chou, Y. Gershtein, T. A. Gómez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA

A. G. Delannoy, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A&M University, College Station, USA

O. Bouhali⁷⁰, A. Castaneda Hernandez⁷⁰, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon⁷¹, R. Mueller, Y. Pakhotin, R. Patel, A. Perloff, L. Perniè, D. Rathjens, A. Safonov, A. Tatarinov

Texas Tech University, Lubbock, USA

N. Akchurin, J. Damgov, F. De Guio, P. R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S. W. Lee, T. Libeiro, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang

Vanderbilt University, Nashville, USA

S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, USA

M. W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA

R. Harr, P. E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski

University of Wisconsin-Madison, Madison, WI, USA

M. Brodski, J. Buchanan, C. Caillol, D. Carlsmith, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Hervé, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, V. Rekovic, T. Ruggles, A. Savin,

N. Smith, W. H. Smith, D. Taylor, N. Woods

† **Deceased**

- 1: Also at Vienna University of Technology, Vienna, Austria
- 2: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
- 3: Also at Universidade Estadual de Campinas, Campinas, Brazil
- 4: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- 5: Also at Université Libre de Bruxelles, Brussels, Belgium
- 6: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
- 7: Also at Joint Institute for Nuclear Research, Dubna, Russia
- 8: Also at Suez University, Suez, Egypt
- 9: Now at British University in Egypt, Cairo, Egypt
- 10: Now at Helwan University, Cairo, Egypt
- 11: Also at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
- 12: Also at Université de Haute Alsace, Mulhouse, France
- 13: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
- 14: Also at Ilia State University, Tbilisi, Georgia
- 15: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
- 16: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
- 17: Also at University of Hamburg, Hamburg, Germany
- 18: Also at Brandenburg University of Technology, Cottbus, Germany
- 19: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
- 20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
- 21: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
- 22: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
- 23: Also at Institute of Physics, Bhubaneswar, India
- 24: Also at University of Visva-Bharati, Santiniketan, India
- 25: Also at University of Ruhuna, Matara, Sri Lanka
- 26: Also at Isfahan University of Technology, Isfahan, Iran
- 27: Also at Yazd University, Yazd, Iran
- 28: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
- 29: Also at Università degli Studi di Siena, Siena, Italy
- 30: Also at INFN Sezione di Milano-Bicocca; Università di Milano-Bicocca, Milan, Italy
- 31: Also at Purdue University, West Lafayette, USA
- 32: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
- 33: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
- 34: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
- 35: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
- 36: Also at Institute for Nuclear Research, Moscow, Russia
- 37: Now at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
- 38: Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
- 39: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
- 40: Also at University of Florida, Gainesville, USA
- 41: Also at P.N. Lebedev Physical Institute, Moscow, Russia
- 42: Also at California Institute of Technology, Pasadena, USA
- 43: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
- 44: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
- 45: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
- 46: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy
- 47: Also at National and Kapodistrian University of Athens, Athens, Greece
- 48: Also at Riga Technical University, Riga, Latvia
- 49: Also at Universität Zürich, Zurich, Switzerland
- 50: Also at Stefan Meyer Institute for Subatomic Physics, (SMI), Vienna, Austria
- 51: Also at Istanbul Aydin University, Istanbul, Turkey
- 52: Also at Mersin University, Mersin, Turkey
- 53: Also at Cag University, Mersin, Turkey
- 54: Also at Piri Reis University, Istanbul, Turkey
- 55: Also at Gaziosmanpasa University, Tokat, Turkey
- 56: Also at Izmir Institute of Technology, Izmir, Turkey
- 57: Also at Necmettin Erbakan University, Konya, Turkey
- 58: Also at Marmara University, Istanbul, Turkey
- 59: Also at Kafkas University, Kars, Turkey
- 60: Also at Istanbul Bilgi University, Istanbul, Turkey
- 61: Also at Rutherford Appleton Laboratory, Didcot, UK
- 62: Also at School of Physics and Astronomy, University of Southampton, Southampton, UK
- 63: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
- 64: Also at Utah Valley University, Orem, USA
- 65: Also at Beykent University, Istanbul, Turkey
- 66: Also at Bingol University, Bingol, Turkey
- 67: Also at Erzincan University, Erzincan, Turkey
- 68: Also at Sinop University, Sinop, Turkey
- 69: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
- 70: Also at Texas A&M University at Qatar, Doha, Qatar
- 71: Also at Kyungpook National University, Daegu, Korea