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Speed Limits in Autonomous Vehicular Networks
due to Communication Constraints

Rajat Talak, Sertac Karaman, and Eytan Modiano

Abstract—Increasing applications and decreasing sizes of
autonomous vehicles is likely to result in a dense network
of heterogeneous autonomous vehicles, each moving around to
perform a separate task. Autonomous vehicles need to be aware
of other vehicles in it’s vicinity in order to successfully perform
their tasks. Such network awareness is ensured by exchanging
location and control information over wireless radio channels.
However, wireless interference constraints limit the number of
messages that can be exchanged between the vehicles. In this
paper, we study the impact of such communication constraints
on maximum speed in dense autonomous vehicular networks.
We define hazard rate to be the fraction of times a vehicle
enters a region, call it ‘uncertainty region’, where there is a
positive chance of other vehicles being present. We show that
such a performance measure follows a threshold behavior with
respect to maximum speed v as the network density n increases
to infinity. We show that, for a planar network, the hazard
rate tends to 1, if the maximum speed v decreases slower than
n−3/2, and tends to 0, if v decreases faster than n−3/2. For the
network hazard rate, which is fraction of times any vehicle enters
it’s uncertainty region, the threshold is n−2. For the spatial
network, however, these thresholds turn out to be larger. This
implies that it is better to plan autonomous vehicular networks,
such as UAV networks, over a three dimensional space rather
than a two dimensional one.

I. INTRODUCTION

In recent years, network of unmanned aerial vehicles
(UAVs) have become prevalent, with applications ranging
from surveillance, environment monitoring, product delivery,
disaster monitoring and many more. Moreover, it is now
possible to deploy very dense networks of ‘micro’ vehicles,
with sizes as small as 10-50 cm [1], [2]. In such networks,
the use of centralized control, and sophisticated sensing
technology, to plan and control motion is not possible [3];
giving rise to the need for distributed control using wireless
transmission [3], [4]. Wireless communications can be used
to exchange position and control information. However, de-
lays in exchanging such information can result in uncertainty,
and potentially lead to collisions between vehicles that are
not fully aware of each others location.

The amount of time that has passed since vehicles last
exchanged location information is a crude measure of un-
certainty regarding vehicles’ position, as vehicles may have
moved in the time that elapsed. The ‘uncertainty region’ is
the region where a vehicle may have traveled to since the
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Fig. 1. Time snapshot of an autonomous vehicle network with vehicles A, B,
and C. Vehicle B and C travel at maximum speed vB and vC , respectively,
and the amount of time that elapsed since vehicles B and C communicated
their location to vehicle A is TB and TC , respectively. From the point
of view of vehicle A, vehicle B can be anywhere inside the circle Q1 of
radius vBTB ; similarly vehicle C can be anywhere inside circle Q2. The
uncertainty region of vehicle A is the total region covered by circles Q1

and Q2.

last position update, as illustrated in Figure 1. While ideally
the uncertainty region should be kept very small, in dense
networks this may not be possible due to limits in com-
munications. In particular, wireless interference constraints
limit the number of simultaneous transmissions that can take
place [5]. As can be seen from Figure 1, the uncertainty
region is a function of the vehicles’ speed, and the time
that has elapsed since the most recent update. Thus, if it
is not possible to transmit position updates more frequently,
vehicles may need to reduce their speed in order to avoid
hazardous conditions. This situation is exacerbated in dense
networks, where vehicles are in closer proximity to avoid
each others uncertainty regions.

We consider a network of n autonomous vehicles in a
planar and spatial bounded region. The nodes move according
to an independent, stationary, and ergodic random process,
with maximum speed v. We define the hazard rate of a
vehicle to be the fraction of times the vehicle is in it’s
uncertainty region and the network hazard rate to be the
fraction of times any vehicle is in it’s uncertainty region,
and study the hazard rates as n→∞.

