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Abstract

The effectiveness of local hyperthermia for the treatment of solid tumors is limited by a lack
of quantitative modeling tools for therapy planning and evaluation. A new method that per-
mits the rapid calculation of the hyperthermic temperature field is presented. This approach,
called the Basis Element Method (BEM), uses a superposition of finite heat sources to solve
the bioheat transfer equation for a general heating pattern, non-homogeneous boundary con-
ditions, variable thermal properties and blood perfusion and complex patient geometries.
The algorithm speed is increased by decreasing the volume in which sources are integrated,
recognizing that thermal perturbations at a distance are exponentially attenuated in a length
scale inversely proportional to perfusion. Coinparisons to exact solutions of problems with
simple geometries show that the BEM approaches the exact solution as the size of the finite
sources is decreased and the integration volume is increased. Comparisons of the BEM
to finite element solutions of problems with irregular geometry show an RMS tempera-
ture difference of less than 0.09 °C. Experimental validation is performed with simulated
hyperthermia treatments in a porcine model. The target tissue is instrumented with 101
invasive temperature sensors and 12 invasive perfusion sensors. Hyperthermic energy is
delivered by the multi-element FSUM ultrasonic applicator. The steady-state temperature
is computed by the BEM using the measured power deposition (SAR) and perfusion values
as inputs, and the results are compared to the discrete measurements. Over all the sensors,
the RMS temperature error is 0.7 °C. Clinical utility is demonstrated by using the BEM
to perform reconstructions of the hyperthermic temperature field from patient treatments.
The patients were instrumented with several invasive multi-sensor temperature probes and
hyperthermia was induced with the FSUM applicator. The BEM computed the temperature
in the tissue from the measured SAR and a mesh automaiically generated from patient CT
scans. The RMS error between the measured and calculated temperatures is 0.9 °C.

The use of the BEM in clinical hyperthermia will allow the computation of more
accurate local thermal dose statistics based on the entire tumor volume instead of discrete
temperature measurements. Ultimately, these statistics will help establish thermal dose -
tumor response relations which will serve to guide therapy planning.

Thesis Supervisor: Dr. H. Frederick Bowman
Title: Director, Hyperthermia Program, Harvard-MIT Division of HST
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Chapter 1

Introduction

1.1 Hyperthermia Treatment

In the United States, over one million new cases of cancer are diagnosed each year and
more than one half million people die each year from cancer. The current methods of cancer
treatment include surgery, radiotherapy, chemotherapy, and immunotherapy. Local hyper-
thermia therapy, used in conjunction with radiation therapy, has received much attention in
the medical research community during the past decade as an additional method for treating
neoplastic (tumor) tissue [1]. The effectiveness and safety of hyperthermia depend on the
preferential elevation of tumor tissue temperature to therapeutic levels, typically 42 °C, [2],
with minimal perturbation to the surrounding, normal tissue.

Local hyperthermia has been induced using a variety of methods with the most common
using electromagnetic (radiofrequency and microwaves) and ultrasound energy. Delivery of
hyperthermic energy can be non-invasive, as is typically done with ultrasound applicators,
[3], intracavitally, as with transrectal microwave applicators, [4], or interstitially as with
electrically resistive probes, [5]. The effectiveness of the treatment delivery is typically
assessed by a limited number of invasive temperature sensors placed in the tumor region.
Issues concerning patient safety and comfort determine the exact placement of the tem-
perature sensor probes, rather than the desire to maximize information from the acquired
data.

The ideal delivery of hyperthermia therapy would parallel the current delivery paradigm
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of radiotherapy where treatment administration is quick and open loop - utilizing an “aim
and shoot” approach. Radiation dosimetry is sufficiently well understood such that no mea-
surement during treatment is necessary for treatment assessment. Hyperthermia delivery
and control, however, presently depend on invasive thermometry to measure the thermal
dose at the sensor sites with the assumption that these sites are representative of the dose
received by the entire target volume. Further, the concept of thermal dose - the temperature-
time history necessary to achieve a certain tumor response - is not well enough understood
to predict the tumor response from the true dose.

In order to permit a more accurate and realistic assessment of the treatment deliv-
ery, more quantitative tools are necessary. These tools ideally would aid in the treatment
planning to determine the optimal treatment parameters (transducer power, transducer ex-
citation pattern, and applicator-patient orientation), identify difficult to heat regions and
suggest temperature probe placement. After treatment, these tools would quantitatively re-
construct the temperature field based on in vivo temperature, power deposition and perfusion
measurements and determine the volumetric thermal dose statistics.

Central to the quantitative tools outlined above is a thermal model of the tissue hy-
perthermia treatment. Such a model would solve the three dimensional (3-D) temperature
field from the patient geometry, power deposition, thermal properties and perfusion. To
obtain the necessary inputs, the model would have to work in concert with patient imaging
systems, applicator characterization studies, thermal property and perfusion measurements
and the patient thermometry system. To be efficiently used by a clinician, the model would
have to interface to an interactive visualization system, capable of integrating the anatomic
surfaces with 3-D temperature, power deposition and thermal dose fields into a common
coordinate system. The thermal model would have to be able to solve the temperature field
with sufficient speed to permit interactive treatment planning. Ultimately, the most benefit
from thermal modeling would be obtained by solving the temperature field, in real-time,

during therapy to provide the clinician with timely feedback information to guide treatment

protocol.
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1.2 Tissue Thermal Models

In the hyperthermia therapy literature, the term thermal modeling actually consists of two

steps:

1. Determination of the significant mechanisms of tissue heat transfer (tissue conduc-
tion, internal heat generation, blood convection, and boundary conditions) and the

formulation of a set of approximate system equations.
2. Solution of the system of equations.

As with many engineering tasks, the demands of Step 1 - the model formulation - are
typically the most difficult and it is especially challenging when applied to the complex
heat and mass transfer of physiologic systems. The two steps, however, go hand-in-hand
and model formulation is generally performed such that the system of equations is solvable
given the application constraints and the a priori information about the physiologic system.

Tissue heat transfer is greatly dependent on the convection due to local blood flow.
Complete knowledge of the convection heat transfer requires that the blood flow vector
field is first characterized and modeled. This alone is a monumental task. The flow
vector field is determined from the coupled Navier-Stokes and continuity equations both
of which are 3-D, time dependent, partial differential equations applied to the irregular
geometry of the vasculature. The convection heat transfer is solved by applying the energy
equation, which is also a 3-D, time dependent partial differential equation, and Fourier heat
conduction to the vector flow field. Therefore, any model formulation of the tissue heat
transfer requires some simplifying assumptions.

Most simplifications employed in tissue heat transfer reduce the flow field to zero or
one-dimension which then converts the energy equation to a form solvable by standard
techniques. In the literature, the model formulation of the blood convection has been
the subject of much discussion and debate. There are twe major and divisive schools of
thought. The first is grounded in the theoretical foundations of heat and mass transfer in
the tissue and seeks a comprehensive theory of transport. Major proponents of this school

include Chen and Holmes, [6] and Jiji et al, [7, 8] who have proposed models which apply
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the conservation laws to a detailed description of the exact vascular morphology. These
vascular models have been applied to anatomical locations with a regular vasculature such
as a limb, (Song et al [9]), and a renal cortex, (Xu et al [10]). While these models are useful
tor the parametric exploration of tissue heat and mass transfer to determine the functional
form of various transport characteristics, they are impractical for application to predict the
tissue temperature in organs without a regularly arranged vasculature.

The other school of thought advocates the use of empirical expressions to model tissue
heat transfer. A prominent continuum model has been developed by Pennes, [11], from
invasive temperature measurements made in the human forearm. In this model, the heat and
mass transport due to blood flow are lumped together into a single term in the system energy
equation. The model neglects the total effect of the vascular morphology and assumes that
the net blood flow has no directionality. Thus, the flow field is a scalar quantity that
“perfuses” through the tissue. Blood flows into a tissue bed at the arterial temperature and
exists in thermal equilibrium with the tissue. If it is assumed that the arterial temperature is

equal to the initial and uniform baseline temperature, the Pennes bioheat transfer equation

becomes:

1 arT
LT g _ Sy, Q (1.1)

am Ot km km
where T is the tissue temperature elevation above the baseline; Q) is the applied heating;
k. 1s the tissue intrinsic thermal conductivity; o, is the tissue intrinsic thermal diffusivity;
w is the local perfusion rate; p, is the blood density; and c, is the blood specific heat. The
major limitations of the Pennes bioheat equation are that mass conservation is not satisfied
and the equation fails to predict the temperature near vessels whose diameter is on the order
of the characteristic thermal length scale. Otherwise, the model is extremely useful for
the prediction of temperature in tissue. There is a wealth of experimental and theoretical

analysis that shows the bioheat transfer equation to be a very useful and effective tool for

thermal modeling [12], [13], [10], [14].
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1.3 Hyperthermia Thermal Models

Thermal modeling for hyperthermia therapy plays many different roles depending on the
particular application. Models have been used to aid in applicator design, applicator
characterization, treatment optimization, treatment planning, post-treatment temperature
reconstruction, and real-time treatment evaluation. The model choice and formulation
depends greatly on the needs of the particular application in terms of model simplicity,
accuracy, calculation speed, available hardware, and accuracy and availability of the model
inputs. For example, the evaluation of an applicator design would most likely require a
model with high accuracy and need powerful hardware with a slower calculation speed
to achieve the modeling goals. On the other hand, a real-time model would most likely
require a simple estimation for the temperature which can be computed quickly on a modest
computer. The thermal models are solved by various means, such as analytical techniques
using integral transforms, finite element, finite difference, and boundary element methods
and hybrid or custom solution schemes. The use of these schemes depends on the model
formulation and the ultimate application.

Abdelazim and Hashish, [15], used a Padé approximation to solve the transient, 1-
D cylindrical bioheat equation. Jafaria and Higgins, [16], proposed a 2-D, cylindrical
model with an analytical solution to the bioheat transfer equation for use in treatment
planning. Edelstein-Keshet ez al, [17], used spherical and cylindrical analytical solutions
to the bioheat equation to define treatment descriptors such as the volume fraction above
a certain temperature and the weighted average temperature. These analytical models and
solutions require simple genmetries and homogeneous properties and their usefulness is
limited to providing insight into the parametric dependence of the bioheat equation.

Bowman, [18], used the finite element method to investigate the effect of inhomogeneous
tumor perfusion on the temperature profiles achieved during scanned, focused ultrasound.
Van Den Berg et al, [19] used the finite element method in space and the finite difference
method in time to solve the bioheat equation in a 2-D patient geometric representation
derived from patient CT scans of the pelvic region. Strohbehn et al, [20], applied the

finite element method to investigate 2-D pelvic hyperthermia by induction coil devices and
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radio frequency (RF) annular phased arrays. While the 2-D numerical models are able
to account for varying thermal properties, irregular patient geometries and unsyminetric
heating patterns, full 3-D modeling is necessary to accurately predict the temperature field
in patients.

Spiegel et al, [21], described a 3-D finite difference solution to determine the temperature
rise in an animal hyperthermia model. Panjehpour et al, [22], simulated the interstitial
hyperthermia using a 3-D solution to the bioheat equation. They compared steady-state
computed temperatures with those measured in an anesthetized dog and found that the
difference of 85% of the 80 temperature comparisons were less than 1.0 °C. Charny and
Levin, [23, 24], developed a 3-D finite element hyperthermia model of the lower leg from
CT scans. Their purpose was to characterize the heating from a mini-annular phased
array applicator. Lin et al, [25], used a finite difference solution of the bioheat equation
to determine the treatment parameters in a scanned, focused ultrasound system which
optimize the steady-state tumor temperature distribution. The authors demonstrate that
the simulated, optimized treatment parameters result in better temperature distributions,
however they also note that in clinical application, such an approach is limited due to
patient-to-patient variability in blood flow and tumor geometry. Martin et al, [4], used
a 3-D finite element solution of the bioheat equation to model transrectal, microwave
hyperthermia of the prostate and compared temperature calculations to an in vivo canine
experiment. Moros et al, [26], used a finite difference solution to the bioheat and the
Chen-Holmes equations, [6], to compare the results of these two model formulations to in
vivo hyperthermia induced by scanned-focused ultrasound. They found that the bioheat
equation produced better qualitative and quantitative comparisons with the experimental
data. O’Brien and Mekkaoui, [27], used an implicit finite difference method to solve for the
transient 3-D temperature fields for a simulated tumor near a bone or artery. Their purpose
is to model the tissue heating from a dual-beam microwave applicator. DeFord et al, [5],
used a finite difference algorithm of conductively heated interstitial hyperthermia needles
to identify the minimum temperature occurring between needles. A polynomial was fit to
the minimum temperatures as a function of power deposition and this it was used for the

on-line and real-time control of the applicator power.
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Clegg and Roemer, [28, 29, 30], have used a finite difference solution of the bioheat
equation to reconstruct the entire 3-D temperature field from a limited number of temperature
measurements taken during hyperthermia therapy. They define a number of zones in the
tissue and iteratively solve the model, varying the perfusion in each zone to minimize
the error between in vivo measurements and the finite difference calculation. When some
measurements are not used in the reconstruction, in order to validate the technique, the
error between the calculations and the majority of the unused measurements is less than
0.5 °C. However the reconstruction, as such, is an ill-posed state and parameter problem
for which the solution uniqueness is not guaranteed, the validity has yet to be demonstrated
and the reconstruction requires vast computational resources. Liauh et al, [31], compare
two different methods for computing the inverse solution for perfusion in temperature
reconstruction for the purpose of reducing the required computational time. Liauh and
Roemer, [32] demonstrated that multiple minima exist for the inverse solution of perfusion.
Liauh and Roemer, [33], describe an improved algorithm for the inverse solution of perfusion
which approximates the Jacobian matrix by assuming temperature to be a linear function
of perfusion.

The literature also contains references for 3-D thermal modeling using numerical tech-
niques other than finite element or finite difference. Potocki and Tharp, [34], used a
full-order extended Kalman filter to estimate the unknown perfusion and temperature from
discrete measurements to reconstruct the 3-D temperature field. Mooibroek and Lagendijik,
[35], formulated a 3-D solution algorithm from a modified finite difference scheme, which
expressly considers the effects of vessels. Martin et al, [36, 37, 38], developed the Basis
Element Method for the rapid 3-D temperature solution during hyperthermia treatment

planning.

1.4 Design of a Thermal Model for Therapy Planning

The successful application of thermal modeling to hyperthermia therapy planning requires
the model to work in conjunction with the necessary and available input parameters. The

planning system needs to be based on a geometric representation of patient anatomy de-
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rived from 3-D imaging such as CT scans. The therapist, during planning, identifies a
treatment portal to access the tumor with a given ultrasonic applicator. The ultrasound
power deposition field can be calculated in the tissue for the planned transducer excita-
tion configuration either from theoretical considerations, such as the Rayleigh diffraction
integral, from empirical relations determined from phantom experiments, or from a combi-
nation of theoretical and empirical relations. Tissue thermal properties and perfusion can be
taken from a database which contains the cumulative clinical experience of their measure-
ment. Patient geometry, power deposition, thermal properties and perfusion would then be
communicated to the thermal medel for the 3-D temperature field calculation. The thermal
field would then be available to the therapist to determine if a change in the treatment plan
is warranted. In particular, the therapist would take care not to over-heated critical organs
and not under-heat the tumor volume.

The context in which the thermal model is used places certain requirements and con-
straints on the model formulation and solution. For instance the model must be able to solve
for the 3-D temperature field allowing for inhomogeneous thermal properties and perfusion
and be able to consider boundary conditions of specified surface temperature, surface heat
flux and surface convection. The solution should be sufficiently accurate to safely plan the
treatment and the calculations should be available as fast as possible, ideally in real-time.

Of the thermal models reviewed above, the analytical models assume homogeneous
properties and perfusion and the 2-D models are unable to give sufficient accuracy for
planning. The 3-D finite element and finite difference solutions allow inhomogeneous
properties and perfusion and also provide potentially high accuracy (less than 0.05 °C).
This level of accuracy is usually attained with a nodal spacing of 2-5 mm in a tissue domain
of about 30x30x30 cm, for instance in a patient abdomen. Thus the total nodes required
number about 10°-10°. The computer resources and processor time necessary to solve a
mesh of this dimension are great. Usually investigators have used multiprocessor super-
computer facilities to achieve the solution. In addition, these methods depend heavily on an
adequate transformation of the continuous problem to the discrete representation. Improper
discretization (mesh generation) leads to inaccurate results and solution divergence. Often,

the methods must be solved multiple times to demonstrate convergence.
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For clinical therapy planning, the use of supercomputer facilities is not practical. At
best, an engineering workstation is available in the clinic. Further, the concept of solution
“accuracy” is not the most important criterion to judge a hyperthermia thermal model. The
inputs to any model - patient geometry, power deposition, thermal properties and perfusion
- are not generally known to an accuracy greater than 10%. Thus, attempts to seek a high
level of accuracy are fundamentally limited by the precision of the inputs.

Given the special needs of therapy planning, it should be possible to formulate a thermal
model which optimally balances accuracy with minimal solution and mesh generation time.
The accuracy should be about 0.3 °C (about 1%) and the computation time should take
on the order of 1 minute for the full 3-D field calculation. Further, the model should be
packaged in a robust software implementation which can be used by a clinician without the
assistance of an expert in numerical heat transfer.

This thesis describes the formulation, development and validation of a thermal model,
called the Basis Element Method (BEM), expressly designed for hyperthermia therapy
planning. The method is grounded in mathematical rigor, and is developed from insight
into tissue heat transfer. The model is based on the bioheat transfer equation and the solution
algorithm is derived from local and approximate solutions of the tissue heat transfer. This
algorithm has enormously simplified and speeded the calculations, while also considering
irregular geometries, complex heating patterns, and spatially varying perfusion and thermal
properties.

The thesis is divided into six chapters. Chapter 2 examines the determination of
the inputs available to the model - thermal properties, perfusion, and power deposition.
Chapter 3 describes the algorithm formulation and development. Chapter 4 presents the
current implementation of the algorithm. Chapter 5 demonstrates the algorithm validity
with comparisons to exact analytical solutions and approximate finite element solutions.
Chapter 6 compares the results from large animal and human hyperthermia experiments to

the model. Finally in Chapter 7, the conclusions are drawn.
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Chapter 2

Assessment of Treatment Parameters

The successful use of thermal modeling in hyperthermia depends greatly on the quantity
and quality of data furnished in the form of “inputs” to the model. These inputs are quanti-
tative descriptions of the patient specific treatment parameters which affect the temperature
reached during hyperthermia. In particular, these parameters include the patient geometry
and anatomy, the tissue thermal properties, the tissue perfusion, and the power deposition

in the tissue, often called the Specific Absorption Rate (SAR).

2.1 Patient Geometry and Anatomy

Quantitative information on the patient geometry and anatomy for the purposes of treatment
planning and evaluation are obtained from CT scans. In general, the construction of a 3-D

model of patient anatomy involves several steps.

1. The collection of 32 to 64 CT image scans in a bit-mapped form, usually with a

resolution of 256x256 pixels.

2. The segmentation of the images which identifies and groups entities together from

the bit-mapped images.

3. The interpolation of successive image segmentations to group the entities into tissue-

organ structures.
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4. The identification of the tissue-organ structures.

Piket-May et al, [39], describe a highly automated technique for the production of accurate
patient models from CT scans. They used the geometry of the patient-specific models
to solve for the SAR fields due to electromagnetic hyperthermia. James and Suilivan,
[40], also implemented a patient-specific model derived from CT scans, and they used the
scanned images to determine the tissue electromagnetic properties for use in the solution of
the SAR. Sullivan et al, [41], used patient-specific models from CT scans to compute the
power deposition fields and they reported the use of their system in clinical hyperthermia
treatment planning. Hansen et al, [42], have developed a treatment planning system, called
HYPER/Plan that uses CT derived patient models in conjunction with ultrasound SAR and
temperature calculations.

HYPER/Plan, developed at the Joint Center for Radiation Therapy (JCRT) and the
Dana-Farber Cancer Institute (DFCI) in Boston, MA, is the treatment planning system de-
signed to work in conjunction with the thermal model developed in this thesis. HYPER/Plan
consists of a set of modules built on a commercially available 3-D visualization software
package (AVS) from Advanced Visual Systems, Inc., Waltham, MA. AVS handles all the
lower level visual processing such as object lighting, shading, coloring, translation, and
rotation. HYPER/Plan contains routines which semi-automatically perform the segmen-
tation, interpolation and organ identification from the CT images. Further, HYPER/Plan
contains geometric models of the standard hyperthermia applicators used at the DFCL.

Figure 2-1 shows a picture of a patient-specific mode! generated by HYPER/Plan from
CT scans. The region of interest includes the tumor and the critical organs near the tumor.
In particular, the left lung, the ribs and the humerus could potentially be damaged by the
ultrasound during therapy. Therefore these organs are an important part of the patient model
while their right side counterparts are not.

The thermal model presented in this thesis is designed to interact with the information
from the patient and applicator geometry and the transducer excitation pattern contained
in HYPER/Plan to allow planning based on predicted temperatures rather than simply the
geometric configuration. To realize this goal, the other necessary inputs, thermal proper-

ties, perfusion and the power deposition must also be incorporated into the HYPER/Plan
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Skin

Figure 2-1: A patient specific model generated by HYPER/Plan from CT scans

coordinate base.

2.2 Thermal Properties and Perfusion

The use of the Pennes bioheat transfer equation as the theoretical basis for the thermal
model dictates the definition of the thermal properties: intrinsic diffusivity, a,,; intrinsic
thermal conductivity, k,,; and the tissue perfusion, w. These parameters must be quantified
and placed in a thermal property database for use in the thermal model. The database
should include the values of these parameters for the various tissues relevant to hyperther-
mia. A comprehensive database would also include the effects of various stimuli such as
temperature and sedatives, on the tissue perfusion. Ideally, the database should contain
perfusion and thermal property values taken from measurements made in the patient during
any previous hyperthermia sessions.

Bowman et al, [43], compiled in a review article an extensive tabulation of thermal
conductivity and thermal diffusivity values of various animal and human tissues. Chato,

[44], has also assembled together human and animal thermal properties. In general, thermal
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conductivity of tissue varies from a low of 0.2 W/m-°C for fat tissue with a low water content
to 0.6 W/m-°C for tissue with a high water content.

The measurement of pe.fusion, by various techniques, is widely reported in the liter-
ature. Such techniques include: radioactive tracer washout techniques; positron emission
tomography (PET); magnetic resonance imaging (MRI); radioactive microspheres; and
laser-Doppler flowmetry (LDF). The quality of perfusion data depends greatly on the mea-
surement technique employed. PET uses short half-life isotopes, requiring a special facility;
while MRI, due to its numerous other medical applicati~ns, may hold future promise. In
any case, both of these techniques are complex, expensive and do not permit routine moni-
toring. Both PET and MRI imaging are able to discern fluid motion, however it is not yet
possible to distinguish fluid diffusion from convection using these techniques. Radioactive
microspheres are suitable for perfusion validation studies in animal models, but are not used
for human measurements. LDF can provide continuous perfusion monitoring, however, the
signal depends on a number of factors, such as hematocrit, red blood cell velocity, vascular
geometry, and tissue optical properties which vary according to tissue type [45]. Thus, it
is not currently possible to apply the LDF calibration and measurements from one tissue
type to another. Further, it is unlikely that LDF units can be converted to absolute blood
flow in all tissues. LDF is useful, however, in validating the relative perfusion variation for

comparison to other measurement techniques.

2.2.1 Perfusion Measurement During Hyperthermia Therapy

In this section the perfusion and the intrinsic thermal conductivity of tumor tissue are
measured before, after and when possible during treatment. The purpose is to determine
values of the transport parameters and the variation of these parameters during actual
hyperthermia treatments. The limited number of measurements reported here are not
sufficient to create a perfusion database, but these measurements illustrate many of the
factors which influence perfusion level and variation.

Data are gathered using the thermal dilution technique [46], which in this case uses a
self-heated thermistor to step the thermistor temperature to a prescribed level using a closed

loop feedback circuit. The power dissipated in the thermistor as a function of time along
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with the temperature step and the calibration constants are analyzed to quantify the tissue
thermal properties. The employment of a far-field, passive "temperature sense thermistor”
allows continuous monitoring of perfusion even during changes in baseline temperature.

The data sets are analyzed with a special data analysis routine specially developed for these

experiments.

Hyperthermia Therapy Procedure

Tissue perfusion and tissue thermal property measurements were made on patients under-
going hyperthermia therapy at the Department of Radiation Therapy in the Dana-Farber
Cancer Institute, Boston, Massachusetts (Bowman ¢t al, [47]).

Perfusion measurements reported here were made on two patients. In conjunction with
the hyperthermia treatments, all patients received radiation treatment and chemotherapy
(bleomycine). Patient A received a total of six hyperthermia treatments and patient B
received a total of ten treatments. Patients A and B suffered from a recurring metastatic
tumor in the left axillary region.

Before the treatment, patients were given the chemotherapeutic drug, lorazepam (tran-
quilizing agent) and prochloroperazine (sedative and anti-emetic) intravenously. The tumor
was injected with Novocaine (local anesthetic) and two invasive probes, each with 2 ther-
mocouples, were inserted into the tumor to monitor temperature. The tumor surface was
instrumented with 12 thermocouples taped to the skin surface. The thermocouple tempera-
tures were monitored with a 16 channel thermometry system Model LT-100 (Labthermics,
Champaign, Illinois) and the temperatures were recorded with a PDP 1153 computer (Dig-
ital Equipment Corporation, Maynard, MA).

