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SUMMARY

Precise regulation of Egr2 transcription is fundamen-
tally important to the control of peripheral myelina-
tion. Here, we describe a long non-coding RNA anti-
sense to the promoter of Egr2 (Egr2-AS-RNA). During
peripheral nerve injury, the expression of Egr2-AS-
RNA is increased and correlates with decreased
Egr2 transcript and protein levels. Ectopic expres-
sion of Egr2-AS-RNA in dorsal root ganglion (DRG)
cultures inhibits the expression of Egr2 mRNA and
induces demyelination. In vivo inhibition of Egr2-
AS-RNA using oligonucleotide GapMers released
from a biodegradable hydrogel following sciatic
nerve injury reverts the EGR2-mediated gene expres-
sion profile and significantly delays demyelination.
Egr2-AS-RNA gradually recruits H3K27ME3, AGO1,
AGO2, and EZH2 on the Egr2 promoter following
sciatic nerve injury. Furthermore, expression of
Egr2-AS-RNA is regulated through ERK1/2 signaling
to YY1, while loss of Ser184 of YY1 regulates binding
to Egr2-AS-RNA. In conclusion, we describe func-
tional exploration of an antisense long non-coding
RNA in peripheral nervous system (PNS) biology.

INTRODUCTION

In the vertebrate peripheral nervous system (PNS), Schwann

cells (SCs) produce the myelin sheath, the specialized mem-

brane structure that allows rapid nerve conduction. In recent

years, significant progress has been made in the identification

of key transcriptional regulators of myelination. Evidence gener-

ated in the mouse suggests that the transcription factor EGR2

plays the role of a central regulator in this process: (1) EGR2 is

activated in SCs after axonal contact, before myelination (Mur-

phy et al., 1996; Topilko et al., 1994); (2) Egr2 null or hypomorphic

mutations result in blockade of SCs at the promyelinating stage,

after the establishment of a 1:1 ratio with the axons, rendering
1950 Cell Reports 20, 1950–1963, August 22, 2017 ª 2017 The Autho
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them unable to proceed with the myelination process (Le et al.,

2005; Topilko et al., 1994); (3) forced Egr2 expression in SCs re-

sults in the activation of genes encoding structural myelin pro-

teins and enzymes involved in lipid synthesis (Nagarajan et al.,

2001); and (4) downregulation of EGR2 expression after periph-

eral nerve injury results in demyelination (Ghislain et al., 2002;

Zorick et al., 1996). In addition to mouse studies, the association

of various dominant or recessive Egr2 mutations with several

types of human peripheral neuropathies supports the crucial

role of Egr2 in the control of SC myelination (Bellone et al.,

1999; Timmerman et al., 1999; Warner et al., 1998).

Intracellular signaling pathways activated by both membrane-

bound and soluble neuregulins regulate the expression of EGR2

in SCs (Murphy et al., 1996; Svaren and Meijer, 2008; Taveggia

et al., 2005). Activation of theMEK-ERK1/2 cascade by neuregu-

lin is responsible for activation of the YY1 transcription factor,

which binds to the Egr2 promoter and regulates Egr2 expression

(He et al., 2010). Ablation of ERK/12 signaling in Erk1/2CKO(Dhh)

sciatic nerves leads to profound inhibition of EGR2 expression

and severe hypomyelination (Newbern et al., 2011).

The aforementioned studies reflect the ‘‘classical’’ paradigm

of transcriptional regulation, where signaling intermediates acti-

vate transcription factors, which in turn bind specific DNAmotifs

located on promoters to regulate the expression of target genes.

However, the role of epigenetic mechanisms (here taken tomean

mechanisms such as histone modifications and non-coding

RNAs (ncRNAs) that alter gene expression without changing

the DNA sequence) orchestrated by ncRNAs that regulate tran-

scription (Hawkins and Morris, 2008) have not been studied. In

human cells, there are two independent mechanisms that confer

transcriptional gene silencing (TGS): (1) a microRNA (miRNA)-

directed mechanism and (2) a long-antisense RNA mechanism

(Morris, 2009). Both short-(miRNA)- and long-(antisense)-RNA-

mediated TGS in human cells involves the interaction of RNA

with promoter regions (Kim et al., 2008; Klase et al., 2007; Omoto

and Fujii, 2005; Tan et al., 2009).

Here, we describe a long ncRNA (lncRNA) antisense to the

proximal promoter of Egr2. Egr2-AS-RNA shows increased

expression during acute peripheral nerve injury. Expression of

Egr2-AS-RNA regulates the levels of Egr2 in SCs, and in vivo
rs.
creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:nikos_tapinos@brown.edu
http://dx.doi.org/10.1016/j.celrep.2017.07.068
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2017.07.068&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


inhibition of Egr2-AS-RNA results in rescue of the EGR2-

mediated gene expression profile and delay of demyelination

following peripheral nerve injury. Egr2-AS-RNA gradually re-

cruits an epigenetic remodeling complex on the Egr2 promoter,

while expression of Egr2-AS-RNA is regulated by ERK1/2

signaling to YY1, which binds to Egr2-AS-RNA in the context

of chromatin. Finally, YY1 mediates the interaction between

Egr2-AS-RNA and the chromatin remodeling factor ESH2,

while loss of Ser184 of YY1 induces direct binding of YY1 to

Egr2-AS-RNA.

RESULTS

Discovery of an Antisense lncRNA at the 50 UTR of Egr2
We have recently shown that miR-709 induces TGS of Egr2 by

binding to the myelin-specific element (MSE) region of the Egr2

promoter (Adilakshmi et al., 2012). These data generated a hy-

pothesis regarding the possible transcriptional regulation of the

proximal promoter of Egr2 by antisense RNA. To determine

whether an antisense lncRNA is present at the 50 UTR of Egr2,

we employed a modified rapid amplification of cDNA ends

(50-RACE) protocol to amplify the antisense strand. The resulting

antisense product was cloned, and the sequence is presented in

Figure S1A. Attempts to extend the RACE amplification further

upstream using primer walking did not reveal any results (data

not shown), which suggests that either the antisense RNA is

�1,000 nt long or that it is partially amplified with our RACE

protocol. Next, we performed a homology search using the rat

antisense sequence against the mouse genome to identify the

degree of homology between rat and mouse. This search

showed 92%homology (Figure S1B), which allowed us to design

mouse-specific primers and perform strand-specific RT-PCR to

amplify the antisense product from total RNA isolated from

mouse sciatic nerves. To determine whether this AS-RNA had

been identified before, we performed a BLAST search using

LNCipedia (Volders et al., 2013, 2015) and lncRNAdb (Amaral

et al., 2011; Quek et al., 2015). The search returned no matches,

which suggests that this RNA is a previously undescribed

long non-coding antisense RNA that we subsequently refer to

as Egr2-AS-RNA. Finally, to independently validate the expres-

sion of Egr2-AS-RNA, we examined publicly available RNA-

sequencing (RNA-seq) data from three mouse sciatic nerves to

identify RNA-seq reads that map to the identified AS-RNA tran-

script (Poitelon et al., 2016). We found that the number of reads

per kilobase per million (RPKM) of Egr2-AS-RNA ranges be-

tween 1.6 and 2.5 and is on average 5 times more than the me-

dian number of RPKM over the entire �26,000 RefSeq tran-

scripts (Table S1A) in sciatic nerves. In addition, the average

relative abundance of Egr2-AS-RNA in the three sciatic nerves

was 43 times lower than the expression levels of the Egr2 tran-

script (Table S1B). Then, we estimated the coordinates ofmature

Egr2-AS-RNA and identified that the mature Egr2-AS-RNA

sequence spans a 470-nt region (chromosome 10 [chr10],

67537250–67537720) with almost perfect sequence fidelity (Fig-

ures S2A and S2B). The discrepancy between the length of

mature AS-RNA (470 nt) and the sequence detected by the

RACE protocol (�1,000 nt) can be attributed to the random dec-

amers used for the amplification of the RACE product and the
possibility that part of Egr2-AS-RNA could be spliced after 50

end capping.

Egr2-AS-RNA Is Expressed in Mouse Sciatic Nerves and
Is Significantly Increased following Nerve Injury
To determine whether Egr2-AS-RNA is expressed during post-

natal development of the mouse sciatic nerve, we performed

strand-specific qPCR using RNA isolated from postnatal day 1

(P1), P5, P7, and 3-month-old mouse sciatic nerves. This

showed that Egr2-AS-RNA is expressed throughout these time

intervals, with the highest expression in P1 sciatic nerves (Fig-

ure 1A). To detect the expression and cell specificity of Egr2-

AS-RNA in mouse sciatic nerves, we performed multiplex

fluorescence in situ hybridization targeting Egr2-AS-RNA in

combination with mouse S100b, which was used as an SC-

specific marker. We detected a signal specific for Egr2-AS-

RNA in the cytoplasm (Figure 1B, arrowheads) and the nucleus

(Figure 1B, arrow) of S100b-positive SCs.

