Jointly reduced inhibition and excitation underlies circuit-wide changes in cortical processing in Rett syndrome

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1073/PNAS.1615330113</td>
</tr>
<tr>
<td>Publisher</td>
<td>National Academy of Sciences (U.S.)</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://hdl.handle.net/1721.1/114900</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
</tbody>
</table>
Jointly reduced inhibition and excitation underlies circuit-wide changes in cortical processing in Rett syndrome

Abhishek Banerjee1, Rajeek V. Rikhye1,2, Vincent Breton-Provencher2, Xin Tangb, Chenchen Li2, Keji Li2, Caroline A. Runyan3, Zhanyan Fu1, Rudolf Jaenischb,3, and Miriganka Sur2,3

1The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; 2The Whitehead Institute for Biomedical Research, Cambridge, MA 02142; and 3Broad Institute of MIT and Harvard, Cambridge, MA 02142

Contributed by Rudolf Jaenisch, September 28, 2016 (sent for review June 12, 2016; reviewed by Uta Francke and Peter Kind)

Rett syndrome (RTT) arises from loss-of-function mutations in methyl-CpG binding protein 2 (MeCP2), but fundamental aspects of its physiological mechanisms are unresolved. Here, by whole-cell recording of synaptic responses in MeCP2 mutant mice in vivo, we show that visually driven excitatory and inhibitory conductances are both reduced in cortical pyramidal neurons. The excitation-to-inhibition (E/I) ratio is increased in amplitude and prolonged in time course. These changes predict circuit-wide reductions in response reliability and selectivity of pyramidal neurons to visual stimuli, as confirmed by two-photon imaging. Targeted recordings reveal that parvalbumin-expressing (PV+) interneurons in mutant mice have reduced responses. PV-specific MeCP2 deletion alone recapitulates effects of global MeCP2 deletion on cortical circuits, including reduced pyramidal neuron responses and reduced response reliability and selectivity. Furthermore, MeCP2 mutant mice show reduced expression of the chloride cotransporter KCC2 (K+/Cl− exporter) and a reduced KCC2/NKCC1 (Na+/K+ + Cl− importer) ratio. Perforated patch recordings demonstrate that the reversal potential for GABA is more depolarized in mutant mice, but is restored by application of the NKCC1 inhibitor bumetanide. Treatment with recombinant human insulin-like growth factor-1 restores responses of PV+ and pyramidal neurons and increases KCC2 expression to normalize the KCC2/NKCC1 ratio. Thus, loss of MeCP2 in the brain alters both excitation and inhibition in brain circuits via multiple mechanisms. Loss of MeCP2 from a specific interneuron subtype contributes crucially to the cell-specific and circuit-wide deficits of RTT. The joint restoration of inhibition and excitation in cortical circuits is pivotal for functionally correcting the disorder.

MeCP2 / E/I balance / parvalbumin neurons / IGF1 / chloride transporters

Synaptic excitation (E) and inhibition (I), along with the neuronal balance of excitation and inhibition (E/I), is key to the function of brain circuits, and is often disrupted in neurodevelopmental disorders, including autism spectrum disorders (ASDs) (1–3). Rett syndrome (RTT) is a severe neurodevelopmental and adult disorder that arises from sporadic loss-of-function mutations in the X-linked (Xq28) methyl-CpG binding protein 2 gene (Mecp2) encoding the protein MeCP2 (4–7). MeCP2 is a critical regulator of brain development and adult neural function (8), and arrested brain maturation due to synaptic dysfunction is one of the hallmarks of RTT (3). However, the effects of MeCP2 on excitatory and inhibitory synaptic mechanisms in vivo, and on neuronal and circuit function underlying RTT pathophysiology, are unknown.

MeCP2 is ubiquitously expressed in multiple cell types and subregions of the brain (4, 6, 9), including inhibitory interneurons, and has cell-autonomous as well as non–cell-autonomous effects (10); thus, it has been particularly challenging to identify its role in cell-specific brain circuits. Anatomically diverse inhibitory interneuron subtypes with distinct physiological signatures influence different aspects of neocortical function and behavior.

(11, 12). Soma-targeting parvalbumin-expressing (PV+) and dendrite-targeting somatostatin-expressing (SOM−) interneurons are the two major nonoverlapping populations of interneurons in mice that target cortical pyramidal neurons (13). Inhibition by PV+ and SOM− neurons powerfully influences neuronal responses and circuit computations in visual cortex (14–17). Deletion of MeCP2 from all forebrain GABAergic interneurons recapitulates key aspects of RTT (18), demonstrating that altered inhibitory function is an important facet of RTT pathophysiology. Indeed, a major phenotype of MeCP2 reduction in individuals with RTT and in mouse models is a propensity for seizures (18–20), suggesting a disruption of inhibitory gating leading to hyperexcitable neuronal populations. Resolving the direction and extent of changes in excitation and inhibition in RTT, within intact cortical circuits, requires direct measurement of excitatory and inhibitory conductances in pyramidal neurons, together with examining how MeCP2 deletion affects cortical processing. Furthermore, causal analysis of how inhibition impacts cells and circuits in RTT requires analysis of MeCP2 loss from particular inhibitory neuron subtypes.

Maturation of GABAergic inhibition depends on the developmental regulation of the neuronal cation-chloride cotransporters KCC2 (K+/Cl− exporter) and NKCC1 (Na+/K+ + Cl− importer)
(21, 22). Increased intracellular chloride concentration and a change in the postsynaptic impact of GABAergic synapses have been demonstrated during development in mouse models of ASD, including fragile-X syndrome (23, 24). Indirect evidence also points to this mechanism affecting RTT: Lower levels of KCa2 relative to NKCC1 have been found by immunoblot analysis of cerebrospinal fluid samples in patients with RTT (25); depolarizing GABAergic synapses in development follow from down-regulation of brain-derived neurotrophic factor (BDNF) (26), which is also an early consequence of MeCP2 deletion in mouse models (27); and insulin-like growth factor-1 (IGF1) treatment, which partially rescues behavioral and synaptic deficits in mutant mouse models of RTT (28, 29), also activates KCa2 expression and restores the inhibitory action of GABAergic synapses in the hippocampus (30). Thus, the diverse effects of MeCP2 loss may include reducing inhibition via changes in GABA-mediated hyperpolarization.