Local hyperthermia was induced with a segmented, plane wave ultrasound applicator,
the Sonotherm 1000 (Labthermics). The ultrasound power was computer controlled by the
PDP 1153. Prior to the instant of power on, the patients were given 50 mg of Demerol
(meperidine hydrochloride) as a sedative. Oftentimes, the patients were given another
dose of Demerol during the treatment. The ultrasound power was increased gradually and
the frequency was adjusted between 1 MHz and 3 MHz to maximize the temperature and

minimize patient discomfort. Throughout the treatment EKG was monitored with a Lifepak
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8 Cardiac Monitor (Physio Control) and blood pressure and pulse were monitored with a

Vital Signs Monitor (Critikon Dinamap).

Tissue Perfusion Measurement Procedure

A Thermal Diffusion Probe (TDP) Model TDP-109, serial number 25 (Thermal Technolo-
gies, Cambridge, MA) was used to measure tissue perfusion and thermal properties. A
continuous TDP probe was used for all the measurements. The probe was inserted into
the tumor through the sheath of a 16 gauge angiocatheter after the inner needle was first
removed. The sheath was then removed and the probe alone was taped in place. The probe
was usually placed in the growing margin of the tumor, outside the necrosis at a depth of
about 2 cm.

The data were recorded with an IBM compatible 286 PC laptop computer (Zenith)
running Version 2.86 of the TDP JCONTROL software. Data were taken before treatment,
after treatment and when possible, during treatment. The intrinsic tissue thermal properties,
thermal conductivity and thermal diffusivity were computed from the data using a post-

process data analysis routine.

Tissue Perfusion Measurement Results

Patient A was a male treated for metastatic lung cancer of the lymph nodes in the left
axillary region. Perfusion was measured at the approximate geometric center of a tumor
with dimensions 4 x 6 cm and 3 cm in depth. Perfusion measurements were made in 5 of
the 6 treatment sessions. The treatment on day 3 was not instrumented. Figure 2-2 shows a
summary of the perfusion measurements. Baseline pre-treatment perfusion increased from
day 1 to day 11 and decreased from day 11 to day 25. These single point measurements
also indicate that tumor blood flow increased after each treatment session relative to the
pre-treatment perfusion, in some cases by up to 200 percent. Thus it is expected that the
delivery of drugs to the tumor region would be enhanced by hyperthermia treatment. The
increase in pre-treatment baseline perfusion from day 1 to day 11 may be due to an increase
in tumor vascular compliance and/or tumor regression due to hyperthermia acting with

radiation to kill hypoxic cells distant from the vasculature, resulting in a relative increase
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Figure 2-2: Patient A Summary of pre- and post-treatment perfusion measurements

in vascular density. The decrease in pre-treatment baseline perfusion from day 11 to day
25 may be due to direct damage to the vasculature, since the endothelium is thought to be
a target of hyperthermia therapy.

Patient B was a 41 year old female with metastatic breast cancer to the lymph nodes in
the left axillary region. Perfusion was measured near the geometric center of the central
tumor mass. Measurements were made in 7 of the 10 hyperthermia sessions. Figure 2-3
shows of summary of the results. The measurements in patient B correlated in general
with the observations from patient A in that the post-treatment perfusions were elevated
relative to the pre-treatment perfusions. However, the baseline changes in pre-treatment
perfusion observed in patient B were not as well ordered as those observed in patient A. It
is interesting to note that the administration of Demerol in 4 recorded observations gave a

characteristic transient increase in perfusion of approximately 30 percent, lasting 400-500
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Figure 2-3: Patient B summary of pre- and post-treatment perfusion measurements.

seconds.

2.2.2 Discussion of the Clinical Perfusion Measurement

The clinical, tumor perfusion measurements reveal a most striking feature of tissue blood
flow: the variability. This variability in flow is seen at all levels and time windows of
the data collection and is clearly depicted in Figure 2-4. It is apparent that perfusion
changes from second-to-second with a variation of about 5% without the application of
external stimuli. This variation is thought to be a direct result of vasomotor activity in the
precapillary arterioles. The transient effect of Demerol on the perfusion is to increase flow
by about 30%, but the basic mechanism which causes this change is not known. Changing
patient position, with the arm extension, caused a dramatic drop in perfusion by about 60%.

This may have been due to shunting of flow by some vessels and a blocking of the flow in
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Figure 2-4: Patient 2: Continuous perfusion measurements made before and during treat-

ment.

other vessels in the position change.

The pre- and post-treatment measures of perfusion in Figure 2-2 show a series of
hyperthermia induced increases in flow. The line bars indicate not measurement ezror, but
variation in instantaneous flow averaged over several data runs. Further, the pre-treatment
flow level varies as a function of the course of therapy. Figure 2-3 shows similar variations,
but in a more disordered fashion. These variations in perfusion - as a function of drugs,
hyperthermia, course of therapy, and patient position - have grave implications for thermal
models of hyperthermia. The transfer of heat during therapy is almost always perfusion
dominated. Thus the accuracy of temperature predictions is directly related to the accuracy
of perfusion quantification. Since large perfusion variations during therapy are not only
possible, but normal and expected, perfusion needs to be monitored before, after and if

possible during therapy. These measurements need to be made as accurately and as densely
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as possible.

2.3 Power Deposition

Accurate thermal modeling in hyperthermia is directly dependent on the faithful represen-
tation of the power deposition in the tissue. Whether the heating method is by ultrasound,
microwaves, electromagnetic induction or capacitance heating, the power deposition dis-
tribution must be predicted for use in treatment planning and reconstructed for use in
post-treatment evaluation. Each of these heating modes uses waves of energy which are
directed toward and/or focused on the tissue target volume. The wave energy is converted
to heat energy througn the process of absorption by the tissue where certain vibrational
states of molecules are excited by the incident energy. Theoretically, knowledge of the
wave energy applicator, the tissue geometry, and the tissue properties when used with the
solution of the wave equation should predict the power deposition. In practice, various
simplifications must be made in order to arrive at a usable solution in a timely fashion.
Currently under evaluation at the DFCI, is a Focused Segmented Ultrasound Machine
(FSUM) which consists of 56 plane wave, non-phased square transducers mounted in a
hemispherical shaped applicator. To distribute, preferentially, the energy deposition over a
large tissue volume, the hemispherical shell of the FSUM undergoes a precessional motion.
Here, the analysis of power deposition is confined to ultrasonic sources, however the thermal

model presented in this thesis is completely independent of the type of heating device used.

2.3.1 Background

Ocheltree and Frizzell, [48], developed an efficient method for the numerical solution of
the sound field from a rectangular transducer insonating a homogeneous and absorbing
medium. Their method approximates the pressure at a point in the field by discretizing the
transducer into a number of small rectangular sources each of which makes a contribution
to the pressure field. The size of each rectangular source depends on the distance of the
point from the transducer. The algorithm is made efficient by finding the optimal discrete

source size for a given distance from the transducer. Their work is an important step in

37



being able to predict the power deposited by the FSUM device, however several practical
and theoretical limitations exist.

Harrison, [49], notes that in ceramic transducers, the mechanical and thermai stresses of
normal operation can change the efficiency and the spatial distribution of the radiated energy
over time. Further, the exact mounting configuration of the transducer can significantly
affect the radiation distribution. Hansen et al, [50], have noted efficiency and energy
distribution differences among the 56 identical transducers in the FSUM applicator. These
practical considerations all contribute to complicate the effort to predict the FSUM power
distribution.

Fan and Hynynen, [51], have shown that the existence of planar boundaries between
soft tissues of different ultrasonic properties generally has a negligible effect on altering
the power deposition pattern of focused ultrasound. Fan and Hynynen, [52], also showed
that curved boundaries between soft tissues of different ultrasonic properties may have an
effect when the radius of curvature is small enough. Bone tissue, however, which has an
absorption 10 times greater than that of most soft tissue, significantly distorts the ultrasound
field. Further the wave velocity in bone is about twice that of soft tissue. The large difference
in acoustic impedance between bone and soft tissue is known to cause undesirable heating
at the bone interface. Davis, [53], reports measurements that indicate the presence of bone
increases tissue temperature elevation by 50 percent. Air cavities in tissue, such as those
created by bowel gas and the lungs, are known to cause similar overheating effects. These
complexities make the accurate solution of power deposition a task at least as difficult as

the computation of the resulting temperature field.

2.3.2 Ultrasound Model

A rudimentary algorithm for the calculation of the ultrasound pressure and intensity fields
for the FSUM has been implemented based on the work of Ocheltree and Frizzell. Their
algorithm uses the Rayleigh integral which expresses the sound pressure at a given point
by:

e—(a+ik)r

jpC
— - 2.1
= g Ug . ds (2.1)
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Figure 2-5: Schematic diagram of the FSUM ultrasound applicator.

where p is the medium density, C is the phase velocity of the sound waves, u, is the velocity
amplitude of the piston, A is the wavelength, k is the wave number, « is the absorption
coefficient, r is the distance between the field point and an elemental area of the transducer,
and S is the surface area of the transducer. Figure 2-5 shows a 2-D cut away representation
of the FSUM applicator. Fifty six square transducers are mounted on the underside of
the hemispherical shell according to the transducer layout in Figure 2-5. The applicator

housing is filled with degassed water to couple the ultrasound energy to the patient surface.
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Figure 2-6: Normalized power deposition for a single FSUM transducer.

In order to demonstrate the use of Ocheltree and Frizzell algorithm with the FSUM ap-
plicator, some example power depositions were simulated without allowing the precessional
motion of the applicator. Figure 2-6 shows the ultrasound power deposition computed for
a single FSUM transducer insonating an absorbing raedium. The absorption coefficient is
0.35 Nepers/cm at the operating frequency of 1 MHz, which is a representative value of
many soft tissues. The power deposition is computed in the plane of the applicator center.
A limitation of the algorithm in application to the FSUM is that the degassed water in the
housing does not absorb ultrasound energy, but the tissue does. The algorithm, however,
assumes the absorption coefficient to be uniform over the entire domain. Thus the predicted
ultrasound field is more damped than the actual field. Further, the boundary between the
non-absorbing water and the absorbing tissue will, in practice, reflect some energy.

Figures 2-7 and 2-8 show the normalized power deposition from all the FSUM transduc-
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Figure 2-7: Normalized power deposition for all the FSUM transducers.

ers insonating an absorbing medium with an absorption coefficient of 0.35 Nepers/cm for
a plane that passes through the applicator center at Y=0 mm and where the Z coordinate is
taken from the transducer surface. In this computation, it has been assumed that the power
deposition at each field point is the sum of the power deposition from each transducer.
Strictly speaking, the computation should sum not the power deposition, but rather the field
pressures resulting from each transducer. Further, the ability of the FSUM applicator to
precess has not been taken into account in this analysis. It is possible to translate the power
deposition field in the manner of the FSUM precession in order to compute a time averaged
power deposition.

Based on the experience gained in implementing and using a computational model
for the ultrasound power deposition, it is clear that further analysis, both numerical and

experimental, is necessary before many issues relevant to routine treatment planning of
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Figure 2-8: Contour plot of the normalized power deposition for all the FSUM transducers.

ultrasound power deposition are resolved. An important issue is the CPU time necessary to
compute the ultrasound fields using the Ocheltree and Frizzell routine. It may be possible
to circumvent this routine by using a parametric representation of the field from each
individual ultrasound transducer. Davis, [53], has approximated the intensity profile from
a single transducer as a Gaussian function. It may be possible to use such a functional
form to characterize an intensity field from an individual transducer and compute the entire
FSUM field from the sum of the transducer parametric functions. As mentioned before,
an issue in ultrasound modeling is the intensity distributio:: near bone and soft tissue
interfaces. Breedlove, [54], has modeled this intensity increase at bone surfaces with a
one dimensional functional approximation. Using parametric representations, it should be
possible to develop a treatment planning ultrasound model that accounts for absorption and

reflection characteristics of the various tissue in human anatomy and includes the motion of
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the FSUM applicator and the multiple overlapping transducer beams. The development of
such a model is beyond the scope of this thesis. However, the development of the thermal
model has been guided in general by the observation that the inputs to the thermal model
- patient geometry, thermal properties, perfusion, and power deposition - are not usually
known to an accuracy greater than 10 percent. Thus the accuracy of the thermal calculations

is limited by the accuracy of the inputs.
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Chapter 3

Formulation of the Basis Element

Algorithm

The solution methodology of the algorithm described in this chapter can be considered a
subset of the “source domain methods”, [55]. However for the sake of clarity, this method
is denoted as the Basis Element Method (BEM). This chapter describes the theoretical
background and the algorithm formulation. The theoretical basis for the method is the
Green'’s theorem as applied to the bioheat equation where the temperature at any point
in the domain is computed as the convolution integral of the Green’s function over the
domain volume with internal heat generation. It is noted that the effect of blood flow acts
to damp thermal disturbances with an exponential space constant. This damping warrants
the separation of the volume integral into two parts: the volume thermally close to the point
in the domain where temperature is being computed (the observation point) and the volume
thermally distant from this domain point. In the algorithm formulation, the volume integral
of the Green’s function is further separated into a finite sum of local volume integrais. Exact
and approximate analytical expressions for the local volume integrals are derived. These
expressions are the Basis Elements and they represent the temperature increment resulting

from a source of finite dimension. This is in contrast to the infinitesimal sources of the

Green'’s function.



3.1 Theoretical Background

The solution algorithm for the bioheat equation (Equation (1.1)) is derived from the Green’s
function solution to the partial differential equation. The steady-state Green’s function for
Equation (1.1) is computed from a continuous point source of heat at 7 = 7}, satisfying,
[56]:

Viu — Mu =0 (3.1)
where u is the Green’s function which is used to construct the full solution with the
associated initial and boundary conditions. For example, in a region with applied heating,
zero initial temperature, and boundaries at specified temperatures, Tz(s), the solution for

the temperature field is:
T(7) = /V——k—n:’—u(r,rp)dV _ /STB(s)n-Vuds (3.2)

where V and S are the tissue volume and surface over which the integral is carried out and
7 is the unit normal vector from the boundary surface. This general solution decouples
the initial problem into different components, each representing separately the individual
effects of the power deposition (first term on the right side of Equation (3.2)) and the
boundary conditions (second term on the right side of Equation (3.2)). In the context of
interactive hyperthermia therapy planning, only those components of the temperature field
which are affected by a change in the treatment plan need be recalculated. This offers a
potential increase in speed, and also allows the separate effect of various changes to be
individually examined.

This approach has further advantages, which are better illustrated by considering the
Green’s function for an infinite non-perfused domain:

1

Unp (|7 = Tp]) = m (3.3)
in contrast to the Green’s function in an infinite domain with perfusion:
L. e~ A=
u(|f—7l) = yrr ] (3:4)

In comparing Equations (3.3) and (3.4), note that perfusion has the effect of damping the

influence of thermal perturbations with an exponential weight factor. The magnitude of the
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Table 3.1: Typical perfusion lengths for various tissues.

Tissue Perfusion L,
| [ m/min-100g] | [cm]
muscle 5 1.2
tumor 45 0.40
liver 100 0.27

exponential factor is governed by a length scale, called the perfusion length (L,), which is
inversely proportional to perfusion.

k 1
= 2= = 3.5
LP W P Ch A ( )

Table 3.1 shows some representative perfusion lengths for typical values of perfusion with
km = 0.5 W/m-°C, ¢,=4.2 J/g-°C, and p, = 1.0 g/cm’.

With consideration of the thermal damping, the integration volume can be broken up into
two separate components: 1) the volume, V;,;, which incorporates the thermally significant

sources and 2) the volume, V — V,,,;, which includes all the other sources.

1) = [ Dugnay + [ Belurnya, oo

km
4

Vine. = 3 T (Np LP)3
‘/int < V

where the volume V;,, is necessarily smaller than volume V' and V,, is an arbitrary constant.
These two terms in Equation (3.6) are treated separately according to the desired speed-
accuracy trade-off. The volume integral over V;,,, which contains the thermally significant
sources, is performed with greater accuracy than the volume integral over (V' — V;,,;) which
contains the less influential sources. This approach can potentially realize a great savings
in computational effort as the volume V,,, is reduced (smaller N,).

The BEM achieves significant efficiency at several levels of the computation. First,

savings in effort is realized as the volume of integration for each point is reduced. Second,
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changes in the heating field can be further decoupled into those which produce local changes
in temperature and those which are sufficiently far from the point of interest such that their
contribution to local temperature need not be considered. Third, tissue volumes which
include regions of non-uniform thermal properties, specifically perfusion, can be considered
within the context of this model. Although each specific Green’s function strictly applies to
the entire volume, in practice the damping effect of perfusion allows each Green’s function
to be an approximate, local solution to the bioheat equation, exerting influence on the tissue

temperature only in the immediate vicinity of the point source.

3.2 Algorithm Formulation

The method is formulated to solve steady-state 3-D tissue heat transfer problems on an
irregular geometry with variable internal heat generation, piece-wise homogeneous thermal
properties and perfusion and non-homogeneous boundary conditions. The Green'’s function
solution of Equation (1.1) forms the heart of the solution method and thus the algorithm
requires the appropriate Green’s function for each of the heat transfer situations encountered
within the context of tissue thermal modeling.

The formulation of the necessary Green'’s functions is greatly simplified by the limited
spatial influence of thermal disturbances. The main simplification afforded by the thermal
damping permits the Green’s functions associated with the irregular geometry, to be ap-
proximated with Green’s functions of regular geometry. For instance, an arbitrarily shaped
boundary is modeled as being in the limit either locally planar or locally spherical. Further,
the approximate Green’s functions need not consider all the thermal effects in the domain.
Only those effects in the thermally significant volume, V., need to be considered.

The algorithm formulation proceeds from the volume integral of Equation (3.6) by
re-writing the expression as a finite sum of local volume integrals.

(i) = [ IE::’) dv+2/ %) (5 7,) av, _eo+]z_;e 7)

where the point source position, 7, is in the volume over which the integral is performed
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and:
N

Vine = Pr Y V; (3.8)
j=1
where P is the “packing factor”. For completely efficient and continuous packing of the
integration volumes, Py is equal to 1.

The algorithm achieves further computational efficiency by analytically integrating
the expression in Equation (3.7) to give an approximate ciosed form result, ©;, for the
local integration volumes, V;. The particular ©;’s, however, depend on the actual thermal
situation influencing the source at 7%,. It can be imagined that ©; is the temperature increment
resulting from a source of finite dimension, located at 7, and whose source volume is V.

For clarity, the temperature increment ©;, is called the Basis Flement.

3.2.1 Finite Spherical Sources

For mathematical and computational simplicity, the local volume integral, V}, is taken over
a sphere centered at the point 7, and forms a spherical source. The sources are close-
hexagonally packed in the heated volume and weighted according to the magnitude of the
tissue internal heat generation at 7,. Figure 3-1 shows schematically how a general heating
function is approximated as a set of finite spherical sources.

Figure 3-2 shows the temperature construction from the sum of the contributions of the
sources in the near-field (the volume V/,,;) io the temperature at the point marked “X”. The
sources in the far-field, outside the volume V;,,; but inside the heated volume V', are lumped
together to form a single “macroscopic” Basis Element (©,).

The sources are densely packed into the heated tissue volume, as represented by Figure
3-1, to approximate the total power deposition. Each source gives rise to a Basis Element
and the temperature at a given point in the tissue is constructed from the sum of the

contributions of each source to the temperature at that point:
N
T(m) = 3. 6;( - 7I) (3.9)
Jj=1

where N is the number of sources; 7 is the position vector of the point at which temperature

is computed; and 7; is the position vector of the source j. A distinct advantage of Equation
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Figure 3-1: Finite spherical and uniform sources representing the heated volume.
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(3.9) is that the BEM is consistent with physical intuition. Thus, insight into the tissue heat
transfer can easily be employed within the context of the solution algorithm to simplify
and speed the temperature calculations. The temperature contribution from sources at a
distance of more than several perfusion lengths can neglected. This simplification allows
Equation (3.9) to be modified by summing the Basis Elements over a sub-volume which is

smaller than the heated volume. The temperature at a point is then:

M

T(F) = Y (-7l (3.10)
i=l1
M ~ L
M < N

where M is the number of sources over which the sum is made and is necessarily smaller
than N. The sources at each 7; position are contained within a tissue sub-volume around
the position 7 whose characteristic dimension is of the order L,.

In the following subsections, the derivations of the Basis Elements (©;’s) are presented
for the thermal situations explicitly considered. For these derivations, some dimensionless

variables are defined:

Ok, R’ R w py Cy 07
0j= Q]ja,z R = z‘ R+= T+ Pe = —k—m—- (311)

where 6; is the dimensionless temperature increment (Basis Element), k., is the conductivity,
a is the Basis Element radius, @, is the magnitude of the source, R’ is the source local radial
coordinate, R is the dimensionless radial coordinate, and Pe is a dimensionless parameter
which characterizes the ratio of energy convected by blood flow to the energy conducted
through the tissue. Figure 3-3 shows a schematic diagram of the process by which the Basis
Elements are derived. A source function is selected and the Basis Element is solved from
the source in the domain of the thermal situation being considered.

Individual Basis Elements are derived for a number of heat transfer conditions encoun-
tered in hyperthermic temperature field calculations. These Basis Elements apply to a
domain point near a planar or spherical boundary of the first, second or third kind, and near

a planar or spherical boundary separating subdomains of different thermal properties and
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perfusion. The following subsections detail the derivation of these Basis Elements and the

relevant assumptions made in their formulation.

3.2.2 Free Space Basis Elements

The free space Basis Element is used in situations where the spherical source is thermally
distant from any thermal disturbance, thus the tissue domain can be approximated as
spatially infinite with uniform thermal properties and perfusion. Three free space Basis
Elements are derived, each with different internal heat generation distributions: uniform,

exponential and Gaussian.

Uniform Basis Element

This Basis Element function is computed from the solution of the bioheat Equation (1.1)

for a sphere with uniform internal heat generation located in an infinite tissue volume with

uniform perfusion. The governing equation is:

1 dz(Tej)

i Peb; = —q, (3.12)
G =1 r<1 (3.13)
G =0 r>1 (3.14)

where 0; is the Basis Element j which results from the source j. Equation (3.12) is solved

with:
. —VPe o
6; = 1 | — ~VFe sinh(vVPer) e sinh(v/Per) 0<r<1 (315
Pe T v Pe T
—VFer -
e sinh(vPe)| 1
0]' = - [COSh(V Pe) — T‘ Pe Il<r (316)

Note that Equation (3.16) consists of the point source solution multiplied by a weight factor.
This characteristic is used later to aid in the derivation of approximate solutions for uniform

sources from the point source solution.

52



Finite Spherical Source

=T

(D

|
—b

) Q i
Finite Source Function

1 1 = r
, 0,
J
/ { Basis Element
—— ‘=>r
2 2
1 d (rOJ)—K 9]=_ql r<i
r dr2
2 2
i1 d (r6.) — A Gj=0 r>1

Figure 3-3: Finite Basis Element for a uniform source function.
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Exponential Basis Element

The exponential Basis Element function is computed from the solution of the Equation (1.1)

for an exponentially heated volume in a free (infinit.:) tissue volume:

26, 249, .
d—7_2- =+ ;g - Peﬁj = —e (3.17)

To solve Equation (3.17), a substitution is made:

@ (r6;) —r
'72‘]— — Pe (rﬂj) = —T€ (318)
The general solution to the differential equaticn is:

re’” 27
1 — Pe (1 — Pe)?

r6; = Cie VP + CheVPer — (3.19)

The boundary conditions stipulate that (1) the temperature tends towards zero as r tends
toward infinity and (2) the temperature is finite at 7 = 0. Condition (1) requires C, to be

zero and C) is solved from condition (1). The Basis Element function is thus:

2 _JPe _ e’
2 [VFer _ o] - 2
b = Ta=Pep [ "] - =7 (3:20)

Gaussian Basis Element

The Gaussian Basis Element function is computed from the solution of the Equation (1.1)

for a Gaussian heated tissue volume in free (infinite) space

d20; 2db; g2
a2 + e Pef; = —e (3.21)

To solve the previous equation, a substitution is made:

u = rﬁj (322)
d*u _r2
7 Peu = —re (3.23)

Equation (3.23) can be solved by means of a Fourier sine integral transform. The

transform is defined as follows:
oo 2 .
v(B) = /0 ,/;sm(ﬂr)u(r)dr (3.24)
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And the inversion formula is:

u(r) = /0 ~ \/% sin(8r)v(B)dB (3.25)
The term-by-term application of the integral transform turns equation 3.23 into an algebraic
equation [57].
28 _p2
— B — Pev = —Qe s (3.26)
The transform variable is then algebraically solved:
V2B -2
= - 3.27
o) = sper e (3.27)
The transform inversion formula from [57] is applied and 6, is solved.
1
; = 4—lTePe/4 [e'm’erfc(-z—\/Pe -7) - em’erfc(%\/Pe + 1) (3.28)

The top panel in Figure 3-4 shows the internal heat generation distribution through the

source and the bottom panel shows the resulting Basis Element.