To examine whether Egr2-AS-RNA plays a role in the regula-

tion of Egr2 expression after peripheral nerve injury, we per-

formed strand-specific qPCR to detect the expression of Egr2-

AS-RNA and Egr2 mRNA 6 hr, 12 hr, 24 hr, 2 days, 5 days, and

7 days followingmouse sciatic nerve transection. We discovered

that the expression of Egr2-AS-RNA exhibits a statistically signif-

icant increase 6 and 12 hr after sciatic nerve injury (Figure 1C).

The expression of Egr2 mRNA shows statistically significant

downregulation at 12 and 24 hr (Figure 1D) and rebounds at

days 2, 5, and 7, when expression of Egr2-AS-RNA is minimal.

Finally, EGR2 protein expression in sciatic nerve lysates is signif-

icantly reduced by 48 hr after injury (Figures S3A and S3B).

Quantification of Absolute Levels of Egr2-AS-RNA in
Mouse Sciatic Nerves
In order to determine the absolute abundance of Egr2-AS-RNA

in mouse sciatic nerves, we prepared limiting dilutions (10 ng

to 1 pg) of a known amount of Egr2-AS-RNA and generated a

standard amplification curve of the dilutions using qPCR as

described before (Lu and Tsourkas, 2009). The Ct values ob-

tained from the amplification of Egr2-AS-RNA were then pro-

jected on the standard curve to determine the concentration of

Egr2-AS-RNA per 100 ng total RNA, which was used as template

in all qPCR reactions. This analysis showed that the average

concentration of Egr2-AS-RNA in non-injured sciatic nerves

was 200 pg/100 ng RNA, while, in injured nerves, the average

concentration fluctuated between 350 and 650 pg/100 ng

RNA, depending on the time interval following nerve injury (Fig-

ure 1E). The low expression levels of Egr2-AS-RNA are within

the range of expression of lncRNAs in eukaryotic cells (Mortazavi

et al., 2008; Palazzo and Lee, 2015; Ramsköld et al., 2009). The

fact that expression levels increase by an average of 4-fold

following sciatic nerve injury implies specific functionality of

Egr2-AS-RNA in injured peripheral nerves.

Ectopic Expression of Egr2-AS-RNA Results in
Demyelination and Inhibition of Egr2 mRNA Expression
Since increased Egr2-AS-RNA expression correlates with

reduced Egr2 mRNA levels after sciatic nerve injury, we sought

to demonstrate that Egr2-AS-RNA could induce silencing of
Cell Reports 20, 1950–1963, August 22, 2017 1951



Figure 1. AnEgr2Antisense RNA Transcript Is Expressed during Sciatic Nerve Development and Is Upregulated after Peripheral Nerve Injury

(A) Expression of Egr2-AS-RNA was detected by strand-specific qPCR in P1, P5, P7, and 3-month-old mouse sciatic nerves.

(B) In situ hybridization inmouse sciatic nerves shows the expression of Egr2-AS-RNA (green signal) in the cytoplasm (arrowheads) and nucleus (arrow) of S100b-

positive (red signal) SCs. Positive control shows expression of cyclophilin B (PPIB) (green) and POLR2A (RNA polymerase II polypeptide) (red). Negative control

shows no signal using a bacterial dapB probe. Scale bar, 100 mm.

(C) Expression of Egr2-AS-RNA in non-injured sciatic nerves and in sciatic nerves 6 hr, 12 hr, 24 hr, 2 days, 5 days, and 7 days following sciatic nerve injury. The

experiments were repeated three times, and significance was calculated with a one-way ANOVA (F (6,22) = 22.19, p < 0.0001) followed by a post hoc Dunnett’s

test (**p < 0.005, ****p < 0.00005).

(D) Expression of Egr2 mRNA in non-injured sciatic nerves and in sciatic nerves 6 hr, 12 hr, 24 hr, 2 days, 5 days, and 7 days following sciatic nerve injury. The

experiments were repeated three times, and the results are presented as mean ± SD. Significance was calculated with a one-way ANOVA (F (6,15) = 9.458,

p < 0.0001) followed by a post hoc Dunnett’s test (***p < 0.0005).

(E) Absolute abundance of Egr2-AS-RNA is significantly lower in control sciatic nerves than in injured nerves as determined by a one-way ANOVA (F = 6.935,

p = 0.0161) using sciatic nerves from 3 mice per condition.
Egr2 transcript expression. We generated a lentivirus expressing

Egr2-AS-RNA to infect mouse dorsal root ganglion (DRG)

explant cultures 14 days after the addition of ascorbic acid to

ensure the presence of myelinated axons. We demonstrate

that overexpression of Egr2-AS-RNA (Figure 2E) results in sta-

tistically significant inhibition of Egr2 mRNA expression as

detected by qPCR (Figure 2A). In addition, ectopic expression

of Egr2-AS-RNA results in statistically significant inhibition of

EGR2 protein expression (Figure 2B). To examine the effect of

the ectopic expression of Egr2-AS-RNA on myelination, we in-

fected myelinated mouse DRG cultures with pLenti-AS-RNA or

pLenti-control. To show the specificity of the effect of Egr2-

AS-RNA on myelination, we incubated the pLenti-AS-RNA-

infected cultures with a scrambled oligonucleotide GapMer

(scrambled complementary strand of the AS-RNA) or an

Egr2-AS-RNA GapMer (complementary to the Egr2-AS-RNA

sequence). One week after infection and treatment with the

GapMers, we stained the cultures with myelin basic protein
1952 Cell Reports 20, 1950–1963, August 22, 2017
(MBP) and neurofilament (NF) antibodies to detect myelin inter-

nodes and integrity of the underlying axons, respectively (Fig-

ure 2C). Infection with the pLenti-AS-RNA induces significant

expression of Egr2-AS-RNA, which is not affected by the addi-

tion of scrambled GapMers, while Egr2-AS-RNA GapMers

induce a significant reduction in the amount of Egr2-AS-RNA in

the cultures (Figure 2E). Moreover, addition of Egr2-AS-RNA

GapMers rescues the demyelination phenotype observed in cul-

tures infected with pLenti-AS-RNA, while scrambled GapMers

have no effect (Figures 2D and 2F). There was no difference in

total cell numbers between the cultures (Figure S3C).

Inhibition of Egr2-AS-RNA Expression Using
Oligonucleotide GapMers Results in Delay of
Demyelination following Peripheral Nerve Injury
We developed an in situ, non-swelling, biodegradable hydrogel

(O’Shea et al., 2015) loaded with oligonucleotide GapMers

(20-mers) against Egr2-AS-RNA. The GapMer-infused hydrogel



Figure 2. Ectopic Expression of Egr2-AS-RNA Inhibits the Expression of Egr2 mRNA and Induces Demyelination

(A) Lenti-AS-RNA-infected cultures exhibit a significant decrease in the expression of the Egr2 mRNA as compared to Lenti-control infected cultures. The

experiment was repeated three times, and significance was calculated with a two-tailed unpaired Student’s t test (**p = 0.0005, t = 5.571, df = 8). Results are

presented as mean ± SD.

(B) Representative western blot showing expression of EGR2 after infection of DRG cultures with Lenti-control or Lenti-AS-RNA. Actin was used as loading

control. Densitometric analysis shows that ectopic expression of Egr2-AS-RNA results in a statistically significant decrease in EGR2. The results are presented as

mean ± SD from n = 5 per condition. Significance was calculated with a two-tailed unpaired Student’s t test (t = 4.722, df = 8, *p = 0.015).

(C) Representative images of Lenti-control- and Lenti-AS-RNA-infected DRG cultures showing extensive demyelination in the cultures infected with Lenti-AS-

RNA. Myelinated internodes were stained with MBP (red), and nuclei were stained with DAPI (blue) (top). The lower left panel shows a higher magnification of the

myelin internodes (stained red with MBP) and axons (stained green with neurofilament) in Lenti-control-infected cultures. In Lenti-AS-RNA-infected cultures, we

detected myelin debris (stained red with MBP), while the axons retain their integrity expressing NF (green). Scale bars, 100 mm.

(D) Rescue of AS-RNA induced demyelination with oligonucleotide inhibitors of Egr2-AS-RNA (GapMers).

