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Attention and Anticipation in Fast Visual-Inertial Navigation

Luca Carlone and Sertac Karaman

Abstract—We study a Visual-Inertial Navigation (VIN) problem
in which a robot needs to estimate its state using an on-board
camera and an inertial sensor, without any prior knowledge of
the external environment. We consider the case in which the robot
can allocate limited resources to VIN, due to tight computational
constraints. Therefore, we answer the following question: under
limited resources, what are the most relevant visual cues to
maximize the performance of visual-inertial navigation? Our
approach has four key ingredients. First, it is task-driven, in
that the selection of the visual cues is guided by a metric
quantifying the VIN performance. Second, it exploits the notion
of anticipation, since it uses a simplified model for forward-
simulation of robot dynamics, predicting the utility of a set of
visual cues over a future time horizon. Third, it is efficient and
easy to implement, since it leads to a greedy algorithm for the
selection of the most relevant visual cues. Fourth, it provides
formal performance guarantees: we leverage submodularity to
prove that the greedy selection cannot be far from the optimal
(combinatorial) selection. Simulations and real experiments on
agile drones show that our approach leads to dramatic im-
provements in the VIN performance. In the easy scenarios, our
approach outperforms the state-of-the-art in terms of localization
errors. In the most challenging scenarios, it enables accurate
visual-inertial navigation while the state of the art fails to track
robot’s motion during aggressive maneuvers.

SUPPLEMENTARY MATERIAL

• Video: https://www.youtube.com/watch?v=uMLXNRiVuyU

I. INTRODUCTION

The human brain can extract conceptual information from
an image in a time lapse as short as 13 ms [1]. One has
proof of the human’s capability to seamlessly process large
amount of sensory data in everyday tasks, including driving
a car on a highway, or walking on a crowded street. In the
cognitive science literature, there is agreement on the fact
that efficiency in processing the large amount of data we
are confronted with is due to our ability to prioritize some
aspects of the visual scene, while ignoring others [2]. One
can imagine that sensory inputs compete to have access to the
limited computational resources of our brain. These resource
constraints are dictated by the fixed amount of energy available
to the brain as well as time constraints imposed by time-critical
tasks. Visual attention is the cognitive process that allows
humans to parse a large amount of visual data by selecting
relevant information and filtering out irrelevant stimuli, so to
maximize performance1 under limited resources.

L. Carlone and S. Karaman are with the Laboratory for Information &
Decision Systems (LIDS), Massachusetts Institute of Technology, Cambridge,
MA, USA, {lcarlone,sertac}@mit.edu

1This definition oversimplifies the attention mechanisms in humans. While
the role of attention is to optimally allocate resources to maximize perfor-
mance, it is known that some involuntary attention mechanisms can actually
hinder the correct execution of a task [2].

Robots vs. humans. The astonishing progress in robotics and
computer vision over the last three decades might induce us
to ask: how far is robot perception from human performance?
Let us approach this question by looking at the state of the art
in visual processing for different tasks. Without any claim to
be exhaustive, we consider few representative papers (sampled
over the last 2 years) and we only look at timing performance.
A state-of-the-art approach for object detection [3] detects
objects in a scene in 22ms on a Titan X GPU. A high-
performance approach for stereo reconstruction [4] builds a
triangular mesh of a 3D scene in 10-100ms on a single CPU (at
resolution 800 × 600). A state-of-the-art vision-based SLAM
approach [5] requires around 400ms for local mapping and
motion tracking and more than 1s for global map refinement
(CPU, multiple cores). The reader may notice that for each
task, in isolation, modern algorithms require more time than
what a human needs to parse an entire scene. Arguably, while
a merit of the robotics and computer vision communities has
been to push performance in each task, we are quite far
from a computational model in which all these tasks (pose
estimation, geometry reconstruction, scene understanding) are
concurrently executed in the blink of an eye.

Efficiency via general-purpose computing. One might argue
that catching up with human efficiency is only a matter of time:
according to Moore’s law, the available computational power
grows at exponential rate, hence we only need to wait for more
powerful computers. An analogous argument would suggest
that using GPU rather than CPU would boost performance
in some of the tasks mentioned above. By comparison with
human performance, we realize that this argument is not com-
pletely accurate. While it is true that we can keep increasing
the computational resources to meet given time constraints
(i.e., enable faster processing of sensory data), the increase in
computation implies an increase in energy consumption; for
instance, a Titan X GPU has a nominal power consumption of
250W [6] while a Core i7 CPU has a power consumption
as low as 11W [7]. On the other hand, human processing
constantly deals with limited time and energy constraints,
and is parsimonious in allocating only the resources that are
necessary to accomplish its goals.

Efficiency via specialized computing. Another potential al-
ternative to enable high-rate low-power perception and bridge
the gap between human and robot perception is to design
specialized hardware for machine perception. As extensively
discussed in our previous work [8], algorithms and hardware
co-design allows minimizing resource utilization by exploiting
a tight-integration of algorithms and specialized hardware, and
leveraging opportunities (e.g., pipelining, low-cost arithmetic)
provided by ASICs (Application-Specific Integrated Circuits)
and FPGAs (Field-Programmable Gate Arrays). While we
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have shown that using specialized hardware for VIN leads
to a reduction of the power consumption of 1-2 orders of
magnitude (with comparable performance), three main obser-
vations motivate the present work. First, the development of
specialized hardware for perception is an expensive and time-
consuming process and the resulting hardware is difficult to
upgrade. Second, rather than designing optimized hardware
that can meet given performance requirements, it may be
desirable to develop a framework that can systematically trade-
off performance for computation, hence more flexibly ad-
justing to the available, possibly time-varying, computational
resources and performance requirements. Third, extensive bi-
ological evidence suggests that efficient perception requires
both specialized circuitry (e.g., visual perception in humans is
carried out by highly specialized areas of the brain [9]) and a
mechanism to prioritize stimuli (i.e., visual attention [2]).

Contribution. In this paper, we investigate how to speed-
up computation (or, equivalently, reduce the computational
effort) in VIN by prioritizing sensor data in a task-dependent
fashion. We consider the case in which, due to constraints
on the on-board computation, the robot can only use a small
number of visual features in the environment to support motion
estimation. We then design a visual attention mechanism that
selects a suitable set of visual features to maximize localization
accuracy; our general framework is presented in Section III.

Our approach is task-driven: it selects features that max-
imize a task-dependent performance metric, that we present
in Section III-A. Contrarily to the literature on visual feature
selection, we believe that the utility of a feature is not an
intrinsic property of the feature itself (e.g., appearance), but it
rather stems from the intertwining of the environment and the
observer state. Our approach seamlessly captures both visual
saliency and the task-dependent utility of a set of features.

Our attention mechanism is predictive in nature: when
deciding which feature is more useful, our approach performs
fast forward-simulations of the state of the robot leading to
a feature selection that is aware of the dynamics and the
“intentions” of the robot. The forward simulation is based on
a simplified model which we present in Section III-B.

Since the optimal allocation of the resources in a hard
combinatorial problem, in Section IV we present a greedy
algorithm for attention allocation. In the same section, we
leverage recent results on submodularity to provide formal
performance guarantees for the greedy algorithm. Section IV
also reviews related techniques based on convex relaxations.

Section V provides an experimental evaluation of the pro-
posed approach. The results confirm that our approach
can boost performance in standard VIN pipelines and en-
ables accurate navigation under agile motions and strict re-
source constraints. The proposed approach largely outperforms
appearance-based feature selection methods, and drastically
reduces the computational time required by the VIN back-end.

This paper extends the preliminary results presented in [10].
In particular, the discussion on convex relaxations for features
selection (Section IV-A and Section IV-B), the performance
guarantees of Proposition 11, the simulation results of Sec-
tion V-A, and the experimental evaluation on the 11 EuRoC

datasets [11] are novel and have not been previously published.

II. RELATED WORK

This work intersects several lines of research across fields.
Attention and Saliency in Neuroscience and Psychology.

Attention is a central topic in human and animal vision
research with more than 2500 papers published since the
1980s [2]. While a complete coverage is outside the scope of
this work, we review few basic concepts, using the surveys of
Carrasco [2], Borji and Itti [12], Scholl [13], and the work of
Caduff and Timpf [14] as main references. Scholl [13] defines
attention as the discrimination of sensory stimuli, and the allo-
cation of limited resources to competing attentional demands.
Carrasco [2] identifies three types of attention: spatial, feature-
based, and object-based. Spatial attention prioritizes different
locations of the scene by moving the eyes towards a specific
location (overt attention) or by focusing on relevant locations
within the field of view (covert attention). Feature-based atten-
tion prioritizes the detection of a specific feature (color, motion
direction, orientation) independently on its location. Object-
based attention prioritizes specific objects. In this work, we are
mainly interested in covert spatial attention: which locations
in the field of view are the most informative for navigation?
Covert attention in humans is a combination of voluntary and
involuntary mechanisms that guide the processing of visual
stimuli at given locations in the scene [2]. Empirical evidence
shows that attention is task-dependent in both primates and
humans [14], [15]. Borji and Itti [12] explicitly capture this
aspect by distinguishing bottom-up and top-down attention
models; in the former the attention is captured by visual cues
(stimulus-driven), while in the latter the attention is guided
by the goal of the observer. Caduff and Timpf [14] study
landmark saliency in human navigation and conclude that
saliency stems from the intertwining of intrinsic property of a
landmark (e.g., appearance) and the state of the observer (e.g.,
prior knowledge, observation pose). Another important aspect,
that traces back to the guided search theory of Wolfe [16] and
Spekreijse [17], is the distinction between pre-attentive and
attentive visual processes. Pre-attentive processes handle all
incoming sensory data in parallel; then, attentive processes
only work on a filtered-out-version of the data, which the
brain deems more relevant. General computational models for
attention are reviewed in [12], including Bayesian models,
graph-theoretic, and information-theoretic formulations.

