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ARTICLE

Habituation based synaptic plasticity and
organismic learning in a quantum perovskite
Fan Zuo1, Priyadarshini Panda 2, Michele Kotiuga3, Jiarui Li4, Mingu Kang4, Claudio Mazzoli5, Hua Zhou6,

Andi Barbour5, Stuart Wilkins5, Badri Narayanan7, Mathew Cherukara6, Zhen Zhang1,

Subramanian K.R.S. Sankaranarayanan7, Riccardo Comin4, Karin M. Rabe3, Kaushik Roy2 & Shriram Ramanathan1

A central characteristic of living beings is the ability to learn from and respond to their

environment leading to habit formation and decision making. This behavior, known as

habituation, is universal among all forms of life with a central nervous system, and is also

observed in single-cell organisms that do not possess a brain. Here, we report the discovery

of habituation-based plasticity utilizing a perovskite quantum system by dynamical

modulation of electron localization. Microscopic mechanisms and pathways that enable this

organismic collective charge-lattice interaction are elucidated by first-principles theory,

synchrotron investigations, ab initio molecular dynamics simulations, and in situ environ-

mental breathing studies. We implement a learning algorithm inspired by the conductance

relaxation behavior of perovskites that naturally incorporates habituation, and demonstrate

learning to forget: a key feature of animal and human brains. Incorporating this elementary

skill in learning boosts the capability of neural computing in a sequential, dynamic

environment.
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Habituation, one of the primary universal learning
mechanisms, can be simply defined as the decrement in
response to repeated stimuli. Habituation is seen as the

simplest learning form exhibited by organisms, like sea slugs1 and
fruit flies2, to more complex living forms, such as rats and
humans3, 4, and is fundamental to how an organism responds and
adapts to its environment thereby increasing its chances of
survival. Habituation can help animals, for instance, to focus on
important stimuli for novelty detection and thus can be viewed as
an integral part of attention and learning5, 6, and has recently
been demonstrated in the single-celled non-neural organism
Physarum polycephalum, commonly known as the slime mold7.
In non-neural organisms, habituation is manifested by a change
in global shape of the system (Fig. 1a). In more complex organ-
isms that possess a nervous system, habituation has been shown
to result from the decreased release of chemical transmitters at
synaptic terminals1, 8. This changes the weights of certain neural
connections, a mechanism known as synaptic plasticity.

The perovskite oxide compound SmNiO3 (SNO) is a frame-
work of tilted NiO6 octahedra where Sm3+ ions occupy 12-fold
oxygen coordinated sites and balance the charge9. Hydrogen
doping from the environment into lattices using catalytic
electrodes occurs in a reversible manner leading to massive
nonlinear changes in electronic properties10, 11. Accompanied by
incorporation of a proton, an electron can be injected into an
unoccupied Ni eg orbital. Strong Coulomb interaction existing in

eg orbitals generates a large transport gap via strong correlation
effects12, 13. As shown in Fig. 1b, after first exposure to H2

(environmental stimulus 1), a significant fraction of Ni is reduced
to Ni2+, manifested by electron localization. On changing
the environment (in this case by air exposure) for a short period
of time followed by re-exposure to H2, additional protons
are incorporated into SNO, but with slower kinetics, and
keep diminishing. While the perovskite mimics habituation, the
varying conductance due to the correlated interactions shows
inherent plasticity that can emulate biological synapses of neural
organisms that are capable of more complex functionalities. Based
on this discovery, we design a learning mechanism we term
adaptive synaptic plasticity (ASP) that augments traditional
neural systems with the key ability of learning to forget for robust
and continuous learning in a dynamically evolving environment
(Supplementary Fig. 1).

