A CELLULAR AUTOMATA REPRESENTATION
FOR ASSEMBLY SIMULATION AND SEQUENCE
GENERATION

by

Kontong Francisco Pahng

Bachelor of Science in Mechanical Engineering
The University of Iowa
May, 1993

Submitted to the Department of Mechanical Engineering
in Partial Fulfillment of the Requirements for the Degree of

Master of Science
in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1995

© Massachusetts Institute of Technology 1995
All rights reserved.

Signature of Author _

! ntong Francisco Pahng

Department 8f Mechanical Engineering
June 5, 1995

Certified by
Mark J. Jakiela
Associate Professor
Department of Mechanical Engineering
Thesis Supervisor

Accepted by
[AASSAGHUSETTS INSTITUTE Ain A. Sonin

OF TECHNOLOGY

Chairman, Departmental Graduate Committee

AUG 311995 . ARCHINES

LIBRARIES

A CELLULAR AUTOMATA REPRESENTATICN
FOR ASSEMBLY SIMULATION AND SEQUENCE
GENERATION

by
Kontong Francisco Pahng

Submitted to the Department of Mechanical Engineering
on June 5, 1995 in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Mechanical Engineering

ABSTRACT

Cellular automata are used to represent physical objects and their interactions for the
purpose of planning the 2ssembly process of several parts. Cells assume a vector value,
made up of a material/void indicator, a set of cell boundary edge states, and an indicator of
the allowable motion direction of the cell. Sets of rules that recognize parts and deduce
allowable motions are described. The assembly planning is assumed to be the reverse
process of its corresponding disassembly sequence and an algorithm to generate ailowable
disassembly sequences is developed using cellular automata. The rules and algorithms are
implemented to study their performance, and several examples for the assembly sequence
generation are presented. The Optimization of linear assembly sequences based on
assemblability criteria is investigated using genetic algorithms and branch and bound search
technique. The assemblability pertains to characteristics or attributes of an assembly

sequence that can be either desirable or undesirable from a manufacturing standpoint.

Thesis Advisor: Professor Mark J. Jakiela

Acknowledgments

First of all, I would like to express my sincere gratitude to my academic adviser,
professor Mark Jakiela, for his invaluable support and guidance throughout the
development or this thesis as well as the research.

I would also like to thank Mr. Shunsuke Minami, formerly a visiting research engineer
from the Hitachi Research Laboratory, for his professional insights and guidance along the
implementation of our system.

My experience at MIT CADLAB was made particularly enjoyable by all the students
and staff. I would like to thank all the people in CADLAB. Also, I cannot thank enough
all the friends at MIT as well as here in Boston, in Iowa City, and far back in Korea for

their support and friendship.

Finally, and most importantly, I would like to thank my family. I would like to thank
my dear brother, sister, sister-in-law, and my beloved little nephew. Of course, the most
special thanks go to my parents. Not only did they gave me a chance to see this wonderful
world, but they also gave me the love and support to help me do my best.

iif

Table of Contents

AB ST R A CT .. e ii
Acknowledgments.o, iii
Table of CONENS.........oeiviiii e iv
LiSt Of FIBUIES ...ttt e vii
List of Algorithmso ix
INtrodUCHION ... e 10
L1 MOtIVALION. . .oouine e e 10
1.2 ObjJeCtiVe. .ot 11
1.3 Organization........co.iiiiiiiiiiii e 12
Backgroundo 14
2.1 OVEIVIEW ...t 14
2.2 Geometric Representationoveviuiieiiiiiiiiiiiii i 14
2.2.1 Boundary Representations (B-Reps)c..cooeviiviiiinnn.n. 14
2.2.2 Constructive Solid Geometry (CSG)........ccoovvvviiiiiiiiiinnnnn, 15
2.2.3 Spatial-Occupancy Enumeration...............cccooovveeeieeinnnnnn.... 16
2.2.4 Comparison of Representations..................................... 17
2.2 Geometric Description in This Investigation..................................... 18
2.2.1 Cellular Automataooooeiiiiiiiiiiiii 18
2.2.2 Cellular Automata for Physical Reasoning............................ 19
2.3 Assembly Planning and Sequence Generation................................... 19
2.4 Optimization Methods............ccoiviiiiiiiiiiii e, 23
2.4.1 Genetic Algorithmscooiiiiiiiiiiii Z3
2.4.2 BranchAndBoundo 24
Previous Work in Assembly Sequence Generation.............ccccceeeeeevivnnennennennn.. 26
301 OVEIVIBW ..ot e 26
3.2 Computer-Based Interactive Assembly Planning................................ 26
3.2.1 Bourjaultand Henrioudco 27
3.2.2 DeFazioand Whitney ..o 27
3.3 Computer-Automated Assembly Planning 28
3.3.1 Homen de Mello and Sandersonc..cccooeiiininnnl, 28

v

I A A1 0 PO 30

3.3.3 WOKEr .o 31

3.3.4 HOffmMan......ccoooiiiinii e 31

3.3.5 8. Lt 31

RIT: BT 111 111 o P 32
Assembly Simulation With Cellular Automata.....................coo, 33
O T @ Y7 o T 33
4.2 Simulation of Rigid Part Interactions 33
4.2.1 Cell Stateovintii et 33

4.2.2 Part Membership Rules.......cc.cooiiiiiii 35

4.2.3 Part Motion Rules. ..o 36
Possible Motion Propagation Rules................................ 37

Cell MovementRulesc..coooeiiiiiiiiiiiiiiiins 40

4.2.4 Part Motion Procedure.............cc.ooooiiii 43

4.2.5 Part Extraction Procedure.oo 44

4.3 Disassembly Sequence Generation Algorithm.......................l. 46
4.4 EXAMPIESonrniit i 50
Assembly Sequence OptimMIZation...........cooooiiiiiiiiiiiiiiiiiini e, 57
5.1 OVEIVIEW ...eeeiitiei ettt e 57
5.2 Selecting Assembly SEqUENCESccuiuiiiiiiiiiiiiiiiiiiiiiee 57
5.2.1 IntroduCtion.........ccvinenniinii i 57

5.2.2 Linear and Parallel Assembly Sequences.............................. 58

5.2.3 Assemblability Evaluation...........c...ccoocovviiiiiiiinniinn 58

5.2.4 Evaluation Criteria for Assembly Sequence..............c............ 59

5.3 Genetic Algorithms Approachcooooiiiiiii 61
5.3.1 Introduction........ccouviveiieeiiiii i e 61

5.3.2 Implementationc.coeiiiiiiiiiiiii 61

5.3.3 GA Operators for Crossover and Mutation 62

Partial Matched Crossover and Ordered Crossover 62

Swap Mutation and Shift Mutation................................ 64

5.3.4 EXamples.......o.ooiuiiiiiiii 65

5.4 Branch And Bound Approach ... 71
5.3.1 IntroduCtion........ccvveeiniiniiieiii i 71

5.3.2 Implementationcoovuiniiiniiiiiii 71

5.4.3 EXamples.........ooooiiiiiiii i 75

CONCIUSIONS et e e e et 80
6.1 OVEIVIEW ...ttt e 80
6.2 Capabilities of the Disassembly Planner................................... 80
6.3 Optimization with Cellular Automata............cccccooeeviiiiiiniininnnnne.. 82
6.4 Future WOrKoooi 83
ReEfEIENCES ...t 85

vi

List of Figures

Figure 2.1 An objective define by B-Reps. ... 15
Figure 2.2 A model defined by CSGanditstree.....................oooie, 16
Figure 2.3 A model define by Spatial-Occupancy Enumeration. 16
Figure 2.4 Possible transformation among geometric representations. 17
Figure 2.5 Cellular automata operation.coceovviiiiiiiiiiiiiiiin e, 19
Figure 2.6 Example assembly............ccooooiiiiiii 20
Figure 2.7 Directed graph of feasible assembly sequences................................. 22
Figure 2.8 AND/OR Graph of feasible assembly sequences................................ 23
Figure 2.9 Enumeration tree of branch and bound method........................... 25
Figure 3.! A four-part simple product from (Homem de Mello and Sanderson

1000) ittt ettt 28
Figure 3.2 AND/OR graph of the simple product in figure 3.1............................. 29
Figure 4.1 State vectorofacell..............ooooiiiiii 34
Figure 4.2 Application of possible motion propagation rules. 40
Figure 4.3 Application of possible cell movementrules. 43
Figure 4.4 Example of allowable motion propagation and cell movement rules.......... 44
Figure 4.5 Example of a part extraction procedure.coooeeiiiiiiiiiii... 45
Figure 4.6 Example of no possible part extraction. 46
Figure 4.7a Example assembly with four components.................c.....oooeinin 48
Figure 4.7b Feasible decomposition task for the given assembly......................... 49
Figure 4.7c Feasible decomposition task for subassembly { 1, 3,4 }.................... 49
Figure 4.7d AND/OR graph for the example in figure 10a..........................l 50
Figure 4.8a 4 part assembly in 10x10domain...................... 51
Figure 4.8b 6 part assembly in 10x10domain. ..., 52
Figure 4.8c 8 part assembly in 10x10 domain....................... 52
Figure 4.8d CPU seconds versus part COUNLo.ouiueniuininiiiiiniieneinanaeeanes 53
Figure 4.9a 4 part assembly in 15x15 domain.................... 54
Figure 4.9b 4 part assembly in 20x20 domain.cooviiiiiiiiiiiii 55
Figure 4.9c CPU seconds Versus array SiZe€...........cccccccoccommiiiiininiiiiinninnee. 56
Figure 5.1 Schematic representation of assembly sequences types......................... 58
Figure 5.2 Partial matched crossover. ... 63
Figure 5.3 Ordered CrOSSOVET.........vuuiuiiiiiiiiiiiiine i 64
Figure 5.4 Swap and shift mutation................oooii 65

vii

Figure 5.5 Example assembly: Test L..............ooooiii 66

Figure 5.6 Example assembly: Test 2. 66
Figure 5.7 Example assembly: Test 3. 67
Figure 5.8 Example assembly: Test 4. 68
Figure 5.9 Population versus number of evaluation and fitness. 69
Figure 5.10 Mutation probability vs. no. of eval. and fitness............................... 70
Figure 5.11 GA operators vs. no. of eval. and fitness........................ 71
Figure 5.12 Five partassembly.o 74
Figure 5.13 Branch and bound tree of the example assembly in figure 5.12.............. 74
Figure 5.14 Branch and bound tree of the example assembly in figure 5.12.............. 75
Figure 5.15 Search methods versus number of evaluation and fitness..................... 76
Figure 5.16 Search methods versus number of evaluation and fitness..................... 77
Figure 5.17 Example assembly: Horizontal stack...................ccooiiiin, 77
Figure 5.18 Example assembly: Horizontal-vertical stack. 78
Figure 5.19 Example assembly: Vertical-horizontal stack. e 78
Figure 5.20 Example assembly: Vertical stack.co 79
Figure 6.1 A monotone assembly. ..o 81
Figure 6.2 A non-contact-coherent assembly. ... 82

viii

List 2.1
List 4.1
List 4.2
List 4.3
List 4.4
List 4.5
List 4.6
List 4.7
List 5.1
List 5.2
List 5.3
List 5.4

List of Algerithms

Procedure of the genetic algorithm. ... 24
Rules for membership.......c.ccoociiiiiiiiiiiii 35
Algorithm to determine membership. 36
Possible movement propagation rules..............coooiiiiiiii 37
Cell movement TUIES......c..coveiiniiiiiniiiiiiiii 41
Algorithm t0 MOVE PartS. ..ot e 43
Algorithm to generate disassembly tasks. 47
Algorithm to generate a AND/OR graph. 47
Algorithm for searching sequences using the genetic algorithm 61
Algorithm for evaluating @ SEQUENCEcceeeiiiiiiiiiiiiiiii, 62
Algorithm to find the best SequUencecooovviiiiiiiiiiiii e, 12
Branch And Bound Algorithm. ... 72

Introduction

1.1 Motivation

It has been widely recognized that the final cost of a manufactured product is largely
determined by the early design process, and thus, there is intense interest in developing
design tools which will aid this process and make it more effective. For the manufactured
product, an assembly-conscious design is desirable because it can generate significant
savings in capital costs and assembly time, and thereby, a higher design quality and
efficiency. The assembly process is defined as the putting together of various parts to
create an end product and the term 'assembly,' in fact, designates both the process and
sometimes the product (Delchambre 1992). However, assembly-conscious design is
difficult because designers, in general, do not have sufficient knowledge relevant to an
assembly process. Such knowledge includes information with regard to the assembly
operations and planning (cost, difficulty of process, erc.) and design for assembly
methodologies such as a classification of relevant design features, redesign techniques,
experience of plant engineers, etc. (Boothroyd and Alting 1992). In recent years,
therefore, the effective design of products to facilitate assembly and issues pertaining to
assembly in general have been very active areas of research.

This research is concerned with the specific issue of assembly planning or assembly
sequence generation. To understand the context of this issue, consider the mass production
assembly of a product. This entire process can be sensibly divided into three phases. The
first, known as part presentation, takes parts in some disorganized bulk form, separates,
organizes, and orients them so that their location and orientation are known prior to
assembling them to the product. Humans perform this task very well with sophisticated
tactile and visual sensing capabilities; in automated settings, bowl feeders, tracks, hoppers,
etc. are used. The third phase is the final insertion of a part into the assembly or
subassembly. Again human sensory capabilities facilitate this task; advanced robotics and

10

Chapter 1. Introduction 11

special purpose end effectors (e.g. the remote center compliance device (Nevins and
Whitney 1978)) help for automated assembly.