Feature Selection in Robotics and Computer Vision. The
idea of enhancing performance in visual SLAM and visual
odometry via active feature selection is not novel. Sim and
Dudek [18] and Peretroukhin et al. [19] use training data
to learn a model of the quality of the visual features. Each
feature is mapped from a hand-crafted predictor space to a
scalar weight that quantifies its usefulness for pose estimation;
in [19] the weights are then used to rescale the measurement
covariance of each observation. Ouerhani et al. [20] construct
a topological map using attentional landmarks. Newman and
Ho [21] consider a robot equipped with camera and laser range
finder and perform feature selection using an appearance-
based notion of visual saliency. Sala et al. [22] use a co-



visibility criterion to select good landmarks that are visible
from multiple viewpoints. Siagian and Itti [23] investigate a
bio-inpired attention model within Monte Carlo localization.
Frintrop and Jensfelt [24] use an attention framework for
landmark selection and active gaze control; feature selection
is based on the VOCUS model [24], which includes a bottom-
up attentional system (which computes saliency from the
feature appearance), and can incorporate a top-down mecha-
nism (which considers task performance). Active gaze control,
instead, is obtained as the combination of three behaviors:
landmark redetection, landmark tracking, and exploration of
new areas. Hochdorfer and Schlegel [25] propose a landmark
rating and selection mechanism based on area coverage to
enable life-long mapping. Strasdat et al. [26] propose a re-
inforcement learning approach for landmark selection. Chli
and Davison [27] and Handa et al. [28] use available priors to
inform feature matching, hence reducing the computational
cost. Jang et al. [29] propose an approach for landmark
classification to improve accuracy in visual odometry; each
feature class is used separately to estimate rotational and
translational components of the ego-motion. Shi et al. [30]
propose a feature selection technique to improve robustness
of data association in SLAM. Very recent work in computer
vision use attention to reduce the computational burden in
neural networks. Mnih et al. [31] reduce the processing of
object detection and tracking with a recurrent neural network
by introducing the notion of glimpse, which provides higher
resolution in areas of interest within the image. Xu et al. [32]
use visual attention to improve image content description.
Cvišić and Petrović [33] speed up computation in stereo
odometry by feature selection; the selection procedure is based
on bucketing (which uniformly distributes the features across
the image), and appearance-based ranking.

Our approach is loosely related to techniques for graph
sparsification in which features are pruned a-posteriori from
the SLAM factor graph to reduce computation; we refer the
reader to the survey [34] for a review of these techniques.

The contributions that are most relevant to our proposal are
the one of Davison [35], Lerner et al. [36], Mu et al. [37],
Wu et al. [38], and Zhang and Vela [39]. The pioneering
work of Davison [35] is one of the first papers to use in-
formation theoretic constructs to reason about visual features,
and shares many of the motivations discussed in the present
paper. Contrarily to the present paper, Davison [35] considers
a model-based tracking problem in which the state of a
moving camera has to be estimated from observations of
known features. In hindsight, we also provide a theoretical
justification for the use of a greedy algorithm (similar to the
one used in [35]) which we prove able to compute near-optimal
solutions. Lerner et al. [36] study landmark selection in a
localization problem with known landmarks; the robot has
to choose a subset of landmarks to observe so to minimize
the localization uncertainty. The optimal subset selection is
formulated as a mixed-integer program and relaxed to an
SDP. While the problem we solve in this paper is different
(visual inertial odometry vs. localization with known map),

an interesting aspect of [36] is the use of a requirement
matrix that weights the state covariance and encodes task-
dependent uncertainty constraints. Mu et al. [37] propose a
two-stage approach to select a subset of landmarks to minimize
the probability of collision and a subset of measurements to
accurately localize those landmarks. Our approach shares the
philosophy of task-driven measurement selection, but has three
key differences. First, we use a simplified linear model for
forward dynamics simulation: this is in the spirit of RANSAC,
in that a simplified algebraic model is used to quickly filter out
less relevant data. Second, we consider different performance
metrics, going beyond the determinant criterion used in [37]
and related work on graph sparsification. Third, we perform
feature selection in a single stage and leverage submodularity
to provide formal performance guarantees. Wu et al. [38]
consider a multi camera system and split the feature selection
process into a cascade of two resource-allocation problems:
(i) how to allocate resources among the cameras, and (ii) how
to select features in each camera, according to the allocated
resources. The former problem is solved by taking simpliying
assumptions on the distribution of the features, the latter is
based on the heuristic feature selection scheme of [40]. Our
paper attempts to formalize feature selection by leveraging
the notion of submodularity. Zhang and Vela [39] perform
feature selection using an observability score and provide sub-
optimality guarantees using submodularity. Our proposal is
similar in spirit to [39] with few important differences. First,
our approach is based on anticipation: the feature selector
is aware of the intention (future motion) of the robot and
selects the features accordingly. Second, we do not require the
presence of known points (i.e., the anchors in [39]). Third, we
consider a metric quantifying the motion estimation error and
we purposely disregard the map reconstruction quality. Fourth,
from the theoretical standpoint, we provide multiplicative
suboptimality bounds, which are stronger than the additive
bound of [39], and we prove that those bounds are nontrivial.

Sensor Scheduling and Submodularity. Feature selection
is deeply related to the problem of sensor scheduling in control
theory. The most common setup for sensor scheduling is the
case in which N sensors monitor a phenomenon of interest
and one has to choose κ out of the N available sensors
to maximize some information-collection metric; this setup
is also known as sensor selection or sensor placement. The
literature on sensor selection includes approaches based on
convex relaxation [41], Bayesian optimal design [42], and
submodular optimization [43]. The problem is shown to be
NP-hard in [44]. Shamaiah et al. [45] leverage submodularity
and provide performance guarantees when optimizing the log-
determinant of the estimation error covariance. A setup which
is closer to the one in this paper is the case in which the sensed
phenomenon is dynamic; in such case the sensor scheduling
can be formulated in terms of the optimal selection of κ
out of N possible measurements to be used in the update
phase of a Kalman filter (KF). Vitus et al. [46] use a tree-
search approach for sensor scheduling. Zhang et al. [47] proves
that sensor scheduling within Kalman filtering is NP-hard and



shows that the trace of the steady state prior and posterior KF
covariances are not submodular, despite the fact that greedy
algorithms are observed to work well in practice. Jawaid and
Smith [48] provide counterexamples showing that in general
the maximum eigenvalue and the trace of the covariance are
not submodular. Tzoumas et al. [49] generalize the derivation
of [48] to prove submodularity of the logdet over a fixed time
horizon, under certain assumptions on the observation matrix.
Summers et al. [50] show that several metrics based on the
controllability and observability Gramians are submodular.

Visual-Inertial Navigation. As the combined use of the
visual and vestibular system is key to human navigation, recent
advances in visual-inertial navigation on mobile robots are
enabling unprecedented performance in pose estimation in
GPS-denied environments using commodity hardware. The lit-
erature on visual-inertial navigation is vast, with many contri-
butions proposed over the last two years, including approaches
based on filtering [51], [40], [52], [53], [54], [55], fixed-lag
smoothing [56], [57], [58], [59], and full smoothing [60], [61],
[62], [63], [64], [65], [66]. We refer the reader to [66] for a
comprehensive review.

Notation. We use lowercase and uppercase bold letters to
denote vectors (e.g. v) and matrices (e.g. M ), respectively.
Sets are denoted by sans script fonts (e.g. A). Non-bold face
letters are used for scalars and indices (e.g. j) and function
names (e.g. f(·)). The symbol |A| denotes the cardinality of
A. The identity matrix of size n is denoted with In. An m×n
zero matrix is denoted by 0m×n. The symbol ‖·‖ denotes the
Euclidean norm for vectors and the spectral norm for matrices.

III. ATTENTION IN VISUAL-INERTIAL NAVIGATION

We design an attention mechanism that selects κ relevant
visual features (e.g., Harris corners) from the current frame in
order to maximize the performance of visual-inertial motion
estimation. The κ features have to be selected out of N
available features present in the camera image; the approach
can deal with both monocular and stereo cameras (a stereo
camera is treated as a rigid pair of monocular cameras).

We call F the set of all available features (with |F|= N ). If
we denote with f(·) our task-dependent performance metric
(we formalize a suitable metric for VIN in Section III-A), we
can state our feature selection problem as follows:

max
S⊂F

f(S) subject to |S|≤ κ (1)

The problem looks for a subset of features S, containing no
more than κ features, which optimizes the task performance
f(·). This is a standard feature selection problem and has been
used across multiple fields, including machine learning [67],
robotics [37], and sensor networks [41]. Problem (1) is NP-
hard [44] in general. In the rest of this paper we are interested
in designing a suitable performance metric f(S) for our VIN
task, and provide fast approximation algorithms to solve (1).

We would like to design a performance metric f(·) that
captures task-dependent requirements: in our case the metric
has to quantify the uncertainty in the VIN motion estimation.
Moreover, the metric should capture aspects already deemed

relevant in related work. First, the metric has to reward
the selection of the most distinctive features (in terms of
appearance) since these are more likely to be re-observed
in consecutive frames. Second, the metric has to reward
features that remain within the field of view for a longer time.
Therefore, anticipation is a key aspect: the metric has to be
aware that under certain motion some of the features are more
likely to remain in the field of view of the camera. Third,
the metric has to reward features that are more informative to
reduce uncertainty. In the following section we propose two
performance metrics that seamlessly capture all these aspects.

A. Task-dependent Performance Metrics for VIN
Here we propose two metrics that quantify the accumulation

of estimation errors over an horizon H , under the selection
of a set of visual features S. Assume that k is the time
instant at which the features need to be selected. Let us
call x̂k the (to-be-computed) state estimate of the robot at
time k: we will be more precise about the variables included
in x̂k in Section III-B1; for now the reader can think that
x̂k contains the estimate for the pose and velocity of the
robot at time k, as well as the IMU biases. We denote with
x̂k:k+H

.
= [x̂k x̂k+1 . . . x̂k+H ] the future state estimates

within the horizon H . Moreover, we call Pk:k+H the covari-
ance matrix of our estimate x̂k:k+H , and Ωk:k+H

.
= P−1k:k+H

the corresponding information matrix. Two natural metrics to
capture the accuracy of x̂k:k+H are described in the following.

Worst-case Estimation Error. The worst-case error vari-
ance is quantified by the largest eigenvalue λmax(Pk:k+H)
of the covariance matrix Pk:k+H , see e.g., [41]. Call-
ing λmin(Ωk:k+H) the smallest eigenvalue of the infor-
mation matrix Ωk:k+H , if follows that λmax(Pk:k+H) =
1/λmin(Ωk:k+H), hence minimizing the worst-case error is the
same as maximizing λmin(Ωk:k+H). Note that the information
matrix Ωk:k+H is function of the selected set of measurements
S, hence we write λmin(Ωk:k+H(S)).