Figure 1c shows the underlying plasticity mechanism for
memory formation and learning in the brain14, commonly
modeled with Spiking Neural Networks (SNNs)15. SNNs are
equipped with self-learning mechanisms such as spike-timing
dependent plasticity (STDP) for real-time interaction with the
environment16–18. However, in its naive form STDP implies that
any pre/post spike pair can modify the synapse, potentially
erasing past memories abruptly, commonly referred to as cata-
strophic forgetting19. This phenomenon often results in severe
loss of previous knowledge in a neuromorphic system that is
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Fig. 1 Quantum material showing habituation behavior observed in neural and non-neural organisms. a Nonassociative habituation learning observed in
Physarum polycephalum. When exposed to stimulus, a diminished response is observed indicative of habituation. b Schematic showing the habituation
process in a perovskite SmNiO3 (SNO). Between repeated stimuli (H2), the dynamics of carrier localization subsides, showing both non-neural habituation
and neural synaptic plasticity. c Associative spike-timing based learning observed in a biological neural system (brain) responsible for memory formation.
In the brain, synaptic plasticity is modulated by chemical transmitters, and is a function of the relative timing difference between the post and pre-neuronal
spikes. The biological neural system is implemented as a Spiking Neural Network (SNN) that consists of a fully connected array of pre-neurons and
post-neurons. The pre-neuronal voltage spike (Vpre) is modulated by the synaptic weight (w) to generate the resulting post-synaptic current (Ipost). The
post-neuron integrates the current that results in an increase in its membrane potential (Vmem) and spikes when the potential exceeds a certain threshold
(θ). d In environment 1, the SNN was presented with different images of digit 2 and learnt several patterns corresponding to the given image. In
environment 2, the SNN was presented with images of digits 0 and 1. Incorporating habituation-based nonassociative learning with standard associative
spike-timing dependent plasticity (STDP) enables the SNN to learn new patterns without catastrophic forgetting in a resource-constrained dynamic input
environment. The color intensity of the patterns are representative of the value of synaptic weights with lowest intensity (white) corresponding to a weight
value of −0.5 and highest intensity (black) corresponding to 0.5
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continuously exposed to new information (see Discussion section
and Supplementary Note 1). Recent work suggests that the brain
actively erases memories while learning to continuously process
new environmental stimuli20. Due to limited storage space
available, the brain forgets already learnt connections gradually to
associate them with new data.

Here, we present the discovery of environmental habituation-
based plasticity in SNO, which is rigorously explained by a
comprehensive discussion of X-ray scattering, first-principles
calculations, and ab initio dynamical simulations. Our ASP,
inspired by the perovskite organismoid’s variable conductance,
offers a solution to the problem of catastrophic forgetting.
Incorporating habituation, a nonassociative process of adaptation
seen in living organisms, into ASP learning facilitates the gradual
degradation or forgetting of already learnt weights to realize new
and recent information while preserving some memory about
old significant data. Figure 1d shows learning to forget with
ASP-based weight modulation by maintaining a balance between
forgetting and immediate learning to construct a stable plastic21

self-adaptive SNN for dynamic environments.

Results
Demonstration of habituation in nickelate thin film devices.
The initial state of the system is perturbed by exposure to a new

environment (namely H2). Electron doping via splitting of H2

into protons and electrons results in the reduction of several Ni
sites to Ni2+, which is verified by X-ray spectroscopy, causing a
large decrease in conductance, which can be reversed due to the
weak binding of the dopant with the lattice. The temporal
conductivity relaxation stems from the dynamics of surface
exchange and diffusion of protons, and can be modeled as an
exponential relaxation that is common to thin film devices22.
Partial reversal of doping by withholding the H2 exposure for a
short period of time followed by re-exposure to H2 and so forth
leads to habituation manifested by a gradual reduction in
response (Fig. 2a, Supplementary Figs. 2 and 3). Figure 2b shows
the exponential change in conductance of the perovskite in
different environments that motivates ASP learning. While the
electron localization is the origin of the conductance change,
the lattice breathes hydrogen as seen in the in situ synchrotron
studies on identical devices (Fig. 2c).