Our main result is that the hazard rates follow a threshold
curve with respect to v as n→∞. For the planar network, we
show that, under any communication scheme, if v decreases
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slower than n−3/2 the hazard rate of any vehicle will go to 1
as n→∞. This means that every vehicle almost surely will
be in it’s uncertainty region. However, if v decreases faster
than n−3/2, then a simple communication scheme ensures
that the hazard rate of any vehicle will be 0 as n→∞, i.e.,
vehicle will not be in it’s uncertainty region with probability
one. Also, for the planar network, the speed threshold for
the network hazard rate is n−2. For the spatial network, the
speed thresholds for both hazard rates are smaller than the
planar case. We also show that in both cases a simple round-
robin scheme, in which vehicles transmit in a preassigned
order, attains the minimum hazard rates.

A. Related Work
Dense network of communicating mobile nodes have been

studied for communication delay and capacity [6]–[8]. In [7],
it was first shown that mobility improves capacity. Subse-
quently, communication delay has been studied under various
node mobility models such as Markov [9], [10], random
way point [11], and Brownian [12]. General observation has
been that increasing node speed improves communication
delay. Such a relation between delay and node/vehicle speed
is also known for load-carry-and-deliver or data ferrying
protocols [13], [14]. However, a constraint on vehicle speed
due to communication constraints has never been considered.

A critical speed limit for a collision-free trajectory through
a dense forest was proved in [15]. The obstacles were mod-
eled as static objects derived from a stationary marked point
process. In our model, the obstacles, being other vehicles,
are also in motion.

B. Outline
The paper is organized as follows. We describe our sys-

tem model in Section II for the planar network model. In
Section III, we state and prove the main results with respect
to an individual vehicle’s hazard rate, and in Section IV,
study the network-wide hazard rate. We discuss the spatial
model and it’s threshold results in Section V. We conclude
in Section VI.

II. PROBLEM DEFINITION

We consider a system with n autonomous vehicles that
move inside a square torus S = [0, 1]2. For the torus, the
distance between two points x = (x1, x2) ∈ S and y =
(y1, y2) ∈ S is given by

d (x,y) = min
e∈{−1,0,1}2

‖x + e− y‖2 , (1)

where ‖·‖2 is the Euclidean norm. Figure 2 illustrates the dis-
tance function d on unit torus S. We denote N = {1, 2, . . . n}
to be the set of autonomous vehicles.

We also use the following notations. We use P [·] and E [·]
to denote probability and expectation, respectively. For func-
tions f and g we say f(n) = O (g(n)) if there exists a C > 0

such that limn→∞
f(n)
g(n) ≤ C. We write f(n) = Θ (g(n)) if

f(n) = O (g(n)) and g(n) = O (f(n)).

Fig. 2. Undotted black line traces the shortest distance path between points
x and y on unit torus S.

A. Mobility Model

Each vehicle moves according to an independent, sta-
tionary, ergodic random process with uniform stationary
distribution. We also assume that this motion is such that,
if at time t the vehicle is at location x, then it’s location at
time t + τ can be anywhere inside the region B(x, vτ), for
all t and τ > 0. Thus, the variable v is the maximum speed
that vehicles in the network can possibly achieve. Random
waypoint and Markov mobility are two examples of such
motion models [9], [11], [16], [17].

B. Communication Model

The autonomous vehicles exchange location information
with each other over wireless radio channel. Each vehicle
maintains two lists. The first list tracks the last received
location of every vehicle and the second list tracks the time
validity of this information. More precisely, a vehicle i at
time t maintains lists:

χi(t) =
(
xi1(t), xi2(t), . . . xin(t)

)
, (2)

where xik(t) denotes the last communicated location of
vehicle k to vehicle i by time t; here xii(t) is the exact
location of vehicle i, and