Therefore our first metric (to be maximized) is:

fλ(S) = λmin(Ωk:k+H(S)) = λmin

(
Ω̄k:k+H +

∑
l∈S

∆l

)
(2)

where on the right-hand-side, we exploited the additive struc-
ture of the information matrix, where Ω̄k:k+H is the infor-
mation matrix of the estimate when no features are selected
(intuitively, this is the inverse of the covariance resulting from
the IMU integration), while ∆l is the information matrix
associated with the selection of the l-th feature. We will give
an explicit expression to Ω̄k:k+H and ∆l in Section III-B.

Volume and Mean Radius of the Confidence Ellipsoid.
The ε-confidence ellipsoid is the ellipsoid that contains the
estimation error with probability ε. Both the volume and the
mean radius of the ε-confidence ellipsoid are proportional to
the determinant of the covariance matrix. In particular, the
volume V and the mean radius R̄ of an n-dimensional ellipsoid
associated with the covariance Pk:k+H can be written as [41]:

V =
(απ)n/2

Γ(n2 + 1)
det(P

1
2

k:k+H) , R̄ =
√
α det(Pk:k+H)

1
2n (3)



where α is the quantile of the χ2 distribution with n degrees
of freedom and upper tail probability of ε, Γ(·) is the Gamma
function, and det(·) is the determinant of a square matrix.

From (3) we note that to minimize the volume and the
mean radius of the confidence ellipsoid we can equivalently
minimize the determinant of the covariance. Moreover, since

log det(Pk:k+H) = log det(Ω−1k:k+H) = − log det(Ωk:k+H)

then minimizing the size of the confidence ellipsoid is the
same as maximizing the log-determinant of the information
matrix, leading to our second performance metric:

fdet(S) = log det(Ωk:k+H(S)) = log det

(
Ω̄k:k+H +

∑
l∈S

∆l

)
(4)

where we again noted that the information matrix is function
of the selected features and can be written in additive form.

Probabilistic Feature Tracks. The performance metrics
described so far already capture some important aspects: they
are task-dependent in that they both quantify the motion
estimation performance; moreover, they are predictive, in the
sense that they look at the result of selecting a set of features
over a short (future) horizon. As we will see in Section III-B2,
the model also captures the fact that longer feature tracks are
more informative, therefore it implicitly rewards the selection
of features that are co-visible across multiple frames.

The only aspect that is not yet modeled is the fact that,
even when a feature is in the field of view of the camera,
there is some chance that it will not be correctly tracked and
the corresponding feature track will be lost. For instance, if the
appearance of a feature is not distinctive enough, the feature
track may be shorter than expected.

To model the probability that a feature track is lost, we intro-
duce N Bernoulli random variables b1, . . . , bN . Each variable
bl represents the outcome of the tracking of feature l: if bl = 1,
then the feature is successfully tracked, otherwise, the feature
track is lost. For each feature we assume pl = Prob(bl = 1) to
be given; in practice one can correlate the appearance of each
feature to pl, such that more distinctive features have higher
probability of being tracked if they are in the field of view.
Using the binary variables b .

= {b1, . . . , bN}, we write the
information matrix at the end of the horizon as:

Ωk:k+H(S, b) = Ω̄k:k+H +
∑
l∈S bl∆l (5)

which has a clear interpretation: if the l-th feature is correctly
tracked, then bl = 1 and the corresponding information matrix
∆l is added to Ω̄k:k+H ; on the other hand, if the feature tracks
is lost, then bl = 0 and the corresponding information content
simply disappears from the sum in (5).

Since b is a random vector, our information matrix is now a
stochastic quantity Ωk:k+H(S, b), hence we have to redefine
our performance metrics to include the expectation over b:

f(S) = E [f(Ωk:k+H(S, b))] (6)

where the function f(·) denotes either fλ(·) or fdet(·).
Computing the expectation (6) leads to a sum with a com-

binatorial number of terms, which is hard to even evaluate. To

avoid the combinatorial explosion, we use Jensen’s inequality:

E [f(Ωk:k+H(S, b))] ≥ f(E [Ωk:k+H(S, b)]) (7)

which produces a lower bound for our expected cost. In the
rest of this paper we maximize this lower bound, rather that
the original cost. The advantage of doing so is that the right-
hand-side of (7) can be efficiently computed as:

f(E [Ωk:k+H(S, b)] = f(Ω̄k:k+H +
∑
l∈S pl∆l) (8)

where we used the definition (5), the fact that the expectation
is a linear operator, and that E [bl] = pl. Therefore, our
performance metrics can be written explicitly as:

fλ(S) = λmin

(
Ω̄k:k+H +

∑
l∈S

pl∆l

)
(9)

fdet(S) = log det

(
Ω̄k:k+H +

∑
l∈S

pl∆l

)
which coincide with the deterministic counterparts (2), (4)
when pl = 1,∀l. Interestingly, in (9) the probability that a
feature is not tracked simply discounts the corresponding in-
formation content. Therefore, the approach considers features
that are more likely to get lost as less informative, which is a
desired behavior. While the derivation so far is quite general
and provides a feature selection mechanism for any feature-
based SLAM system, in the following we focus on visual-
inertial navigation and we provide explicit expressions for the
matrices Ω̄k:k+H and ∆l appearing in eq. (9).

B. Forward-simulation Model

The feature selection model proposed in Section III and the
metrics in Section III-A require to predict the evolution of
the information matrix over the horizon H . In the following
we show how to forward-simulate the IMU and the camera;
we note that we do not require to simulate actual IMU
measurements, but only need to predict the corresponding
information matrix, which depends on the IMU noise statistics.

The forward-simulation model depends on the future motion
of the robot (the IMU and vision models are function of the
future poses of the robot); therefore, anticipation is a key
element of our approach: the feature selection mechanism
is aware of the immediate-future intentions of the robot and
selects features accordingly. As we will see in the experiments,
this enables a more clever selection of features during sharp
turns and aggressive maneuvers. In practice, the future poses
along the horizon can be computed from the current control
actions; for instance, if the controller is planning over a reced-
ing horizon, one can get the future poses by integrating the
dynamics of the vehicle. In this sense, our attention mechanism
involves a tight integration of control and perception.

The algorithms for feature selection that we present in Sec-
tion IV are generic and work for any positive definite Ω̄k:k+H

and any positive semidefinite ∆l. Therefore, the non-interested
reader can safely skip this section, which provides explicit
expressions for Ω̄k:k+H and ∆l in the visual-inertial setup.



Before delving into the details of the IMU and vision model
we remark a key design goal of our forward-simulation model:
efficiency. The goal of an attention mechanism is to reduce the
cognitive load later on in the processing pipeline; therefore,
by design, it should not be computational demanding, as that
would defeat its purpose. For this reasons, in this section
we present a simplified VIN model which is designed to be
efficient to compute, while capturing all the aspects of interest
of a full visual-inertial estimation pipeline, e.g., [66].

1) IMU Model: Our simplified IMU model is based on a
single assumption: the accumulation of the rotation error due
to gyroscope integration over the time horizon is negligible.
In other words, the relative rotation estimates predicted by the
gyroscope are accurate. This assumption is realistic, even for
inexpensive IMUs: the drift in rotation integration is typically
small and negligible over the time horizon considered in our
attention system (in our tests we consider an horizon of 3s).

Assuming that the rotations are accurately known allows
restricting the state to the robot position, linear velocity, and
the accelerometer bias. Therefore, in the rest of this paper, the
(unknown) state of the robot at time k is xk

.
= [tk vk bk],

where tk ∈ R3 is the 3D position of the robot, vk ∈ R3 is
its velocity, and bk is the (time-varying) accelerometer bias.
We also use the symbol Rk to denote the attitude of the
robot at time k: this is assumed to be known from gyroscope
integration over the horizon H , hence it is not part of the state.

As in most VIN pipelines, we want to estimate the state
of the robot at each frame2. Therefore, the goal of this
subsection, similarly to [66], is to reformulate a set of IMU
measurements between two consecutive frames k and j as
a single measurement that constrains xk and xj . Differently
from [66], we show how to get a linear measurement model.

The on-board accelerometer measures the acceleration ak
of the sensor with respect to an inertial frame, and is affected
by additive white noise ηk and a slowly varying sensor bias
bk. Therefore, the measurement ãk ∈ R3 acquired by the
accelorometer at time k is modeled as [66]:

ãk = RT
k (ak − g) + bk + ηk, (10)

where g is the gravity vector, expressed in the inertial frame.
To keep notation simple, we omit the reference frames in our
notation, which follow closely the convention used in [66]:
position tk and velocity vk are expressed in the global frame,
while the bias bk is expressed in the sensor frame.

Given position tk and velocity vk at time k, we can forward-
integrate and obtain tj and vj at time j > k:

vj = vk +
∑j−1
i=k aiδ

(from (10) we know ai = g +Ri(ãi − bi − ηi),
and assuming constant bias between frames, bi = bk)

= vk + gδkj +
∑j−1
i=k Rk (ãi−bk−ηi) δ (11)

2 The derivation is identical for the case in which we associate a state to
each keyframe, rather than each frame, as done in related work [66].

tj = tk +
∑j−1
i=k

(
viδ + 1

2aiδ
2
)

(substituting ai = g +Ri(ãi − bk − ηi))

= tk +
∑j−1
i=k (viδ + 1

2gδ2 + 1
2Rk (ãi−bk−ηi) δ2)

(substituting vj from (11) with j = i)

= tk + 1
2gδ̂2kj +

∑j−1
i=k

1
2Ri (ãi−bk−ηi) δ2

+
∑j−1
i=k (vk+gδki+

∑i−1
h=kRh (ãh−bk−ηh) δ) (12)

where δ is the sampling time of the IMU, δkj
.
=
∑j−1
i=k δ, and

δ̂2kj
.
=
∑j−1
i=k δ

2; as in [66], we assumed that the IMU bias
remains constant between two frames. The evolution of the
bias across frames can be modeled as a random walk:

bj = bk − ηb
kj (13)

where ηb
kj is a zero-mean random vector.