3.2.3 Boundary Conditions

In order to consider the effect of boundary conditions on the domain temperature, special
boundary Basis Elements are derived. The procedure for deriving these Basis Elements is
different from the free space Basis Elements. In that case, the free space Basis Elements were
solved directly from the differential equation which describes the temperature resulting from
one of the finite source functions. In this case, the Basis Elements are found by a convolution
volume integral of the particular Green’s function over the finite source distribution.
Non-homogeneous boundary conditions are satisfied as the superposition of the tem-
perature resulting from the homogeneous and the non-homogeneous component. Figure
3-5 shows a schematic diagram of this superposition. The bioheat transfer equation in
the domain 2 with a boundary condition imposed on the surface S is split up into its

homogeneous and non-homogeneous boundary components:

T =T, + Tan (3.29)
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Figure 3-4: The internal heat generation distribution through the source is shown in the top

panel and the bottom panel shows the resulting Basis Element with Pe = 0.5.
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Q : k.VTh —wpper T = —Q(7) (3.30)

S kmi:':i +hT, =0 (3.31)
on
Q : knVTuh — wppcsTun = 0 (3.32)
S kmﬂft" + hT = f (3.33)
on

where T}, and T, are respectively the homogeneous and non-homogeneous temperature
components, h is the heat transfer coefficient and f is the boundary condition function.
Due to the effect of thermal damping by perfusion, the boundaries can be approximated
as either piece-wise planar or spherical surfaces. The solution for the homogeneous compo-
nent of the temperature (T}) is provided by the superposition of boundary Basis Elements
which maintain the homogeneous condition. These Basis Elements are derived from a
Green’s function influenced by a planar or spherical boundary with uniform homogeneous
boundary conditions. It is assumed that these Green’s functions take the form of the free
space Green’s function, w, (Equation (3.4)) plus a matching function, v, which insures that

the boundary condition is satisfied.
Q: u(F,7p) = w(F ) + v(7,7p) (3.34)

The form of the particular matching function, v, depends on the type of boundary condition
and the boundary geometry. The matching functions for boundary conditions of the first,
second and third kind applied on planar and spherical boundaries are formulated in the

following subsections.
The homogeneous boundary Basis Elements are determined from the convolution in-
tegral of the Green’s function, u, over the finite source distribution function, ¢, (uniform,

exponential, or Gaussian).
07 = | %u 7, 7,)dV (3.35)

where V/, is the volume of the finite source. Thus far in the method formulation, the boundary

Basis Elements have been derived only for the uniform source distribution function.
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Figure 3-5: Superposition of homogeneous and non-homogeneous boundary conditions.
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Planar Surface Boundary Conditions

The Green’s function for homogeneous boundary condition applied on a planar surface is
computed by transforming the coordinates of the free space Green’s function and matching
function to a polar system where the point source is at 7' = 0, y = —y, and the boundary is

at y = 0. The Green’s function with, v, the matching function in open form is as follows:

—X A /r12+(y+yp)2 0o J 7
uw = € + _1_ / Ae Yyl _eﬁL)nd,, (3.36)
4712 + (y + 1,)? 47 Jo v

v =P+ X (3.37)
P o= Vit + 22 (3.38)
where J,(z) is the zeroth order Bessel function of the first kind. The Fourier-Bessel
coefficient, A, is found depending on the type of boundary condition.
For the zero temperature condition on the planar boundary of a semi-infinite body, A is
found to be equal to — 1, [58], and the complete Green’s function is:

7 _ ]
Yy YA

= - Q'
“T 4rR T 4nR, (2:39)
R* =1 + (y + y)* + 2° (3.40)
RI=2+(y-w)+22=1""+(@-w) (3.41)

where z, y, and 2 are defined in Figure 3-6. It is evident that this Green’s function is the
combination of a source and a mirror sink positioned outside the domain. The Green’s
function u is then used in the volume integral of Equation (3.35) to compute the Basis
Element for this type of boundary condition. Since this integral has already been computed
for the free space uniform Basis Element, the result for the boundary Basis Element can be
immediately written.

£ (3.42)

b; = 2 cosh(v/Pe) — sinh(\/ITe)] R R
n

Pe v/ Pe

This method is also used to find the Green’s functions for the other boundary conditions

—VPeR e—ﬁmJ

applied on the plane. For the zero heat flux condition on the planar boundary, A is found to

be equal to —1 and the complete Green’s function is:
e R YA

= 471 R + 4T R,

u (3.43)
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Figure 3-6: Schematic diagram of a planar boundary Basis Element for external boundaries.

The volume integral of Equation (3.35) for the uniform Basis Element of the boundary

condition of the second kind is:

1 sinh(vVPe)] |e-VPeR  ~VPeR+
6; = P cosh(V Pe) — e ] 7 + R, (3.44)

In the case of a boundary condition of the third kind (convection), the coefficient A is:

PR s 3.45
~ Bi+ 7 (3-45)
Bz’:% (3.46)

For this boundary condition, a closed form of the integral in Equation (3.36) has not been

found. Thus, the Green’s function is approximated with a free space Green’s function plus
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a function which matches the boundary condition. The approximation is as follows.

e N e B [22() 4+ L) — Bi
T 4rR T 4ArR, [ (A+1)+ Bi

u (3.47)

The exact closed form convolution integral of this Green’s function over the uniform source
has not been found, but has been approximated using the results for the other boundary

Basis Elements.

6, = 1 cosh(v/ Pe) —

sinh(\/Pe)] {e“/}TaR e~VPeR+ [% (VPe+ %) — Bz]
Pe

+
VPe R R, |%(VPe+2)+Bi
(3.48)

The temperature component from the non-homogeneous boundary condition is com-

puted from the 1-D approximation for an infinite planar boundary:

d? T

Q k‘m — WP Cp Tnh =0 (3.49)
d y?
T,
Sy=0) : km% + T = f (3.50)

where y is the spatial coordinate and the boundary is at y = 0. For a boundary condition of

the first kind, the dimensionless temperature component is:

Tor
O = = = eV 51
h Ts € (3 )
where the boundary is fixed at temperature 7. For a boundary condition of the second

kind, the dimensionless temperature component is:

Tnh km 6)‘ y

Bnh =

where q is the heat flux and L is an arbitrary length scale. For the boundary condition of

the third kind, the the dimensionless temperature component is:

Oun = = :
T T, T Bi+ AL (3:53)
hL
Bi = == (3.54)

where T7 is the fluid temperature, B is the Biot number and 4 is the heat transfer coefficient.
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Spherical Surface Boundary Conditions

As mentioned above, irregularly curved external boundaries are approximated as being
locally spherical. Such an approximation requires the formulation of the Green’s function
for a spherical tissue domain with a boundary condition applied at the surface. Figure 3-7
shows a schematic diagram of the domain geometry with the point source. From Carslaw

and Jaeger, 1959, (page 381) [59] the free space Green’s function and the “matching

function are:

e R 1
U = - A, P, (AT 3.55
4 T R/ 47]’ 7" rp 1;) (lu‘) n,+ ( ) ( )
g = cos(¢) (3.56)
R? = %4 rﬁ —2r'rycos(¢) (3.57)

where [, 1 (z) is the modified Bessel function of the first kind, and P, () is the Legendre
polynomial of the first kind. The coefficients A, are determined from the particular
boundary condition. For instance, in the case of zero temperature rise on the sphere surface,

the Green’s function is:

(AT,
+1(AR.)

DJI_

U= e Z(2n+ 2 (1) Koy (AR 1 (A7) (3.58)

47 R 47\ /T'Tp n=0

AR I,
I

.n....

where R, is the radius of curvature for the surface and K 1 (z) is the modified Bessel
function of the second kind.

In order to obtain an efficient Basis Element, it is desirable to simplify the infinite series
into a closed form expression. Since an exact closed form is unrealizable, approximations
must be made to recast the solution. The approach taken is to eliminate two of the modified
Bessel functions of the first kind by expanding them into an infinite series representation,

[60], and combining terms.

ATt

™ ot .

25 i) = T35 gt /)] (3-59)

T 23 In+%(zl)ln+5'(22) _ (z, 2 = 1 [1+ f(z1,n) ][l + f(22,n)]
V2z 2 I,1(23) T vz T 1-3-5..2n41) [1+ f(z3,n)]

(3.60)
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Tl

This approximation is sufficiently valid in several cases: (1) 2} Or 2z, is a small number;

=) (3.61)

(2) 23 is close to z;; or (3) z3 is close to z;. The approximation is then combined with the

identity, [58]:
-AR'

R/

where 7' > 1,, otherwise 7’ and 7, are interchanged. Thus, the approximate Green’s

= S Cn+ D) Ky (M) Ty (Ary) (3.62)

n=0

function is:
’
—AR' A

€
=~ - 3.
"N 4rR T anR, (3.63)
R? = R? + (1RT—")2 — 27'r, cos(¢) (3.64)

where the spherical coordinates 7/, 7, and ¢ are defined in Figure 3-7.

The complete Basis Element for spherical external boundaries is determined from the
integral of the Green’s function in Equation (3.35) over the uniform source distribution.
The results from the free space and planar boundary Basis Elements can be borrowed to

give this approximate integral.

1 sinh(vV/Pe)] | eVPeR  g-VPeR+
6; = Pe cosh(v Pe) — NG ] [ R~ R, (3.65)
R? r'r 27'r
2 _ Tt PN2 P
R, = p; a,Rc) cos(o) (3.66)

Figure 3-8 shows a comparison between the Basis Element near a spherical boundary held
at zero temperature rise (Equation (3.65) plotted as symbols) and the exact solution for the
same problem (the numerical volume integral performed over Equation (3.55) plotted as
the solid line). The finite source has a radius of 1 and is centered at 1 = 0. The external
spherical boundary is located at r = 1.5 and has a radius of curvature of 6. The Péclet
number in the domain is 1. For these test parameters, the error is less than 2 percent and
the agreement is excellent over the entire range of physiological values of perfusion.

The Green’s functions for a spherical tissue volume with a homogeneous boundary

condition of the second kind differs from equation (3.55) by only a sign change.

= o L S n 1) Pu) K O (AR) HAT 6
= - 1 ntd ——d——
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Figure 3-7: Schematic diagram of a spherical boundary Basis Element for external bound-

aries.



! ! ! ' ! ' i
O BE approximate solution
— Exact solution
1 a0 1 ¥ —~
‘@
8 08F - s Ry e e e e T R -
20.
o Bounda
2 :
o
[+V]
E
EO 6 1 0 T T AT T T A P P -
e
o}
®
a
E 0.4 - S R R SRS -
A Finite source
0.2 —
o l l l 1 1 i ]
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6

r [ dimensionless ]

Figure 3-8: Comparison between the exact and approximate solutions for a uniform source

near a spherical boundary of the first kind.
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By following the same methodology as used above, the closed form Basis Element for a

homogeneous boundary of the second kind is found to be:

A -VPeR e—VPeRy
—Smlj%f—e)][e R G

The non-homogeneous temperature component for a spherical boundary is computed

0; ~ 1—31;- [cosh(V Pe)

from:
d? T 2 dT,n
Q km_d?"_'z ;;km—a?— - wpranh =0 (369)
dT,
S(r=R.) : kn —&ﬁ—" + hTw = f (3.70)

where r' is the radial coordinate and R, is the sphere radius. The solution for the non-

homogeneous boundary condition of the first kind is:

0., = Z"fi = _S_m_h(_.______ 'Per) (3.71)

T 7 sinh( v/ Pe)
where R, forms the length scale for Pe and r. The non-homogeneous second kind solution

is:
Tonkm sinh( v Per) (372)
g R, 7 v/ Pe cosh( v/ Pe) '

And the non-homogeneous third kind solution is:

anh =

0, = Ton _ sinh(vVPer) Bi (3.73)
T T Bi sinh(v/Pe) + sinh(v/Pe) — v/Pecosh(v/Pe)
Bi = hkR° (3.74)

3.2.4 Variable Thermal Properties and Perfusion

The Basis Element methodology models thermal properties and perfusion as varying spa-
tially in a piece-wise homogeneous fashion. The tissue domain is divided into subdomains,
each with different properties and perfusion. Figure 3-9 diagrams this model of spatially
varying perfusion. Regions in a subdomain thermally distant from the internal boundaries
are denoted as the continuous zones. The continuous zones lie several perfusion lengths

from any thermal perturbation, thus the free space Basis Element, Equations (3.15) and

66



transition

zones
discontinuity of thermal O
properties

Figure 3-9: Model for varying thermal properties and perfusion.

(3.16), is a valid approximation for the superposition of temperature in these zones. The
transition zones mark the areas where the contributions from more than one subdomain
must be considered. The solution for temperature in the transition zones near an arbitrarily
shaped internal surface is approximated as the superposition of Basis Elements influenced
by piece-wise planar or spherical internal surfaces.

The formulation of Basis Elements for computing the temperature in the transition
zones requires the derivation of the appropriate Green’s functions. The effect of the thermal
damping permits the entire domain to be locally approximated as consisting of no more
than two adjacent subdomains with either a planar or spherical boundary separation. Thus,
for instance, the Green’s function in subdomain 1 of Figure 3-9 is derived to consider only
the thermal effects of subdomains 1 and 2 and neglects the effect of subdomain 3.

For piece-wise properties and perfusion, the complete Green’s function, u,, in subdo-
main 1, is assumed to be the free space Green’s function plus a matching function which

insures continuity of heat flux and temperature across the subdomain separation. In the
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case where the point source is in subdomain 1, the Green’s function in subdomain 1 is:
Ql LUy (7-“, 7_‘;,) = w (F, Fp) + ’Ul('F, ’I-"p) (375)

where w; is the free space Green’s function and v, is the “matching” function. In subdomain

2, the Green’s function is:
Q1 uy(7,7p) = Bwy(T,7p) (3.76)

where w; is the free space Green’s function and B is a weight function that insures continuity
of temperature and heat flux across the subdomain boundary. The complete Green’s
functions, in both domains, are solved using various techniques, depending of the internal
boundary geometry. The formulation of these Green’s functions is detailed in the following
subsections.

The Basis Elements are determined from the convolution integral of the Green’s function,

u and u,, over the finite source distribution function, ¢, (uniform, exponential, or Gaussian).

— F — -

0,(7) = | "k( ’;)u,(r,rp)dV (3.77)
o F — -

O,(7) = s %’;luz(n Tp)dV (3.78)

where V; is the volume of the finite source. Thus far in the method formulation, the Basis

Elements have been derived only for the uniform source distribution function.

Planar Internal Boundary Basis Element

Figure 3-10 shows a schematic diagram for the formulation of the Green’s function for an
internal planar boundary which separates two semi-infinite subdomains of different thermal
properties and perfusion. This Green’s function has been solved by Carslaw and Jaeger,
(page 375) 1959 [59]. In subdomain 1, the solution is a free space Green’s function plus a
free space sink and a matching function in integral form and in subdomain 2, the solution

is integral form is:

e—,\lR’ e—/\l R'+ 1 00 e—m(y+yp) J , d 3.79
u'—47rR'—47rR’++57F/0 m+n772€°(€r)€ (3.79)
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l oo Kle"my—nlyp ,

- — £, 3.80
m = g [T e () de (3.80)
m =&+ A m=2+ XN (3.81)

\2 = Wi1Pb Co A2 = w2pp Co (3.82)
kml kmz
K = kma [ kmi (3.83)
v = Va2 4+ 22 (3.84)

In order to obtain an efficient Basis Element, it is desirable to simplify the open form
Green’s function into an approximate analytical expression. An approximate, closed form
solution consists of the free space point source and a closed form matching function. It is
further assumed that the matching function is a free space Green’s functions times a weight
function where the weight function is not a function of the source position. In each of the

two subdomains, the weight functions are solved by maintaining continuity of temperature
uy = Ku; at y =20 (3.85)

and heat flux across the internal boundary.
Ou _ Ouz
9y Oy

The approximate solution for for Green’s function in subdomain 1 is:

at 'y =0 (3.86)

-\ R “\ R ' _ r_
won o g et (AT R s AT (3.87)
47 R 47 R, | KT 4+ K + A1’ + 1
and subdomain 2 is:
1 e 2R MeT + Kk = Xr' — 1
N —— —m(Ai—X2) [ 1 2 38
T T [ M )\IKT'+R+AZT’+1] (3.88)
where:
R = 22 + (y+ )2 + 22 (3.89)
R, = 22 + (y - ) + & (3.90)
and the source is at (z = 0, y = —y,, 2 = 0) and R/, is the distance of the observation

point (z,y, 2) from the weighted mirror source associated with the matching function at

(z =0, y = yp, 2 =0). The corresponding Basis Elements are thus:
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Figure = -0: Schematic diagram of an internal planar boundary Basis Element.
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sinh(v/Pe;)
0 = P_ [cosh(\/ €) - —— JPe. X (3.91)
e~VPei Ry \/}Telnr+/~:— VPe;r — 1 (3.92)
47 R, VPeikr + k + VPeyr + 1 |

(3.93)

X

b, = _1 [cosh(\/_ ) — smh(;fj?,)]

1 e—\/ﬁﬂﬂe_r(\/},_ﬂ_mz) \/Pe KT+ K — v/ Peyr — (3.94)
47 R \/Pe,m"+n+\/Pezr+ 1

Spherical Internal Boundary Basis Element

Figure 3-11 shows the schematic diagram for the formulation of the Green’s function for an
internal boundary which separates a finite spherical subdomain from an infinite subdomain
of different thermal properties and perfusion. The finite tissue sphere has a perfusion of
wi, a thermal conductivity of k1, a point source at (r = 7, ¢ = 0) and is surrounded by
infinite tissue volume with perfusion of w, and and a thermal conductivity of k,. This
Green’s function has been solved by Carslaw and Jaeger, (page 381) 1959, [59], with, in
subdomain 1, a free space point source plus a matching function in integral form and in

subdomain 2, with an open form integral.

w = ‘:'I}; + Z A, Palu )ﬁ%—) (3.95)
L ff B, Po() mtt227) (3.96)
4 = NG
po = cos(e); (3.97)
R* = 1241227, cos(¢); (3.98)

where A, and B, are series coefficients and K, +1 (z) is the modified Bessel function of the
second kind. The coefficients, A, and B, are determined from the continuity of temperature
and heat flux condition at the internal boundary.

In order to obtain an efficient Basis Element, it is necessary to simplify the open forms

into approximate analytical expressions. The primary difficulty in this task arises from
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satisfying the continuity of heat flux condition at the boundary. An approach uses the low

order (n=0) derivative of the modified Bessel functions of the first and second kind.

IL(z) @ ¢

vl r (3.99)
d (L(2)\ _ ¢ 1 L(z) 1
E(ﬁ)~z =(1-3) = \/z(‘ ) (3.100)

KJ((z) [me*®

o2 ~ \/; - (3.101)

a‘.l; (K\"/(;)) ~ er' (e; + ez_z) " K\”/(;) (1 + é) (3.102)

Continuity of temperature across the boundary requires that:

Uy = KUy at IJ = Rc (3103)

e~ Re ad L 1(M Re) 1 & Koi1(M Re)
- A, P(p) —==—— = k— B, P,(n) —2=—— (3.104
ar kT AP = T L BuPulw) = (3.109)
R* =R+ 2 — 2 R.Tp cos(9); (3.105)

and continuity of heat flux across the boundary requires:

Ou;  Ouy

—6—7'7 = 57‘—, at r = R, (3106)

(M R,
47r\/_ Zo(zn + 1) Py(u )%Kﬂ%(,\.&) (1 + 1 ) (3.107)

+§.°:AP()I—"M(1— 1) (3.108)
Z AW TR, MR, ‘
e Kn-}-l(’\z RC) 1
~ 3 By Pa(u) 27 .
nzz:o (k) VR, (1 + /\2Rc) (3.109)

where R, is the radius of curvature of the tiss*'e sphere.
The coefficients A,, and B,, are solved using Equation (3.61) and the continuity condi-
tions. The approximation of Equation(3.61) allows the solution of the Green’s function to

be put in closed form.

—A R 14+ L — 1 _

1+ o+

E - _
47 R

(3.110)
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>
&
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+
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—

-2 R 1+ L -1 _1 (M—X2) R,
e e
- 2 Re £ Re (3.111)

1 1
47 R 1+/\ch+ +~/\2R¢ K

Uy ~

X ||

This approximate Green’s function is used in the volume integral of Equations (3.77)
and (3.78) to compute the Basis Element near internal spherical boundaries. In order to
demonstrate that this is a valid approximation, the exact solution for a uniform spherical
source near a spherical internal boundary is compared to the approximate formulation
derived from Equations (3.110) and (3.111). Figure 3-12 shows the comparison where the
finite source is centered at r = 0 and extends to 7 = 1. Inside the internal and spherical
tissue subdomain, the Péclét number is 1 and outside the spherical subdomain (R, = 1.5),
the Péclet number is 2. The results show excellent agreement between the approximate and

exact solutions (1 percent and less) over the entire range of perfusion values available in

physiology.
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Figure 3-12: Comparison of exact and approximate solution for a uniform source near a
spherical internal boundary between subdomains with differential thermal properties and

perfusion.
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Chapter 4

Implementation of the Basis Element

Method

This chapter describes the implementation of the Basis Element algorithm specific to this
thesis. The BEM is a generally applicable methodology for the solution of tissue heat
transfer problems. However, the implementation on which many of the results in this thesis
are based is by no means the only implementation possible. Much of the present algorithm
has been designed based on what was perceived to be both computationally fast and easy
to implement.

The algorithm takes as input a discrete representation of perfusion, thermal conduc-
tivity, internal heat generation and the coordinates of each domain node, and outputs the
temperature at the nodes. Issues specific to the method implementation concern the discrete
model representation of the continuous problem and the computer code incarnation of the
method. These are discussed below, along with the integration of the method into the

treatment visualization system.
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4.1 Discrete Model Representation

4.1.1 Geometry

The model represents the tissue as a three-dimensional Cartesian mesh of non-uniformly
spaced discrete domain nodes. It is at each domain node that thermal properties, perfusion
and SAR are stored and the temperature is computed. Each of the three coordinate axes has
a coordinate index (i for the X direction, j for the Y direction, and & for the Z direction).

Thus the position of any domain node in the tissue field is given by the position vector:
Togk = (Xijks Yijks Zijk) (4.1)

These points can be irregularly spaced with the restriction that:

Xivik > Xijk 4.2)
Yiisne > Yijk (4.3)
Z,',j, k+1 > Z,',j,k (44)

where ¢ ranges from O to /N, j ranges from O to /V,,, and £ ranges from 0 to /V,. The number
of domain nodes along a coordinate axis is typically between 20 and 60 depending on the
problem being modeled.

Domain nodes which lie on an external boundary are distinguished by their coordinate
index which is set to either 0, N;, Ny, or N,. Thus the boundaries, which are on the
extremes of the tissue domain, are also on the extremes of the coordinate index. Figure
4-1 shows the configuration of the geometric representation. The domain nodes are the
locations at which thermal properties, perfusion, and heat generation are discretized and

temperature is computed.

4.1.2 Basis Element Packing

Figure 4-2 shows a diagram of the close-hexagonal packing of the Basis Elements to

compute temperature. The configuration shows the relative position of the Basis Elements
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Figure 4-1: Schematic diagram of the representation of geometry.
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Domain Nodes

Figure 4-2: Close hexagonal packing of the Basis Elements in the domain.

and the domain nodes for the computation of temperature at the nodes. The centers of the
unshaded Basis Elements are inside the volume of integration and tiwus their contribution to
the temperature is summed, while the shaded Basis Elements are either ignored or lumped
together to form a macroscopic Basis Element. The conglomeration of the packed Basis
Elements, also called the lattice, is constructed for each node and aligned such that a Basis
Element center exactly coincides with the temperature node position, as shown in Figure
4-2. All the other Basis Elements in the lattice, however, do not necessarily coincide with
nodes and their position in the domain may vary somewhat arbitrarily.

Thermal properties, perfusion and internal heat generation must be determined for the
Basis Elements at these locations in the domain. Internal heat generation for each Basis
Element is computed by a trilinear interpolation using the ight nodes that surround the
position of the Basis Element center. The value of internal heat generation for a uniform
Basis Element is set equal to this interpolation value and the peak internal heat generation

of exponential and Gaussian Basis Elements are set to this value. The close hexagonal
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packing of the lattice implemented here is by no means the only possible method. Other as
of yet unexplored packing schemes, vary the Basis Element source radius as a function of

the distance from the temperature node.

4.1.3 Boundaries

The boundaries are surfaces which can be one of two types: 1) internal boundaries which
divide the tissue into subdomains that have different thermal properties and/or perfusion;
and 2) external boundaries which separate the tissue domain from the external environment
and therefore necessitate special consideration as thermal boundary conditions.

The mesh generation routines evaluate each domain node and determine if a node is
within NV, perfusion lengths of an internal or external boundary. If the node is found to be
thermally influenced by a boundary, the index of the nearest node which is either on the
boundary or just beyond the boundary (from the domain node) is stored. After this boundary
information is gathered for each domain node thermally influenced by a boundary, the unit
normal vectors, radius of curvature and the position of the boundary nodes are computed.
This processing is done “up-front” before any temperature computation is started.

Figure 4-3 shows a schematic diagram of the normal vector computation using a very
simple algorithm. The boundary node is shown in the center of the grid. The algorithm
proceeds by locating all the surrounding nodes in the grid which lie on the boundary and
computing the local position vectors relative to the center boundary node (%;). The normal
vector, for the center boundary node, is equal to the average of the cross-products of
successive vectors. This result is normalized to give the unit normal vector:

1

- - (4.5
| S T X Ty | )

N
A — -
n = 21 Vi X Vig1
i=]

where N is the number of neighboring boundary nodes. This method for computing the
normal vectors weighs more heavily the contributions from the larger triangles of Figure
4-3.

Once the unit normal vectors at all the boundary nodes are computed, the radius of
curvature at each boundary node can be determined using the geometry shown in Figure

4-4. The algorithm first locates the surrounding boundary nodes and computes the local

80



Figure 4-3: A schematic diagram of the algorithm for computing unit normal vectors at

each boundary point.

position vectors (7;) relative to the center boundary point. The inverse cosine of the dot
product of the unit normal vectors gives the angle for the arc. All the arcs surrounding a
node are averaged and the complete expression for the radius of curvature associated with

the node 1 is as follows:

1 & v, — @
R = 5 2 e R
i=1

2 sin| % cos™V(f; - Rig1) ]

where N is the number of neighboring boundary nodes.