The second phase, between part presentation and final insertion, involves the gross
motion of parts between the part presentation point and the final insertion point. Humans
and robots can both be used for this task. Important considerations with regard to this
phase are the order in which parts are assembled into the product and the complexity of the
motions that are required to move each part towards its final insertion point. The choice of
a good assembly order can minimize the number of part movement operations, such as pick
and place motions and inversions of subassemblies. Simplified part motions can be
achieved with less sophisticated, and therefore less costly, machinery. It is clear, then, that
a good assembly plan, the ordering of parts assembly and the design of the insertion
motions, can have a large influence on the cost of an assembly process. In addition, the
selection of an alternative assembly plan or sequence can have a large impact on nearly
every aspect of the facility and assembly methods such as ability to automate, resource
utilization, product quality, in-progress repair, assembly system configuration, and etc.
(Klein 1987). In turn, the design of individual parts and the configuration of the entire
assembly will dictate the assembly plans that are possible.

1.2 Objective

The purpose of this thesis is to present a computer-automated assembly planner which
generates feasible assembly sequences using a geometric representation method based on
cellular automata. Also, the optimization of linear assembly sequences is investigated with
genetic algorithms and branch and bound search techniques in order to determine good

sequences based on a predefined set of criteria.

The overall interest is in the total design of parts and assemblies to facilitate the creation
of high quality assembly plans. In practice, the human or computational analysis of an
assembly is time consuming and laborious. Analyzing one assembly of significant part
count takes several minutes, requires some type of human analysis, and in general is a
significani achievement. The process of iteratively modifying the assembly and its parts,
and then regenerating an assembly plan, for the purpose of design optimization of the
assembly, could not be practically achieved. Therefore, it is sought to develop a computer-
based tool that will either fully automate this design process or significantly assist a human

Chapter 1. Introduction 12

completing a product design. An automated assembly design process will require an
automated assembly planning process. Some tools already exist (at least in research form)
for all three phases of assembly. Boothroyd and associated researchers (Boothroyd, Poli et
al. 1982) have distilied the results of many empirical studies (Boothroyd and Ho 1976) into
charts that provide guidance on appropriate part shapes to facilitate part presentation and
bulx handling. Jakiela and associated researchers have created a system that automatically
evaluates a three-dimensional solid model with respect to the Boothroyd charts and
provides design improvement suggestions. ((Jakiela, Papalambros et al. 1985) and
(Jakiela, Papalambros et al. 1985)) Several researchers have proposed and implemented
approaches to automate the generation of assembly plans, which will be discussed in
chapter 3. This automatic generator of assembly sequences can be an efficient aid to the
designer. Whenever he or she modifies features of the product, the influence of these
modifications on the sequences can immediately be checked. This design iteration, which
also considers assembly, is significant because the optimal design of individual

components wil! not necessarily imply the optimal design of their assembly process.

As opposed to an accurate representation of part geometry, a representation was sought
that allows very rapid geometric reasoning and facilitates iterative modification of part
geometry, while still adequately representing the part geometry. The part representation
can be more schematic in exchange for greater ease of modification and physical
simulation. In this investigation, a cellular automata model of assemblies of rigid parts is
proposed and demonstrated. This will be detailed in chapter 2. It will be seen that this
representation allows rapid and general physical simulation at the expense of accurately
modeling physical detail. Physically realistic CAD models are certainly important: their
use is widespread and they facilitate the subsequent manufacture of the designed part (as
they were originally intended to do). However, they are not ideally suited to the more
qualitative reasoning that is required for assembly simulation and optimization. This
system based on a cellular automata representation is perhaps best considered as a

schematic preprocessor to the more exacting CAD modeling phase.

1.3 Organization

Chapter 2, Background, first introduces the conventional methods for representing
solid geometry which can be utilized for the purpose of assembly sequences generation.
Then, cellular automata ("CA") are introduced and it is explained how they can be used to

Chapter 1. Introduction 13

simulate the interactions of rigid parts. A simple example is also provided to explain the
concepts of generating assembly sequences. In chapter 3, Previous Work, the previous

research in assembly sequence generation is reviewed briefly.

Chapter 4, Assembly Simulation with Cellular Automata, describes in detail the
underlying rules and algorithms for the physical reasoning, which is later used for
simulating the assembly process and generating assembly sequences. Examples are
provided to show the performance of the implementation. In chapter 5, Assembly
Sequence Optimization, the optimization of assembly sequences with genetic algorithms
and branch and bound methods is explained with examples for each method.

Chapter 6, Conclusions, summarizes the research with some general conclusions and

discusses recommendations for future research.

Background

2.1 Overview

This chapter first introduces three conventional methods for geometric representation
which can be utilized for the purpose of assembly sequence generation. The properties of
each representation method are discussed and compared based on important criteria.
Cellular automata ("CA") are then introduced and it is described how CA can be used to
simulate the interactions of rigid parts. The fundamental concept of generaiing assembly
sequences is ~xplained with a simple example. Finally, the optimization methods, which
are used to search for optimal assembly sequences, are detailed.

2.2 Geometric Representation

There are three major methods for geometric representation in solid modeling that are
able to provide the necessary information for an assembly planner (Delchambre 1992).
These representations are boundary representations, constructive solid geometry, and
spatial-occupancy enumeration. In the following sections, they are briefly described and
compared so as to give the rationale for choosing a geometric representation in this
investigation. Other common representation methods for modeling mechanical parts in the
geometric database of CAD systems are wireframe models, parametrized shapes, sweep
representations, and several others. For a comprehensive survey of thesec methods, please
refer to (Foley 1993) or (Mortenson 1985).

2.2.1 Boundary Representations (B-Reps)

In B-Reps an object is described in terms of its surface boundaries: vertices, edges, and
faces. These boundaries separate points inside from points outside the object or solid.
Curved faces are generally approximated with polygons or represented with complex

14

Chapter 2. Background 15

surfaces such as a Bézier surface which requires more information. Depending on the type
of boundary data structure, B-Reps can be categorized into polygon-based boundary
models, vertex-based boundary models, edge-based boundary models, eic. In general, B-
Reps are useful for generating graphical output, because they readily include the data
needed for driving a graphical display. It can be difficult to establish the validity of
models, however, because boundary models are valid only if they define the boundary of a
topologically and geometrically reasonable solid object. Figure 2.1 illustrates the basic
component of a boundary model. Figure 2.1a shows an object whose surface is divided
into an enclosing set of faces. These faces can be represented in terms of either bounding
polygons as shown in figure 2.1b or edges and vertices as shown in figure 2.1c.

(a) (b) ()
Figure 2.1 An objective define by B-Reps.

2.2.2 Constructive Solid Geometry (CSG)

CSG is a term for modeling methods that define an object by combining simple
primitives or "building blocks." The user of a CSG modeler operates only on parametrized
instances of these building blocks using regularized Boolean set operators that are included
directly in the representation. A model is stored as a tree with operators at the internal
nodes and simple primitives at the leaves. Figure 2.2 shows an example model defined by

primitives such as cylinder and plate.

Chapter 2. Background 16

Figure 2.2 A model defined by CSG and its tree.

2.2.3 Spatial-Occupancy Enumeration

In spatial-occupancy enumeration, a solid is decomposed into identical cells arranged in
a fixed, regular spatial grid. These cells are often called voxels (volume elements). The
maximum resolution of the solid is determined by the size of voxels. To construct an
object, it is only required to decide whether a single cell at each position is present or
absent.

Figure 2.3 A model define by Spatial-Occupancy Enumeration.

Chapter 2. Background 17

2.2.4 Comparison of Representations

The properties of each representation method can be formally compared based on the

following criteria:

Accuracy:

Domain:

Validity:

spatial-occupancy enumeration method produces only approximated
representations for most solid objects. In some applications, this is not a
drawback, so long as an object is represented with an adequate resolution
for its application. However, in order to obtain the higher resolution, the
computation becomes costly because it requires a large amount of memory
space. For applications in high-quality graphical display, because high
resolution is required, CSG and B-Reps are often used.

The versatility of B-Reps depends on the complexity of faces and edges
that are available, and the domain of CSG is limited by the available
primitives. On the contrary, the spatial-partitioning method can represent
any object with an approximation depending on the resolution.

In general, B-Reps are the most difficult representation to validate because
of many vertex, edge, and face data structures, which might lead to
intersection among faces or edges. In CSG, it is guarantced to model a
valid solid object, provided that the primitives are valid, while there is no
checking needed for spatial-occupancy enumeration.

It is possible to transform the representation of a given object into another one. Figure
2.4 shows the possible transformations between CSG, B-Reps, and Spatial-Occupancy
Enumeration based on the current algorithms that are available. The solid and dashed lines

indicate the exact and approximated transformations, respectively.

Spatial-Enumeration

CSG B-Rep

Figure 2.4 Possible transformation among geometric representations.

Chapter 2. Background 18

2.2 Geometric Description in This Investigation

In this investigation an assembly is represented by sets of cells each of which indicates
a part in the assembly. Therefore, each part can be represented as the sum of a set of cells
into which it can be decomposed. For this geometric representation of an assembly, all
computations on these models are based on relational and logical operations, which means
that the analysis algorithms are fast and can be decomposed in parallel processes. Based on
this geometric description of a mechanical assembly, the physical reasoning and
simulations for the purpose of generating assembly plans are performed using the cellular

automata.
2.2.1 Celiular Automata

Cellular automata are arrays of elements whose states change in discrete time steps,
which are called generations or iterations. A two-dimensional implementation, which is
made up of an array of adjacent squares, is commonly used for image processing
applications (Preston and Duff 1984). As is shown in figure 2.1, the state of a cell at
location (i, j) at time t + 1, denoted as s(i, j, t+1), is a function of the state of the cell at time
t, s(i, j, t) as well as the states of the neighboring cells at time t. States can assume any
number of values, depending on the application under consideration. A set of local rules
take the time t states as input (9 for the case shown in figure 2.1) and produce s(i, j, t+1) as
output. Importantly, these local rules are isotropic, meaning that they are applied in the
same way regardless of position in the array, and it is assumed that the operations that
update the states of arrays occur simultaneously, i.e., the action of all elements in the
cellular array is synchronous (Preston and Duff, 1984, p. 12). It should be noted that the
eight neighboring cells of the cell(i,j) also simultaneously update their states with respect to
the states of their neighboring cells at time t including s(i,j,t).

Chapter 2. Background 19

}

) * (., j, t+1)

f

State of a cell at time t State of a cell time t + 1
in the initial generation in the next generation

Figure 2.5 Cellular automata operation.

2.2.2 Cellular Automata for PhLysical Reasoning

The feasible motions of components in an assembly under force constraints are
determined by iteratively applying cellular automata rules to the cellular arrays representing
the assembly. These rules are described in detail in chapter 4. Because of the locality of
the algorithm, the rules for physical reasoning do not have information regarding the global
characteristics of a given assembly or a higher level representation of its parts. This implies
that the information such as the number and shape of components in the assembly is
unknown prior to the physical reasoning.

2.3 Assembly Planning and Sequence Generation

A simple two-dimensional example is presented to explain the concepts that are
important to the approach described later. To simplify this brief introductory explanation,
the use of formal notation to specify subassemblies and part motions has been kept to a
minimum. When formal notation is used, however, it is consistent with that suggested by
Homem de Mello and Sanderson (1991a).

Chapter 2. Background 20

N\
7 N
//////

=Wy
A
-

Figure 2.6 Example assembly.

A,

Consider the assembly shown in figure 2.6. Assembly plans (again, made up of
assembly orders and part motions) are generated by investigating disassembly plans. Note
that a disassembly plan, no matter how inefficient, will always proceed to single parts.
Various assembly plans, on the other hand, can be "dead ends,” meaning they can reach
points from which the assembly process cannot correctly proceed. For almost all cases, the
reverse of a valid disassembly plan will be a valid assembly plan. To generate disassembly
plans, we assume that the assembly exists in an ideal tabletop environment. Two-
dimensional parts move in the plane of the assembly and are stopped only if they collide
with other parts (or fixtures) that are fixed. If they collide with other parts that are
movable, they cause the movable parts to move with them. We impose an additional
constraint that the parts only move in rectilinear directions, so a collision occurs when the
edges of two parts, moving normal to one another, meet. Edges are assumed to be

frictionless: motion is not transmitted through parallel sliding.
A simple procedure to generate disassembly plans might be as follows:
1. In turn, treat each part (in the fully assembled state) as a fixed or "base" part.

2. Try to remove each other part, in all possible orders. Note that removal of a part
may move other parts, in effect creating a subassembly. Use this procedure

recursively on subassemblies.

As an example, consider part | in figure 1 to be the base part. Part 2 could then be
removed by moving it up until it collides with part 1, and then to the right until it leaves the
vicinity of the assembly. Note that in its movements, part 2 has taken part 3 with it, as a

Chapter 2. Background 21

two-part subassembly. Part 4 could then be removed by moving it up or to the right, and
then part 3 could be removed from part 2 by moving it up. A disassembly plan (ore of
many possible) has thus been described by specifying the order of part removal and the

motions required to move the parts.