RTT leads to widespread deficits in brain systems and functions, including vision and gaze, that constitute important ways by which subjects with RTT interact with their surroundings (31, 32). RTT is marked by arrested development of visual processing (33), atypical visually evoked cortical responses (34, 35), deficits in visual attention and recognition, and unusual gaze intensity (36). In primary visual cortex (V1), “simple” stimuli, such as oriented gratings, and “complex” stimuli, such as natural scenes, activate local and distributed circuits that lead to well-defined responses from visual cortex neurons (37–41). Importantly, the timing and amplitude of visually driven excitatory and inhibitory conductances powerfully shape the spike responses of V1 neurons, including response reliability, selectivity, and signal-to-noise ratios (40, 42, 43). Analysis of alterations in visual responses and neuronal information processing in MeCP2 mutant mice thus provides both a mechanistic understanding of visual deficits in RTT as well as sensitive assays of changes in synaptic integration and neuronal circuits. Furthermore, visual cortical plasticity is influenced by maturation of excitation and inhibition in cortical circuits (44–47), and the initiation and termination of critical period plasticity in V1 of MeCP2 mutant mice is a sensitive indicator of the level of inhibition in cortical circuits.

Here, by directly measuring visually driven synaptic conductances in V1 pyramidal neurons in vivo, we show that both excitatory and inhibitory conductances are reduced in MeCP2 mutant mice. By deleting MeCP2 only from PV+ or SOM+ neurons, we deconstruct the effects of global deletion. PV+ neurons, which regulate E/I balance in cortical circuits (48), are crucial for recapitulating the key circuit effects of global MeCP2 loss: Animals with PV-specific MeCP2 deletion show reduced PV+ as well as pyramidal neuron responses, reduced signal-to-noise ratio and response reliability, altered between-neuron signal and noise correlations, and altered ocular dominance (OD) plasticity, comparable to global MeCP2 mutant mice. MeCP2 mutant mice show reduced expression of KCa2, and hence altered KCa2/KCNC1 ratios, and pyramidal neurons have depolarized GABA reversal potentials that are restored by application of the KCNCulinhbulator. Application of IGF1, which improves a range of behavioral and cellular phenotypes in MeCP2 mutant mice (28, 29) and structural, functional, and molecular phenotypes in patient-derived MeCP2-deficient human neurons (49, 50), renormalizes KCa2 expression in mutant mice, and restores PV+ as well as pyramidal neuron responses. These findings indicate that reduction of both inhibition and excitation, importantly via MeCP2 effects on PV+ neurons and KCa2, underlies the cortical circuit deficits of RTT, and restoration of inhibition and excitation together may be crucial for ameliorating RTT dysfunction.

Results

Deletion of MeCP2 Decreases Visually Evoked Synaptic Conductances and Visual Responses in Layer 2/3 Pyramidal Neurons. To probe alterations directly in excitation and inhibition in pyramidal neurons after MeCP2 deletion, we used in vivo whole-cell patch-clamp recordings to measure both excitatory (Gexc) and inhibitory (Ginh) synaptic conductances from putative excitatory layer (L) 2/3 neurons in V1 of mice at postnatal day (P) ~45 (Fig. L4, Materials and Methods). In voltage-clamp mode, we measured the postsynaptic currents elicited by drifting visual gratings presented at the neuron’s preferred orientation (Fig. 1B). To isolate visually evoked excitatory postsynaptic currents (EPSCs) and inhibitory postsynaptic currents (IPSCs), we held neurons at the reversal potential for excitatory (~70 mV) and inhibitory (~20 mV) currents, respectively. We analyzed the most reliable responses by averaging synaptic currents during the first 500 ms of stimulus presentation when synaptic responses were largest (Fig. 1C). Visually evoked synaptic conductances derived from the EPSC and IPSC traces in age-matched (P45) wild-type (WT) and MeCP2 global null male mice [Mecp2−/− or global KO (gKO)] showed that deletion of MeCP2 significantly reduced both total excitatory and inhibitory conductance in superficial layer pyramidal neurons (Fig. 1 D and E). Measurements of E/I ratio during the onset of the visual response revealed that although the ratio initially increased, inhibition rapidly surpassed excitation in WT mice, whereas in gKO mice, inhibition remained lower than excitation for a prolonged period (Fig. 1F). The total E/I ratio in MeCP2 gKO mice tended to be higher compared with WT mice (Fig. 1G). Consistent with a reduction in excitatory conductance, cell-attached recordings from putative excitatory pyramidal neurons in MeCP2 gKO mice showed significantly reduced peak responses at the optimal orientation and reduced orientation selectivity index (OSI) compared with excitatory neurons in WT mice (Fig. 1 H–J). The OSIs of WT neurons recorded here were comparable to the OSIs in several other studies in mouse V1 (51), including identified and reconstructed pyramidal neurons (52). Similar to gKO mice, mice with excitatory neuron [calmodulin-dependent protein kinase II (CaMKII)]-specific deletion of MeCP2 also showed reduced OSIs (Fig. 1 H and I) and reduced peak responses at the optimal orientation compared with excitatory neurons in WT littermate controls (Fig. 1J). Overall, these results demonstrate that global deletion of MeCP2 reduces and alters the timing of visually evoked excitatory and inhibitory synaptic conductances in V1 pyramidal neurons, along with their peak responses and orientation selectivity. Excitatory neuron (CaMKII)-specific deletion of MeCP2 has a similar effect on peak responses and orientation selectivity, suggesting that MeCP2 effects are manifest through V1 circuits that generate and maintain response specificity and tuning.