External Boundaries

External boundary surfaces are defined by the coordinates of the domain nodes which lie on
these surfaces (i =0, N,; j =0, Ny; k =0, N,). Each external boundary node is associated
with a boundary area which is a continuous collection of boundary nodes having the same
thermal boundary condition. Each boundary area is characterized by its thermal type: first,

second or third kind; and the boundary parameters: boundary temperature, heat flux, heat
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Figure 4-4: A schematic diagram of the algorithm for computing the radius of curvature at

each boundary node.

transfer coefficient and convection fluid temperature.

Internal Boundaries

Internal boundaries differ from external boundaries in that domain nodes do not lie on the
boundary surface. The Basis Element algorithm takcs as input a 3-D matrix of perfusion
and thermal properties. There is no further provision for the representation of the tissue
internal boundaries. When the mesh generation routines determine the normal vectors for

the internal surfaces, the approximate position of the internal boundaries are computed.

4.2 Code Architecture

The computer code implementation of the Basis Element algorithm is built on a modular
design. Figure 4-5 shows a block diagram of the communication between the various

routines of different levels. The heart of the algorithm, the Basis Element routines, forms
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Figure 4-5: Block diagram of the Basis Element code implementation.

the lowest level of the diagram. They are called directly by the temperature calculation
routines which mediate the Basis Element packing and the Basis Element summation.
The trilinear interpolation and integer square root routines are called by the mid-level
temperature calculation and mesh generation routines.

In the context of a hyperthermia planning system, the inputs are from the patient model
and the perfusion-property database and the outputs are sent to the interactive visualiza-
tion system. The actual mediation of the temperature calculations depends on the desired
computation features: accuracy, CPU time, and spatial resolution. The complete inter-
active planning system will incorporate routines to automatically determine the algorithm

parameters (Basis Element source size, integration volume, etc.) based on the computation

features.
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4.2.1 Code Implementation

The Basis Element code consists of a total of about 7000 lines of standard ANSI C. The
routines are modular and self-contained in order to be linked to the treatment planning and
visualization system. The modular approach allows the same code to form the temperature
computation core which could potentially be accessed by several different input sources
for planning, reconstruction and ultimately real-time on-line computation. Appendix C
contains a line listing of the Basis Element C code routines.

The native ULTRIX Version 4.3 RISC C compiler was used to generate the machine
code which produced all the results in this thesis. The source code was always compiled
with full optimization (option -O3) and the resulting object code was stripped cf debugging

information.

4.2.2 Optimization

Optimization occurs throughout the BEM code and starts with an intelligent formulation
of the heat transfer problem and includes the implementation of highly efficient routines.
Higher level optimization in the cocde minimizes the total number of computations, for
instance, by the use of dimensionless variables. The lower level optimization removes

“bottle-necks” in the computation by techniques such as the use of fast integer computation.

Dimensionless Parameters

Two sets of dimensionless variables are used in the BEM - one that normalizes the variables
at the global problem level and the other that normalizes the local variables for the individual

Basis Elements. The global dimensionless variables include:

Q = 2 (4.7)

Qma:c

where ¢ is the dimensioned heat generation, ¢,,., is the maximum dimensioned heat gener-

ation and () is the dimensionless 3-D heat generation;

2
wpe e L (4.8)

Pe = e
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where Pe is the 3-D Péciét number matrix and L is an arbitrary length scale for the problem.
The choice of the length scale should correspond to the size of the heated volume.

The Basis Element routines are all formulated to take dimensionless inputs: geometry,
perfusion and thermal properties; and compute the dimensionless temperature. The Basis

Element source radius forms the length scale for the local problem:
T,
r = — (4.9)
a
where a is the source radius, 7’ is the dimensioned coordinate and r is the dimensionless
variable. The local length scale necessitates that the global Péclet number be converted to

a local Péclét number:

Pe, = W—pb %4 (410)
km
The local dimensionless temperature output is:
Tk
f = — 4.11
- (4.11)

where T is the dimensioned temperature.

Integer Coordinates

A typical patient model includes a tissue domain of dimension 30x30x30 cm. As discussed
in Section 2.1, the patient model is derived from CT scans, whose spatial accuracy in the
Z direction is no more than 3 mm. Therefore, it is unnecessary to represent the patient
geometry with 32 bit floating point precision. An optimal discretization of the geometry
need only have a spatial resolution less than 3 mm in the longitudinal direction of the
patient. The I mm maximum spatial resolution allows the use of integers for the geometric
representation, which requires less memory than floating point storage. Manipulation of
the integer geometry takes advantage of fast integer computation thus requiring less CPU

time than floating point geometry.

Square Root Algorithm

An analysis of the code execution time on a test problem revealed that about 80% of the

CPU time was taken up by computing square roots when the native compiler square root
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routine was used. Thus it was reasoned that the most savings of processor time is obtainable
by optimizing the computation of square roots. By far, the major part of these calculations
is performed on the domaiin geometry to compute the distance of a Basis Element from
a domain node by taking the magnitude of the difference of the position vectors. Since
integers are used to discretize the geometry, conversion of the square .00t calculations to
an optimized integer based calculation was envisioned. Higginbotham, [{61], developed
an integer square root algorithm using only addition and subtraction. Barrera and Olsson,
[62], developed a fast and accurate integer square root routine which uses only addition
and bit shifts. This algorithm was implemented into the Basis Element code as a high level
(C) language routine and it proved to be only marginally faster than the native, low level
(assembly) language square root routine.

A square root algorithm based on a “look-up table” was then implemented and achieved
significant savings in time. In such a scheme, the integer input to the routine is also the
index of an array which stores all the floating point values of the square roots from zero to
some maximum, MAX_SQUARE_ROOT. Above this value, the look-up table is bypassed
and the native square root routine is used. The result was a factor of 5 in savings of the

look-up table over the exclusive use of the native square root routine.
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Chapter 5

Analytical and Numerical Validation

In this chapter, the Basis Element solution of the bioheat transfer equation is validated
by direct comparison to problems with exact analytical solutions and to problems with
approximate numerical solutions. The configuration of these problems models various
anatomical situations found in hyperthermia practice. The exact analytic solutions, while
not realistic clinically, provide a means to test mathematically the limits of the accuracy of
the BEM in situations which mimic certain aspects of tissue heat transfer. The numerical
solutions allow comparisons using more complex configurations such as varying thermal
properties and perfusion, nonuniform power deposition, and irregular geometry. The
numerical solutions are realized by a finite element code to which comparisons are made

with regard to both accuracy and computational speed and effort.

5.1 Comparisons with Exact Analytical Problems

To demonstrate that the BEM is a valid solution of the bioheat transfer equation, this
section presents comparisons between the BEM and exact solutions to problems with simple
geometries. These problems, though too simple to actually be encountered in practice,
contain different aspects of situations relevant to tissue thermal modeling. The results from
the BEM are compared to exact analytical solutions of one dimensional problems. Except
where otherwise noted, the Basis Element radius used in these simulations is 1.5 mm and

the number of perfusion lengths (/V,) in the radius of integration is 9.
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In these comparisons, the concept of error as a measure of the closeness between
the BEM and the exact solution is not easily represented. Error could be defined as a
percentage where the difference between the exact and the BEM temperature is normalized
to a reference temperature. If a relative measure of error is desired, then the reference
temperature is chosen to be the maximum or average temperature. For an absolute measure
of error, the reference is the exact temperature.

The standard unit of error measurement which has been adopted for these comparisons
is the temperature difference in °C between the exact and BEM solutions. In this way,
the relative percent error is not misrepresented as being too low when normalized with a
high reference temperature, nor is the absolute percent error misrepresented as being too
high when normalized with a low reference temperature. Further, the concept of percent
temperature error may have little meaning in hyperthermia practice where temperature
differences less than 0.1 °C are insignificant. The standard application of temperature
difference as a measure of error requires a common peak temperature for all the comparison
problems. This has been insured by setting the peak temperature in all the test cases to 45

°C - the target temperature for local hyperthermia.

5.1.1 Infinite Domain with Uniform Properties
Uniform Internal Heat Generation

The first and simplest test case is an infinite tissue region with uniform internal heat
generation and uniform p:rfusion. Figure 5-1 shows a schematic diagram of this test case.

In such a case the thermal gradients are everywhere zero and the dimensionless temperature

is:
Thn _pg_ L _ b 1
Q,L>? = Pe wpcl?

where L is an arbitrary length scale and Pe is the Péclét number. This test case is used to

(5.1)

demonstrate the effect of the size of the integration volume on the solution accuracy. The
top panel of Figure 5-2 shows a plot of the temperature error of the BEM as a function of
N, from Equation (3.6) - the number of perfusion lengths in the radius of the volume of

integration. The perfusion everywhere is 20 ml/min-100g and the internal heat generation
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Figure 5-1: Schematic diagram of the infinite tissue region with uniform internal heat

generation, uniform perfusion and uniform thermal properties.

is 0.1132 W/cm>. As expected, this error decreases as the size of the integration volume
increases. The bottom panel shows the exponential increase in the number of Basis Elements

with an increase in V,,.

Discontinuous Internal Heat Generation

The second test case consists of an infinite tissue region with uniform thermal properties
(k»=0.5 W/m-°C), uniform perfusion (W =10 ml/min-100g) and discontinuous internal heat
generation (Q = 0.05566 W/cm?®). Figure 5-3 shows a schematic diagram of the test case.
An exact solution for the temperature is easily achievable by solving the two coupled 1-D,

second order differential equations in each of the regions. The dimensionless temperature
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Figure 5-3: Schematic diagram of the infinite tissue region with discontinuous internal heat

generation, uniform perfusion and uniform thermal properties.

in the heated region is:

o= Loy 5.2
and in the unheated region, the temperature is:
e Pezx
0 = 53
2 Pe (5-3)

where the division between the heated and unheated region is at x=0.

In the BEM algorithm, the infinite domain is modeled . 2 finite domain (a 300x300x300
mm cube) with N, = 9. The top panel of Figure 5-4 shows the temperature profile from the
heated region into the unheated region with exact solution (solid line) and the BEM solution
(symbols) with Basis Elements of uniform size. In the lower panel, the solid line shows the

temperature difference between the exact solution and uniform size Basis Elements with a
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maximum error of 0.27 °C. This level of error is due to the Basis Elements with a radius of
1.5 mm being unable to well represent the heating discontinuity. The dashed line shows the
difference between the exact solution and the BEM solution where the temperature on the
heating boundary was solved with Basis Elements of radius 0.375 mm and Basis Elements
with a 1.5 mm radius were used to compute temperature everywhere else. In this case, the
smaller Basis Elements are used tuv compute temperature at the discontinuity to give the

higher accuracy.

5.1.2 Infinite Domain with Differential Properties

Planar Tissue Boundary

The planar tissue boundary test cace consists of an infinite tissue domain with uniform
internal heat generation. The tissue domain is divided by a planar boundary into two
subdomains: one subdomain with perfusion of w; and thermal conductivity of k,,,; and the
other with perfusion of w, and thermal conductivity of &,,,. Figure 5-5 shows a schematic
diagram of the test case. The exact solution for the temperature in subdomain 1 is:

K 1
- _ YL Pa T Pa P (5.4)

6, = -
l Pe; \/P€11+ﬂ%

and the temperature in subdomain 2 is:

1 x _ _1

9, = _ P Py ~VPer 55
S = g+ (55)

where & = k,,5/km) and subdomain 1 is located at # < 0 and subdomain 2 is located at
> 0.

The top panel in Figure 5-6 shows a plot of the temperature across the interface. For
the case where W, = 10 ml/min-100g and W, = 15 ml/min-100g, the solid line is the
exact, analytical solution, while the circular symbols represent the temperature computed
by the BEM. For W; = 10 ml/min-100g and W, = 35 ml/min-100g, the dashed line is
the exact, analytical solution and the asterisk symbols represent the BEM solution. In both
cases the uniform internal heat generation is 0.055666 W/cm?>. The bottom panel of Figure

5-6 is the error in °C between the exact solutions and the BEM solutions. Here the solid
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line is the difference for W, = 15 ml/min-100g and the dashed line is the difference for
W> = 35 ml/min-100g.

The test case shows that the error is a maximum in the region nearest to the internal
boundary. This is consistent with the approximate treatment of the Basis Elements for
planar internal boundaries developed in Section 3.2.4. Further, the magnitude of the error
is not a strong function of the increased perfusion (dashed line in the bottom panel). In both
the high and low perfusion cases, several perfusion lengths distant from the boundary, the
error drops to the levels as seen in Figure 5-2 above for the case of uniform perfusion and
uniform heating.

A variation on the planar tissue boundary test case includes the same problem as above,
except the thermal conductivity in subdomain 1 is 0.5 W/m-°C while the conductivity in
subdomain 2 is 0.25 W/m-°C. The top panel in Figure 5-7 shows a plot of the temperature
across the interface. For the case where W, = 10 ml/miu-100g and W, = 15 ml/min-100g,
the solid line is the exact, analytical solution, while the circular symbols represent the
temperature computed by the BEM. For W; = 10 ml/min-100g and W, = 35 ml/min-100g,
the dashed line is the exact, analytical solution and the asterisk symbols represent the BEM
solution. In both cases the uniform internal heat generation is 0.055666 W/cm?®. The bottom
panel of Figure 5-7 is the error in °C between the exact solutions and the BEM solutions.
Here the solid line is the difference for W, = 15 ml/min-100g and the dashed line is the
difference for W, = 35 ml/min-100g. In this case the error is higher due to the larger

perfusion difference between the subdomains.

Spherical Tissue Boundary

The spherical tissue boundary test case concerns a spherical tissue subdomain with perfusion
of w and thermal conductivity of k,,,;, surrounded by an infinite tissue domain with perfusion
of w, and thermal conductivity of k,,, with uniform internal heat generation over the entire
tissue domain. Figure 5-3 shows a schematic diagram of this test case.

The exact solution for the temperature inside the sphere is:

oo L P~ Fer sioh(vPerr) g o
' Pe g sinh(v/Pe;) + P °°s'ﬂ<J~/f;Zenz)+—]sinh(\/P—e.> r :
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and outside the sphere, the temperature is:

1 —VPey(r-1) K
Pe, T % sinh( /Pel) + \/F’—CICOSh(\/\/}P?::;l-—ISinh(\/P_e])
« /Pe, cosh(v/Pe;) — sinh(1/Pe;) 58)

vV Pe;, + 1

where the sphere center is 7 = 0 and the sphere surface is at 7 = 1.

In this comparison, the perfusion in the tissue sphere, W, is equal to 10 ml/min-100g
and the thermal conductivity throughout the entire tissue volume is 0.5 W/m-°C. The top
panel in Figure 5-9 shows the temperature through the spherical subdomain. The solid line
represents the exact solution and the circular symbols mark the BEM solution for the case
where the surrounding perfusion, W5, is equal to 15 ml/min-100g. The dotted line is the
exact solution and the asterisk is the BEM solution for W, equal to 35 ml/min-100g. In
both cases the uniform internal heat generation is 0.055666 W/cm®. The bottom panel of
Figure 5-9 shows the error in terms of the difference in temperature between the exact and
BEM solutions. As expected, the error is largest near the boundaries and is a minimum
where the thermal gradient is small.

Figure 5-10 shows a comparison of the exact and BEM solutions for the same problem as
in Figure 5-9, but, the thermal conductivity outside the sphere (subdomain 2) is 0.25 W/m-
°C. The top panel in Figure 5-10 shows the temperature through the spherical subdomain.
The solid line is the exact solution and the circular symbols is the BEM solution for the
case where the surrounding perfusion, W, is equal to 15 ml/min-100g. The dotted line is
the exact and the asterisk is the BEM solution for W, equal to 35 ml/min-100Gg. The bottom
panel of Figure 5-10 shows the error in terms of tiie temperature difference between the
exact and BEM solutions. In this case, the variation in error has the same shape as in Figure

5-9, but the magnitude is larger.

5.1.3 Semi-Infinite Domain with Planar Boundary Conditions

In this subsection, a series of test cases are defined which have uniform internal heat
generation, uniform perfusion, uniform thermal properties and a semi-infinite geometry

bounded, at X = 0, by a planar surface at which a boundary condition of the first, second,
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Figure 5-8: Schematic diagram of the infinite tissue region with uniform internal heat gener-
ation and a spherical tissue subvolume dividing separating the subdomains with differential

perfusion and differential thermal properties.
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Figure 5-11: Schematic diagram of the semi-infinite tissue region with uniform internal

heat generation, perfusion and properties with a boundary condition at the planar surface.

or third kind is applied. Figure 5-11 shows a schematic diagram of this class of test cases,
with a general boundary condition at the surface. The exact solutions for the temperature
rise in these simple cases are easily available by the analytic solution of the 1-D differential
equation. The results from the BEM are compared with the exact solution to determine the

BEM’s ability to solve for the temperature at or near planar external boundaries.

First Kind

The semi-infinite domain is bounded by a plane at which a boundary condition of the first
kind is applied (constant surface temperature). With the boundary at z = 0, the exact

temperature is:

_ 1 1 —vVPez
0= 57— (57 = bo)e (5.9)
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Tk
- 5D

where 6, is the dimensionless boundary temperature.

6s (5.10)

The top panel of Figure 5-12 shows the temperature profile from the surface, held
at zero temperature rise, into the semi-infinite body for uniform internal heat generation
(Q = 0.05566 W/cm?), uniform perfusion (W = 10 ml/min-100g) and uniform thermal
conductivity (k,,=0.5 W/m-°C). The solid line is the exact solution and the symbols represent
the BEM solution. The bottom panel of Figure 5-12 shows the temperature difference
between the exact and BEM solutions. The error is small and is of the same order as the
minimum error in Figure 5-2.

Figure 5-13 shows the resuits for the same problem as in Figure 5-12, except the surface
boundary condition is non-homogeneous and held at 25 °C. The top panel is the temperature
profile from the surface into the semi-infinite body where the solid line is the exact solution
and the symbols are the BEM solution. The bottom panel shows the error in terms of the

temperature difference between the exact and BEM solutions.

Second Kind

For a boundary condition of the second kind, the exact solution for temperature is:

= ._L — _F_ —VPez
§ = Pe \/__ee (5.11)
- g
r = L (5.12)

where ¢ is the dimensioned and I" is the dimensionless boundary heat flux, both defined as
positive flow out of the tissue domain.

The top panel in Figure 5-14 shows the temperature profile from the planar surface of
a semi-infinite body with uniform internal heat generation (Q = 0.05566 W/cm?), uniform
perfusion (W = 10 ml/min-100Gg) and uniform thermal conductivity (k,,,=0.5 W/m-°C) with
a boundary condition of the second kind (constant heat flux, g = 0) at the surface. The solid
line is the exact solution and the symbols represent the BEM solution. The bottom panel of

Figure 5-14 shows the temperature difference between the exact and the BEM solution.
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Figure 5-15 shows the results for the same problem as in Figure 5-14, except the
surface boundary condition is non-homogeneous and g = 0.5 W/cm?. The top panel is the
temperature profile from the surface into the semi-infinite body where the solid line is the
exact solution and the symbols are the BEM solution. The bottom panel shows the error in

terms of the temperature difference between the exact and BEM solutions.

Third Kind

For a boundary condition of the third kind applied to the boundary, the exact solution is:

1 Bi(b;— %) e
0 — —— + Pe e Pex 5.13
Pe V' Pe + Bi (5:13)
Bi = %£ (5.14)
T ko
o= op (5.15)

where Bt is the Biot number, h is the heat transfer coefficient, Ty and 6 are the dimensioned
and the dimensionless fluid temperature respectively.

The top panel in Figure 5-16 shows the temperature profile from the planar surface of
a semi-infinite body with uniform internal heat generation (Q = 0.05566 W/cm?), uniform
perfusion (W = 10 ml/min-100g) and uniform thermal conductivity (k,,=0.5 W/m-°C) with
a boundary condition of the third kind (heat transfer coefficient, A = 0.01 W/cm?-°C and
T =25 °C) at the surface. The solid line is the exact solution and the symbols represent the
BEM solution. The bottom panel of Figure 5-16 shows the temperature difference between
the exact and the BEM solution.

Figure 5-17 shows the results for the same problem as in Figure 5-16, except that here,
the surface boundary condition is non-homogeneous with the external fluid temperature,
Ty, equal to 25 °C. The top panel is the temperature profile from the surface into the
semi-infinite body where the solid line is the exact solution and the symbols are the BEM
solution. The bottom panel shows the error in terms of the temperature difference between

the exact and BEM solutions.
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Figure 5-18: Schematic diagram of the finite tissue region with uniform internal heat
generation, perfusion and properties with a boundary condition applied at the spherical

surface.
5.1.4 Finite Spherical Domain Boundary Conditions

In this subsection, a series of test cases is defined which have uniform internal heat gen-
eration, uniform perfusion, and uniform thermal properties in a finite and spherical tissue
volume at which a boundary condition of the first, second, or third kind is applied. Figure
5-18 shows a schematic diagram of this class of test cases, with a general boundary condi-
tion applied at the surface. The exact solutions for the temperature rise in these simple cases
are easily available by the analytic solution of the 1-D differential equation in spherical
coordinates. The results obtained from the BEM are compared with the exact solution to
determine the BEM’s ability to solve for the temperature at or near spherical shaped external

boundaries.
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First Kind

In this test case, the finite tissue sphere has a boundary condition of the first kind applied to
the surface (zero surface temperature rise). The exact solution for the temperature is:

g _ L 1 _e)sinh(\/}Ter)
- *’ sinh(v/Pe)

e~ (Pe (5.16)
where the center of the sphere is at 7 = 0 and the boundary is at 7 = 1. In this solution, the
length scale which forms the dimensionless variables is the tissue sphere radius, R..

The top panel of Figure 5-19 shows the temperature profile from the sphere center to
the surface which is held at zero temperature rise. The domain has uniform internal heat
generation (Q = 0.05566 W/cm?), uniform perfusion (W = 10 ml/min-100g) and uniform
thermal conductivity (k,,=0.5 W/m-°C). The solid line is the exact solution and the symbols
represent the BEM solution. The bottom panel of Figure 5-19 shows the temperature
difference between the exact and BEM solutions.

A test case similar to the previous case is where the finite tissue sphere has a non-
homogeneous boundary condition of the first kind (non-zero surface temperature rise).
The top panel of Figure 5-20 shows the temperature profile from the sphere center to the
surface which is held at a constant temperature rise. The domain has uniform internal heat
generation (Q = 0.05566 W/cm?), uniform perfusion (W = 10 ml/min-100g) and uniform
thermal conductivity (k,,=0.5 W/m-°C). The solid line is the exact solution and the symbols

represent the BEM solution. The bottom panel of Figure 5-19 shows the temperature

difference between the exact and BEM solutions.

Second Kind

In this case, the finite tissue sphere has a homogeneous boundary condition of the second

kind applied to the surface (constant heat flux). The exact solution for temperature in this

case is:
0 — 1 T sinh(VPer) (5.17)
~ Pe v/ Pe cosh(v/ Pe)r '
q
= 5.1
"= ok (518)

where I' is the dimensionless heat flux, defined as positive out of the tissue sphere.
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The top panel of Figure 5-21 shows the temperature profile from the sphere center to the
surface. The domain has uniform internal heat generation (Q = 0.05566 W/cm?), uniform
perfusion (W = 10 ml/min-100g) and uniform thermal conductivity (k,, = 0.5 W/m-°C).
The solid line is the exact solution and the symbols represent the BEM solution. The
bottom panel of Figure 5-21 shows the temperature difference between the exact and BEM
solutions. As expected, the temperature profile is uniform.

Similar to the previous case is where the finite tissue sphere has a non-homogeneous
boundary condition of the second kind (non-zero heat flux). The top panel of Figure 5-22
shows the temperature profile from the sphere center to the surface. The domain has uniform
internal heat generation (Q = 0.05566 W/cm?), uniform perfusion (W = 10 mI/min-100g)
and uniform thermal conductivity (k,,=0.5 W/m-°C). The solid line is the exact solution
and the symbols represent the BEM solution. The bottom panel of Figure 5-22 shows the

temperature difference between the exact and BEM solutions.

Third Kind

In this case, the finite tissue sphere is convectively cooled at the surface. The exact solution

for temperature is:

1 Bi(:- — ;) sinh(v/Per)
Pe  \/Pe cosh(v/Pe) + Bi sinh(y/Pe) T

where Bi is the Biot number and 6y is the dimensionless cooling fluid temperature.

(5.19)

0 =

The top panel in Figure 5-23 shows the temperature profile from the center of the sphere
with uniform internal heat generation (Q = 0.05566 W/cm?), uniform perfusion (W = 10
ml/min-100g) and uniform thermal conductivity (k,,=0.5 W/m-°C) with a homogeneous
boundary condition of the third kind (heat transfer coefficient, A = 0.01 W/cm?-°C) at the
surface. The solid line is the exact solution and the symbols represent the BEM solution.
The bottom panel of Figure 5-23 shows the temperature difference between the exact and
the BEM solution.

Figure 5-24 shows the results for the same problem as in Figure 5-23, except that here,
the surface boundary condition is non-homogeneous with the external fluid temperature,

Ty, equal to 25 °C. The top panel is the temperature profile from the center of the sphere to
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Figure 5-21: Temperature profile from the center of a finite, spherical tissue volume with
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of the second kind (top panel). The bottom panel shows the temperature difference for the
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the surface where the solid line is the exact solution and the symbols are the BEM solution.
The bottom panel shows the error in terms of the temperature difference between the exact

and BEM solutions.
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5.2 Comparisons with Finite Element Solutions

The previous comparisons of the BEM with analytical solutions to the bioheat transfer
equation demonstrate the validity of the BEM and the level of accuracy obtainable for
certain conditions found in hyperthermia heat transfer. A more rigorous test of the method
requires problems that more closely match the clinical situation in which the geometry is
derived from patient anatomy. In such cases of irregular geometry and variable perfusion,
an independent reference solution whose accuracy is far greater than that of the BEM, must
be used. Such an independent numerical solution is provided by the finite element method
(FEM), the results of which are compared to the BEM for the case with irregular geometry

and differential perfusion.