All disassembly plans can be generated by combinatorially choosing each part as a
possible base part and generating the related disassembly sequences. As there may be a
very large number of plans, possibly with identical subplans, a compact efficient notation is
required. We will use a set-based notation, formally presented by Homem de Mello and
Sanderson (1991a). The fundamental general unit in this notation is the subassembly. A
single part is the most basic subassembly and the entire assembly is the largest possible
subassembly. A subassembly is denoted as a list of other subassemblies. The disassembly
process outlined above would be represented as follows:

{{1,2,3,4} }: The entire assembly is a single element list of one
subassembly.
{ {1,4},1{2,3}}: The subassembly comprised of parts 2 and 3 is removed,

yielding two two-part subassemblies.
{ {1}, {4}, {2,3})} : Part 4 is separated from part 1
{ {1}, {4}, {2}, (3} } : Part3 is separated from part 2
Each step in this process yields a new assembly state.

Importantly, subassemblies are defined by contact between constituent subassemblies.
As part 2 is removed with the two-step motion in the disassembly sequence described
above, the subassembly {2, 3} is maintained because the movement of 2 does rot break the
contact between the parts 2 and 3. On the other hand, the subassembly (1, 4} is
maintained so long as there is some contact between parts 1 and 4: part 4 need not be

touching both faces of the corner cutout of part 1.!

INote that here the "ideal tabletop” metaphor relaxes some constraints normally a, plied in assembly
sequence planners (see Homem de Mello and Lee, 1991, chapters 6 - 15). It is typically required that when
a contact is established between two subassemblies, it is the final goal contact state: the set of all physical
contaclts is established and this set will not be altered by subsequent assembly operations. This is not
required in the explanatory example, nor in the implemented system. The additicnal planning capabilities
this implies will be described in chapter 6.

Chapter 2. Background 22

Finally, in the above disassembly process, it is evident that the same assembly states
can be reached in many different ways. Initially holding part 4 fixed and removing part 2
in the same manner described above will lead to the same state { { 1,4}, {2, 3} }. Graph
structures can be used to efficiently represent the possible transitions between assembly
states. Figure 2 shows the directed graph of the assembly. The nodes of this graph are
the possible partitions of the entire assembly into subassemblies, and the arcs represent
feasible (dis)assembly tasks between the differently partitioned states. The AND/OR graph
shown in figure 3, on the other hand, is a representation of the feasible subassemblies
arranged in AND/OR trees that indicate all possible assembly sequences. AND's represent
two subassemblies that can be joined to make up another subassembly, and OR's represent
alternate pairs that may make up the same subassembly. Both graphs represent all possible
assembly sequences, and there is a formal corresponaence between the two representations
(see Homem de Mello and Sanderson, 1991a, p. 141). Note that neither graph shows
invalid assembly states. For example, { {1, 3}, {2, 4} } is not found.

{ {11,{2},{3},{4} }

gl TN

{{1,2},{3},{4} } {{1,4},{2},{3} } { {1112, 3},{4} }
{{1,2,3},{4} } {{1, 4}, {2, 3}} {{1,2,4},{3}}
{{1,2,3,4}}

Figure 2.7 Directed graph of feasible assembly sequences
for the example assembly shown in figure 1.

Chapter 2. Background 23

{11 29 3’ 4}

{1, 2, 3} {1, 2, 4}

{1, 2} {1, 4} {2, 3}

Y \

{1} {2} {3} {4}

Figure 2.8 AND/OR Graph of feasible assembly sequences
for the example assembly shown in figure 1.

2.4 Optimization Methods

With the same physical reasoning algorithm used for assembly sequence generation,
good assembly sequences based on a predefined set of evaluation criteria are searched with
optimization techniques. The criteria used in optimization are detailed in chapter 5.

2.4.1 Genetic Algorithms

The genetic algorithm (GA) is a global searching method based on the mechanics of
natural selection and natural genetics (Holland 1975). Artificial organisms, each of which
represents a solution point in the search space of an optimization problem, evolve over
many generations in order to improve the overall quality of the population of artificial
organisms. The genetic algorithm has demonstrated its robustness and versatility in
number of analytical and empirical studies (Goldberg 1989).

Chapter 2. Background 24

There are a number of characteristics of the genetic algorithm which separate it from
other conventional optimization methods. First of all, GAs search from a population of
solution points, not from a single point. This gives GAs powerful parallelism, which is
useful when multiple solutions are sought. Secondly, genetic algorithms search for the
optimum by sampling, meaning a blind search. Therefore, even though there is no such
information as gradient of a function available for an optimization technique to proceed for
the next search point, GAs are able to perform the optimization of the function by
concerning payoff. Thirdly, while other conventional techniques have deterministic
transition rules, genetic algorithms utilize stochastic transition rules simulating natural
systems. Lastly, genetic algorithms directly manipulate solution representations which are
in form of strings at the low level to determine the similarities among high-performance
solutions. This enables GAs to be robust even for problems with very complex functions.

In the genetic algorithm, a series of operations; selection, crossover, and mutation, is
used to evolve the population of artificial organisms, which mimics the procedures of
natural evolution. The general procedure of the genetic algorithm is shown in list 2.1. For
a comprehensive introduction to the genetic algorithm, please refer to (Goldberg 1989).

List 2.1 Procedure of the genetic algorithm.

procedure GeneticAlgorithm
begin
create initial population of chromosomes
repeat
begin
evaluate the fitness of each chromosome
select individuals with respect to their fitness values
reproduce offsprings with selected parent chromosomes
mutate the child chromosomes based on mutation probability
replace parents with children
end
until maximum number of generation is reached or solution space converges
end

2.4.2 Branch And Bound

Branch and bound, which is also called "truncated enumeration method," is an
optimization method used for integer programming problems in which there are finite
number of feasible solutions which must be examined in order to determine the optimal

Chapter 2. Background 25

solution (Christofides, Mingozzi et al. 1979). The branch and bound approach has proven
to be the most successful in solving very special types of integer programming problems.

In a branch and bound algorithm, the total set of solutions under consideration is
systematically subdivided into smaller and smaller sets instead of attempting to directly
solve the given problem. These small sets or subproblems have the property that any
optimal solution must be in at least one of the sets. This subdivision or partition of a given
problem into subproblems is often illustrated by an ‘enumeration tree' such as that of figure
2.9.

Figure 2.9 Enumeration tree of branch and bound method.

Each node of the enumeration tree shown in figure 2.9 corresponds to a subproblem.
As the subdivision of nodes proceeds farther down the tree, the subproblems become
smaller until it finally becomes possible to find an optimum or at least to determine whether
or not it contains a potentially optimal solution. If it is determined that a node doesn't
contain an optimal solution farther down the node, the node becomes pruned and excluded
from the further search. Therefore, if an optimal solution is found in the early stage of a
branch and bound search, the algorithm can effectively discard many subproblems without

exploring further.

Previous Work in Assembly

Sequence Generation

3.1 Overview

Generation of assembly sequences has been the central topic of much research and a
number of methods have been developed to date. Some of these methods generate subsets
of all feasible assembly sequences, while others generate all feasible sequences. Some
methods require the user interactions, which result in partially automated systems, while

others are fully automated.

To automate the process of assembly plan generation, it is necessary to automate the
process of geometric reasoning and efficiently generate a representation of the possible
assembly sequences. Various methodologies exist for representing mechanical assemblies.
The difficulty of geometric reasoning when using a realistic representation of geometry,
such as a boundary representation CAD model, has been a focal point of much of the
research systems previously developed. This chapter divides the currently active
approaches into two groups based on the degree of automation, and briefly overviews the

emphasis of each approach.

3.2 Computer-Based Interactive Assembly Planning

Interactive assembly planning is concerned with formulating a necessary and sufficient
set of questions to be answered by the user or designer. These question-and-answer
operations are then used to determine or complete the precedence relationships among parts
in a product. In this approach, It is crucial to minimize the rumber of questions required
for the generation of assembly plans in order to enhance the efficiency of the system.

26

Chapter 3. Previous Work 27

3.2.1 Bourjault and Henrioud

Bourjault in 1984 proposed the first systematic method for determining all feasible
assembly plans available for a given assembly using precedence constraints or relations
among the various assembly connections (Bourjault 1984). Bourjault named these
relations and the graphical representation of them "liaison” and "liaison diagram,”
respectively. An initial computer-based implementation of Automatic Generation of
Assembly Sequences (SAGA) was developed, which focused on the liaisons between parts
and represented an assembly sequence as a series of liaisons (Bourjault 1987). In their
system, the user must supply answers to a series of questions asked by the system, which

are associated with the precedence constraints between liaisons.

Bourjault's group in (Henrioud and Bourjault 1991) presented a new approach which
was not only based on the liaison graph, but focused on the parts by introducing additional
constraints that express some reasonable strategies for the assembly process and are
deduced from the product structure. They also presented a computer-based implementation
of this method, called LEGA. The author mentions that the current version of LEGA is still
prohibitive for products having more than ten components because it requires much time
from the user and produces too many valid assembly trees. They are also investigating a
partially automated evaluation of assembling operations or sequences so as to rank them.
In the paper, they classified and formalized the assembly constraints into two categories;

operative constraints and strategic constraints.

The operative constraints, such as geometric stability, and material constraints, are
mainly used to check the feasibility of assembly operations. When the system cannot
determine feasibility, it asks the user questions. The strategic constraints, which are
introduced in the new approach so as to allow the determination of a reasonable number of
assembly trees, include imposed subassemblies, groups of components, and linear
assembly trees. These strategic constraints must be introduced before the process of
assembly tree determination begins and, thereby, the choice and definition of assembly
constraints are left to the user allowing subjectivity such as the user's expertise to enter into

the systematic process.
3.2.2 De Fazio and Whitney

(De Fazio and Whitney 1987) presented a modification of Bourjault's method which
simplifies the form and reduces the number of questions that are needed to generate all valid
assembly sequences. This modified method requires 2/ questions that are answered in a

Chapter 3. Previous Work 28

precedence-logical form, while Bourjault's methods requires 2/2 questions for an assembly
with [parts. This simplification allows the practical extension of the techniques to
assemblies with much higher parts count. The questions which evoke the set of precedence
relations are of a form familiar to persons concerned with assembly.

In addition to the assembly sequence generator based on the liaison method, a
corputer-interactive editing system was implemented in order to reduce the sequence count
to a small desirable sets ((De Fazic and Whitney 1989), (De Fazio, Abeli et ai. 1990), and
(Baldwin, Abell et al. 1991)). The editing of assumbly sequences generated by their
system consists of a number of operation .ages. During these stages, the user edits the
sequences based on various criteria related to the production environment of a product.
The system aids the user in judging the value of feasible assembly sequences for the
product with on-line visual aids during the evaluation.

3.3 Computer-Automated Assembly Planning

As powerful computer-based geometric modeling and reasoning tools are developed,
the automatic determination of geometric interference or assembly path can be utilized as a
means of identifying precedence relationships in assembly.

3.3.1 Homen de Mello and Sanderson

Homem de Mello and Sanderson in (Homem de Mello and Sanderson 1990) proposed
a compact representation of assembly plans of a product using as AND/OR graph. An
AND/OR graph is used to represent the set of all assembly sequences. The nodes in the
graph represent the stable subassemblies of a given product or assembly. Each enumerated
arc corresponds to the geometrically and mechanically feasible assembly tasks. Figure 3.2
shows the AND/OR graph of a simple product presented by Homem de Mello and

Sanderson in figure 3.1.

O =

Figure 3.1 A four-part simpie product from (Homem de Mello and Sanderson 1990).

Chapter 3. Previous Work 29

In an AND/OR graph, the state of an assembly process is defined by the configuration
of subassemblies, which can be described by the fixed relative position between pairs of
parts. Then, the assembly plan can be seen as a sequence of these states. Using the
AND/OR graph, the problem of finding how to assembly a given product can be converted
to an equivalent problem of finding how the product can be disassembled. Then, this
resulting backward approach to find the assembly plans of a product may be viewed as a
system in which the problem of disassembling an assembly is decomposed into distinct
subproblems. Then, each of these subproblems is to disassemble one subassembly. All
feasible assembly or disassembly sequences can be then found, thus, by decomposing
subsets of the given assembly unti! single part subassemblies are reached.

WD -

—) OIp=

0:)4

gl "=

=1l

Y
L) T
N

Figure 3.2 AND/OR Graph of the simple product in figure 3.1.
(adapted from (Homem de Mello and Sanderson 1990))

0

Chapter 3. Previous Work 30

It was also mentioned that the AND/OR graph can be used for traversing the space of
all candidate solutions or feasible assembly sequences for a problem of selecting the best
assembly plan.

In (Homem de Mello and Sanderson 1990) and (Homem de Mello and Sanderson
1991), a correct and complete algorithm for the generation of all feasible sequences of a
given product was presented. The precedence relations among parts in the assembly are
found from allowed or precluded pari-partitions. Cut-sets of the assembly's graph of
connections are evaluated for possibility of decomposition without interference and the
assemblability is tested as disassemblability.

3.3.2 Wilson

Wilson and Rit in (Wilson and Rit 1991) describes a method to efficiently build an
AND/OR graph for the linear assembly plans for a product and presented the assembly
planner GRASP, which generates assembly sequences strictly from the geometry of a
product with no human input. They proposed a three level approach to reduce the number
of geometric checks; (i) inheriting assemblability from a parent assembly, (ii) considering
obstructing components, and (iii) clustering obstacles by assembly path. Two steps are
taken to check the movability of a part. First, the local translational freedom of the part is
checked by analyzing the part's contact. Then, the global validity of the disassembling path
is ensured by sweeping the part along the chosen directions of the part.