(E) Lenti-AS-RNA-infected cultures exhibit significant increase in the expression of AS-RNA as compared to Lenti-control infected cultures, and the expression of

AS-RNA is not affected by the addition of scrambled GapMers (two-tailed, unpaired Student’s t test, p = 0.0135, t = 3.458, df = 6). Treatment of Lenti-AS-RNA-

infected DRG cultures with Egr2-AS-RNA-specific GapMers results in significant inhibition of Egr2-AS-RNA expression as compared to Lenti-AS-RNA-infected

cultures treated with scrambled GapMers (two-tailed, unpaired Student’s t test, p = 0.0001, t = 14.04, df = 6).

(F) Myelin internodes from ten 103 fields per culture from 4 cultures per condition were measured, and the results are presented as mean ± SD. Significance was

calculated with a two-tailed unpaired Student’s t test. Lenti-AS-RNA-infected cultures treated with a control (scrambled) GapMer have significantly fewer

myelinated internodes than Lenti-control-infected cultures (p = 0.0007, t = 5.352, df = 8). An Egr2-AS-RNA-specific GapMer rescues the Lenti-AS-RNA-infected

cultures from AS-RNA-induced demyelination (p < 0.0001, t = 7.949, df = 70).
was applied to the sciatic nerve at the time of transection.We de-

signed five GapMers targeting different areas of the Egr2-AS-

RNA and a scrambled GapMer for control. Four GapMers

induced significant inhibition of Egr2-AS-RNA expression as

compared to transected nerves that received hydrogel only or

hydrogel plus scrambled GapMers (Figure 3A). Inhibition of

Egr2-AS-RNA expression with each of these GapMers results

in statistically significant increase in the expression of Egr2

mRNA following peripheral nerve injury (Figure 3B). Using elec-

tron microscopy, we discovered that addition of the hydrogel

plus GapMer at the time of sciatic nerve transection delays the
injury-induced demyelination at days 2, 5, and 7 after nerve injury

compared to injured nerves alone or injured nerves treated

with hydrogel plus scrambledGapMer (Figure 3C). Subtherapeu-

tic concentrations of GapMer remained within the hydrogel

beyond 7 days, consistent with in vitro release results for bio-

macromolecules of a similar molecular weight (O’Shea et al.,

2015), and consequently, the study was not extended further.

Inhibition of Egr2-AS-RNA expression using GapMers results

in a significant reduction in the percentage of demyelinated

fibers and an increase in the percentage of myelinated fibers

2, 5, and 7 days following complete sciatic nerve transection
Cell Reports 20, 1950–1963, August 22, 2017 1953



Figure 3. In Vivo Inhibition of Egr2-AS-RNA Expression Results in Delayed Demyelination after Sciatic Nerve Injury

(A) Effect of five separate oligonucleotide GapMers complementary to five different sequence motifs of Egr2-AS-RNA on the expression of Egr2-AS-RNA in

mouse sciatic nerves. Quantification was performed with qPCR, combining RNA from 3 separate mice per individual GapMer. Four GapMers induced significant

inhibition of AS-RNA expression (one-way ANOVA [(5,13) = 5.846, p = 0.0111] followed by a post hoc Dunnett’s test [*p < 0.05]) as compared to transected nerves

that received hydrogel only (lesion) or hydrogel plus scrambled GapMers.

(B) Inhibition of AS-RNA with each of these GapMers results in significant increase in the expression of Egr2 mRNA as compared to non-treated or

scrambled-GapMer-treated injured sciatic nerves (one-way ANOVA [F(5,7) = 7.175, p = 0.0111] followed by post hoc Dunnett test [*p < 0.05], 3 sciatic nerves per

condition).

(C) Nerves that received hydrogel only or hydrogel plus scrambled GapMers show varying degrees of demyelination and axonal damage at 2, 5, and 7 days after

sciatic nerve transection. Animals treated with hydrogel plus GapMer appear to have less demyelination and axonal degeneration, and the endoneural space

appears more compact without extensive collagen depositions, which is more evident at day 7 as compared to animals treated with hydrogel only or hydrogel

plus scrambled GapMers.

(D) Quantification of the myelinated and demyelinated fibers as a percentage of the total number of fibers in non-treated, hydrogel-plus-scrambled-GapMer-

treated, and hydrogel-plus-GapMer-treated nerves following sciatic nerve injury. Inhibition of Egr2-AS-RNA expression using specific oligonucleotide GapMers

results in significant reduction in the percentage of demyelinated fibers and an increase in the percentage of myelinated fibers 2, 5, and 7 days following complete

sciatic nerve transection (*p < 0.05, two-tailed Student’s t test of unpaired samples).

(legend continued on next page)
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(Figure 3D). A statistically significant increase in the total number

of myelinated fibers 5 and 7 days following complete sciatic

nerve transection was also observed (Figure 3E).

In Vivo Inhibition of Egr2-AS-RNA Expression Rescues
the EGR2-Mediated Gene Expression Profile following
Peripheral Nerve Injury
As shown above (Figure 1C), peripheral nerve injury results in an

acute and significant increase in Egr2-AS-RNA expression up to

12 hr post-injury. To determine how Egr2-AS-RNA affects the

expression of EGR2-regulated transcripts following sciatic nerve

injury, we treated sciatic nerves with hydrogel plus GapMer to

inhibit the expression of Egr2-AS-RNA at the time of sciatic nerve

transection and up to 5 days post-injury. This showed that inhi-

bition of Egr2-AS-RNA expression in fully transected nerves res-

cues the inhibition of Egr2 transcript expression (Figure 4A) and

either rescues or delays the inhibition of EGR2-regulated genes

that encode structural myelin proteins or transcription factors

(Figure 4A). To determine whether the delayed inhibition of

gene expression results in delayed downregulation of PMP22

and MPZ myelin protein expression, we analyzed sciatic nerve

lysates treated with hydrogel plus GapMer or hydrogel plus

scrambled GapMer and untreated injured nerves 2, 5, and

7 days post-injury. We show that inhibition of Egr2-AS-RNA

expression results in significant preservation of PMP22 and

MPZ protein expression 7 days following complete sciatic nerve

transection (Figures 4B and 4C). The delayed inhibition of struc-

tural myelin proteins correlates with the delay in demyelination

observed after inhibition of Egr2-AS-RNA expression (Figures

3C–3E).

Egr2-AS-RNA Inhibits Nascent Transcription ofEgr2 and
Mediates Gradual Recruitment of a Chromatin
Remodeling Complex on the Egr2 Promoter
In order to distinguish whether the effect of Egr2-AS-RNA on

Egr2 expression is due to a direct effect on transcription, we

performed nuclear run-on assays in SCs infected with Lenti-

AS-RNA or Lenti-control. We show that expression of Egr2-

AS-RNA results in statistically significant inhibition of nascent

transcription of Egr2 (Figure 5A).

To determine whether Egr2-AS-RNA participates in the for-

mation of a chromatin remodeling complex on the Egr2 pro-

moter, we performed chromatin immunoprecipitation (ChIP)

using sciatic nerve chromatin with antibodies against EZH2,

AGO1, AGO2, or tri-methylated histone 3 (H3K27Me3) followed

by qPCR to detect the presence of the Egr2 promoter and

Egr2-AS-RNA in the complex. This revealed that 48 hr after

sciatic nerve injury, EZH2, AGO1, AGO2, and H3K27me3 are

localized on the Egr2 promoter, and this interaction is inhibited

after treatment with RNase H, which means that the interaction

requires the presence of an RNA-DNA hybrid (Figure 5B). Next,

we asked whether Egr2-AS-RNA is the RNA species respon-

sible for the recruitment of the remodeling complex on the
(E) Quantification of the total number of myelinated axons in 15 random sem

nerve transection. Animals treated with hydrogel plus AS-RNA GapMers have a s

sciatic nerve transection than untreated animals or animals treated with hydrog

samples).
Egr2 promoter following sciatic nerve injury. We performed

ChIP using chromatin from injured sciatic nerves 6, 24, and

48 hr after injury. To identify the effect of the Egr2-AS-RNA

on the recruitment of EZH2, AGO1, AGO2, and H3K27me3 on

the Egr2 promoter, we inhibited the expression of Egr2-AS-

RNA with the addition of hydrogel plus GapMer, while control

nerves were treated with hydrogel plus scrambled GapMer.