5.2.1 Description of the Finite Eilement Method

The FEM is an extension of the Rayleigh-Ritz and Galerkin techniques to solve partial
differential equations where the continuous domain is discretized into elements and placed
into a variational form. Piece-wise continuous polynomials are used as trial functions over
each element, and the approximate solution consists of a sum of weighted trial functions.
The Rayleigh-Ritz technique solves for the weights by minimizing the potential “energy”
contained in the linear combination of the trial functions. The more general Galerkin
technique solves for the weights using the weak form. The discrete set of equations is
assembled into a matrix, called the stiffness matrix, and direct elimination is used to solve
for the weights [63].

The power of the finite element method lies in its general applicability to solve many
different types of differential equations (parabolic, hyperbolic, elliptical, etc.) on an arbi-
trary three-dimensional geometry. The degree of accuracy possible is very high (a fraction
of a percent temperature error), however vast computational resources are necessary to
achieve this accuracy. For example, Gaussian elimination is generally used for the matrix
inversion, requiring on the order of N* operations, where N is the number of nodes or
degrees of freedom, [64]. In any case, the entire field must be solved for at once. In

addition, the method depends on an adequate transformation of the continuous problem
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to a discrete representation. Improper discretization (mesh generation) leads to inaccurate
results and solution divergence. Often, finite element meshes need to be solved multiple
times to demonstrate convergence.

For comparisons with the BEM, the FEM, as implemented in the NEKTON software
package, is used, [65]. Strictly speaking, NEKTON uses the spectral element method which
employs a variational form with high order (Legendre) polynomials as the trial functions,

[66]. The system “stiffness” matrix is solved by an iterative scheme.

5.2.2 Accuracy of the Finite Element Comparison

In order to determine the accuracy of NEKTON in solving problems with differential
perfusion, a comparison is made with the test case presented in Section 5.1.2 which consists
of a tissue sphere with perfusion of W in an infinite domain with perfusion of W,. For
comparison, the NEKTON mesh consists of 204 elements and each element has 125 nodes
for a total of 25,500 nodes. Fifth order polynomials were used for the trial functions across
each element. The BEM used finite sources with a radius of 1.5 mm and an integration
volume with a radius of 7 perfusion lengths (L,’s). A dedicated Digital DECstation
5000/133 running the ULTRIX 4.3 operating system was the platform used in both the
NEKTON computation and BEM. Figures 5-25 and 5-26 contain the results of Figure 5-9,
but plotted here in contrast to the NEKTON solution of the same problem. The top panels of
the Figures 5-25 and 5-26 show the temperature profiles across the spherical tissue volume
for the BEM, NEKTON and the exact solutions, while the bottom panels show the error
for NEKTON and the BEM. In these two cases, the results indicate that NEKTON is about
an order of magnitude more accurate than the BEM. Thus NEKTON provides sufficient
accuracy to serve as a standard against which the BEM can be judged.

The previously described problem can be used to investigate the trade-off between
computational speed and solution accuracy for the BEM and the speed relative to NEKTON.
For the BEM, finite source size and integration volume size are independent parameters
that determine the degree of solution accuracy (and thus computational time). In this
comparison, the BEM was required to compute temperature at as many nodes as NEKTON

(29,791). Figure 5-27 shows the results when these parameters are varied together to
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solve the same problem in Figure 5-26. The figure shows the RMS temperature error as
a function of computational time for NEKTON and the BEM with various settings of the
computational parameters. Each curve of connected symbols represents the temperature
error of the BEM with constant size Basis Elements and /N, varied from 2 to 8. Error in the
BEM comes from two primary components: 1) the limited size of the integration volume
which causes a small under-estimation of temperature and 2) the finite size of the Basis
Elements which causes a small over-estimation of temperature. For small NV, the error
from the limited integration volume is dominant and at higher V, the error from the Basis
Element size is dominant. Figure 5-27 clearly shows these two components of error and
note that the minima of each curve corresponds to where the errors cancel each other out.
The asterisk symbols are for three different NEKTON solutions which use third, fifth and
seventh order polynomials as the trial functions with the higher order polynomials requiring
more computation time.

Given the two governing parameters which control the BEM - the Element size and the
integration volume - the BEM has more degrees of freedom in selecting an operating point
for the desired speed-accuracy trade-off. The temperature field computation for interactive
treatment planning needs to take place in less than 5 minutes. Figure 5-27 shows that for
a desired speed of 5 minutes, the RMS error is about 0.3 °C for a Basis Element size of 3
mm. If higher accuracy is required, the BEM is capable of providing accuracy as high as

NEKTON, but with longer computation time.

5.2.3 Irregularly Shaped Tissue Subdomain

The irregularly shaped tissue subdomain is representative of the geometry found in anatom-
ical structures. It is used in this section to create a test problem for comparison between
NEKTON and the BEM. A three-dimensional cardioid-ellipsoidal shape, shown in Figure
5-28 is used to parameterize the irregularly shaped tissue region. The geometry is mathe-
matically described, yet can possess irregular features, [67]. In this example, the subvolume
is used to model a tumor which has perfusion different from the surrounding tissue.

In the first test, the model “‘kidney” structure is located in an infinite tissue volume with

uniform internal heat generation (Q = 0.05566 W/cm?®) and uniform thermal conductivity
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Figure 5-27: RMS temperature error for the BEM and NEKTON as a function of time.
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Figure 5-28: Cardioid-ellipse sub-volume used for the evaluation of the BEM.
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(km = 0.5 W/m-°C). Perfusion inside the structure is 10 ml/min-100g, and outside, in the
surrounding tissue, is 15 ml/min-100g. The NEKTON and BEM computation parameters
are the same as those used in Section 5.2.2. Figure 5-29 shows the temperature profile
through the central axis of the structure (Y = 14 cm and Z = 0 cm) as computed by
NEKTON (the solid line) and the BEM (the symbols). The RMS temperature difference
along this line is 0.18 °C and the maximum error is 0.33 °C. The second test using the
kidney structure is the same as the first test above, except that the tissue outside of the
structure has a perfusion of 35 ml/min-100g. Figure 5-30 shows the temperature through
the central axis of the structure as computed by NEKTON (the solid line) and the BEM (the
symbols). The RMS temperature difference along this line is 0.23 °C and the maximum
error is 0.60 °C. Note that in both cases, the error is a maximum at the internal boundary

and increases with the increase in the perfusion difference.
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5.3 Validation Discussion

In this section, the results of the analytical and numerical validation are discussed in terms
of the accuracy of the BEM solutions. For the most part, the BEM errors are the sum of a

combination of errors from the solution methodology and the algorithm implementation.

5.3.1 Methodological Errors

Methodological errors : re those which result from the underlying formulation of the BEM.
These errors arise from such conditions as the limited volume of integration, the size of the
Basis Elements, the packing of the Basis Elements and the internal and external boundary

Basis Element formulations.

Volume of Integration

The use of the limited volume of integration, as discussed in Section 3.1, neglects sources
that are thermally distant from the domain node at which the temperature is being computed.
“Thermally distant” is defined as being more than N, perfusion lengths away, where NV, is
an arbitrary constant whose increase in magnitude is proportional to ai increase in solution
accuracy.

For nominal values of N, (3-8), the limited volume of integration is the source of the
most significant errors and causes the BEM to necessarily under-estimate the temperature.
This stands to reason because neglecting the distant sources, introduces less energy into the
tissue. It is possible, at least in a theoretical sense, to compute this resulting temperature
error. Consider an infinite tissue domain with uniform thermal properties, perfusion and
internal heat generation that is everywhere uniform except in a spherical volume which
surrounds the domain node. This spherical volume has a radius equal to N, L, and an
internal heat generation equal to zero. The deﬁmt of power deposition models the finite
sources which have already been considered by the BEM in the computation for temperature.

A simple 1-D analytical solution for temperature at the center of the sphere (the domain
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node) gives the following result for the dimensionless temperature error:

VPt

€
ENL = TNL(VP(?NL + l) (520)
Peny = “*2N2L (5.21)
PCNL = N2 (522)

P

It is possible to recalculate the results of Figure 5-2 and compare with the theoretical
error as computed by Equation (5.20). Figure 5-31 shows semi-log plot of the theoretical
error (symbols) with the actual BEM error (solid line). The plot shows distinctly two
regions for the actual BEM error. The region less than 5 perfusion lengths is predicted well
by Equation (5.20), and the error is attributed primarily to the limited volume of integration
which under estimates the temperature. The error in the region greater than 8 perfusion
lengths is due to the combination of the other error sources, some of which are discussed
below. These errors cause temperature to be slightly over-estimated and thus between 5 and
7 perfusion lengths the two types of error cancel each other out and create the “null” at about
N,=6.25. The position and the existence of the null depends on the problem geometry, the

power deposition and the perfusion.

Basis Element Size

The theoretical foundation of the BEM, as discussed in Section 3.1, lies in the Green’s
function solution to the bioheat transfer equation. In this formulation, internal heat gener-
ation is transformed into the volume integration of weighted point sources over the heated
volume. The BEM, however, approximately represents the internal heat generation with
the summation of weighted finite sources in the heated volume. Mathematically, as the size
of the finite sources becomes smaller, the exact point source transformation is approached
and the solution for temperature becomes more exact.

This is illustrated by revisiting the example problem of Section 5.1.1, which has uni-
form thermal properties, uniform perfusion and uniform internal heat generation. Figure
5-32 shows a plot of percent temperature error as a function of Basis Element size where

the integration volume radius is equal to 10 perfusion lengths. The dashed line shows
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point geometric computation (solid line) and integer geometric computation (broken line).

the temperature error using the standard integer geometric computation of the BEM im-
piementation. The solid line shows the temperature error using floating point geometric
computation. Note that as the Basis Elements become smaller, the error for both cases
decreases. However, the error for the integer case reaches a minimum at about 2 percent,
while the floating point case continues to decrease. This difference in error is due to the
fact that the spatial resolution of the integer computation is 1 mm. At larger Basis Element
radii, this resolution is insignificant and at smaller radii, the uncertainty in the Basis Element

position causes this error.

Basis Element Packing

The current implementation of the BEM uses close-hexagonal packing of finite sources

to represent the heated volume. This packing scheme, as well as others, introduces small
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errors into the solution by the misrepresentation of the local internal heat distribution. The
packing forms void space between neighboring sources in which there is no internal heat
generation. Globally, energy conservation is satisfied by scaling up the power deposition
to compensate for the power that is not deposited in the void-space. Locally, this causes
spatial variations in the internal heat generation with a periodicity of the Basis Element
diameter and causes errors in the temperature computation.

This effect can be illustrated using, again, the test case of Section 5.1.1. Figure 5-
33 shows a plot of percent temperature error as a function of distance through the tissue
domain, normalized for the Basis Element radius. The abscissa in Figure 5-33 cuts through
the center of two adjacent Basis Elements at 0 and 2. The periodic variation of temperature
error is quite apparent in this figure and as expected, the temperature is over-estimated at the
Basis Element centers. In normal operation of the BEM and in the validation studies carried
out in Sections 5.1 and 5.2, the Basis Element lattice is always shifted such that the center
of a Basis Element coincides with the domain node. This is to insure consistency in the

BEM results, however, it is not a limitation or constraint of the method or implementation.

Internal Boundary Basis Element Errors

Errors arising from the internal boundary Basis Elements are caused by a combination of the
closed form approximation made to the exact, open form solutions for the Basis Elements,
and the approximation of the internal boundaries as being locally planar or locally spherical.

For locally planar boundaries, the Basis Element formulation, which uses the method
of images, matches the temperature and heat flux at the boundary, but approximately solves
the bioheat transfer equation. In the limit however, as perfusion tends to zero, the exact
solution is approached. Therefore, it is expected that lower perfusion decreases the errors
associated with these Basis Elements. This is somewhat demonstrated in Figure 5-6, where
the error is greater in the case of perfusion equal to 35 ml/min-100g (0.32 °C) than in the
case of perfusion equal to 15 ml/min-100g (0.27 °C).

For locally spherical boundaries, the Basis Element formulation also maintains the
continuity of temperature and heat flux across the internal boundary and approximately

solves the bioheat transfer equation. As with the planar boundaries, the error associated
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with the spherical boundary Basis Eiements decreases with decreasing perfusion. Figure
5-9 shows the error in the case of perfusion equal to 15 ml/min-100g is 0.13 °C and in
the case of perfusion equal to 35 ml/min-100g is 0.49 °C. From the exact and NEKTON
comparisons, e effect of approximating internal boundaries as locally spherical is not
completely clear. In the NEKTON-BEM comparison with the kidney structure problem,
the boundary is ellipsoidal. Figure 5-29 shows the maximum temperature difference to
be 0.32 °C, higher than the error of 0.13 °C in the exact comparison in Figure 5-9. This
increase in error for the NEKTON-BEM comparison over the BEM-exact comparison is
due to a combination of the error in non-spherical boundary of the kidney structure and the
error in the discrete representation of the geometry. The error due to the discrete geometry

1s discussed further below.

External Boundary Basis Element Errors

Errors in the external boundary Basis Elements are also caused by approximations in the
Basis Element derivation and the approximation of the external boundaries as being locally
planar or locally spherical. Planar boundary Basis Elements are derived using the method
of images. For homogeneous boundary conditions of the first and second kind, these Basis
Elements are exact. The errors associated with these boundary conditions, shown in Figures
5-12 and 5-14, are due to the inefficient packing of Basis Elements close to the boundary. The
Basis Elements for the boundary condition of the third kind are approximate, however, and
the error is about the same order as that of the boundary condition of the second kind. Thus
errors here are taken to be due also to the inefficient Basis Element packing near an external
boundary. Spherical boundary Basis Elements are composed of approximate solutions and

exhibit errors for the spherical test cases no larger than their planar counterparts.

5.3.2 Implementation Errors

Implementation errors arise through the current algorithm which is used to generate the
results presented here, and are not fundamental to the method. Such errors are worth

exploration and discussion in order to further understand the accuracy limits of the BEM.
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These errors stem mainly from the discrete representation of geometry and the integer

computation.

Discrete Representation of the Geometry

The BEM takes as input 3-D matrices of power deposition, perfusion, thermal conductivity,
and the position vectors of each domain node. Since this is the complete problem definition
for what concerns the BEM, there is an inherent error asscciated with transforming a
continuous problem to discrete space. Though it was shown in Chapter 3 that the error
in the BEM is decoupled from the domain mesh resolution, the mesh must contain at
least enough nodes to adequately characterize the continuous problem. This is particularly
important for the representation of the power deposition. For instance, to compute the
power deposition at points in the domain, but in between nodes, a trilinear interpolation
scheme is used. However, if the gradient of the power deposition function is large, as occurs
in the discontinuous power deposition example of Figure 5-4, the trilinear interpolation is
not able to accurately reconstruct the original function. This result can be improved by
either using a higher order interpolation scheme, such a third order spline, or by increasing
the number of domain nodes.

The internal and external boundary Basis Elements rely on the discrete geometry as
inputs to compute the position of the boundary, the radius of curvature and normal vectors.
The computation of these boundary parameters from the discrete geometry is discussed in
Chapter 4. The comparisons presented above with exact solutions have only used the exact
boundary parameters as computed directly from the continuous geometry. To demonstrate
the error introduced with the computation of these parameters from the discrete geometry,
the example of Figure 5-9 is revisited. The top panel of Figure 5-34 shows a plot of
the temperature profile through the spherical tissue subdomain with uniform internal heat
generation and differential properties (10 ml/min-100g inside the sphere and 15 ml/min-
100g outside the sphere). The solid line is the exact solution and the circular symbols are
the BEM solution computed from the exact boundary parameters - these results are taken
directly from Figure 5-9 and reproduced here. The asterisks are the BEM solution, but with

the boundary parameters computed from the discrete geometry. The bottom panel shows
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the temperature difference between the exact solution and each of the two BEM solutions.
Note that the error from the discrete geometry case is higher near the boundary and it varies
more erratically than the continuous case. It is expected that as the number of domain nodes
increases, the discrete geometry error would approach the error in the continuous geometry
case. In general 50 percent of the error in this case is due to the discrete geometry. This
error could also be decreased by the use of a more accurate algorithm for the computation

of the boundary radius of curvature, the position vectors and the normal vectors.

Integer Computation

The effect of integer computation can readily be seen with the results of Figure 5-32. The
heart of the integer computation is the use of a “look-up table” for the square roots when
computing the distance between a Basis Element and a domain node. This table has a
spatial resolution of 1 mm, thus the closer the Basis Element is to the node, the less accurate
its distance is computed, and the less accurate the temperature computation is. According
to Figure 5-32, this effect is significant only for Basis Elements with a radius of 4 mm or

less.

5.3.3 Speed-Accuracy Comparison

The speed-accuracy comparison between NEKTON and the BEM in Figure 5-27 shows
that the BEM is best suited for very fast solutions with moderate accuracy. It is clear that
when high accuracy is desired (on the order of 0.05 °C), NEKTON is the better choice for
achieving the solution. For what concerns hyperthermia treatment planning and evaluation,
the solution should be complete in no more than 5 minutes total time. Thus, the results
suggest that the error in the BEM, for the given time constraint, is about 0.3 °C. It will be
seen in Chapter 6 whether the speed-accuracy differences between NEKTON and the BEM
are significant in actual clinical use.

in the comparison, the BEM computed the temperature at as many domain nodes as
NEKTON. In contrast to the finite difference and finite element techniques, the accuracy of

the BEM does not depend on the number of domain nodes. Thus in practice, the BEM need
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not have to compute the temperature everywhere in the domain. This feature of the solution
methodology, which has not been exploited here, allows for the further optimization of the
algorithm at the level of the system interface. These features of the BEM should allow for
the development of “push-bottom” thermal modeling technology which can be installed in

the clinic for routine treatment planning and evaluation.
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Chapter 6

Experimental Validation of the Basis

Element Method

In order to determine the validity and the potential usefulness of the BEM in a clinical
setting, experimental comparisons to actual hyperthermia sessions are carried out. In
these experiments, large animals and human subjects are given hyperthermia while SAR,
temperature and, when possible, perfusion are measured at discrete locations in and around
the target tissue volume. SAR and perfusion measurements are used as inputs to the BEM,
which computes, as output, the steady-state temperature ficid. This computed temperature

field is then compared to the discrete temperature measurements.

6.1 Clinical Hyperthermia Technology

The experimental validation relies on the available clinical technology to provide the power
delivery system and the measurement of the algorithm inputs (SAR, perfusion and geometry)

and the measurement of temperature. The following four subsections detail the equipment

used in the animal and human experimental studies.
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6.1.1 FSUM Heating Applicator

The FSUM (Focused Segmented Ultrasound Machine, Labthermics Technologies, Inc.,
Champaign, IL) applicator consists of 56 individual square, planar ultrasound transducers
mounted on a hemispherical shell with a 24 cm radius of curvature. A clear, flexible plastic
membrane is stretched across the applicator aperture (30 cm diameter) to maintain the
housing full of degassed water and to couple the transducers to the patient skin. Figure 6-4
is a schematic diagram of the applicator in the large animal experiment. The water-filled
housing is cooled with water circulated through coils to maintain the transducer and skin
surface at a set temperature. Each of the transducers operates at 1 MHz and is individually
controllable from O to 40 W with an average efficiency of about 70% to give a maximum
transducer output power of 28 W. The ultrasound field from each transducer overlaps to
form a focal region about 15 cm from the aperture surface. In order to distribute the power
more judiciously throughout the treatment volume, the hemispherical shell is capable of a

circular, precessional motion with a frequency of 0.3 to 1 Hz.

6.1.2 Dense Thermometry

Dense thermometry measurements are provided by multiple temperature sensor probes
using the Temperature Profilometer (Thermal Technologies, Inc., Cambridge, MA). Each
probe has 14 thermistors spaced 1 cm apart on an 16-17 gauge needle for the animal
experiments and spaced 0.5 cm apart on a 18-19 gauge needle for the human subjects. The
thermistor arrays are calibrated in a special stirred water bath against a Hewlett-Packard
280A quartz thermometer (resolution < 0.00010 °C, absolute accuracy 0.040 °C). For each
individual thermistor, calibration constants are determined according to the Steinhart-Hart
relation [68]. These sensor and needle carriers have been shown to exhibit less than 0.1
°C temperature artifact in the FSUM ultrasound field. The temperature probes are driven
by specially designed excitation circuitry and the data are acquired through a National
Instruments Data Acquisition board model ATMIO16X inserted in an IBM PC compatible

computer with an 80486 processor.
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6.1.3 Specific Absorption Rate Measurement

The specific absorption rate (SAR) can be determined at each of the temperature profilometer
sensors. The SAR gives the amount of internal heat generation in the tissue due to the
conversion of the ultrasound energy to heat energy.

SAR is determined from the derivative of temperature as a function of time at the instant
of power-off. From the temperature profilometer data, it is possible to approximate the
SAR at each temperature sensor. Consider the bioheat transfer equation at time ¢;, which
is in steady-state:

Q

0 =VT(t=t) — NXT(t=1t) + . (6.1)

After power-off at time ¢,, the equation becomes:

10T
—— = VT(t=t) — N°T(t= 6.2
o ot ( 2) (t=ts) (6.2)

Ift; and ¢, are close intime, then T(t = t)) * T(t = t;) and V* T(t = t;) =~ V> T(t = t,).

Therefore Equations (6.1) and (6.2) can be subtracted to yield:

e = @ (63)
where p;, is the tissue density (1.0 g/cm3), c; is the tissue specific heat (4.2 J/g-°C), and @
is the internal heat generation (SAR).

The quantity 67'/9t is approximated at ¢, by fitting a line to a data window which begins
at time ¢, and extends to some time ¢3. The time ¢3 must be appropriately chosen to gather
enough data for a statistically sound line fit, yet the window must be short enough in time
to allow the slope to accurately approximate the first derivative at time ¢,.

Figure 6-1 is a schematic diagram of the temperature from a temperature sensor in a time
window containing a power-off event. In order to determine the SAR, first the temperature
artifact is identified. The artifact is a result of the absorption of ultrasound energy directly
by the sensors and the needle carrier. Since the thermal time constant of the sensors and the
needle (about 1 second) is much smaller than the tissue thermal time constant, the artifact
diminishes in the first few seconds. The partial derivative of temperature as a function

of time is determined by performing a line fit to the 7 seconds of data after the artifact
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Figure 6-1: Schematic diagram of temperature versus time for a sensor during a power-off

event.

has diminished. The entire procedure of finding the artifact and performing the line fit is
performed semi-automatically using a custom made software package.

From the previous analysis, the SAR at each sensor location is obtained. For the
BEM, however, SAR at each point in the tissue is required. Thus the sparse and discrete
SAR data must be used to determine a best estimate of the SAR in the regions of tissue
where there are no temperature sensors. This estimate is accomplished with the use of
a Laplacian “Smoothing” algorithm [69]. The Smoothing algorithm takes as input the
sensor coordinates in 3-D space and the field values at those locations, and gives as output
estimated field values for a 3-D field about the sensor points. The algorithm starts by
defining a regularly spaced field grid in a rectangular box around the sensor locations. The
field values of grid points closest to a sensor are fixed at that sensor’s field value. The other
grid values are adjusted to minimize the sum of the squares of the second derivatives at the
grid points. Figure 6-2 shows the reconstructed and normalized SAR field in a plane passing
through the applicator center and into the tissue at Y = 0 cm where the applicator-skin

contact is at Z = 0 cm. The SAR distribution correlates qualitatively with characteristics
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Figure 6-2: A plane of the smoothed SAR from the pig experiment.

of a weakly focused applicator with a second power deposition peak at about Z = 15 cm.

6.1.4 Blood Perfusion Measurements

Blood perfusion is measured with the Thermal Diffusion Probe (TDP) (Thermal Technolo-
gies, Inc., Cambridge, MA). The TDP probe uses the thermal dilution technique [46], which
employs a self-heated thermistor to step the thermistor temperature to a prescribed level
using a closed-loop feedback circuit. The power dissipated in the thermistor as a function
of time, the temperature step and the calibration constants are used to determine the tissue
thermal properties and perfusion. The perfusion values are extracted from the raw data
using the CRUN data analysis software (Thermal Technologies, Inc., Cambridge MA).
The discrete measurements of blood perfusion with the TDP sensors are used to estimate

the perfusion throughout the 3-D tissue space for input into the BEM algorithm. Figure
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Figure 6-3: Diagram of the method to determine the perfusion in 3-D space from the
discrete point measurements.

6-3 is a schematic diagram of this estimation. In a spherical tissue region within a given
radius of a perfusion sensor, the perfusion at each nodal point is assumed to be equal to the
measurement value. However for the nodal points which are not near a perfusion sensor,

the perfusion value is assumed to be equal to the average over all perfusion sensors.
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6.2 Large Animal Experiment

The purpose of the large animal experiment is to test the ability of the BEM to predict
and reconstruct the hyperthermic temperature in a simulated treatment of biological tissue.
In these experiments, the target tissue volume is densely instrumented with multisensor
temperature profilometer probes and multiple perfusion sensors. This high density of
temperature, SAR and perfusion information obtained is necessary to validate the ability of
the BEM to predict temperature from the SAR and perfusion inputs. Between September
1991 and December 1993, four porcine experiments were performed in collaboration with
the Dana-Farber Cancer Institute. The results from one such experiment are detailed here. In
general, experimental procedure involves the heating of a porcine thigh with an ultrasound
hyperthermia applicator, measuring temperature and SAR with dense thermometry and
measuring perfusion with multiple thermal diffusion probes.