Θi(t) =
(
∆i

1(t),∆i
2(t), . . .∆i

n(t)
)
, (3)

where ∆i
k(t) is the time elapsed since vehicle k was at

location xik(t). This means that at time t, for vehicle i,
the location of vehicle k can be anywhere inside the circle
of radius v∆i

k(t) centered at xik(t). In the absence of a
new information packet from vehicle k to vehicle i, ∆i

k(t)
increases linearly in t at rate 1. On the other hand, if it
receives a packet from vehicle k, ∆i

k(t) is reset to zero. Since
vehicle i always knows it’s location we set ∆i

i(t) = 0.
For simplicity, in this work, we assume a single cell

broadcast channel model. When a single vehicle transmits
a packet, all other vehicles can receive it correctly. A packet
transmitted by a vehicle contains the vehicles current loca-
tion. We consider a time slotted system [18]. Duration of
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each slot, denoted by δ, equals the time required for a single
packet transmission. A single packet can be transmitted in
one slot. However, two or more packet transmissions during
a slot leads to failure in packet reception due to wireless
interference [5], [18].

A communication scheme is an agreed set of rules that
determines when each vehicle transmits. We call a com-
munication scheme recurrent if, in it, each vehicle trans-
mits infinitely often. We say it is O(n)-recurrent if it is
recurrent and each vehicle transmit every O(n) time slots,
i.e., lim supk→+∞maxi∈N τ

i(k) = O(n) for all i ∈ N ,
where τ i(k) is the kth inter-transmission time between two
transmissions of i. A round robbin scheme is one where, in
slot m, vehicle im = 1 +m mod (n− 1) ∈ N transmits.

We consider communication schemes that are location
independent. That is, vehicles do not use their location
information to schedule transmissions. Thus, a real-world
autonomous vehicular system can perform at least as good
as the performance characterized here.

C. Performance Measure

At time t, for vehicle i, vehicle k can be anywhere
inside the circle or ball with radius v∆i

k(t) centered at
xik(t); denoted as B

(
xik(t), v∆i

k(t)
)
, where B(x, r) = {y ∈

S|d(x, y) < r}. This circle is called the region of uncertainty
of vehicle k with respect to vehicle i. Then, the net uncer-
tainty region of vehicle i with respect to all other vehicles is
defined as

Ri(t) =

n⋃
k=1

B
(
xik(t), v∆i

k(t)
)
. (4)

Informally speaking, the net uncertainty region for vehicle
i is the set of all locations that may include another vehi-
cle which vehicle i is unaware of. To guarantee location-
awareness for vehicle i, we would like to make sure that
vehicle i does not lie inside it’s own uncertainty region
Ri(t). In this way, vehicle i can be aware of any vehicle
that approaches its location.

We define Ai(t) to be the event that vehicle i lies in Ri(t),

Ai(t) = {xii(t) ∈ Ri(t)}, (5)

and γin to be the fraction of times vehicle i lies in Ri(t), i.e.,

γin = E

[
lim

T→+∞

1

T

∫ T

0

IAi(t)dt

]
, (6)

where IA is the indicator function for event A. Using
dominated convergence theorem [19], we have

γin = lim
T→+∞

1

T

∫ T

0

P
[
Ai(t)

]
dt. (7)

We call γin as the hazard rate for vehicle i. The hazard rate
denotes the rate at which vehicle i goes into its uncertainty
region, hence the rate at which vehicle i may miss another
vehicle passing by its location without vehicle i knowing.

In Section III, we minimize the hazard rate for a vehicle
as n → ∞ for different values of v. We also show that the
simple round robbin scheme attains the minimum.

This individual location awareness does not entail location
awareness for the entire network. For the latter, we also
consider the event that any vehicle may lie in it’s uncertainty
region at time t:

A(t) =

n⋃
i=1

Ai(t), (8)

and define network hazard rate to be

γn = E

[
lim

T→+∞

1

T

∫ T

0

IA(t)dt

]
, (9)

= lim
T→+∞

1

T

∫ T

0

P [A(t)] dt. (10)

In Section IV we minimize the network hazard rate.
Notice that the individual hazard rate and network hazard

rate depend on the communication scheme used to exchange
information. Thus, if C denotes a communication scheme, we
shall also use γin (C) and γn (C) to denote the individual and
network hazard rate, respectively, using scheme C.