Noting that the state appears linearly in (11)-(13), it is easy
to rewrite the three expressions together in matrix form:

zIMU
kj = Akjxk:k+H + ηIMU

kj (14)

where zIMU
kj ∈ R9 is a suitable vector, and εkj ∈ R9 is zero-

mean random noise. We remark that while zIMU
kj is function of

the future IMU measurements, this vector is not actually used
in our approach (what matters is Akj and the information
matrix of ηIMU

kj ), hence we do not need to simulate future
measurements. An explicit expression for the matrix Akj ∈
R9×9H , the vector zIMU

kj , and the covariance of ηIMU
kj is given in

Appendix. The matrix Akj is a sparse block matrix with 9×9
blocks, which is all zeros, except the blocks corresponding to
the state at times k and j.

From linear estimation theory, we know that, given the
IMU measurements (14) for all consecutive frames k, j in the
horizon H , the information matrix of the optimal estimate of
the state xk:k+H is:

Ω̄k:k+H =
∑
kj∈H

(AT
kjΩ

IMU
kjAkj) (15)

where H is the set of consecutive frames within the time
horizon H , and ΩIMU

kj ∈ R9×9 is the information matrix of
the noise vector ηIMU

kj . The matrix Ω̄k:k+H is precisely the
information matrix of the state estimate before any vision
measurement is selected, that we already introduced in (5).

2) Vision Model: Also for the vision measurements, we are
interested in designing a linear measurement model, which
simplifies the actual (nonlinear) perspective projection model.
To do so, we have to express a pixel measurement as a linear
function of the unknown state that we want to estimate.

A (calibrated) pixel measurement of an external 3D point
(or landmark) l identifies the 3D bearing of the landmark in the
camera frame. Mathematically, if we call ukl the unit vector,
corresponding to the (calibrated) pixel observation of l from
the robot pose at time k, ukl satisfies the following relation:

ukl ×
(
(RW

cam,k)T(pl − tW
cam,k)

)
= 03 (16)

where × is the cross product between two vectors, pl is the 3D
position of landmark l (in the world frame), RW

cam,k and tW
cam,k

are the rotation and translation describing the camera pose



at time k (w.r.t. the world frame). In words, the model (16)
requires the observed point (transformed to the camera frame)
to be collinear to the measured direction ukl, since the cross
product measures the deviation from collinearity [68].

Now we note that for two vectors v1 and v2, the cross
product v1×v2 = [v1]×v2, where [v1]× is the skew symmetric
matrix built from v1. Moreover, we note that the camera pose
w.r.t. the world frame, (RW

cam,k, t
W
cam,k), can be written as the

composition of the IMU pose w.r.t. the world frame, (Rk, tk),
and the relative pose of the camera w.r.t. the IMU, (RIMU

cam, t
IMU
cam)

(known from calibration). Using these two considerations, we
rewrite (16) equivalently as:

[ukl]×
(
(RkR

IMU
cam)T(pl − (tk +Rkt

IMU
cam))

)
= 03 (17)

In presence of measurement noise, (17) becomes:

[ukl]×
(
(RkR

IMU
cam)T(pl − (tk +Rkt

IMU
cam))

)
= ηcam

kl (18)

where ηcam
kl is a zero-mean random noise with known covari-

ance. Under the assumptions that rotations are known from
gyroscope integration, the unknowns in model (18) are the
robot position tk (which is part of our state vector xk:k+H )
and the position of the observed 3D landmark pl. The model
is linear and can be written in matrix form as:

zcam
kl = Fklxk:k+H +Eklpl + ηcam

kl (19)

for a suitable vector zcam
kl

, and matrices Fkl and Ekl. In order
to be triangulated, a point has to be observed across multiple
frames. Stacking the linear system (19) for each observation
pose from which l is visible, we get a single linear system:

zcam
l = Flxk:k+H +Elpl + ηcam

l (20)

where zcam
l , Fl, and El are obtained by stacking (row-wise)

zcam
kl , Fkl, and Ekl, respectively, for all frames k : k+H . As

for the IMU model, the expression of zcam
l is inconsequential

for our derivation, as it does not influence the future state
covariance. On the other hand Fl and El depend on the future
measurements ukl: for this reason, computing these matrices
requires simulating pixel projections of pl for each frame in
the horizon. When using a stereo camera, we have an estimate
of pl hence we can easily project it to the future frames. In
a monocular setup, we can guess the depth of new features
from the existing features in the VIN back-end.

Now we note that we cannot directly use the linear
model (20) to estimate our state vector xk:k+H , since it
contains the unknown position of landmark l. One way to
circumvent this problem is to include the 3D point in the state
vector. This is undesirable for two reasons; first, including
the landmarks as part of the state would largely increases
the dimension of the state space (and hence of the matrices
in (9)). Second, it may create undesirable behaviors of our
performance metrics; for instance, the metrics might induce
to select features that minimize the uncertainty of a far 3D
point rather than focusing on the variables we are actually
interested in (i.e., the state of the robot).

To avoid this undesirable effects, we analytically eliminate
the 3D point from the estimation using the Schur complement

trick [69]. We first write the information matrix of the joint
state [xk:k+H pl] from the linear measurements (20):

Ω
(l)
k:k+H =

[
F T
l Fl F T

l El
ET
l Fl ET

l El

]
(21)

Using the Schur complement trick we marginalize out the
landmark l and obtain the information matrix of our state
xk:k+H given the measurements (20):

∆l = F T
l Fl − F T

l El(E
T
l El)

−1ET
l Fl (22)

Eq. (22) is the (additive) contribution to the information matrix
of our state estimate due to the measurements of a single
landmark l. This is the matrix that we already called ∆l in (5).
The matrix ∆l is sparse, and its sparsity pattern is dictated by
the co-visibility of landmark l across different frames [70].
It is worth noticing that (ET

l El)
−1 is the covariance of the

estimate of the landmark position [70], and it is invertible as
long as the landmark l can be triangulated.

Remark 1 (Linear measurement models). Sections III-B1
and III-B2 provide linear measurement models for inertial
and visual measurements. Within our framework, one might
directly use linearized models of the nonlinear inertial and
perspective models commonly used in VIN [66]. Our choice to
design linear models has three motivations. First, we operate
over a smaller state space (which does not include rotations
and gyroscope biases), hence making matrix manipulations
faster. Second, we avoid the actual computational cost of lin-
earizing the nonlinear models. Third, thanks to the simplicity
of the models, we enable a geometric understanding of our
feature selection mechanisms (Section IV-D).

IV. ATTENTION ALLOCATION: ALGORITHMS AND
PERFORMANCE GUARANTEES

In this section we discuss computational approaches to find
a set of features that approximately solves the feature selection
problem (1). It is known that finding the optimal subset S?

which solves (1) exactly is NP-hard [44], hence we cannot
hope to find efficient algorithms to compute S? in real-world
problems.3 The solution we adopt in this paper is to design
approximation algorithms, which are computationally efficient
and provide performance guarantees (roughly speaking, pro-
duce a set which is not far from the optimal subset S?). We
remark that we are designing a covert attention mechanism:
our algorithms only select a set of features that have to be
retained and used for state estimation, while we do not attempt
to actively control the motion of the camera.

In the following we present two classes of algorithms.
The former, discussed in Section IV-A, is based on a convex
relaxation of the original combinatorial problem (1). The
second, discussed in Section IV-C, is a simple greedy selection.

3 In typical real-world problems, the set of available visual feature is larger
than 200, and we are asked to select 10−100 features, depending on on-board
resources. In those instances, the cost of a brute force search is prohibitive.



A. Convex Relaxations

This section presents a convex-relaxation approach to com-
pute an approximate solution for problem (1).

Using (9), we rewrite problem (1) explicitly as:

max
S⊂F

f
(
Ω̄k:k+H +

∑
l∈S pl∆l

)
subject to |S|≤ κ (23)

where f(·) denotes either fλ(·) or fdet(·) (for the moment
there is not need to distinguish the two metrics).

Introducing binary variables sl, for l = 1, . . . , N , we
rewrite (23) equivalently as:

max
s1,...,sN

f
(
Ω̄k:k+H +

∑
l∈S slpl∆l

)
(24)

subject to
∑N
l=1 sl ≤ κ , sl ∈ {0, 1} ∀ l ∈ {1, . . . , N}

Problem (24) is a binary optimization problem. While prob-
lem (24) would return the optimal subset S?, it is still NP-hard
to solve, due to the constraint that sl have to be binary.

Problem (24) admits an simple convex relaxation:

f?cvx = max
s1,...,sN

f
(
Ω̄k:k+H +

∑
l∈S slpl∆l

)
(25)

subject to
∑N
l=1 sl ≤ κ , sl ∈ [0, 1] ∀ l ∈ {1, . . . , N}

where the binary constraint sl ∈ {0, 1} is replaced by the
convex constraint sl ∈ [0, 1]. Convexity of problem (25)
follows from the fact that we maximize a concave cost under
linear inequality constraints.4

This convex relaxation has been proposed multiple times in
other contexts (see, e.g., [41]). The solution s?1, . . . , s

?
N of (25)

is not binary in general and a rounding procedure is needed
to distinguish the features that have to be discarded (sl = 0)
from the features that have to be selected (sl = 1). A common
rounding procedure is to simply select the κ features with the
largest sl, while randomized rounding procedures have also
been considered [36]. We use the former, and we call S◦ the
set including the indices of the κ features with the largest s?l ,
where s?1, . . . , s

?
N is the optimal solution of (25).

B. Performance Guarantees for the Convex Relaxations

The convex relaxation (25) has been observed to work well
in practice, although there is no clear (a-priori) performance
guarantee on the quality of the set S◦.

Let us call f?cvx the optimal objective of the relaxed
problem (25), f(S◦) the objective attained by the rounded
solution, and f(S?) the optimal solution of the original NP-
hard problem (24). Then, one can easily obtain a-posteriori
performance bounds by observing that:

f(S◦) ≤ f(S?) ≤ f?cvx (26)

where the first inequality follows from optimality of S? (any
subset of κ features has cost at most f(S?)), while the latter
from the fact that (25) is a relaxation of the original problem.

4Both the smallest eigenvalue and the log-determinant of a positive definite
matrix are concave functions [71] of the matrix entries.

The chain of inequality (26) suggests a simple (a-posteriori)
performance bound for the quality of the set produced by the
convex relaxation (25):

f(S?)− f(S◦) ≤ f?cvx − f(S◦) (27)

i.e., the suboptimality gap f(S?) − f(S◦) of the subset S◦

is bounded by the difference f?cvx − f(S◦), which can be
computed (a posteriori) after solving (25).