MeCP2 Deletion from Inhibitory Interneuron Subtypes Alters Interneuron Responses and Selectivity. Given that MeCP2 affects both excitatory and inhibitory drive to cortical neurons, we asked whether specific subtypes of inhibition were influenced by MeCP2. PV+ and SOM+ interneurons provide distinct forms of inhibition to cortical pyramidal neurons (12). We hypothesized that these principal sources of inhibition to pyramidal neurons would be affected by MeCP2 deletion; in turn, deleting MeCP2 from PV+ or SOM+ neurons would reveal specific and distinct contributions of these cell types to circuit dysfunction underlying RTT pathophysiology. To test these hypotheses, we used two-photon–guided cell-attached recordings to measure the stimulus-evoked properties of PV+ and SOM+ neurons in MeCP2 gKO mice. We also deleted MeCP2 specifically from either PV+ or SOM+ neurons using Cre/loxP recombination [to generate PV-Mecp2−/− or PV-cell-specific conditional KO (cKO) and SOM-Mecp2−/− or SOM-cKO mice] and measured cell-specific responses (Fig. 2 A–C, Materials and Methods, Fig. S1A and B, and SI Materials and Methods). The PV locus is turned on late during postnatal development (53, 54), and Cre-dependent deletion of MeCP2 in PV+ neurons was found to be complete only around P60, with substantial MeCP2 still expressed in these neurons at P30 (Fig. S1A). Thus, we restricted our analysis of PV-cKO animals to ages P60 and older. Mice with interneuron-specific deletion of MeCP2...
showed several key behavioral phenotypes that are observed in gKO mice or in mice with MeCP2 deletion in selective forebrain GABAergic neurons (55).

We found that the OSI was significantly reduced in both MeCP2-deleted PV+ and SOM+ neurons in cKO mice, as well as in the same neurons in gKO mice, compared with control neurons (Fig. 2D and E). The OSIs of PV+ neurons in WT mice reported here (range: 0.11–0.93, mean = 0.48) matched well with the OSIs (range: 0.09–0.87, mean = 0.46) recorded in identified and morphologically reconstructed PV+ neurons in WT mice (52), which found that PV+ neurons with high OSIs (cf. 56, 57) had small somata and dendritic arbors. Other studies have described only broadly tuned inhibitory neurons, particularly with Ca2+ imaging (58). The OSIs of SOM+ neurons we recorded in WT mice matched well with the OSIs of SOM+ neurons reported by others (59, 60). Deleting MeCP2 from PV+ neurons also led to a significant reduction in firing rate at the preferred orientation (Fig. 2E). A similar effect, however, was not seen for SOM+ neurons in either the cKO or gKO condition (Fig. 2F). Thus, global or cell-specific MeCP2 deletion affects PV+ neurons more severely than SOM+ neurons.

Interneuron-Specific MeCP2 Deletion Leads to Circuit-Wide Deficits in Visual Information Processing. Extracting and encoding salient features of visual stimuli is a core function of neural circuits in V1. Our data thus far suggest that deleting MeCP2 from cortical interneuron subtypes reduces excitatory drive to PV+ and alters the selectivity of PV+ and SOM+ neurons. We were next interested in understanding how this change in interneuron responses influences V1 pyramidal neuron responses and the computations performed by these neurons. To study large populations of putative L2/3 pyramidal neurons in vivo at single-cell resolution, we performed high-speed Ca2+ imaging after loading cells with the synthetic calcium indicator dye Oregon green BAPTA-1 (OGB-1) AM (Fig. 3A, Materials and Methods, and SI Materials and Methods). As expected, pyramidal cells in both PV-cKO and SOM-cKO mice responded to full-field sinusoidal drifting gratings with robust Ca2+ transients (Fig. 3B). We inferred spiking rates from these Ca2+ responses using a temporal deconvolution algorithm (61), and used these inferred firing rates to obtain orientation-tuning curves (Fig. 3C). Interestingly, both the average firing rate (Fig. 3D) and signal-to-noise ratio measured at the preferred orientation (Fig. 3E) were reduced in pyramidal neurons in the PV-cKO, SOM-cKO, and...
Deleting MeCP2 results in weak and unreliable responses (39, 40). For example, a highly reliable neuron would respond with low variability between trials, and thus would convey similar information for each stimulus repetition. In addition, a sparsely responding neuron is highly selective for a few stimulus features (63). We used these measures to assess how deleting MeCP2 from specific inhibitory neuron subtypes influences cortical coding. We computed response reliability as the average correlation coefficient over all pairwise combinations of trials (Materials and Methods and SI Materials and Methods). On average, neurons in PV-cKO and MeCP2 gKO mice, but not in SOM-cKO mice, responded unreliably to natural movies (Fig. 4E and Fig. S2G). At the same time, excitatory neurons in PV-cKO and SOM-cKO mice, as well as in gKO mice, responded to natural movies with significantly less selective responses (Fig. 4F), implying a reduction in coding efficacy. Thus, SOM-cKO animals show deficits in stimulus selectivity but can still reliably transmit information, suggesting a subtle deficit in information processing.

To probe these circuit deficits further, we asked how deleting MeCP2 influences the interactions between neurons. Signal correlations between neuronal responses arise from dependencies between neurons sharing similar receptive field properties, and thus provide a measure of similarity in feed-forward input (64). Noise correlations, on the other hand, capture dependencies between neurons that are not locked to the sensory stimulus, and thus are related to shared network properties, including neuronal coupling (65). Deleting MeCP2 from PV+ neurons, but not SOM+ neurons, resulted in a strong reduction in signal correlation (Fig. 4G). Signal correlations between neuronal responses arise from dependencies between neurons sharing similar receptive field properties, and thus provide a measure of similarity in feed-forward input (64). Noise correlations, on the other hand, capture dependencies between neurons that are not locked to the sensory stimulus, and thus are related to shared network properties, including neuronal coupling (65). Deleting MeCP2 from PV+ neurons, but not SOM+ neurons, resulted in a strong reduction in signal correlation (Fig. 4G).

MeCP2 gKO mice compared with WT and floxed-MeCP2 control mice. Thus, deleting MeCP2 specifically from interneurons causes a reduction in visually evoked activity of pyramidal neurons and a commensurate increase in trial-to-trial variability.