Theoretical calculations of electronic structure change. To
provide a microscopic understanding of doping-driven electronic
structure modification, we have carried out first-principles
calculations on SNO (see Supplementary Figs. 5 and 6, and
Supplementary Table 1 in Supplementary Note 2 for results on
various magnetic orderings), as shown in Fig. 2d, primarily
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Fig. 2 Mechanism of habituation in a perovskite nickelate. a In situ visualization of habituation phenomenon, i.e., exponential decrease of conductivity
change upon environmental exposure (the dots represent the experimental data and the solid lines are fits.). σ0 and σt are initial and dynamical conductivity,
respectively. b The conductance changes in response to different environments (decrease in H2 and increase in air) showing inherent plasticity similar to
what is observed in biological synapses. G0 and Gt represent initial and dynamical conductance, respectively. c Structural lattice breathing monitored by
in situ synchrotron X-ray diffraction. The integrated intensities of x-ray diffraction peak at qz= 2.98 Å−1 related to H-SmNiO3 (H-SNO) are shown
(see Supplementary Fig. 4). d First-principles calculation of electron-doped SNO. The upper figure shows density of states (DOS), in gray, at different doping
levels from 0-1 added e− per Ni site. The unoccupied projected DOS (PDOS) on each nickel site is shown in orange and purple. The difference in the total
DOS and the PDOS is due to the strong hybridization of the Ni and O states resulting from the covalent nature of the NiO6 octahedra. The lower figure
shows the occupied Ni eg levels for the corresponding doping levels. Same color legend is used and the darker colors indicate Ni with two occupied eg states.
e Atomic-scale pathway, and the associated energy barriers for proton migration between two neighboring O atoms labeled as O1 and O2 in (i) within a
NiO6 octahedron in a monoclinic SNO crystal. The potential energy along the most preferred diffusion pathway (as obtained from nudged-elastic band
density functional theory (DFT) calculation) is shown on the left, while selected configurations along this pathway labeled (i)–(v) are depicted on the right
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focusing on the addition of charge and the subsequent opening of
the gap. We considered the doping of a pristine SNO state with
all Ni3+, based on observations of Pbnm symmetry (where all
Ni sites are equivalent) at room temperature23. With addition of
electrons one-by-one to the

ffiffiffi

2
p

×
ffiffiffi

2
p

× 2 supercell of SNO, we
investigated the changes in the structure and electronic energy
levels. Each added electron localizes on a Ni3+ ion and the
surrounding oxygen octahedron, shifting the lowest unoccupied
orbital over 3 eV by onsite correlation to form high-spin Ni2+

(see Supplementary Table 2), which is consistent with variable-
angle ellipsometry measurements10. This charge transfer into the
Ni eg orbitals is expected from the observed changes in electron
filling manifested as a shift in spectral weight in the X-ray
absorption data (Supplementary Fig. 7b); however, a detailed
comparison requires including strong core-hole effects, which is
beyond the scope of density functional theory (DFT). Thus, the
fully doped case (1e−/Ni) shows a significantly increased band gap
on the order of 3 eV. The resonant magnetic coherent soft X-ray
scattering measurements (RMXS, Supplementary Figs. 7c and 8)
further reflect the breakdown of long-range spin order in SNO
after electron doping.

Molecular dynamics simulation of proton migration. We used
ab initio molecular dynamics (AIMD) to study the mechanism of
proton migration. We found that even at room temperature, the
dopant hops from an oxygen atom to a neighboring one within
NiO6 octahedron (Fig. 2e). The proton is initially bound to atom
O1 (Fig. 2e, i) at a distance of approximately 2.83 Å away from
the O2 atom. The proton first rotates about the O1 atom (Fig. 2e,
i–iii), while being bound to O1 until the O2-H distance is lowered

to approximately 1.72 Å (Fig. 2e, iii). This rotation process is
associated with an energy barrier of 0.27 eV, which is lower than
the typical activation barriers for H+ migration encountered in
proton conducting perovskites (e.g., in the canonical Y-doped
BaZrO3, ΔE ~0.46 eV24). Once the proton comes into the vicinity
of O2 atom (Fig. 2e, iii), it hops over, and binds to O2 atom with
a negligible energy penalty of 0.046 eV (Fig. 2e, iii–v). The proton
migration between neighboring O atoms is visualized in a video
in Supplementary Movie 1.