We show that 6 hr post-injury, only AGO1 and AGO2 are pre-

sent on the Egr2 promoter, and inhibition of Egr2-AS-RNA

expression inhibits their recruitment on the promoter (Fig-

ure 5C). At 24 hr post-injury, AGO2 and H3K27me3 are present,

and inhibition of Egr2-AS-RNA expression abolishes their

recruitment on the Egr2 promoter (Figure 5D). At 48 hr post-

injury EZH2, AGO1, AGO2, and H3K27me3 are all recruited

to the Egr2 promoter, and this depends on the presence of

the Egr2-AS-RNA, since inhibition of its expression results in in-

hibition of EZH2, AGO1, AGO2, and H3K27me3 binding to the

Egr2 promoter (Figure 5E). To discover whether the gradual

recruitment of the repressive complex by Egr2-AS-RNA medi-

ates transcriptional repression of Egr2 mRNA, we compared

the ChIP results with the expression of Egr2 mRNA at 6, 24,

and 48 hr following sciatic nerve injury. We show that 6 hr

post-injury, where Egr2-AS-RNA recruits AGO1 and AGO2 on

the Egr2 promoter (Figure 5C), Egr2 transcription is repressed

and inhibition of Egr2-AS-RNA with specific GapMers induces

a significant (38-fold) increase in Egr2 expression compared

to injured nerves treated with scrambled GapMers (Figure 5F,

6 hr). At 24 hr post-injury, the Egr2-AS-RNA mediated recruit-

ment of AGO2 and H3K27me3 to the Egr2 promoter (Figure 5D)

does not correlate with Egr2 transcriptional repression, since

levels of the Egr2 transcript are equal between injured nerves

treated with AS-RNA GapMers and those treated with scram-

bled GapMers (Figure 5F, 24 hr). Finally, at 48 hr post-

injury, the Egr2-AS-RNA-mediated recruitment of EZH2,

AGO1, AGO2, and H3K27me3 to the Egr2 promoter (Figure 5E)

correlates with a modest but significant transcriptional repres-

sion of Egr2, since inhibition of Egr2-AS-RNA expression with

GapMers induces a 3-fold increase in Egr2 transcript levels

compared to injured nerves treated with scrambled GapMers

(Figure 5F, 48 hr).

Expression of Egr2-AS-RNA Is Regulated by ERK1/2
Signaling
Since Egr2-AS-RNA has a direct effect on the expression of Egr2

transcript and protein levels (Figures 1, 2, 3, 4, and S1), we hy-

pothesized that neuregulin-mediated ERK1/2 signaling could

affect the expression of Egr2-AS-RNA in SCs, since it has also

been shown to affect the expression levels of Egr2 (Newbern

et al., 2011). Inhibition of neuregulin-induced ERK1/2 activation

using UO126 in SCs results in significant inhibition of ERK1/2

phosphorylation, significant reduction of EGR2 protein levels

(Figures 6A and 6B), significant upregulation of Egr2-AS-

RNA expression, and inhibition of Egr2 transcript expression
ithin sections from an area extending 0.5 mm to 5 mm distal to the sciatic

ignificantly higher number of myelinated fibers 2 and 5 days following complete

el plus scrambled GapMers (*p < 0.05, two-tailed Student’s t test of unpaired
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Figure 4. The Egr2-AS-RNA Regulates Egr2 Gene and Egr2 Target Gene Expression during the Nerve Injury Response

(A) Volcano plots of log2 fold change (FC) for EGR2-regulated genes in non-injured versus injured sciatic nerves and injured nerves versus injured nerves treated

with hydrogel plus GapMers. The x axis shows the log2 of the FC between the conditions. The vertical central line represents no difference in expression, and the

area between the two equidistant lines on both sides of the central line includes genes showing a non-significant change of expression (black dots). On the left

side of the lines, the genes with a negative FC are depicted (decreased expression, blue dots), while on the right side of the lines, the genes with a positive FC

(increased expression) are shown (yellow dots). The y axis shows the �log of the p value, which means that genes with low p value (more significant) appear

toward the top of the plot. The horizontal line divides the significant results (p < 0.005, above) from the non-significant (below).

(B) Representative results from three independent experiments using two sciatic nerve isolates 2, 5, and 7 days post-injury showing expression of PMP22 and

MPZ. Actin was used as a loading control.

(legend continued on next page)
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(Figure 6C). Our data suggest that neuregulin-mediated ERK1/2

signaling is a negative regulator of Egr2-AS-RNA expression in

SCs. Recently, it was shown that loss of axonal contact causes

SCs to induce NRG1 type I expression through a mitogen-acti-

vated protein kinase (MAPK)-dependent pathway (Stassart

et al., 2013). We sought to determine whether NRG1 type III or

type I has a distinct role in the expression of Egr2-AS-RNA. We

found that stimulation of SCswith NRG1 type III is themain signal

that exerts an acute negative regulation of the expression of

Egr2-AS-RNA (Figure S4). NRG1 type I did not have any effect

after 3 hr but caused a gradual inhibition of Egr2-AS-RNA

expression at 6 hr and 24 hr. Our data could explain the

acute increase in the expression of Egr2-AS-RNA immediately

after nerve injury (Figure 1C), while the gradual inhibition of

Egr2-AS-RNA expression 24 hr post-injury (Figure 1C) may

reflect gradual inhibition by NRG1 type I as SCs induce its

expression.

NRG1-Induced ERK1/2 Signaling Leads to YY1-
Mediated Regulation of Egr2-AS-RNA
Recently, it was shown that the transcription factor YY1 is part

of the ERK1/2 signaling pathway responsible for the upregula-

tion of EGR2 in response to NRG1 in SCs (He et al., 2010). We

examined whether the increase in Egr2-AS-RNA expression af-

ter inhibition of ERK1/2 signaling (Figure 6C) depends on YY1

modulation of Egr2-AS-RNA. We identified a 100-nt-long region

of the Egr2 promoter upstream of the transcription start site

(TSS) flanking the 50 end of Egr2-AS-RNA (Figure 6D) that con-

tains a previously described YY1-binding motif on the antisense

strand (He et al., 2010) and could possibly regulate the expres-

sion of Egr2-AS-RNA (S1 region; Figure S5A). To determine

whether YY1 directly associates with this region in living cells,

we performed ChIP. We then tested the recruitment of YY1 to

the S1 region of the Egr2 promoter and to a separate region

(S2) located further upstream of the Egr2 promoter (between nu-

cleotides �723 and �647, related to the TSS of Egr2) that con-

tains a conserved YY1-binding motif. YY1 was recruited to the

S2 region of the Egr2 promoter only in SCs incubated in the

presence of NRG1, which agrees with a previous study showing

that YY1 binds to the Egr2 promoter (He et al., 2010). Inhibition

of ERK1/2 signaling with UO126 results in partial but significant

inhibition of YY1’s interaction with the Egr2 promoter (Figure 6E).

Next, we examined whether YY1 associates with the S1 and S2

regions of single-stranded RNA using RNA immunoprecipitation

(RIP). Inhibition of ERK1/2 signaling with UO126 results in a

significantly increased association of YY1 with the S1 and S2 re-

gions of Egr2-AS-RNA (Figure 6F). Our data indicate that NRG1-

ERK1/2 signaling increases YY1 binding to the Egr2 promoter

and activates Egr2 transcription while repressing the expression

of Egr2-AS-RNA. Inhibition of ERK1/2 signaling results in de-

repression of Egr2-AS-RNA expression (Figure 6C) through

increased binding of YY1 to the S1 and S2 regions of
(C) Densitometric analysis of the western blot results showing that 7 days after

animals treated with hydrogel plus AS-RNA GapMers than in injured animals or in

normalized to the expression of actin and presented asmean ± SD from three inde

0.001, F (3, 4) = 25.87 for PMP22, p = 0.0019, F (2,6) = 21.3 for MPZ) followed b
Egr2-AS-RNA (Figure 6F) and inhibition of Egr2 expression

(Figure 6C).