III. ANALYSIS FOR INDIVIDUAL LOCATION AWARENESS

In this section we minimize the individual hazard rate as
n → ∞. We show that, in the limit, the hazard rate γin
exhibits a phase transition with respect to maximum speed
v.

Theorem 1: If v scales in n such that,
1) vn3/2 →∞ then for any communication scheme,

lim
n→∞

γin = 1, (11)

for all i ∈ N .
2) vn3/2 → 0 then for the round robbin scheme

lim
n→∞

γin = 0, (12)

for all i ∈ N .
This result implies that the hazard rate for vehicle i, γin,

follows a threshold behaviour with respect to maximum speed
v, in the asymptotic as n → ∞. Further, if any vehicle i
indents to avoid it’s uncertainty region then the maximum
speed should scale down faster than n−3/2.

The key reason for n−3/2 threshold is that the delays,
∆i
k(t) for i, k ∈ N , grow at best linearly in n for any

communication scheme. When this is the case the area of
each ball B

(
xik(t), v∆i

k(t)
)

is πv2n2. Since there are n− 1
of them in the net uncertainty region Ri(t), the area of Ri(t)
is roughly πv2n3. Thus, when vn3/2 → 0, the area of Ri(t)
goes to zero.

Theorem 1 also states that the round robbing scheme
achieves the best performance, in the asymptotic as n→∞.
This is because, the round robbin scheme ensures that
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∆i
k(t) ≤ nδ for all i, k ∈ N as each vehicle transmits once

every n slots.
We make two key observations: First, in a single cell

broadcast channel, when one vehicle transmits a packet
every other vehicle receives that packet. As a result, the last
location communicated by any vehicle k be same for all other
vehicles, i.e.,

xik(t) = xjk(t), (13)

for all i, j ∈ N\{k}. This also implies that the time since
location of vehicle k was communicated will be same for all
vehicles, i.e.,

∆i
k(t) = ∆j

k(t), (14)

for all i, j ∈ N\{k}. Let us, therefore, denote

∆∗k(t) = ∆i
k(t), (15)

for any i and all k ∈ N\{i}. We then know that such a
collection {∆∗k(t)}k∈N is well defined.

The second observation is an invariant property that is
satisfied by all communication schemes. Let ft denotes the
fraction of vehicles k with ∆∗k(t) greater than δ

⌈
n
2

⌉
. This is

given by

ft =
1

n

∑
k∈N

I{∆∗k(t)>δdn
2 e}. (16)

The following lemma guarantees a lower bound on ft for
any communication scheme.

Lemma 1: For any communication scheme, if t > nδ then

ft ≥
1

2
− 1

n
, a.s. (17)

Proof: Proof is given in Appendix A.
This shows that at least nearly half the vehicles have the
delay, ∆∗k(t), greater than

⌈
n
2

⌉
δ. We now prove Theorem 1.

Proof of Theorem 1: We first prove the second part of
the claim. Since the round robbin scheme does not depend
on vehicle location, P

[
Ai(t)

]
can be written as

P
[
Ai(t)

]
= P

Ui ∈ ⋃
k∈N\{i}

B
(
Uk, v∆i

k(t)
) , (18)

where (U1, . . . , Un) are independent and identically dis-
tributed random variables, uniformly distributed over S.
Since, ∆i

i(t) = 0 we can also write P
[
Ai(t)

]
to be

P
[
Ai(t)

]
= P

V ∈ ⋃
j∈N

B
(
Uj , v∆i

j(t)
) , (19)

where V is another uniformly distributed random variable
over S that is independent of all Uj . For round robbin
scheme, the delays ∆i

k(t) are bounded above by nδ as in any

time duration of nδ there is at least once that every vehicle
transmits. This upper bound on ∆i

k(t) implies

P
[
Ai(t)

]
≤ P

V ∈ ⋃
j∈N

B (Uj , nvδ)

 , (20)