C. Greedy Algorithms and Lazy Evaluation

This section presents a second approach to approximately
solve problem (1). Contrarily to the convex relaxation of
Section IV-A, here we consider a greedy algorithm that selects
κ features that (approximately) maximize the cost f(·).

The algorithm starts with an empty set S# and performs κ
iterations. At each iteration, it adds the feature that, if added
to S#, induces the largest increase in the cost function. The
pseudocode of the algorithm is given in Algorithm 1.

Algorithm 1: Greedy algorithm with lazy evaluation

1 Input: Ω̄k:k+H , ∆l, for l = 1, . . . , N , and κ ;
2 Output: feature subset S# ;
3 S# = ∅ ;
4 for i = 1, . . . , κ do
5 % Compute upper bound for f(S# ∪ l), l = 1, . . . , N
6 [U1, . . . , UN ] = upperBounds(Ω̄k:k+H ,∆1, . . . ,∆N ) ;
7 % Sort features using upper bound
8 F↓ = sort(U1, . . . , UN ) ;
9 % Initialize best feature

10 fmax = −1 ; lmax = −1 ;
11 for l ∈ F↓ do
12 if Ul < fmax then
13 break ;
14 end
15 if f(S# ∪ l) > fmax then
16 fmax = f(S# ∪ l) ; lmax = l ;
17 end
18 end
19 S# = S# ∪ lmax ;
20 end

In line 3 the algorithm starts with an empty set. The “for”
loop in line 4 iterates κ times: at each time the best feature is
added to the subset S# (line 19). The role of the “for” loop
in line 11 is to compute the feature that induces the maximum
increase in the cost (lines 15-17). The remaining lines provide
a lazy evaluation mechanism. For each feature l we compute
an upper bound on the cost f(S# ∪ l) (line 6). The features
are sorted (in descending order) according to this upper bound
(line 8). The advantage of this is that by comparing the current
best feature with this upper bound (line 12) we can avoid
checking features that are guaranteed to attain a smaller cost.

Clearly, the lazy evaluation is advantageous if the upper
bound is faster to compute than the actual cost. The following



propositions provide two useful (and computationally cheap)
upper bounds for our cost functions.

Proposition 2 (Upper bounds for log det: Hadamard’s
inequality, Thm 7.8.1 [72]). For a positive definite matrix
M ∈ Rn×n with diagonal elements Mii, it holds:

det(M) ≤∏n
i=1Mii ⇔ log det(M) ≤∑m

i=1 logMii (28)

Proposition 3 (Eigenvalue Perturbation Bound [73]). Given
Hermitian matrices M ,∆ ∈ Rn×n, and denoting with λi(M)
the i-th eigenvalue of M , the following inequalities hold:

|λi(M + ∆)− λi(M)| ≤ ‖∆‖ (29)
min
j
|λi(M)− λj(M + ∆)| ≤ ‖∆vi‖ (30)

where vi is the eigenvector of M associated to λi(M).

Eq. (29) is a restatement of the classical Weyl inequality,
while (30) is a tighter bound from Ipsen and Nadler [73]. To
clarify how the bounds in Proposition 3 provide us with an
upper bound for λmin, we prove the following result.

Corollary 4 (Upper bounds for λmin). Given two symmetric
and positive semidefinite matrices M ,∆ ∈ Rn×n the follow-
ing inequality holds:

λmin(M + ∆) ≤ λmin(M) + ‖∆vmin‖ (31)

where vmin is the eigenvector of M associated to the smallest
eigenvalue λmin(M).

Proof: The proof relies on the inequality (30) for i chosen
to be the smallest eigenvalue. From the Weyl inequality [73],
it follows λj(M+∆) ≥ λmin(M), for all j. Using this fact, it
follows that the minimum in (30) is attained by λmin(M+∆).
Therefore, the inequality (30) becomes:

|λmin(M)− λmin(M + ∆)|≤ ‖∆vmin‖ (32)

From the positive definiteness of M and ∆ (which implies
λmin(M) ≥ 0 and λmin(M + ∆) ≥ 0), and from the Weyl
inequality, it follows |λmin(M)−λmin(M+∆)|= λmin(M+
∆)− λmin(M), which substituted in (32) leads to (31).

While Algorithm 1 highlights the simplicity of the greedy
algorithm, it is unclear whether this algorithm produces good
subsets of features. We tackle this question in the next section.

D. Performance Guarantees for the Greedy Algorithm

This section shows that the greedy algorithm (Algorithm 1)
admits provable sub-optimality bounds. These bounds guar-
antee that the greedy selection cannot perform much worse
than the optimal strategy. The section tackles separately the
two metrics presented in Section III-A, since the corresponding
performance guarantees are fundamentally different.

Our results are based on the recent literature on sub-
modularity and submodular maximization. Before delving in
the guarantees for each metric, we provide few preliminary
definitions, which can be safely skipped by the expert reader.

Definition 5 (Normalized and Monotone Set Function [74]).
A set function f : 2F → R is said to be normalized if f(∅) =

0; f(S) is said to be monotone (non-decreasing) if for any
subsets A ⊆ B ⊆ F, it holds f(A) ≤ f(B).

Definition 6 (Submodularity [74]). A set function f : 2F →
R is submodular if, for any subsets A ⊆ B ⊆ F, and for any
element e ∈ F \ B, it holds that:

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B) (33)

Submodularity formalizes the notion of diminishing returns:
adding a measurement to a small set of measurement is more
advantageous than adding it to a large set. Our interest towards
submodularity is motivated by the following result.

Proposition 7 (Near-optimal submodular maximiza-
tion [74]). Given a normalized, monotone, submodular set
function f : 2F → R, and calling S? the optimal solution
of the maximization problem (1), then the set S#, computed
by the greedy Algorithm 1, is such that:

f(S#) ≥ (1− 1/e)f(S?) ≈ 0.63f(S?) (34)

This bound ensures us that the worst-case performance of
the greedy algorithm cannot be far from the optimum. In the
following we tailor this result to our feature selection problem.

1) Sub-optimality guarantees for log det: It is possible to
show that log det is submodular with respect to the set of
measurements used for estimation. This result and the corre-
sponding performance guarantees are formalized as follows.

Proposition 8 (Submodularity of log det [45]). The set
function fdet(S) defined in (4) is monotone and submodular.
Moreover, the greedy algorithm applied to (1) using fdet(S)
as objective enjoys the following performance guarantees:

fdet(S) ≥ (1− 1/e)fdet(S
?) +

fdet(∅)
e

(35)

The result is proven in [45] and has been later rectified
to account for the need of normalized functions in [48]. The
extra term fdet(∅)

e in (35) indeed follows from the application
of Proposition 7 to the normalized function fdet(S)− fdet(∅).

2) Sub-optimality guarantees for λmin: Currently, no result
is readily available to bound the suboptimality gap of the
greedy algorithm applied to the maximization of the smallest
eigenvalue of the information matrix (or equivalently minimiz-
ing the largest eigenvalue of the covariance). Indeed, related
work provides counterexamples, showing that this metric is not
submodular in general, while the greedy algorithm is observed
to perform well in practice [48]. In this section we provide a
first result showing that, despite the fact that fλ(S) fails to
be submodular, it is not far from a submodular function. This
notion is made more precise in the following.

Definition 9 (Submodularity ratio [67], [75]). The submod-
ularity ratio of a non-negative set function f(·) with respect
to a set S and an integer κ ≥ 1 is defined as:

γS
.
= min

L⊆S,
E:|E|≤κ,E ∩L=∅

∑
e∈E (f(L ∪ {e})− f(L))

f(L ∪ E)− f(L)
(36)

It is possible to show that if γS ≥ 1, then the function f(·)
is submodular. However, in this context we are interested in



the submodularity ratio, since it enables a less restrictive sub-
optimality bound, as described in the following proposition.

Proposition 10 (Approximate submodular maximiza-
tion [67], [75]). Let f(·) be a non-negative monotone set
function and let S? be the optimal solution of the maximization
problem (1), then the set S#, computed by the greedy Algo-
rithm 1 is such that:

f(S#) ≥ (1− e−γS# )f(S?) (37)

where γS# is the submodularity ratio of f(·) with respect to
S# and κ = |S#|.

Proposition 10 provides a multiplicative suboptimality
bound whenever γS# > 0. In the following we show that this
is generally the case when maximizing the smallest eigenvalue.

Proposition 11 (Non-vanishing Submodularity ratio of
λmin). Call S# the set returned by the greedy algorithm
maximizing λmin. For any set L ⊆ S# call µ̄ the eigenvec-
tor corresponding to the smallest eigenvalue of the matrix
Ω̄k:k+H +

∑
l∈L ∆l. Moreover call µ̄0, µ̄2, . . . , µ̄H ∈ R3,

the subvectors of µ̄ corresponding the robot positions at time
k, . . . , k+H . Then the submodularity ratio of λmin is bounded
away from zero if µ̄i 6= µ̄j , for some i, j.

Proof: In order to show that the submodularity ratio (36)
does not vanish, we show that its numerator is bounded away
from zero. To do so, we consider a single summand in (36):

(a)
.
= f(L ∪ {e})− f(L) = λmin(ΩL + ∆e)− λmin(ΩL) (38)

where ΩL
.
= Ω̄k:k+H+

∑
l∈L ∆l. Our task is to prove that (38)

is different from zero. To do so, we substitute the eigenvalue
with its definition through the Rayleigh quotient:

(a) = min‖µ‖=1 µ
T(ΩL + ∆e)µ−min‖ν‖=1 ν

T(∆e)ν
(calling µ̄ the minimizer of the first summand)
= µ̄T(ΩL + ∆e)µ̄−min‖ν‖=1 ν

T(ΩL)ν
(using a suboptimal solution ν = µ̄ in the second summand)
≥ µ̄T(ΩL + ∆e)µ̄− µ̄T(ΩL)µ̄
(simplifying and substituting the expression of ∆e from (22))
= µ̄T∆eµ̄ = µ̄TF T

e (I−Ee(ET
eEe)

−1ET
e )Feµ̄

(defining the idempotent matrix Qe
.
= (I−Ee(ET

eEe)
−1ET

e ))
= µ̄TF T

e QeFeµ̄ = µ̄TF T
e QeQeFeµ̄ = ‖QeFeµ̄‖2

Now we write Ee in terms of its 3× 3 blocks, and we write
the vector Feµ̄ explicitly by noticing that the nonzero blocks
in Fe are the same (up-to-sign) as the ones in Ee (c.f. the
coefficient matrices in (18)):

Ee =


Ee0
Ee1

...
EeH

 Feµ̄ =


−Ee0µ̄0

−Ee1µ̄1

...
−EeHµ̄H

 (39)

Now we observe that Qe is an orthogonal projector onto the
null space of Ee, and the null space of Qe is spanned by the
columns of Ee. Therefore, any vector v that falls in the null

space of Qe can be written as a linear combination of the
columns of Ee:

Qev = 0⇔ v = Eew (40)

with w ∈ R3. By comparison with (39), we note that Feµ̄
can be written as Eew if and only if µ̄1 = µ̄2 = . . . = µ̄H .
Therefore, if µ̄i 6= µ̄j for some i, j, then the vector Feµ̄
cannot be in the null space of Qe, and the lower bound (39)
must be greater than zero, concluding the proof.