Learning to forget with ASP. The conductance relaxation
observed from Fig. 2b due to collective effects allows us to use the
organismoid’s behavior to modulate synaptic plasticity for
memorization and forgetting. ASP blends nonassociative
habituation behavior with time-based correlation learning that
helps in retention and gradual adaptation to new inputs, as well
as, evokes competition across neurons to learn distinct patterns.
We seamlessly integrate weight decay with traditional synaptic
plasticity and modulate the leak rate using the temporal dynamics
of pre- and post-synaptic neurons to realize habituation.
While the temporal correlation helps in learning new input
patterns, the retention of old data and gradual forgetting is
attained with habituation. The ASP model for weight modulation
with different windows for potentiation and depression based
on the firing events of the post-/pre-neurons is shown in
Supplementary Figs. 9 and 10 (see Supplementary Note 3 for
details on implementation).

To demonstrate the effectiveness of the organismoid-inspired
learning paradigm, against standard STDP, a fixed-size SNN
(with nine excitatory neurons) was trained in a dynamic digit-
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recognition environment, wherein digits 0 through 2 were
presented sequentially with no digit re-shown to the network.
Figure 3a, b shows the representations learnt with traditional
exponential STDP learning25 against the adaptive plasticity-based
learning. We see that as the network is shown digit 1, ASP-learnt
SNN forgets the already learnt connections for 0 and learns the
new input. Learning is more stable as neuronal connections
corresponding to the older pattern 0 are retained while learning 1.
ASP adopts a significant- and latest data driven forgetting
mechanism (incorporated via the leak/decay phase shown in
Supplementary Fig. 10), wherein older digits are forgotten to
learn new digits. Hence, when the last digit 2 is presented to the
ASP-learnt SNN, the connections to the excitatory neurons that
have learnt digit 0 are forgotten in order to learn the latest digit 2
while the connections (or neurons) corresponding to recently
learnt digit 1 remain intact.

Discussion
Habituation is referred to as diminishing of response to a fre-
quently repeated stimulus in the organismic biology literature26.
We explain the principles further in this section to enable a
general platform for materials design, and illustrate the experi-
mental envelope and dynamics. To achieve plasticity in the per-
ovskite, we vary the environment dynamically without allowing
the system to achieve equilibrium. For instance, if we simply
expose the perovskite at 50°C to hydrogen indefinitely, the
resistance will increase to a self-limiting value and saturate over
a period of several hours. Instead, we perturb the system well
before saturation and then re-expose to the environment before
complete reversal to the original state. In this manner, the
environment is dynamically modulated over appropriate time
scales quite similar to studies conducted on organisms. The
perovskite retains memory of the previous exposure since not all
of the dopant has left the lattice and is therefore continuously
modified, leading to diminished response. The perovskite
nickelates show large nonlinear changes in conductance upon
electron doping due to strong correlations in the partially filled eg
Ni orbitals, enabling the mimicry of environmental plasticity.
Other materials that show nonlinear changes of functional
properties in response to external stimuli may be considered to
further investigate similar organismic behavior. Similarly, for
reversibility, weak binding of the dopant to the lattice and escape
back into the environment is important. The time scale in our
experiments is chosen, in part, to be in the range of experimental
studies in biology, and is also close to what is noted for decision
making in ant colonies, bees, and related species where envir-
onmental chemical traces (i.e., diffusion of gases or scents over
sensory distances27, 28) are used for foraging food or collective
locomotion to illustrate proof-of-principle. As a comparison, the
response of neural connections in the brain is of the order
of milliseconds and electronic memory is of the order of
sub-microseconds. To mimic such faster time scales, instead of
varying the gas-phase species in an environmental chamber
(like we have done at a synchrotron beamline), one can use thin
film solid or liquid electrolytes interfaced with the perovskite or
other materials systems and rapidly move protons, oxygen,
lithium, or other ions into and out of the habituating material.
Since ions are charged and electrons can be reversibly anchored
to the partially filled d-orbitals, electric fields can be used to
operate these devices that can be integrated onto circuits29–31.
The varying conductance of the perovskite organismoid indicates
an inherent plasticity that can be used for creating artificial neural
systems. This motivated us to design ASP that incorporates
habituation with traditional spike-timing correlation-based
learning. It is implemented by modulating the exponential leak