(Wilson 1990) presents an extended algorithm that solves the physical partioning
problem to facilitate generating non-linear assembly sequences, which produce parallel
subassemblies during assembly planning.

Recently, Wilson integrated the method described above with a user interaction method
such as De Fazio and Whitney's. This dual approach to the problem of generating
assembvly plans is described in (Wilson 1993). In this approach, most assembly operations
are checked from the CAD models of the assembly's parts using the previous method and
questions associated with the geometric feasibility of some assembly operations are asked

of the user.

Chapter 3. Previous Work 31

3.3.3 Wolter

Wolter presented a two step process for generating multiple assembly sequences
(Wolter 1989). He used multiple assembly axis trajectories for mating part pairs to
generate the precedence constraints.

This trajectory technique for generating assembly plans was then extended further such
that non-monotone and non-linear assembly plans can be generated (Tsao and Wolter
1993). In non-monotone plans, a part can be moved to an intermediate position which is a
non-goal position instead of moving directly from its initial position to the goal position.
Non-linear or parallel plans, as described in chapter 5, are able to deal with moving a group
of parts.

In (Chakrabarty and Wolter 1994), a fundamentally new approach for generating
assembly plans is proposed, in which an assembly is viewed as a hierarchy of standard
structures. An assembly plan is generated by merging the plans in a recursive manner.

3.3.4 Hoffman

Miller and Hoffman proposed automatic planning which takes into account fasteners
that are used to connect parts or subassemblies (Miller and Hoffman 1989). A valid
disassembly sequence is determined from two types of constraints imposed on a product:
geometric descriptions of objects and labels for the different fastener types. The model in
their system is defined in terms of Constructive Solid Geometry (CSG) primitives and
nuts, bolts, and screw fastener primitives.

In (Hoffman 1990), Hoffman presented a different approach for assembly sequence
generation of a product using the boundary representation (B-Rep) format with bicubic
surfaces. This treats components as part of a real workcell environment by allocating
sections of the work table to subassemblies and disassembled parts.

3.3.5 S. Lee

Lee presented a method for the automatic determination of an assembly partial order
from a CAD database through the recursive extraction of preferred subassemblies from a
liaison graph representation of an assembly ((Lee 1994), (Lee 1991), and (Lee and Shin
1990)). A set of tentative subassemblies is selected by decomposing a liaison graph into a
set of subgraphs based on feasibility and aspects of diificulty of disassembly such as

Chapter 3. Previous Work 32

directionality, stability, and manipulability. To reduce the possible number of liaison graph
decomposition, nodes that are mutually inseparable in the current state of disassembly are
merged into a super node, forming an abstract liaison graph. Each of the tentative
subassemblies are evaluated based on the subassembly selection indices, and the preferred
subassemblies are extracted along with the verification of their disassemblability. Lee
defined this particular method for achieving an assembly plan based on the recursive
identification and selection of desirable direct subassemblies as "Backward Assembly

Planning."

Lee also proposed an integrated system for assembly planning and redesign, based on
"Design For Assembly (DFA)" in (Lee, Kim et al. 1993). The main objectives of the
system are to generate a cost effective or preferred assembly sequence of a given product
based on number of design criteria including DFA, and to generate a redcsign strategy
based on the DFA analysis result. When a redesign strategy is generated, a user would
make appropriate changes in the CAD database based on the strategy. Then, the procedure
described above can be repeated for the improved design.

3.4 Summary

Based on the solution strategies for assembly sequence generation, methods can be
divided into two groups. The first approach utilizes user interaction, which extracts
precedence relations between parts of the final assembly by question-and-answer sessions
which deal with the feasibility of some assembly operations. The other uses the geometric
and topological information of a given assembly from a CAD database, and automatically
generates the precedence relations between parts by a series of computer-automated
physical reasonings. These precedence relations are then used to generate the feasible

assembly sequences.

Assembly Simulation With
Cellular Automata

4.1 Overview

This chapter describes the basis for a computer-based implementation of the cellular
representation of assembly and algorithms for simulating movements of parts so as to
perform physical reascnings. A procedure to extract a part from an assembly is then
explained. Lastly, algorithms to determine all feasible assembly sequences by generating
an AND/OR graph for a given assembly is described with an example, and the performance

of the algorithms are discussed.

4.2 Simulation of Rigid Part Interactions

4.2.1 Cell State

A two-dimensional rectilinear array is used to represent an arrangement of rigid planar
mechanical parts. This could, for example, be a depiction of a cross-section of a cylindrical
assembly. Individual cells assume a state vector, which is shown in figure 4.1, instead of
a single state quantity. This is referred as the cell's frame. The five fields of this frame and

their uses are as follows:
Material : A single label which records the solid/void distinction.

Edge : A vector of four labels for each edge of the cell. These will be called top, right,
bottom, and left. Each label can assume a value of "free" or "glued," which
describes the state of the edge. Free edges are a frictionless sliding interface and
glued edges occur between two cells of the same part.

33

Chapter 4. Assembly Simulation With Cellular Automata 34

Part_Label : A label which can take on integer values 1, 2, 3, As will be seen,
different parts can be identified in the cellular array. When they are, the cells of that

part are given the same Part_Label number.

Movement_Defined : Parts will be moved in unit steps in one of the rectilinear directions.
Each cell will be assigned a single movement direction before each unit step move.
This field can take on a binary true/false value, depending on whether or not an
allowable movement direction has been assigned to the cell.

Move_Direction : A vector of four labels that together indicate the allowable movement
direction. If Movement_Defined is true, five values are possible:

1000: Upward motion possible
0100: Rightward motion possible
0010: Downward motion possible
0001: Leftward motion possible
0000: Fixed (no motion possible)
1111: Initialization value

The terminology of the investigation will be to simply use a frame field name to refer to
the frame field value of a particular cell. For example material(i, j, t) indicates if cell(i, j)
contains material or void at time t. Right_edge(i, j, t) indicates if the right edge of cell(i, j)
is free or glued at time t. A Cartesian coordinate system is also used such that the i index
increases in value from left to right and the j index increases in value from top to bottom
(e.g. s(i, j-1, t) is the state of the cell above the cell under consideration).

_ 1
Move_Direction
Movement_Defined

Part_Label

—— Edge

——> Material

Figure 4.1 State vector of a cell.

Chapter 4. Assembly Simulation With Cellular Automaia 35

4.2.2 Part Membership Rules

Given an assignment of material and edge types to the cellular array, a first set of rules
determines a higher levei representation of parts from the lower level representation of
cells. In other words, the membership of cells to parts is revealed. Underlying this set of
rules is the obvious fact that two adjacent cells, both filled with material, with a glued edge
between them, will both be in the same part. There are four rules, one for each adjacency

direction.

List 4.1 Rules for membership.

if
material(i, j, t) = solid and
part_iabel(i, j, t) = unlabeled and
top_edge(1, j, t) = glued and
part_label(i, j-1, t) != unlabeled

then
part_label(i, j, t+1) « part_label(i, j-1,t)
if
material(i, j, t) = solid and
part_label(i, j, t) = unlabeled and
bottom_edge(1, j, t) = glued and
part_label(i, j+1, t) != unlabeled
then
part_label(i, j, t+1) ¢ part_label(i, j+1,t)
if
material(i, j, t) = solid and
part_label(1, j, t) = unlabeled and
left_edge(i, j, t) = glued and
part_label(i-1, j, t) != unlabeled
then
part_label(i, j, t+1) « part_label(i-1, j, t)
if
material(i, j, t) = solid and
part_label(i, j, t) = unlabeled and
right_edge(i, j, t) = glued and
part_label(i+1, j, t) '=unlabeled
then

part_label(i, j, t+1) ¢« part_label(i+1, j, t)

The algorithm to label all cells is shown in List 4.2. After executing the algorithm, each
cell has a label to identify parts.

Chapter 4. Assembly Simulation With Cellular Automata 36

List 4.2 Algorithm to determine membership.

procedure DetermineMembership{ domain)
begin
while (always)
begin
search for a solid and unlabeled cell
if no cell was found
then return
else putda new part_label on the cell found
o
apply the rules for membership to domain
until no rules are fired
end
end

This initial set of rules does not move the parts; it only determines the physical meaning
of the array assignment. With regard to this physical meaning, it is also important to note
that physically incorrect, or at least physically inappropriate, situations can arise. Freely
moving parts, for exampie can be enclosed in internal voids of other parts, and other
special cases such as cracks, are possible.

4.2.3 Part Motion Rules.

In the cellular automata representation, part motion is achieved by shifting the material
of parts into neighboring cells. Parts, and their constituent cells, can move into
neighboring void cells, or into cells occupied by other parts if these other parts can in turn
move out of the way. The fifth element of the state vector indicates the impending
allowable movement direction of a cell. This can assume five values: up, down, left,
right, and fixed (i.e. no movement is allowed). These values are assigned to elements with
a second set of rules that uses commonsense physical reasoning to propagate allowable
movement values within the cells of individual parts and between the cells of different parts
across edges. An initial movement value, representing a robot grasping and moving a part
for instance, is typically assigned to a single cell, and the effect of this assignment is
propagated over the entire cellular array.

There are two Kinds of rules to achieve part motion: possible motion propagation rules,
and cell movement rules. The possible motion propagation rules determine the possible
motion of all cells from given initial movement. The cell mcvement rules shift cells along
the direction of their possible motion by one cell unit.

Chapter 4. Assembly Simulation With Cellular Automata 37

Possible Motion P ion Rules

The possible motion propagation rules are shown in List 4.3, and are divided into three
sets, (a) propagation within a component; (b) blocking motion; and (c) propagation beyond
part boundary. If no rules from these sets are applicable, the properties of the cell are
maintained for the next time step.

List 4.3 Possible movement propagation rules.

(a) Propagation within component

if
material(1, j, t) = solid and
top_edge(i, j, t) = glued and
movement_defined(i, j-1, t) = true
then
movement_defined(i, j, t+1) « true
move_direction(i, j, t+1) « move_direction(i, j, t) *
move_direction(1, j-1, t)

if
material(i, j, t) = solid and
right_edge(i, j, t) = glued and
movement_defined(i+1, j, t) = true
then
movement_defined(i, j, t+1) « true
move_direction(i, j, t+1) « move_direction(i, j, t)
move_direction(i+1, j, t)

if
material(i, j, t) = solid and
bottom_edge(i, j, t) = glued and
movement_defined(i, j+1, t) = true
then
movement_defined(i, j, t+1) « true
move_direction(i, j, t+1) « move_direction(i, j, t) *
move_direction(i, j+1, t)

if
material(i, j, t) = solid and
left_edge(i, j, t) = glued and
movement_defined(i-1, j, t) = true
then
movement_defined(i, j, t+1) ¢ true
move_direction(i, j, t+1) « move_direction(i, j, t)
move_dir(i-1, j, t)

(b) Blocking motion.
if

Chapter 4. Assembly Simulation With Cellular Automata

material(i, j, t) = solid and

top_edge(i, j, t) = free and

move_direction(i, j, t) = up and

(move_direction(i, j-1, t) = fixed or

move_direction(i, j-1,t) = left or

move_direction(i, j-1, t) = down or

move_direction(i, j-1,t) = right)
then

move_direction(i, j, t+1) « fixed

if
material(i, j, t) = solid and
right_edge(i, j, t) = free and
move_direction(i, j, t) = right and
(move_direction(1+1, j, t) = fixed or
move_direction(i+, j, t) = left or
move_direction(i+1, j, t) =down or
move_direction(i+!,j,t)=up)
then
move_direction(i, j, t+1) « fixed

if
material(i, j, t) = solid and
bottom_edge(i, j, t) = free and
move_direction(i, j, t) = down and
(move_direction(i, j+1, t) = fixed or
move_direction(i, j+1,t) =left or
move_direction(i, j+1,t)=up or
move_direction(i, j+1, t) =right)
then
move_direction(i, j, t+1) « fixed

if
material(i, j, t) = solid and
left_edge(i, j, t) = free and
move_direction(i, j, t) = left and
(move_direction(i-1, j, t) = fixed or
move_direction(i-1, j,t) =up or
move_direction(i-1, j, t) = down or
move_direction(i, j-1,t) = right)
then
move_direction(i, j, t+1) « fixed

(c) Propagation beyond part boundary.

if
material(i, j, t) = solid and
top_edge(i, j, t) = free and
movement_defined(i, j, t) = false and
move_direction(i, j-1, t) = down
then
movement_defined(i, j, t+1) & true
move_direction(i, j, t+1) ¢« down

38

Chapter 4. Assembly Simulation With Cellular Automata 39

if
material(i, j, t) = solid and
right_edge(i, j, t) = free and
movement_defined(i, j, t) = false and
move_direction(i+1, j, t) = left

then
movement_defined(i, j, t+1) « true
move_direction(i, j, t+1) & left

if
material(i, j, t) = solid and
bottom_edge(i, j, t) = free and
movement_defined(i, j, t) = false and
move_direction(i, j+1, t) = up

then
movement_defined(i, j, t+1) &« true
move_direction(i, j, t+1) < up

if
material(i, j, t) = solid and
left_edge(i, j, t) = free and
movement_defined(i, j, t) = false and
move_direction(i-1, j, t) = right

then
movement_defined(i, j, t+1) « true
move_direction(i, j, t+1) « right

The rules of list 4.3(a) are the movement propagation rules for cells that are adjacent
within a component. For a component to move, all cells of the component must shift in the
same direction. This set of rules ensures this by checking if adjacent glued cells can have
the same impending movement direction. If they cannot, the cell under consideration is
considered fixed: this is achieved by the logical AND operation of the Move_Direction
fields of the two cells. There are four rules, one for each adjacency direction. Figures 4.2a
and 4.2b show how a movement direction and a fixed designation will propagate across a

glued edge.