YY1 Regulates Binding of Egr2-AS-RNA to EZH2
Since inhibition of ERK1/2 signaling in SCs increases binding of

YY1 to Egr2-AS-RNA (Figure 6F), we tested whether YY1 affects

the functional interactions of Egr2-AS-RNA with chromatin re-

modeling complexes. It was previously determined that EED

and EZH2 are core components of a multi-subunit histone meth-

yltransferase complex, PRC2, with specificity for lysine 27

(H3K27) of histone H3 (Cao et al., 2002; Czermin et al., 2002;

M€uller et al., 2002). We hypothesized that Egr2-AS-RNA inter-

acts physically with protein components of the PRC2 and that

YY1 mediates this interaction. We silenced total YY1 expression

in SCs using small interfering RNAs (siRNAs) targeting four sepa-

rate areas of the YY1 sequence (Figure 6G). Then, we performed

RIP with ChIP-validated antibodies against EZH2, AGO1, AGO2,

and H3K27me3 using RNA from YY1 siRNA or non-targeting

siRNA-transfected SCs. In control SCs (non-targeting siRNA

transfected), the Egr2-AS-RNA binds and precipitates exclu-

sively with EZH2 (Figure 6H). Following YY1 knockdown in

YY1-siRNA-transfected SCs, we detected complete loss of

binding of Egr2-AS-RNA to EZH2 and increased binding of

Egr2-AS-RNA to AGO1 (Figure 6H). This may affect turnover

of Egr2-AS-RNA, since AGO proteins have been previously

implicated in ncRNA turnover (Yoon et al., 2015), or it may

indicate a ‘‘switch’’ in Egr2-AS-RNA’s function from RPC2-

mediated chromatin remodeling to AGO-mediated transcrip-

tional silencing (Janowski et al., 2006). Finally, we show that

inhibition of YY1 inhibits Egr2 mRNA expression and induces

Egr2-AS-RNA expression (Figure S5B).

The Phosphorylation State of YY1 Regulates Binding to
Egr2-AS-RNA
Recently, it was shown that NRG1-mediated MEK-ERK1/2

signaling induces phosphorylation of YY1 at serine 118

(Ser118), Ser184, and Ser247, and this phosphorylation has a

key role in regulating Egr2 transcription (He et al., 2010). We

hypothesized that the binding of YY1 to Egr2-AS-RNA may

be regulated by the state of phosphorylation of YY1 serine res-

idues. We generated several Ser-Ala mutations at positions

118, 184, and 247 and a double mutation at positions 118

and 184. To determine the effect of the loss of each serine

on the binding of YY1 to Egr2-AS-RNA, we performed RIP fol-

lowed by qPCR detection of Egr2-AS-RNA. We show that loss

of Ser118 results in significant inhibition of the binding of YY1 to

Egr2-AS-RNA as compared to non-mutated YY1. However,

loss of Ser184 induces a significant increase in binding of

YY1 to Egr2-AS-RNA, while Ser247 has no effect compared

to the non-mutated construct (Figure 6I). Finally, the double

mutation of Ser118 and Ser184 results in increased binding

of YY1 to Egr2-AS-RNA compared to the non-mutated protein,
sciatic nerve injury, PMP22 and MPZ exhibit significantly higher expression in

jured animals treated with hydrogel plus scrambled GapMers. The results are

pendent experiments. Significance was calculated with a one-way ANOVA (p <

y a post hoc Dunnett test (**p < 0.005).
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Figure 5. Egr2-AS-RNA Mediates Gradual Recruitment of a Remodeling Complex on the Egr2 Promoter

(A) Expression of Egr2-AS-RNA induces a statistically significant decrease in nascent transcription of Egr2 as quantified by qPCR (n = 8 in control cells, n = 9 in

Egr2-AS-RNA cells, 3 independent experiments, p = 0.0012, t = 3.967, df = 15).

(B) In vivo ChIP using sciatic nerve chromatin with antibodies against EZH2, AGO1, AGO2, and H3K27Me3with or without RNase H. Graph shows themean ± SD

from three independent experiments using sciatic nerves from three animals per experiment. Normalization was performed with values acquired from ChIP with

isotype-matched IgG. Significance was calculated with an unpaired two-tailed Student’s t test (p = 0.040, t = 4.836, df = 2 for EZH2; p = 0.044, t = 2.902, df = 4 for

AGO1; p = 0.045, t = 4.514, df = 2 for AGO2; and p = 0.0012, t = 4.348, df = 4 for H3K27).

(C–E) In vivo DNA ChIP using chromatin from injured sciatic nerves 6, 24, and 48 hr after injury. At 6 hr post-injury, only AGO1 and AGO2 are present on Egr2

promoter, and inhibition of Egr2-AS-RNA expression inhibits their recruitment on the promoter (3 independent experiments; unpaired two-tailed Student’s t test,

p = 0.012, t = 5.710, df = 4 for AGO1; and p = 0.023, t = 2.105, df = 4 for AGO2) (C). At 24 hr post-injury, AGO2 andH3K27me3 are present, and inhibition of AS-RNA

expression abolishes their recruitment on the Egr2 promoter (3 independent experiments; unpaired two-tailed Student’s t test, p = 0.029, t = 2.832, df = 6 for

AGO2; and p = 0.049, t = 2.232, df = 10 for H3K27me3) (D). At 48 hr post-injury, EZH2, AGO1, AGO2, and H3K27me3 are all recruited on the Egr2 promoter, and

this depends on the presence of Egr2-AS-RNA, since inhibition of AS-RNA expression results in inhibition of EZH2, AGO1, AGO2, and H3K27me3 binding on the

Egr2 promoter (3 independent experiments; unpaired two-tailed Student’s t test, p = 0.033, t = 3.188, df = 4 for EZH2; p = 0.017, t = 3.921, df = 4 for AGO1; p =

0.018, t = 3.826, df = 4 for AGO2; and p = 0.035, t = 2.714, df = 6 for H3K27me3) (E).

(F) Transcript expression of Egr2 6 hr, 24 hr, and 48 hr post-injury using RNA from injured sciatic nerves treated with AS-RNA GapMers or scrambled GapMers.

The results are presented as fold change of Egr2 transcript expression in AS-RNA-GapMer-treated nerves versus scrambled-GapMer-treated nerves. The

experiment was repeated three times, and the data are presented as mean ± SD. Fold change above 2 was set arbitrarily and is used in conjunction with p < 0.05

to determine significant differences in gene expression.
suggesting that Ser184 is the dominant regulatory site

(Figure 6I).

DISCUSSION

Studies on genetically modified mice (Decker et al., 2006; Le

et al., 2005; Topilko et al., 1994) and identification of the muta-

tions associated with peripheral neuropathies (Bellone et al.,

1999; Timmerman et al., 1999; Warner et al., 1998) have impli-
1958 Cell Reports 20, 1950–1963, August 22, 2017
cated EGR2 as a central regulator of peripheral myelination (Sva-

ren and Meijer, 2008). During myelination, various SC genes are

dynamically regulated, and the majority of these genes are tar-

gets of EGR2 transcriptional control (D’Antonio et al., 2006;

Jang et al., 2010; Nagarajan et al., 2001; Verheijen et al., 2003).

Recently, the transcription factor YY1 has been implicated as a

molecular link between extracellular signals and the regulation

of EGR2 expression (He et al., 2010). Although the importance

of trans-acting proteins (e.g., transcription factors) has been



Figure 6. Role of NRG1-ERK1/2 Signaling and YY1 in the Regulation of Egr2-AS-RNA Expression

(A) Inhibition of NRG1-induced Erk1/2 phosphorylation in SCs using UO126 results in inhibition of phopsho-ERK1/2 expression and loss of EGR2 expression.

Total ERK1/2 and actin were used as loading controls.

(B) Densitometric quantification of inhibition of ERK1/2 phosphorylation and EGR2 expression following incubation of SCs with UO126. Results are presented as

mean ±SD from three independent experiments using two separate protein isolations per experiment per condition (p < 0.0001, t = 8.99, df = 14 for p-ERK1/2 and

p = 0.0054, t = 4.24, df = 6 for EGR2).

(C) qPCR for Egr2-AS-RNA and Egr2 mRNA following inhibition of ERK1/2 signaling with UO126 in SCs shows significant increase of Egr2-AS-RNA levels and

inhibition of Egr2 mRNA expression (n = 3 independent experiments; unpaired two-tailed Student’s t test; p = 0.044, t = 2.44, df = 7 for Egr2-AS-RNA and p =

0.017, t = 4.32, df = 5 for Egr2).

(D) Schematic showing the position of the S1 site upstream of the Egr2 transcription start site (TSS) and flanking the 50 end of AS-RNA. This site (�100 nt) contains

a YY1-binding motif and a TATA box (red sequence) in both sense and antisense orientations. MSE stands for myelin-specific element, which is located at the 30

UTR of the Egr2 gene.

(legend continued on next page)
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established, the existence of an epigenetic circuit that allows

SCs to regulate the expression of EGR2 in response to injury

and during myelination has not been previously described. The

discovery that the majority of eukaryotic genomes are tran-

scribed (ENCODE Project Consortium et al., 2007) and that

many of the resulting transcripts are developmentally regulated

(Mercer et al., 2008) but do not encode proteins (Simon et al.,

2011) has steered our attention toward the role of lncRNA in

the regulation of Egr2 transcription.