In words, Proposition 11 states that the submodularity ratio
does not vanish as long as the directions of largest uncer-
tainty change along the horizon. The following corollary is a
straightforward consequence of Proposition 11.

Corollary 12 (Approximate submodularity of λmin). The
set function fλ(S) defined in (9) is monotone. Moreover,
under the assumptions of Proposition 11, the greedy algorithm
applied to (1) using fdet(S) as objective enjoys the guarantees
of Proposition 10 for a nonzero γS# .

Proof: Monotonicity follows from the Weyl inequal-
ity [73]. The guarantees of the greedy algorithm follow
from Proposition 10 and Proposition 11.

Corollary 12 guarantees that the approximation bound
of Proposition 10 does not vanish, hence the greedy algorithm
always approximate the optimal solution up to a constant-
factor. This is in contrast with [39], in which the additive
bound can easily produce vacuous guarantees. Empirical evi-
dence, shown in Section V, confirms that the greedy algorithm
applied to the maximization of fλ(S) has excellent perfor-
mance, producing near-optimal results in all test instances.

Remark 13 (Geometric Intuition Behind Greedy Selec-
tion with λmin). Our linear model enables a deeper un-
derstanding of the geometry behind the greedy selection.
The greedy selection rewards features l with large objective
λmin(Ω̄k:k+H + ∆l) or, equivalently, large marginal gain
λmin(Ω̄k:k+H + ∆l)−λmin(Ω̄k:k+H). The following chain of
relations provides a geometric understanding of which features
induce a large marginal gain:

λmin(Ω̄k:k+H + ∆l)− λmin(Ω̄k:k+H)
(from Rayleigh quotient)
= min‖ν‖=1 ν

T(Ω̄k:k+H + ∆l)ν −min‖µ‖=1 µ
T(Ω̄k:k+H)µ

(calling µ̄ the minimizer of the second summand)
= min‖ν‖=1 ν

T(Ω̄k:k+H + ∆l)ν − µ̄T(Ω̄k:k+H)µ̄
(substituting the suboptimal solution µ̄ in the first summand)
≤ µ̄T(Ω̄k:k+H + ∆l)µ̄− µ̄T(Ω̄k:k+H)µ̄
(simplifying and substituting the expression of ∆l)
= µ̄T∆lµ̄ = µ̄TF T

l (I−El(ET
l El)

−1ET
l )Flµ̄

(defining the idempotent matrix Q .
= (I−El(ET

l El)
−1ET

l ))
= µ̄TF T

l QFlµ̄ = µ̄TF T
l QQFlµ̄ = ‖QFlµ̄‖2

(using the triangle inequality and substituting Fl)
≤ ‖Q‖2‖Flµ̄‖2= ‖Flµ̄‖2=

∑H
k=0‖[ukl]×(RW

cam,k)Tµ̄k‖2

where µ̄k is the subvector of µ̄ at the entries corresponding to
the robot position at time k. Intuitively, the inequalities reveal
that the marginal gain is small when ‖[ukl]×(RW

cam,k)Tµ̄k‖
is small, i.e., when we pick landmark observations where the



measured bearing ukl is nearly parallel to the directions of
large uncertainty µ̄k, transformed in the camera frame by the
rotation (RW

cam,k)T. For instance, if we have large uncertainty
in the forward direction, it is not convenient to use features in
front of the robot (i.e., with bearing parallel to the direction of
largest uncertainty); accordingly, the greedy approach would
select features in the periphery of the image, which intuitively
provide a better way to reduce uncertainty.

V. EXPERIMENTS

This section provides three sets of experimental results. The
first set of tests, in Section V-A, shows that the greedy algo-
rithm attains near-optimal solutions in solving problem (1),
while being faster than convex relaxation techniques. The
second set of tests, in Section V-B, evaluates our c++ pipeline
in realistic simulations, showing that our feature selection
techniques boost VIN performance; the same section also
shows the advantage of using our lazy evaluation. The third
set of tests, in Section V-C, evaluates our approach on real data
collected by an agile micro aerial vehicle.

A. Assessment of the Greedy Algorithms for Feature Selection

This section answers the following question: how good is
the greedy Algorithm 1 to (approximately) solve the combina-
torial optimization problem (1)? In particular, we show that
the greedy algorithm finds a near-optimal solution of (1), for
both choices of the cost function (9); we also show that the
convex relaxation approach of Section IV-A finds near-optimal
solutions, while being more computationally expensive.

Testing setup. To generate random instances of problem (1),
we consider a robot moving along a straight line at a constant
speed of 2m/s. The robot is equipped with an IMU with
sampling period δ = 0.01s; we choose the accelerometer noise
density equal to 0.02m/(s2

√
Hz), and the accelerometer bias

continuous-time noise density to be 0.03m/(s3
√

Hz). We also
simulate an on-board monocular camera, which measures 3D
points randomly scattered in the environment, at a (key)frame
rate of 0.5s. The robot has to select a set of κ features out of
N available visual measurements. We assume that at the time
of feature selection, the position covariance of the robot is
10−2 ·I3, while its velocity and accelerometer bias covariances
are 10−2 ·I3 and 10−4 ·I3, respectively. Using this information,
we build the matrix Ω̄k:k+H , using a prediction horizon of
2.5s. Moreover, from the available feature measurements, we
build the matrices ∆l; in these tests we assume pl = 1, i.e.,
we disregard appearance during feature selection.

Techniques and evaluation metrics. We compare two ap-
proaches to solve (1): the greedy algorithm of Algorithm 1
and the convex relaxation approach (25). We implemented the
convex relaxation using CVX/MOSEK as parser/solver for (25),
and then we computed the rounded solution as described
in Section IV-A. For the evaluation in this section, we imple-
mented both the greedy algorithm and the convex relaxation
in Matlab. We evaluate these approaches for each choice of
the objective functions fλ and fdet defined in (9). Ideally, for
each technique, we should compare the objective attained by
the techniques, versus the optimal objective. Unfortunately,

the optimal objective is hard to compute and a brute-force ap-
proach is prohibitively slow, even for relatively small problem
instances.5 Luckily, the convex relaxation (25) also produces
an upper bound on the optimal cost of (1) (c.f. eq. (26)), hence
we can use this upper bound to understand how far are the
greedy and the rounded solution of (25) from optimality.

Results. We consider problems of increasing sizes in which
we are given N features and we have to select half of them
(κ = N/2) to maximize the objective in (1). For each N , we
compute statistics over 50 Monte Carlo.

Fig. 1(a) shows the smallest eigenvalue objective fλ attained
by the different techniques for increasing number of features
N . Besides the greedy, the rounded convex relaxation (la-
bel: rounded), and the relaxed objective (label: relaxed), we
show the objective attained by picking a random subset of
κ features (label: random). We are solving a maximization
problem hence the larger the objective the better. Fig. 1(a)
shows that in all tested instances, greedy and rounded match
the upper bound relaxed (the three lines are practically indis-
tinguishable), hence they both produce optimal solutions (c.f.
eq. (27)). The resulting solution is far better than random. This
result is somehow surprising, since the smallest eigenvalue is
not submodular in general, and the greedy algorithm enjoys
weaker performance guarantees (Corollary 12). However, this
observation is in agreement with related work in other fields,
e.g., [47]. While both greedy and rounded return good solutions,
solving the convex problem (25) is usually more expensive
than computing the greedy solution: the CPU time of our
greedy algorithm in Matlab (without lazy evaluation) is around
0.4s (for N = 50), while CVX requires around 0.8s.
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Fig. 1. Techniques to approximately solve problem (1) for (a) the smallest
eigenvalue objective fλ, and (b) the log-determinant objective fdet. The
figure reports the objective attained by the greedy algorithm (greedy), the
rounded solution (rounded), and a random selection (random). The upper
bound relaxed, attained by the convex problem (25) (before rounding), is
shown for comparison.

Analogous considerations hold for the objective fdet.
Fig. 1(b) shows the log-determinant attained by the different
techniques, for increasing number of available features N ;
also in this case the algorithms have to select κ = N/2
features. As in the previous tests, greedy and rounded attain
the optimal solution in all test instances, matching the upper
bound relaxed, and performing remarkably better than a random

5Even in a small instance in which we are required to select 50 out of 100
available visual measurements, a brute-force approach would need to evaluate
around 1029 possible sets.



choice. Regarding the CPU time, our Matlab implementation
of the greedy algorithm to optimize fλ takes around 0.1s (for
N = 50), while CVX requires more than 1min to solve (25).6

Since the greedy algorithms are as accurate as the convex
relaxation technique, while being faster, in the following we
focus on the former.

B. Importance of Feature Selection in VIN

This section answers the following question: does the fea-
ture selection resulting by solving (1) lead to performance
improvements in VIN? In the following we show that the
proposed feature selection approach boosts VIN performance
in realistic Monte Carlo simulations.

Testing setup. We adopt the benchmarking problem of [66]
and pictured in Fig. 2(a) as testing setup. We simulate a robot
that follows a circular trajectory with a sinusoidal vertical
motion. The total length of the trajectory is 120m. The on-
board camera has a focal length of 315 pixels and runs at a
rate of 2.5Hz (simulating keyframes). Simulated acceleration
and gyroscope measurements are obtained as in [66].