As expected from previous studies in mouse V1, we found a wide range of OSI values in both WT and MeCP2-deficient mice (Fig. 3F). Pyramidal cells in PV-cKO and MeCP2 gKO mice had significantly lower OSI values (Fig. 3G), but, surprisingly, cells in SOM-cKO mice showed no change in OSI relative to WT or floxed-MeCP2 mice. Thus, even though MeCP2-deleted SOM+ neurons show weak orientation selectivity themselves (Fig. 2E), this weak orientation selectivity did not affect the orientation selectivity of their target pyramidal cells. Furthermore, OSI values in MeCP2 gKO mice were only marginally lower than in PV-cKO mice ($P = 0.049$, Bonferroni-corrected rank-sum test). Given that anesthesia can impede the function of cortical interneurons (42), we repeated these experiments in awake, head-fixed, passively viewing mice (Fig. S2). In these mice, we confirmed our observation that PV-cKO mice also had reduced pyramidal neuron firing rates and orientation selectivity. Thus, deleting MeCP2 from PV+ neurons alone has a strong, deleterious effect on visual responses and orientation selectivity in V1, and the deficits seen in MeCP2 gKO mice can be explained, at least to some extent, by a lack of MeCP2 in PV+ neurons.

To further examine the impact of MeCP2 deletion from PV+ and SOM+ neurons on network-dependent computations, we presented visually complex natural movies instead of simple sinusoidal gratings. Natural movies are broadband in both spatial frequency and orientation, and therefore elicit complex interactions between neurons (62). Neurons in WT mice responded strongly and synchronously to natural movies (Fig. 4A). On average, neurons in PV-cKO and MeCP2 gKO mice responded weakly and with greater variability, and hence with a reduced signal-to-noise ratio, compared with neurons in WT and floxed-MeCP2 animals (Fig. 4A–D and Fig. S2D and E). We found no significant reduction in average firing rate or signal-to-noise ratio for neurons in SOM-cKO mice.

Natural scenes are represented in V1 with sparse and reliable responses (39, 40). For example, a highly reliable neuron would respond with low variability between trials, and thus would convey similar information for each stimulus repetition. In addition, a sparsely responding neuron is highly selective for a few stimulus features (63). We used these measures to assess how deleting MeCP2 from specific inhibitory neuron subtypes influences cortical coding. We computed response reliability as the average correlation coefficient over all pairwise combinations of trials (Materials and Methods and SI Materials and Methods). On average, neurons in PV-cKO and MeCP2 gKO mice, but not in SOM-cKO mice, responded unreliably to natural movies (Fig. 4E and Fig. S2G). At the same time, excitatory neurons in PV-cKO and SOM-cKO mice, as well as in gKO mice, responded to natural movies with significantly less selective responses (Fig. 4F), implying a reduction in coding efficacy. Thus, SOM-cKO animals show deficits in stimulus selectivity but can still reliably transmit information, suggesting a subtle deficit in information processing.
In SOM-cKO animals, the reliability (R) and selectivity (S) values for each neuron are labeled. Mean firing rate (C), and signal-to-noise ratio (D) of neurons in the five experimental conditions to natural movies are shown. Quantification of reliability (E) and selectivity (F) for each of the five experimental conditions are shown. (G) Cumulative distribution of signal correlation coefficient between pairs of neurons closer than 50 µm apart. Prob., probability. (Inset) Bootstrap estimate of median signal correlation coefficient (Coef.). Error bars denote the 95% confidence interval of the median. (H) Signal correlation coefficient as a function of distance between neurons. The shaded area denotes the 95% confidence interval of the median. (Inset) Correlation decay coefficient obtained by fitting single exponentials to the curves in H. **P < 0.01, Wilcoxon rank-sum test relative to WT control. b/w, between; Const., constant; Dist., distance. (I and J) Same as G and H, respectively, but for noise correlation coefficient. Bar colors denote experimental conditions as labeled in E. Error bars denote SEM. (I) F, G, and H **P < 0.05, **P < 0.01, ***P < 0.001; Kruskal–Wallis ANOVA followed by post hoc Bonferroni-corrected rank-sum tests relative to WT. Data are averaged from WT (515 neurons from eight mice), fix-MeCP2 (380 neurons from six mice), PV-cKO (146 neurons from four mice), SOM-cKO (240 neurons from four mice), and MeCP2 gKO (163 neurons from four mice) animals.

Fig. 4. Impaired processing of complex stimuli in MeCP2-deficient mice. (A) Example frames from a natural movie lasting 4 s (Top Left). Example Ca²⁺ responses from two simultaneously recorded neurons from WT control (Bottom Left), PV-cKO (Bottom Right), and SOM-cKO (Top Right) mice. The heat maps show the normalized firing rates from simultaneously recorded populations of neurons. (B) Example raster plot (trials vs. time) of a representative neuron from fix-MeCP2 control, PV-cKO, SOM-cKO, and MeCP2 gKO mice. The reliability (R) and selectivity (S) values for each neuron are labeled. Mean firing rate (C) and signal-to-noise ratio (D) of neurons in the five experimental conditions to natural movies are shown. Quantification of reliability (E) and selectivity (F) for each of the five experimental conditions are shown. (G) Cumulative distribution of signal correlation coefficient between pairs of neurons closer than 50 µm apart. Prob., probability. (Inset) Bootstrap estimate of median signal correlation coefficient (Coef.). Error bars denote the 95% confidence interval of the median. (H) Signal correlation coefficient as a function of distance between neurons. The shaded area denotes the 95% confidence interval of the median. (Inset) Correlation decay coefficient obtained by fitting single exponentials to the curves in H. **P < 0.01, Wilcoxon rank-sum test relative to WT control. b/w, between; Const., constant; Dist., distance. (I and J) Same as G and H, respectively, but for noise correlation coefficient. Bar colors denote experimental conditions as labeled in E. Error bars denote SEM. (I) F, G, and H **P < 0.05, **P < 0.01, ***P < 0.001; Kruskal–Wallis ANOVA followed by post hoc Bonferroni-corrected rank-sum tests relative to WT. Data are averaged from WT (515 neurons from eight mice), fix-MeCP2 (380 neurons from six mice), PV-cKO (146 neurons from four mice), SOM-cKO (240 neurons from four mice), and MeCP2 gKO (163 neurons from four mice) animals.