= P

⋃
j∈N
{V ∈ B (Uj , nvδ)}

 , (21)

= 1−P

⋂
j∈N
{V /∈ B (Uj , nvδ)}

 . (22)

The events {V /∈ B (Uj , nvδ)} are independent because the
Ujs and V are independent. This implies,

P
[
Ai(t)

]
≤ 1−

∏
j∈N

P [V /∈ B (Uj , nvδ)] , (23)

= 1−
∏
j∈N

(
1− π(nvδ)2

)
, (24)

= 1−
(
1− π(nvδ)2

)n
, (25)

= Θ

(
1− e−c

(
n

3
2 vδ

)2)
. (26)

Thus, if vn3/2 → 0 then P
[
Ai(t)

]
→ 0 as n→ +∞. Since

γin is a Cesaro mean of P
[
Ai(t)

]
, we have γin → 0 as n→ 0.

This proves the second part of the result.
We now prove the first claim. Since our communication

schemes are location independent, we still have (19) to be
true. Take t > nδ and define ∆̃i

k as follows:

∆̃i
k(t) =

{
0 if ∆i

k(t) ≤ δdn2 e
nδ
2 otherwise

(27)

We know from Lemma 1 that the number of k ∈ [n] with
∆̃i
k = nδ

2 is at least n
2 − 1. Using this along with (19) we

have

P
[
Ai(t)

]
= P

V ∈ ⋃
j∈N

B
(
Uj , v∆i

j(t)
) (28)

≥ P

V ∈ n
2−1⋃
j=1

B

(
U
′

j ,
nvδ

2

) , (29)

where U ′j are the locations corresponding to vehicles that
have ∆̃i

k(t) = nδ
2 . Since the communication scheme is loca-

tion independent, U ′js would be independent and uniformly
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distributed over S. This implies

P
[
Ai(t)

]
≥ P

V ∈ n
2−1⋃
j=1

B

(
U
′

j ,
nvδ

2

) , (30)

= P

n
2−1⋃
j=1

{
V ∈ B

(
U
′

j ,
nvδ

2

)} , (31)

= 1−P

n
2−1⋂
j=1

{
V /∈ B

(
U
′

j ,
nvδ

2

)} , (32)

= 1−

(
1− π

(
nvδ

2

)2
)n

2−1

, (33)

= Θ

(
1− e−c

(
n

3
2 vδ

)2)
. (34)

Thus, if vn3/2 →∞, then P
[
Ai(t)

]
→ 1 as n→ +∞. Since

γin is Cesaro mean of this sequence, γin → 1 as n→∞.

IV. ANALYSIS FOR NETWORK LOCATION AWARENESS

In this section, we minimize the network hazard rate, γn,
as n → ∞. We show that, in the limit, γn has a threshold
behaviour.

Theorem 2: If v scales in n such that
1) vn2 →∞ then for any communication scheme

lim
n→+∞

γn = 1. (35)

2) vn2 → 0 then for the round robbin scheme

lim
n→+∞

γn = 0. (36)

This result implies that the network hazard rate also
follows a threshold behaviour with respect to maximum speed
v, as n → ∞. The speed threshold for the network hazard
rate is n−2, which is smaller than the threshold for the hazard
rate. Thus, the vehicles need to move more slowly if they
want to ensure network wide location awareness.

The key reason is again that the delays, ∆i
k(t) for all i, k ∈

N , grow at best linearly in n for any communication scheme.
A random geometric graph G (n, r) is a graph with n nodes
independent and uniformly distributed on S with an edge
between two nodes located at x and y if d(x,y) < r. We
can then roughly think of the event A(t) to be the event that
there exists an edge in a random geometric graph G (n, r)
with r ≈ vn; because r approximates ∆i

k(t). From [20], we
know that the probability that there is an edge in G (n, r) goes
to zero (or one) if rn→ 0 (or if rn→∞). This implies the
n−2 threshold for maximum speed v.