Implementation and evaluation metrics. In this section we
focus on the greedy algorithms and we use those to select a
subset of visual features. We implemented the greedy algo-
rithms and the construction of the matrices required in the
functions (9) in c++, using eigen for the computation of the
log-determinant and the smallest eigenvalue. For numerical
reasons, rather than computing the determinant and taking the
logarithm, we directly compute the log-determinant from the
Cholesky decomposition of the matrix. For the computation
of the smallest eigenvalue we use eigen’s svd function.

Our feature selection approach is used as an add-on to a
visual-inertial pipeline similar to the one described in [66].
Our VIN pipeline estimates the navigation state (robot pose,
velocity, and IMU biases) using the structureless visual model
and the pre-integrated IMU model described in [66]. The
entire implementation is based on the GTSAM optimization
library [76]. Our implementation differs from [66] in three
important ways. First, in this paper we use the iSAM2 algo-
rithm within a fixed-lag smoothing approach; we marginalize
out states outside a smoothing horizon of 6s, which helps
bounding latency and memory requirements. Second, we do
not adopt SVO as visual front-end; in this simulations we do
not need a front-end as we simulate landmark observations,
while in the following section we describe a simple real-
world front-end. Finally, rather than feeding to the VIN esti-
mator all available measurements, we use the feature selection
algorithms described in this paper to select a small set of
informative visual observations.

In this section we evaluate two main aspects of our ap-
proach. First, we show that a clever selection of the features
does actually impact VIN accuracy. Second, we show that
the lazy evaluation approach discussed in Section IV-C speeds
up the computation of the greedy solution. We use two
metrics for accuracy: the absolute translation error, which

6CVX uses a successive approximation method to maximize the log-det
objective, which is known to be fairly slow.

is the Euclidean distance between the estimated position and
the actual position, and the relative translation error, which
computes the Euclidean norm of the difference between the
estimated translation between time k and time k + 1 and the
actual translation. Indeed the relative translation error quan-
tifies how quickly the estimate drifts from the ground truth.
Since absolute positions are not observable in visual-inertial
odometry, the relative error is a more reliable performance
metric. When useful, we report absolute and relative rotation
errors (defined in analogy with the translation ones).
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Fig. 2. Simulation results: (a) simulated environment, (b) table with CPU
times for different implementations of the greedy algorithms, (c) absolute
translation errors, (d) absolute rotation errors.

Results. We simulate 50 Monte Carlo runs; in each run we
add random noise to the acceleration, gyroscope, and camera
measurements. To make the simulation realistic, the statistics
about measurement noise are identical to the ones used in the
real tests of Section V-C. In each run, the robot performs VIN
and, at each camera frames, it selects κ = 20 visual features
out of all the features in the field of view. We compare three
feature selection strategies. The greedy selection resulting
from Algorithm 1 with the eigenvalue objective fλ (label:
minEig), the greedy selection with the log-determinant cost fdet
(label: logDet), and a random selection which randomly draws
κ of the available features (label: random).

Fig. 2(c)-(d) show the absolute translation and absolute
rotation errors, averaged over 50 Monte Carlo runs. From the
figure is clear that a clever selection of the features, resulting
from logDet or minEig, deeply impacts performance in VIN. Our
techniques largely improve estimation errors, when compared
against the random selection; both approaches result in similar
performance. From the figure we note that the absolute errors
have some oscillations: this is a consequence of the fact that
the trajectory is circular; in general, this stresses the fact that



absolute metrics may be poor indicators of performance in
visual-inertial odometry. In this case, the relative error metrics
confirm the results of Fig. 2(c)-(d): the average translation and
rotation errors are given in Table I; in parenthesis we report the
error reduction percentage with respect to the random baseline.

Technique Rel. Translation Error [m] Rel. Rotation Error [rad]
random 0.0103 0.0049
minEig 0.0064 (-37%) 0.0025 (-48%)
logDet 0.0053 (-48%) 0.0018 (-63%)

TABLE I
RELATIVE TRANSLATION AND ROTATION ERRORS FOR THE SIMULATED

TESTS OF SECTION V-B (AVERAGE OVER 50 MONTE CARLO RUNS)

Fig. 2(b) reports the CPU time required for feature selection.
The figure considers both cost functions (logDet and minEig) and
compares timing when using our lazy evaluation, as described
in Algorithm 1, against a naive implementation of the greedy
algorithm that always tests the marginal gain of every feature
(i.e., for which the stopping condition in line 12 of Algorithm 1
is disabled). The naive greedy (without lazy evaluation) al-
ways results in κN objective evaluations. When using lazy
evaluation, the number of objective evaluation depends on
the tightness of the upper bounds used in Algorithm 1. From
Fig. 2(b), we see that the advantage of using the lazy evaluation
is marginal for the log-determinant cost; this is not surprising,
since the Hadamard’s inequality of Proposition 2 usually gives
a fairly loose bound. On the other hard, the advantage of using
the lazy evaluation is significant for the minEig, resulting in a
reduction of the computational time of 20%. The average CPU
time required by Algorithm 1 (with lazy evaluation) to select
κ = 20 features is 0.069s for logDet and 0.195s for minEig.
While these timing may be already acceptable for applications,
there are large margins to speed up computation: we postpone
these considerations to Section VI.

C. Real Tests: Agile Navigation on Micro Aerial Vehicles

In this section we show that our feature selection approach
enhances VIN performance in real-world navigation problems
with micro-aerial vehicles (MAVs).

Testing setup. We use the EuRoC benchmark [11] for our
evaluation. The EuRoC datasets are collected with an AscTech
Firefly hex-rotor helicopter equipped with a VI (stereo) visual-
inertial sensor. The camera records stereo images at resolution
752×480 and framerate 20Hz; IMU data is collected at 200Hz.
We refer to [11] for a technical description of the datasets.
In this context we only remark that the datasets contain test
instances at increasing levels of complexity, collected in a
machine hall environment and in a smaller Vicon room. In
our tests, the measurement variances, as well as the intrinsic
and extrinsic calibration parameters match exactly the one
specified in the dataset. The most relevant parameters used
in our tests are given in Table II; in the front-end we used
openCV’s goodFeaturesToTrack for feature detection and the
Lucas-Kanade method for feature tracking; as input to the
detector we specify a minimum quality level for the features
and a desired number of features to extract (N ). From these
N features our selector has to retain κ = 10 features that will

be used by the back-end. In this sense, feature detection and
tracking at the front-end are pre-attentive mechanisms: they
work on a large set of features, which are later filtered out
by our feature selector. The feature selector uses a predictive
horizon of 3s; in practice, the future pose estimates along
the horizon can be computed from the control inputs, by
integrating the dynamics of the vehicle (Section III-B). Since
the control inputs are not available in the EuRoC dataset, we
compute the future poses by attaching ground truth motion
increments to the current pose estimate. The only assumption
in doing so is that the control loop and the estimation quality
are good enough to track a desired set of future poses; this is
the case in VIN in which the short-term drift is small.

Parameter name Value

Front-end
Nr. features to detect (N ) 100

Minimum quality level 0.001
Time between keyframes 0.2s

Back-end Smoothing window 6s
iSAM2 iterations 1

Feature selector Nr. features to select (κ) 10
Horizon 3s

TABLE II
VIN AND FEATURE SELECTION PARAMETERS

Techniques. We compare four VIN approaches. The first
two VIN approaches use the minEig and the logDet selectors
proposed in this paper. The third approach uses a selector
that picks the κ features with highest quality (i.e., highest
score in goodFeaturesToTrack). This selector is commonly
used in VIN and only accounts for the appearance of the
visual features; we denote it with the label “quality”, follow-
ing openCV’s terminology. The fourth technique is a VIN
approach using 200 features (selected as the ones with largest
score in goodFeaturesToTrack) and is used to have a reference
performance for the case in which the VIN system has less
stringent computational constraints (label: no-selection).

In order to compute the tracking probabilities pl, we
modified openCV’s goodFeaturesToTrack in order to have
access to the features’ scores. Then, we mapped the scores to
probabilities in [0, 1], such that more distinguishable features
have higher tracking probabilities pl.

Results. Fig. 3 shows the performance of the compared tech-
niques on all the 11 EuRoC datasets. The EuRoC benchmark
includes datasets of different levels of complexity, with the
difficult datasets being challenging for standard VIN pipeline
due to the fast motion of the MAV. In this section we show
that we can obtain accurate position estimation with as few as
κ = 10 features; this budged is enforced for each frame; for
instance, if we are tracking r features from the previous frame,
then in the current frame we can only retain κ− r features.

Fig. 3(a) compares the VIN performance using the relative
translation errors as metric. The figure confirms that the diffi-
cult datasets tend to have larger translation errors. Moreover,
it shows that the proposed techniques, minEig and logDet, lead
to smallest errors compared to the baseline quality. Clearly,
the technique no-selection, which uses 20x more features,
leads to the smaller errors. To better appreciate the advantage
of minEig and logDet with respect to quality, Fig. 3(b) shows
the relative improvement, i.e., the relative translation error



datasets
MH1-e

as
y

MH2-e
as

y

MH3-m
ed

MH4-h
ard

MH5-h
ard

V11
-ea

sy

V12
-m

ed

V13
-ha

rd

V21
-ea

sy

V22
-m

ed

V23
-ha

rd

re
l. 

tra
ns

la
tio

n 
er

ro
r [

m
]

0

0.02

0.04

0.06

0.08

0.1

0.12
no selection
quality
logDet
minEig

0.20m

(a)
datasets

M
H
1-

ea
sy

M
H
2-

ea
sy

M
H
3-

m
ed

M
H
4-

ha
rd

M
H
5-

ha
rd

V11
-e

as
y

V12
-m

ed

V13
-h

ar
d

V21
-e

as
y

V22
-m

ed

V23
-h

ar
d

p
e

rc
e

n
t 

im
p

ro
v
e

m
e

n
t 

[%
]

0

0.2

0.4

0.6

0.8

1
logDet

minEig

(b)
datasets

M
H
1-

ea
sy

M
H
2-

ea
sy

M
H
3-

m
ed

M
H
4-

ha
rd

M
H
5-

ha
rd

V11
-e

as
y

V12
-m

ed

V13
-h

ar
d

V21
-e

as
y

V22
-m

ed

V23
-h

ar
d

%
 e

rr
o

r 
o

ve
r 

tr
a

j. 
le

n
g

th

0

0.5

1

1.5 no selection

quality

logDet

minEig

11%

(c)

Fig. 3. Accuracy for the compared techniques on the 11 EuRoC MAV datasets. (a) Relative translation error; (b) Relative improvement (relative translation
error reduction) of the proposed techniques with respect to the quality baseline; (c) Translation error as percentage of the overall trajectory length.