Correlations between neurons persisted over a longer distance in SOM-cKO mice (Fig. 4H, Inset), consistent with the role of SOM⁺ neurons in integrating information over a larger area in L2/3. In contrast, signal correlations decayed more rapidly in PV-cKO and MeCP2 gKO animals compared with WT mice. Noise correlations were also reduced in PV-cKO and MeCP2 gKO animals, but increased in SOM-cKO animals (Fig. 4I). Across the imaged population, noise correlations decreased almost exponentially between neurons in all conditions, but persisted over a longer distance in SOM-cKO mice (Fig. 4I, Inset). Although PV-specific deletion decreased the magnitude and spatial extent of noise correlations, similar to global MeCP2 deletion, and SOM-specific deletion increased noise correlations, the impact of either change was to decrease selectivity (Fig. 4F), consistent with the observation that V1 in WT animals is remarkably efficient at coding natural scenes, and any perturbation would alter selectivity (41). Importantly, the deficits in gKO mice were nearly completely recapitulated in PV-cKO mice, indicating that deletion of MeCP2 from PV⁺ neurons is sufficient for the circuit-wide deficits of global MeCP2 deletion.

Interneuron-Specific MeCP2 Deletion Prolongs Experience-Dependent Cortical Plasticity. In V1, a change in the ocular dominance index (ODI) is a robust measure of the ability of visual cortex circuits to reorganize in response to changes in eye-specific drive; such reorganization is prominent during the critical period for OD plasticity (66) (Fig. S3A). A specific level of inhibition is thought to control the opening of the critical period, whereas increased, mature levels of inhibition reduce or terminate it in adulthood (45, 46). Furthermore, reduction of PV⁺ firing can extend the critical period for OD plasticity (67), as can manipulations in adult animals that reduce intracortical inhibition (68, 69). Thus, we hypothesized that adult gKO or PV-cKO mice, which show reduced inhibition in pyramidal neurons and reduced PV⁺ responses, would show prolonged OD plasticity in adulthood.

We tested this hypothesis by measuring the ODI in V1 of adult male mice using optical imaging of intrinsic signals (Materials and Methods and SI Materials and Methods). Eye-specific responses were measured from V1 following short-term (3–4 d) monocular deprivation (MD) of the contralateral eye. MD reduced responses to the deprived eye and shifted the ODI toward the nondeprived eye in WT animals (Fig. S3B). This shift, however, was restricted to the critical period of OD plasticity (peaking at P28–30), because no significant change in ODI was seen following MD in adult (P56–60) WT mice (Fig. S3B). Similarly, adult floxed-MeCP2 animals (P56–60) also did not show a change in ODI following short-term MD (Fig. S3C). Adult MeCP2 gKO male mice were near the end of their life span by P60 (and were too fragile for these experiments); adult female (Mecep2⁻/-) mice, however, showed...
OD plasticity at P60 at levels comparable to the levels measured during the critical period (28). Similarly, adult male PV-cKO mice showed a significant shift in ODI (Fig. S3D), in contrast to adult WT and floxed-MeCP2 mice. Thus, PV-specific MeCP2 deletion causes deprivation-induced plasticity of visual cortex circuits to extend into adulthood, consistent with a reduction of inhibition in these animals.

Recombinant Human IGF1 Improves Cell-Specific Response Features and Network-Dependent Computations. Recombinant human IGF1 (rhIGF1) has been shown to ameliorate a wide range of deficits in male MeCP2^{−/−} null mice as well as female MeCP2^{−/−} mice, including organismal and behavioral function, molecular signaling pathways, and excitatory synaptic transmission; rhIGF1 also reverses prolonged cortical plasticity in adult female MeCP2^{−/−} mice (28). If a reduction of PV⁺ neuron responses is critically associated with the circuit-level effects of MeCP2 deletion, rhIGF1 should restore PV⁺ responses and the circuit-level deficits of information processing by V1 neurons.

We first investigated whether rhIGF1 treatment improves the response features of PV⁺ neurons in PV-cKO mice. We injected a lox-STOP-lox RFP construct in V1 (compare Fig. 2A), followed by daily systemic injections either with saline (control) or rhIGF1 (2.5 mg/kg), following doses (28) showing to be effective for reversing synaptic and behavioral phenotypes (Fig. 5A). The IGF1 receptor is present on both pyramidal and PV⁺ neurons as revealed by immunohistochemistry (Fig. 5B), suggesting that PV⁺ neurons could respond directly to IGF1 treatment as well as indirectly via recurrent connections from pyramidal neurons. Two-photon–guided cell-attached recordings from PV⁺ neurons showed approximately a 50% increase in peak firing rate (Fig. 5C) and a smaller increase in OSI (Fig. 5C). Two-photon Ca²⁺ imaging of OGB-1–labeled pyramidal neurons in PV-cKO mice revealed that rhIGF1 treatment also increased the OSI in response to drifting gratings (Fig. 5D), as well as average firing rate, signal-to-noise ratio, and response reliability in response to natural movies (Fig. 5E–G). Similarly, pyramidal neurons in MeCP2 gKO mice treated with rhIGF1 (Fig. 5A) also showed improvements in these parameters when responding to natural movies, as well as increased OSI comparable to rhIGF1–treated PV-cKO mice when tested with drifting gratings (Fig. 5D–G).

These results demonstrate that rhIGF1 treatment enhances responses of PV⁺ neurons in PV-cKO mice and of pyramidal neurons in both PV-cKO and gKO mice, and, further, that rhIGF1 treatment improves the representation of both simple and complex stimuli by V1 circuits. Thus, deficits caused by MeCP2 deletion in circuits performing sensory computations can be specifically ameliorated by rhIGF1 treatment.