Theorem 2 also shows that the round robbin scheme
attains the best performance. This is because, in the round
robbin scheme, the delays grow linearly in n. We now prove
Theorem 2.

Proof of Theorem 2: For any time t ≥ 0, the probability
P [A(t)] is given by

P [A(t)] = P

 ⋃
i∈[n]

xii(t) ∈ ⋃
k∈[n]\{i}

B
(
xik(t), v∆i

k(t)
)
 .

Since the communication schemes we consider are vehicle
location independent we can write P [A(t)] as

P [A(t)] = P

 ⋃
i∈[n]

Ui ∈ ⋃
k∈[n]\{i}

B
(
Uk, v∆i

k(t)
)
 , (37)

where Uis are independent, uniformly distributed random
variables over S. For the round robbin scheme we also have
∆i
k(t) ≤ nδ. This implies,

P [A(t)] ≤ P

 ⋃
i∈[n]

Ui ∈ ⋃
k∈[n]\{i}

B (Uk, nvδ)


 . (38)

Now, note that if G (n, nvδ) is a random geometric graph on
the torus S then the event

⋃
i∈[n]

Ui ∈ ⋃
k∈[n]\{i}

B (Uk, nvδ)

 , (39)

is same as the event that there is at least one node in the
graph G (n, nvδ). Thus,

P [A(t)] ≤ P [M ≥ 1] , (40)

where M is the number of edges in the graph G (n, nvδ). For
a random geometric graph G (n, r), P [M ≥ 1]→ 0 if rn→
0 as n→ +∞. Hence, if vn2 → 0 we have P [A(t)]→ 0 as
n→ +∞. Since γn is a Cesaro mean sequence of P [A(t)],
we have γn → 0. This proves the first part.

For the second part, define

∆̃∗k(t) =

{
0 if ∆∗k(t) ≤ δdn2 e
nδ
2 otherwise

(41)

By Lemma 1 there are at least n
2 − 1 vehicles at any time

slot t such that ∆∗k(t) > δdn2 e. Using (37) we get

P [A(t)] = P

⋃
i∈N

Ui ∈⋃
k∈N\{i}

B
(
Uk, v∆i

k(t)
)
 , (42)

≥ P

⋃
i∈N

Ui ∈⋃
k∈N\{i}

B
(
Uk, v∆̃i

k

)
 , (43)

≥ P

⋃
i∈N

U ′i ∈
⋃

k∈[n
2−1]\{i}

B

(
U
′

k,
nvδ

2

)
 ,

where U
′

i denote location of vehicles with ∆̃∗k(t) = nδ
2 .

Since the communication schemes under consideration are
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location independent, U
′

i s will be independent and uniformly
distributed over S. Since there are

⌈
n
2 − 1

⌉
of them we have

P [A(t)] ≥ P

 ⋃
i∈N ′

Vi ∈ ⋃
k∈N ′\{i}

B

(
Vk,

nvδ

2

)
 , (44)

where Vis, for i ∈ N ′ = {1, 2, . . .
⌈
n
2 − 1

⌉
}, are independent

and uniformly distributed over S. We, therefore have,

⋃
i∈N ′

Vi ∈ ⋃
k∈N ′\{i}

B

(
Vk,

nvδ

2

) = {M ≥ 1}, (45)

where M is the number of edges in the random geometric
graph G

(⌈
n
2 − 1

⌉
, nvδ2

)
. For G (n, r), P [M ≥ 1] → 1 if

rn → ∞. Hence, if vn2 → ∞ we have P [A(t)] → 1 as
n → ∞. Since γn is a Cesaro mean of P [A(t)], we have
γn → 1 as n→∞.

A. Generalization to All O(n)-recurrent Schemes

It turns out that the results of Theorem 1 and 2 for the
round robbin scheme hold for any O(n)-recurrent communi-
cation scheme.