Figure 6-4 is a schematic diagram of the FSUM docked on the experimental pig. During
this steady-state heating experiment, 29 of the 56 transducers are excited according to the
shaded pattern in the top right corner of Figure 6-4. Each transducer is powered to 33% of
its maximum output. The applicator is coupled to the pig rump with diagnostic ultrasound
gel and there is no precessional motion of the transducer shell.

Ten of the probes are inserted into the rump, pointing towards the head of the pig. These
10 probes are aligned in the tissue as two parallel planes of 6 and 4 probes using a specially
made lucite template, as shown in Figure 6-4. Four probes are inserted perpendicular to
these 10 probes. The remaining probe is inserted at an angle of about 45° between the set
of 10 probes and the set of 4 probes.

The sensor locations are determined by a radiographic technique. A radio-opaque ring
is placed on the rump surface under the center of the FSUM applicator and radio-opaque
brachytherapy dummies are placed on the skin surface. Two orthogonal X-ray films are
exposed, one with the X-ray source above the pig in the position of the applicator and the
film placed under the pig, and the other with the X-ray source pointing towards the pig
underside with the film placed in contact with the back of the pig. Computer digitization

of the sensors on the X-rays films is then used to determine the three dimensional location
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of each sensor in a coordinate system with the center of the ring as the origin.

The flexible TDP catheters are introduced at various depths into the tissue via 16 gauge
stainless steel angio-catheters. Six of the 12 are aligned in the heated volume of the tissue
through the use of the temperature probe template. The other six probes are inserted
without the use of the template in the unheated tissue. Three dimensional and quantitative
localization of the sensors is achieved by a combination of inspection of the X-ray films
and knowledge of the sensors depth into the tissue from the skin surface.

Perfusion measurements are made prior to the applicator power-on, during thermal
steady-state of the hyperthermia session, and several minutes after cool-down when the

power-off thermal steady-state is reached.

6.2.1 Experimental Procedure

A summary of the experimental procedure is as follows:

1. Anesthetize the pig with a combination of Telezol and Xylazine. Maintain the pig

anesthetized with periodic injections of 100 mg of Telezol throughout the experiment

(total duration of 7 hours).

2. Place pig on the treatment table, lying on its left side with the radiographic cassette

holder in place. Fix the hind legs in position with rope and a Styrofoam spacer.
3. Clean and shave the right flank.

4. Locate the central part of the right rump by palpation, keeping the femur out of the

target volume.

5. Place the lucite probe template firmly against the pig rump and clamp the template to

the radiographic cassette holder.

6. Insert 6 of the perfusion probes through the template into the target volume at depths
of 4,7, 10, 13, 16 and 18 cm from the contact puint of the applicator and the skin

surface.
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10.

I1.

12.

13.

14.

15.

i6.

17.

18.

19.

20.

Insert the other 6 perfusion probes outside the heated field at various depths without

the aid of the probe template.
Insert 10 temperature profilometer probes, using the template, into the target volume.

Insert 4 profilometer probes with a ventral entrance point, perpendicular to the previ-

ously inserted probes.

Insert 1 profilometer probe with a ventral entrance point, at a 45° angle to the template

probes, at a depth of 20 cm from the applicator contact point.

Mark the skin surface, at the center of the applicator contact point, with longitudinal

and transverse lines and a 30 cm radius circle about the center.

Place the radio-opaque ring about the center of the contact point and place radio-

opaque brachytherapy dummies on the skin surface.

To locate the probes, expose 2 X-rays - one from the top of the treatment volume
from the vantage point of the applicator and the other from the side of the treatment

volume.
Apply diagnostic ultrasound gel to the flank surface.
Couple the applicator to the horizontal pig surface, centered in the 30 cm circle.

Administer sufficient anesthesia to maintain the pig motionless for about 45 minutes

(the time to reach thermal steady-state).
Take perfusion data from all perfusion sensors.

Start recording temperature as a function of time at each sensor in the temperature

profilometer probes.

Power-on 29 transducers according to the pattern contained in Figure 6-4 to 33 % of

full power until thermal steady-state is reached (4300 seconds later).

While the applicator power it still on and when thermal steady-state is reached,

attempt to make perfusion measurements.
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21. Turn transducer power-off.

22. After cool down period (13 minutes) collect perfusion data.

6.2.2 Data Analysis

Perfusion, as input to the BEM, was taken from the data runs which occurred after cool
down. Table 6.1 contains the perfusion values used and the locations of the sensors in the
tissue. The coordinaic svstem is as shown in Figure 6-4 with the Y axis pointing towards
to the pig’s head. As with SAR, the perfusion data are measured at discrete and sparse
locations in the tissue, yet the BEM requires as input perfusion everywhere in the 3-D
tissue field. The BEM allows for perfusion to vary as a function of space, however it is
assumed that perfusion variation is piecewise homogeneous. In other words, the BEM
considers the tissue as being made up of different regions, each region having its own
uniform perfusion and thermal property values. Using the grid generated for the SAR field,
the BEM preprocessor assigns each grid point the perfusion value of the perfusion sensor
that is closest in space. However, if there are no perfusion sensors within 40 mm of a
given grid point, the perfusion value for that point is assumed to be equal to the base-line
perfusion (24.25 ml/min-100g). The base-line perfusion is computed by taking the average
of all the perfusion measurements.

The steady-state temperature data taken with the Profilometer probe are compared with
the output of the BEM algorithm. Since the BEM gives the temperature rise in the tissue
above the base-line temperature, it is necessary to extract the temperature rise information
from the raw temperature data. The base-line temperature at each sensor is determined from
a 100 point average of the data prior to FSUM power-on and the steady-state temperature is
determined from the 100 point average of the data previous to power-off. Temperature rise
is then given by subtracting the base-line temperature from the steady-state temperature.
Temperature artifacts arising from the ultrasound power have been found to be minimal (less
than 0.1 °C) and thus are neglected. Of the 210 temperature sensors on the 15 profilometer
probes, only 101 sensors could be localized using the orthogonal X-rays projections for

comparison with the BEM.
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Table 6.1: Perfusion values for heating run 5 in pig 3

Probe Perfusion X Y Z

[ m/min-100g] | [mm] | [mm] | [mm ]
scwd04 22 24 20 40
scwx09 28 27 31 70
btc136 22 35 31 100
btc130 19 26 26 130
btc134 37 32 43 160
btc135 13 20 43 180
btc147 3 0 36 115
btc146 34 1 28 140
btc126 40 -5 -43 40
btc143 34 -40 45 100
scwx02 17 -40 45 160
scwx04 22 60 -44 180
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6.2.3 Comparison of BEM with Experimental Data

The BEM computation was performed on a mesh with 28 x 31 x 30 domain nodes spaced
1 cm apart. The BE size was set at 1 mm and /N, was set at 6. The external boundaries
were approximated with insulating boundaries, however due to the thermal damping of
perfusion, this consideration was not important.

The average RMS error between the BEM and the data over all 101 sensors is 0.7 °C.
Figure 6-5 summarizes the results of the temperature field calculation. The horizontal axis
is the difference in °C between measured and computed temperatures at each sensor location
and the vertical axis is the percent sensors with errors greater than this value. Note that the
BEM computes the temperature to within 0.54 °C or less for 50% of the sensors and the
error is less than 1 °C for 82% of the sensors. In order to provide a reference for the BEM
computation, the pig experiment was also simulated using NEKTON with a mesh of 220
elements and 5 order polynomials as the trial functions for a total of 27,500 nodes. The
NEKTON simulation utilized the same inputs for perfusion, thermal properties, and SAR
as the BEM simulation. In order to solve this problem on a Digital DECstation 5000/133
with 32 megabytes of RAM, the NEKTON simulation requires 16 minutes of CPU time,
while the BEM requires 5 minutes of CPU time.

Figure 6-6 shows the measured temperatures plotted versus the temperatures calculated
by NEKTON (top panel ) and the BEM (bottom panel). In the case of NEKTON, the RMS
error from the measured values is 0.67 °C and for the BEM, the RMS error is 0.70 °C which
are nearly identical results. Since both methods are capable of temperature calculations
with an error less than 0.1 °C, most of the RMS error is due to the experimental uncertainty.
This uncertainty, discussed in more detail below, is primarily due to error in the inputs to
the calculations: sensor position and the perfusion and SAR in tissue volumes distant from
the sensor locations.

Flots for all Temperature Profilometer probes are not given here, however some repre-
sentative probes are shown. Figure 6-7 shows the measured and computed temperatures
for Probe S-1. From the third panel, it is evident that the tissue around this probe has a
perfusion sensor nearby, thus contributing to the low RMS error (0.78 °C). Figure 6-8 shows

the measured and computed temperatures for Probe C-1. There is only one perfusion sensor
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near this probe and the RMS error is 1.2 °C. Figure 6-9 shows the measured and computed
temperatures for Probe C-2 which has one perfusion sensor nearby and an RMS error is
0.61 °C.

As shown in Section 5.2, the BEM is capable of achieving a temperature accuracy of
less than 0.1 °C when the model inputs: thermal properties, perfusion, SAR, and the tissue
geometry; are exactly known. Thus most of the error in the experimental comparison is due
to errors in the model inputs and not due to the BEM solution nor the measured temperature
values. A major source of error is the uncertainty in the SAR measurement. In general,
parameters, such as SAR, which are determined from the derivative of a measured quantity,
temperature, always suffer from increased noise over a directly measured quantity. The
thermistors and the needle carriers, depending on their size, directly absorb ultrasound
energy thus causing a temperature measurement artifact. For the sake of temperature
measurement, this artifact is small (on the order of 0.1 °C). However at power-off, when the
SAR is determined, the artifact transient couples into the temperature-time linearization for
SAR. Even if SAR could be exactly determined at the sensor locations, it is still completely
undetermined at the points in the tissue where there are no sensors. An attempt has been
made to address this shortcoming by the use of the Laplacian Smoother, however the
Smoother lacks a theoretical justification for its use with ultrasound fields and the errors
associated with the Smoother remain to be investigated. An improvement on the Smoother
would fit the SAR data to a functional form derived from a solution to the Raleigh diffraction
integral.

Another major source of error is the uncertainty in the tissue perfusion. The measure-
ments have a high accuracy (5 ml/min-100g) and resolution (0.2 ml/min-100g), however
perfusion appears to vary continuously in time and in space. The human measurements
reported in Section 2.2.1 and in the literature, (Bowman et al), [47], [70]), demonstrate
that perfusion will vary up to about 30% due to patient position, administered drugs, and
hyperthermia. In this animal experiment, it was not possible to measure perfusion during
hyperthermia, thus the values are taken from the series of measurements 13 minutes after
power-off. Thus, due to temporal changes in the flow state of the tissue, there is an un-

avoidable deviation between the measured tissue perfusion and the perfusion at the time of
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steady-state temperature measurement. Further, perfusion was measured at discrete points
in the tissue and among these, it was found to vary greatly as a function of space (mean
flow rate equal to 24.24 ml/min-100g with a standard deviation of 10.8 ml/min-100g at
3 minutes after power-off). Uncertainty is introduced into the computation through esti-
mating perfusion level in the tissue regions distant from sensor locations. A constitutive
model for this estimation was described above, however, this lacks a complete justification
that can be correlated with the tissue anatomy. An obvious improvement on the perfusion
measurement would be to measure perfusion at each temperature sensor location to better
correlate the spatial registration of temperature and perfusion.

Despite the many sources of uncertainty associated with the porcine experiment, the
RMS temperature differences between the measured and the calculated values were re-
markably low. As evidenced by the closeness in the temperature calculations given by both
NEKTON and the BEM, the error is independent of the solution method used - provided
the solution method is capable of solving the bioheat equation to about 0.25 °C. Errors not
associated with the inputs to the model (geometry, SAR, perfusion and thermal properties)
nor the transformation of the discrete measurement of inputs to continuous space, are most

likely due to the limitations of the bioheat transfer equation in describing the tissue heat

transfer.
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Figure 6-4: Schematic diagram of the experimental set-up with the FSUM docked on the

pig. The top drawing is a side view of the pig and the bottom drawing is from the rear.
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Figure 6-5: Performance of temperature calculation in the pig experiment as characterized
by the percent of sensors with errors greater than a given value. The solid line is from the

BEM and the dashed line is from the FEM.
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Figure 6-7: Measured and computed temperatures for Probe S-1.
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Figure 6-9: Measured and computed temperatures for Probe C-2.
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6.3 Human Subjects Experiment

To demonstrate the usefulness of the BEM in the course of a routine clinical treatment,
two patient post-treatment temperature reconstructions are undertaken. These studies were
carried out in collaboration with the Dana-Farber Cancer Institute (DFCI), Boston, MA,
where ultrasound hyperthermia therapy is being used in conjunction with radiation to
treat large, deep-seated tumors. At the DFCI, the FSUM heating applicator is currently
undergoing Phase I toxicity evaluation trials.

In this case, a human subject receives hyperthermia therapy administered using the
FSUM applicator. The patients were instrumented with multiple temperature profilometer
probes, each probe having 14 thermistor sensors and when possible TDP perfusion sensors
were inserted into the tumor. From these sensors SAR, perfusion, and temperature are

measured for input into and comparison with the BEM.

6.3.1 Experimental Protocol

Hyperthermia was administered with the FSUM applicator. The transducer excitation
pattern and the power level was adjusted during the treatment in order to achieve a uniform
temperature profile at the measured temperature points within the tumor. The applicator
spherical shell was precessed with a frequency of 0.3 Hz and the applicator cooling fluid
was set at 25 °C. The experimental patient treatment utilized the Temperature Profilometer

system, described above in Section 6.1.2.

The protocol for the patient treatments is summarized below:

1. Insert Profilometer probes under ultrasound guidance.

2. Perform CT scans to verify probe locations.

3. Insert perfusion probes.

4. Start collecting perfusion data.

5. Position the FSUM applicator according to the treatment plan.

6. Record temperature every second at all temperature sensors.
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7. Turn FSUM ultrasound power-on.
8. Heat for 60 minutes.

9. Adjust the power deposition pattern to achieve a uniform therapeutic temperature in

the tumor volume.
10. Power-off applicator.
11. Continue to record temperature data for 300 seconds.

12. Continue collecting perfusion data.

6.3.2 Patient 1

Patient 1 was a 51 year old male with a 10x10x12 cm squamous cell carcinoma in the
left axilla. Prior to treatment, informed consent was obtained and a full set of CT scans
were made. The CT scans were contoured for use in a computer-aided planning program
(HYPER/Plan, [42]) to identify the treatment portal and the patient and applicator position.
The patient received hyperthermia treatment with the FSUM three times in January to
February 1994, along with radiation therapy.

Three Profilometer probes with 14 sensors each were inserted into the tumor, under
ultrasound imaging guidance, according to RTOG guidelines, [71]. Two co-planar probes
were inserted perpendicularly through the center of the tumor and the third was inserted at

the base of the tumor. The patient was CT-scanned to verify the probe locations.

Data Analysis

SAR in the patient treatment is determined using the same method as in the pig experiment
(sce Section 6.1.3). The derivative of temperature in time is measured at the instant of
power-off and Equation 6.3 is used to determine SAR at each sensor location. To infer the
SAR at other locations in the tissue where there was no sensor, the Smoothing algorithm

was employed.
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During this treatment, it was decided not to insert invasive perfusion probes into the
tumor due to concerns for patient safety and comfort. However to compute the temperature
field, the BEM requires perfusion values at each point in the tissue field. In order to
address this situation two methods of perfusion estimation were explored. The first method
assumes that perfusion is uniform throughout the tissue and the level of perfusion is adjusted
to minimize the root-mean-square (RMS) of the difference between the BEM and the
measured values at the sensor locations. The second method attempts to determine the
perfusion at sensors located in tissue regions where the thermal gradient is small. For small
thermal gradients heat flow due to conduction is negligible, thus the Laplacian term (V27)

is neglected. The steady bioheat transfer equation (Equation (1.1)) then becomes:
0= —-wemT + Q (6.4)

where ¢, is the specific heat of blood (4.2 J/g-°C) and p, is the density of blood (1.0 g/cm?).
Since the temperature rise and SAR are known at each sensor, the perfusion can be solved
for explicitly. This method of perfusion inference was performed at sensor locations where
the difference with its two neighbors was less than 0.9 °C (thus the gradient was less than 0.9
°C/cm). Note that if the maximum thermal gradient for perfusion measurement is included
in the scaling Equation (6.4), a perfusion error can be solved for and shown to be about 7
ml/min-100g. Thus the perfusion error, by this estimate, is on the order of 30%. Table 6.2
contains the locations and values of the estimated perfusion.

The temperature is recorded every second at 42 discrete locations with 3 temperature
Profilometer probes. Steady-state temperature is determined, at each sensor, from the
average of the 100 seconds of data prior to power-off. The tissue temperature rise above the
base-line is determined by subtracting the base-line sensor temperature from the steady-state
sensor temperature. The base-line temperature is computed from the average of the 100
seconds of data prior to power-on. Temperature artifact due to the ultrasound deposition
was found to be small (less than 0.1 °C) and was neglected. Tables 6.3, 6.4 and 6.5 contain

the base-line, steady-state and temperature rise for each sensor.
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Table 6.2: Inferred perfusion values from temperature probes.

Sensor Perfusion X Y Z

[m/min-100g ] { [mm] | [mm] | [mm]
DFCI_P04-2 11.8 125 -75 10
DFCI_P04-10 21.5 83 73 26
DFCI_P13-5 8.3 112 -37 23
DFCI_P13-13 7.0 84 -82 21
DFCI_P09-5 16.5 102 -24 50
DFCI_P09-13 194 68 -72 40

Table 6.3: Temperatures recorded during patient treatment for probe DFCI_P04.

Sensor Base-line [ °C ] | Steady-State[ °C ] | Increment [ °C ]
DFCI_P04-1 37.6312 38.93601 1.304807
DFCI_P04-2 37.63836 39.22339 1.585037
DFCI_P04-3 37.60949 39.48991 1.880419
DFCI_P04-4 37.61532 39.89722 2.281906
DFCI_P04-5 37.64717 40.3551 2.707929
DFCI_P04-6 37.61552 40.82327 3.207756
DFCI_P04-7 37.7554 41.16537 3.40997
DFCI-P04-8 37.5805 41.75444 4.173945
DFCI_P04-9 37.60126 42.42062 4.819361
DFCI_P04-10 37.58887 41.5278 3.938925
DFCI_P04-11 37.55059 41.70221 4.151616
DFCI_P04-12 37.57558 42.59109 5.015512
DFCI_P04-13 37.57348 43.19967 5.626188
DFCI_P04- :4 37.58539 43.39803 5.81264
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Table 6.4: Temperatures recorded during patient treatment for probe DFCI_P13.

Sensor Base-line [ °C ] | Steady-State[ °C ] | Increment [ °C ]
DFCI_P13-1 37.65426 43.87922 6.224964
DFCI_P13-2 37.65453 45.28024 7.625711
DFCIP13-3 37.66786 46.1173 8.449437
DFCI_P13-4 37.66051 47.18629 9.525787
DFCI_P13-5 37.63322 46.96028 9.327056
DFCI_P13-6 37.58332 46.46483 8.881512
DFCI_P13-7 37.5077 45.41637 7.908672
DFCI_P13-8 37.37691 43.33022 5.953317
DFCIP13-9 37.14609 40.52355 3.377461
DFCI_P13-10 37.10239 39.60284 2.500445
DFCI_P13-11 37.12157 39.09601 1.974437
DFCI_P13-12 36.94535 38.67579 1.730435
DFCI_P13-13 36.16709 38.02395 1.856867
DFCI_P13-14 35.57381 37.4108 1.836983
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Table 6.5: Temperatures recorded during patient treatment for probe DFCI_P0%

” Sensor Base-line [ °C ] | Steady-State[ °C ] | Increment [ °C ]
DFCI_P09-1 37.62152 40.3325 2.710973
DFCI_P09-2 37.6571 41.31324 3.65614
DFCI_P09-3 37.65113 43.04965 5.398514
DFCI_P09-4 37.66404 47.05312 9.38908
DFCI_P09-5 37.65235 46.65448 9.002135
DFCI_P09-6 37.64388 46.25074 8.606866
DFCI_P09-7 37.64542 45.04024 7.394827
DFCI_P09-8 37.63344 43.30201 5.66857
DFCI_P09-9 37.5694 41.52421 3.954815
DFCI_P09-10 37.53903 40.78671 3.247682
DFCI_P09-11 37.50842 40.19489 2.686472
DFCI_P09-12 37.49715 39.89769 2.400537
DFCI_P09-13 37.41359 39.56451 2.150923
DFCI_P09-14 37.30498 39.20423 1.899248
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Patient 1 Experimental Results and Discussion

The computational patient mesh was generated from 64 consecutive CT scans spaced 0.5
cm apart. A geometric model of the patient was created by HYPER/Plan and the mesh
was automatically generated with nodes equally spaced at 1 cm for a total of 46 x 21 x 28
nodes. Figure 6-10 shows the CT derived patient model in the top panel and the bottom
panel contains a slice of the computational mesh. The patient geometry as contained in
the mesh is fed to the BEM algorithm for processing. The Basis Element size was set at
1 mm and N, was set at 6. Figure 6-11 shows measured and computed temperature along
each of the three probes where temperature was computed with the BEM. There is excellent
qualitative agreement between measured and computed values. Over all the 42 sensors,
the RMS temperature difference is 1.2 °C where the perfusion is according to Table 6.2.
For comparison, the middle panel displays a temperature calculation where perfusion was
assumed to be constant and uniform. The level of perfusion, in this case, was adjusted to
minimize the RMS difference over all the sensors. Here, RMS error over probe DFCI_P13
is much greater (3.8 °C) and qualitatively the character the temperature field is clearly
different.

Figures 6-12, 6-13, and 6-14 plot the temperature next to the measured SAR and the
inferred perfusion. For probe DFCI_P09, the temperature field follows the trend of the SAR
data due to the relatively uniform perfusion. With probe DFCI_P13, the temperature does
not follow the SAR - which only slightly varies in space - but rather inversely correlates
with the inferred perfusion which drops along the needle from X = 100 mm to 130 mm.
Temperature data along probe DFCI_PO4 show excellent agreement with the BEM and
follows the decreasing SAR more closely than the decreasing perfusion.

Figure 6-15 surnmarizes the results of the temperature field calculation. The horizontal
axis is the difference in °C between measured and computed temperatures at each sensor
location and the vertical axis is the percent sensors with errors greater than this value. Note
that the BEM computes the temperature to within 0.75 °C or less for 50% of the sensors
and the error is less than 1 °C for 65% of the sensors. Figure 6-16 plots the computed
temperature versus the measured temperature for all 40 sensors. The dashed line is the

unity slope and the solid line, with a slope of 0.959, represents least-squares-residual fit to
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the data with the y intercept constrained at zero temperature rise.

As mentioned above, the BEM is capable of computing the tissue temperature to within
0.1 °C when the inputs are exactly known. Here with the patient experiment, temperature
errors are primarily due to uncertainty in SAR and perfusion. As with the animal experiment,
SAR was measured at each of the temperature sensors and the Laplacian Smoother was
used to estimate SAR values at all other points in the field. Thus the error in temperature
due to SAR u' certainty is of the same order as in the pig experiment. A major source
of error is introduced by the lack of direct perfusion measurements. This is a serious
limitation in the analysis of the data. The use of the inferred values, which has some
validity based in heat transfer scaling relations, suffers from many sources of uncertainty
which are concerned with the temperature gradient at the inference sensors. While the
thermal gradient is known along the probe and this can be used to estimate the perfusion
inference error, less is known about the thermal gradient in the directions perpendicular to
the probes. Ultimately, perfusion and temperature measurements collected from the sensors
capable of measuring both parameters will eliminate the need for perfusion inference and
will allow more accurate treatment reconstructions.

The temperature results from the BEM permit the calculation of volumetric based tumor
dose statistics, as opposed to the currently used sensor based statistics. Figure 6-17 shows
a histogram of the steady-state treatment temperature which plots the percent number of
points in the tumor (y axis) which are above a given temperature (z axis). From the mesh
of the patient model, there are 464 points in the tumor volume at which temperature is
calculated and the associated histogram is the solid line. For comparison, the sensor based
histogram is also plotted as the dashed line. It is interesting to note that two lines are
remarkably similar indicating that the probes were well placed in the tumor to capture the
temperature distribution with the discrete sensor measurements. Often in hyperthermia
evaluation, the quality of a treatment is assessed by the temperature which 90% of the
sensors are above. This metric is known as Tgy. For the BEM, the Ty is computed as 39.3
°C for all the domain nodes in the tumor and for the sensors the Ty is equal to 38.9 °C. The
maximum temperature computed by the BEM is 49.7 °C while the maximum measured

temperature is 48.4 °C.
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Figure 6-10: Computational grid (bottom) automatically generated from the CT derived
patient model (top). The grid defines the problem geometry on which the BEM computes

the temperature field. Picture courtesy of D.A. Sidney.
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Figure 6-11: Temperature field calculation for the three temperature probes following

clinical hyperthermia, using inferred perfusion values.
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Tumor center, horizontal, DFCI_P09 - RMS error = 1.219C
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Figure 6-12: Temperature field calculation for probe DFCI_ P09 with the measured SAR

and the inferred perfusion.
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Tumor center, horizontal, Probe DFCI_P13 - RMS error = 1.332 C
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Figure 6-13: Temperature field calculation for probe DFCI_P13 with the measured SAR

and the inferred perfusion.
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Tumor bottom, tangential, Probe DFCI_P04 - RMS error = 0.8593 C
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Figure 6-14: Temperature field calculation for probe DFCI_P04 with the measured SAR
and the inferred perfusion.
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Figure 6-15: Percentage of sensors (y axis) with an error greater than a given value (x axis).
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Patieni 1 - 40 sensors RMS error = 1.161 C  Fit slope =0.959
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Figure 6-16: Temperature calculated with the BEM versus measured temperature in Patient
1. The dashed line is the unity slope line, while the solid line represents a least-squares-

residual fit to the data with the y intercept constrained at zero temperature rise.
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6.3.3 Patient 2

Patient 2 was a 42 old female with 10.2 x 7.0 x 12.2 cm recurrent breast cancer in the left
axilla. Prior to treatment informed consent was obtained. A full set of CT scans were made
and a surface patient model was created as was done with Patient 1. The patient received 5
hyperthermia treatments in January and February of 1995. The temperature reconstruction
presented below is of the treatment on January 19, 1995.