The set of rules shown in list 4.3(b) identify if a cell from an adjacent component will
cause the cell under consideration to be fixed. As is shown in figures 4.2c and 4.2d, this
can occur if the adjacent cell (i.e. across a free boundary) is fixed or has a different
impending movement direction. Again, there are four rules, one for each adjacency

direction.

The final group of motion propagation rules, shown in list 4.3(c), handles the cases in
which impending motion directions can propagate across a free boundary. This occurs
when an impending movement direction for the cell under consideration has not yet been

Chapter 4. Assembly Simulation With Cellular Automata 40

defined. An example of the use of the first rule is shown in figure 4.2e. Again, there are
four rules, one for each adjacency direction.

(a) (b) (c) (d)
Generation & F c -

=

\ ¢

<+ F F < T
t+1 ﬁ:ﬁ F e | IF | JT

e Legend ~
i,j-l/Glued ‘_*_’*

Possible Motion

i-1vj IIJ +1lj

i, j+1 \ ree F: Fixed Cell

\

Figure 4.2 Application of possible motion propagation rules.

Cell Movement Rules

Once the possible motion propagation rules have assigned impending movement
directions to all cells of the array, the components can be moved by shifting cells values in
the array. This is done with the cell movement rules that are shown in list 4.4.

As is shown in figure 4.3a, it is possible that two cells adjacent to the cell under
consideration would collide if they were moved according to their assigned allowable move
direction. This condition is recognized by the single rule of list 4a.

Complementing the collision case, the rules of lists 4.4(b) and 4.4(c) address the
situations in which material respectively moves in or moves out of the cell under
consideration. In the move-in rules, the antecedents ensure that a collision will not occur

Chapter 4. Assembly Simulation With Cellular Automata 41

and determine which adjacent celil will be shifted into the center cell. Note that, as is shown
in figures 4.3b and 4.3c, a move-in is possible if the center cell is void of if the material of
the center cell will be moved out of the way. The consequent clause "all-property" refers to
the entire vector of a cell, and the assignment shown in the consequent indicates how the
cells are shifted.

In the move-out rules, the antecedents determine if the c~ll under consideration will
become void after the assigned impending motion is carried out. An example is shown in
figure 4.3d.

List 4.4 Cell movement rules.

(a) Collision check rules.

if
(move_direction(i, j-1, t) = down and
move_direction(i, j+1,t)=up) or
(move_direction(i-1, j, t) = right and
move_direction(i+1, j, t) = left) or
(move_direction(i, j-1, t) = down ard
move_direction(i+1, j, t) = left) or
(move_direction(i+1, j, t) = left and
move_direction(1, j+1,t)=up) or
(move_direction(i, j+1,t) =up and
move_direction(i-1, j, t) =right) or
(move_direction(i-1, j, t) = right and
move_direction(i, j-1,t) =down)
then
collision
(b) Move-in rules
if
(material(i, j, t) = void or
move_direction(i, j, t) = down) and
move_direction(i, j-1, t) = down
then
a‘“—propertY(i’ j’ t+1) « all_pl‘opcrty(i’ j-lv t)
if
(material(i, j, t) = void or
move_direction(i, j, t) = left) and
move_direction(i+1, j, t) = left
then
all_property(i, j, t+1) « all_property(i+l, j, t)
if

(material(i, j, t) = void or

Chapter 4. Assembly Simulation With Cellular Automata

move_direction(i, j, t) =up) and
move_direction(i, j+1, t) = up

then
all_property(i, j, t+1) « ali_property(i, j+1,)

if
(material(i, j, t) = void or
move_direction(i, j, t) =right) and
move_direction(i-1, j, t) = right
then
all_property(i, j, t+1) « all_property(i-1, j, t)

(c) Move-out rules

if
move_direction(i, j, t) = down and
move_direction(i, j-1, t) != down and
move_direction(i+1, j, t) = left and
move_direction(i-1, j, t) !=right

then
material(1, j, t) = void

if
move_direction(1, j, t) = right and
move_direction(i, j-1, t) != down and
move_direction(i-1, j, t) !=right and
move_direction(i, j+1, t) !=up

then
material(i, j,t)=vo.d

if
move_direction(i, j, t) = up and
move_direction(i, j+1, t) != up and
move_direction(i+1, j, t) = left and
move_direction(i-1, j, t) = right

then
material(i, j, t) = void

if
move_direction(i, j, t) = left and
move_direction(i, j-1, t) != down and
move_direction(i, j+1, t) !=up and
move_direction(i+1, j, t) = left

then

material(i, j, t) = void

Chapter 4. Assembly Simulation With Cellular Automata 43

(a) (b) () (d)
Generation * * * r
t <|| |oid 4 J FiW|F

‘ | Copy Copy

t+1 Collision * * Void

Figure 4.3 Application of possible cell movement rules.

4.2.4 Part Motion Procedure.

The basic part motion procedure moves one part (recall that other parts may move with
it) in one direction until further motion is not possible, or the part leaves the assembly,
which means that the part moves out of the cellular domain. This is achieved by applying
the rules of lists 4.3 and 4.4 with the algorithm shown in list 4.5.

List 4.5. Algorithm to move parts.

procedure MovePartUntilStop
begin
repeat
repeat
apply Possible Motion Propagation Rules
until converged
if there is no possible motion in the domain
then return STOPPED
apply Cell Movement Rules
if there is collision then return ERROR
until forever
end

Figure 4.4 illustrates how the algorithm MovePartUntilStop works. In Figure 4.4a, an
upward motion at cell (2, 2) and a fixed condition at cell (2, 4) are given as an initial

Chapter 4. Assembly Simulation With Cellular Automata 44

condition. Figures 4.4b, 4.4c, and 4.4d show how the possible motion propagation rules
are applied once, twice, and three times, respectively. In Figure 4.4d, the domain is
converged and will not be changed if the possible motion propagation rules are app'ied to
it. After convergence, if there are no cells with possible motions in the domain, the
program stops normally. In this case, there are some cells with possible motion, which
causes the cell movement rules to be applied to the domain. Figure 4.4e shows the result is
that the part moves one unit cell upward.

IIII I ll

(c)

(d) (e)

Figure 4.4 Example of allowable motion propagation and cell movement rules.

4.2.5 Part Extraction Procedure.

This fundamental part motion procedure becomes the basis for a part (subassembly)
extraction procedure that is used in the assembly sequence generation. We will refer to this
procedure as ExtractSubassembly. Figure 4.5 shows how a single part is extracted from
an assembly. In Figure 4.5a, a given assembly to be disassembled is shown. First, as
shown in figure 4.5b, the different parts are revealed using the part membership rules of
list 4.1. Second, one of the cells in part A is fixed and an initial movement value
downward is assigned to one of the cells in part B, as initial conditions, as shown in figure
4.5c. Third (figure 4.5d), the procedure MovePartUntilStop is applied to the domain. Part

Chapter 4. Assembly Simulation With Cellular Automata 45

B is moved until it collides with Part A. Part B could not be extracted by single motion.
Therefore, another movement value, rightward, is assigned to the cell of Part B. Finally,

Part B is extracted from the assembly as shown in figure 4.5f.

A

/

(a) (b)

(e)

Figure 4.5 Example of a part extraction procedure.

Chapter 4. Assembly Simulation With Cellular Automata 46

Figure 4.6 shows another example illustrating an infeasible extraction. The only
possible motion of Part B is upward while Part A is fixed, as shown in Figure 4.6a. After
applying the MovePartUntilStop procedure, Part B collides with Part A as shown in Figure
4.6b. In this situation, Part B can move downward, but moving downward causes the
same situation as shown in Figure 4.6a. As a result, it is found that the assembly can't be
disassembled.

MR
]]
HEE
EON
AN

(a) (b)

Figure 4.6 Example of no possible part extraction.

In the assembly sequence generation procedure, a series of part extraction processes are
simulated to determine the feasibility of decomposing an assembly. When there are feasible
extractions of subassemblies (possibly single parts), the same procedure is applied to the
subassemblies generated until single-component subassemblies are reached.

4.3 Disassembly Sequence Generation Algorithm

During the disassembly sequence generation, it is necessary to generate a number of
alternative ways to decompose a given assembly or subassembly into two subassemblies.
These alternative decomposition processes can be referred as disassembly tasks or tasks
(Homem de Mello and Sanderson 1991). A set of disassembly tasks for a given
subassembly can be generated by applying the part extraction procedure to the subassembly
with different combinations of fixed and moving parts as shown in list 4.6. During this
procedure, it is important to note that the extraction of a part may move other parts, in effect

Chapter 4. Assembly Simulation With Cellular Automata 47

creating a subassembly, and that each part is a solid rigid object, meaning, its shape
remains unchanged during the disassembly tasks.

List 4.6 Algorithm to generate disassembly tasks.

procedure GenerateTasks(subassembly)
begin
if it is a single-component assembly then return No Task
repeat
begin
select a combination of fixed and moving parts
apply ExtractSubassembly
if it is feasible decomposition then store the task
end
until there are no more possible combinations
return disassembly tasks
end

Since each task generated by the procedure shown in list 4.6 creates two
subassemblies, the same procedure can be applied to the subassemblies in order to
decompose them further into smaller subassemblies. Therefore, the complete set of
feasible disassembly sequences, or AND/OR graph, for a given assembly can be generated
by calling this procedure recursively until all the subassemblies are decomposed to single-

part subassemblies.

During the task generation, since the same tasks are often generated from different
combinations of fixed and moving parts, it is necessary to identify and eliminate these
redundant tasks before decomposing subassemblies further. List 4.7 shows how the
AND/OR graph for a given assembly can be generated using the part extraction and task

generation procedures.

List 4.7 Algorithm to gcnerate a AND/OR graph.

procedure Generate AND/ORgraph(assembly)
begin
put assembly into the initial AND/OR graph
repeat
begin
pick an undecomposed subassembly
tasklist of the subassembly
< GenerateTasks(subassembly)
eliminate redundant disassembly tasks from the tasklist
for each task from the tasklist
begin
add the first subassembly into AND/OR graph

Chapter 4. Assembly Simulation With Cellular Automata 48

add the second subassembly into AND/OR graph
end
end
until all the subassemblies in the AND/OR graph are
decomposed to single-part subassemblies
return the final AND/OR graph
end

Figure 4.7a shows an example assembly composed of four parts in 10x10 design
domain. Note that there exists some precedence relationships in the given assembly. For
example part 3 cannot be disassembled from the given assembly without removing part 2
first. Figure 4.7b shows one feasible disassembly task where part 1 is fixed and part 2 is
subjected to an extraction. Since this task is feasible, two subassemblies, {1, 3, 4} and
{2}, will be generated from this task and stored. Figure 4.7c shows a feasible disassembly
task for the subassembly, {1, 3, 4}. From the subassembly {1, 3) remaining, a set of
feasible tasks will be determined that yield only single-component subassemblies. The
AND/OR graph generated by the planner is shown in figure 4.7d.

— CAViewer [-]

File Operate Mode Rssembly View

Figure 4.7a Example assembly with four components.

Chapter 4. Assembly Simulation With Cellular Automata

—| CAViewer | -1

File Operate Mode Assembly Vieuw

Figure 4.7b Feasible decomposition task for the given assembly.

—| CAViewer]

File Operate Mode Hssembly View

Figure 4.7c Feasible decomposition task for subassembly { 1, 3,4 }.

Chapter 4. Assembly Simulation With Cellular Automata 50

{1, 2, 3, 4}

{1, 3, 4}

{1, 3} {1, 4}

{1} {2} {3} {4}

Figure 4.7d AND/OR graph for the example in figure 10a.

4.4 Examples

In this section additional examples are provided in order to yield some initial data on the
system's capabilities and runtime performance. At this point it should be noted, however,
that our implementation is on a serial processor engineering workstation (Silicon
Graphics® Indigo II Extreme® , approximately 85 MIPS). The immediate plan is to
develop a parallel processing implementation and an initial parallel implementation is
discussed in chapter 6. The data presented below suggest that this is a necessity for
practically complex assemblies.

Figure 4.8 gives some indication of the relationship between runtime and assembly
complexity, while keeping the discretization size constant. Figures 4.8a, 4.8b, and 4.8c
show 4, 6, and 8 part assemblies on a constant array size of 10x10. For the task of
generating the AND/OR graph for each assembly, figure 4.8d shows the number of CPU

seconds required versus part count. Although many practically interesting subassemblies

Silicon Graphics and Indigo II Extreme are registered trademarks of Silicon
Graphics, Inc.

Chapter 4. Assembly Simulation With Cellular Automata 51

will have 8 or fewer parts, this initial data indicate that even with a parallel implementation,
hierarchical subdivision of larger assemblies may be needed.

Figure 4.8a, together with figures 4.9a and 4.9b, depict the same (approximately)
assembly modeled on increasing array sizes. Figure 4.9c shows the increase in runtime
versus array size. Since a parallel implementation will evaluate an entire array
simultaneously, this effect should not be problematic in a parallel implementation.

— CAViewer | -]

File Operate Mode Assembly Vieuw

Figure 4.8a 4 part assembly in 10x10 domain.