GABAergic Neurotransmission Is Altered in MeCP2 gKO Mice and Rescued by Bumetanide and rhIGF1. Although our whole-cell recordings in MeCP2 gKO mice demonstrated reduced inhibitory conductances in V1 pyramidal neurons, and targeted recordings from PV⁺ neurons in these mice revealed that they have reduced visual responses, other studies have described increased puncta and perisomatic terminations of PV⁺ neurons around V1 pyramidal neurons in gKO mice (70, 71), although with no change in other structural and maturational markers of PV⁺ neurons, such as homeobox protein Otx2 (72) and perineuronal nets (68) (Fig. S4). To reconcile these observations, we hypothesized that the effectiveness of GABA as an inhibitory transmitter may be altered in gKO mice compared with WT animals. The development of GABAergic inhibitory transmission is associated with expression of neuronal cation-chloride cotransporters and an excitatory-to-inhibitory shift in GABA polarity, which indeed is compromised in several mouse models of autism (23); furthermore, early developmental alteration of GABA polarity exerts a long-lasting effect on critical period plasticity in visual cortex (26).

To test the hypothesis, we carried out perforated patch recordings from L2/3 pyramidal neurons in V1 slices from MeCP2 gKO mice and WT littermate controls (Fig. 6A), and measured the reversal potential (E_{rev}), for GABA_A receptor-mediated responses, by recording these responses while the membrane voltage was clamped at various holding potentials between −80 mV and +40 mV (Fig. 6B, i). Plotting current–voltage relationships (Fig. 6B, ii) showed that cells recorded from MeCP2 gKO mice had significantly depolarized GABA reversal potentials compared with cells in WT littermate controls (E_{rev} in gKO mice was, on average, 8 mV more depolarized compared with WT), with no difference in their resting membrane potential (Fig. 6C). To test the role of Cl[−] cotransporters in GABA polarity directly, we used bumetanide, an NKCC1 antagonist that has previously been shown to decrease internal Cl[−] concentration in neurons, making the action of GABA more hyperpolarizing (73). Systemic administration of bumetanide to MeCP2 gKO mice through i.p. injection (for 3–4 d) together with bath application (100 µM) reversed the deficit in E_{rev} recorded from L2/3 neurons in V1 slices (Fig. 6C), showing that this depolarized potential is caused by altered chloride equilibrium in gKO neurons.

The development of hyperpolarizing inhibition is accompanied by increased expression of KCC2, along with an increase in the ratio of KCC2/NKCC1 (21). To examine the expression of NKCC1 and KCC2, V1 tissue extracts were prepared from MeCP2 gKO and WT littermate control mice at P20–P25 and Western blot measurements were performed (Fig. 6D). KCC2 expression was
Discussion

In this study, we describe five major results:

i) Global deletion of MeCP2 from all cells results in a reduction of visually driven excitatory and inhibitory conductances in V1 pyramidal neurons and alterations in their relative timing.

ii) PV+ interneurons in mutant mice have reduced responses. When probed with natural scenes that activate V1 excitatory/inhibitory networks, pyramidal neurons in mutant mice also have reduced responses, together with reduced signal-to-noise ratio, reliability, and selectivity, as well as reduced interneuronal correlations.

iii) Deletion of MeCP2 from PV+ neurons alone recapitulates effects of global MeCP2 deletion on pyramidal neurons.

iv) Loss of MeCP2 leads to reduced expression of the Cl− exporter KCN2 and reduction of the KCN2/KCC1 ratio, with altered GABA reversal potential in pyramidal neurons.

v) Treatment with the KCN2 inhibitor bumetanide rescues the reversal potential.

These results demonstrate that reduction of both inhibition and excitation, importantly via MeCP2 effects on PV+ neurons and KCN2, contributes to the cortical circuit deficits of RTT, and their joint restoration may be crucial for functionally correcting these deficits.

RTT is a neurodevelopmental disorder that primarily affects females (4). Affected females are initially asymptomatic, but later display a wide range of autonomic, cognitive, and motor symptoms with variable severity. Female MeCP2 heterozygous mice display a robust but delayed and more variable phenotype than male hemizygous mice, and are crucially important for preclinical evaluation of effective therapeutic interventions (28, 74). Hemizygous male MeCP2 gKO mice display profound severity in various autonomic, sensory/motor, and cognitive phenotypes starting early in postnatal life; they effectively model the human disorder congenital encephalopathy. Because MeCP2 is an X-linked gene and we focused our study on revealing cell-specific mechanisms that contribute to deficits in sensory processing and plasticity, we used male gKO mice to restrict mutations to defined cell populations and dissect the contributions of individual cell types to specific phenotypes. Further studies are necessary to confirm similar deficits in MeCP2 heterozygous female mice and their amelioration with comparable treatments.

Role of Inhibition in RTT. Loss of MeCP2 from a subset of forebrain GABAergic neurons recapitulates diverse and prominent features of RTT (18), and the behavioral symptoms of MeCP2 loss can be explained by PV- or SOM-specific MeCP2 deletion (55). Furthermore, interneuron-specific reexpression of MeCP2 can ameliorate some of the deficits seen in RTT (19, 75). Our findings show that excitatory conductances are reduced concurrently with inhibitory conductances upon MeCP2 deletion. Reduced excitation accompanying inhibition within adult cortical circuits in vivo is consistent with previous findings in slices demonstrating reduced excitatory glutamatergic synapse number and weaker synaptic connections or drive in pyramidal neurons (76–79). Anatomical measurements have suggested increased PV+ puncta, accelerated maturation of NMDA receptor subunit GluN2A, and enhanced perisomatic innervation in MeCP2 mutant mice (70, 71, 80), although another report found no change in PV+ puncta in adult PV-MeCP2 mutant mice (81). At the same time, GABA and GAD65 levels are reduced in visual cortex (71). Our in vivo functional measurements of inhibitory conductances in adult MeCP2 gKO mice, along with targeted cell-specific recordings of PV+ neurons, consistently reveal reduced inhibition or reduced inhibitory neuronal responses in...
adult cortical circuits. Furthermore, our measurements of reduced visually driven excitatory conductances demonstrate that reduced visual responses of V1 pyramidal neurons or reduced propagated activity in slices in MeCP2 mutant mice (70, 71) are likely due not to increased inhibition but to reduced feedforward and recurrent excitatory drive, both of which are crucial elements of cortical circuits (82, 83).