In this treatment, five Profilometer probes with 14 sensors each were inserted into the
tumor, under ultrasound imaging guidance. The probes were all inserted in the tumor
pointing in the direction of the patient’s head with the points converging at the opposite side
of the tumor. The patient was CT-scanned to verify the probe locations.

Three flexible TDP catheters were introduced into the tumor via 16 gauge stainless steel
angio-catheters. Three dimensional localization of the sensors was achieved by knowledge
of the sensors depth into the tissue from the skin surface and of the catheter orientation.

Perfusion was monitored before, after and, when possible, during treatment.

Data Analysis

As with Patient 1, SAR was measured at each temperature sensor at the instant of power-
off and to infer the SAR at other locations in the tissue where there was no sensor, the
Smoothing algorithm was employed.

Perfusion was determined from measurements made with 3 invasive sensors. Table 6.6
shows the perfusion values used in the temperature reconstruction which were taken from
the average of the pre-treatment data sets. As with SAR, the perfusion data are measured
at discrete and sparse locations in the tissue, yet the BEM requires as input perfusion
everywhere in the 3-D tissue field. Using the computational mesh generated from the
patient model, the BEM preprocessor assigns each grid point the perfusion value of the
perfusion sensor that is closest in space. However, if there are no perfusion sensors within
30 mm of a given grid point, the perfusion value for that point is assumed to be equal to the
base-line perfusion (89 ml/min-100g). The base-line perfusion is computed by taking the

average of all the perfusion measurements.
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Table 6.6: Measured perfusion values for Patient 2.

Sensor Perfusion X Y Z
[ mV/min-100g] | [mm] { [mm] | [mm ]

BTC177 46.3 | 170.0 20.0| -25.0
BTC181 144.0 10.0 100 | -15.0
BTC191 78.0 | 140.0 100 | -20.0

The steady-state temperature at each of the 70 sensors is determined for Patient 2 in the

same manner as Patient 1. For the sake of brevity the raw data, in this case, is omitted.

Patient 2 Experimental Results and Discussion

The BEM computational mesi was generated from 24 consecutive CT scans spaced 0.5
cm apart and contoured to form the surface representation of the anatomy. The surface
representation was them used to create the volumetric representation of the tissue with
nodes uniformly spaced on a 1 cm grid for a total of 46 x 13 x 26 nodes. Figure 6-18
shows the CT derived patient model (top panel) and the corresponding computational mesh
that was automatically generated (bottom panel). This patient geometry, along with the
perfusion and SAR measurements were fed to the BEM algorithm for processing. The
Basis Element size was set at 1 mm and NV, was set at 6. Figures 6-19, 6-20, 6-21, 6-22,
and 6-23 show the results of the temperature reconstruction along the probes Prof_006.050,
Prof_014.050, Prof_009.075, Prof_003.050, and Prof_004.050 respectively. Each figure
displays the computed temperatures plotted along side the measured values (top panels),
the measured SAR along the probe (middle panels) and the perfusion values in the vicinity
of the probe (bottom panels). The agreement between measured and computed values is
good with an RMS temperature error of 0.96 °C over all 70 temperature sensors.

Figure 6-24 summarizes the results of the temperature field calculation. The horizontal
axis is the difference in °C between measured and computed temperatures at each sensor
location and the vertical axis is the percent sensors with errors greater than this value. Note

that the BEM computes the temperature to within 0.7 °C or less for 50% of the sensors
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Figure 6-18: Computational grid (bottom) automatically generated from the CT derived
patient model (top). The grid defines the problem geometry on which the BEM computes

the temperature field. Picture courtesy of D.A. Sidney.

and the error is less than 1 °C for 65% of the sensors. Figure 6-25 plots the computed
temperature versus the measured temperature for all 70 sensors. The dashed line is the
unity slope and the solid line represents least-squares-residual fit to the data with the y
intercept constrained at zero temperature rise.

As with the large animal experiment and the therapy reconstruction of Patient 1, the
errors in the Patient 2 temperature reconstruction are primarily due to 1) uncertainty in the
SAR and perfusion values at tissue lccations distant from the sensors and 2) uncertainty in
the sensor locations. In Patient 2, more sensors are available for the measurement of SAR
and perfusion, and this is likely to contribute to the lower RMS error in Patient 2 (0.96 °C)
than that found in Patient i (1.2 °C). Uncertainty in the Profilometer sensor locations can be
decreased by increasing the number and density of the CT scans. While uncertainty in the

perfusion sensor locations can be greatly decreased by inserting the TDP catheters before

180
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Figure 6-19: Temperature field calculaiion for probe Prof_006.050 with the measured SAR
and perfusion.
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Probe prof_014.050 RMS error=1.181C
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Figure 6-20: Temperature field calculation for probe Prof_014.050 with the measured SAR
and perfusion.
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Probe prof_009.075 RMS error = 0.5524 C
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Figure 6-21: Temperature field calculation for probe Prof_009.075 with the measured SAR
and perfusion.
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Probe prof_003.050 RMS error=0.9712C
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Figure 6-22: Temperature field calculation for probe Prof_003.050 with the measured SAR

and perfusion.
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Probe prof_004.050 RMS error=1.011C

48 T T 1 T T T T 1 ) 4 T
' BEM
Patient 2

H
(<]
T
* O

I 1 1 1 | 1 ] 1 1 L
125 130 135 140 145 150 155 160 165 170
X[mm]

400 T

(]

o

o
T

SAR [ mW/cmA3 ]
"6)
(=]
1

100F
! 1 i A 1
?20 130 140 150 160 170 180
X[mm]
160 T 1 T T T
—_ o o o o
£ 140
o
21201 .
&
£ joot .
E o o o o o
= 80 o o o o o 7
6 1 | 1 1 1
?20 130 140 150 160 170 180

X[mm]

Figure 6-23: Temperature field calculation for probe Prof_004.050 with the measured SAR
and perfision.

185



100

90

80

70

60

50

40

Percent of Sensors

30

20

10

0 . l 1
0 0.5 1 1.5 2 25 3
Error[ C]

Figure 6-24: Percentage of sensors (y axis) with an error greater than a given value (x axis).
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Patient 2 - 70 sensors RMS error = 0.9607 C  Fit slope =0.9698
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Figure 6-25: Temperature calculated with the BEM versus measured temperature in Patient
2. The dashed line is the unity slope line, while the solid line represents a least-squares-

residual fit to the data with the y intercept constrained at zero temperature rise.
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CT scans are taken.

The temperature reconstruction can be used to compare the sensor based tumor-
temperature histogram with the volume based histogram. Figure 6-26 shows the steady-state
histogram which plots the percent number of points in the tumor (y axis) which are above
a given temperature (r axis). In the mesh generated from the patient model, there are
315 nodes in the tumor volume at which temperature is calculated. The solid line is the
percentage of these nodes above the temperature on the = axis. The percentage of sensors
above a given temperature is plotted as the dashed line. The Patient 2 histogram shows that
according to the measurements, the patient received an apparently better treatment than that
computed by the BEM. This may be due to the therapist preferentially treating the sensor
sites rather than the entire tumor volume. As given by the sensors, Tyg is 38.2 °C while
the BEM computes Tgg of 37.7 °C. An obvious benefit of the BEM is the ability to provide
these treatment metrics in real-time during therapy in order to control the heat over the

entire tumor volume, rather than just at the sensor locations.
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Patient 2 - temperature histogram
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Figure 6-26: Patient 2 temperature histogram as computed by the BEM (solid line) and

measured from the sensors (dashed line).
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Chapter 7

Summary and Conclusion

This thesis describes a thermal model and solution algorithm for the fast, accurate and
routine computation of the hyperthermia therapy induced tissue temperature distribution.
Such a modei is important to treatment planning and evaluation of the therapy to help
maximize the thermal dose in the tumor volume and to minimize the temperature exposure
of the normal tissue.

Chapter 1 starts with a brief description of hyperthermia therapy and describes how
a clinically used thermal model will increase treatment efficacy. From practical consid-
erations, the Pennes bioheat transfer equation is selected to form the theoretical basis of
the thermal model. The chapter includes a comprehensive review of the current literature
on thermal models for the analysis of hyperthermia therapy and the design criteria for a
clinically useful thermal model is outlined.

Chapter 2 analyzes the patient specific treatment parameters which serve as inputs to the
algorithm: patient anatomy, tissue thermal properties and perfusion, and power deposition.
The patient model of the anatomy is derived from CT scans which are semi-automatically
contoured, segmented and identified. Thermal properties and perfusion are either measured
from the Thermal Diffusion Probe or recalled from a database. Power is deposited in the
tissue using ultrasonic applicators. The Specific Absorption Rate (SAR) of the deposited
power is either estimated from simple analytical models or measured during treatment.

Chapter 3 presents the model formulation. The theoretical background is derived

from the Green’s function solution to the bioheat equation where the volume integral is
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divided into two subvolumes: 1) the sources thermally close to the domain point (where
temperature is computed) and 2) the sources thermally distant from the domain point. The
algorithm formulation further divides the thermally significant volume integral into the
finite sum of subvolumes. Each subvolume forms a spherical source of finite dimension
which is analytically solved - this is the Basis Element (BE). Boundary conditions and
non-homogeneous thermal properties are considered by deriving the approximate Green’s
functions for these thermal situations.

Chapter 4 describes the implementation of the BEM algorithm. The algorithm represents
the geometry of continuous problems in a discrete space. The power deposition is discretized
as a lattice of weighted finite spherical sources, close-hexagonally packed together. The
computer, C code is implemented in a modular and efficient manner and comprises over
7000 lines of code. Optimization is carried out by the use of dimensionless variables,
integer geometry and a square root “look-up table”.

Chapter 5 demonstrates the validity of the Basis Element Method (BEM) with compar-
isons to problems with exact analytical solutions and to approximate numerical solutions.
The comparisons show that as the BE size is decreased and the integration volume is in-
creased, the exact solutions are approached. The comparisons to numerical solutions use
problems with irregular geometry and variable perfusion. They show that the BEM is
capable of solving these problems with a root-mean-square difference of about 0.1°C. The
speed of the method is shown to be about an order of magnitude faster than a finite element
package for an error of 0.15 °C.

Chapter 6 contains the procedure and results for the experimental validation of the
method in large animal (porcine) and human experiments. In the porcine model, a simu-
lated hyperthermia treatment is administered, using ultrasound, to the rump which is densely
instrumented with 101 temperature sensors and 12 perfusion sensors. SAR is measured
at the temperature sensor locations and the SAR and perfusion are inputed into the BEM
algorithm for temperature computation. The comparison of measured and computed tem-
perature values shows a root-mean-square error of 0.7 °C over all the sensors and one half
of the sensors have an error of less than 0.54 °C. The results from two human subjects

experiments are given. In the first patient, hyperthermia is to a2 10 x 10 x 12 cm tumor in
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the left axilla. The tumor was instrumented with 3 probes, each containing 14 temperature
sensors. Measured and computed steady-state temperature show an RMS error of 1.2 °C. In
the second patient, hyperthermia was given to a 10.2 x 7.0 x 12.2 cm recurrent breast tumor
in the left axilla. This tumor was instrumiented with 5 probes, each with 14 temperature
sensors. In addition 3 TDP perfusion probes were inserted into the tumor. Agreement
between measured and computed temperatures show an RMS error of 0.97 °C. The use
of the BEM algorithm in treatment reconstructions allows the computation of volumetric
tumor dose statistics such as Top which is the temperature at which 90% of the tumor volume
is above.

Currently in hyperthermia therapy, parameters such as specific absorption rate (SAR),
thermal properties and patient geometry are not generally known to an accuracy greater than
10 percent. Clearly, any model of the hyperthermic temperature field is bounded by such
accuracy. Thus, the full potential of three dimensional finite element and finite difference
methods for hyperthermia thermal modeling is not yet realizable for clinical hyperthermia
practice, although use in a research setting is invaluable. The BEM provides a rational
alternative. It is conceptually simple, computationally less intensive, and, most important,
can be automatically tailored to provide a more accurate solution in specified regions of the
tissue. These features make the basis element method practical for routine clinical thermal
modeling of hyperthermia. Certainly, however, the results of more exact computational
approaches, such as more sophisticated state and parameter estimation schemes, additions
and enhancements to the bioheat equation, and treatment of specialized problems, will be
used for model verification and improvement.

There are many possible improvements in the BEM formulation and the algorithm
implementation which will increase the speed, accuracy and clinical applicability. For
treatment evaluation, improvements in the algorithm speed will ultimately allow real-time
thermal modeling to take place in the clinic, concurrent with the treatment. Real-time
application will necessitate the formulation of the BEM for transient solution of the bioheat
equation. In this case the functional form of the time dependence is included into the
BEM, thus the solution does not depend on a Courant criteria (maximum time step size) for

convergence. Significant increases in speed can be obtained through the optimal choice of
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BE size. In the algorithm implemented in this thesis, the BE size was maintained constant
for a given problem. It is possible to modulate the BE as a function of the distance from the
domain node - making the BE’s that are further from the domain node successively larger
such that the smaller BE’s have more thermal influence.

Once made sufficiently fast, the BEM could be applied to the solution of the inverse
hyperthermia problem - where the therapist inputs the desired temperature field in the tissue
and the BEM computes the transducer excitation pattern necessary to obtain it. Solution of
the inverse problem generally requires the repeated solution of the forward problem until

convergence is reached. The iteration takes place such that the following matrix is solved:
[Tn:rl] = [BEna:m][Pm:cl] (71)

where T, are the desired temperatures at the nodes, n, P, is the magnitude of the power
emitted by each of the m elements, and BE,,,, is the feed-back matrix which is defined by
the tissue model. Since the number of nodes, n, far exceeds the number of transducers, m,
least squares can be used to solve this system of equations. The feed-back matrix, BE,;,
can be computed by the BEM. The BEM uses a limited volume of integration to compute
the temperature, thus the feed-back matrix will be banded with a bandwidth that decreases
with increasing perfusion. This gives the BEM a distinct advantage over other methods in
the solution of the inverse problem.

The use of the Pennes bioheat transfer equation to describe tissue heat transfer in this
thesis, does not account for the effect of large vessels. The BEM approach, however, could
be modified and extended to treat these cases. In general, the BEM considers any such
thermal perturbation - even those from large vessels - to be exponentially damped with a
space constant inversely proportional to perfusion. Thus a vessel could be modeled as a sink
in the tissue surrounded by a domain with Pennes-type heat transfer. The heat sinked by
the vessel could be modeled with an approximate formulation of the coupled mass transfer
and energy equations.

These improvements will increase the clinical applicability of the BEM and allow a
“push button” interface between the thermal model and the clinician where results can be

instantaneously displayed with the patient geometry. The routine use of thermal modeling
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in the clinic will allow more accurate local thermal dose statistics based on the entire tumor
volume instead of discrete temperature measurements. Ultimately, these statistics will help

establish proper thermal dose - tumor response relations which will serve to guide treatment

planning.

194



Appendix A

Derivation of Other Basis Element

Functions

The Basis Element Method has been formulated in this thesis to solve steady-state heat
transfer problems, however a transient formulation is possible. As a first step in developing
this formulation, a free space transient Basis Element with exponential heating was derived

and is given below.

A.1 Exponential, Transient Basis Element in an Infinite

Medium

The transient Laplacian for an infinite and perfused media is:

8 P9 209 .
~ar tar T e Pl = (A1)

The solution method proceeds by taking the term-by-term Laplace transform of equation

A.1. The Laplace transform is defined as follows.
o(p) = /0 8(t)ePtdt (A2)
And the inversion formula is:

ot) = [ e(p)e dp (A3)



The Laplace transform changes the partial differential equation into an ordinary differential

equation with constant coefficients.

d*e 2 dO —e "
7 + el (Pe + p)O® = ) (A4)
d?_ 6 =T
(7‘2 ) _ (Pe +p)r® = re (A.5)
dr P

The general solution to equation A.5 is:
e 9" el” e’ 2e7"
- Cy— - _
T p(l—¢) pr(l—¢?)?

g = /p+ Pe (A.7)

The condition that temperature and thus the transformed temperature are bounded requires

(A.6)

® = ¢

C’, to be zero and sets the value of C,. The transformed temperature is:

e 97 e’ 2e77

- A8
T +p(p-{—Pe—l) rp(s + Pe — 1)? (A8)

© = (C

The method of partial fractions is then used to expand equation A.8 into a set of independent

terms.

-7

T e’ e

T +p(Pe—l)_(l—P6)(P+Pe—1) (A-9)

2e¢7T 1 1 1
r(1 — Pe) [p(l—Pe) B (p+ Pe—1)(1— Pe) + (p + Pe — 1)2}

At r = 0 the temperature must be finite, thus C) is found to be:

C = 2 1 B 1 N 1
T (1 —Pe) |p(1—Pe) (p+Pe—1)(1—-Pe)  (p+ Pe—1)
(A.10)
and the complete transformed temperature is:
e" 1 1 1
= - |z - = A.ll
© (Pe—l)[p p+Pe—lJ ( )
N 2e7T [ 1 1 4 1
7(Pe—1) |p(1— Pe) (p+ Pe—1)(1 - Pe) (p+ Pe — 1)
+ 277 [ 1 B 1 N 1
(1 — Pe) | p(1 — Pe) (p+ Pe—1)(1— Pe) (p + Pe — 1)?]
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Applying the inversion formula from the tables of [72, 59] gives the temperature.

Pe — 1

N 2e" 1 B e~t(Pe—1) 4 tet(Pe=1)
r(Pe — 1) |1 — Pe 1 — Pe

[1 - e-‘“’e-')] (A.12)

r(1 — Pe)? Vi Vit
il ) e )

O R )

e P30 ) (4 v
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Appendix B

Thermally Significant Vessels

It is well known that larger vessels (> 500um) passing through the hyperthermic tissue
volume may not thermally equilibrate with the surrounding tissue, resulting inadequate
heating of the tissue near these vessels. The BEM has been formulated using the Pennes
bioheat transfer equation to describe the tissue heat and mass transport. A logical extension
of the method would incorporate the effect of vessels on the thermal field where the vessels
are modeled as an energy sink in the tissue field.

Consider the tissue near a vessel as consisting of 2 subdomains: one subdomain is
the actual vessel whose position, size and fluid velocity is assumed to be known; and the
other subdomain is the surrounding tissue whose transport is assumed to be described by
the Pennes equation. Power deposition of hyperthermic energy is associated only with the
Pennes tissue subdomain. The Basis Element for this thermal situation is derived from the
point source for an infinite Pennes tissue subdomain, with a straight vessel of infinite length,
passing through. The heat sinking effect of the vessel is mathematically described by the
Green’s function for the continuous line sink in a perfused domain. The Basis Element is
assumed to be in the form of the sum of the vessel Green’s function for the sink (at r < a,
z) and the Pennes Green’s function for the source (at r’, z=0):

1 6_’\R

47k, R
R=/(r — )2+ 2 (B.2)

+ C K,(A7) (B.1)

where the coordinates are defined in Figure B-1. The weight function, C}, is found such that
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Point Source

=

k Blood Vessel

Figure B-1: Schematic diagram of the Basis Element for thermally significant vessels.

at the vessel wall (r = a) either the temperature or the heat flux is constant. For constant

wall temperature, the approximate solution is:

1 e R 1 e K (A7)
= 37k, R 4nk, R, K.,O0a) (B-3)
Ry = yf(a — )7 + 22 (B.4)

This vessel Basis Element has yet to be validated numerically with comparisons to finite

element solutions and experimentally.

199



Appendix C

Basis Element Code

C.1 Basis Element Routines

/* (c) Copyright 1992—1995 by MIT All Rights Reserved */
#include <math.h>
#include <stdio.h>
*
FILE: hotstuff.mit.edu:[ul [users/gmartin/src[release | BEMelements.c
AUTHOR: Gregory T. Martin
Biomedical Engineering Center
20A - 117
MIT
Cambridge, MA 02139 USA 10
617—-253-3605
gmartin@hstbme.mit.edu
DATE: April 1992
DESCRIPTION:
This file contains the routines which make up the "kernal” of the
basis element method. There basis elements herein contained are
for sources in an infinite medium (uniform, Gaussian, exponential),
transient sources (exponential), boundary basis elements, and the
macro basis elements for error correction.
20
REVISIONS:
CONVENTIONS:
—Variables that begin with capital letters are global, while variables
that begin with lower case letters are local.
*
/
#include "BEMbem.h"
#include "BEMmain.h"
float *Sqrt;
float tinsphere(float Pe, float sqrtpe, float RStar);
float toutsphere(float Pe, float sqrtpe, float RStar); 30
float tsphere(float pe, float sqrtpe, float rstar);
float tshellss( float pe );
float tfirstkind(float pe, float r);
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float tsecondkind( float pe, float r);
float tthirdkind(float pe, float bi, float r);
float tfirstkind_curve(float pe, float r);
float tsecondkind _curve( float pe, float r);
float tthirdkind curve(float pe, float bi, float r);
float first curve sphere( float R, float rpoint, float rsource,

float theta, float pe, float radcurve);
float second_curve sphere( float R, fieat rpoint, float rsource,

float theta, float pe, float radcurve);
float third curve sphere( float R, float rpoint, float rsource,

float theta, float pe, float radcurve,

float biot);

float approx diff curve sphere( float R, float rpoint, float rsource,
float theta, float pel, float pe2, float kappa, float radcurve);

double erfcc( double x );
float factor( inti);
float square( float x );
fioat min( float x, float y );
float max( fleat x, float y );
float sgn( float var );
void fswap(float *x, float *y);
float round( float x);
float BEMsqrt( Space x );
Space BEMsquare( Space x );
float (*BEMsqrtPtr) ( Space x );
int isclose( float x, float y, float e);
/* o ok sk 3k ok 3k 3k 3k 3 ok ok 3K 3k %k >k sk 3k Sk ok vk 3k ok ok ok 3k 3k 3k sk 3k vk ok k3 3k 3K ok 3k ok 3k 3k sk ok sk ok 3k 3k ok ok sk 3k ok ok ok ok ke ok Sk ok sk sk sk Sk ok */

#define PI M_PI
/* sk 3% 3k sk sk ok 3K 3k e 3 ok 2k 3k 3 ok ok 3k ok 3k o ok ok ok e ok Sk ok ok sk ok ok k ok ok 3k sk k 3k 3k %k 3k 3k 3k 2k 3K Ak 3k ok 3k 3K ok 3k 3k ok 3k ok 3k ok 3k sk ok sk ok */
float round( float x)
float y;
#ifdef USE_ FLOAT GEOM
return( x );
#else
y = fabs( x );
y *=2.0;
y =(@int) (y + 1);
y /=2.0;
y =(int) y;
return( y*sgn(x ) );
#endif

/* ok ok ok ok e e o s ok ok s e e oo ok o ke S ok e sk ok ke ok ok s ok o ok ok ok o s ok ke Sk sk ok ok o sk ok ok ok ok o ok ok ok ok ok ok ok ok */

void fswap(float *x, float *y)

{

float tmp;

tmp = *x;
*x = *y;
*y = tmp;
return;

}

/* 3 3 2k ok 3k ok 3k e oK 3 ok ok k3 ok ok 3K 3k 3 ok ok e 3k ok ok K ok 3 3k ok ok ok ok 3 3 ok ok sk o 3k ok 3k 3k sk sk ok ok ok 3k ok 3k ok ok K Kk ok ok ok ok sk ok ok */

float tinsphere(float Pe, float sqrtpe, float RStar)
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/*
This routine compute the non—dimensional temperature at a point RSt=r
from the origin (RStar is in this heated sphere) in a sphere that has
a uniform internal heat generation in it. Note that RStar is also
non—dimensional and is r/a where a is the radius of the heated sphere
and the length scale in Pe, the Peclet number is also a. Thus Pe is a
local Peclet number.