Corollary 1: For any O(n)-recurrent communication
scheme, if v scales in n such that

1) vn3/2 → 0 then

lim
n→∞

γin = 0, (46)

for all i ∈ N .
2) vn2 → 0 then

lim
n→∞

γn = 0. (47)

Proof: The proof is same as the proofs of Theorem 1
and 2 for the round robbin scheme. In those proofs, we only
used the fact that ∆i

k(t) is bounded above by nδ for all i, k.
For an O(n)-recurrent scheme, ∆i

k(t) ≤ cn for all i, k ∈ N ,
all large t and some positive constant c. Thus, the same proofs
follow.

V. SPATIAL NETWORK MODEL

We now extend the threshold results proved in Theorem 1
and 2 to a similar network in three dimensional space. Con-
sider n autonomous vehicles inside the space S3 = [0, 1]3.
The distance between two points x = (x1, x2, x3) ∈ S3 and
y = (y1, y2, y3) ∈ S3 is given by

d3 (x,y) = min
e∈{−1,0,1}3

‖x + e− y‖2 . (48)

The rest of the system model is same as stated in Section II.
In this case, we can again show that, both the individual and
network hazard rate has a threshold behaviour with respect
to maximum speed v. The thresholds, however, are different.

Theorem 3: Hazard rates γin and γn have threshold
behaviour with respect to v, as n → ∞. This threshold for
γin is n−4/3 and for γn it is n−5/3. And, the round robbin
scheme attains the smallest hazard rates as n→∞.

TABLE I
COMPARISON OF MAXIMUM SPEED THRESHOLDS FOR INDIVIDUAL AND

NETWORK HAZARD RATE IN PLANAR AND SPATIAL NETWORKS.

Max. speed thresholds for Planar Network Spatial Network
individual hazard rate n−3/2 n−4/3

network hazard rate n−2 n−5/3

This result shows that the speed thresholds for the three
dimensional spatial network are larger than those for the
planar network of Section II. We compare them in Table I.
This implies that it is better to plan an autonomous vehicular
network over a three dimensional space than a two dimen-
sional one, as the former provides for higher mobility. We
now state the proof of Theorem 3.

Proof of Theorem 3: The proof of the threshold for
γin is same as given in the proof of Theorem 1, except for
minor modifications. In (24), instead of π(nvδ)2 we will have
4
3π(nvδ)3. Similarly, in (33), instead of π

(
nvδ

2

)2
we will

have 4
3π
(
nvδ

2

)3
. This will give the threshold of n−4/3.

The proof of the threshold for γn is same as given in the
proof of Theorem 1 till equations (40) and (45). However, the
random geometric graphs G (n, nvδ) and G

(⌈
n
2 − 1

⌉
, nvδ2

)
are on space S3 and not S. For a random geometric graph
G(n, r) on S3, the probability that there is at least an edge,
P [M ≥ 1] → 0 if n2/3r → 0 and P [M ≥ 1] → 1 if
n2/3r →∞; see [20]. Using this in (40) and (45), we obtain
the threshold n−5/3.

VI. CONCLUSIONS

We analyzed the impact of wireless interference constrains
on maximum attainable speed in an autonomous vehicular
network. We defined hazard rate, a measure of network
safety, and showed that it follows a threshold behaviour with
respect to maximum speed v as n→∞. We saw that below
the threshold, a simple round robbin scheme attained the
minimum hazard rate as n → ∞. The speed thresholds for
the spatial network were proved to be higher than those for
the planar network. This shows that planning autonomous
vehicular networks over a three dimensional space can ensure
greater safety or network awareness.

APPENDIX

A. Proof of Lemma 1

Let nt denote the number of nodes that transmitted in the
previous

⌈
n
2

⌉
slots before the current slot. Then nt ≤

⌈
n
2

⌉
≤

n
2 + 1. Also, none of these nt nodes can have ∆∗k > δ

⌈
n
2

⌉
,

while, all other n− nt nodes will have ∆∗k > δ
⌈
n
2

⌉
. Hence,

ft =
n− nt
n

≥ n− (n/2)− 1

n
=

1

2
− 1

n
a. s. . (49)
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