PV− neuron-specific MeCP2 deletion leads to cell-autonomous effects, including immature membrane and synaptic properties in PV+ cells (81). However, we also find profound non–cell-autonomous deficits in pyramidal neuron responses in PV−/− mice; indeed, PV− cells are crucial for propagating the effects of MeCP2 reduction as a consequence of their role in visually driven regulation of E/I balance through PV/pyramidal networks (48, cf. 20). SOM+ cells, on the other hand, may function as integrators of top-down inputs that modulate visual processing (11). Our finding that OD plasticity extends into adulthood is consistent with a reduction in inhibition received by pyramidal neurons, and with a recent report that OD plasticity after PV-specific MeCP2 deletion can be initiated by enhancing inhibition via intracerebral infusion of the GABA_A receptor agonist diazepam (81).

Alterations in the Nature of Inhibition in RTT. Neuronal cation-chloride cotransporters play a key role in GABAergic circuit maturation (21, 22). Here, we present evidence that the loss of MeCP2 alters KCC2/NKCC1 ratio by a down-regulation of KCC2 expression (Fig. S6) that renders GABAergic synapses depolarizing with less effective inhibition in the cortex. Crucially, restoring the KCC2/NKCC1 ratio by bumetanide treatment restores the GABA polarity and reversal potential. It is possible that the hyperconnectivity of PV− neurons that is seen in MeCP2 gKO mice is a homeostatic response to this reduced inhibitory tone (71). A similar KCC2 deficiency in cornu ammonis 1 (CA1) pyramidal neurons leads to formation of hypertrophic PV− baskets adjacent to the steric areas of patients with an epileptic hippocampus (84). Alterations of chloride cotransporters and aberrant GABAergic hyperinnervation can lead to an increased propensity for seizures, a prominent signature in ASDs, including RTT (85–87), which is also seen in mouse models of RTT (18–20).

Critical period plasticity in the visual cortex is influenced importantly by inhibitory GABAergic transmission and BDNF signaling (45, 88). Alterations in the polarity of GABAergic inhibition during early postnatal development through the NKCC1 antagonist bumetanide have been shown to prolong the duration of critical period plasticity in rat V1 (26). This effect can be rescued by concurrently increasing BDNF signaling by pharmacological means. Although the actual mechanisms that control the developmental expression of chloride cotransporters are not clear, MeCP2 is known to regulate neuronal activity-dependent expression of BDNF (27), which promotes the developmental up-regulation of KCC2 (89) and the maturation of cortical inhibition (88). Overexpression of KCC2 in MeCP2-deficient human neurons differentiated from induced pluripotent stem cells from patients with RTT has recently been shown to rescue GABA functional deficits (90). Neuronal Cl− regulation through KCC2 thus offers an attractive target for postsynaptic modulation of inhibition in RTT.

Consistent with our findings in MeCP2 mutant mice, recent observations indicate that neuronal Cl− regulation via the US Food and Drug Administration-approved diuretic bumetanide may provide a novel target-selective therapy for GABAergic dysfunction in neurodevelopmental disorders (23, 24, 73, 91; but see refs. 92 and 93). Independent of its Cl− transport function, KCC2 also plays a key role in the development of excitatory synapses by mediating structural interactions with the actin cytoskeleton, contributing to the morphogenesis and maturation of dendritic spines (94). KCC2 may thus act as a synchronizing “hub” in the functional development of GABAergic as well as glutamatergic synapses, and act together with the non–cell-autonomous effects of PV− neurons to mediate the dual effects on inhibition and excitation caused by loss of MeCP2.

Unreliable Processing of Visual Information in RTT. A neuron’s responses to visual stimuli directly reflect the circuits within which the neuron is embedded, and responses of V1 neurons in mutant mice thus provide sensitive assays of circuit dysfunction. Deleting MeCP2 globally or from PV− neurons causes a significant increase in response variability (reduced signal-to-noise ratio) to oriented gratings or natural movies and a reduction in response reliability to natural movies. The effects of deleting MeCP2 from SOM− neurons are less severe. It is likely that altered inhibition and excitation following MeCP2 deletion contribute fundamentally to these circuit-wide phenomena. The precise timing between excitatory and inhibitory synaptic currents is responsible for reliable spiking (12, 43). Loss of MeCP2 significantly alters the timing of E and I conductances, thereby directly contributing to altered spike reliability. Furthermore, changes in the magnitude of the summed E/I ratio impacts responsiveness and sparseness over the stimulus duration.

The accuracy of information encoding in the cortex depends not only on the response properties of individual neurons but also on the structure and magnitude of correlations between neurons (95). We demonstrate that deleting MeCP2 from PV− neurons, or globally from all cells, significantly decorrelates the network. These results are consistent with recent studies that have demonstrated reduced visual processing reliability in human subjects with autism (96). Thus, a decrease in visual processing efficiency may represent a fundamental physiological signature of neural processing in ASDs.

rhIGF1 Improves Cell-Specific and Circuit-Dependent Responses. IGF1 is known to activate key signaling pathways and prime the development and maturation of V1 neurons in mouse (97) and rat (98) visual cortex. IGF1 mRNA is reduced in the brain of MeCP2 gKO mice (99), and IGF1 levels are reduced in serum of MeCP2 gKO mice (28) and in cerebrospinal fluid of patients with RTT (100). rhIGF1 application enhances multiple components of the PI3K/AKT and ERK signaling pathways; increases PSD-95 at excitatory synapses; and enhances excitatory synaptic transmission in Mecp2−/− mice, curtails abnormally prolonged OD plasticity in adult Mecp2−/− mice, and ameliorates behavioral and organismal deficits in adult Mecp2−/− and Mecp2−/− mice (28). The signaling and synaptic effects of rhIGF1 may be useful for treating other ASDs, as demonstrated in both human iPSC-derived neurons (101) as well as mouse models (102).