We discovered a cis-acting lncRNA antisense to the promoter

of Egr2. Since ectopic expression of Egr2-AS-RNA inhibits the

expression of Egr2 mRNA, we asked whether Egr2-AS-RNA ex-

erts reversible regulation of Egr2 expression during peripheral

nerve injury. During the acute phase of the nerve injury response,

the expression of EGR2 is inhibited, and demyelination ensues

(Guertin et al., 2005; Parkinson et al., 2008). We determined

that Egr2-AS-RNAmediates the inhibition of Egr2mRNA expres-

sion, while inhibition of Egr2-AS-RNA expression results in de-

layed demyelination, even after complete nerve transection. In

addition, inhibition of Egr2-AS-RNA expression restores Egr2

transcript expression levels and rescues the EGR2-regulated

gene expression profile in injured nerves. These data raised a se-

ries of questions regarding how the expression of Egr2-AS-RNA

is regulated and how Egr2-AS-RNA is integrated within the path-

ways that control the nerve injury response. It has been shown

that c-Jun is an essential transcription factor for the reprogram-

ming of mature myelinating SCs to de-differentiated SCs after

nerve injury (Arthur-Farraj et al., 2012). c-Jun inhibits Egr2-medi-

ated myelin gene expression (Parkinson et al., 2008) and is a

negative regulator of myelination, which suggests a possible

interplay between Egr2-AS-RNA expression and c-Jun during

the acute nerve injury response.

The expression of EGR2 depends on NRG1-mediated ERK1/2

signaling to YY1 during peripheral myelination (He et al., 2010;

Newbern et al., 2011). We identified a portion of the Egr2 pro-

moter adjacent to the TSS that fulfills the criteria for a bidirec-

tional promoter containing a TATA box and a YY1-binding motif
(E) YY1 DNA-ChIP using chromatin isolated from SCs that were untreated or treat

the S1 and S2 regions of the Egr2 promoter was examinedwith qPCR. YY1 associa

inhibited after treatment with UO126. The experiments were repeated three times

Student’s t test (p = 0.0012, t = 28.96, df = 12).

(F) RNA immunoprecipitation (RIP) using RNA isolated from SCs that were untreate

YY1 with the S1 and S2 regions of AS-RNA was examined with qPCR. The expe

Significance was calculated with a Student’s t test (p = 0.0085, t = 3.842, df = 6

(G) SCs transfected with YY1 siRNA for 48 hr show inhibition of YY1 protein expr

used as a loading control.

(H) RIP with antibodies against EZH2, AGO1, AGO2, and H3K27me3 using RNA fr

as mean ± SD from three independent experiments (unpaired two-tailed Student

AGO1).

(I) RIP using DDK antibody (OriGene) followed by qPCR detection of Egr2-AS-RN

non-mutated YY1-DDK. However, loss of Ser184 induced a significant increase in

the non-mutated construct. The double mutation of Ser118 and Ser184 results

protein. The experiment was repeated three times, and results are presented as

Dunnett test [*p = 0.0281]).

(J) Schematic representation of the AS-RNA-mediated regulation of Egr2 expre

which in turn activates the transcription of Egr2 and represses the expression of th

possible conjunction with protein phosphatases blocks Ser184 phosphorylation o

non-phosphorylated YY1 with AS-RNA and activation of AS-RNA expression. Lo

results in inhibition of Egr2 transcription (right).
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(Smale and Kadonaga, 2003). Although this bidirectional pro-

moter affects expression of Egr2-AS-RNA, we cannot target it

to generate mice lacking expression of Egr2-AS-RNA, since

this approach will also affect expression of Egr2 mRNA through

elimination of the TATA box and several transcription factor (TF)-

binding sites (Rangnekar et al., 1990). YY1 has been previously

implicated in the transcriptional activation of Xist during the

initiation and maintenance of X inactivation through direct

activation of the Xist promoter (Makhlouf et al., 2014). It has

also been shown that YY1 is an RNA-binding protein that binds

Xist as an adaptor protein between the lncRNA and chromatin

targets (Jeon and Lee, 2011). Here, we discovered that YY1 me-

diates the binding of Egr2-AS-RNA to EZH2, which is the core

component of the PRC2 chromatin remodeling complex. How

this function of YY1 is regulated and the biologic significance

of this function during the nerve injury response is unknown. It

is possible that YY1 functions as a molecular scaffold that coor-

dinates targeting of Egr2-AS-RNA to PRC2 and chromatin,

thereby coupling expression of Egr2-AS-RNA with transcrip-

tional repression.

The various functions of YY1 can be modulated by post-trans-

lational modifications, including phosphorylation (Rizkallah and

Hurt, 2009). We describe here a YY1 phospho-switch mecha-

nism (Figure 6J) that regulates binding of YY1 to Egr2 mRNA or

Erg2-AS-RNA. We identified Ser184 as the regulatory site that

induces binding of YY1 to Egr2-AS-RNA. It has been shown

that Aurora B kinase phosphorylates Ser184 of YY1 during

G2/M transition of the cell cycle and that protein phosphatase

1 (PP1) rapidly dephosphorylates YY1 at Ser184 (Kassardjian

et al., 2012). It is possible that dephosphorylation of YY1

following peripheral nerve injury is cell-cycle dependent as SCs

dedifferentiate and that PP1 plays a role in this process.

The speed at which a cell responds to an extracellular cue by

activating a set of genes and repressing another is of pivotal

importance to the fate of that cell. However, this aspect of

gene regulation is often not appreciated. Instead, the absolute

levels of expression are generally seen as the hallmarks of a
ed with UO126 in the presence of NRG1 overnight. The association of YY1 with

tes only with the S2 region of the Egr2 promoter, and the association is partially

, and results are presented as mean ± SD. Significance was calculated with a

d or treated with UO126 in the presence of NRG1 overnight. The association of

riments were repeated three times, and results are presented as mean ± SD.

for S2 and p = 0.0362, t = 3.099, df = 4 for S1).

ession as compared to SCs transfected with non-targeting siRNAs. Actin was

om YY1 siRNA or non-targeting siRNA transfected SCs. Results are presented

’s t test; p = 0.04, t = 2.445, df = 8 for EZH2 and p = 0.014, t = 3.095, df = 8 for

A. Loss of Ser118 inhibits the binding of YY1 to Egr2-AS-RNA as compared to

the binding of YY1 to Egr2-AS-RNA, while Ser247 has no effect compared to

in increased binding of YY1 to Egr2-AS-RNA compared to the non-mutated

mean ± SD (one-way ANOVA [(5,12) = 3.398, p = 0.0383] followed by post hoc

ssion. In non-injured nerves, NRG1 signaling to ERK1/2 phosphorylates YY1,

e AS-RNA (left). Nerve injury inhibits the NRG1-ERK1/2 signaling axis, which in

f YY1. This results in activation of the YY1 phospho-switch and association of

ss of YY1 phosphorylation and an increase in the expression of the AS-RNA



regulated gene (Uhler et al., 2007). Here, we have shown that

an antisense RNA transcript that associates with Egr2 promoter

in cis regulates the levels of Egr2 transcription in response to

extracellular signals. We propose that Egr2-AS-RNA confers

transcriptional buffering to maintain the proper levels of Egr2

transcription. Given that non-coding AS-RNAs are often ex-

pressed in a tissue- or time-dependent manner, the mechanism

of Egr2-AS-RNA regulation of Egr2 transcription involves chro-

matin remodeling and affects the rate of Egr2 induction rather

than the steady-state levels of gene expression. In fact, we

have shown that Egr2-AS-RNA gradually recruits a chromatin

remodeling complex on the Egr2 promoter, and its role in

chromatin plasticity and transcriptional silencing of Egr2 is

instructive, since inhibition of Egr2-AS-RNA results in the disso-

ciation of the remodeling complex from the Egr2 promoter.

We have identified an antisense RNA that is induced after

nerve injury and regulates the transcription of Egr2 as part of

an NRG1-ERK1/2-YY1 signaling axis. This functional exploration

of an antisense lncRNA in SC biology will likely have a major

impact on our understanding of the transcriptional regulation of

peripheral myelination.