rate of the weights based on the significance of the incoming
inputs, and is critical for learning to forget in a dynamic
environment. As explained in Supplementary Note 4, this model
is also compatible with other classes of oxide-ionic devices that
incorporate filamentary switching or spin-based devices.

The ability to learn tasks in a sequential fashion is crucial to the
development of neural systems. In sequential learning, during the
training process no information is re-presented to the network.
Such continual/sequential learning poses particular challenges for
neural networks due to the tendency for knowledge of previously
learnt task(s) (e.g., task A) to be abruptly lost as information
relevant to the current task (e.g., task B) is incorporated.
This phenomenon, termed catastrophic forgetting19, 32, 33, occurs
specifically when the network is trained sequentially on multiple
tasks because the weights in the network that are important for
task A are changed to meet the objectives of task B.

Typically, SNNs use STDP to modify the synaptic weights for
unsupervised learning of inputs. However, memory persistence is
a prominent problem that has been well-documented with STDP
as it implies that any pre/post spike pair can modify the synapse,
potentially erasing past memories abruptly leading to catastrophic
forgetting19, 32, 33. Here, we note specifically that catastrophic
forgetting will occur only when considering sequential learning of
tasks.

In our experiments with MNIST digit recognition, we show
each class/digit sequentially thereby creating a dynamic learning
environment (refer to Methods for details). Presenting the digits
one-by-one sequentially, i.e., first all the images for digit 0 fol-
lowed by digit 1, and so on, can be treated as a dynamic learning
environment. No particular digit instance or class is re-shown to
the network. Thus, even with proper STDP tuning and slower
learning rate, we cannot still unlearn the already learnt digits,
when new patterns are shown to the network. This results in
overlap of representations as seen in Fig. 3 and Supplementary
Fig. 10. The decay mechanism incorporated with ASP (utilizing
habituation) in turn helps in unlearning or forgetting the pre-
viously learnt data to learn new patterns without any overlap.

Furthermore, in order to prevent catastrophic forgetting in
STDP-learnt SNNs, the network is generally re-trained with both
the new and the old information (already learnt) when the
network has to learn a new class. Old information re-presented
with new data during training ensures that the latter or new
input data do not replace previous patterns. However, in online
real-time learning, it is often impractical and even expensive to
store all old data samples for re-training, each time a new input
pattern is encountered. ASP owing to its forgetting while learning
capability offers a promising solution for real-time dynamic
learning without the expensive re-training procedure.

Methods
Growth of epitaxial perovskite oxide thin films. LaAlO3 (001) single crystals
were used as substrate for epitaxial growth of SNO thin film by magnetron
co-sputtering of metallic nickel in direct-current mode (at power of 75W) and
samarium targets under radio-frequency mode (at power of 150W) in 5 mTorr of
argon and oxygen mixture flowing at rate of 40/10 standard cubic centimeters per
minute (sccm). The as-sputtered sample was then transferred into a custom-built
high-pressure vessel and annealed under 100 bar of pure oxygen at 500 °C for 24 h
in a tube furnace.