Chapter 4. Assembly Simulation With Cellular Automaia

=

CAViewer [-]

File

Operate Mode Assembly View

Figure 4.8b 6 part assembly in 10x10 domain.

J

l

CAViewer | -]

File

Operate Mode Assembly View

Figure 4.8c 8 part assembly in 10x10 domain.

52

Chapter 4. Assembly Simulation With Cellular Automara

No. of Parts

CPU (sec)

8.74

51.75

31120

350 r
300
250
200
150
100
50

Figure 4.8d CPU seconds versus part count

53

Chapter 4. Assembly Simulation With Cellular Automata

p—y

CAViewer

File

Operate Hode Assembly View

Figure 4.9a 4 part assembly in 15x15 domain.

54

Chapter 4. Assembly Simulation With Cellular Automata 55

_ CAViewer [-1

File Operate Mode Assembly View

Figure 4.9b 4 part assembly in 20x20 domain.

Chapter 4. Assembly Simulation With Cellular Automata

Size of Domain 10 15 20

CPU (sec) 8.74 29.50 58.12

Figure 4.9c CPU seconds versus array size.

Assembly Sequence
Optimization

5.1 Overview

This chapter first describes the basic scheme for selecting assembly sequences and how
each assembly sequence is evaluated during the selection procedure. Then, genetic
algorithms and branch and bound search techniques are described. These optimization
techniques are used to find good assembly sequences for a given assembly with respect to
pre-defined evaluation criteria. Also, the implementation of these techniques is detailed
with some examples and the results of both techniques are discussed.

5.2 Selecting Assembly Sequences
5.2.1 Introduction

Once feasible assembly sequences have been generated, the next step is to choose the
best or a few good sequences based on important criteria. These criteria must correspond
to a general knowledge of assembly processes in production which result in a low cost
assembly system. Even if an assembly sequence is feasible in terms of geometric and
relational constraints, the sequence is not favorable if it requires difficult assembly tasks,
such as frequent turn-overs of a part or subassembly, and placement in unsecured or
unstable positions. Furthermore, as the number of parts in an assembly increases, the
number of feasible assembly sequences increases exponentially. Therefore, it is desirable
to have an automated method that selects only a few candidate sequences with pre-defined
criteria, and to allow the designer to finally choose one.

57

Chapter 5. Assembly Sequence Optimization 58

5.2.2 Linear and Parallel Assembly Sequences

Assembly sequences can be either linear or paraliel. A linear assembly sequence
assembles only a single part at a time, which means that multipart subassemblies are not
allowed. It is, however, often efficient to divide an assembly into independent
subassemblies so that each subassembly can be assembled at a different assembly cell.
This type of assembling method is called parallel assembly. These subassemblies are then
brought together to be assembled into bigger subassemblies or the final assembly. Figure
5.1 illustrates the schematic representation of these assembly sequences.

(a) String representation for (b) Binary tree representation for
linear assembly sequence parallel assembly sequence

Figure 5.1 Schematic representation of assembly sequences types.

The numbers in square boxes and the nodes in Figure 5.1 represent the label of a part to
be assembled and an assembly process associated with parts, respectively. Figure 5.1a
indicates that parts 5, 3, 2, and 4 are sequentially assembled into part 1. Figure 5.1b
shows that parts 3 and 5 are first assembled being independent of the subassembly of part 2
and 4. Then, the subassembly of parts 3 and 5 and the subassembly of parts 2 and 4 are
assembled to produce another subassembly of parts 2, 3, 4, and 5, which is assembled
with part 1 te make the final assembly. In this investigation, only the linear assembly
sequence is considered because it requires a less complicated representation for an
implementation, but still allows a general approach for the problem of optimizing the

assembly sequence.
5.2.3 Assemblability Evaluation

A qualitative or quantitative method to evaluate an assembly sequence is necessary in
order to select the lowest cost assembly sequence from available alternatives. An assembly
sequence of many parts is generally evaluated based on its assemblability. This
assemblability pertains to characteristics or attributes of an assembly sequence that can be

Chapter 5. Assembly Sequence Optimization 59

either desirable or undesirable from a manufacturing standpoint. There are a number of
research approaches related to qualitative and quantitative evaluation methods for selecting a
good assembly process ((Boothroyd and Alting 1992), (Miyakawa, Ohashi ef al. 1988),
and (Miyakawa, Ohashi et al. 1990)).

To systematically evaluate the assemblability of an assembly, it is necessary to classify
the attributes which affect the degree of difficulty associated with assembly operations.
These attributes include part locatibility or stability, number of turn-overs required during
the assembly process, number of parts to be assembled, direction of assembling action, efc.

It is important to note that the evaluation of an assembly sequence is actually
determined by evaluating a disassembly sequence, which is obtained by reversing the part
labels of the assembly sequence under consideration. Therefore, instead of evaluating each
assemtly task of putting a part to another part or subassembly, the task of removing a part
from a subassembly or assembly is evaluated.

5.2.4 Evaluation Criteria for Assembly Sequence

To evaluate an assembly sequence, assembly tasks that constitute the sequence are
evaluated sequentially and the evaluation scores of these tasks is summed as the evaluation
score of the assembly sequence. The assembly tasks are evaluated in such an order that
they represent a linear disassembly sequence. The criteria used to evaluate each assembly

task is based on assemblability.

Three criteria are used to evaluate an assembly task: feasibility, ease of motion and
assembly direction, and stability of an assembled component. Equation 5.1 shows how the
evaluation score of an assembly sequence is determined based on the evaluation criteria.

n-l|
Evaluation Score(s) = Z(E feasibitity i) ¥ Eaginess (5:) + Eqapiin (5;)) Equation 5.1

i=1
where n is the number of parts in assembly and S; indicates the ith assembly task in
an assembly sequence, S.
Equation 5.2

feasibility S

E 20: feasible assembly task
(5:)= 0: infeasible assembly task

Chapter 5. Assembly Sequence Optimization 60

0: infeasible assembly task

E 2: downward disassembly task

easiness (S‘-) =1

6: sideway disassembly task Equation 5.3

|10: upward disassemby task

(0: unstable in all directions

E s) 3: stable in one direction tion 5.4
. {5) =4 al .
stability % 8: stable in two directions Equation

|10: stable in all directions

Equation 5.3 shows that the easiness of an assembly task is defined by its direction.
An assembly task in which a part is placed on top of a part or subassembly is the least
expensive operation. On the contrary, assembling a part into the bottom of a subassembly
is costly because it is in general difficult to hold the part in its position. This operation
often leads to an alternative that turns over the subassembly in order to obtain the cheaper
operation. However, this turn-over operation consequently increases the final
manufacturing cost. The directions of assembly are limited to three orthogonal directions
and parts will be moved towards the assembly site in a straight line. This assumption is
reasonable for most assembly cases and simplifies the physical reasoning of the system.
During the assemblability evaluation, directions in equation 5.3 are determined from how
an assembly is defined by the user and displayed on the screen. For example, although an
assembly shown in figure 5.7 shows vertically symmetric parts and thus implies that the
top part would be part no. 1 or part no. 4, the actual upward direction for this assembly is
defined by the direction toward the menu bar of user interface from the assembly.

The stability of a part during the assembly iask, shown in Equation 5.4, is defined by
the number of supports for the part. If there exist no parts in the subassembly which
support and secure the assembled part in its position, the part is defined as unstable in the
assembly task. If a part is sec wred in its position after the assembly task and thus it is not
allowed to move in any direction except the direction in which the part was assembled, the
part is said to be stable in all three directions. Similarly, a part can be unstable in one or
two directions. Ar assembly task with an unstable part is costly because an extra part
holder is required to hold the part during the assembly process. It should be noted that the
assemblability score given in the above equations are assigned by weighing the significance
of each aspect of the assembly task.

Chapter 5. Assembly Sequence Optimization 61

5.3 Genetic Algorithms Approach
5.3.1 Introduction

The genetic algorithm is used to search for good linear assembly sequences of a
multiple part assembly. Assembly sequences that maximize the evaluation score as well as
satisfy both geometric and relational constraints among parts are sought. The evaluation
score is assigned to each sequence as its fiiness value for its corresponding chromosome
after evaluating the sequence with respect to the assemblability criteria defined in equation
5.1. For a general introduction to genetic algorithms, please refer chapter 2.

5.3.2 Implementation

A chromosome in this investigation represents a list of decimal numbers, each of which
indicates a part in an assembly. Since only linear assembly sequences are considered for
the optimization problem, the list of part numbers is sufficient to represent an assembly
sequence. For the parallel assembly sequence, a binary tree structure and more complex
schemes for the representation of a sequence and GA operators will be required.

List 5.1 describes an algorithm for finding good sequences using the genetic algorithm.
In each generation during the search, sequences are evaluated, as shown in List 5.2, based
on the criteria described in section 5.2.4. After being evaluated, chromosomes are selected
based on their fitness scores and then GA operations are performed on them.

List 5.1 Algorithm for searching sequences using the genetic algorithm

procedure ga_main()
begin
set ga parameters
create the initial population with randomly generated chromosomes
while ga not finished
begin
foreach chromosome in the population
EvaluateFitness(chromosome)
select chromosomes and perform GA operations
mutate some chromosomes
evolve the generation
end
return the best chromosome from the iast generation
end

Chapter 5. Assembly Sequence Optimization 62

List 5.2 Algorithm for evaluating a sequence

procedure EvaluateFitness(chromosome)
begin
sequence list «~ DECODE(chromosome)
while the sequence list has more than one part
begin
part < pop(sequence list)
subassembly < sequence list - part
evaluate the feasibility of decomposing the part from subassembly
fitness score = feasibility score
if the task is feasible
begin
evaluate the easiness of task
fitness score = fitness score + easiness score

evaluate the stability of task
fitness score = fitness score + stability score
end
end
return fitness score

end

5.3.3 GA Operators for Crossover and Mutation

As explained in chapter 2, the genetic algorithm utilizes a series of operations on the
population of chromosomes in order to improve the overall fitness of a generation. These
operations are selection, crossover, and mutation. Among these operations, in general,
crossover and mutation operators have significant impact on the overall performance of
genetic algorithms. Two distinct operations for both crossover and mutation were
investigated and their effects on the GA performance were examined. For a comprehensive
review of these operators, please refer to (Goldberg 1989).

Parti i\ ver ver

In this investigation, since chromosomes that represent linear assembly sequences
contain ordered part identification numbers or labels, the genetic algorithm must use a
crossover operation that conserves the ordering characteristics of the chromosomes.

Figure 5.2 describes how the partial matched crossover (PMX) operator performs the
exchange of selected sites of chromosomes. First, selected mating chromosomes are
aligned and crossing sites defined by two points on the chromosomes are determined as
shown in figure 5.2a. Then, the PMX operator performs the positionwise exchange of
these sites. Since a new set of ordered part labels is replaced in the switching sites for each

Chapter 5. Assembly Sequence Optimization 63

chromosome, there exist the same or multiple part labels within a chromosome as shown in
figure 5.20. So, the multiple numbers in the unchanged sites must be switched with
numbers that have been transferred into the mate. Figure 5.3c shows the resultant
offspring chromosomes after PMX.

In PMX, the ordering information of child chromosomes is partially determined by
their parents. It should be also noted that PMX tends to conserve the ordering information
of part labels with their absolute position.

Chromosome A 9 8 4 5 6 7 1 3 2 10

Chromosome B 8 7 1 2 3 10 9 5 4 6

(a) Initial chromosomes after selection

Chromosome A' 9 8 4 2 3 10 1 3 2

Chromosome 8' [8]e[7 o[1]4[5|e{6]e[7 |#]{o]e{5]e]{4]e{6]

(b) Position-by-position exchange operation for the selected sites

chromosome A" [9 }e{8 fe{4]¢{2]e{3]ef10}#{1 jo{6 ofs fo{ 7]
| I
1 !

Chromosome B (8 |e{10e{1|4{5 [e{6 [o{7 [4]9 [o{2]e{4]3]

(c) Final chromosomes after determining ordering information

Figure 5.2 Partial matched crossover.

While PMX tends to respect the absolute position of part labels during the crossover by
performing point-by-point exchanges to effect the mapping, the ordered crossover (OX)
maintains the relative position of part numbers, which are inheriied from the parent
chromosomes, using sliding operations during the crossover.

After the switching sites are selected as shown in figure 5.2a, the OX operator creates
holes for part iabels, which are outside the exchange site and the same as part labels in the
exchange site of the mate as shown in figure 5.3a. Figure 5.3b shows these holes are then
filled by sliding part labels starting from the secord crossing point. After completing the

Chapter 5. Assembly Sequence Optimizatior: 64

exchange of selected sites of mating chromosomes, OX creates the offspring of
chromosomes A and B as shown in figure 5.3c.

Chromosome A' |9 |e{8 ' 6w 7]e1] [He{H e {H]
I I
I 1

Chromosome B' n m , 2 mﬂ m n m

(a) Creating holes for nodes of other strings' selected sites

Chromosome A" 6 | 7 fe{H|e{He{H 1 9}e|8 4
I '

chvomosome 8" [2}e{3Jeficjé{i}e e[le{a}e{e]e[T]

(b) Filling holes with a sliding motion starting after the second crossing site

Chromosome A" |5 le{6 e 7 |4 2 le{ 3 |eli0}¢] 1 |e{9|e{8 e{4

| |
[[
Chromosome B'" ﬂ EE ﬂn n n II

(c) Final chromosomes after copying the mate's the selected sites

Figure 5.3 Ordered crossover.