EXPERIMENTAL PROCEDURES

50-RACE

For 50-RACE, we used the RLM RACE kit from Ambion, with certain modifica-

tions. Total RNA was treated with calf intestine alkaline phosphatase (CIP) to

remove free 50 phosphates from molecules such as ribosomal RNA, frag-

mented mRNA, tRNA, and contaminating genomic DNA. The cap structure

found on intact 50 ends of mRNA is not affected by CIP. The RNA was then

treated with tobacco acid pyrophosphatase (TAP) to remove the cap structure

from full-length mRNA, leaving a 50 monophosphate. A 45-base RNA adaptor

oligonucleotide provided by Ambion was ligated to the RNA population using

T4 RNA ligase. The adaptor cannot ligate to dephosphorylated RNA, because

these molecules lack the 50 phosphate necessary for ligation. During the liga-

tion reaction, the majority of the full-length, decapped mRNA acquires the

adaptor sequence as its 50 end. We then used random sense decamers that

bind to the antisense strand and a primer antisense to the 50 adaptor in order

to amplify the AS-RNA.

Computational Verification of the Egr2-AS-RNA Expression

RNA-seq raw reads from mouse sciatic nerves in samples SRR3222412,

SRR3222413, and SRR3222414 were downloaded from the GEO data-

sets (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2086001).

Reads were aligned to the mm10 assembly of the mouse genome with

gsnap (Wu and Nacu, 2010). Read mapping to genes was done based on

the RefSeq exons, as defined in file http://hgdownload.cse.ucsc.edu/

goldenPath/mm10/database/refGene.txt.gz. The coordinates of the AS-

RNA on chr10 were added to the exon file. Read summarization was done

with featureCounts (Liao et al., 2014), and raw read counts were standard-

ized to the RPKM measure (Mortazavi et al., 2008) using reads with a map-

ping quality of 20 or better. To estimate the coordinates of the mature RNA,

we first looked at the sequenced reads around the appropriate genomic

location using the mpileup routine of SAMtools (Li et al., 2009), and then

we visualized the reads using the Integrative Genomics Viewer (Robinson

et al., 2011) as confirmation.

Chromatin Isolation from Sciatic Nerves

2-month-old mice were subjected to sciatic nerve transection. 48 hr after

injury, the animals were euthanized, and both nerves (distal part of the lesioned

nerve and a 0.5 mm fraction of the contralateral healthy nerve) were isolated.

Nerves (5 per condition) were then crosslinked with 1% paraformaldehyde

(PFA) in PBS and neutralized with glycine (0.3 M final concentration). Nerves
were centrifuged at 2,000 relative centrifugal force (rcf) for 5 min and washed

twice with cold PBS plus protease and nuclease inhibitors. Immunoprecipita-

tion lysis buffer was added to the nerves (EpiTecht ChIP OneDay Kit; QIAGEN,

Venlo, Netherlands), and the nerves were homogenized mechanically for 15 s

with a Pro 200 homogenizer (Proscientific Inc.). Next, the samples were soni-

cated on ice using the Misonix Sonicator 3000 (Fisher Scientific) for 9 cycles of

30 s on and 90 s off at 80% power to shear the chromatin between 100 and

1,000 bp. For ChIPs using SCs, we used components of the EpiTecht ChIP

OneDay Kit. Chromatin was sonicated to an average length of 1–2 kb on ice

and centrifuged. The supernatant was used for RNA or DNA ChIP.

DNA ChIP

Lysates were incubated overnight at 4�C on rotation with the ChIP-verified

antibodies Ezh2, Ago1, and Ago2 (Cell Signaling, Danvers, MA, USA) at a

1:50 dilution or H3K27 (Millipore, Billerica, MA, USA) at a dilution of 1:25 or

without antibody as a control. Chromatin was then precipitated, and DNA

was extracted (EpiTecht ChIP OneDay Kit). Recovered material from the input

sample and all the ChIP samples per condition were used to perform qPCR

of the Egr2 AS-RNA (for primer sequences, see Supplemental Experimental

Procedures). Relative enrichment for each experimental sample was calcu-

lated as a percentage of the input. For negative control ChIP, we used a

non-targeting isotype-matched immunoglobulin G (IgG), and the values in all

experiments ranged between 0% and 0.002% of the input sample. These

values were used to normalize the data obtained with the target-specific

antibodies. For all qPCRs reported in the paper, we performed a no-reverse

transcription (RT) control amplification to verify the absence of genomic

DNA contamination.

RIP

To perform RIP, we used the magnetic ChIP kit (RNA ChIP-IT; Active Motif,

Carlsbad, CA, USA). The antibodies used, analysis, and plotting were the

same as those described for DNA ChIP.

Statistical Analysis

To determine statistical significance among the means of three or more inde-

pendent groups, we used one-way ANOVA. The homogeneity of variances

was confirmed with Brown and Forsythe test, and the significance between

specific groups was calculated with a post hoc Dunnett test. This analysis

was performed for the data in figures Figures 1C, 1D, 3A, 3B, 4C, and 6I.

For the rest of the data, we used an unpaired two-tailed t test. To verify

Gaussian distribution of the data before applying the t test, we performed

the D’Agostino and Pearson and Shapiro-Wilk normality tests. Statistical anal-

ysis was performed using GraphPad Prism.

Animal Use and Care

8-week-old male and female C57/B6 WT mice (gender does not affect periph-

eral nerve injury response) were obtained from The Jackson Laboratory and

maintained according to the NIHGuide for the Care and Use of Laboratory An-

imals. All animal use protocols were approved by the Institutional Animal Care

and Use Committee of the Weis Center for Research, Geisinger Clinic.

Western Blots

The full scans of all western blots presented in the paper are included in

Figure S6.

Methods for sciatic nerve injury, lentivirus production, mouse DRG explant

and purified SC cultures, immunocytochemistry protocols, RT-PCR and

qPCR, western blotting, preparation of the hydrogel, in situ hybridization

(ISH), nuclear run-on assay, PCR array, electron microscopy, siRNA transfec-

tions, and mutagenesis are included in detail in Supplemental Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and two tables and can be found with this article online at http://

dx.doi.org/10.1016/j.celrep.2017.07.068.
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Guigó, R., Gingeras, T.R., Margulies, E.H., Weng, Z., Snyder, M., Dermitzakis,

E.T., Thurman, R.E., et al. (2007). Identification and analysis of functional ele-

ments in 1% of the human genome by the ENCODE pilot project. Nature 447,

799–816.

Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P.,

Jones, R.S., and Zhang, Y. (2002). Role of histone H3 lysine 27 methylation

in Polycomb-group silencing. Science 298, 1039–1043.

Czermin, B., Melfi, R., McCabe, D., Seitz, V., Imhof, A., and Pirrotta, V. (2002).

Drosophila enhancer of Zeste/ESC complexes have a histone H3methyltrans-

ferase activity that marks chromosomal Polycomb sites. Cell 111, 185–196.

D’Antonio, M., Michalovich, D., Paterson, M., Droggiti, A., Woodhoo, A., Mir-

sky, R., and Jessen, K.R. (2006). Gene profiling and bioinformatic analysis of

Schwann cell embryonic development and myelination. Glia 53, 501–515.

Decker, L., Desmarquet-Trin-Dinh, C., Taillebourg, E., Ghislain, J., Vallat, J.M.,

and Charnay, P. (2006). Peripheral myelin maintenance is a dynamic process

requiring constant Krox20 expression. J. Neurosci. 26, 9771–9779.

Ghislain, J., Desmarquet-Trin-Dinh, C., Jaegle, M., Meijer, D., Charnay, P., and

Frain, M. (2002). Characterisation of cis-acting sequences reveals a biphasic,

axon-dependent regulation of Krox20 during Schwann cell development.

Development 129, 155–166.

Guertin, A.D., Zhang, D.P., Mak, K.S., Alberta, J.A., and Kim, H.A. (2005).

Microanatomy of axon/glial signaling during Wallerian degeneration.

J. Neurosci. 25, 3478–3487.

Hawkins, P.G., and Morris, K.V. (2008). RNA and transcriptional modulation of

gene expression. Cell Cycle 7, 602–607.

He, Y., Kim, J.Y., Dupree, J., Tewari, A., Melendez-Vasquez, C., Svaren, J.,

and Casaccia, P. (2010). Yy1 as a molecular link between neuregulin and tran-
1962 Cell Reports 20, 1950–1963, August 22, 2017
scriptional modulation of peripheral myelination. Nat. Neurosci. 13, 1472–

1480.

Jang, S.W., Srinivasan, R., Jones, E.A., Sun, G., Keles, S., Krueger, C., Chang,

L.W., Nagarajan, R., and Svaren, J. (2010). Locus-wide identification of Egr2/

Krox20 regulatory targets in myelin genes. J. Neurochem. 115, 1409–1420.

Janowski, B.A., Huffman, K.E., Schwartz, J.C., Ram, R., Nordsell, R., Shames,

D.S., Minna, J.D., and Corey, D.R. (2006). Involvement of AGO1 and AGO2 in

mammalian transcriptional silencing. Nat. Struct. Mol. Biol. 13, 787–792.