Electrical characterization. In situ temporal resistance measurements were done
in a sealed custom-designed chamber equipped with a gas flow controlling system,
from which we could switch the chamber inner atmosphere between various
environments. In this experiment, we use 5% H2 balanced by 95% argon as the
stimulus environment, and use air to remove the hydrogen stimulus. The
habituation only requires one stimulus (hydrogen), similar to what is seen in real
organisms. Four 100 nm Pt strips (0.5 mm × 5mm) were deposited on the top of
epitaxial SNO thin films by electron beam evaporation. The strips function as
catalyst to split H2 into protons and electrons for the electron doping of SNO, and
electrical contacts for the resistance measurements as well. The distance between
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each Pt strip is 1 mm. The experiments were conducted at 50 °C to maintain
a steady temperature throughout the studies. Resistance was calculated from
current-voltage curves swept between −0.1 to 0.1 V using Keithley 2635A
instrument. The initial chamber atmosphere was air, and Pt/SNO sample was
placed onto the sample stage for 30 min to reach stable temperature. Real-time
resistance testing, was conducted using a custom LabVIEW code. To avoid tem-
perature fluctuation during gas switching, the 5% H2/95% Ar was made to flow to
the chamber at a moderate flow rate of 30 sccm. After a 30 min reaction, the gas
was switched back to air by making dry air flow at the same flow rate (30 sccm).
After 10 min, gas was changed to 5% H2/95% Ar again, and this H2-Air cycle
was repeated. The relaxation of conductivity after exposure to environment is
fitted with the formalism to study conductivity relaxation in thin film devices34, 35,
(σ0 − σt)/σ0=C −A1exp(−k1t) − A2exp(−k2t), where σ0, and σt represent initial and
dynamical conductivity, respectively, k1 and k2 depicting the relaxation kinetics.

In situ synchrotron X-ray diffraction. Synchrotron X-ray diffraction measure-
ments of the SNO devices were conducted at an insertion device beamline, 12ID-D
at the Advanced Photon Source, Argonne National Laboratory, on a six-circle
Huber goniometer with an X-ray energy of 20 keV using a pixel array area detector
(Dectris Pilatus 100 K). The X-ray beam had a flux of 1012 photons per second.
The qz-scan (L-scan) was obtained by removing the background scattering
contributions using the two-dimensional images. For in situ X-ray diffraction
testing, Pt/SNO sample was placed in a testing compartment sealed by Kapton
tape. The testing condition followed the atmosphere progression mode
shown in Fig. 2a.

Resonant magnetic coherent soft X-ray scattering. RMXS study was performed
at the beamline 23-ID-1 of the National Synchrotron Light Source II (NSLS-II), at
Brookhaven National Laboratory. All data were collected using horizontally
polarized light and a vertical scattering geometry, with photon energy tuned near
the Ni-L3 absorption edge. The probing geometry is illustrated in Supplementary
Fig. 7a. The pristine SNO thin film is patterned with Pt stripes and hydrogen is
intercalated to yield electron-doped regions H-SmNiO3 (H-SNO) of width 0.1 mm.
The magnetic scattering signal is measured by a two-dimensional charge-coupled
device (CCD) positioned 33 cm from the sample, while the X-ray absorption is
collected in total fluorescence yield, also using the CCD (away from structural or
magnetic reflections). In order to reach the magnetic reflection, at Q= (1/4,1/4,1/
4), the sample was oriented so that the scattering plane is spanned by crystal vector
[111] and [1-10]. The film was illuminated by a coherent X-ray beam whose
coherent fraction is selected by a 10 μm diameter pinhole in close proximity to the
sample. The measurements were performed at ~20 K which is well below the Neel
temperature of SNO (~200 K).