Swap Mutation and Shift Mutation

Figure 5.4a shows that the swap mutation operator selects two nodal points and simply
swaps the two nodes based on the mutation probability. Similar to PMX, the swap
mutation conserves the absolute position of the part labels within a chromosome. On the
contrary, as shown in figure 5.4b, the shift mutation conserves the relative position of a
part label by selecting a node and inserting it into a different site after shifting other nodes
so as to fill up a hole.

Chapter 5. Assembly Sequence Optimization 65

Chromosome A ﬂ ﬂ n E B ﬂ

Chromosome A' ﬂ : n n

(a) Swap mutation

Chromosome A n ﬂ n B n m

Chromosome A’ ﬂ EB ﬂ n n E

(b) Shift mutation

Figure 5.4 Swap and shift mutation.

5.3.4 Examples

The implementations of the algorithms, described in section 5.3.2, are tested for four
example assemblies for the purpose of showing the performance of the system in searching
for optimal assembly sequences as well as determining good combinations of parameters
for the genctic algorithm. The assemblies are shown in figures 5.5,5.6,5.7, and 5.8,
The example shown in Figure 5.8 of a twelve part assembly is an example that is similar in
shape and part count to one used in (De Fazio and Whitney 1987).

Since tiie genetic algorithm is a stochastic searching method, it does not always find the
same optimal results in every optimization search. Therefore, the results given in this
chapter with regards tc the genetic algorithm are generated from the average of ten runs for
each example.

Chapter 5. Assembly Sequence Optimization

=

CAViewer [-] 4

File

Nperate Mode ARssembly View

Figure 5.5 Example assembly: Test 1.

=

CAViewer |

-

|

File Operate Mode Assembly View

B

T

Figure 5.6 Example assembly: Test 2.

66

Chapter 5. Assembly Sequence Optimization

—| CAViewer | -]

File Operate Mode Assembly View

. . . .« - L ..
. . . . -

Figure 5.7 Example assembly: Test 3.

67

Chapter 5. Assembly Sequence Optimization 68

_| CAViewer -]

File Operate Mode ARAssembly View

AY

Figure 5.8 Example assembly: Test 4

Chapter 5. Assembly Sequence Optimization 69

Figure 5.9 shows the performance of the implementation for finding the optimal linear
assembly sequence with respect to different population sizes. This particular example uses
partial match crossover, shift mutation, and a steady state genetic algorithm. The number
of evaluations axis indicates the total number of function calls to evaluate chromosomes,
which is normalized with respect to those of the 50-population-size examples. In general,
genetic algorithms perform better with a bigger population size because they then are able to
search the larger space at each generation Guring the evolution. However, since the large
population size also increases the computational cost, it is generally necessary to determine
the appropriate population size for a certain type of problem. The fitness to optimum ratios
in figure 5.9 were determined by normalizing the evaluation scores of assembly sequences
with respect to an optimal assembly sequence. The optimal sequence was found by
inspection and also validated using the branch and bound method since it always finds the
optimal assembly sequence of a given assembly.

7 _ 1 S
/— No. of Evaluation
61 m [Jtestl
- 0.95
) ;] test2
— o N s
S / g test3
= L 09 =
347 4 S | IR test4
= [
Lz K/\\f ; ;
s 3 - 0.85 2 Fitness
- —y— 853
3 ; > —m— test]
S 2 T a
[] Q .
> s £ | 2
[T
1 4 - test3
S .
0 . . 075 test4

30 50 100 200

Population Size

Figure 5.9 Population versus number of evaluation and fitness.

A number of different mutation probabilities were used for each assembly example and
their performance measures, number of evaluations and fitness ratio are shown in figure
5.10. For this test, a population size of 100, partial match crossover, the shift mutation
operator, and a steady state genetic algorithm were used. In this result, performance

Chapter 5. Assembly Sequence Optimization 70

measures of different mutation probabilities are normalized with respect to that of the 0.01-
mutation-rate example. The result indicates that the optimization runs with the mutation
probability of 1 percent generate good result with a relatively small number of evaluation

calls.

No. of Evaluation

—8— test]

e | C—Jtestd
S E test2
= Ll
= S | EREEEE test3
g ~
- o | NENEEIRE test4
S w©
2 > Fitness
£ 4
z g
< i

-0 test2

—&—— test3

0.001 0.01 0.1 0.5

— & test4
Mutation Probability]

Figure 5.10 Mutation probability vs. no. of eval. and fitness.

In figure 5.11, four combinations of crossover and mutation operators are uscd to
determine the best combination of GA operators. Population size of 100 was used with
crossover probability of 1.0 and mutation probability of 0.01. The results are normalized
with respect to the performance of the GA optimization with ordered crossover and shift
mutation. Overall, the shift mutation with ordered crossover performed well compared to
other combinations. This result reflects the physical implication of the ordered crossover
and the shift mutation because both operations conserve the relative sequential position of a

part or parts in an assembly sequence instead of absolute position.

Chapter 5. Assembly Sequence Optimization 71

2 - T 1 No. of Evaluation
1.8 - 098 | [Jtesth
< | 1 096 35
s 1.6 - i E | [test2
5 ‘ 094 £
s 14 - 092 & | EEHEEER test3
w
5 127 0.9 3 | NN test4
5 1. 0.88 =
.E ' 0.86 3 Fitness
- (7]
=2 0.8 - 084 & | —&— test]
: 4=
0.6 0.82 i

=0 test2
Shift/PMX Swap/PMX Shift/OX Swap/0X
i wap i wap. test3

GA Operators (Mutation/Crossover) —O— test4

Figure 5.11 GA Operators vs. no. of eval. and fitness.

5.4 Branch And Bound Approach
5.3.1 Introduction

As described in chapter 2, the branch and bound method systematically subdivides the
total set of solutions under consideration into smaller sets, in such a way that large subsets
of solutions may be pruned from the further examination without evaluating each solution
in these subsets. Here, the search space of all possible sequential combinations of the part
labels in an assembly is considered. However, since branches with infeasible assembly
tasks or relatively low estimation scores are discarded in the early stage of search, the
algorithm performed efficiently for most examples tested. Here, the estimation score
implies the estimated evaluation score of a branch in which evaluation scores of unknown
variables below the branch are assumed to be maximum (i.e. the best possible). An
evaluation algorithm for the linear assembly sequence using this approach is described and
explained with an example. Some special examples are also provided to show that the
branch and bound doesn't perform well for certain types of problems.

5.3.2 Implementation

Lists 5.3 and 5.4 show procedures of the branch and bound technique, which are used
to find the best assembly sequence based on the same selection criteria described in the

Chapter 5. Assembly Sequence Optimization 72

previous section. When an assembly is provided to the Brach and bound procedure shown
in list 5.3, branches are generated by first choosing a part from the given assembly in such
a way that each part in the assembly is considered as a part to be disassembled. Then, a
node for each combination of the part and subassembly is created and its assemblability is
evaluated using an evaluation function similar to the one described in list 5.2. After all the
nedes are evaluated, they are sorted according to their evaluation scores so that a node with
the highest estimation score is evaluated first among the others. By sorting the nodes prior
to branching further, the efficiency of the algorithm can be enhanced because it first
examines a node that is likely to contain the solution and, thus, obtain the highest bound in
the early stage of searching. Therefore, most branches that have lower evaluation scores
than the bound can be pruned.

List 5.3 Algorithm to find the best sequence.

procedure BNB_main()
begin
get full assembly from domain
current score =0
bound =0
current sequence = NULL
best sequence = NULL
BNB(full assembly, cuzrent score, bound, current sequence, best sequence)
return the best sequence
end

List 5.4 Branch And Bound Algorithm.

procedure BNB(assembly, current score, bound, current sequence, best sequence)
begin
if (number of component in the assembly > 1)
begin
tasklist « NULL
foreach component in assembly
begin
subassembly « assembly - component
tasknode « TaskNode(subassembly, comp)
evaluate the tasknode using a lookup table
add tasknode into tasklist
end
sort tasknodes with respect to their evaluation score
foreach tasknode from the tasklist
while(current_score + evaluation score of the tasknode
+ MaxTaskScore! x (number of subassembly - 1) > bound)

I MaxTaskScore is defined as the best possible evaluation score for an assembly task. Therefore, the
assembly task is assumed to be a feasible, downward task, and stable in all directions.

Chapter 5. Assembly Sequence Optimization 73

begin
current sequence < current sequence + component of the tasknode
BNB(subassembly of tasknode, current_score + task score, bound,
current sequence, best sequence)
delete current sequence
end
end
else
begin
if current score > bound
begin
bound ¢« current score
update current sequence
best sequence « current_sequence
end
end(else)
return the best sequence
end

Figure 5.12 shows an example assembly composed of five parts. When this assembly
is provided as an input to the branch and bound algorithms described above, the algorithm
in list 5.3 first generates branches, each of whose nodes contains a part and its
corresponding subassembly. For example, the node of branch a in figure 5.13 indicates
that part ! is disassembled from the given assembly with parts 1, 2, 3, 4, and 5 generating
an subassembly { 2, 3, 4, 5 }. Once these nodes are generated, they are sorted with
respect to their current evaluation score (C.S.) so that a node with the highest evalvation
score is branched further. Repeating this procedure until a complete disassembly sequence
is found, figure 5.13 shows that the first sequence found by the algorithm is 1-2-3-5-4
with an evaluation score of 153. This score is then assigned as a bound of the branch and
bound search, which determines whether a branch needs to be examined further for search
of a better solution. After obtaining the first bound, the algorithm proceeds the search with
comparing the expected evaluation scores of remaining branches to the bound. Figure 5.14
shows how the algorithm determines the expected evaluation score of a branch and update
the current bound when it finds a better solution. The expected evaluation score of the
branch f shown in figure 5.14 is determined by summing the accumulative scores of its
incomplete disassembly sequence, its cuirent score, and the best possible score expected
below the branch. Since the estimated score is determined to be 158, the branch is further
examined and, in this case, a beiter sequence with evaluation score of 156 is found in
branch g. Therefore, the bound is updated with the higher score and, thus, the algorithm is
able to prune more branches with cstimated scores lower than the new bound.

Chapter 5. Assembly Sequence Optimization

P el I
a e '

p—

CAViewer

File Operate Hode

fissembly View

Figure 5.12 Five part assembly.

{1,2,3,4,5}

74

—

{2,3

4,511

{1,2,3,5}14

{1,3,4,512]]{1,2,4,51}3

{1,2,3,415

b

}
CS=4O

BN

\

C.S.=32

——

\\s

C.S.=0

{3,4,5

4

{2

2,4,51}3

12,3,41}5

{2,3,5}14

C.S. =40

L T

AN
NI
N
\\
c h

\ f - e

C.S. =40

C.S. =40

{4,513

{3,4}15|[{3,5}4

C.S.=40 C.S.=38 C.S.=30

dy \\\ e

{415

{514

C.S.=33 C.S.=25
f Total score of assemblability = 153

C.S.=32

C.S.=0

Figure 5.13 Branch and bound tree of the example assembly in figure 5.12.

Chapter 5. Assembly Sequence Optimization 75

S

{3,415
E.S.=80+38+40=158

g h
{413(|i3}4
C.S.=38 C.S. =30

f Total score of assemblability = 156

Figure 5.14 Branch and bound tree of the example assembly in figure 5.12.

5.4.3 Examples

The branch and bound technique described in the previous section was tested with the
same example assemblies tested with the genetic algorithm. The figure 5.15 provides the
comparison between performance measures of the branch and bound method and GA with
population sizes of 50 and 100. The performance measures are defined with the number of
evaluation function calls and the best solutions found by the methods for each example.
For all these examples the branch and bound method performed better than the genetic
algorithm as shown in figure 5.15. It should be also important to note that the branch and
bound method always finds the true global optima based on the criteria.

Chapter 5. Assembly Sequence Optimization 76

SecC.
3000 1 ! No. of Evaluation
0.95
e 2500 |) [Jtest]
= - A [] test2
8 2000 + ;| 00 2
® i i test3
5 ~ I test4
s 1000 + T08 3
a - E Fitness
E 500 : gl - 0.75 S
p=4 . . G —&— test]
0 . ' SN 0.7
o test2
B&B GA w/ 50 pop. GA w/100 pop.
—&——— test3
—<O—— test4
Search Method

Figure 5.15 Search methods versus number or evaluation and fitness.

For all the previous examples the branch and bound performs better than the genetic
algorithm because it can efficiently find the optimal assembly sequence in the early stage of
search and, thereby, truncate most branches which have low estimation scores. Most
optima were found after two or three updates of the bound. This was possible because the
branch and bound method dynamically sorts task nodes, finds a node which is likely to
contain the optimal solution, and branches into that node.

Figure 5.16 shows the performances of the branch and bound method and the genetic
algorithm for the set of examples given in figures 5.17, 5.18, 5.19, and 5.20. These
examples in the form of stacked parts are provided so that they represent several different
classes of assemblies. The example in figure 5.17 represents seven parts horizontally
placed on top of an large base part. For this type of assembly, there exist not only many
alternatives for disassembling a part from the assembly, but also cases in which preceding
the branch and bound method with a disassembly task that has the best evaluation score
among alternatives can lead to a poor disassembly sequence at the end. On the contrary,
the example in figure 5.20 has only a limited number of feasible disassembly sequences.
The result in figure 5.16 shows that the branch and bound method performs worse than the
genetic algorithm for the example shown in figure 5.17. As discussed above, this is
because the branch and bound cannot prune branches effectively in the early stage of

search.