Jeon, Y., and Lee, J.T. (2011). YY1 tethers Xist RNA to the inactive X nucleation

center. Cell 146, 119–133.

Kassardjian, A., Rizkallah, R., Riman, S., Renfro, S.H., Alexander, K.E., and

Hurt, M.M. (2012). The transcription factor YY1 is a novel substrate for Aurora

B kinase at G2/M transition of the cell cycle. PLoS ONE 7, e50645.

Kim, D.H., Saetrom, P., Snøve, O., Jr., and Rossi, J.J. (2008). MicroRNA-

directed transcriptional gene silencing in mammalian cells. Proc. Natl. Acad.

Sci. USA 105, 16230–16235.

Klase, Z., Kale, P., Winograd, R., Gupta, M.V., Heydarian, M., Berro, R.,

McCaffrey, T., and Kashanchi, F. (2007). HIV-1 TAR element is processed by

Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral

LTR. BMC Mol. Biol. 8, 63.

Le, N., Nagarajan, R., Wang, J.Y., Araki, T., Schmidt, R.E., and Milbrandt, J.

(2005). Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies

Sox2 as an inhibitor of Schwann cell differentiation and myelination. Proc.

Natl. Acad. Sci. USA 102, 2596–2601.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,

Abecasis, G., and Durbin, R.; 1000 Genome Project Data Processing Sub-

group (2009). The Sequence Alignment/Map format and SAMtools. Bioinfor-

matics 25, 2078–2079.

Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general

purpose program for assigning sequence reads to genomic features. Bioinfor-

matics 30, 923–930.

Lu, J., and Tsourkas, A. (2009). Imaging individual microRNAs in single

mammalian cells in situ. Nucleic Acids Res. 37, e100.

Makhlouf, M., Ouimette, J.F., Oldfield, A., Navarro, P., Neuillet, D., and Rou-

geulle, C. (2014). A prominent and conserved role for YY1 in Xist transcriptional

activation. Nat. Commun. 5, 4878.

Mercer, T.R., Dinger, M.E., Sunkin, S.M., Mehler, M.F., and Mattick, J.S.

(2008). Specific expression of long noncoding RNAs in the mouse brain.

Proc. Natl. Acad. Sci. USA 105, 716–721.

Morris, K.V. (2009). RNA-directed transcriptional gene silencing and activation

in human cells. Oligonucleotides 19, 299–306.

Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. (2008).

Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat.

Methods 5, 621–628.

M€uller, J., Hart, C.M., Francis, N.J., Vargas,M.L., Sengupta, A., Wild, B., Miller,

E.L., O’Connor, M.B., Kingston, R.E., and Simon, J.A. (2002). Histone methyl-

transferase activity of a Drosophila Polycomb group repressor complex. Cell

111, 197–208.

Murphy, P., Topilko, P., Schneider-Maunoury, S., Seitanidou, T., Baron-Van

Evercooren, A., and Charnay, P. (1996). The regulation of Krox-20 expression

reveals important steps in the control of peripheral glial cell development.

Development 122, 2847–2857.

Nagarajan, R., Svaren, J., Le, N., Araki, T., Watson, M., and Milbrandt, J.

(2001). EGR2 mutations in inherited neuropathies dominant-negatively inhibit

myelin gene expression. Neuron 30, 355–368.

Newbern, J.M., Li, X., Shoemaker, S.E., Zhou, J., Zhong, J., Wu, Y., Bonder,

D., Hollenback, S., Coppola, G., Geschwind, D.H., et al. (2011). Specific func-

tions for ERK/MAPK signaling during PNS development. Neuron 69, 91–105.

O’Shea, T.M., Aimetti, A.A., Kim, E., Yesilyurt, V., and Langer, R. (2015). Syn-

thesis and characterization of a library of in-situ curing, nonswelling ethoxy-

lated polyol thiol-ene hydrogels for tailorable macromolecule delivery. Adv.

Mater. 27, 65–72.

http://refhub.elsevier.com/S2211-1247(17)31061-6/sref1
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref1
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref1
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref2
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref2
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref2
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref3
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref3
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref3
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref3
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref4
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref4
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref4
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref4
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref5
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref5
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref5
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref5
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref5
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref6
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref6
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref6
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref7
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref7
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref7
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref8
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref8
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref8
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref9
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref9
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref9
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref10
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref10
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref10
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref10
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref11
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref11
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref11
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref12
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref12
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref13
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref13
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref13
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref13
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref14
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref14
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref14
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref15
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref15
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref15
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref16
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref16
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref17
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref17
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref17
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref18
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref18
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref18
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref19
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref19
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref19
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref19
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref20
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref20
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref20
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref20
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref21
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref21
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref21
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref21
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref22
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref22
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref22
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref23
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref23
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref24
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref24
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref24
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref25
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref25
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref25
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref26
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref26
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref27
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref27
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref27
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref28
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref28
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref28
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref28
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref28
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref29
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref29
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref29
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref29
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref30
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref30
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref30
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref31
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref31
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref31
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref32
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref32
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref32
http://refhub.elsevier.com/S2211-1247(17)31061-6/sref32


Omoto, S., and Fujii, Y.R. (2005). Regulation of human immunodeficiency

virus 1 transcription by nef microRNA. J. Gen. Virol. 86, 751–755.

Palazzo, A.F., and Lee, E.S. (2015). Non-coding RNA: what is functional and

what is junk? Front. Genet. 6, 2.

Parkinson, D.B., Bhaskaran, A., Arthur-Farraj, P., Noon, L.A., Woodhoo, A.,

Lloyd, A.C., Feltri, M.L., Wrabetz, L., Behrens, A., Mirsky, R., and Jessen,

K.R. (2008). c-Jun is a negative regulator of myelination. J. Cell Biol. 181,

625–637.

Poitelon, Y., Lopez-Anido, C., Catignas, K., Berti, C., Palmisano, M., William-

son, C., Ameroso, D., Abiko, K., Hwang, Y., Gregorieff, A., et al. (2016). YAP

and TAZ control peripheral myelination and the expression of laminin recep-

tors in Schwann cells. Nat. Neurosci. 19, 879–887.

Quek, X.C., Thomson, D.W., Maag, J.L., Bartonicek, N., Signal, B., Clark, M.B.,

Gloss, B.S., and Dinger, M.E. (2015). lncRNAdb v2.0: expanding the reference

database for functional long noncoding RNAs. Nucleic Acids Res. 43, D168–

D173.
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Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S.,

Getz, G., and Mesirov, J.P. (2011). Integrative genomics viewer. Nat. Bio-

technol. 29, 24–26.

Simon, M.D., Wang, C.I., Kharchenko, P.V., West, J.A., Chapman, B.A., Alek-

seyenko, A.A., Borowsky, M.L., Kuroda, M.I., and Kingston, R.E. (2011). The

genomic binding sites of a noncoding RNA. Proc. Natl. Acad. Sci. USA 108,

20497–20502.

Smale, S.T., and Kadonaga, J.T. (2003). The RNApolymerase II core promoter.

Annu. Rev. Biochem. 72, 449–479.

Stassart, R.M., Fledrich, R., Velanac, V., Brinkmann, B.G., Schwab, M.H.,

Meijer, D., Sereda, M.W., and Nave, K.A. (2013). A role for Schwann cell-

derived neuregulin-1 in remyelination. Nat. Neurosci. 16, 48–54.
Svaren, J., andMeijer, D. (2008). Themolecular machinery of myelin gene tran-

scription in Schwann cells. Glia 56, 1541–1551.

Tan, Y., Zhang, B., Wu, T., Skogerbø, G., Zhu, X., Guo, X., He, S., and Chen, R.

(2009). Transcriptional inhibiton of Hoxd4 expression by miRNA-10a in human

breast cancer cells. BMC Mol. Biol. 10, 12.

Taveggia, C., Zanazzi, G., Petrylak, A., Yano, H., Rosenbluth, J., Einheber, S.,

Xu, X., Esper, R.M., Loeb, J.A., Shrager, P., et al. (2005). Neuregulin-1 type III

determines the ensheathment fate of axons. Neuron 47, 681–694.

Timmerman, V., De Jonghe, P., Ceuterick, C., De Vriendt, E., Löfgren, A., Nelis,
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