(a) quality (b) minEig (c) logDet

Fig. 4. Snapshots of the feature selection performed by the techniques quality, minEig, and logDet during a sharp left turn. Features tracked from previous
frames are shown as green squares (with the corresponding optical flow vectors), the newly detected features are shown as red crosses, and the selected
features are shown as yellow circles. We note that quality only selects the features from their appearance, and chooses many features on the right-hand side
of the frames: these features will soon fall out of the field of view due to the sharp turn.

reduction, of the two techniques with respect to quality. The
figure shows that the proposed feature selectors result in
much smaller drift across all but one datasets. The average
error reduction is larger than 20% and overcomes 40% in
the datasets MH_02_easy, MH_05_difficult, and V2_01_easy.
In particular, in the dataset MH_05_difficult the estimate
resulting from the quality-based feature selection diverged
after a sharp turn, while our techniques were able to ensure
accurate pose estimation. The dataset V1_03_difficult is the
only one in which the proposed techniques have slightly worse
performance. We noticed that in datasets with severe motion
blur the advantage of the proposed techniques may vary, and
this is due to the fact that we are using a simplistic model
for the tracking probabilities pl. For completeness, Fig. 3(c)
reports the absolute translation error as a percentage of the
trajectory traveled; this is another common metric for VIN.
We notice that no-selection has excellent performance, while
using 200 features (average error accumulation is 0.17% of the
trajectory length). Moreover, the proposed techniques, logDet
and minEig, are able to ensure an average error accumulation of
0.42% and 0.46%, respectively, while using only 10 features!

To get a better intuition behind the large performance boost
induced by the proposed techniques, we report few snapshots
produced by our pipeline in Fig. 4. Each sub-figure shows, for
the current frame, the tracked features (green squares with the
optical flow vector), the available features (red crosses), and

the features selected (yellow circles) by (a) quality, (b) logDet,
and (c) minEig. The frames are captured during a sharp left turn
from the MH_03_medium dataset. The quality selector simply
picks the most distinguishable features, resulting in many
features selected on the right-hand side of the image; these
features are of scarce utility: they will soon disappear from
the field of view due to the motion of the MAV. On the other
hand, logDet and minEig are predictive and they leverage the
knowledge of the immediate motion of the platform; therefore
they tend to discard features that fall outside the field of view
and select features on the left-hand side of the image.

Fig. 5 reports the average CPU time required by the VIN
back-end for all techniques and datasets. The figure shows that
logDet is able to cut the back-end time in half, with respect to
no-selection. The CPU time of quality is even smaller, at the cost
of degraded performance (Fig. 3). Consistently with the Monte
Carlo analysis, in our current implementation logDet is faster
than minEig. In the following section we discuss extensions
that can make the selection time negligible.

VI. CONCLUSION AND FUTURE WORK

This work provides an attention mechanism for visual-
inertial navigation. This mechanism takes the form of a feature
selector, which retains the most informative visual features
detected by the VIN front-end (pre-attentive process) and feeds
them to the estimation back-end. We proposed two algorithms
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Fig. 5. CPU time for the back-end (including feature selection) for the
compared techniques on the EuRoC datasets.

for feature selection. Both algorithms enjoy four desirable
qualities: they are predictive in nature, in that they are aware
of the motion of the robot in the immediate future; they are
task-driven, since they select a set of features that minimize
the VIN estimation error; they are greedy, hence efficient and
easy to implement; they come with performance guarantees
that bound their sub-optimality. We demonstrated our feature
selection extensively on both realistic Monte Carlo simulations
and real-world data collected by a micro aerial vehicle. The ex-
periments suggest that the feature selection seriously impacts
VIN performance; the use of the proposed techniques reduces
the estimation error in easy datasets, and enables accurate
estimation in difficult datasets in which standard approaches
would fail on a limited budget of visual features. This work
opens many avenues for future investigation.

Computational improvements. The first avenue for future
work consists in reducing the computational time of feature
selection. Two main ideas can make the feature selection
time negligible. The first stems from the observation that the
greedy algorithm is trivially parallelizable: the marginal gain
of each feature can be computed independently; leveraging
this fact alone would result in large computational savings.
The second idea is to use sparse matrix manipulation to
compute the determinant and the smallest eigenvalues; our
current implementation uses dense matrices.

Task-driven perception. A second avenue for future work
consists in extending our attention framework. We plan to
explore two paths. First, while (1) minimizes the localization
uncertainty subject to a feature budget, one may also consider
a “dual” problem in which one minimizes the number of
features to be used, while satisfying a desired localization
performance. From the technical standpoint, this alternative
formulation can be tackled in a similar manner and in both
cases greedy algorithms have sub-optimality guarantees. This
alternative formulation would provide a grounded answer
to the question: how much visual information is needed to
navigate at a desired accuracy? The second avenue consists in
extending our attention framework to other tasks: for instance,
how many visual features does the robot need to sense in
order to avoid crashing into nearby obstacles? We believe
these are necessary steps towards the development of a task-
driven perception theory, that can enable autonomy on heavily
resource-constrained robots with strict budget on sensing and
computation.
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APPENDIX

In this appendix we provide explicit expressions for the
matrices and vectors appearing in the IMU model (14).

Given the velocity vk and the position tk of the robot at
time k, we can get vk+1 and vk+1 by simple Euler integration
using the acceleration ak:

vk+1 = vk + akδ (41)
vk+1 = tk + vkδ + 1

2akδ
2 (42)

By induction, the velocity and position at time j > k are:

vj = vk +
∑j−1
i=k aiδ

tj = tk +
∑j−1
i=k viδ + 1

2

∑j−1
i=k aiδ

2

(substituting vi)
= tk +

∑j−1
i=k (vk +

∑i−1
h=k ahδ)δ + 1

2

∑j−1
i=k aiδ

2

(moving vk outside the sum)
= tk + (j−k−1)vkδ +

∑j−1
i=k

∑i−1
h=k ahδ

2

+ 1
2

∑j−1
i=k aiδ

2

(noting that a term disappears from the sum)
= tk + (j−k−1)vkδ +

∑j−2
i=k

∑i−1
h=k ahδ

2

+ 1
2

∑j−1
i=k aiδ

2

(since the first term with k appears j − k − 2 times)
= tk + (j−k−1)vkδ +

∑j−2
i=k (j−i−1)aiδ

2

+ 1
2

∑j−1
i=k aiδ

2

(putting last two terms together)
= tk + (j−k−1)vkδ + 1

2aj−1δ
2

+
∑j−2
i=k (j−i− 1

2 )aiδ
2

(simplifying)
= tk + (j−k−1)vkδ +

∑j−1
i=k (j−i− 1

2 )aiδ
2

Defining δkj
.
= (j−k−1)δ and substituting ak from (10):

vj = vk +
∑j−1
i=k (Ri(ãi−bk−ηi) + g) δ

= vk + gδkj − (
∑j−1
i=k Riδ)bk +

∑j−1
i=k Rkãiδ

−
∑j−1
i=k Rkηiδ

tj = tk + vkδkj +
∑j−1
i=k (j−i−

1
2
) (Ri(ãi−bk−ηi) + g) δ2

= tk + vkδkj +
∑j−1
i=k (j−i−

1
2
)gδ2

−(
∑j−1
i=k (j−i−

1
2
)Riδ

2)bk +
∑j−1
i=k (j−i−

1
2
)Ri(ãi−ηi)δ2

(43)

Let us now define the following vectors:

zvkj
.
= gδkj +

∑j−1
i=k Rkãiδ

ηvkj
.
=

∑j−1
i=k Rkηiδ

ztkj
.
=

∑j−1
i=k (j−i− 1

2 )gδ2

+
∑j−1
i=k (j−i− 1

2 )Riãiδ
2

ηtkj
.
= +

∑j−1
i=k (j−i− 1

2 )Riηiδ
2 (44)



Using this notation we rewrite eq. (43) (putting position first)
and adding the random walk random model on the bias:

tj = tk + vkδkj −
(∑j−1

i=k (j−i− 1
2 )Riδ

2)
)
bk + ztkj − ηtkj

vj = vk − (
∑j−1
i=k Riδ)bk + zvkj − ηvkj

bj = bk − ηb
kj (45)

In order to write (45) in compact matrix form, we define:

Nkj
.
=

∑j−1
i=k (j−i− 1

2 )Riδ
2 (46)

Mkj
.
=

∑j−1
i=k Riδ (47)

which allows rewriting (45) succinctly as:

ztkj = tj − tk − vkδkj +Nkjbk + ηtkj
zvkj = vj − vk +Mkjbk + ηvkj

zbkj = bj − bk + ηb
kj (48)

where zvkj = 03 is the expected change in the bias.
Let us now define the following matrices and vectors:

Akj =

[ −I3 −I3δkj Nkj

09×9 . . . 0 −I3 Mkj I9 09×9 . . .
0 0 −I3

]

zIMU
kj =

 zt
kj

zv
kj

zb
kj

 ηIMU
kj =

 ηt
kj

ηv
kj

ηb
kj

 (49)

Using (49), we finally rewrite our model (48) as:

zIMU
kj = Akjxk:k+H + ηIMU

kj (50)

To fully characterize the linear measurement model (50) we
only have to compute the covariance of the noise ηIMU

kj , which
is given by:

cov(ηIMU
kj ) =

[
σ2

IMUCC
T 06×3

03×6 cov(ηb
kj)

]
(51)

where C includes the coefficient matrices of the noise in (45):

C =

[
(j−k− 1

2
)Rkδ

2 (j−k− 3
2
)Rk+1δ

2 . . . 1
2
Rj−1δ

2

Rkδ Rk+1δ . . . Rj−1δ

]
Using the fact that any rotation matrix satisfies RT

kRk = I3,
the matrix CCT can be computed simply as:

CCT =

 (∑j−1
i=k (j−i−

1
2
)2
)
δ4I3

(∑j−1
i=k (j−i−

1
2
)
)
δ3I3(∑j−1

i=k (j−i−
1
2
)
)
δ3I3 (j−k−1)δ2I3

 .
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