First-principles calculations for SNO electronic structure. First-principle
calculations were carried out within the DFT+U approximation with the Vienna
ab initio Simulation Package (VASP) code36, 37 using the projector augmented
plane-wave (PAW) method of DFT38 and the supplied pseudopotentials: Sm_3
(valence: 5s25p26s24f1), Ni_pv (valence: 3p64s23d8) and O (valence 2s22p4). To treat
the exchange and correlation, the PBE functional was used within the generalized
gradient approximation (GGA)39, 40 and the rotationally invariant form of DFT+U
of Liechtenstein et al.41 with U= 4.6 eV and J= 0.6 eV. For structural determina-
tion of pristine SNO, we started with the Materials Project structure42 added a
small monoclinic distortion (β≈ 90.75°) and allowed the cell and ionic positions to
relax until the forces were less than 0.005 eV/Å on each ion. All calculations were
carried out with the tetrahedral method with Blöchl corrections43, a 6 × 6 × 4
Monkhorst-Pack k-point mesh for the

ffiffiffi

2
p

×
ffiffiffi

2
p

× 2 supercell, and a plane-wave
energy cutoff of 500 eV. When simulating electron doping, extra electrons were
added to the calculation with a positive background compensation charge. For
SNO, we added 1, 2, 3, or 4 electrons to the monoclinic

ffiffiffi

2
p

×
ffiffiffi

2
p

× 2 supercell with
a G-type magnetic ordering, resulting in an electron-doping concentration of 1/4,
1/2, 3/4, 1 e−/Ni, respectively. In each case, we allowed the internal ionic positions
to relax, using the same force tolerance as before, while keeping the volume
and cell shape unchanged. When studying effect of magnetic order on the
fully doped case (Supplementary Fig. 5), both the ionic positions and the lattice
parameters were relaxed.

Ab initio molecular dynamics simulations. We performed AIMD simulations
within GGA with Hubbard correction using the PAW formalism as implemented
in VASP36, 37. The computational supercell consists of four unit cells of
monoclinic SNO (2 × 2 × 1 repetitions of unit cell; 80 atoms). Periodic boundary
conditions are employed along all directions. The exchange correlation is described
by the PBE functional39, 40, with the same pseudopotentials as used in the
electronic structure calculations. The plane-wave energy cutoff is set at 520 eV. The
Brillouin zone is sampled at the Γ-point only. Using AIMD simulations in the
isobaric-isothermal (NPT) ensemble, we first thermalize the SNO computational
supercell at various temperatures ranging from 300–800 K and zero external
pressure for 10 ps using a timestep of 0.5 fs. During these simulations, the cell
volume, cell shape, as well as the atomic positions are allowed to vary via the
Parrinello-Rahman scheme41; the temperature conditions are maintained by using

a Langevin thermostat44. Next, we insert a proton within the thermalized SNO
(at a given temperature), such that it is at a distance of 0.98 Å away from an
arbitrarily chosen O atom. Note that we ensure supercell neutrality upon addition
of the proton via a background negative charge. To monitor the diffusion of the
inserted proton (Supplementary Movie 1, Supplementary Note 5), we perform
AIMD simulations at constant volume (and shape) and temperature (i.e., NVT
ensemble) for an additional 10 ps. For these AIMD simulations of doped SNO,
constant temperature conditions are maintained via Nose Hoover thermostat44

as implemented in VASP.

Simulation methodology for SNNs. The ASP learning algorithm was
implemented in BRIAN45 that is an open source large-scale SNN simulator with
parameterized functional models (Leaky-Integrate-and-Fire) for spiking neurons.
We used the hierarchical SNN framework (Supplementary Fig. 9) to perform digit
recognition with the MNIST dataset46. The network topology and the associated
synaptic connectivity configuration were programmed in the simulator. The
spiking activity (or time instants of spikes) of pre- and post-neurons were
monitored to track the corresponding pre-/post-synaptic traces that were used to
estimate the weight updates in the recovery/decay learning phase of ASP.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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