Chapter 5. Assermbly Sequence Optimization

Number of Evaluation

sec.

700
600
500
400
300
200
100

B&B

Il
il

Search Method

i

GA w/ 50 pop. GA w/100 pop.

0.96

0.92

0.88

0.84

- 0.8

Normalized Fitness

77

No. of Evaluation
[~]H-Stack

[] HV-Stack
: A VH-Stack

57

- R V-Stack

Fitness
——&—— H-Stack

——r—— HV-Stack

e VH-Stack

- —<—— V-Stack

Figure 5.16 Search methods versus number of evaluation and fitness.

—

CAViewer

File

Operate Mode Assembly

View

Figure 5.17 Example assembly: Horizontal stack.

Chapter 5. Assembly Sequence Optimization

—| CAViewer | -]

File Operate Mode Assembly View

Figure 5.18 Example assembly: Horizontal-vertical stack.

—

— CAViewer [-]

File Operate Hode ARssembly View

Figure 5.19 Example assembly: Vertical-horizontal stack.

Chapter 5. Assembly Sequence Optimization

— CAViewer | -]

File Operate Hode Assembly View

Figure 5.20 Example assembly: Vertical stack.

Conclusions

6.1 Overview

This chapter first provides all overview of the capabilities of the system described in
this thesis and the optimization of the linear assembly sequence based on assemblability
criteria. Then, conclusions regarding the generality of the cellular automata-based
assembly planner were provided. Finally, potential areas of future work are discussed.

6.2 Capabilities of the Disassembly Planner

The robustness and generality of the cellular automata physical simulation technique
allows an assembly planner to handle special case situations that are difficult with other
assembly planning approaches. Wolter (1991, pps. 266 - 267) defines the special
situations of "monotone", and "contact coherent" plans.

"Monotone" plans are those that do not allow temporary positions for parts: all parts
are assembled into their final goal states. Since parts have temporary positions, finding
non-monotone plans is more difficult because there are more possibilities for valid
(dis)assembly part moves. In generating a disassembly sequence, for example, possible
disassembly motions of a part may need to be examined many times, each time in a new
context of other parts having been moved. The cellular automata-based approach: does not
have any inherent advantage over CAD-based planners in this regard: the approach would
check these additional movements. The simplicity and generality of the rule sets, however,
would allow a more straightforward implementation. Figure 6.1 (adapted from Wolter,
1991) shows an assembly that requires a non-monotone plan, since part 3 must maintain a
temporary position in contact with part 1 as 1 is assembled into part 2. The planner was
able to generate a disassembly sequence by not requiring that a part be removed completely
from an assembly during the allowable part motion tests.

80

Chapter 6. Conclusions 81

— CAViewer | -] 1]

File Operate Hode Assembly View

Figure 6.1 A monotone assembly.

Wolter also mentions *“contact coherent” assemblies as those that require that parts
moved into position are in contact with other parts. In other words, fixtures are not
required to hold parts ir noncontacted positions until other parts are added to the assembly.
An example (figure 6.2 adapted from Wolter, 1991) shows that if part 6 is removed, the
remaining two subassemblies will not be in contact. Our disassembly planner could handle
the removal of part 6, if it treated one of the other parts as a base part, but the reverse
assembly sequence would not be valid because both remaining subassemblies would need
to be moved into position without contacting other parts. As the system is based on the
detection of part contact, the subassemblies could not be moved into position before

assembling part 6, and this assembly sequence could not be simulated.

Chapter 6. Conclusions 82

— CAViewer | -]

File Operate Mode Assembly View

Figure 6.2 A non-ccntact-coherent assembly.

6.3 Optimization with Cellular Automata

The most important aspect of the cellular automata implementation is that it is extremely
general. Within the context of the cellular array, any set of parts can be modeled, and with
the disassembly algorithm described in chapter 4, a valid assembly sequence, if one exists,
can be discovered. This generality is achieved by employing an "atomic" building block,
the cell. The same set of rules applies to each atomic cell, so any geometry that can be built
from the cells can be examined with a physical simulation. The price of this generality is a
limitation on the detail with which objects can be represented. Only objects whose shapes
can be reasonably modeled as arrangements of square cells can be treated. Additionally,
only assemblies disassemblable with a series of rectilinear motions can be investigated.
For two-dimensional depictions of actual assemblies, these approximation limitations are
often reasonable. The cellular automata models will become more accurate, of course, by
using a larger number of smaller cells. Computational difficulties, unfortunately, will also

increase.

Chapter 6. Conclusions 83

The most important consequence of the atomic building block generality is that it allows
automated modification of part shapes and assembly topology. Since any cellular array can
be analyzed with the part membership and part motion rules, there is no fear of creating an
invalid assembly. As stated earlier, changing the material/void and edge type assignments
may change not only the shapes of the parts, but also the number of parts and their
connectivities. Since all possible assemblies can be analyzed, this allows the possibility of
a very general iterative optimization scheme.

6.4 Future work

There are many avenues for future work and extensions to the system. First, keeping
the same basic approach, it will be useful to implement the system on a parallel processing
architecture. Cellular automata are inherently parallel and a parallel implementation will
allow much faster execution. Currently, a simple assembly sequence planner based on a
cellular automata representation is being implemented on a parallel processing architecture
Cellular Automata Machine (CAM). CAM-8 is a parallel, uniform scalable architecture
which offers superior performance in the fine-grained modeling of spatially-extended
systems (Margolus, Toffoli et al. 1994). Also, the same basic approach can be applied to
three-dimensional domains. In this case, a parallel processing approach will be even more
important.

It will also be useful (and necessary) to devise some techniques that allow the
conversion of the cellular representation tc a more standard CAD representation. This
could perhaps be done by employing intermediate quadtree and octree representations.
Transformations between these and standard CAD models have already been investigated
(Elber and Shpitalni 1988).

One of the main advantages of a discretized “atomic’ domain is that it will allow the use
of a combinatorial search technique to perform an optimal design study over the space of
possible cellular arrays. Genetic algorithms (Goldberg 1989) or simulated annealing
(Kirkpatrick, Gelatt et al. 1983), for example, could be used to search for the optimal
assignments of material, void, and edge types to satisfy functional constraints as well as to
optimize with respect to assembly considerations. A major challenge will be to model
“functionality” and *“assemblability.” We hope to exploit the discretized binary nature of a
cellular array when modeling functionality. Input motions at a subset of cells, for example,

Chapter 6. Conclusions 84

could be required to prod::ce output motions at annther subset of cells. Assemblability is
related to the allowable motion of parts in their assembled goal states as described in
chapter 5. We also seek to build on previous approaches to this problem that do not
employ cellular representations. (e.g. (Miyakawa, Ohashi et al. 1990) and (Lee 1991)).

References

Baldwin, D. F., T. E. Abell, et al. (1991). “An Integrated Computer Aid for
Generating and Evaluating Assembly Sequences for Mechanical Products.” J[EEE

Transactions on Robotics and Automation 7(1): 78-94.

Boothroyd, G. and L. Alting (1992). “Design for Assembly and Disassembly.” CIRP
Annals 41: 625-636.

Boothroyd, G. and C. Ho (1976). “Natural Resting Aspects of Parts for Automatic

Handling.” American Society of Mechanical Engineers (Paper 76-WA/Prod-40).

Boothroyd, G., C. Poli, et al. (1982). Automatic Assembly. New York and Basel,
Marcel Dekker Inc.

Bourjault, A. (1984). Contribution to a methodological approach of automated
assembly: automnatic generaton of assembly sequences, University de Franche-Comte.

Bourjault, A. (1987). “Methodology of Assembly Automation: A New Approach.”
Robotics and Factories of the Future San Diego, California, 39-45.

Chakrabarty, S. and J. Wolter (1994). “A Hierarchical Approach to Assembly

Planning.” 1994 IEEE International Conference on Robotics and Automation Los

Alamitos, California, 258-263.

Christofides, N., A. Mingozzi, et al. (1979). Combinatorial Optimization, John Wiley
& Sons.

De Fazio, T. L., T. E. Abell, et al. (1990). “Computer-Aided Assembly Sequence
Editing and Choice: Editing Criteria, Bases, Rules, and Technique.” IEEE International

Conference on Systems Engineering Pittsburgh, Pennsylvania, 416-422.

De Fazio, T. L. and D. E. Whitney (1987). “Simplified Generation of All Mechanical
Assembly Sequences.” IEEE Journal of Robotics and Automation RA-3(No. 6): 640-658.

De Fazio, T. L. and D. E. Whitney (1989). “Aids for the Design or Choice of

Assembly Sequences.” 1989 IEEE International Conference on Systems, Man, and
Cybernetics 1: 61-70.

Delchambre, A. (1992). Computer-aided Assembly Planning. London, Chapman &

Hall.

Elber, G. and M. Shpitalni (1988). “Octree creation via C.S.G. definition.” The Visual
Computer 4: 53-64.

Foley, J. (1993). Computer Graphics: Principles and Practice, Addison Wesley.

85

References 86

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization & Machine
Learning.

Henrioud, J. and A. Bourjault (1991). LEGA: a compter-aided generator of assembly
plans. Computer-Aided Mechanical Assembly Planning. L. S. Homen de Mello and S.
Lee. Boston, Kluwer Academic Publishers: 191-215.

Hoffman, R. (1990). “Automated Assembly Planning for B-Rep Products.” IEEE
International Conference on Systems Engineering Pittsburg, Pennsylvania, 391-394.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor,

Michigan, The University of Michigan Press.
Homem de Mello, L. S. and A. C. Sanderson (1990). “AND/OR Graph Representation

of Assembly Plans.” JEEE Transactions ir Robotics and Automation 6(2): 188-199.

Homem de Mello, L. S. and A. C. Sanderson (1990). “Evaluation and Selection of
Assembly Plans.” 1990 I International nce on Robotics and Automatio
Cincinnati, Ohio, 1588-1593.

Homem de Mello, L. S. and A. C. Sanderson (1991). A Basic Algorithm for the

Generation of Mechanical Assembly Sequences. Computer-Aided Mechanical Assembly

Planning. L. S. Hemem de Mello and S. Lee. Boston, Kluwer Academic Publishers: 163-
190.

Jakiela, M. J., P. Y. Papalambros, et al. (1985). “Programming Optimal Suggestions
in the Design Concept Phase: Applications to the Boothroyd Assembly Charts.” ASME

Journal of Mechanisms, Transmissions, and Automation in Design 107(2): 285-291.

Kirkpatrick, S., C. Gelatt and M. Vecchi (1983). “Optimization by Simulated
Annealing.” Science 220: 671-680.

Klein, C. J. (1987). Generation and Evaluation of Assembly Sequence Alternatives.

Mechanical Engineering. Cambridge, MIT.

Lee, S. (1991). Backward Assembly Planning with DFA Analysis. Computer-Aided
Mechanical Assembly Planning. L. Homem de Mello and S. Lee. Boston, Kluwer
Academic Publisher: 341-381.

Lee, S. (1994). “Subassembly Identificaticn and Evaluation for Assembly Planning.”
IEEE Transaction on Sytems, Man, and Cybernetics 24(3): 493-503.

Lee, S., G. J. Kim, et al. (1993). “Combining Assembly Planning with Redesign: An
Approach for More Effective DFA.” IEEE Internaiional Conference on Robotics and
Automation Atlanta, Georgia, 3: 319-325.

Lee, S. and Y. G. Shin (1990). “Assembly Planning Based On Geometric Reasoning.”
Computer & Graphics 14(2): 237-250.

Margolus, N., T. Toffoli, et al. (1994). An Early Sampler of CAM-8 Applications.
Cambridge, MA, MIT.

References 87

Miller, J. M. and R. L. Hoffman (1989). “Automatic Assembly Planning with
Fasteners.” IEEE International Conference on Robotics and Automation, 69-74.

Miyakawa, S., T. Ohashi, et al. (1988). “The Hitachi Assemblability Evaluation
Method (AEM) and Its Application.” Journees De Microtechnique, 99-1i4.

Miyakawa, S., T. Ohashi, et al. (1990). “The Hitachi New Assemblability Evaluation
Method (AEM).” Transactions of NAMRISME, 352-359.

Mortenson, M. E. (1985). Geometric Modeling. New York, John Wiley and Sons.

Nevins, J. L. and D. E. Whitney (1978). “Computer-Controlled Assembly.” Scientific
Ainerican 238(2): 62-74.

Preston, K. J. and M. J. B. Duff (1984). Modern Cellular Automata: Theory and
Applications. New York, Plenum Press.

Tsao, J. and J. Wolter (1993). “Assembly Planning with Intermediate States.” IEEE

International Conference on Robotics and Automation Atlanta, Georgia, 1: 71-76.

Wilson, R. H. (1990). “Efficiently Partioning an Assembly.” IASTED International
Symposium on Robotics and Manufacturing.

Wilson, R. H. (1993). “Minimizing User Queries in Interactive Assembly Planning.”

IEEE International Conference on Robotics and Automation Atlanta, Georgia, 322-327.

Wilson, R. H. and J.-F. Rit (1991). Maintaining Geometric Dependencies in Assembly

Planning. Computer-Aided Mechanical Assembly Planning. L. S. Homem de Mello and S.
Lee. Boston, Kluwer Academic Publishers: 218-241.

Wolter, J. D. (1989). “On the automatic generation of assembly plans.” 1989 IEEE
International Conference on Robotics and Automation Scottsdale, Arizona, 62-68.