The IGF1 receptor is widely distributed in the cortex (103) and, as we show here, is present on both excitatory and inhibitory neurons in V1. Igf1−/− mice have reduced numbers of PV− immunopositive neurons in the cortex and CA regions of the hippocampus, indicating that IGF1 has an important role in the development and maturation of PV− circuits in the brain (104). A recent study has revealed IGF1 as a key activity-regulated gene in vasoactive intestinal peptide (VIP)− inhibitory interneurons, which, in turn, influence net inhibition onto cortical pyramidal neurons (105). Furthermore, IGF1 promotes maturation of Cl− export and GABA hyperpolarization in CA1 neurons (30) and accelerates the developmental switch between NKCC1 and KCC2 chloride transporters in rat visual cortex (98). Our results demonstrate that rhIGF1 treatment in MeCP2 mutant mice improves not only PV− responses but also cell-specific and circuit-dependent responses of pyramidal neurons, likely via multiple mechanisms that jointly target inhibition and excitation. More broadly, such approaches may be crucial for addressing neurodevelopmental disorders where homeostatic and compensatory regulation accompanies constitutive loss or mutant protein expression (106).

Materials and Methods

Detailed information on all items below is provided in SI Materials and Methods.
Mice. All experiments were carried out under protocols approved by the Massachusetts Institute of Technology’s Committee on Animal Care and conformed to NIH guidelines. MeCP2−/−homozygous KO mice and WT littermates were obtained by breeding MeCP2−/+ heterozygous females (107) with WT male mice. Neuronal subtype-specific deletion of MeCP2 was achieved by crossing cell type-specific Cre-driver lines (PV-Cre, SOM-ires-Cre, and Camk2a-Cre) with homozygous Flox-MeCP2 female mice. WT C57 and floxed-MeCP2 male mice served as additional controls. All mice belonged to the C57BL/6J strain.

In Vivo Whole-Cell Electrophysiology. A small cranioectomy (>0.5-mm diameter) was performed over V1, and the dura was removed. The brain was covered with artificial cerebrospinal fluid, and blind patch recording was performed to target L2/3 neurons of V1. For some of the recordings, 0.5% bicytin (wt/vol) was added to the intracellular solution to reconstruct the neuronal morphology.

In Vivo Two-Photon–Guided Cell-Attached Recordings. A borosilicate pipette (resistance of 3–4 MΩ) was filled with a cesium-based intracellular solution. Recordings were made with freshly prepared gramicidin (stock solution prepared in DMSO: 50 mM/mL, final concentration of 50 μM). Once gigahm seal configuration was achieved, gramicidin was allowed to diffuse for perforation for 15–20 min. Membranes were elicited by intracortical electrical stimulation in L4, and GABA-mediated responses were recorded while the membrane voltage was clamped at various holding potentials.

Intrinsıc Signal Optical Imaging. Mice (P28–30 and P56–60) were anesthetized with urethane (1.5 mg/kg, i.p.) and chlorprothixene (10 mg/kg, i.p.). A custom-made head plate was glued to the skull to stabilize the head, and the cortex was covered with agarose solution [1.5% (wt/vol)] with a glass coverslip on top. Red light (630 nm) was used to illuminate the cortical surface, and the change of luminescence was captured by a custom-built system during the presentation of visual stimuli (STIM; PsychToolbox).

In Vivo Two-Photon Ca2+ Imaging. Following a cranioectomy, the synthetic calcium indicator OGB-1 AM (Invitrogen), dissolved in 20% (vol/vol) Pluronic F-127/DMSO (Invitrogen), was pressure-injected 180–200 μm below the pial surface using a picocriminator. A small glass coverslip (Warner Instruments) was implanted directly over the exposed cortex. The excitation laser was tuned to 960 nm, and imaging was performed through an Olympus XL Plan Objective (magnification of 25×, N.A. = 0.15). All data were analyzed offline using custom-written scripts in MATLAB.

Systemic Administration of rhIGF1 and Bumetanide. Animals were injected i.p. once daily for 10–14 d with either vehicle (saline) or rhIGF1 (2.5 mg/kg; Peprotech) dissolved in saline with 0.01% BSA (wt/vol). Bumetanide (Sigma) was injected i.p. (0.2 mg/kg) daily for 3–4 d starting at P10. The injection solution was made in 2% DMSO dissolved in saline.

Western Blot. Protein samples were collected from dissected mouse cortex or V1 tissue with lysis buffer, sonicated, centrifuged, and separated on NuPAGE 4–12% Bis-Tris gel and transferred to PVDF membrane. The PVDF membrane was blocked and incubated overnight at 4°C with primary antibodies followed by secondary HRP antibodies. Relative KCC2 and NCC1 expression was calculated by normalizing protein signal to GAPDH or tubulin loading control.

Statistical Analysis. Nonparametric one-way ANOVA (Kruskal–Wallis test) was performed to determine statistical significance between experimental conditions. Further comparisons were made relative to WT data using Bonferroni-corrected rank-sum tests.

ACKNOWLEDGMENTS. We thank Jonathan Woodson, Chuong Le, Esmeralda Romero, Jorge Castro, Eric Wengert, Jindendra Sharma, and Nathan Banerjee for varied assistance and discussion and Travis Emery for technical support. This work is supported by a postdoctoral fellowship from the Simons Center for the Social Brain (to A.B.), a predoctoral fellowship from Howard Hughes Medical Institute (to R.V.R.), and grants from the NIH (Grants R01EY007023 and R01MH098502) and the Simons Foundation (to M.S.). The R.J. Laboratory was supported by a grant from the Simons Foundation and by grants from the NIH (Grants HD0 45022 and R37-CA084198).

9. Banerjee et al. (2012) Mice. PNAS | Published online November 1, 2016 | E7295

NEUROSCIENCE