*/
{

register float arg1;

argl = sqrtpe*RStar;
if (RStar > ZERO_ DISTANCE)
return( (1.0—1.0/RStar*exp( —sqrtpe )*(1.0 + 1.0/sqrtpe)*sinh( arg1 ))/Pe );
else
return( (1.0 — exp( —sqrtpe )*(1.0 + 1.0/sqitpe)*sqrtpe)/Pe );
}

/* 3K 3K 3k ok 3k 3k 3k 3k 3k ok 3k 3k 5k 3 o ok 3k 5K 3K 3k 3k % 3K 3k 3k Sk ok ok 5k ok ok 3k ok ok 3k sk ok ok sk ok ok sk sk ok sk ok ok sk ok ok sk ok sk ok ok ok ok ok sk k ok ok sk ok ke sk ok */
float toutsphere(float Pe, float sqrtpe, float RStar)
/*
This routine compute the non—dimensional temperature at a point RStar
from the origin (RStar is outside of this heated sphere) in a sphere
that has a uniform internal heat generation in it. Not that RStar is
also non—dimensional and is r/a where a is the radius of the heated
sphere and the length scale in Pe, the Peclet number is also a. Thus
Pe is a local Peclet number.
*/

register float arg2;

arg2 = sqrtpe*RStar;
/ * An equivalent expression is as follows. This expression should be
computationally faster.  */
return( exp( —arg2 )*0.5*
(exp( sqrtpe )*(1.0 — 1.0 / sqrtpe) + exp(—sqrtpe)*(1.0+ 1.0 / sqrtpe) )
/RStar/Pe );
}

/* 2k 3k 3k 3k ok 3k 2k ok K 2k vk sk o ok 2k ok ok ok o e o 3k ok vk e e ke ok e A e e ke 2k K ¢ ke 3k Sk ok 3k 3k 3k o 3k ok K ok ok e ok 3 ok 3 3k ok ok ok ok ok 3k ok ok ok 3k ke ke */

float tsphere(float pe, float sqrtpe, float rstar)

/*

Here the non—dimensional temperature is computed for a uniformly heated
sphere in an infinitely, perfused medium.

*/

{

/* return x >=0.0? ans : 2.0—ans; */

/* return (rstar < 1.0) ? tinsphere(pe, rstar) : toutsphere(pe, rstar); */

if (rstar < 1.0)

return( tinsphere(pe, sqrtpe, rstar) );
else

return( toutsphere(pe, sqrtpe, rstar) );

}

/* ok 3k 3k sk ok ok sk ok e ok o ke ok 3k ok s e ok Sk oK 3k oK ke ok 3K ok o 3k ok ok sk kK 3k ok 3K oK oK dk 3k ok ok 3k ok 3k 3k 3k ke o 3§ ok 3k ok 3k ok ok 3k 3 ok ok ok ok ok ok ok Kk ok */

float tfirstkind(float pe, float r)
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/*
This routine computes the temperature contribution from a boundary node
of the first kind. Note that pe and r are local and dimensionless. The
length scale is arbitrary, but should be consistant.

The routine returns dimensionless temperature;

Theta = T/Th
where T is the dimensional temperature and Tb is the boundary temperature.
*/ 150

{

return( exp( —sqrt(pe ) *1));

}

/************************************************************************/

float tsecondkind( float pe, float r)
/*
This routine computes the temperature contribution from a boundary node
of the second kind. Note that pe and r are local and dimensionless. The
length scale is arbitrary, but should be consistant. 160
The routine returns dimensionless temperature;

T Km
Theta= —————

qa

where T is the temperature, Km is the thermal conductivity, a is
the length scale and q is the boundary heat flux.

*/
{

float argl;
argl = sqrt( pe );

return( exp( —argl*r)/argl );

}

/* ***********************************************************************/

float tthirdkind(fioat pe, float bi, fioat r)
/*
This routine computes the temperature contribution from a boundary node 180
of the third kind. Note that pe, bi and r are local and dimensionless. The
length scale is arbitrary, but should be consistant.
The routine returns dimensionless temperature;

where T is the temperture and To is the cooling fluid temperature.
The Biot number is: 190
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h is the heat transfer coefficient, Km is the thermal conductivity,
and a is the length scale.
*/
{
return( exp( —sqrt( pe )*r )} / (1 + sqrt(pe)/bi) ); 200

/* K 3k 3k 2k sk ok ok ok ok ok sk 3k 3k 3k ok 3k ok ok e s ok ke ok sk ok 3k ok sk ok ok 3k 3k sk ok 3k ok 3k sk ok ok ok 3ok sk sk 3k ok ok sk 3K ok ok o ok ok 3K 3k o 3k o <k sk ok oK ok 3k K ok 3k oK */
/*
STEADY CURVED BOUNDARY BASIS ELEMENTS (non—homogeneous)

Thes routine returns the dimensionless temperature rise for a
1—D conduction with perfusion and various boundary conditions.

2

d(r'T) w rho cb

——————————— - ————————(r'T) =0 210
2

dar’ km

Or in dimensionless form:

2

d (r Theta)

———————— — Pe (rTheta) = 0
2

dr 220

/* 2k ok ok ok ok o ok ok 3k 3k ok ok 3 3k sk sk ok 3k ok ok 3k 3 o 3k 3k ok ok sk o ok 3k sk ok sk ok ok o ok ok ok sk sk ok ok o sk ok ok Sk ok ok sk e o ok 3 ok ok ok ok ok ok 3k ok ok ek ok ok */

float tfirstkind_curve(float pe, float r)

/*
This routine computes the temperature contribution from a boundary node
of the first kind. Note that pe and r are local and dimensionless. The
length scale is arbitrary, but should be consistant.
The routine returns dimensionless temperature;

Theta = T/Tb 230
where T is the dimensional temperature and Tb is the boundary temperature.
*/
{
float sqrtpe;

sqrtpe = sqrt( pe );
if (r > ZERO_DISTANCE)
return( sinh( sqrtpe*r )/sinh(sqrtpe)/r );
else
return( sqrtpe/sinh(sqrtpe) ); 240

/* 3k 3k ok ok 3 3 ok s ok 2k ok 3K ok o ok e ok ok 3k ok 3k ok ok 3k sk Sk ok o ok b ok 3k 3k ok 3k ok 5K 3k ok ok vk s ok sk 2k 3k ok ok ok ok ok ok ok 3k ke 3k 3K ok ok ok ok ok ok ok ok ok ok K ok */

fioat tsecondkind curve( float pe, float r)

/*
This routine computes the temperature contribution from a boundary node
of the second kind. Note that pe and r are local and dimensionless. The
length scale is arbitrary, but should be consistant.
The routine returns dimensionless temperature;
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TKm
Theta= —————

qa

where T is the temperature, Km is the thermal conductivity, a is

the length scale and q is the boundary heat flux.
*/

float sqrtpe;

sqrtpe = sqrt( pe );
if (r > ZERO_DISTANCE)

return( sinh( sqrtpe*r )/r/(sqrtpe*cosh(sqrtpe) — sinh(sqrtpe)) );

else

}

return( sqrtpe/(sqrtpe*cosh(sqrtpe) — sinh(sqrtpe)) );

/* 2k 3 3 ok ok ok 3k 2k ok ok ke ok o ok ok 3k ke sk e ok ok 5 ok 3 ok ok ok s sk ok 3 ok e 3k sk A ok s ok ok k¢ sk e ok ok e e ok ok ok 3k ok ke ok 3k 9k 3k ok 3k 3k ok ok ok 3k ok kK ok dk ok */

float tthirdkind_curve(float pe, float bi, float r)

/*

This routine computes the temperature contribution from a boundary node
of the third kind. Note that pe, bi and r are local and dimensionless. The

length scale is arbitrary, but should be consistant.
The routine returns dimensionless temperature;

where T is the temperture and To is the cooling fluid temperature.

The Biot number is:

h is the heat transfer coefficient, Km is the thermal conductivity,

and a is the length scale.
*/
{

float sqrtpe;

sqrtpe = sqrt( pe );
if (r > ZERO_DISTANCE)

return( bi*sinh(sqrtpe*r)/r/(bi*sinh(sqrtpe)+sinh(sqrtpe)—sqrtpe*cosh(sqrtpe)));

else

}

return( bi*sqrtpe/(bi*sinh(sqrtpe)+sinh(sqripe)—sqrtpe*cosh(sqrtpe)));

/* 3k ok 3k ok 3k ok sk 3k ok ok 3 e ok 3k K sk ko 3k 3k o 3k ok K ok ok 3k ok ok ok e e ok ok ok 3k 3k ke 3 sk ok e ok ke ok o< K 3 ok o ke ok Sk ok ok sk ke k %k */

float factor( int1i)

if(i==0)
return( 1.0);
}
else
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{

return( i*factor(i — 1) );

}

/* ke ke sk ok e s sk o ke ok ok sk e sk ke o ok e ok o ok ok o ok 3 K ok ok s sk sk s sk ok s sk ok sk ok o o ok ok ok sk ok ok i ok ok e ok ok ok sk ok ok K */

float square( float x )

{

return( x*x );

}

/* 3k o o oK oK 3K oK R oK oK ok o sk ok ok ok ok oK o sk ok ok e ok ok ok s ok sk sk o ok sk ok ok sk ok ok sk ok o sk sk ok ok sk sk sk ke s sk */

SpaceAbs( Space x )

return( abs( x ) );

}

/* K 3k 3k ok ok ok ok 3k ok 3k 3k ok ok sk ok 3k 3k ok ok 3k 3K 3 ok Sk koK ok 3k K 3K 5k 3k ok ok 5k 3k 3k 3K ok ok sk ok ok ok 3k 3k ok ek sk ok ok sk k ok ok ok ok */

Space BEMsquare( Space x )
{

return( x*x );

}

/* sk 3k 3k sk ok ok ok 3 ok ke ke 3 3 oK 3 ok oF 3K e ke ok ok ok e ok ok ok ok ok 3k ok ok sk ok ok sk ok ok Sk ok ok ok ok ok sk o ke ok sk sk ok ok ok sk ke ok ok */
float BEMsqrt1( Space x )

return( Sqrt[ (int) x ] );

/* K ok ok ok o ok Sk ook ok o 3 3k o ok ok K ke ok S e ok ok 3 o oK oK Sk K o ok o8k o ok oK ok ok ok ook ok ok ok ok ok sk sk ok ok ok ok ok o ok */

float BEMsqrt2( Space x )

if(x < MAX N_SQRT)
{

return( *(Sqrt + (int) x ) );

}

else

{

return( sqrt( (float) x ) );

/* sk 3k 3k 3k Sk 3k 3 3k 3k ok sk ok sk sk sk 3k ok ok o ok ok 3 ok sk sk sk 3 sk sk 3k 3k ok ok ok ok K ok ok s b vk 3 o ok e sk sk ok sk ok skok sk k ok ok sk kk */
float BEMsqrt3( Space x )

return( (float) sqrt( (float) x ));

}

/* e sde e ok 3 ok 3 o oK 3k ok ok ok ok sk ok ok o ok sk sk ok ok ok ok ok sk ok ok ok sk sk ok sk ok ok ok o ok 5K 3 ok ok ok sk e o ok o ok sk ok s o ok s ok ok ok */
float BEMsqrt( Space x )

{
/* return( (float) sqri( (float) x ) ); */
return( (*BEMsqrtPtr) (x ) );
/*
ifix < MAX_N SQRT)
{
return( *(Sqrt + (int) x ) );

else

return( sqrt( (float) x ) );
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}

*/

}

/* o 2% sk ok o ok s 3k ok sk s sk sk e o e ok sk ke o Sk ok She ok S e e ok e sk sk Sk ok ok ke ok sk sk ok Sk sk ok ok sk ke sk e Sk sk sk sk sk sk sk sk ke sk ok ok */

oat min( float x, float y )

if(x<y)

return( x );

}

else

/* 3k sfe 3k 3k 3 S 3k ok 3 ke e ok e sk ke S S Sk e 3k S ok ok e 3k e e s ke S ok ok S e 3 e e sk ok ke Sk sk ok ok 3k ok koo ok sk sk ok kok sk k sk ok */

}

/* 2k 2k ok s sk o o ok ok ok 3k o ok ok ok ok 3k 3k ok 3k 3k ok 3 3k ok ok ke Sk ok ok Sk o ok sk 3¢ 3k ok o sk 3 ok sk e ok ok ok sk ok ok ok ok ok sk sk ok sk sk sk sk sk sk okok */

return( y );

oat max( float x, float y )

if (x >y)
{

return( x );

}

else

{

return(y );

}

float sgn( float var )

/* 3K 2k 2k ok 2k ok ok ok ke obe sk ok ok ok ok ok ok ke sk 3k ok e sk sk sk ok sk sk 3k ok ok ok Sk e ke 3k ok ok ok ok s e ok sk sk ok of ok ok ok e sk ok ok sk ok ok ok ok sk sk ok */

if (var == 0.0)
{

return( 0.0);

}

else

{

return( fabs( var )/var );

int isclose( float x, float y, float ¢)

}

/* ek ok 3k 2k o o ok 3k sk o ok ok o ok sk ke e sk ok sk e ok ok ok 3k o e K ok ek ok 3 3k ok sk ke o ok sk o ok ok sk ok ok ok ok ok ok ok e ok ok ok ke ok */

e*=sgn(y);

f((x<y+e*ry) && (x >y — e*y))

return( 1 );

}

return( 0 );

float first curve sphere( float R, float rpoint, float rsource,

{

fleat theta, float pe,

float radcurve)
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/*
This routine computes the steady— state solution of temperature
Jor a uniform source in a perfused medium with a curved external
boundary whose temperature is held at zero. The solution is
formulated in spherical coordinates.
*/
int convex;
float temp, r, rprime, C1, sqrtpe, Rprime, mu;
sqrtpe = sqrt( pe );
mu = cos( theta );
temp = 0.0;
/ * Outside the curved struction the temperature is zero. */
convex = 0;
if (radcurve < 0.0)
{
convex = 1;
radcurve = fabs( radcurve );
}
if (isclose(rpoint, radcurve, CLOSE)) return( temp );
if ( (!convex) && ((rsource > radcurve) || (rpoint > radcurve) ||
(R > 2.0*radcurve) ))

{

return( (float) temp );

if (theta > TWO_PI) return( temp );
rprime = rsource;
r =rpoint;

Rprime = sqrt( radcurve*radcurve + r*r*rprime*rprime /radcurve /radcurve

— 2.0*r*rprime*mu );

if(R>1.0)
{
temp = exp( —sqrtpe*Rprime )/Rprime;
temp = exp( —sqrtpe*R )/R — temp;
temp *= (cosh( sqrtpe ) — sinh( sqrtpe ) / sqrtpe) / pe;

else

{
temp = exp( —sqrtpe*Rprime )/Rprime;
Cl1 = (1.0 — (cosh( sqrtpe ) — sinh( sqrtpe ) / sqrtpe)
*(exp( —sqrtpe ) — temp ))/sinh( sqrtpe );

if(R > ZERO_DISTANCE)
{
temp = 1.0/pe*(1.0 — C1*sinh( sqrtpe*R )/R);
}
else
{
temp = (1.0 — Cl*sqrtpe)/pe;
}
}
if (temp < 0.0) temp = 0.0;
return( temp );

}

/* 3% 3 3k % 3 3 ok 3 2k e e ok o o ok e o o e ke o e o 3 ok e ok ok e e 3 5k 3 e oK ok ok ok 3k ok e ok e ok o ok ok e o o o o o Ak ok ok ok ok ok #/
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float second_curve sphere( float R, float rpoint, float rsource,
float theta, float pe, float radcurve)
{

/*
This routine computes the steady—state solution of temperature
for a uniform source in a perfused medium with a curved external
boundary whose temperature is held at zero. The solution is
formulated in spherical coordinates.
*/
int convex;
float temp, r, rprime, C1, sqrtpe, Rprime, mu;
float D1;
sqrtpe = sqrt( pe );
mu = cos( theta );
D1 = (cosh( sqrtpe ) — sinh( sqrtpe ) / sqrtpe) / pe;
temp = 0.0;
if (theta > TWO _PI) return( temp );
rprime = rsource;
r =rpoint;
Rprime = sqrt( radcurve*radcurve + r*r*rprime*rprime/radcurve/radcurve
— 2.0*r*rprime*mu );
if(R>1.0)
{
temp = exp( —sqrtpe*Rprime )/Rprime;
temp = exp( —sgrtpe*R )/R + temp;
temp *= DI;
}
else
{
temp = exp( —sqrtpe*Rprime )/Rprime;
C1 =(1.0 — D1 * pe * (exp( —sqrtpe ) — temp ))/sinh( sqrtpe );
if(R > ZERO DISTANCE)

temp = 1.0/pe*(1.0 — C1*sinh( sqrtpe*R )/R);
else

{

}

{
temp = (1.0 — C1*sqrtpe)/pe;

}

if (temp < 0.0) temp = 0.0;

return( temp );

/* sk 3k ok ok ke 3k ok e 3K 3 ok 3 ok 3k ke o ok o sk ok Sk e 3k 3K ok ol o ok 3K ok ok 3k o ok ok 3k ke ok 3k ok ok ok ok s e ke e sde ke ok ok ok ok ok ok ok ke ok */

float third curve sphere( float R, float rpoint, float rsource,
float theta, float pe, float radcurve,
float biot)

{
/*

This routine computes the steady—state solution of temperature
for a uniform source in a perfused medium with a curved external
boundary whose temperature is held at zero. The solution is
Jformulated in spherical coordinates.
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*/
int convex;
float temp, r, rprime, C1, sqrtpe, Rprime, mu;
float Rb, Rbprime, C2, D1;
sqrtpe = sqrt( pe );
mu = cos( theta );
temp = 0.0;
convex = 0;
if (radcurve < 0.0)
{
convex = 1;
radcurve = fabs( radcurve );

/* if (isclose(rpoint, radcurve, CLOSE)) return( temp ); */
if (theta > TWO_PI) return( temp );
rprime = rsource;
r =rpoint;

Rb=  sqrt(radcurve*radcurve + rprime*rprime — 2.0*radcurve*rprime*mu);

if (Rb < 1.0)Rb = 1.0;

C1 = (biot*Rb — (radcurve — rprime*mu)*(sqrtpe + 1.0/Rb))/
(biot*Rb ~ (rprime*rprime/radcurve — rprime*mu)*(sqrtpe + 1.0/Rb));

D1 = (cosh( sqrtpe ) — sinh( sqrtpe ) / sqrtpe) / pe;

Rprime = sqrt( radcurve*radcurve + r*r*rprime*rprime /radcurve /radcurve

— 2.0*r*rprime*mu );

if (Rprime < 1.0) Rprime = 1.0;
if R > 1.0)

temp = Cl*exp( —sqrtpe*Rprime )/Rprime;
temp = exp( —sqrtpe*R )/R — temp;
temp *= DI;

else
{

temp = exp( —sqrtpe*Rprime )/Rprime;

C2 =(1.0/pe — D1*(exp( —sqrtpe) — C1*temp))/sinh( sqrtpe );
/*
Cl = (1.0 — (cosh( sqrtpe ) — sinh( sqrtpe ) | sqrtpe)
*(exp( —sqripe ) — temp ))/sinh( sqripe );

*/
if(R > ZERO DISTANCE)
{
temp = 1.0/pe — C2*sinh( sqrtpe*R )/R;
}
else
{
temp = 1.0/pe — C2*sqrtpe;
}
}

if (temp < 0.0) temp = 0.0;
return( temp );

}

/* K 2k ok s 3k ok e ok e e sk ok ok 3k e ok e sk ek ok e ok sk o e sk o sk 3K K ok ok o ok 3 ok sk ok dkok Sk ok sk ok sk k ke k ok ok sk k ko Rk kR ok ok */
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void init_sqrt( void )
{
/*
This routine initializes the array for the integer computation
(lookup) of square roots.
*/
inti;
float x;
if (Sqrt ==NULL)
Sqrt = (float *) malloc( (MAX N _SQRT + 1) * sizeof( float ) );
for (i =0; i <= MAX N SQRT; i++)

Sqrt[ i ] = sqrt( (float) i );
}

/* Here we optimize a bit the BEMsqrt routine. We must check
the input to insure it is within the bounds of the array.
However, this constant conditional checking costs about 20
clock cycles. Here we do the checking up front and set a
global point to either of 2 routines — one which will
check and the other which will not.

*/
*
if (x < MAX.N.SQRT)
BEMsqrtPtr = BEMsqrtl;
}
else
{
BEMsqrtPtr = BEMsqrt2;
}
*/

if (Sqrt == NULL)

BEMsqrtPtr = BEMsqrt3;

}
else

BEMsqrtPtr = BEMsqrt2;

}
#ifdef USE FLOAT GEOM
BEMsqrtPtr = BEMsqrt3;
#endif
return;

/* ke ok 2k 3k ok 3 3 3k Sk ok 3 3 ok 3k ke ok o e 3 ok 3k 3k o ok ok o o ofe ok o o ok ok ok 3k o 3k 3k ok 3k 3k 3k 3K ok 3k ok ok 3 ok o 3k ok ok 3k ok e ok ok ok o ok ok ok */

float approx diff curve sphere( float R, float rpoint, float rsource,
float theta, float pel, float pe2, float kappa, float radcurve)

/*

This routine computes the basis element for a curved tissue boundary
separating two tissue subdomains of different perfusion and thermal

properties.
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*/
{
float temp; 630
float r, rprime, mu, C1, C2;
float sqrtpel, sqrtpe2;
float RadCurve;
float Rprime, Ra;
float D1, D2;

sqrtpel = sqrt( pel );

sqrtpe2 = sqrt( pe2 );
/*
Rs = source radius 640

kappa = km2/kml

wl rho ¢
Pel= —————————— Rs"2
kml
w2 rho ¢
P2= —————————— Rs™2
km2
650
T1 kml
Thetal = —————~———
Qo Rs™2
T2 km2
Theta? = ~———————
Qo Rs™2
*/
temp = 0.0;
mu = cos( theta ); 660
D1 = (cosh( sqrtpel ) — sinh( sqrtpel ) / sqrtpel) / pel;
D2 = (cosh( sqrtpe2 ) — sinh( sqrtpe2 ) / sqrtpe2) / pe2;
RadCurve = fabs( radcurve );
T = rpoint;
rprime = rsource;
Rprime = sqrt( radcurve*radcurve + r*r*rprime*rprime/radcurve /radcurve
— 2.0*r*rprime*mu );
if (Rprime < 1.0) Rprime = 1.0;
if ((rprime < RadCurve) && (rprime > RadCurve—1.0)) rprime = RadCurve — 1.0;
/* 670
If the source and the field point are both in subdomain 1.
*/
if ((rpoint <= RadCurve) && (rsource <= RadCurve))
C1 = (1.0 + 1.0/sqrtpel /radcurve — kappa — kappa/sqrtpe2/radcurve)/
(1.0 + 1.0/sqrtpe1 /radcurve + kappa + kappa/sqrtpe2 /radcurve);
if(R<1.0) 680

{

212



C2=(1.0 — D1 * pel * (exp( —sqrtpel )+
Cl*exp( —sqrtpel*Rprime ) / Rprime ) )
/ sinh( sqrtpel );
if (R > ZERO DISTANCE)

temp = (1.0 — C2*sinh( sqrtpel1 *R )/R )/pel;
}

else

temp = (1.0 — C2*sgrtpel)/pel;

else

temp=( exp(—sqrtpel1* R )/R
— Cl*exp( —sqrtpel*Rprime ) / Rprime );
temp *=DI;
}
}
/*
Else If the source is in subdomain 1 and the field point is in subdomain 2.

*/
else if ((rpoint > RadCurve) && (rsource < RadCurve))

C1 = (1.0 + 1.0/sqrtpel /radcurve — kappa — kappa/sqrtpe2/radcurve)/
(1.0 + 1.0/sqrtpel /radcurve + kappa + kappa/sqrtpe2/radcurve);
Ra = sqri( radcurve*radcurve + rprime*rprime — 2.0*rprime*radcurve*mu);
C2 = exp(—Ra*(sqrtpel — sqrtpe2) )*(1.0 — Cl);
temp = D1 * C2 * exp( —sqrtpe2*R )/R*kappa;
}
/*

Else If the source and the field point are both in subdomain 2.

*/
else if ((rpoint > RadCurve) && (rsource >= RadCurve))

kappa = 1.0/kappa;

C1 = (1.0 + 1.0/sgrtpe2 /radcurve — kappa — kappa/sqrtpel /radcurve)/
(1.0 + 1.0/sqrtpe2 /radcurve + kappa + kappa/sqrtpel /radcurve);

ifR<1.0)

C2=(1.0 — D2 * pe2 * (exp( —sqrtpe2 )+
Cl*exp( —sqrtpe2*Rprime ) / Rprime ) )
/ sinh( sqrtpe2 );
if (R > ZERO DISTANCE)
temp = (1.0 — C2*sinh( sqrtpe2*R )/R )/pe2;
}
else

temp = (1.0 — C2*sqrtpe2)/pe2;
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}
}

{
temp= ( exp(-—sqrtpe2*R ) /R
— Cl*exp( —sqrtpe2*Rprime ) / Rprime );

else

temp *=D2;
}
}
/*
Else If the field point is in subdomain 1 and the source is in subdomain 2.

*/

else

kappa = 1.0/kappa;
C1 = (1.0 + 1.0/sqrtpe2 /radcurve — kappa — kappa/sqrtpel /radcurve)/
(1.0 + 1.0/sqrtpe2/radcurve + kappa + kappa/sqrtpel /radcurve);
Ra = sqrt( radcurve*radcurve + rprime*rprime — 2.0*rprime*radcurve*mu);
C2 = exp(—Ra*(sqrtpe2 — sqrtpel) )*(1.0 — C1);
temp = D2 * C2 * exp( —sqrtpe1*R )/R*kappa;
}

return( temp );

}

/* 33k sk 3k 3k ok 3k 2k 2k 3k 3k 3K ok 3k Sk ok ok ok 3k 3k ok 3 3k 3K 3k 3k ke s 3k sk 3k ok 3k 3K %K ok ok ok 3K 3k 3k 3k sk ok ok ok o ok 3k ok ok ok ke ke ok Sk ok sk ok sk ok sk ok */

float tshellss( float pe )
{
double tmp, sqrtpe;
sqrtpe = sqrt( pe );
tmp = (sqrtpe*cosh(sqrtpe) — sinh( sqrtpe ) )/(1.0 + sqrtpe);
tmp = 1.0/(sinh( sqrtpe ) + tmp)/pe;
tmp = tmp*sqrtpe;
return( tmp );
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